1
|
Jiang L, Gu M, Xiao J, Zhao Y, Shen F, Guo X, Li H, Guo D, Li C, Zhu Q, Yang D, Xing X, Sun D. Ethyl caffeate as a novel targeted inhibitor of 3CLpro with antiviral activity against porcine epidemic diarrhea virus. Virology 2025; 604:110406. [PMID: 39854915 DOI: 10.1016/j.virol.2025.110406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/25/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025]
Abstract
Porcine epidemic diarrhea virus (PEDV) can cause severe diarrhea death in newborn piglets, resulting in significant economic losses for the pig industry. Therefore, the advancement of safe and effective anti-PEDV drugs for the treatment of PEDV is of paramount importance. In this study, molecular docking was used to screen natural drugs that can target PEDV 3C like protease (3CLpro). As well, the anti-PEDV effects of the screened drugs were evaluated in vitro and in vivo. Molecular docking and molecular dynamics (MD) simulation results showed that ethyl caffeate (EC) could efficiently bind to the active cavity of PEDV 3CLpro. Biolayer interferometry (BLI) and fluorescence resonance energy transfer (FRET) analyses demonstrated that EC directly interacts with PEDV 3CLpro (KD = 1650 μM) and inhibits the activity of 3CLpro (IC50 = 33.87 μM). EC has been shown to significantly inhibit the replication of PEDV in Vero E6 cells. The half maximal inhibitory concentration (CC50) and half-effective concentration (EC50) were determined to be 283.1 μM and 8.641 μM, respectively, yielding a selectivity index as high as 32.7. Furthermore, EC was evaluated using a piglet infection model for PEDV. It demonstrated the ability to inhibit PEDV infection in vivo and improve the survival rate of piglets (3/5, 60%). Compared to the control group, oral administration of EC significantly reduced intestinal pathological damage and viral load. Our study indicated that EC, targeting PEDV 3CLpro, is a safe and effective anti-PEDV drug with promising clinical application prospects.
Collapse
Affiliation(s)
- Limin Jiang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Minghui Gu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Jiawei Xiao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Yingying Zhao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Fanbo Shen
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Xingyang Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Hansong Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Donghua Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Chunqiu Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Qinghe Zhu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Dan Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Xiaoxu Xing
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China.
| | - Dongbo Sun
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China.
| |
Collapse
|
2
|
Zhu Q, Liu T, Qin W, Yang X, Tong W, Yu H, Zheng H, Tong G, Shan T, Zhang Y, Liu X, Kong N. BTG3 inhibits porcine epidemic diarrhea virus replication by promoting viral S2 protein degradation through the autophagy and proteasome pathways. Vet Microbiol 2025; 302:110402. [PMID: 39842367 DOI: 10.1016/j.vetmic.2025.110402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/14/2025] [Accepted: 01/18/2025] [Indexed: 01/24/2025]
Abstract
BTG3, which belongs to the BTG/Tob gene family, is involved in various physiological processes. Infection with porcine epidemic diarrhea virus (PEDV), an alphacoronavirus, is associated with high mortality rates among piglets, contributing to major economic losses. This study elucidated a novel mechanism through which BTG3 suppresses PEDV replication. Endogenous BTG3 protein expression was upregulated in PEDV-infected host cells. PEDV replication was suppressed upon BTG3 overexpression but enhanced upon BTG3 knockdown. Additionally, BTG3 inhibited viral proliferation by targeting and degrading the S2 subunit of the PEDV spike (S) protein through both autophagy and proteasome pathways. BTG3 interacted and co-localized with the S2 protein, promoting S2 protein degradation through the recruitment of the cargo receptor NDP52 and the E3 ubiquitin ligase MARCHF8. In summary, this study elucidated a novel antiviral mechanism in which the host BTG3 targeted the viral S2 protein to inhibit PEDV proliferation through autophagy and proteasome pathways. These findings indicate that BTG3 is a potential novel target for the prevention and control of PEDV.
Collapse
Affiliation(s)
- Qingxiao Zhu
- Animal-Derived Food Safety Innovation Team, College of Veterinary Medicine, Anhui Agricultural University, Hefei 230036, China; Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Tian Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Wenzhen Qin
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Xinyu Yang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Wu Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Hai Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Hao Zheng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Guangzhi Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Tongling Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Yu Zhang
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xuelan Liu
- Animal-Derived Food Safety Innovation Team, College of Veterinary Medicine, Anhui Agricultural University, Hefei 230036, China.
| | - Ning Kong
- Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 200240, China; Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
3
|
Sun J, Cheng J, Shi D, Xu X, Liu Y, Ying J, Zhao Y, Zheng H, Yan J, Sun D, Song H, Su M. Genetic Epidemiology of Porcine Epidemic Diarrhea Virus Circulating in China From 2010 to 2024: Characterization of Phylogenetic and Genetic Diversity of S1-Based Genes. J Med Virol 2025; 97:e70198. [PMID: 39891595 DOI: 10.1002/jmv.70198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/10/2025] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
As a porcine alphacoronavirus, porcine epidemic diarrhea virus (PEDV) frequently undergoes mutations that significantly reduce the effectiveness of current prevention and control strategies, leading to recurrent outbreaks in China. This study investigates the genetic evolution and mutation patterns of the S1 protein to characterize PEDV variation in China. Genetic evolutionary analysis of 804 PEDV S1 genes, including 620 Chinese PEDV strains, revealed that 78.06% of the Chinese PEDV strains belong to the G2a-subgroup, further divided into seven branches (G2a-Clade 1-7), with the predominant strains from 2020 to 2024 being in G2a-Clade 4 (68.00%). From 2021 to 2024, 32 novel substitutions, 25 deletions, and 8 insertions were identified in the S1 protein of Chinese strains compared to those from 2010 to 2011. Notably, complete mutations were observed at amino acid sites N139D, H189Y, L229P, I287M, F345L, A361T, T499I, and A520S. Moreover, protein homology modeling analysis displayed that these deletion-insertion mutations significantly altered the surface structure of the S protein, particularly in the N-terminal domain (NTD) and receptor-binding domain (RBD) regions of S1 protein. The predictive analysis using AlphaFold3 indicated that deletion-insertion mutations in the S1-RBD region notably affected the binding affinity of the S protein to porcine DC-SIGN. These findings enhance our understanding of the genetic evolution of PEDV in China.
Collapse
Affiliation(s)
- Jing Sun
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Jiongze Cheng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Da Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiangwen Xu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Yijia Liu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Jiale Ying
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Yulin Zhao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Huihua Zheng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Junfang Yan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Dongbo Sun
- Laboratory for the Prevention and Control of Swine Infectious Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Houhui Song
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Mingjun Su
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
4
|
Wang B, Han W, Wu D, Jing Y, Ma L, Jiang F, Ji S, Bai L, Yu X, Hou W, Wang S, Wang H. Duplex qPCR for detecting and differentiating porcine epidemic diarrhea virus GI and GII subtypes. Front Microbiol 2025; 16:1475273. [PMID: 39911251 PMCID: PMC11794799 DOI: 10.3389/fmicb.2025.1475273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 01/08/2025] [Indexed: 02/07/2025] Open
Abstract
Introduction Porcine epidemic diarrhea virus (PEDV) is a pathogen that causes a highly contagious intestinal disease in pigs, which causes significant economic losses to the pig industry worldwide. PCR is the most commonly used technique for PEDV diagnosis in practical clinics, however, reported works still suffer from shortcomings, for example, most of them cannot differentiate GI and GII subtypes, they suffer from low sensitivity, and some primer sequences are no longer able to match the mutant strains. Methods To address these issues, we conducted a comprehensive analysis by comparing the sequences of the PEDV S protein in the existing NCBI database with a recently isolated epidemic strain of PEDV, named SX0818-2022, of subtype GIIa from Shanxi, China. The conserved sequences of GI and GII subtypes were retrieved to design the primers and probe. Leveraging this information, we developed a TaqMan probe-based quantitative real-time PCR (qPCR) assay that is uniquely tailored to detect both PEDV GI and GII subtypes. Results Additionally, this qPCR can identify PEDV GI and GII subtypes with high sensitivities of 90 copies/μL and 40 copies/μL, respectively (refers to the number of copies of the DNA target per microliter of template in the reaction system), much higher than the previously reported works and especially suitable for early diagnosis and prevention. Besides, excellent specificity and repeatability of the duplex qPCR were verified, thus supporting its potential applications in practical clinics. Discussion Therefore, this work presents a promising tool for PEDV diagnosis, prevention, and control.
Collapse
Affiliation(s)
- Bin Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Wang Han
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Di Wu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Yue Jing
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Li Ma
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Feiyang Jiang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Shusen Ji
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Lianmei Bai
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Xiuju Yu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Wei Hou
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Shouyu Wang
- OptiX+ Laboratory, Wuxi University, Wuxi, China
| | - Haidong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| |
Collapse
|
5
|
Li X, Zhao J, Li J, Xiri Y, Liu Z, Zhao Q, Sun Y. Genome Characterization of Mammalian Orthoreovirus and Porcine Epidemic Diarrhea Virus Isolated from the Same Fattening Pig. Animals (Basel) 2025; 15:156. [PMID: 39858157 PMCID: PMC11758326 DOI: 10.3390/ani15020156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
In 2020, severe diarrhea occurred in four-month-old fattening pigs from nine farms in Shandong Province, China. Fecal samples were collected from diseased pigs and tested by PCR for the presence of mammalian orthoreovirus (MRV), porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV), porcine rotavirus A (PoRVA), transmissible gastroenteritis virus (TGEV), porcine kobuvirus (PKV), and pseudorabies virus (PRV). The viral RNA of MRV and PEDV was detected in the fecal samples. The genome sequences of MRV and PEDV were successfully amplified from the same fecal sample. Genomic and phylogenetic analysis showed that the MRV isolate named MRV2-SD/2020 belongs to serotype 2 MRV (MRV2) and may originate from the reassortment of human and porcine MRVs. Compared with other MRV2 strains, there were four other unique amino acid mutations (L274I, F302L, V347I, and T440M) in the receptor binding region. For the PEDV isolate named PEDV-SD/2020, the nearly complete genome was amplified from the positive fecal samples. Phylogenetic analysis showed that it was classified into the G2a genotype. Compared with CV777 and other PEDV variant strains, its spike (S) protein exhibited two unique mutations (S663T and L966M). This study first reports the co-infection of PEDV and MRV2 in the pigs and provides a new direction for the prevention and control of the diarrhea diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yani Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (X.L.); (J.Z.); (J.L.); (Y.X.); (Z.L.); (Q.Z.)
| |
Collapse
|
6
|
Xu X, Sun J, Zheng H, Du X, Wang Y, Cheng J, Liu Y, Ying J, Zhao Y, Wang Z, Yan J, Duan X, Yang Y, Ye Z, Sun D, Song H, Su M. Isolation and characterization of a novel S-gene mutation porcine deltacoronavirus with high pathogenicity from diarrhea piglet in Zhejiang Province, China, 2022. Microb Pathog 2024; 197:107095. [PMID: 39486553 DOI: 10.1016/j.micpath.2024.107095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/22/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Porcine deltacoronavirus (PDCoV) is a coronavirus that causes diarrhea in suckling piglets and has the potential for cross-species transmission. Monitoring PDCoV evolution and identifying potential vaccine candidates are crucial due to its high mutation rates in pig populations. In this study, a Chinese PDCoV strain named ZD2022 was successfully isolated from diarrhea piglets in Zhejiang province, followed by genetic evolutionary analysis, assessment of S proteins' biological functions, in vitro cellular adaptation analysis and pathogenicity evaluation. Phylogenetic analyses placed the PDCoV ZD2022 strain within the Southeast Asia Lineage. Sequence analysis revealed 23 mutations in the S protein of ZD2022 compared to most of other Chinese PDCoV strains, including 8 unique mutations (T529I, L579F, Q614H, V709G, S959L, P1010S, V1016F, A1068V). In addition, bioinformatic predictions indicated these mutations impact the hydrophilicity/hydrophobicity, antigenic epitopes and N-glycosylation sites of the ZD2022 S protein. The virus growth curve of ZD2022 showed good cellular adaptation, with peak viral titers of 8.92 ± 0.31 Log10 TCID50/mL in ST cells. Furthermore, ZD2022 exhibited high virulence in suckling piglets, causing severe diarrhea in piglets at 60 h post-inoculation (hpi) and a mortality rate of 40 % (2/5) within 96 hpi. In summary, our findings indicate that the Chinese PDCoV strains continue to mutate, and the novel S gene mutation in strain ZD2022 offers strong cellular adaptation and high pathogenicity, making it a potential candidate strain for vaccine development.
Collapse
Affiliation(s)
- Xiangwen Xu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province, 311300, China
| | - Jing Sun
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province, 311300, China
| | - Huihua Zheng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province, 311300, China
| | - Xiaoxu Du
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province, 311300, China
| | - Yutao Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province, 311300, China
| | - Jiongze Cheng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province, 311300, China
| | - Yijia Liu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province, 311300, China
| | - Jiale Ying
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province, 311300, China
| | - Yulin Zhao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province, 311300, China
| | - Ziqi Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province, 311300, China
| | - Junfang Yan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province, 311300, China
| | - Xing Duan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province, 311300, China
| | - Yongchun Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province, 311300, China
| | - Zhihui Ye
- Ningbo Creator Animal Pharmaceutical Co., Ltd, No. 590 Xitou Village, Xidian town, Ninghai, Ningbo, Zhejiang Province, 315613, China
| | - Dongbo Sun
- Laboratory for the Prevention and Control of Swine Infectious Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China.
| | - Houhui Song
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province, 311300, China.
| | - Mingjun Su
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province, 311300, China; Ningbo Creator Animal Pharmaceutical Co., Ltd, No. 590 Xitou Village, Xidian town, Ninghai, Ningbo, Zhejiang Province, 315613, China.
| |
Collapse
|
7
|
Su M, Wang Y, Yan J, Xu X, Zheng H, Cheng J, Du X, Liu Y, Ying J, Zhao Y, Wang Z, Duan X, Yang Y, Cheng C, Ye Z, Sun J, Sun D, Song H. Isolation and characterization of a novel S1-gene insertion porcine epidemic diarrhea virus with low pathogenicity in newborn piglets. Virulence 2024; 15:2397512. [PMID: 39282989 PMCID: PMC11407387 DOI: 10.1080/21505594.2024.2397512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/10/2024] [Accepted: 08/13/2024] [Indexed: 09/19/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) causes diarrhea and vomiting in piglets, leading to a mortality rate of 100%. Due to the high frequency of mutation, it is important to monitor the evolution of PEDV and develop potential vaccine candidates. In this study, two PEDV strains (ZJ2022 and ZQ2022) were identified by PCR. These strains were subsequently isolated, and their genome sequences, growth characteristics, and pathogenicity were compared. Phylogenetic and recombination analyses revealed that both strains belonged to GIIa-subgroup, and ZQ2022 was identified as a recombinant strain derived from ZJ2022. Further sequence analysis showed that the ZJ2022 strain had a modified top region of the S1 protein due to a three amino acid insertion (T380_Y380insGGE) in the S1 gene. According to the virus growth curve, ZJ2022 exhibited better cellular adaptation than ZQ2022, with higher viral titers from 8 hpi to 24 hpi. Additionally, ZQ2022 exhibited a high level of pathogenicity, causing severe diarrhea in piglets at 36 hpi and a 100% mortality rate by 96 hpi. In contrast, ZJ2022 showed lower pathogenicity, inducing severe diarrhea in piglets at 60 hpi, with a mortality rate of 60% at 96 hpi and 100% at 120 hpi. In summary, our findings provided evidence of the undergoing mutations in Chinese PEDV strains. Furthermore, the S gene insertion strain ZJ2022 exhibited strong cellular adaptability and low pathogenicity, making it a potential candidate strain for vaccine development.
Collapse
Affiliation(s)
- Mingjun Su
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
- Ningbo Creator Animal Pharmaceutical Co. Ltd, Ningbo, Zhejiang Province, PR China
| | - Yutao Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Junfang Yan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Xiangwen Xu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Huihua Zheng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Jiongze Cheng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Xiaoxu Du
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Yijia Liu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Jiale Ying
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Yulin Zhao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Ziqi Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Xing Duan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Yang Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Changyong Cheng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Zhihui Ye
- Ningbo Creator Animal Pharmaceutical Co. Ltd, Ningbo, Zhejiang Province, PR China
| | - Jing Sun
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Dongbo Sun
- Laboratory for the Prevention and Control of Swine Infectious Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, PR China
| | - Houhui Song
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
8
|
Zhang Y, Wu F, Han Y, Wu Y, Huang L, Huang Y, Yan D, Jiang X, Ma J, Xu W. Unraveling the assembly mechanism of SADS-CoV virus nucleocapsid protein: insights from RNA binding, dimerization, and epitope diversity profiling. J Virol 2024; 98:e0092624. [PMID: 39082816 PMCID: PMC11334509 DOI: 10.1128/jvi.00926-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/02/2024] [Indexed: 08/21/2024] Open
Abstract
The swine acute diarrhea syndrome coronavirus (SADS-CoV) has caused significant disruptions in porcine breeding and raised concerns about potential human infection. The nucleocapsid (N) protein of SADS-CoV plays a vital role in viral assembly and replication, but its structure and functions remain poorly understood. This study utilized biochemistry, X-ray crystallography, and immunization techniques to investigate the N protein's structure and function in SADS-CoV. Our findings revealed distinct domains within the N protein, including an RNA-binding domain, two disordered domains, and a dimerization domain. Through biochemical assays, we confirmed that the N-terminal domain functions as an RNA-binding domain, and the C-terminal domain is involved in dimerization, with the crystal structure analysis providing visual evidence of dimer formation. Immunization experiments demonstrated that the disordered domain 2 elicited a significant antibody response. These identified domains and their interactions are crucial for viral assembly. This comprehensive understanding of the N protein in SADS-CoV enhances our knowledge of its assembly and replication mechanisms, enabling the development of targeted interventions and therapeutic strategies. IMPORTANCE SADS-CoV is a porcine coronavirus that originated from a bat HKU2-related coronavirus. It causes devastating swine diseases and poses a high risk of spillover to humans. The coronavirus N protein, as the most abundant viral protein in infected cells, likely plays a key role in viral assembly and replication. However, the structure and function of this protein remain unclear. Therefore, this study employed a combination of biochemistry and X-ray crystallography to uncover distinct structural domains in the N protein, including RNA-binding domains, two disordered domains, and dimerization domains. Additionally, we made the novel discovery that the disordered domain elicited a significant antibody response. These findings provide new insights into the structure and functions of the SADS-CoV N protein, which have important implications for future studies on SADS-CoV diagnosis, as well as the development of vaccines and anti-viral drugs.
Collapse
Affiliation(s)
- Ying Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening & NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Fang Wu
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Yongyue Han
- Guangdong Provincial Key Laboratory of New Drug Screening & NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yuzhe Wu
- Guangdong Provincial Key Laboratory of New Drug Screening & NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Liqiu Huang
- Guangdong Provincial Key Laboratory of New Drug Screening & NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yuanwei Huang
- Guangdong Provincial Key Laboratory of New Drug Screening & NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Di Yan
- Guangdong Provincial Key Laboratory of New Drug Screening & NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xiwen Jiang
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jingyun Ma
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Wei Xu
- Guangdong Provincial Key Laboratory of New Drug Screening & NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Yang D, Wang X, Yang X, Qi S, Zhao F, Guo D, Li C, Zhu Q, Xing X, Cao Y, Sun D. Construction and immune effect evaluation of the S protein heptad repeat-based nanoparticle vaccine against porcine epidemic diarrhea virus. Virology 2024; 596:110113. [PMID: 38801794 DOI: 10.1016/j.virol.2024.110113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/26/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
Porcine epidemic diarrhea virus (PEDV), a highly virulent enteropathogenic coronavirus, is a significant threat to the pig industry. High frequency mutations in the PEDV genome have limited the effectiveness of current vaccines in providing immune protection. Developing efficient vaccines that can quickly adapt to mutant strains is a challenging but crucial task. In this study, we chose the pivotal protein heptad repeat (HR) responsible for coronavirus entry into host cells, as the vaccine antigen. HR-Fer nanoparticles prepared using ferritin were evaluated them as PEDV vaccine candidates. Nanoparticle vaccines elicited stronger neutralizing antibody responses in mice compared to monomer vaccines. Additionally, HR protein delivered via nanoparticles increased antigen uptake by antigen-presenting cells in vitro by 2.75-fold. The collective results suggest that HR can be used as antigens for vaccines, and the HR vaccine based on ferritin nanoparticles significantly enhances immunogenicity.
Collapse
Affiliation(s)
- Dan Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Xinglin Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Xu Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Shanshan Qi
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Feiyu Zhao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Donghua Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Chunqiu Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Qinghe Zhu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Xiaoxu Xing
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Yang Cao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China.
| | - Dongbo Sun
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China.
| |
Collapse
|
10
|
Wang J, Sun H, Su M, Li Z, Li L, Zhao F, Zhang Y, Bai W, Yu S, Yang X, Qi S, Yang D, Guo D, Li C, Zhu Q, Xing X, Sun D. Natural hyperoside extracted from hawthorn exhibits antiviral activity against porcine epidemic diarrhea virus in vitro and in vivo. Virology 2024; 594:110037. [PMID: 38498965 DOI: 10.1016/j.virol.2024.110037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/20/2024]
Abstract
Porcine epidemic diarrhea virus (PEDV) causes severe diarrhea and death in piglets, resulting in significant economic losses for the pork industry. There is an urgent need for new treatment strategies. Here, we focused on optimizing the process of purifying natural hyperoside (nHYP) from hawthorn and evaluating its effectiveness against PEDV both in vitro and in vivo. Our findings demonstrated that nHYP with a purity >98% was successfully isolated from hawthorn with an extraction rate of 0.42 mg/g. Furthermore, nHYP exhibited strong inhibitory effects on PEDV replication in cells, with a selection index of 9.72. nHYP significantly reduced the viral load in the intestines of piglets and protected three of four piglets from death caused by PEDV infection. Mechanistically, nHYP could intervene in the interaction of PEDV N protein and p53. The findings implicate nHYP as having promising therapeutic potential for combating PEDV infections.
Collapse
Affiliation(s)
- Jun Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Haibo Sun
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Mingjun Su
- College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Linan District, Hangzhou, Zhejiang Province, 311300, China
| | - Zijian Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Lu Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Feiyu Zhao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Yongchen Zhang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Wenfei Bai
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Shiping Yu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Xu Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Shanshan Qi
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Dan Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Donghua Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Chunqiu Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Qinghe Zhu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Xiaoxu Xing
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China.
| | - Dongbo Sun
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China.
| |
Collapse
|
11
|
Yang D, Su M, Guo D, Zhao F, Wang M, Liu J, Zhou J, Sun Y, Yang X, Qi S, Li Z, Zhu Q, Xing X, Li C, Cao Y, Feng L, Sun D. Combination of S1-N-Terminal and S1-C-Terminal Domain Antigens Targeting Double Receptor-Binding Domains Bolsters Protective Immunity of a Nanoparticle Vaccine against Porcine Epidemic Diarrhea Virus. ACS NANO 2024; 18:12235-12260. [PMID: 38696217 DOI: 10.1021/acsnano.4c00809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
Variants of coronavirus porcine epidemic diarrhea virus (PEDV) frequently emerge, causing an incomplete match between the vaccine and variant strains, which affects vaccine efficacy. Designing vaccines with rapidly replaceable antigens and high efficacy is a promising strategy for the prevention of infection with PEDV variant strains. In our study, three different types of self-assembled nanoparticles (nps) targeting receptor-binding N-terminal domain (NTD) and C-terminal domain (CTD) of S1 protein, named NTDnps, CTDnps, and NTD/CTDnps, were constructed and evaluated as vaccine candidates against PEDV. NTDnps and CTDnps vaccines mediated significantly higher neutralizing antibody (NAb) titers than NTD and CTD recombinant proteins in mice. The NTD/CTDnps in varying ratios elicited significantly higher NAb titers when compared with NTDnps and CTDnps alone. The NTD/CTDnps (3:1) elicited NAb with titers up to 92.92% of those induced by the commercial vaccine. Piglets immunized with NTD/CTDnps (3:1) achieved a passive immune protection rate of 83.33% of that induced by the commercial vaccine. NTD/CTDnps (3:1) enhanced the capacity of mononuclear macrophages and dendritic cells to take up and present antigens by activating major histocompatibility complex I and II molecules to stimulate humoral and cellular immunity. These data reveal that a combination of S1-NTD and S1-CTD antigens targeting double receptor-binding domains strengthens the protective immunity of nanoparticle vaccines against PEDV. Our findings will provide a promising vaccine candidate against PEDV.
Collapse
Affiliation(s)
- Dan Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, P. R. China
| | - Mingjun Su
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, P. R. China
| | - Donghua Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, P. R. China
| | - Feiyu Zhao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, P. R. China
| | - Meijiao Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, P. R. China
| | - Jiaying Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, P. R. China
| | - Jingxuan Zhou
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, P. R. China
| | - Ying Sun
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, P. R. China
| | - Xu Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, P. R. China
| | - Shanshan Qi
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, P. R. China
| | - Zhen Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, P. R. China
| | - Qinghe Zhu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, P. R. China
| | - Xiaoxu Xing
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, P. R. China
| | - Chunqiu Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, P. R. China
| | - Yang Cao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, P. R. China
| | - Li Feng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, P. R. China
| | - Dongbo Sun
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, P. R. China
| |
Collapse
|
12
|
Bai W, Zhu Q, Wang J, Jiang L, Guo D, Li C, Xing X, Sun D. Licorice extract inhibits porcine epidemic diarrhea virus in vitro and in vivo. J Gen Virol 2024; 105:001964. [PMID: 38471043 PMCID: PMC10999743 DOI: 10.1099/jgv.0.001964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 02/13/2024] [Indexed: 03/14/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) causes severe diarrhea and even death in piglets, resulting in significant economic losses to the pig industry. Because of the ongoing mutation of PEDV, there might be variations between the vaccine strain and the prevailing strain, causing the vaccine to not offer full protection against different PEDV variant strains. Therefore, it is necessary to develop anti-PEDV drugs to compensate for vaccines. This study confirmed the anti-PEDV effect of licorice extract (Le) in vitro and in vivo. Le inhibited PEDV replication in a dose-dependent manner in vitro. By exploring the effect of Le on the life cycle of PEDV, we found that Le inhibited the attachment, internalization, and replication stages of the virus. In vivo, all five piglets in the PEDV-infected group died within 72 h. In comparison, the Le-treated group had a survival rate of 80 % at the same time, with significant relief of clinical symptoms, pathological damage, and viral loads in the jejunum and ileum. Our results suggested that Le can exert anti-PEDV effects in vitro and in vivo. Le is effective and inexpensive; therefore it has the potential to be developed as a new anti-PEDV drug.
Collapse
Affiliation(s)
- Wenfei Bai
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| | - Qinghe Zhu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| | - Jun Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| | - Limin Jiang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| | - Donghua Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| | - Chunqiu Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| | - Xiaoxu Xing
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| | - Dongbo Sun
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| |
Collapse
|
13
|
Li M, Sun X, Chen Y, Wang S, Li Q, Wang Y, Wang Y, Li R, Ding P, Zhang G. Enhancing humoral and mucosal immune response of PED vaccine candidate by fusing S1 protein to nanoparticle multimerization. Vet Microbiol 2024; 290:110003. [PMID: 38262114 DOI: 10.1016/j.vetmic.2024.110003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/25/2024]
Abstract
Porcine epidemic diarrhea virus (PEDV) is a highly infectious pathogen with a high mortality rate, which poses a serious threat to newborn piglets. A rapid, safe and effective vaccine is necessary for protecting pigs from PED infection. Nanoparticles have become molecular scaffolds for displaying soluble antigens due to their unique physical and chemical properties. Here, a vaccine candidate was based on the display of PEDV S1 protein on a mi3 nanoparticle platform using SpyTag/SpyCatcher technology. The size, zeta potential and microstructure of the S1-mi3 NPs were investigated, and their effects on the uptake of antigen-presenting cells (APCs) and maturation of dendritic cells (DCs) were analyzed. Mice were immunized via muscular and intranasal administrations, and the levels of humoral, cellular and mucosal immune responses were analyzed. As a result, S1 proteins were surface-displayed on NPs successfully, which self-assembled into nanoparticles composed of 60 subunits and showed superior safety and stability. In addition, mi3 NPs promoted antigen internalization and dendritic cell (DCs) maturation. In the mouse model, S1-mi3 NPs significantly increased the PEDV-specific antibody including serum IgG, secretory IgA (SIgA) and neutralizing antibodies (NAb). Furthermore, S1-mi3 NPs elicited more CD3+CD4+ and CD3+CD8+ T cell and cellular immune-related cytokines (IFN-γ and IL-4) compared to monomeric S1. In particular, it can induce an effective germinal center-specific (GC) B cell response, which is closely related to the production of neutralizing antibodies. Overall, S1-mi3 NPs are a promising subunit vaccine candidate against PEDV, and this self-assembly NPs also provide an attractive platform for improving vaccine efficacy against emerging pathogens.
Collapse
Affiliation(s)
- Minghui Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Xueke Sun
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yilan Chen
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Siqiao Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Qin Li
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yanan Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yue Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Ruiqi Li
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Peiyang Ding
- College of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Longhu Laboratory, Zhengzhou, China.
| | - Gaiping Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; College of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Longhu Laboratory, Zhengzhou, China; School of Advanced Agricultural Sciences, Peking University, Beijing 100080, China.
| |
Collapse
|
14
|
Li L, Li B, Wang J, Liu L, Li Y, Sun S, Yin S, Zhang L, Liu X, Xu X, Guo H. A novel recombination porcine epidemic diarrhea virus isolated from Gansu, China: Genetic characterization and pathogenicity. Vet Microbiol 2024; 290:109975. [PMID: 38183838 DOI: 10.1016/j.vetmic.2023.109975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 01/08/2024]
Abstract
Porcine epidemic diarrhea virus (PEDV) is an acute and highly contagious porcine enteric coronavirus. It has caused serious economic losses of pig industry in China. Here we insolated a current PEDV field strain named GS2022, analyzed the characters of genetic variation and pathogenicity. The results demonstrated that the GS2022 strain was belong to a newly defined subgroup G2 d, forming an independent branch which mainly contains strains isolated in China from 2017 to 2023. Notably, there are multiple mutations and extensive N-glycosylation compared to CV777 strain and PT-P5 strain, therefore the structure of GS2022 strain is different from 6U7K and 7W6M. Animal pathogenicity test showed that GS2022 strain could cause severe clinical signs and the high level of virus shedding in 7-day-old piglets. But recovery of diarrhea after 5 days, and no pathological damage to important organs. Further study on 3-day-old piglets also indicated GS2022 strain have pathogenicity. In this study no piglets died, which make it possible for that GS2022 strain become a candidate vaccine. These results are helpful to understand the epidemiology, molecular characteristics, evolution, and antigenicity of PEDV circulating in China. It also provides reference for designing effective vaccines against PEDV.
Collapse
Affiliation(s)
- Linjie Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, China; State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Bingqing Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jin Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Lei Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yi Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shiqi Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shuanghui Yin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Liping Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xinsheng Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xingang Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.
| | - Huichen Guo
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.
| |
Collapse
|
15
|
Lei J, Miao Y, Bi W, Xiang C, Li W, Zhang R, Li Q, Yang Z. Porcine Epidemic Diarrhea Virus: Etiology, Epidemiology, Antigenicity, and Control Strategies in China. Animals (Basel) 2024; 14:294. [PMID: 38254462 PMCID: PMC10812628 DOI: 10.3390/ani14020294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a porcine enteric coronavirus, which is one of the main causative agents of porcine epidemic diarrhea (PED), with 100% morbidity and 80-100% mortality in neonatal piglets. Since 2010, large-scale PED caused by highly pathogenic variants of PEDV has occurred successively in China and other countries in the world, posing a great threat to the global pig industry. It has been demonstrated in many investigations that the classic attenuated vaccine strain, PEDV CV777, is insufficient to fully protect against the PEDV variants. Moreover, the maternally derived antibodies elicited by inactivated vaccines also cannot completely protect piglets from infection. In addition, feedback feeding poses a risk of periodic PEDV recurrence in pig farms, making it challenging to successfully limit the spread of PEDV in China. This review focuses on the etiology, epidemiology, antigenicity, and control strategies of PEDV in China and provides information for the formulation of effective control measures.
Collapse
Affiliation(s)
- Jianlin Lei
- College of Agriculture and Forestry Science and Technology, Longdong University, Qingyang 745000, China;
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (Y.M.); (W.B.); (C.X.); (W.L.); (R.Z.); (Z.Y.)
| | - Yongqiang Miao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (Y.M.); (W.B.); (C.X.); (W.L.); (R.Z.); (Z.Y.)
| | - Wenrui Bi
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (Y.M.); (W.B.); (C.X.); (W.L.); (R.Z.); (Z.Y.)
| | - Chaohui Xiang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (Y.M.); (W.B.); (C.X.); (W.L.); (R.Z.); (Z.Y.)
| | - Wei Li
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (Y.M.); (W.B.); (C.X.); (W.L.); (R.Z.); (Z.Y.)
| | - Riteng Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (Y.M.); (W.B.); (C.X.); (W.L.); (R.Z.); (Z.Y.)
| | - Qian Li
- College of Agriculture and Forestry Science and Technology, Longdong University, Qingyang 745000, China;
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (Y.M.); (W.B.); (C.X.); (W.L.); (R.Z.); (Z.Y.)
| |
Collapse
|
16
|
Yu K, Liu X, Lu Y, Long M, Bai J, Qin Q, Su X, He G, Mi X, Yang C, Wang R, Wang H, Chen Y, Wei Z, Huang W, Ouyang K. Biological Characteristics and Pathogenicity Analysis of a Low Virulence G2a Porcine Epidemic Diarrhea Virus. Microbiol Spectr 2023; 11:e0453522. [PMID: 37199637 PMCID: PMC10269638 DOI: 10.1128/spectrum.04535-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/27/2023] [Indexed: 05/19/2023] Open
Abstract
Since the outbreak caused by a porcine epidemic diarrhea virus (PEDV) variant in 2010, the current epidemic of PEDV genotype 2 (G2) has caused huge economic losses to the pig industry in China. In order to better understand the biological characteristics and pathogenicity of the current PEDV field strains, 12 PEDV isolates were collected and plaque purified during 2017 to 2018 in Guangxi, China. The neutralizing epitopes of the spike proteins and the ORF3 proteins were analyzed to evaluate genetic variations, and they were compared with the reported G2a and G2b strains. Phylogenetic analysis of the S protein showed that the 12 isolates were clustered into the G2 subgroup (with 5 and 7 strains in G2a and G2b, respectively) and that they shared 97.4 to 99.9% amino acid identities. Among them, one of the G2a strains, CH/GXNN-1/2018, which had a titer of 106.15 PFU/mL, was selected for pathogenicity analysis. Although piglets infected with the CH/GXNN-1/2018 strain exhibited severe clinical signs and the highest level of virus shedding within 24 h postinfection (hpi), recovery and decreased virus shedding were seen after 48 hpi, and no piglets died during the whole process. Thus, the CH/GXNN-1/2018 strain had low virulence in suckling piglets. Virus neutralizing antibody analysis showed that the CH/GXNN-1/2018 strain induced cross-protection against both homologous G2a and heterologous G2b PEDV strains as early as 72 hpi. These results are of great significance for understanding PEDV in Guangxi, China, and they provide a promising naturally occurring low-virulent vaccine candidate for further study. IMPORTANCE The current epidemic of porcine epidemic diarrhea virus (PEDV) G2 has caused huge economic losses to the pig industry. Evaluation for low virulence of the PEDV strains of subgroup G2a would be useful for the future development of effective vaccines. In this study, 12 field strains of PEDV were obtained successfully, and they were characterized from Guangxi, China. The neutralizing epitopes of the spike proteins and the ORF3 proteins were analyzed to evaluate antigenic variations. One of the G2a strains, CH/GXNN-1/2018, was selected for pathogenicity analysis, and it showed that the CH/GXNN-1/2018 strain had low virulence in suckling piglets. These results provide a promising naturally occurring low-virulent vaccine candidate for further study.
Collapse
Affiliation(s)
- Kechen Yu
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xueting Liu
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Ying Lu
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Meijing Long
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jiaguo Bai
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Qiuying Qin
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xueli Su
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Guifu He
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xue Mi
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Chunjie Yang
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Ruomu Wang
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Hejie Wang
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Ying Chen
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
| | - Zuzhang Wei
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
| | - Weijian Huang
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
| | - Kang Ouyang
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
| |
Collapse
|
17
|
Ge Y, Jiang F, Wang S, Wu H, Liu Y, Wang B, Hou W, Yu X, Wang H. Natural Evolution of Porcine Epidemic Diarrhea Viruses Isolated from Maternally Immunized Piglets. Animals (Basel) 2023; 13:1766. [PMID: 37889642 PMCID: PMC10252125 DOI: 10.3390/ani13111766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 10/29/2023] Open
Abstract
The porcine epidemic diarrhea virus (PEDV) can cause severe piglet diarrhea or death in some herds. Genetic recombination and mutation facilitate the continuous evolution of the virus (PEDV), posing a great challenge for the prevention and control of porcine epidemic diarrhea (PED). Disease materials of piglets with PEDV vaccination failure in some areas of Shanxi, Henan and Hebei provinces of China were collected and examined to understand the prevalence and evolutionary characteristics of PEDV in these areas. Forty-seven suspicious disease materials from different litters on different farms were tested by multiplex PCR and screened by hematoxylin-eosin staining and immunohistochemistry. PEDV showed a positivity rate of 42.6%, infecting the small and large intestine and mesenteric lymph node tissues. The isolated strains infected Vero, PK-15 and Marc-145 multihost cells and exhibited low viral titers in all three cell types, as indicated by their growth kinetic curves. Possible putative recombination events in the isolates were identified by RDP4.0 software. Sequencing and phylogenetic analysis showed that compared with the classical vaccine strain, PEDV SX6 contains new insertion and mutations in the S region and belongs to genotype GIIa. Meanwhile, ORF3 has the complete amino acid sequence with aa80 mutated wild strains, compared to vaccine strains CV777, AJ1102, AJ1102-R and LW/L. These results will contribute to the development of new PEDV vaccines based on prevalent wild strains for the prevention and control of PED in China.
Collapse
Affiliation(s)
- Yufang Ge
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Feiyang Jiang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Sibei Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Heqiong Wu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Yuan Liu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Bin Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
- Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Hou
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Xiuju Yu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Haidong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| |
Collapse
|
18
|
Su M, Yin B, Xing X, Li Z, Zhang J, Feng S, Li L, Zhao F, Yang X, Yu S, Wang J, Zhang Y, Shi D, Chen J, Feng L, Guo D, Sun D. Octyl gallate targeting the 3C-like protease exhibits highly efficient antiviral activity against swine enteric coronavirus PEDV. Vet Microbiol 2023; 281:109743. [PMID: 37062110 DOI: 10.1016/j.vetmic.2023.109743] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/18/2023]
Abstract
Infection with porcine epidemic diarrhea virus (PEDV) causes severe watery diarrhea in newborn piglets, leading to substantial financial losses for the swine industry. In this study, we screened small molecule drugs targeting 3 C-like protease (3CLpro) by molecular docking, and further evaluated the antiviral activity of the screened drugs against PEDV. Results showed that octyl gallate (OG), a widely used food additive, exhibited strong binding affinity with the 3CLpro active sites of PEDV. Bio-layer interferometry and fluorescence resonance energy transfer revealed that OG directly interacts with PEDV 3CLpro (KD = 549 nM) and inhibits 3CLpro activity (IC50 = 22.15 µM). OG showed a strong inhibition of PEDV replication in vitro. Virus titers were decreased by 0.58 and 0.71 log10 TCID50/mL for the CV777 and HM2017 strains, respectively. In vivo, all piglets in the PEDV-infected group died at 48 h post-infection (hpi), while 75% of piglets in the OG treatment group showed significant relief from the clinical symptoms, pathological damage, and viral loads in the jejunum and ileum. Moreover, the western blotting results showed that OG also has strong antiviral activity against other swine enteric coronaviruses, including transmissible gastroenteritis virus (TGEV), porcine deltacoronavirus (PDCoV), and swine acute diarrhea syndrome coronavirus (SADS-CoV). Our findings revealed that OG could be developed as a novel antiviral drug against PEDV. The OG exhibited a potential broad-spectrum antiviral drug for control of other swine enteric coronaviruses.
Collapse
Affiliation(s)
- Mingjun Su
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China; College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province 311300, PR China
| | - Baishuang Yin
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, PR China
| | - Xiaoxu Xing
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| | - Zijian Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| | - Jiyu Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Shufeng Feng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Lu Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| | - Feiyu Zhao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| | - Xu Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| | - Shiping Yu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| | - Jun Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| | - Yongchen Zhang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| | - Da Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Jianfei Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Li Feng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Donghua Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| | - Dongbo Sun
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China.
| |
Collapse
|
19
|
Lei J, Miao Y, Guan Z, Chen H, Xiang C, Lu H, Fang Y, Han Y, Hu R, Lu K, Chang Z, Wang X, Zhang S, Liu H, Yang Z. A Porcine Epidemic Diarrhea Virus Isolated from a Sow Farm Vaccinated with CV777 Strain in Yinchuan, China: Characterization, Antigenicity, and Pathogenicity. Transbound Emerg Dis 2023; 2023:7082352. [PMID: 40303733 PMCID: PMC12016728 DOI: 10.1155/2023/7082352] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 01/05/2025]
Abstract
Porcine epidemic diarrhea virus (PEDV) is a porcine enteric coronavirus globally, causing serious economic losses to the global pig industry since 2010. Here, a PEDV CH/Yinchuan/2021 strain was isolated in a CV777-vaccinated sow farm which experienced a large-scale PEDV invasion in Yinchuan, China, in 2021. Our results demonstrated that the CH/Yinchuan/2021 isolate could efficiently propagate in Vero cells, and its proliferation ability was weaker than that of CV777 at 10 passages (P10). Phylogenetic analysis of the S gene revealed that CH/Yinchuan/2021 was clustered into subgroup GIIa, forming an independent branch with 2020-2021 isolates in China. Moreover, GII was obviously allocated into four clades, showing regional and temporal differences in PEDV global isolates. Notably, CH/Yinchuan/2021 was analyzed as a recombinant originated from an American isolate and a Chinese isolate, with a big recombinant region spanning ORF1a and S1. Importantly, we found that CH/Yinchuan/2021 harbored multiple mutations relative to CV777 in neutralizing epitopes (S10, S1A, COE, and SS6). Homology modelling showed that these amino acid differences in S protein occur on the surface of its structure, especially the insertion and deletion of multiple consecutive residues at the S10 epitope. In addition, cross-neutralization analysis confirmed that the differences in the S protein of CH/Yinchuan/2021 changed its antigenicity compared with the CV777 strain, resulting in a different neutralization profile. Animal pathogenicity test showed that CH/Yinchuan/2021 caused PEDV-typified symptoms and 100% mortality in 3-day-old piglets. These data will provide valuable information to understand the epidemiology, molecular characteristics, evolution, and antigenicity of PEDV circulating in China.
Collapse
Affiliation(s)
- Jianlin Lei
- College of Veterinary Medicine, Northwest A&F University, Shaanxi, Yangling, China
- College of Agriculture and Forestry Science and Technology, Longdong University, Qingyang, China
| | - Yongqiang Miao
- College of Veterinary Medicine, Northwest A&F University, Shaanxi, Yangling, China
| | - Zhao Guan
- College of Veterinary Medicine, Northwest A&F University, Shaanxi, Yangling, China
| | - Hui Chen
- College of Veterinary Medicine, Northwest A&F University, Shaanxi, Yangling, China
| | - Chaohui Xiang
- College of Veterinary Medicine, Northwest A&F University, Shaanxi, Yangling, China
| | - Hangqi Lu
- College of Veterinary Medicine, Northwest A&F University, Shaanxi, Yangling, China
| | - Yuan Fang
- College of Veterinary Medicine, Northwest A&F University, Shaanxi, Yangling, China
| | - Yu Han
- College of Veterinary Medicine, Northwest A&F University, Shaanxi, Yangling, China
| | - Ruochen Hu
- College of Veterinary Medicine, Northwest A&F University, Shaanxi, Yangling, China
| | - Kejia Lu
- College of Veterinary Medicine, Northwest A&F University, Shaanxi, Yangling, China
| | - Zhengwu Chang
- College of Veterinary Medicine, Northwest A&F University, Shaanxi, Yangling, China
| | - Xinglong Wang
- College of Veterinary Medicine, Northwest A&F University, Shaanxi, Yangling, China
| | - Shuxia Zhang
- College of Veterinary Medicine, Northwest A&F University, Shaanxi, Yangling, China
| | - Haijin Liu
- College of Veterinary Medicine, Northwest A&F University, Shaanxi, Yangling, China
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Shaanxi, Yangling, China
| |
Collapse
|
20
|
Zhang Y, Tian J, Wang C, Wu T, Yi D, Wang L, Zhao D, Hou Y. N-Acetylcysteine Administration Improves the Redox and Functional Gene Expression Levels in Spleen, Mesenteric Lymph Node and Gastrocnemius Muscle in Piglets Infected with Porcine Epidemic Diarrhea Virus. Animals (Basel) 2023; 13:ani13020262. [PMID: 36670802 PMCID: PMC9854467 DOI: 10.3390/ani13020262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Our previous study reported that N-acetylcysteine (NAC) administration improved the function of intestinal absorption in piglets infected with porcine epidemic diarrhea virus (PEDV). However, the effects of NAC administration on the functions of other tissues and organs in PEDV-infected piglets have not been reported. In this study, the effects of NAC on the liver, spleen, lung, lymph node, and gastrocnemius muscle in PEDV-infected piglets were investigated. Thirty-two 7-day-old piglets with similar body weights were randomly divided into one of four groups: Control group, NAC group, PEDV group, and PEDV+NAC group (eight replicates per group and one pig per replicate). The trial had a 2 × 2 factorial design consisting of oral administration of 0 or 25 mg/kg body weight NAC and oral administration of 0 or 1.0 × 104.5 TCID50 PEDV. The trial lasted 12 days. All piglets were fed a milk replacer. On days 5-9 of the trial, piglets in the NAC and PEDV + NAC groups were orally administered NAC once a day; piglets in the control and PEDV groups were orally administered the same volume of saline. On day 9 of trial, piglets in the PEDV and PEDV+NAC groups were orally administrated 1.0 × 104.5 TCID50 PEDV, and the piglets in the control and NAC groups were orally administrated the same volume of saline. On day 12 of trial, samples, including of the liver, spleen, lung, lymph node, and gastrocnemius muscle, were collected. PEDV infection significantly increased catalase activity but significantly decreased the mRNA levels of Keap1, Nrf2, HMOX2, IFN-α, MX1, IL-10, TNF-α, S100A12, MMP3, MMP13, TGF-β, and GJA1 in the spleens of piglets. NAC administration ameliorated abnormal changes in measured variables in the spleens of PEDV-infected piglets. In addition, NAC administration also enhanced the antioxidant capacity of the mesenteric lymph nodes and gastrocnemius muscles in PEDV-infected piglets. Collectively, these novel results revealed that NAC administration improved the redox and functional gene expression levels in the spleen, mesenteric lymph nodes, and gastrocnemius muscle in PEDV-infected piglets.
Collapse
|
21
|
Zhu Q, Su M, Wei S, Shi D, Li L, Wang J, Sun H, Wang M, Li C, Guo D, Sun D. Up-regulated 60S ribosomal protein L18 in PEDV N protein-induced S-phase arrested host cells promotes viral replication. Virus Res 2022; 321:198916. [PMID: 36084747 PMCID: PMC9446558 DOI: 10.1016/j.virusres.2022.198916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 12/24/2022]
Abstract
Coronavirus subverts the host cell cycle to create a favorable cellular environment that enhances viral replication in host cells. Previous studies have revealed that nucleocapsid (N) protein of the coronavirus porcine epidemic diarrhea virus (PEDV) interacts with p53 to induce cell cycle arrest in S-phase and promotes viral replication. However, the mechanism by which viral replication is increased in the PEDV N protein-induced S-phase arrested cells remains unknown. In the current study, the protein expression profiles of PEDV N protein-induced S-phase arrested Vero E6 cells and thymidine-induced S-phase arrested Vero E6 cells were characterized by tandem mass tag-labeled quantitative proteomic technology. The effect of differentially expressed proteins (DEPs) on PEDV replication was investigated. The results indicated that a total of 5709 proteins, including 20,560 peptides, were identified, of which 58 and 26 DEPs were identified in the PEDV N group and thymidine group, respectively (P < 0.05; ratio ≥ 1.2 or ≤ 0.8). The unique DEPs identified in the PEDV N group were mainly involved in DNA replication, transcription, and protein synthesis, of which 60S ribosomal protein L18 (RPL18) exhibited significantly up-regulated expression in the PEDV N protein-induced S-phase arrested Vero E6/IPEC-J2 cells and PEDV-infected IPEC-J2 cells (P < 0.05). Further studies revealed that the RPL18 protein could significantly enhance PEDV replication (P < 0.05). Our findings reveal a mechanism regarding increased viral replication when the PEDV N protein-induced host cells are in S-phase arrest. These data also provide evidence that PEDV maintains its own replication by utilizing protein synthesis-associated ribosomal proteins.
Collapse
Affiliation(s)
- Qinghe Zhu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Mingjun Su
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China,Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics and Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology and College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Shan Wei
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Da Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Lu Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Jun Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Haibo Sun
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Meijiao Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Chunqiu Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Donghua Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Dongbo Sun
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China,Corresponding author
| |
Collapse
|
22
|
Hu X, Lian Y, He Y, Liu X, Tian Z, Dai Y, Liu M, Fan H, Shi Y, Cong F. Molecular Characterization and Phylogenetic Analysis of a Variant Recombinant Porcine Epidemic Diarrhea Virus Strain in China. Animals (Basel) 2022; 12:ani12172189. [PMID: 36077908 PMCID: PMC9454955 DOI: 10.3390/ani12172189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Since 2010, a variant of porcine epidemic diarrhea virus (PEDV) has re-emerged in several provinces of China, resulting in severe economic losses for the pork industry. Here, we isolated and identified a variant PEDV strain, SC-YB73, in Guangdong Province, China. The pathological observations of jejunum showed atrophy of villi and edema in the lamina propria. The sequence analysis of the viral genome identified a six-nucleotide insertion in the E gene, which has not previously been detected in PEDV strains. Furthermore, 50 nucleotide sites were unique in SC-YB73 compared with 27 other PEDV strains. The phylogenetic analysis based on the complete genome showed that SC-YB73 was clustered in variant subgroup GII-a, which is widely prevalent in the Chinese pig population. The recombination analysis suggested that SC-YB73 originated from the recombination of GDS47, US PEDV prototype-like strains TW/Yunlin550/2018, and COL/Cundinamarca/2014. In the present study, we isolated and genetically characterized a variant PEDV strain, thus providing essential information for the control of PED outbreaks in China.
Collapse
Affiliation(s)
- Xiaoliang Hu
- Faculty of Agriculture, Forestry and Food Engineering, Yibin Key Laboratory of Zoological Diversity and Ecological Conservation, Yibin Animal and Plant Inspection and Quarantine Engineering Technology Research Center, Yibin University, Yibin 644000, China
| | - Yuexiao Lian
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou 510633, China
| | - Yucan He
- Faculty of Agriculture, Forestry and Food Engineering, Yibin Key Laboratory of Zoological Diversity and Ecological Conservation, Yibin Animal and Plant Inspection and Quarantine Engineering Technology Research Center, Yibin University, Yibin 644000, China
| | - Xiangxiao Liu
- Faculty of Agriculture, Forestry and Food Engineering, Yibin Key Laboratory of Zoological Diversity and Ecological Conservation, Yibin Animal and Plant Inspection and Quarantine Engineering Technology Research Center, Yibin University, Yibin 644000, China
| | - Zhige Tian
- Faculty of Agriculture, Forestry and Food Engineering, Yibin Key Laboratory of Zoological Diversity and Ecological Conservation, Yibin Animal and Plant Inspection and Quarantine Engineering Technology Research Center, Yibin University, Yibin 644000, China
| | - Yi Dai
- Faculty of Agriculture, Forestry and Food Engineering, Yibin Key Laboratory of Zoological Diversity and Ecological Conservation, Yibin Animal and Plant Inspection and Quarantine Engineering Technology Research Center, Yibin University, Yibin 644000, China
| | - Mengyuan Liu
- Faculty of Agriculture, Forestry and Food Engineering, Yibin Key Laboratory of Zoological Diversity and Ecological Conservation, Yibin Animal and Plant Inspection and Quarantine Engineering Technology Research Center, Yibin University, Yibin 644000, China
| | - Huayan Fan
- Faculty of Agriculture, Forestry and Food Engineering, Yibin Key Laboratory of Zoological Diversity and Ecological Conservation, Yibin Animal and Plant Inspection and Quarantine Engineering Technology Research Center, Yibin University, Yibin 644000, China
| | - Yue Shi
- Beijing Senkang Biotech Development Co., Ltd., Beijing 100000, China
| | - Feng Cong
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou 510633, China
- Correspondence:
| |
Collapse
|
23
|
Zhang Y, Chen H, Yu J, Feng R, Chen Z, Zhang X, Ren Y, Yang G, Huang X, Li G. Comparative transcriptomic analysis of porcine epidemic diarrhea virus epidemic and classical strains in IPEC-J2 cells. Vet Microbiol 2022; 273:109540. [PMID: 35987184 DOI: 10.1016/j.vetmic.2022.109540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 08/01/2022] [Accepted: 08/07/2022] [Indexed: 11/15/2022]
Abstract
In recent years, porcine epidemic diarrhea (PED) has become widespread and caused huge economic losses for the global pig industry. There is growing evidence that frequent outbreaks of diarrhea are caused by the variants of porcine epidemic diarrhea virus (PEDV) with high pathogenicity. Herein, an epidemic strain of PEDV HLJ strain was isolated and characterized from Heilongjiang Province of China, and the whole genomic expression profile of intestinal porcine epithelial cells (IPEC-J2) infected with HLJ strain was investigated in comparison with classical CV777 strain. A total of 26,851 genes were identified, of these, 25,880 were known genes and 971 were novel genes. There were 258 differentially expressed genes (DEGs) identified between PEDV HLJ-infected and uninfected cells at 24 h post infection (hpi), and 201 DEGs between PEDV HLJ and CV777 infection. A comparative analysis revealed that 258 DEGs were enriched in 468 gene ontology (GO) terms and mapped to 179 KEGG pathways, and 201 DEGs in 1120 GO terms and mapped to 115 KEGG pathways for HLJ-infected cells in contrast to the uninfected and CV777-infected cells, respectively. Specifically, PEDV HLJ strain could activate anti-viral innate immune response and inflammation more intensively than CV777, in which mRNA levels of interferon (IFN-β), chemokines (CCL5 and CXCL10) and pro-inflammatory cytokines (IL-8 and TNF-α) were induced earlier and more strongly. Subsequently, 20 DEGs and 5 proteins were selected and validated by real-time fluorescence quantitative PCR (RT-qPCR) and western blot, and the results were consistent with the transcriptomic analysis. Overall, this study may be helpful for understanding the pathogenesis mechanism of PEDV variants, and contribute to the effective prevention and control of PEDV infection.
Collapse
Affiliation(s)
- Yue Zhang
- Veterinary Pathology Laboratory, College of Veterinary Medicine, Heilongjiang Key Laboratory for Animal and Comparative Medicine, Northeast Agricultural University, Harbin, China
| | - Huijie Chen
- Veterinary Pathology Laboratory, College of Veterinary Medicine, Heilongjiang Key Laboratory for Animal and Comparative Medicine, Northeast Agricultural University, Harbin, China; College of Biological and Pharmaceutical Engineering, Jilin Agriculture Science and Technology University, Jilin, China
| | - Jia Yu
- Veterinary Pathology Laboratory, College of Veterinary Medicine, Heilongjiang Key Laboratory for Animal and Comparative Medicine, Northeast Agricultural University, Harbin, China
| | - Rui Feng
- Veterinary Pathology Laboratory, College of Veterinary Medicine, Heilongjiang Key Laboratory for Animal and Comparative Medicine, Northeast Agricultural University, Harbin, China
| | - Zhao Chen
- Veterinary Pathology Laboratory, College of Veterinary Medicine, Heilongjiang Key Laboratory for Animal and Comparative Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaolin Zhang
- Veterinary Pathology Laboratory, College of Veterinary Medicine, Heilongjiang Key Laboratory for Animal and Comparative Medicine, Northeast Agricultural University, Harbin, China
| | - Yudong Ren
- Department of Computer Science and Technology, College of Electrical and Information Technology, Northeast Agricultural University, Harbin 150030, China
| | - Guijun Yang
- Veterinary Pathology Laboratory, College of Veterinary Medicine, Heilongjiang Key Laboratory for Animal and Comparative Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaodan Huang
- Veterinary Pathology Laboratory, College of Veterinary Medicine, Heilongjiang Key Laboratory for Animal and Comparative Medicine, Northeast Agricultural University, Harbin, China.
| | - Guangxing Li
- Veterinary Pathology Laboratory, College of Veterinary Medicine, Heilongjiang Key Laboratory for Animal and Comparative Medicine, Northeast Agricultural University, Harbin, China.
| |
Collapse
|
24
|
Epidemic and Evolutionary Characteristics of Swine Enteric Viruses in South-Central China from 2018 to 2021. Viruses 2022; 14:v14071420. [PMID: 35891398 PMCID: PMC9323342 DOI: 10.3390/v14071420] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/09/2022] [Accepted: 06/27/2022] [Indexed: 01/27/2023] Open
Abstract
Swine enteric viruses are a major cause of piglet diarrhea, causing a devastating impact on the pork industry. To further understand the molecular epidemiology and evolutionary diversity of swine enteric viruses, we carried out a molecular epidemiological investigation of swine enteric viruses (PEDV, PDCoV, PoRVA, and TGEV) on 7107 samples collected from pig farms in south-central China. The results demonstrated that PEDV is the predominant pathogen causing piglet diarrhea, and its infection occurs mainly in relatively cold winter and spring in Hunan and Hubei provinces. The positive rate of PEDV showed an abnormal increase from 2020 to 2021, and that of PoRVA and PDCoV exhibited gradual increases from 2018 to 2021. PEDV-PoRVA and PEDV-PDCoV were the dominant co-infection modes. A genetic evolution analysis based on the PEDV S1 gene and ORF3 gene revealed that the PEDV GII-a is currently epidemic genotype, and the ORF3 gene of DY2020 belongs to a different clade relative to other GII-a strains isolated in this study. Overall, our results indicated that the variant PEDV GII-a is the main pathogen of piglet diarrhea with a trend of outbreak. G9 is the dominant PoRVA genotype and has the possibility of outbreak as well. It is therefore critical to strengthen the surveillance of PEDV and PoRVA, and to provide technical reserves for the prevention and control of piglet diarrhea.
Collapse
|
25
|
Wu X, Liu Y, Gao L, Yan Z, Zhao Q, Chen F, Xie Q, Zhang X. Development and Application of a Reverse-Transcription Recombinase-Aided Amplification Assay for Porcine Epidemic Diarrhea Virus. Viruses 2022; 14:591. [PMID: 35336998 PMCID: PMC8948910 DOI: 10.3390/v14030591] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/25/2022] [Accepted: 03/08/2022] [Indexed: 12/29/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a coronavirus currently widespread worldwide in the swine industry. Since PEDV was discovered in China in 1984, it has caused huge economic losses in the swine industry. PEDV can infect pigs of all ages, but piglets have the highest infection with a death rate as high as 100%, and the clinical symptoms are watery diarrhea, vomiting, and dehydration. At present, there is not any report on PEDV detection by RT-RAA. In this study, we developed an isothermal amplification technology by using reverse-transcription recombinase-aided amplification assay (RT-RAA) combined with portable instruments to achieve a molecular diagnosis of PEDV in clinical samples from China. By designing a pair of RT-RAA primers and probes based on the PEDV N gene, this method breaks the limitations of existing detection methods. The assay time was within 30 min at 41 °C and can detect as few as 10 copies of PEDV DNA molecules per reaction. Sixty-two clinical tissue samples were detected by RT-qPCR and RT-RAA. The positive and negative rates for the two methods were 24.19% and 75.81%, respectively. Specificity assay showed that the RT-RAA had specifically detected PEDV and was not reactive for porcine parvovirus (PPV), transmissible gastroenteritis virus (TGEV), porcine circovirus type 2 (PCV2), porcine pseudorabies virus (PRV), porcine reproductive and respiratory syndrome virus (PRRSV), classical swine fever virus (CSFV), swine flu virus (SIV), or porcine Japanese encephalitis virus (JEV). The results suggested that RT-RAA had a strong specificity and high detection sensitivity when combined with a portable instrument to complete the detection under a constant temperature of 30 min, which are more suitable for preventing and controlling PEDV onsite in China.
Collapse
Affiliation(s)
- Xiuhong Wu
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.W.); (L.G.); (Q.Z.); (F.C.)
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
| | - Yuanjia Liu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China;
| | - Liguo Gao
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.W.); (L.G.); (Q.Z.); (F.C.)
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
| | - Zhuanqiang Yan
- Guangdong Enterprise Key Laboratory for Animal Health and Environmental Control, Wen’s Foodstuff Group Co., Ltd., Yunfu 527439, China;
| | - Qiqi Zhao
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.W.); (L.G.); (Q.Z.); (F.C.)
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
| | - Feng Chen
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.W.); (L.G.); (Q.Z.); (F.C.)
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
| | - Qingmei Xie
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.W.); (L.G.); (Q.Z.); (F.C.)
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
| | - Xinheng Zhang
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.W.); (L.G.); (Q.Z.); (F.C.)
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
| |
Collapse
|
26
|
Genetic Characteristics and Pathogenicity of a Novel Porcine Epidemic Diarrhea Virus with a Naturally Occurring Truncated ORF3 Gene. Viruses 2022; 14:v14030487. [PMID: 35336894 PMCID: PMC8955810 DOI: 10.3390/v14030487] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/19/2022] [Accepted: 02/24/2022] [Indexed: 11/16/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is the major pathogen that causes diarrhea and high mortality in newborn piglets, with devastating impact on the pig industry. To further understand the molecular epidemiology and genetic diversity of PEDV field strains, in this study the complete genomes of four PEDV variants (HN2021, CH-HNYY-2018, CH-SXWS-2018, and CH-HNKF-2016) obtained from immunized pig farms in central China between 2016 to 2021 were characterized and analyzed. Phylogenetic analysis of the genome and S gene showed that the four strains identified in the present study had evolved into the subgroup G2a, but were distant from the vaccine strain CV777. Additionally, it was noteworthy that a new PEDV strain (named HN2021) belonging to the G2a PEDV subgroup was successfully isolated in vitro and it was further confirmed by RT-PCR that this isolate had a large natural deletion at 207–373 nt of the ORF3 gene, which has never been reported before. Particularly, in terms of pathogenicity evaluation, colostrum deprivation piglets challenged with PEDV HN2021 showed severe diarrhea and high mortality, confirming that PEDV HN2021 was a virulent strain. Hence, PEDV strain HN2021 of subgroup G2a presents a promising vaccine candidate for the control of recurring porcine epidemic diarrhea (PED) in China. This study lays the foundation for better understanding of the genetic evolution and molecular pathogenesis of PEDV.
Collapse
|
27
|
Wei S, Shi D, Wu H, Sun H, Chen J, Feng L, Su M, Sun D. Identification of a novel B cell epitope on the nucleocapsid protein of porcine deltacoronavirus. Virus Res 2021; 302:198497. [PMID: 34217778 PMCID: PMC8481650 DOI: 10.1016/j.virusres.2021.198497] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 11/20/2022]
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging coronavirus that causes vomiting, diarrhea, dehydration, and even death of piglets, resulting in significant losses to the pig industry worldwide. However, the epitopes of PDCoV remain largely unknown. In this study, a monoclonal antibody (mAb) against the PDCoV nucleocapsid (N) protein, termed 9G1, was prepared using the lymphocyte hybridoma technique, and was identified as a type IgG1 with a κ light chain and reacted with the native N protein of PDCoV. Furthermore, the epitope recognized by the 9G1 mAb was subjected to western blot and an ELISA using truncated recombinant proteins and synthetic polypeptides of the PDCoV N protein. The results indicate that 9G1 mAb recognized the epitope, G59TPIPPSYAFYY70 (EP-9G1), a novel linear B cell epitope of the PDCoV N protein. A comparison analysis revealed that the EP-9G1 epitope was highly conserved among PDCoV strains, in which four residues (G59-F68YY70) were observed among different coronavirus genera. These data demonstrate that the EP-9G1 epitope identified in this study provides some basic information for further characterization of the antigenic structure of the PDCoV N protein and has potential use for developing diagnostic reagents for PDCoV.
Collapse
Affiliation(s)
- Shan Wei
- Laboratory for the Prevention and Control of Swine Infectious Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Da Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Haoyang Wu
- Laboratory for the Prevention and Control of Swine Infectious Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Haibo Sun
- Laboratory for the Prevention and Control of Swine Infectious Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Jianfei Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Li Feng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Mingjun Su
- Laboratory for the Prevention and Control of Swine Infectious Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| | - Dongbo Sun
- Laboratory for the Prevention and Control of Swine Infectious Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| |
Collapse
|
28
|
Coronavirus Porcine Epidemic Diarrhea Virus Nucleocapsid Protein Interacts with p53 To Induce Cell Cycle Arrest in S-Phase and Promotes Viral Replication. J Virol 2021; 95:e0018721. [PMID: 34037422 DOI: 10.1128/jvi.00187-21] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Subversion of the host cell cycle to facilitate viral replication is a common feature of coronavirus infections. Coronavirus nucleocapsid (N) protein can modulate the host cell cycle, but the mechanistic details remain largely unknown. Here, we investigated the effects of manipulation of porcine epidemic diarrhea virus (PEDV) N protein on the cell cycle and the influence on viral replication. Results indicated that PEDV N induced Vero E6 cell cycle arrest at S-phase, which promoted viral replication (P < 0.05). S-phase arrest was dependent on the N protein nuclear localization signal S71NWHFYYLGTGPHADLRYRT90 and the interaction between N protein and p53. In the nucleus, the binding of N protein to p53 maintained consistently high-level expression of p53, which activated the p53-DREAM pathway. The key domain of the N protein interacting with p53 was revealed to be S171RGNSQNRGNNQGRGASQNRGGNN194 (NS171-N194), in which G183RG185 are core residues. NS171-N194 and G183RG185 were essential for N-induced S-phase arrest. Moreover, small molecular drugs targeting the NS171-N194 domain of the PEDV N protein were screened through molecular docking. Hyperoside could antagonize N protein-induced S-phase arrest by interfering with interaction between N protein and p53 and inhibit viral replication (P < 0.05). The above-described experiments were also validated in porcine intestinal cells, and data were in line with results in Vero E6 cells. Therefore, these results reveal the PEDV N protein interacts with p53 to activate the p53-DREAM pathway, and subsequently induces S-phase arrest to create a favorable environment for virus replication. These findings provide new insight into the PEDV-host interaction and the design of novel antiviral strategies against PEDV. IMPORTANCE Many viruses subvert the host cell cycle to create a cellular environment that promotes viral growth. PEDV, an emerging and reemerging coronavirus, has led to substantial economic loss in the global swine industry. Our study is the first to demonstrate that PEDV N-induced cell cycle arrest during the S-phase promotes viral replication. We identified a novel mechanism of PEDV N-induced S-phase arrest, where the binding of PEDV N protein to p53 maintains consistently high levels of p53 expression in the nucleus to mediate S-phase arrest by activating the p53-DREAM pathway. Furthermore, a small molecular compound, hyperoside, targeted the PEDV N protein, interfering with the interaction between the N protein and p53 and, importantly, inhibited PEDV replication by antagonizing cell cycle arrest. This study reveals a new mechanism of PEDV-host interaction and also provides a novel antiviral strategy for PEDV. These data provide a foundation for further research into coronavirus-host interactions.
Collapse
|
29
|
Novel Method for Isolation of Porcine Epidemic Diarrhea Virus with the Use of Suspension Vero Cells and Immunogenicity Analysis. J Clin Microbiol 2021; 59:JCM.02156-20. [PMID: 33177126 DOI: 10.1128/jcm.02156-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/30/2020] [Indexed: 11/20/2022] Open
Abstract
In February and December of 2019, two large-scale outbreaks of diarrhea were observed in the same swine farm with 3,000 sows in Shanghai, China. We successfully isolated two porcine epidemic diarrhea virus (PEDV) isolates (strains shxx1902 and shxx1912 in February and December, respectively) from clinical samples in this farm using suspension Vero cells. A third PEDV strain (SH1302) tested positive in another farm of Shanghai, China, in 2013 and was also isolated using suspension Vero cells. The three isolates were better adapted to growth in adherent Vero cells through serial passages in the suspension Vero cells. The three isolated strains were detected positive by an immunofluorescence assay (IFA) and observed through electron microscopy. Phylogenetic analysis of the complete genomic sequence demonstrated that shxx1902 (the 5th passage) and shxx1912 (the 5th passage) clustered with a new GII subgroup (GII-c), which consisted of SINDEL strains from America (e.g., OH851), and their S gene belonged to GII-a. Both strains(the 35th passage) have incurred dramatic changes in their genomes compared with the 5th passage. The 5th and 35th passages of SH1302 belonged to the GI-b genotype. The anti-N protein antibody titer of the strain shxx1902 was elevated to the same level as the vaccine strain (CV777) in mice. The use of the suspension Vero cells to isolate and propagate PEDV provides an effective approach for studies of the epidemiological characteristics and vaccine development of this virus.
Collapse
|