1
|
Islam MK, Wagh H, Wei H. Dynamic Gene Attention Focus (DyGAF): Enhancing Biomarker Identification Through Dual-Model Attention Networks. Bioinform Biol Insights 2025; 19:11779322251325390. [PMID: 40160891 PMCID: PMC11951896 DOI: 10.1177/11779322251325390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 02/18/2025] [Indexed: 04/02/2025] Open
Abstract
The DyGAF model, which stands for Dynamic Gene Attention Focus, is specifically designed and tailored to address the challenges in biomarker detection, progression reporting of pathogen infection, and disease diagnostics. The DyGAF model introduced a novel dual-model attention-based mechanism within neural networks, combined with machine learning algorithms to enhance the process of biomarker identification. The model transcended traditional diagnostic approaches by meticulously analyzing gene expression data. DyGAF not only identified but also ranked genes based on their significance, revealing a comprehensive list of the top genes essential for disease detection and prognosis. In addition, KEGG pathways, Wiki Pathways, and Gene Ontology-based analyses provided a multileveled evaluation of the genes' roles. In our analyses, we tailored COVID-19 gene expression profile from nasopharyngeal swabs that offer a more nuanced view of the intricate interplay between the host and the virus. The genes ranked by the DyGAF model were compared against those selected by differential expression analysis and random forest feature selection methods for further validation of our model. DyGAF demonstrated its prowess in identifying important biomarkers that could enrich gene ontologies and pathways crucial for elucidating the pathogenesis of COVID-19. Furthermore, DyGAF was also employed for diagnosing COVID-19 patients by classifying gene-expression profiles with an accuracy of 94.23%. Benchmarking against other conventional models revealed DyGAF's superior performance, highlighting its effectiveness in identifying and categorizing COVID-19 cases. In summary, DyGAF model represents a significant advancement in genomic research, providing a more comprehensive and precise tool for identifying key genetic markers and unraveling the complex biological insights of a disease. The DyGAF model is available as a software package at the following link: https://github.com/hiddenntreasure/DyGAF.
Collapse
Affiliation(s)
- Md Khairul Islam
- Computational Science and Engineering, Michigan Technological University, Houghton, MI, USA
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, USA
| | - Himanshu Wagh
- College of Computing, Michigan Technological University, Houghton, MI, USA
| | - Hairong Wei
- Computational Science and Engineering, Michigan Technological University, Houghton, MI, USA
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, USA
- College of Computing, Michigan Technological University, Houghton, MI, USA
| |
Collapse
|
2
|
Yazbeck A, Akika R, Awada Z, Zgheib NK. The role of candidate genetic polymorphisms in covid-19 susceptibility and outcomes. BMC Med Genomics 2025; 18:30. [PMID: 39920651 PMCID: PMC11806658 DOI: 10.1186/s12920-025-02094-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/28/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND This study aims to investigate the association between candidate host genetic polymorphisms and COVID-19 susceptibility, severity, hospitalization, hypoxia, and their combined effect, measured by the polygenic risk score (PRS). METHODS Three hundred and seventy-six Lebanese participants, comprising 151 controls and 225 cases, were included. Clinical data were obtained from questionnaires and medical records. DNA isolated from peripheral blood was genotyped for ACE1 rs1799752, ACE2 rs2074192, TMPRSS2 rs75603675 and OAS1 rs107746771 using TaqMan assays, and for TMPRSS2 rs35074065 using Sanger Sequencing. Candidate genetic variants were analyzed in association with COVID-19 susceptibility, severity, hospitalization and hypoxia, using univariate and multivariate models. PRS constructed from the weighted sum of variants was evaluated in association with COVID-19 outcomes. RESULTS In this study, there were no statistically significant differences in the frequencies of candidate variant alleles between cases, controls and within disease outcomes subgroups, after adjustment for confounders. PRS was not associated with COVID-19 susceptibility and hospitalization, it however significantly predicted COVID-19 severity (P = 0.01). CONCLUSION This study highlights the importance of genetic testing for key host genes involved in COVID-19 life cycle and eventually measuring the PRS which proves to be an important tool for prognosis assessment in vulnerable individuals, potentially enhancing patient care.
Collapse
Affiliation(s)
- Anthony Yazbeck
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Reem Akika
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Zainab Awada
- Research Department, Sidra Medicine, Doha, Qatar
| | - Nathalie K Zgheib
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
3
|
Kebriaei A, Besharati R, Namdar Ahmad Abad H, Havakhah S, Khosrojerdi M, Azimian A. The relationship between microRNAs and COVID-19 complications. Noncoding RNA Res 2025; 10:16-24. [PMID: 39296641 PMCID: PMC11406673 DOI: 10.1016/j.ncrna.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/21/2024] Open
Abstract
Over the past three years, since the onset of COVID-19, several scientific studies have concentrated on understanding susceptibility to the virus, the progression of the illness, and possible long-term complexity. COVID-19 is broadly recognized with effects on multiple systems in the body, and various factors related to society, medicine, and genetics/epigenetics may contribute to the intensity and results of the disease. Additionally, a SARS-CoV-2 infection can activate pathological activities and expedite the emergence of existing health issues into clinical problems. Forming easily accessible, distinctive, and permeable biomarkers is essential for categorizing patients, preventing the disease, predicting its course, and tailoring treatments for COVID-19 individually. One promising candidate for such biomarkers is microRNAs, which could serve various purposes in understanding diverse forms of COVID-19, including susceptibility, intensity, disease progression, outcomes, and potential therapeutic options. This review provides an overview of the most significant findings related to the involvement of microRNAs in COVID-19 pathogenesis. Furthermore, it explores the function of microRNAs in a broad span of effects that may arise from accompanying or underlying health status. It underscores the value of comprehending how diverse conditions, such as neurological disorders, diabetes, cardiovascular diseases, and obesity, interact with COVID-19.
Collapse
Affiliation(s)
- Abdollah Kebriaei
- Department of Pathobiology and Laboratory Sciences, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Reza Besharati
- Department of Pathobiology and Laboratory Sciences, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hasan Namdar Ahmad Abad
- Department of Pathobiology and Laboratory Sciences, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Shahrzad Havakhah
- Department of Physiology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mahsa Khosrojerdi
- Department of Immunology and Allergy, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Azimian
- Department of Pathobiology and Laboratory Sciences, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| |
Collapse
|
4
|
Al-Saigh NN, Harb AA, Abdalla S. Receptors Involved in COVID-19-Related Anosmia: An Update on the Pathophysiology and the Mechanistic Aspects. Int J Mol Sci 2024; 25:8527. [PMID: 39126095 PMCID: PMC11313362 DOI: 10.3390/ijms25158527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Olfactory perception is an important physiological function for human well-being and health. Loss of olfaction, or anosmia, caused by viral infections such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has received considerable attention, especially in persistent cases that take a long time to recover. This review discusses the integration of different components of the olfactory epithelium to serve as a structural and functional unit and explores how they are affected during viral infections, leading to the development of olfactory dysfunction. The review mainly focused on the role of receptors mediating the disruption of olfactory signal transduction pathways such as angiotensin converting enzyme 2 (ACE2), transmembrane protease serine type 2 (TMPRSS2), neuropilin 1 (NRP1), basigin (CD147), olfactory, transient receptor potential vanilloid 1 (TRPV1), purinergic, and interferon gamma receptors. Furthermore, the compromised function of the epithelial sodium channel (ENaC) induced by SARS-CoV-2 infection and its contribution to olfactory dysfunction are also discussed. Collectively, this review provides fundamental information about the many types of receptors that may modulate olfaction and participate in olfactory dysfunction. It will help to understand the underlying pathophysiology of virus-induced anosmia, which may help in finding and designing effective therapies targeting molecules involved in viral invasion and olfaction. To the best of our knowledge, this is the only review that covered all the receptors potentially involved in, or mediating, the disruption of olfactory signal transduction pathways during COVID-19 infection. This wide and complex spectrum of receptors that mediates the pathophysiology of olfactory dysfunction reflects the many ways in which anosmia can be therapeutically managed.
Collapse
Affiliation(s)
- Noor N. Al-Saigh
- Department of Basic Medical Sciences, Faculty of Medicine, Ibn Sina University for Medical Sciences, Amman 16197, Jordan;
| | - Amani A. Harb
- Department of Basic Sciences, Faculty of Arts and Sciences, Al-Ahliyya Amman University, Amman 19111, Jordan;
| | - Shtaywy Abdalla
- Department of Biological Sciences, School of Science, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
5
|
Yunita R, Wahyuni AS, Sinaga BYM, Yamamoto Z, Soebandrio A, Kusumawati RL, Sembiring RJ, Pandia P. Role of ACE2 and TMPRSS2 polymorphisms on COVID-19 outcome and disease severity in adult patients: A prospective cohort study in a tertiary hospital, Indonesia. NARRA J 2024; 4:e919. [PMID: 39280326 PMCID: PMC11391966 DOI: 10.52225/narra.v4i2.919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/04/2024] [Indexed: 09/18/2024]
Abstract
Coronavirus disease 2019 (COVID-19) has led to a significant number of infections and deaths worldwide, yet its pathogenesis and severity remain incompletely understood. Angiotensin-converting enzyme 2 (ACE2) and transmembrane protease, serine 2 (TMPRSS2), play crucial roles as receptors and molecules responsible for the virus's entry into host cells, initiating the infection process. Their polymorphisms have been extensively studied in relation to COVID-19 severity. The aim of this study was to examine the association of ACE2 (rs2074192) and TMPRSS2 (rs12329760) polymorphisms with COVID-19 outcome and severity. A prospective cohort study was conducted in 2022 at Haji Adam Malik Hospital, Medan, Indonesia. We randomly recruited hospitalized adult patients with COVID-19, confirmed by real-time polymerase chain reaction (RT-PCR). The baseline demographic data, disease severity, underlying disease, comorbidities, and COVID-19 vaccination status were collected. The single-nucleotide polymorphism (SNP) was assessed using TaqMan SNP genotyping assay, and the levels of TMPRSS2 and ACE2 proteins were measured using enzyme-linked immunosorbent assay (ELISA). A total of 151 COVID-19 patients were recruited and there were significant associations between age and severity with mortality outcomes. The age, kidney and lung diseases, and vaccination status were associated with severity levels. The results showed the CC genotype of ACE2 had the highest proportion, followed by TT and CT genotypes among patients, while CT was the most prevalent genotype, followed by CC and TT for TMPRSS2. This study did not find a significant association between ACE2 and TMPRSS2 genetic variants with disease severity and outcome but highlighted a specific association of TMPRSS2 SNP with mortality within the group. In addition, ACE2 concentration was significant different between mild-moderate and severe-critical COVID-19 groups (p=0.033).
Collapse
Affiliation(s)
- Rina Yunita
- Philosophy Doctor in Medicine Program, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
- Department of Microbiology, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Arlinda S. Wahyuni
- Department of Community Medicine, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Bintang YM. Sinaga
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Zulham Yamamoto
- Department of Histology, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Amin Soebandrio
- Department of Microbiology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - R. Lia Kusumawati
- Department of Microbiology, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Rosita J. Sembiring
- Philosophy Doctor in Medicine Program, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Pandiaman Pandia
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| |
Collapse
|
6
|
Fernández-de-las-Peñas C, Díaz-Gil G, Gil-Crujera A, Gómez-Sánchez SM, Ambite-Quesada S, Franco-Moreno A, Ryan-Murua P, Torres-Macho J, Pellicer-Valero OJ, Arendt-Nielsen L, Giordano R. Post-COVID-19 Pain Is Not Associated with DNA Methylation Levels of the ACE2 Promoter in COVID-19 Survivors Hospitalized Due to SARS-CoV-2 Infection. Biomedicines 2024; 12:1662. [PMID: 39200127 PMCID: PMC11351822 DOI: 10.3390/biomedicines12081662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/09/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024] Open
Abstract
One of theories explaining the development of long-lasting symptoms after an acute severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection include changes in the methylation pattern of the host. The current study aimed to investigate whether DNA methylation levels associated with the angiotensin-converting enzyme 2 (ACE2) promoter are different when comparing individuals previously hospitalized due to COVID-19 who then developed long-lasting post-COVID pain with those previously hospitalized due to COVID-19 who did not develop post-COVID-19 pain symptoms. Non-stimulated saliva samples were obtained from a cohort of 279 (mean age: 56.5, SD: 13.0 years old, 51.5% male) COVID-19 survivors who needed hospitalization. Clinical data were collected from hospital medical records. Participants were asked to disclose pain symptoms developed during the first three months after hospital admission due to COVID-19 and persisting at the time of the interview. Methylations of five CpG dinucleotides in the ACE2 promoter were quantified (as percentages). Participants were evaluated up to 17.8 (SD: 5.3) months after hospitalization. Thus, 39.1% of patients exhibited post-COVID-19 pain. Most patients (77.05%) in the cohort developed localized post-COVID-19 pain. Headache and pain in the lower extremity were experienced by 29.4% of the patients. Seven patients received a post-infection diagnosis of fibromyalgia based on the presence of widespread pain characteristics (11.6%) and other associated symptoms. No significant differences in methylation percentages at any CpG location of the ACE2 promoter were identified when comparing individuals with and without post-COVID-19 pain. The current study did not observe differences in methylation levels of the ACE2 promoter depending on the presence or absence of long-lasting post-COVID-19 pain symptoms in individuals who needed hospitalization due to COVID-19 during the first wave of the pandemic.
Collapse
Affiliation(s)
- César Fernández-de-las-Peñas
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Universidad Rey Juan Carlos (URJC), 28922 Alcorcón, Spain;
- Center for Neuroplasticity and Pain (CNAP), Sensory Motor Interaction (SMI), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, DK-9220 Aalborg, Denmark; (L.A.-N.); (R.G.)
| | - Gema Díaz-Gil
- Research Group GAMDES, Department of Basic Health Sciences, Universidad Rey Juan Carlos (URJC), 28933 Madrid, Spain; (G.D.-G.); (A.G.-C.); (S.M.G.-S.)
| | - Antonio Gil-Crujera
- Research Group GAMDES, Department of Basic Health Sciences, Universidad Rey Juan Carlos (URJC), 28933 Madrid, Spain; (G.D.-G.); (A.G.-C.); (S.M.G.-S.)
| | - Stella M. Gómez-Sánchez
- Research Group GAMDES, Department of Basic Health Sciences, Universidad Rey Juan Carlos (URJC), 28933 Madrid, Spain; (G.D.-G.); (A.G.-C.); (S.M.G.-S.)
| | - Silvia Ambite-Quesada
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Universidad Rey Juan Carlos (URJC), 28922 Alcorcón, Spain;
| | - Anabel Franco-Moreno
- Department of Internal Medicine, Hospital Universitario Infanta Leonor-Virgen de la Torre, 28031 Madrid, Spain; (A.F.-M.); (P.R.-M.); (J.T.-M.)
| | - Pablo Ryan-Murua
- Department of Internal Medicine, Hospital Universitario Infanta Leonor-Virgen de la Torre, 28031 Madrid, Spain; (A.F.-M.); (P.R.-M.); (J.T.-M.)
| | - Juan Torres-Macho
- Department of Internal Medicine, Hospital Universitario Infanta Leonor-Virgen de la Torre, 28031 Madrid, Spain; (A.F.-M.); (P.R.-M.); (J.T.-M.)
- Department of Medicine, School of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Oscar J. Pellicer-Valero
- Image Processing Laboratory (IPL), Universitat de València, Parc Científic, 46980 Paterna, Spain;
| | - Lars Arendt-Nielsen
- Center for Neuroplasticity and Pain (CNAP), Sensory Motor Interaction (SMI), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, DK-9220 Aalborg, Denmark; (L.A.-N.); (R.G.)
- Department of Gastroenterology & Hepatology, Mech-Sense, Clinical Institute, Aalborg University Hospital, DK-9000 Aalborg, Denmark
- Steno Diabetes Center North Denmark, Clinical Institute, Aalborg University Hospital, DK-9000 Aalborg, Denmark
| | - Rocco Giordano
- Center for Neuroplasticity and Pain (CNAP), Sensory Motor Interaction (SMI), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, DK-9220 Aalborg, Denmark; (L.A.-N.); (R.G.)
- Department of Oral and Maxillofacial Surgery, Aalborg University Hospital, DK-9000 Aalborg, Denmark
| |
Collapse
|
7
|
Fernández-de-las-Peñas C, Díaz-Gil G, Gil-Crujera A, Gómez-Sánchez SM, Ambite-Quesada S, Torres-Macho J, Ryan-Murua P, Franco-Moreno A, Pellicer-Valero OJ, Arendt-Nielsen L, Giordano R. DNA Methylation Levels of the ACE2 Promoter Are Not Associated with Post-COVID-19 Symptoms in Individuals Who Had Been Hospitalized Due to COVID-19. Microorganisms 2024; 12:1304. [PMID: 39065072 PMCID: PMC11279155 DOI: 10.3390/microorganisms12071304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
It is known that SARS-CoV-2 can translocate via membrane ACE2 exopeptidase into the host cells, and thus hypomethylation of ACE2 possibly upregulates its expression, enhancing the risk of SARS-CoV-2 infection. This study investigated if DNA methylation levels of the ACE2 promoter are associated with the development of post-COVID-19 symptomatology in a cohort of COVID-19 survivors who had been previously hospitalized. Non-stimulated saliva samples were obtained from 279 (51.5 male, mean age: 56.5 ± 13.0 years old) COVID-19 survivors who were hospitalized during the first wave of the pandemic. A face-to-face interview in which patients described the presence of post-COVID-19 symptoms (defined as a symptom that started no later than three months after SARS-CoV-2 infection) that they suffered from to an experienced healthcare trainer was conducted. Methylation of five CpG dinucleotides in the ACE2 promoter was quantified using bisulfite pyrosequencing. The percentage of methylation (%) was associated with the presence of the following reported post-COVID-19 symptoms: fatigue, dyspnea at rest, dyspnea at exertion, brain fog, memory loss, concentration loss, or gastrointestinal problems. Participants were assessed a mean of 17.8 (SD: 5.3) months after hospitalization. At that time, 88.1% of the patients experienced at least one post-COVID-19 symptom (mean number for each patient: 3.0; SD: 1.9 post-COVID-19 symptoms). Dyspnea at exertion (67.3%), fatigue (62.3%), and memory loss (31.2%) were the most frequent post-COVID-19 symptoms in the sample. Overall, the analysis did not reveal any difference in the methylation of the ACE2 promoter in any of the CpG locations according to the presence or absence of fatigue, dyspnea at rest, dyspnea at exertion, memory loss, brain fog, concentration loss, and gastrointestinal problems. This study did not find an association between methylation of ACE2 promoter and the presence of post-COVID-19 fatigue, dyspnea, cognitive or gastrointestinal problems in previously hospitalized COVID-19 survivors.
Collapse
Affiliation(s)
- César Fernández-de-las-Peñas
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Universidad Rey Juan Carlos, 28922 Alcorcón, Spain;
- Center for Neuroplasticity and Pain (CNAP), Sensory Motor Interaction (SMI), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, DK 9220 Aalborg, Denmark; (L.A.-N.); (R.G.)
| | - Gema Díaz-Gil
- Research Group GAMDES, Department of Basic Health Sciences, Universidad Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (G.D.-G.); (A.G.-C.); (S.M.G.-S.)
| | - Antonio Gil-Crujera
- Research Group GAMDES, Department of Basic Health Sciences, Universidad Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (G.D.-G.); (A.G.-C.); (S.M.G.-S.)
| | - Stella M. Gómez-Sánchez
- Research Group GAMDES, Department of Basic Health Sciences, Universidad Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (G.D.-G.); (A.G.-C.); (S.M.G.-S.)
| | - Silvia Ambite-Quesada
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Universidad Rey Juan Carlos, 28922 Alcorcón, Spain;
| | - Juan Torres-Macho
- Department of Internal Medicine, Hospital Universitario Infanta Leonor-Virgen de la Torre, 28031 Madrid, Spain; (J.T.-M.); (P.R.-M.); (A.F.-M.)
- Department of Medicine, School of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Pablo Ryan-Murua
- Department of Internal Medicine, Hospital Universitario Infanta Leonor-Virgen de la Torre, 28031 Madrid, Spain; (J.T.-M.); (P.R.-M.); (A.F.-M.)
| | - Anabel Franco-Moreno
- Department of Internal Medicine, Hospital Universitario Infanta Leonor-Virgen de la Torre, 28031 Madrid, Spain; (J.T.-M.); (P.R.-M.); (A.F.-M.)
| | - Oscar J. Pellicer-Valero
- Image Processing Laboratory (IPL), Universitat de València, Parc Científic, 46980 Paterna, Spain;
| | - Lars Arendt-Nielsen
- Center for Neuroplasticity and Pain (CNAP), Sensory Motor Interaction (SMI), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, DK 9220 Aalborg, Denmark; (L.A.-N.); (R.G.)
- Department of Gastroenterology & Hepatology, Mech-Sense, Aalborg University Hospital, DK 9100 Aalborg, Denmark
- Steno Diabetes Center North Denmark, Clinical Institute, Aalborg University Hospital, DK 9100 Aalborg, Denmark
| | - Rocco Giordano
- Center for Neuroplasticity and Pain (CNAP), Sensory Motor Interaction (SMI), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, DK 9220 Aalborg, Denmark; (L.A.-N.); (R.G.)
- Department of Oral and Maxillofacial Surgery, Aalborg University Hospital, DK 9100 Aalborg, Denmark
| |
Collapse
|
8
|
Meseldžić N, Prnjavorac B, Dujić T, Malenica M, Glamočlija U, Prnjavorac L, Bedak O, Imamović Kadrić S, Marjanović D, Bego T. Association of ACE2 and TMPRSS2 genes variants with disease severity and most important biomarkers in COVID-19 patients in Bosnia and Herzegovina. Croat Med J 2024; 65:220-231. [PMID: 38868968 PMCID: PMC11157263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/20/2024] [Indexed: 06/14/2024] Open
Abstract
AIM To assess the association of single nucleotide polymorphisms (SNPs) in the ACE2 and TMPRSS2 genes with COVID-19 severity and key biomarkers. METHODS The study involved 750 COVID-19 patients from Bosnia and Herzegovina, divided into three groups: mild, moderate, and severe cases. Genetic variations within the ACE2 (rs2285666) and TMPRSS2 (rs2070788) genes were examined with real-time polymerase chain reaction. Biochemical markers were determined with standard procedures. RESULTS There was a significant difference in the rs2070788 genotype distribution between patients with mild and moderate symptoms, but not between other groups. For the rs2285666 polymorphism, no significant difference in genotype distribution was found. In patients with mild symptoms, carriers of the GG genotype of rs2070788 had significantly higher total bilirubin levels than carriers of the AA genotype. Similarly, carriers of the TT genotype of rs2285666 had significantly higher activated partial thromboplastin time and international normalized ratio, and lower lactate dehydrogenase levels compared with the CC genotype. Among patients with severe symptoms, carriers of the GG genotype showed significantly higher potassium levels than carriers of the AA genotype, while carriers of the TT genotype showed significantly higher erythrocyte count as well as hemoglobin and hematocrit levels compared with the CC genotype. CONCLUSION This study highlights the role of genetic factors, particularly SNPs in the ACE2 and TMPRSS2 genes, in determining COVID-19 severity, aiding patient risk assessment and prognosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Tamer Bego
- Tamer Bego, Department of Pharmaceutical Biochemistry and Laboratory Diagnostics, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina,
| |
Collapse
|
9
|
Elemam NM, Bouzid A, Alsafar H, Ahmed SBM, Hafezi S, Venkatachalam T, Eldohaji L, Al Hamidi T, Gerges PH, Halabi N, Hadj-Kacem H, Talaat IM, Taneera J, Sulaiman N, Maghazachi AA, Hamid Q, Hamoudi R, Saber-Ayad M. Association of specific ACE2 and TMPRSS2 variants with circulatory cytokines of COVID-19 Emirati patients. Front Immunol 2024; 15:1348229. [PMID: 38855114 PMCID: PMC11157456 DOI: 10.3389/fimmu.2024.1348229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 05/06/2024] [Indexed: 06/11/2024] Open
Abstract
INTRODUCTION The COVID-19 pandemic represented one of the most significant challenges to researchers and healthcare providers. Several factors determine the disease severity, whereas none alone can explain the tremendous variability. The Single nucleotide variants (SNVs) in angiotensin-converting enzyme-2 (ACE2) and transmembrane serine protease type-2 (TMPRSS2) genes affect the virus entry and are considered possible risk factors for COVID-19. METHODS We compiled a panel of gene variants from both genes and used in-silico analysis to predict their significance. We performed biological validation to assess their capacity to alter the ACE2 interaction with the virus spike protein. Subsequently, we conducted a retrospective comparative genome analysis on those variants in the Emirati patients with different disease severity (total of 96) along with 69 healthy control subjects. RESULTS Our results showed that the Emirati population lacks the variants that were previously reported as associated with disease severity, whereas a new variant in ACE2 "Chr X:g.15584534" was associated with disease severity specifically among female patients. In-silico analysis revealed that the new variant can determine the ACE2 gene transcription. Several cytokines (GM-CSF and IL-6) and chemokines (MCP-1/CCL2, IL-8/CXCL8, and IP-10/CXCL10) were markedly increased in COVID-19 patients with a significant correlation with disease severity. The newly reported genetic variant of ACE2 showed a positive correlation with CD40L, IL-1β, IL-2, IL-15, and IL-17A in COVID-19 patients. CONCLUSION Whereas COVID-19 represents now a past pandemic, our study underscores the importance of genetic factors specific to a population, which can influence both the susceptibility to viral infections and the level of severity; subsequently expected required preparedness in different areas of the world.
Collapse
Affiliation(s)
- Noha M. Elemam
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Amal Bouzid
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Habiba Alsafar
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Emirates Bio-Research Centre, Ministry of Interior, Abu Dhabi, United Arab Emirates
| | - Samrein BM Ahmed
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Health, Wellbeing and Life Sciences, Department of Biosciences and Chemistry, Sheffield Hallam University, Sheffield, United Kingdom
| | - Shirin Hafezi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Thenmozhi Venkatachalam
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Physiology and Immunology College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Leen Eldohaji
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Tasneem Al Hamidi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Peter Habib Gerges
- School of Information Technology and Computer Science (ITCS), Nile University, Giza, Egypt
| | - Nour Halabi
- Al Jalila Genomics Center of Excellence, Al Jalila Children’s Specialty Hospital, Dubai, United Arab Emirates
| | - Hassen Hadj-Kacem
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Iman M. Talaat
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Jalal Taneera
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Nabil Sulaiman
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Family Medicine, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Azzam A. Maghazachi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Qutayba Hamid
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Rifat Hamoudi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London, United Kingdom
| | - Maha Saber-Ayad
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- College of Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
10
|
Mohebbi A, Eskandarzadeh M, Zangi H, Fatehi M. In silico study of alkaloids with quercetin nucleus for inhibition of SARS-CoV-2 protease and receptor cell protease. PLoS One 2024; 19:e0298201. [PMID: 38626042 PMCID: PMC11020608 DOI: 10.1371/journal.pone.0298201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/21/2024] [Indexed: 04/18/2024] Open
Abstract
Covid-19 disease caused by the deadly SARS-CoV-2 virus is a serious and threatening global health issue declared by the WHO as an epidemic. Researchers are studying the design and discovery of drugs to inhibit the SARS-CoV-2 virus due to its high mortality rate. The main Covid-19 virus protease (Mpro) and human transmembrane protease, serine 2 (TMPRSS2) are attractive targets for the study of antiviral drugs against SARS-2 coronavirus. Increasing consumption of herbal medicines in the community and a serious approach to these drugs have increased the demand for effective herbal substances. Alkaloids are one of the most important active ingredients in medicinal plants that have wide applications in the pharmaceutical industry. In this study, seven alkaloid ligands with Quercetin nucleus for the inhibition of Mpro and TMPRSS2 were studied using computational drug design including molecular docking and molecular dynamics simulation (MD). Auto Dock software was used to evaluate molecular binding energy. Three ligands with the most negative docking score were selected to be entered into the MD simulation procedure. To evaluate the protein conformational changes induced by tested ligands and calculate the binding energy between the ligands and target proteins, GROMACS software based on AMBER03 force field was used. The MD results showed that Phyllospadine and Dracocephin-A form stable complexes with Mpro and TMPRSS2. Prolinalin-A indicated an acceptable inhibitory effect on Mpro, whereas it resulted in some structural instability of TMPRSS2. The total binding energies between three ligands, Prolinalin-A, Phyllospadine and Dracocephin-A and two proteins MPro and TMRPSS2 are (-111.235 ± 15.877, - 75.422 ± 11.140), (-107.033 ± 9.072, -84.939 ± 10.155) and (-102.941 ± 9.477, - 92.451 ± 10.539), respectively. Since the binding energies are at a minimum, this indicates confirmation of the proper binding of the ligands to the proteins. Regardless of some Prolinalin-A-induced TMPRSS2 conformational changes, it may properly bind to TMPRSS2 binding site due to its acceptable binding energy. Therefore, these three ligands can be promising candidates for the development of drugs to treat infections caused by the SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Ali Mohebbi
- Department of Chemical Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Marzieh Eskandarzadeh
- Research Committee of Faculty of Pharmacy, Lorestan University of Medical Science, Khorramabad, Iran
| | - Hanieh Zangi
- Department of Chemical Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Marzie Fatehi
- Department of Chemical Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
11
|
Martínez-Gómez LE, Martinez-Armenta C, Tusie-Luna T, Vázquez-Cárdenas P, Vidal-Vázquez RP, Ramírez-Hinojosa JP, Gómez-Martín D, Vargas-Alarcón G, Posadas-Sánchez R, Fragoso JM, de la Peña A, Rodríguez-Pérez JM, Mata-Miranda MM, Vázquez-Zapién GJ, Martínez-Cuazitl A, Martínez-Ruiz FDJ, Zayago-Angeles DM, Ramos-Tavera L, Méndez-Aguilera A, Camacho-Rea MDC, Ordoñez-Sánchez ML, Segura-Kato Y, Suarez-Ahedo C, Olea-Torres J, Herrera-López B, Pineda C, Martínez-Nava GA, López-Reyes A. The fatal contribution of serine protease-related genetic variants to COVID-19 outcomes. Front Immunol 2024; 15:1335963. [PMID: 38601158 PMCID: PMC11004237 DOI: 10.3389/fimmu.2024.1335963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/14/2024] [Indexed: 04/12/2024] Open
Abstract
Introduction Serine proteases play a critical role during SARS-CoV-2 infection. Therefore, polymorphisms of transmembrane protease serine 2 (TMPRSS2) and serpine family E member 1 (SERPINE1) could help to elucidate the contribution of variability to COVID-19 outcomes. Methods To evaluate the genetic variants of the genes previously associated with COVID-19 outcomes, we performed a cross-sectional study in which 1536 SARS-CoV-2-positive participants were enrolled. TMPRSS2 (rs2070788, rs75603675, rs12329760) and SERPINE1 (rs2227631, rs2227667, rs2070682, rs2227692) were genotyped using the Open Array Platform. The association of polymorphisms with disease outcomes was determined by logistic regression analysis adjusted for covariates (age, sex, hypertension, type 2 diabetes, and obesity). Results According to our codominant model, the GA genotype of rs2227667 (OR=0.55; 95% CI = 0.36-0.84; p=0.006) and the AG genotype of rs2227667 (OR=0.59; 95% CI = 0.38-0.91; p=0.02) of SERPINE1 played a protective role against disease. However, the rs2227692 T allele and TT genotype SERPINE1 (OR=1.45; 95% CI = 1.11-1.91; p=0.006; OR=2.08; 95% CI = 1.22-3.57; p=0.007; respectively) were associated with a decreased risk of death. Similarly, the rs75603675 AA genotype TMPRSS2 had an OR of 1.97 (95% CI = 1.07-3.6; p=0.03) for deceased patients. Finally, the rs2227692 T allele SERPINE1 was associated with increased D-dimer levels (OR=1.24; 95% CI = 1.03-1.48; p=0.02). Discussion Our data suggest that the rs75603675 TMPRSS2 and rs2227692 SERPINE1 polymorphisms are associated with a poor outcome. Additionally, rs2227692 SERPINE1 could participate in hypercoagulable conditions in critical COVID-19 patients, and this genetic variant could contribute to the identification of new pharmacological targets and treatment strategies to block the inhibition of TMPRSS2 entry into SARS-CoV-2.
Collapse
Affiliation(s)
- Laura Edith Martínez-Gómez
- Laboratorio de Gerociencias, Dirección General, Departamento de Reconstrucción Articular, Laboratorio Facilitador, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Mexico City, Mexico
| | - Carlos Martinez-Armenta
- Laboratorio de Gerociencias, Dirección General, Departamento de Reconstrucción Articular, Laboratorio Facilitador, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Mexico City, Mexico
| | - Teresa Tusie-Luna
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador, Zubirán, Mexico City, Mexico
- Instituto de Investigaciones Biomédicas Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Paola Vázquez-Cárdenas
- Centro de Innovación Médica Aplicada, Hospital General Dr. Manuel Gea González, Mexico City, Mexico
| | - Rosa P. Vidal-Vázquez
- Centro de Innovación Médica Aplicada, Hospital General Dr. Manuel Gea González, Mexico City, Mexico
| | - Juan P. Ramírez-Hinojosa
- Centro de Innovación Médica Aplicada, Hospital General Dr. Manuel Gea González, Mexico City, Mexico
| | - Diana Gómez-Martín
- Department of Immunology and Rheumatology, Departamento de Inmunogenética, Departamento de Nutrición Animal, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Secretaría de Salud, Mexico City, Mexico
| | - Gilberto Vargas-Alarcón
- Departamento de Biología Molecular y Endocrinología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Rosalinda Posadas-Sánchez
- Departamento de Biología Molecular y Endocrinología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - José Manuel Fragoso
- Departamento de Biología Molecular y Endocrinología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Aurora de la Peña
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - José Manuel Rodríguez-Pérez
- Departamento de Biología Molecular y Endocrinología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Mónica M. Mata-Miranda
- Laboratorio de Biología Celular y Tisular, Laboratorio de Embriología, Escuela Médico Militar, Universidad del Ejército y Fuerza Aérea, Mexico City, Mexico
| | - Gustavo J. Vázquez-Zapién
- Laboratorio de Biología Celular y Tisular, Laboratorio de Embriología, Escuela Médico Militar, Universidad del Ejército y Fuerza Aérea, Mexico City, Mexico
| | - Adriana Martínez-Cuazitl
- Laboratorio de Biología Celular y Tisular, Laboratorio de Embriología, Escuela Médico Militar, Universidad del Ejército y Fuerza Aérea, Mexico City, Mexico
| | - Felipe de J. Martínez-Ruiz
- Nuevo Hospital General Delegación Regional Sur de la Ciudad de México Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | - Dulce M. Zayago-Angeles
- Nuevo Hospital General Delegación Regional Sur de la Ciudad de México Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | - Luis Ramos-Tavera
- Department of Immunology and Rheumatology, Departamento de Inmunogenética, Departamento de Nutrición Animal, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Secretaría de Salud, Mexico City, Mexico
| | - Alberto Méndez-Aguilera
- Laboratorio de Gerociencias, Dirección General, Departamento de Reconstrucción Articular, Laboratorio Facilitador, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Mexico City, Mexico
| | - María del C. Camacho-Rea
- Department of Immunology and Rheumatology, Departamento de Inmunogenética, Departamento de Nutrición Animal, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Secretaría de Salud, Mexico City, Mexico
| | - María L. Ordoñez-Sánchez
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador, Zubirán, Mexico City, Mexico
| | - Yayoi Segura-Kato
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador, Zubirán, Mexico City, Mexico
| | - Carlos Suarez-Ahedo
- Laboratorio de Gerociencias, Dirección General, Departamento de Reconstrucción Articular, Laboratorio Facilitador, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Mexico City, Mexico
| | - Jessel Olea-Torres
- Laboratorio de Gerociencias, Dirección General, Departamento de Reconstrucción Articular, Laboratorio Facilitador, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Mexico City, Mexico
| | - Brígida Herrera-López
- Laboratorio de Gerociencias, Dirección General, Departamento de Reconstrucción Articular, Laboratorio Facilitador, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Mexico City, Mexico
| | - Carlos Pineda
- Laboratorio de Gerociencias, Dirección General, Departamento de Reconstrucción Articular, Laboratorio Facilitador, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Mexico City, Mexico
| | - Gabriela A. Martínez-Nava
- Laboratorio de Gerociencias, Dirección General, Departamento de Reconstrucción Articular, Laboratorio Facilitador, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Mexico City, Mexico
| | - Alberto López-Reyes
- Laboratorio de Gerociencias, Dirección General, Departamento de Reconstrucción Articular, Laboratorio Facilitador, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Mexico City, Mexico
| |
Collapse
|
12
|
English A, McDaid D, Lynch SM, McLaughlin J, Cooper E, Wingfield B, Kelly M, Bhavsar M, McGilligan V, Irwin RE, Bucholc M, Zhang SD, Shukla P, Rai TS, Bjourson AJ, Murray E, Gibson DS, Walsh C. Genomic, Proteomic, and Phenotypic Biomarkers of COVID-19 Severity: Protocol for a Retrospective Observational Study. JMIR Res Protoc 2024; 13:e50733. [PMID: 38354037 PMCID: PMC10868637 DOI: 10.2196/50733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/23/2023] [Accepted: 11/09/2023] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Health organizations and countries around the world have found it difficult to control the spread of COVID-19. To minimize the future impact on the UK National Health Service and improve patient care, there is a pressing need to identify individuals who are at a higher risk of being hospitalized because of severe COVID-19. Early targeted work was successful in identifying angiotensin-converting enzyme-2 receptors and type II transmembrane serine protease dependency as drivers of severe infection. Although a targeted approach highlights key pathways, a multiomics approach will provide a clearer and more comprehensive picture of severe COVID-19 etiology and progression. OBJECTIVE The COVID-19 Response Study aims to carry out an integrated multiomics analysis to identify biomarkers in blood and saliva that could contribute to host susceptibility to SARS-CoV-2 and the development of severe COVID-19. METHODS The COVID-19 Response Study aims to recruit 1000 people who recovered from SARS-CoV-2 infection in both community and hospital settings on the island of Ireland. This protocol describes the retrospective observational study component carried out in Northern Ireland (NI; Cohort A); the Republic of Ireland cohort will be described separately. For all NI participants (n=519), SARS-CoV-2 infection has been confirmed by reverse transcription-quantitative polymerase chain reaction. A prospective Cohort B of 40 patients is also being followed up at 1, 3, 6, and 12 months postinfection to assess longitudinal symptom frequency and immune response. Data will be sourced from whole blood, saliva samples, and clinical data from the electronic care records, the general health questionnaire, and a 12-item general health questionnaire mental health survey. Saliva and blood samples were processed to extract DNA and RNA before whole-genome sequencing, RNA sequencing, DNA methylation analysis, microbiome analysis, 16S ribosomal RNA gene sequencing, and proteomic analysis were performed on the plasma. Multiomics data will be combined with clinical data to produce sensitive and specific prognostic models for severity risk. RESULTS An initial demographic and clinical profile of the NI Cohort A has been completed. A total of 249 hospitalized patients and 270 nonhospitalized patients were recruited, of whom 184 (64.3%) were female, and the mean age was 45.4 (SD 13) years. High levels of comorbidity were evident in the hospitalized cohort, with cardiovascular disease and metabolic and respiratory disorders being the most significant (P<.001), grouped according to the International Classification of Diseases 10 codes. CONCLUSIONS This study will provide a comprehensive opportunity to study the mechanisms of COVID-19 severity in recontactable participants. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/50733.
Collapse
Affiliation(s)
- Andrew English
- Personalised Medicine Centre, School of Medicine, Ulster University, Derry/Londonderry, United Kingdom
- National Horizons Centre, Teesside University, Middlesbrough, United Kingdom
| | - Darren McDaid
- Personalised Medicine Centre, School of Medicine, Ulster University, Derry/Londonderry, United Kingdom
| | - Seodhna M Lynch
- Personalised Medicine Centre, School of Medicine, Ulster University, Derry/Londonderry, United Kingdom
| | - Joseph McLaughlin
- Personalised Medicine Centre, School of Medicine, Ulster University, Derry/Londonderry, United Kingdom
| | - Eamonn Cooper
- Personalised Medicine Centre, School of Medicine, Ulster University, Derry/Londonderry, United Kingdom
| | - Benjamin Wingfield
- Personalised Medicine Centre, School of Medicine, Ulster University, Derry/Londonderry, United Kingdom
| | - Martin Kelly
- Western Health Social Care Trust, Londonderry, United Kingdom
| | - Manav Bhavsar
- Western Health Social Care Trust, Londonderry, United Kingdom
| | - Victoria McGilligan
- Personalised Medicine Centre, School of Medicine, Ulster University, Derry/Londonderry, United Kingdom
| | - Rachelle E Irwin
- Personalised Medicine Centre, School of Medicine, Ulster University, Derry/Londonderry, United Kingdom
| | - Magda Bucholc
- Personalised Medicine Centre, School of Medicine, Ulster University, Derry/Londonderry, United Kingdom
| | - Shu-Dong Zhang
- Personalised Medicine Centre, School of Medicine, Ulster University, Derry/Londonderry, United Kingdom
| | - Priyank Shukla
- Personalised Medicine Centre, School of Medicine, Ulster University, Derry/Londonderry, United Kingdom
| | - Taranjit Singh Rai
- Personalised Medicine Centre, School of Medicine, Ulster University, Derry/Londonderry, United Kingdom
| | - Anthony J Bjourson
- Personalised Medicine Centre, School of Medicine, Ulster University, Derry/Londonderry, United Kingdom
| | - Elaine Murray
- Personalised Medicine Centre, School of Medicine, Ulster University, Derry/Londonderry, United Kingdom
| | - David S Gibson
- Personalised Medicine Centre, School of Medicine, Ulster University, Derry/Londonderry, United Kingdom
| | - Colum Walsh
- Department of Biomedical and Clinical Sciences, Linköping University, Uppsala, Sweden
| |
Collapse
|
13
|
Fernández-de-las-Peñas C, Díaz-Gil G, Gil-Crujera A, Gómez-Sánchez SM, Ambite-Quesada S, Torres-Macho J, Ryan-Murua P, Franco-Moreno AI, Pellicer-Valero OJ, Arendt-Nielsen L, Giordano R. Inflammatory Polymorphisms (IL-6 rs1800796, IL-10 rs1800896, TNF-α rs1800629, and IFITM3 rs12252) Are Not Associated with Post-COVID Symptoms in Previously Hospitalized COVID-19 Survivors. Viruses 2024; 16:275. [PMID: 38400050 PMCID: PMC10891518 DOI: 10.3390/v16020275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
The aim of this study was to identify the association between four selected inflammatory polymorphisms with the development of long-term post-COVID symptoms in subjects who had been hospitalized due to SARS-CoV-2 infection during the first wave of the pandemic. These polymorphisms were selected as they are associated with severe COVID-19 disease and cytokine storm, so they could be important to prognoses post-COVID. A total of 408 (48.5% female, age: 58.5 ± 14.0 years) previously hospitalized COVID-19 survivors participated. The three potential genotypes of the following four single-nucleotide polymorphisms, IL-6 rs1800796, IL-10 rs1800896, TNF-α rs1800629, and IFITM3 rs12252, were obtained from non-stimulated saliva samples of the participants. The participants were asked to self-report the presence of any post-COVID symptoms (defined as symptoms that had started no later than one month after SARS-CoV-2 acute infection) and whether the symptoms persisted at the time of the study. At the time of the study (mean: 15.6, SD: 5.6 months after discharge), 89.4% of patients reported at least one post-COVID symptom (mean number of symptoms: 3.0; SD: 1.7). Fatigue (69.3%), pain (40.9%), and memory loss (27.2%) were the most prevalent post-COVID symptoms in the total sample. Overall, no differences in the post-COVID symptoms depending on the IL-6 rs1800796, IL-10 rs1800896, TNF-α rs1800629, and IFITM3 rs12252 genotypes were seen. The four SNPs assessed, albeit having been previously associated with inflammation and COVID-19 severity, did not cause a predisposition to the development of post-COVID symptoms in the previously hospitalized COVID-19 survivors.
Collapse
Affiliation(s)
- César Fernández-de-las-Peñas
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Universidad Rey Juan Carlos, 28922 Alcorcón, Spain;
- Center for Neuroplasticity and Pain (CNAP), Sensory Motor Interaction (SMI), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, DK-9220 Aalborg, Denmark; (L.A.-N.); (R.G.)
| | - Gema Díaz-Gil
- Research group GAMDES, Department of Basic Health Sciences, Universidad Rey Juan Carlos (URJC), 28933 Madrid, Spain; (G.D.-G.); (A.G.-C.); (S.M.G.-S.)
| | - Antonio Gil-Crujera
- Research group GAMDES, Department of Basic Health Sciences, Universidad Rey Juan Carlos (URJC), 28933 Madrid, Spain; (G.D.-G.); (A.G.-C.); (S.M.G.-S.)
| | - Stella M. Gómez-Sánchez
- Research group GAMDES, Department of Basic Health Sciences, Universidad Rey Juan Carlos (URJC), 28933 Madrid, Spain; (G.D.-G.); (A.G.-C.); (S.M.G.-S.)
| | - Silvia Ambite-Quesada
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Universidad Rey Juan Carlos, 28922 Alcorcón, Spain;
| | - Juan Torres-Macho
- Department of Internal Medicine, Hospital Universitario Infanta Leonor-Virgen de la Torre, 28031 Madrid, Spain; (J.T.-M.); (P.R.-M.); (A.I.F.-M.)
- Department of Medicine, School of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Pablo Ryan-Murua
- Department of Internal Medicine, Hospital Universitario Infanta Leonor-Virgen de la Torre, 28031 Madrid, Spain; (J.T.-M.); (P.R.-M.); (A.I.F.-M.)
| | - Ana I. Franco-Moreno
- Department of Internal Medicine, Hospital Universitario Infanta Leonor-Virgen de la Torre, 28031 Madrid, Spain; (J.T.-M.); (P.R.-M.); (A.I.F.-M.)
| | - Oscar J. Pellicer-Valero
- Image Processing Laboratory (IPL), Universitat de València, Parc Científic, Paterna, 46100 València, Spain;
| | - Lars Arendt-Nielsen
- Center for Neuroplasticity and Pain (CNAP), Sensory Motor Interaction (SMI), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, DK-9220 Aalborg, Denmark; (L.A.-N.); (R.G.)
- Department of Gastroenterology & Hepatology, Mech-Sense, Clinical Institute, Aalborg University Hospital, DK-9000 Aalborg, Denmark
- Steno Diabetes Center North Denmark, Clinical Institute, Aalborg University Hospital, DK-9000 Aalborg, Denmark
| | - Rocco Giordano
- Center for Neuroplasticity and Pain (CNAP), Sensory Motor Interaction (SMI), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, DK-9220 Aalborg, Denmark; (L.A.-N.); (R.G.)
- Department of Oral and Maxillofacial Surgery, Aalborg University Hospital, DK-9000 Aalborg, Denmark
| |
Collapse
|
14
|
Almeida SS, Gregnani MF, da Costa IMG, da Silva MM, Bub CB, Silvino VO, Martins DE, Wajchenberg M. ACE I/D polymorphism is a risk factor for the clinical severity of COVID-19 in Brazilian male patients. Mol Biol Rep 2024; 51:180. [PMID: 38252233 DOI: 10.1007/s11033-023-09189-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND The renin-angiotensin system is potentially involved in the pathogen-host interaction in the disease caused by SARS-CoV-2, since the angiotensin-converting enzyme (ACE) 2 serves as a receptor for the virus. The impact of the pandemic in specific regions and ethnic groups highlights the importance of investigating genetic factors that disrupt the balance of the system in response to SARS-CoV-2 infection, especially in genes with ethnic frequency variations. Therefore, this study aimed to evaluate the influence of the ACE I/D polymorphism on the incidence and severity of COVID-19 in a sample of the Brazilian population. METHODS AND RESULTS 70 severe cases and 355 mild cases patients were evaluated. DNA extraction was performed using a QIAamp DNA Blood Mini kit. Genotyping of ACE I/D polymorphism was performed. Clinical outcomes were obtained from the patients' records. We found an association between the ACE I/D polymorphism and the incidence or severity of COVID-19 in male participants. Moreover, we observed a relationship between severity and increasing age and body weight and a higher frequency of II genotype individuals among those who had a cough as their symptoms in mild patients. No differences were observed in leukocyte count or other parameters related to the inflammatory response in severe patients. CONCLUSIONS Our data showed the influence of the ACE I/D polymorphism on severity of COVID-19 in males, as well as on the occurrence of cough in patients with mild symptoms, with a higher incidence in those carrying the I allele.
Collapse
Affiliation(s)
- Sandro Soares Almeida
- Hospital Israelita Albert Einstein, São Paulo, Brazil.
- Department of Physical and Functional Performance, Universidade Ibirapuera, São Paulo, Brazil.
- Department of Obstetrics, Escola Paulista de Medicina, Universidade Federal de São Paulo - Unifesp, 875 Napoleão de Barros St, Vila Clementino, São Paulo, Brazil.
| | - Marcos Fernandes Gregnani
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo - Unifesp, São Paulo, Brazil
| | | | | | | | - Valmir Oliveira Silvino
- Department of Biophysics and Physiology, Nucleus of Study in Physiology Applied to Performance and Health (NEFADS), Federal University of Piaui, Teresina, Brazil
- Rede Nordeste de Biotecnologia (RENORBIO) Post-Graduation Program, Teresina, Brazil
| | | | | |
Collapse
|
15
|
Makled AF, Ali SAM, Eldahdouh SS, Sleem AS, Eldahshan MM, Elsaadawy Y, Salman SS, Mohammed Elbrolosy A. Angiotensin-Converting Enzyme-2 ( ACE-2) with Interferon-Induced Transmembrane Protein-3 ( IFITM-3) Genetic Variants and Interleukin-6 as Severity and Risk Predictors among COVID-19 Egyptian Population. Int J Microbiol 2023; 2023:6384208. [PMID: 38155729 PMCID: PMC10754637 DOI: 10.1155/2023/6384208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/21/2023] [Accepted: 12/08/2023] [Indexed: 12/30/2023] Open
Abstract
Introduction The host genetic background is a crucial factor that underlies the interindividual variability of COVID-19 fatality and outcomes. Angiotensin-converting enzyme-2 (ACE-2) and interferon-induced transmembrane protein-3 (IFITM-3) have a key role in viral cell entrance and priming. The evoked immune response will also provide a predictive prognosis for COVID-19 infection. This study aimed to explore the association between ACE-2 and IFITM-3 genotypes and their corresponding allele frequencies with disease severity indices in the Egyptian COVID-19 population. The serum level of interleukin-6, as a biomarker of hyperinflammatory response, and cytokine storm, was correlated with disease progression, single nucleotide polymorphisms (SNPs) of the selected receptors, and treatment response. Methodology. We enrolled 900 COVID-19-confirmed cases and 100 healthy controls. Genomic DNA was extracted from 200 subjects (160 patients selected based on clinical and laboratory data and 40 healthy controls). The ACE-2 rs2285666 and IFITM-3 rs12252 SNPs were genotyped using the TaqMan probe allelic discrimination assay, and the serum IL-6 level was determined by ELISA. Logistic regression analysis was applied to analyze the association between ACE-2 and IFITM-3 genetic variants, IL-6 profile, and COVID-19 severity. Results The identified genotypes and their alleles were significantly correlated with COVID-19 clinical deterioration as follows: ACE2 rs2285666 CT + TT, odds ratio (95% confidence interval): 12.136 (2.784-52.896) and IFITM-3 rs12252 AG + GG: 17.276 (3.673-81.249), both p < 0.001. Compared to the controls, the heterozygous and mutant genotypes for both SNPs were considerable risk factors for increased susceptibility to COVID-19. IL-6 levels were significantly correlated with disease progression (p < 0.001). Conclusion ACE-2 and IFITM-3 genetic variants are potential predictors of COVID-19 severity, critical outcomes, and post-COVID-19 complications. Together, these SNPs and serum IL-6 levels explain a large proportion of the variability in the severity of COVID-19 infection and its consequences among Egyptian subjects.
Collapse
Affiliation(s)
- Amal F. Makled
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Menoufia University, Shebin al Kom, Egypt
| | - Sahar A. M. Ali
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Menoufia University, Shebin al Kom, Egypt
| | - S. S. Eldahdouh
- Department of Chest Diseases and Tuberculosis, Faculty of Medicine, Menoufia University, Shebin al Kom, Egypt
| | - Asmaa S. Sleem
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Menoufia University, Shebin al Kom, Egypt
| | - Maha M. Eldahshan
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Menoufia University, Shebin al Kom, Egypt
| | - Yara Elsaadawy
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Samar S. Salman
- Department of Clinical Pathology, Faculty of Medicine, Menoufia University, Shebin al Kom, Egypt
| | - Asmaa Mohammed Elbrolosy
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Menoufia University, Shebin al Kom, Egypt
| |
Collapse
|
16
|
Cappelletti P, Gallo G, Marino R, Palaniappan S, Corbo M, Savoia C, Feligioni M. From cardiovascular system to brain, the potential protective role of Mas Receptors in COVID-19 infection. Eur J Pharmacol 2023; 959:176061. [PMID: 37775018 DOI: 10.1016/j.ejphar.2023.176061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has been declared a new pandemic in March 2020. Although most patients are asymptomatic, those with underlying cardiovascular comorbidities may develop a more severe systemic infection which is often associated with fatal pneumonia. Nonetheless, neurological and cardiovascular manifestations could be present even without respiratory symptoms. To date, no COVID-19-specific drugs are able for preventing or treating the infection and generally, the symptoms are relieved with general anti-inflammatory drugs. Angiotensin-converting-enzyme 2 (ACE2) may function as the receptor for virus entry within the cells favoring the progression of infection in the organism. On the other hand, ACE2 is a relevant enzyme in renin angiotensin system (RAS) cascade fostering Ang1-7/Mas receptor activation which promotes protective effects in neurological and cardiovascular systems. It is known that RAS is composed by two functional countervailing axes the ACE/AngII/AT1 receptor and the ACE/AngII/AT2 receptor which counteracts the actions mediated by AngII/AT1 receptor by inducing anti-inflammatory, antioxidant and anti-growth functions. Subsequently an "alternative" ACE2/Ang1-7/Mas receptor axis has been described with functions similar to the latter protective arm. Here, we discuss the neurological and cardiovascular effects of COVID-19 highlighting the role of the stimulation of the RAS "alternative" protective arm in attenuating pulmonary, cerebral and cardiovascular damages. In conclusion, only two clinical trials are running for Mas receptor agonists but few other molecules are in preclinical phase and if successful these drugs might represent a successful strategy for the treatment of the acute phase of COVID-19 infection.
Collapse
Affiliation(s)
- Pamela Cappelletti
- Department of Neuro-Rehabilitation Sciences, Casa di Cura Igea, Milan, Italy.
| | - Giovanna Gallo
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Rachele Marino
- European Brain Research Institute (EBRI) Rita Levi Montalcini Foundation, Rome, Italy
| | | | - Massimo Corbo
- Department of Neuro-Rehabilitation Sciences, Casa di Cura Igea, Milan, Italy
| | - Carmine Savoia
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Marco Feligioni
- Department of Neuro-Rehabilitation Sciences, Casa di Cura Igea, Milan, Italy; European Brain Research Institute (EBRI) Rita Levi Montalcini Foundation, Rome, Italy.
| |
Collapse
|
17
|
Adimulam T, Arumugam T, Naidoo A, Naidoo K, Ramsuran V. Polymorphisms within the SARS-CoV-2 Human Receptor Genes Associate with Variable Disease Outcomes across Ethnicities. Genes (Basel) 2023; 14:1798. [PMID: 37761938 PMCID: PMC10531089 DOI: 10.3390/genes14091798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
The contribution of human genes to the variability of disease outcomes has been shown to be important across infectious diseases. Studies have shown mutations within specific human genes are associated with variable COVID-19 outcomes. We focused on the SARS-CoV-2 receptors/co-receptors to identify the role of specific polymorphisms within ACE2, TMPRSS2, NRP1 and CD147. Polymorphisms within ACE2 (rs2285666), TMPRSS2 (rs12329760), CD147 (rs8259) and NRP1 (rs10080) have been shown to associate with COVID-19 severity. Using cryopreserved samples from COVID-19-positive African, European and South Asian individuals within South Africa, we determined genotype frequencies. The genetic variant rs2285666 was associated with COVID-19 severity with an ethnic bias. African individuals with a CC genotype demonstrate more severe COVID-19 outcomes (OR = 7.5; 95% CI 1.164-80.89; p = 0.024) compared with those with a TT genotype. The expressions of ACE2 and SARS-CoV-2 viral load were measured using droplet digital PCR. Our results demonstrate rs2285666 and rs10080 were significantly associated with increased SARS-CoV-2 viral load and worse outcomes in certain ethnicities. This study demonstrates two important findings. Firstly, SARS-CoV-2 viral load is significantly lower in Africans compared with individuals of European and South Asian descent (p = 0.0002 and p < 0.0001). Secondly, SARS-CoV-2 viral load associates with specific SARS-CoV-2 receptor variants. A limited number of studies have examined the receptor/co-receptor genes within Africa. This study investigated genetic variants within the SARS-CoV-2 receptor/co-receptor genes and their association with COVID-19 severity and SARS-CoV-2 viral load across different ethnicities. We provide a genetic basis for differences in COVID-19 severity across ethnic groups in South Africa, further highlighting the importance of further investigation to determine potential therapeutic targets and to guide vaccination strategies that may prioritize specific genotypes.
Collapse
Affiliation(s)
- Theolan Adimulam
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (T.A.); (T.A.)
| | - Thilona Arumugam
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (T.A.); (T.A.)
| | - Anushka Naidoo
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4041, South Africa; (A.N.); (K.N.)
| | - Kogieleum Naidoo
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4041, South Africa; (A.N.); (K.N.)
- South African Medical Research Council (SAMRC), Durban 4013, South Africa
| | - Veron Ramsuran
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (T.A.); (T.A.)
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4041, South Africa; (A.N.); (K.N.)
| |
Collapse
|
18
|
Galanopoulos AP, Bogogiannidou Z, Sarrou S, Voulgaridi I, Mouchtouri VA, Hadjichristodoulou C, Speletas M. Molecular Analysis of Hot-Spot Regions of ACE2 and TMPRSS2 in SARS-CoV-2 "Invulnerable" Individuals. Cureus 2023; 15:e43344. [PMID: 37700940 PMCID: PMC10493175 DOI: 10.7759/cureus.43344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2023] [Indexed: 09/14/2023] Open
Abstract
Background Coronavirus disease 2019 (COVID-19) is characterized by a wide clinical variability, ranging from acute illness that may require hospitalization and intensive care unit management to mild and even asymptomatic disease. A more exciting phenomenon is the presence of individuals who came into close contact with COVID-19 patients without prophylaxis but were never infected by SARS-CoV-2, even as an asymptomatic disease. Aims We describe four such "invulnerable" individuals and explore if they carry genetic defects in hot-spot regions of ACE2 and TMPRSS2 genes, which are responsible for virus entry into the host cells. Materials and methods Anti-S humoral and cellular immune responses were evaluated in the study participants through chemiluminescent microparticle immunoassay (CMIA) and enzyme-linked immunosorbent assay (ELISA) and interferon (IFN-γ) secretion measurement, respectively. Moreover, the hot-spot locations of ACE2 and TMPRSS2 were analyzed by polymerase chain reaction (PCR) sequencing in order to investigate potential genetic defects. Results No pathogenic genetic defects in ACE2 and TMPRSS2 were identified in the study participants. However, a functional polymorphism (rs12329760) located in exon 6 of the TMPRSS2 gene was detected in two of the four participants. In addition, it is worth noting that two individuals displayed adequate humoral and cellular immune responses after COVID-19 vaccination several months after their initial exposure to SARS-CoV-2. Conclusions We suggest that ACE2 and TMPRSS2 genes are not responsible for the "invulnerable" phenotype against COVID-19.
Collapse
Affiliation(s)
- Achilleas P Galanopoulos
- Department of Immunology & Histocompatibility, Faculty of Medicine, University of Thessaly, Larissa, GRC
- Laboratory of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, Larissa, GRC
| | - Zacharoula Bogogiannidou
- Laboratory of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, Larissa, GRC
| | - Styliani Sarrou
- Department of Immunology & Histocompatibility, Faculty of Medicine, University of Thessaly, Larissa, GRC
| | - Ioanna Voulgaridi
- Laboratory of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, Larissa, GRC
| | - Varvara A Mouchtouri
- Laboratory of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, Larissa, GRC
| | | | - Matthaios Speletas
- Department of Immunology & Histocompatibility, Faculty of Medicine, University of Thessaly, Larissa, GRC
| |
Collapse
|
19
|
Haycroft ER, Davis SK, Ramanathan P, Lopez E, Purcell RA, Tan LL, Pymm P, Wines BD, Hogarth PM, Wheatley AK, Juno JA, Redmond SJ, Gherardin NA, Godfrey DI, Tham WH, Selva KJ, Kent SJ, Chung AW. Antibody Fc-binding profiles and ACE2 affinity to SARS-CoV-2 RBD variants. Med Microbiol Immunol 2023:10.1007/s00430-023-00773-w. [PMID: 37477828 PMCID: PMC10372118 DOI: 10.1007/s00430-023-00773-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/26/2023] [Indexed: 07/22/2023]
Abstract
Emerging SARS-CoV-2 variants, notably Omicron, continue to remain a formidable challenge to worldwide public health. The SARS-CoV-2 receptor-binding domain (RBD) is a hotspot for mutations, reflecting its critical role at the ACE2 interface during viral entry. Here, we comprehensively investigated the impact of RBD mutations, including 5 variants of concern (VOC) or interest-including Omicron (BA.2)-and 33 common point mutations, both on IgG recognition and ACE2-binding inhibition, as well as FcγRIIa- and FcγRIIIa-binding antibodies, in plasma from two-dose BNT162b2-vaccine recipients and mild-COVID-19 convalescent subjects obtained during the first wave using a custom-designed bead-based 39-plex array. IgG-recognition and FcγR-binding antibodies were decreased against the RBD of Beta and Omicron, as well as point mutation G446S, found in several Omicron sub-variants as compared to wild type. Notably, while there was a profound decrease in ACE2 inhibition against Omicron, FcγR-binding antibodies were less affected, suggesting that Fc functional antibody responses may be better retained against the RBD of Omicron in comparison to neutralization. Furthermore, while measurement of RBD-ACE2-binding affinity via biolayer interferometry showed that all VOC RBDs have enhanced affinity to human ACE2, we demonstrate that human ACE2 polymorphisms, E35K (rs1348114695) has reduced affinity to VOCs, while K26R (rs4646116) and S19P (rs73635825) have increased binding kinetics to the RBD of VOCs, potentially affecting virus-host interaction and, thereby, host susceptibility. Collectively, our findings provide in-depth coverage of the impact of RBD mutations on key facets of host-virus interactions.
Collapse
Affiliation(s)
- Ebene R Haycroft
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Samantha K Davis
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Pradhipa Ramanathan
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Ester Lopez
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Ruth A Purcell
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Li Lynn Tan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, Australia
| | - Phillip Pymm
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Bruce D Wines
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - P Mark Hogarth
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Jennifer A Juno
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Samuel J Redmond
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Nicholas A Gherardin
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Dale I Godfrey
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Wai-Hong Tham
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Kevin John Selva
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia.
| | - Stephen J Kent
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia.
- Melbourne Sexual Health Centre, Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia.
| | - Amy W Chung
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
20
|
Adimulam T, Arumugam T, Gokul A, Ramsuran V. Genetic Variants within SARS-CoV-2 Human Receptor Genes May Contribute to Variable Disease Outcomes in Different Ethnicities. Int J Mol Sci 2023; 24:8711. [PMID: 37240057 PMCID: PMC10218380 DOI: 10.3390/ijms24108711] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evolved into a global pandemic, with an alarming infectivity and mortality rate. Studies have examined genetic effects on SARS-CoV-2 disease susceptibility and severity within Eurasian populations. These studies identified contrasting effects on the severity of disease between African populations. Genetic factors can explain some of the diversity observed within SARS-CoV-2 disease susceptibility and severity. Single nucleotide polymorphisms (SNPs) within the SARS-CoV-2 receptor genes have demonstrated detrimental and protective effects across ethnic groups. For example, the TT genotype of rs2285666 (Angiotensin-converting enzyme 2 (ACE2)) is associated with the severity of SARS-CoV-2 disease, which is found at higher frequency within Asian individuals compared to African and European individuals. In this study, we examined four SARS-CoV-2 receptors, ACE2, Transmembrane serine protease 2 (TMPRSS2), Neuropilin-1 (NRP1), and Basigin (CD147). A total of 42 SNPs located within the four receptors were reviewed: ACE2 (12), TMPRSS2 (10), BSG (CD147) (5), and NRP1 (15). These SNPs may be determining factors for the decreased disease severity observed within African individuals. Furthermore, we highlight the absence of genetic studies within the African population and emphasize the importance of further research. This review provides a comprehensive summary of specific variants within the SARS-CoV-2 receptor genes, which can offer a better understanding of the pathology of the SARS-CoV-2 pandemic and identify novel potential therapeutic targets.
Collapse
Affiliation(s)
- Theolan Adimulam
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (T.A.); (T.A.); (A.G.)
| | - Thilona Arumugam
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (T.A.); (T.A.); (A.G.)
| | - Anmol Gokul
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (T.A.); (T.A.); (A.G.)
| | - Veron Ramsuran
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (T.A.); (T.A.); (A.G.)
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban 4041, South Africa
| |
Collapse
|
21
|
Pozzi C, Vanet A, Francesconi V, Tagliazucchi L, Tassone G, Venturelli A, Spyrakis F, Mazzorana M, Costi MP, Tonelli M. Antitarget, Anti-SARS-CoV-2 Leads, Drugs, and the Drug Discovery-Genetics Alliance Perspective. J Med Chem 2023; 66:3664-3702. [PMID: 36857133 PMCID: PMC10005815 DOI: 10.1021/acs.jmedchem.2c01229] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
The most advanced antiviral molecules addressing major SARS-CoV-2 targets (Main protease, Spike protein, and RNA polymerase), compared with proteins of other human pathogenic coronaviruses, may have a short-lasting clinical efficacy. Accumulating knowledge on the mechanisms underlying the target structural basis, its mutational progression, and the related biological significance to virus replication allows envisaging the development of better-targeted therapies in the context of COVID-19 epidemic and future coronavirus outbreaks. The identification of evolutionary patterns based solely on sequence information analysis for those targets can provide meaningful insights into the molecular basis of host-pathogen interactions and adaptation, leading to drug resistance phenomena. Herein, we will explore how the study of observed and predicted mutations may offer valuable suggestions for the application of the so-called "synthetic lethal" strategy to SARS-CoV-2 Main protease and Spike protein. The synergy between genetics evidence and drug discovery may prioritize the development of novel long-lasting antiviral agents.
Collapse
Affiliation(s)
- Cecilia Pozzi
- Department of Biotechnology, Chemistry and Pharmacy,
University of Siena, via Aldo Moro 2, 53100 Siena,
Italy
| | - Anne Vanet
- Université Paris Cité,
CNRS, Institut Jacques Monod, F-75013 Paris,
France
| | - Valeria Francesconi
- Department of Pharmacy, University of
Genoa, viale Benedetto XV n.3, 16132 Genoa, Italy
| | - Lorenzo Tagliazucchi
- Department of Life Science, University of
Modena and Reggio Emilia, via Campi 103, 41125 Modena,
Italy
- Doctorate School in Clinical and Experimental Medicine
(CEM), University of Modena and Reggio Emilia, Via Campi 287,
41125 Modena, Italy
| | - Giusy Tassone
- Department of Biotechnology, Chemistry and Pharmacy,
University of Siena, via Aldo Moro 2, 53100 Siena,
Italy
| | - Alberto Venturelli
- Department of Life Science, University of
Modena and Reggio Emilia, via Campi 103, 41125 Modena,
Italy
| | - Francesca Spyrakis
- Department of Drug Science and Technology,
University of Turin, Via Giuria 9, 10125 Turin,
Italy
| | - Marco Mazzorana
- Diamond Light Source, Harwell Science and
Innovation Campus, Didcot, Oxfordshire OX11 0DE,
U.K.
| | - Maria P. Costi
- Department of Life Science, University of
Modena and Reggio Emilia, via Campi 103, 41125 Modena,
Italy
| | - Michele Tonelli
- Department of Pharmacy, University of
Genoa, viale Benedetto XV n.3, 16132 Genoa, Italy
| |
Collapse
|
22
|
Jankovic M, Nikolic D, Novakovic I, Petrovic B, Lackovic M, Santric-Milicevic M. miRNAs as a Potential Biomarker in the COVID-19 Infection and Complications Course, Severity, and Outcome. Diagnostics (Basel) 2023; 13:1091. [PMID: 36980399 PMCID: PMC10047241 DOI: 10.3390/diagnostics13061091] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/08/2023] [Accepted: 03/12/2023] [Indexed: 03/15/2023] Open
Abstract
During the last three years, since the emergence of the COVID-19 pandemic, a significant number of scientific publications have focused on resolving susceptibility to the infection, as well as the course of the disease and potential long-term complications. COVID-19 is widely considered as a multisystem disease and a variety of socioeconomic, medical, and genetic/epigenetic factors may contribute to the disease severity and outcome. Furthermore, the SARS-COV-2 infection may trigger pathological processes and accelerate underlying conditions to clinical entities. The development of specific and sensitive biomarkers that are easy to obtain will allow for patient stratification, prevention, prognosis, and more individualized treatments for COVID-19. miRNAs are proposed as promising biomarkers for different aspects of COVID-19 disease (susceptibility, severity, complication course, outcome, and therapeutic possibilities). This review summarizes the most relevant findings concerning miRNA involvement in COVID-19 pathology. Additionally, the role of miRNAs in wide range of complications due to accompanied and/or underlying health conditions is discussed. The importance of understanding the functional relationships between different conditions, such as pregnancy, obesity, or neurological diseases, with COVID-19 is also highlighted.
Collapse
Affiliation(s)
- Milena Jankovic
- Neurology Clinic, University Clinical Center of Serbia, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Dejan Nikolic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Department of Physical Medicine and Rehabilitation, University Children's Hospital, 11000 Belgrade, Serbia
| | - Ivana Novakovic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Bojana Petrovic
- Clinic of Gynecology and Obstetrics, University Clinical Center of Serbia, 11000 Belgrade, Serbia
| | - Milan Lackovic
- Department of Obstetrics and Gynecology, University Hospital "Dragisa Misovic", 11000 Belgrade, Serbia
| | - Milena Santric-Milicevic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Institute of Social Medicine, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Faculty of Medicine, School of Public Health and Health Management, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
23
|
Fernández-de-Las-Peñas C, Arendt-Nielsen L, Díaz-Gil G, Gil-Crujera A, Gómez-Sánchez SM, Ambite-Quesada S, Palomar-Gallego MA, Pellicer-Valero OJ, Giordano R. ACE1 rs1799752 polymorphism is not associated with long-COVID symptomatology in previously hospitalized COVID-19 survivors. J Infect 2023; 86:e67-e69. [PMID: 36584771 PMCID: PMC9794395 DOI: 10.1016/j.jinf.2022.12.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Affiliation(s)
- César Fernández-de-Las-Peñas
- Department of Physical Therapy, Occupational Therapy, Physical Medicine and Rehabilitation, Universidad Rey Juan Carlos (URJC), Madrid, Spain; Center for Neuroplasticity and Pain (CNAP), SMI, Department of Health Science and Technology, School of Medicine, Aalborg University, Aalborg, Denmark.
| | - Lars Arendt-Nielsen
- Center for Neuroplasticity and Pain (CNAP), SMI, Department of Health Science and Technology, School of Medicine, Aalborg University, Aalborg, Denmark; Department of Medical Gastroenterology, Mech-Sense, Aalborg University Hospital, Aalborg, Denmark
| | - Gema Díaz-Gil
- Research group GAMDES, Department of Basic Health Sciences, Universidad Rey Juan Carlos (URJC), Madrid, Spain
| | - Antonio Gil-Crujera
- Research group GAMDES, Department of Basic Health Sciences, Universidad Rey Juan Carlos (URJC), Madrid, Spain
| | - Stella M Gómez-Sánchez
- Research group GAMDES, Department of Basic Health Sciences, Universidad Rey Juan Carlos (URJC), Madrid, Spain
| | - Silvia Ambite-Quesada
- Department of Physical Therapy, Occupational Therapy, Physical Medicine and Rehabilitation, Universidad Rey Juan Carlos (URJC), Madrid, Spain
| | - Maria A Palomar-Gallego
- Research group GAMDES, Department of Basic Health Sciences, Universidad Rey Juan Carlos (URJC), Madrid, Spain
| | - Oscar J Pellicer-Valero
- Intelligent Data Analysis Laboratory, Department of Electronic Engineering, ETSE (Engineering School), Universitat de València (UV), Valencia, Spain
| | - Rocco Giordano
- Center for Neuroplasticity and Pain (CNAP), SMI, Department of Health Science and Technology, School of Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
24
|
Wu YC, Yao Y, Tao LS, Wang SX, Hu Y, Li LY, Hu S, Meng X, Yang DS, Li H, Xu T. The role of acetaldehyde dehydrogenase 2 in the pathogenesis of liver diseases. Cell Signal 2023; 102:110550. [PMID: 36464104 DOI: 10.1016/j.cellsig.2022.110550] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/12/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022]
Abstract
Common liver tissue damage is mainly due to the accumulation of toxic aldehydes in lipid peroxidation under oxidative stress. Cumulative toxic aldehydes in the liver can be effectively metabolized by acetaldehyde dehydrogenase 2 (ALDH2), thereby alleviating various liver diseases. Notably, gene mutation of ALDH2 leads to impaired ALDH2 enzyme activity, thus aggravating the progress of liver diseases. However, the relationship and specific mechanism between ALDH2 and liver diseases are not clear. Consequently, the review explains the relationship between ALDH2 and liver diseases such as alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), liver fibrosis and hepatocellular carcinoma (HCC). In addition, this review also discusses ALDH2 as a potential therapeutic target for various liver diseases,and focuses on summarizing the regulatory mechanism of ALDH2 in these liver diseases.
Collapse
Affiliation(s)
- Yin-Cui Wu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, China
| | - Yan Yao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, China
| | - Liang-Song Tao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, China
| | - Shu-Xian Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, China
| | - Ying Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, China
| | - Liang-Yun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, China
| | - Shuang Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, China
| | - Xiang Meng
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China
| | - Da-Shuai Yang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, China
| | - He Li
- The Second Hospital of Anhui Medical University, Hefei, Anhui Province 230001, China.
| | - Tao Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, China.
| |
Collapse
|
25
|
Thabet RH, Massadeh NA, Badarna OB, Al-Momani OM. Highlights on molecular targets in the management of COVID-19: Possible role of pharmacogenomics. J Int Med Res 2023; 51:3000605231153764. [PMID: 36717541 PMCID: PMC9893104 DOI: 10.1177/03000605231153764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
By the end of 2022, there had been a reduction in new cases and deaths caused by coronavirus disease 2019 (COVID-19). At the same time, new variants of the severe acute respiratory syndrome coronavirus 2 virus were being discovered. Critically ill patients with COVID-19 have been found to have high serum levels of proinflammatory cytokines, especially interleukin (IL)-6. COVID-19-related mortality has been attributed in most cases to the cytokine storm caused by increased levels of inflammatory cytokines. Dexamethasone in low doses and immunomodulators such as IL-6 inhibitors are recommended to overcome the cytokine storm. This current narrative review highlights the place of other therapeutic choices such as proteasome inhibitors, protease inhibitors and nuclear factor kappa B inhibitors in the treatment of patients with COVID-19.
Collapse
Affiliation(s)
- Romany H. Thabet
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt,Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan,Romany H. Thabet, Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Shafiq Irshidat Street, Irbid 21163, Jordan.
| | - Noor A. Massadeh
- Internship, Princess Basma Hospital, Ministry of Health, Irbid, Jordan
| | - Omar B. Badarna
- Internship, Princess Basma Hospital, Ministry of Health, Irbid, Jordan
| | - Omar M. Al-Momani
- Internship, Princess Basma Hospital, Ministry of Health, Irbid, Jordan
| |
Collapse
|
26
|
Słomian D, Szyda J, Dobosz P, Stojak J, Michalska-Foryszewska A, Sypniewski M, Liu J, Kotlarz K, Suchocki T, Mroczek M, Stępień M, Sztromwasser P, Król ZJ. Better safe than sorry-Whole-genome sequencing indicates that missense variants are significant in susceptibility to COVID-19. PLoS One 2023; 18:e0279356. [PMID: 36662838 PMCID: PMC9858061 DOI: 10.1371/journal.pone.0279356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/06/2022] [Indexed: 01/22/2023] Open
Abstract
Undoubtedly, genetic factors play an important role in susceptibility and resistance to COVID-19. In this study, we conducted the GWAS analysis. Out of 15,489,173 SNPs, we identified 18,191 significant SNPs for severe and 11,799 SNPs for resistant phenotype, showing that a great number of loci were significant in different COVID-19 representations. The majority of variants were synonymous (60.56% for severe, 58.46% for resistant phenotype) or located in introns (55.77% for severe, 59.83% for resistant phenotype). We identified the most significant SNPs for a severe outcome (in AJAP1 intron) and for COVID resistance (in FIG4 intron). We found no missense variants with a potential causal function on resistance to COVID-19; however, two missense variants were determined as significant a severe phenotype (in PM20D1 and LRP4 exons). None of the aforementioned SNPs and missense variants found in this study have been previously associated with COVID-19.
Collapse
Affiliation(s)
- Dawid Słomian
- National Research Institute of Animal Production, Balice, Poland
| | - Joanna Szyda
- National Research Institute of Animal Production, Balice, Poland
- Department of Genetics, Biostatistics Group, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Paula Dobosz
- Central Clinical Hospital of Ministry of the Interior and Administration in Warsaw, Warsaw, Poland
- Department of Haematology, Transplantation and Internal Medicine, University Clinical Centre of the Medical University of Warsaw, Warsaw, Poland
| | - Joanna Stojak
- Central Clinical Hospital of Ministry of the Interior and Administration in Warsaw, Warsaw, Poland
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Magdalenka, Poland
| | | | - Mateusz Sypniewski
- Central Clinical Hospital of Ministry of the Interior and Administration in Warsaw, Warsaw, Poland
- Department of Genetics and Animal Breedings, Poznan University of Life Sciences, Poznan, Poland
| | - Jakub Liu
- Department of Genetics, Biostatistics Group, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Krzysztof Kotlarz
- Department of Genetics, Biostatistics Group, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Tomasz Suchocki
- National Research Institute of Animal Production, Balice, Poland
- Department of Genetics, Biostatistics Group, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Magdalena Mroczek
- Center for Cardiovascular Genetics & Gene Diagnostics, Foundation for People with Rare Diseases, Schlieren-Zurich, Switzerland
| | - Maria Stępień
- Department of Infectious Diseases, Doctoral School, Medical University of Lublin, Lublin, Poland
| | | | - Zbigniew J. Król
- Central Clinical Hospital of Ministry of the Interior and Administration in Warsaw, Warsaw, Poland
| |
Collapse
|
27
|
Nejat R, Torshizi MF, Najafi DJ. S Protein, ACE2 and Host Cell Proteases in SARS-CoV-2 Cell Entry and Infectivity; Is Soluble ACE2 a Two Blade Sword? A Narrative Review. Vaccines (Basel) 2023; 11:204. [PMID: 36851081 PMCID: PMC9968219 DOI: 10.3390/vaccines11020204] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Since the spread of the deadly virus SARS-CoV-2 in late 2019, researchers have restlessly sought to unravel how the virus enters the host cells. Some proteins on each side of the interaction between the virus and the host cells are involved as the major contributors to this process: (1) the nano-machine spike protein on behalf of the virus, (2) angiotensin converting enzyme II, the mono-carboxypeptidase and the key component of renin angiotensin system on behalf of the host cell, (3) some host proteases and proteins exploited by SARS-CoV-2. In this review, the complex process of SARS-CoV-2 entrance into the host cells with the contribution of the involved host proteins as well as the sequential conformational changes in the spike protein tending to increase the probability of complexification of the latter with angiotensin converting enzyme II, the receptor of the virus on the host cells, are discussed. Moreover, the release of the catalytic ectodomain of angiotensin converting enzyme II as its soluble form in the extracellular space and its positive or negative impact on the infectivity of the virus are considered.
Collapse
Affiliation(s)
- Reza Nejat
- Department of Anesthesiology and Critical Care Medicine, Laleh Hospital, Tehran 1467684595, Iran
| | | | | |
Collapse
|
28
|
Diagnosis and Stratification of COVID-19 Infections Using Differential Plasma Levels of D-Dimer: A Two-Center Study from Saudi Arabia. MICROBIOLOGY RESEARCH 2023. [DOI: 10.3390/microbiolres14010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Background: D-dimer, generated upon the degradation of fibrin, is extensively used to detect thrombosis in various diseases. It is also explored as a marker for thrombosis in cases with COVID-19 disease. Few studies have confirmed its utility as a marker for assessing disease severity. Objectives: The current research was undertaken to determine the role of D-dimer in patients with COVID-19 and to investigate any association with the progression and severity of the disease in the Saudi population. Methods: Clinical indices in confirmed COVID-19 patients were collected from tertiary care hospitals in Aljouf and Qassim regions. The plasma D-dimer levels were quantified directly in the samples collected from COVID-19 patients (n = 148) using an immunofluorescence assay, and the data were presented in Fibrinogen Equivalent Units (mg/L). The collected data of D-dimer were analyzed based on COVID-19 severity, age, and the gender of patients. Results: The findings show that the plasma D-dimer concentrations were significantly (p = 0.0027) elevated in COVID-19 cases (n = 148), compared to in the normal healthy uninfected controls (n = 309). Moreover, the D-dimer levels were analyzed according to the severity of the disease in the patients. The data revealed that D-dimer concentrations were significantly increased in patients with mild infection to moderate disease, and the levels were the highest in patients with severe COVID-19 disease (p < 0.05). Our analysis demonstrates that the D-dimer levels have no association with the age or gender of COVID-19 patients (p > 0.05) in the study population. Conclusions: D-dimer can serve as a biomarker not only for the detection of COVID-19 infection, but also for determining the severity of infection of COVID-19 disease.
Collapse
|
29
|
Gupta P, Rani V. The Surging Mechanistic Role of Angiotensin Converting Enzyme 2 in Human Pathologies: A Potential Approach for Herbal Therapeutics. Curr Drug Targets 2023; 24:1046-1054. [PMID: 37861036 DOI: 10.2174/0113894501247616231009065415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/27/2023] [Accepted: 09/15/2023] [Indexed: 10/21/2023]
Abstract
Advancements in biological sciences revealed the significant role of angiotensin-converting enzyme 2 (ACE2), a key cell surface receptor in various human pathologies. ACE2 is a metalloproteinase that not only functions in the regulation of Angiotensin II but also possesses some non-catalytic roles in the human body. There is considerable uncertainty regarding its protein expression, despite its presence in virtually all organs. The level of ACE2 expression and its subcellular localisation in humans may be a key determinant of susceptibility to various infections, symptoms, and outcomes of numerous diseases. Therefore, we summarize the distribution and expression pattern of ACE2 in different cell types related to all major human tissues and organs. Moreover, this review constitutes accumulated evidences of the important resources for further studies on ACE2 Inhibitory capacity via different natural compounds in order to understand its mechanism as the potential drug target in disease pathophysiology and to aid in the development of an effective therapeutic approach towards the various diseases.
Collapse
Affiliation(s)
- Priyadarshini Gupta
- Transcriptome laboratory, Centre of Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Sector-62, Noida, Uttar Pradesh, India
| | - Vibha Rani
- Transcriptome laboratory, Centre of Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Sector-62, Noida, Uttar Pradesh, India
| |
Collapse
|
30
|
Wang Y, Ma J, Jiang Y. Transcription factor Nrf2 as a potential therapeutic target for COVID-19. Cell Stress Chaperones 2023; 28:11-20. [PMID: 36417098 PMCID: PMC9685020 DOI: 10.1007/s12192-022-01296-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 08/08/2022] [Accepted: 09/09/2022] [Indexed: 11/24/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) is caused by a novel severe acute respiratory syndrome (SARS)-like coronavirus (SARS-CoV-2). Critically ill patients with SARS-COV-2 infection frequently exhibit signs of high oxidative stress and systemic inflammation, which accounts for most of the mortality. Antiviral strategies to inhibit the pathogenic consequences of COVID-19 are urgently required. The nuclear factor erythroid 2-related transcription factor (Nrf2) is a transcription factor that is involved in antioxidant and anti-inflammatory defense in several tissues and cells. This review tries to present an overview of the role of Nrf2 in the treatment of COVID-19.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Infectious Diseases, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Jing Ma
- Department of Infectious Diseases, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yongfang Jiang
- Department of Infectious Diseases, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
31
|
Mokhtari T, Azizi M, Sheikhbahaei F, Sharifi H, Sadr M. Plant-Derived Antioxidants for Management of COVID-19: A Comprehensive Review of Molecular Mechanisms. TANAFFOS 2023; 22:27-39. [PMID: 37920320 PMCID: PMC10618592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/09/2022] [Indexed: 11/04/2023]
Abstract
We aimed to review the literature to introduce some effective plant-derived antioxidants to prevent and treat COVID-19. Natural products from plants are excellent sources to be used for such discoveries. Among different plant-derived bioactive substances, components including luteolin, quercetin, glycyrrhizin, andrographolide, patchouli alcohol, baicalin, and baicalein were investigated for several viral infections as well as SARS-COV-2. The mechanisms of effects detected for these agents were related to their antiviral activity through inhibition of viral entry and/or suppuration of virus function. Also, the majority of components exert anti-inflammatory effects and reduce the cytokine storm induced by virus infection. The data from different studies confirmed that these agents may play a critical role against SARS-COVID-2 via direct (antiviral activity) and indirect (antioxidant and anti-inflammatory) mechanisms, suggesting that natural products are a potential option for management of patients with COVID-19 due to the lower side effects and high efficiency.
Collapse
Affiliation(s)
- Tahmineh Mokhtari
- Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, People’s Republic of China
- Department of Histology and Embryology, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, People’s Republic of China
| | - Maryam Azizi
- Department of Anatomy, School of Medicine, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Fatemeh Sheikhbahaei
- Department of Anatomy, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hooman Sharifi
- Tobacco Prevention and Control Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Makan Sadr
- Virology Research Center, NRITLD, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
Dieter C, de Almeida Brondani L, Lemos NE, Schaeffer AF, Zanotto C, Ramos DT, Girardi E, Pellenz FM, Camargo JL, Moresco KS, da Silva LL, Aubin MR, de Oliveira MS, Rech TH, Canani LH, Gerchman F, Leitão CB, Crispim D. Polymorphisms in ACE1, TMPRSS2, IFIH1, IFNAR2, and TYK2 Genes Are Associated with Worse Clinical Outcomes in COVID-19. Genes (Basel) 2022; 14:genes14010029. [PMID: 36672770 PMCID: PMC9858252 DOI: 10.3390/genes14010029] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/29/2022] [Accepted: 12/10/2022] [Indexed: 12/25/2022] Open
Abstract
Although advanced age, male sex, and some comorbidities impact the clinical course of COVID-19, these factors only partially explain the inter-individual variability in disease severity. Some studies have shown that genetic polymorphisms contribute to COVID-19 severity; however, the results are inconclusive. Thus, we investigated the association between polymorphisms in ACE1, ACE2, DPP9, IFIH1, IFNAR2, IFNL4, TLR3, TMPRSS2, and TYK2 and the clinical course of COVID-19. A total of 694 patients with COVID-19 were categorized as: (1) ward inpatients (moderate symptoms) or patients admitted at the intensive care unit (ICU; severe symptoms); and (2) survivors or non-survivors. In females, the rs1990760/IFIH1 T/T genotype was associated with risk of ICU admission and death. Moreover, the rs1799752/ACE1 Ins and rs12329760/TMPRSS2 T alleles were associated with risk of ICU admission. In non-white patients, the rs2236757/IFNAR2 A/A genotype was associated with risk of ICU admission, while the rs1799752/ACE1 Ins/Ins genotype, rs2236757/IFNAR2 A/A genotype, and rs12329760/TMPRSS2 T allele were associated with risk of death. Moreover, some of the analyzed polymorphisms interact in the risk of worse COVID-19 outcomes. In conclusion, this study shows an association of rs1799752/ACE1, rs1990760/IFIH1, rs2236757/IFNAR2, rs12329760/TMPRSS2, and rs2304256/TYK2 polymorphisms with worse COVID-19 outcomes, especially among female and non-white patients.
Collapse
Affiliation(s)
- Cristine Dieter
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
- Post-Graduate Program in Medical Sciences, Endocrinology, Department of Internal Medicine, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, RS, Brazil
| | - Leticia de Almeida Brondani
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
- Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
| | - Natália Emerim Lemos
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
| | - Ariell Freires Schaeffer
- Post-Graduate Program in Medical Sciences, Endocrinology, Department of Internal Medicine, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, RS, Brazil
| | - Caroline Zanotto
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
| | - Denise Taurino Ramos
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
| | - Eliandra Girardi
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
| | - Felipe Mateus Pellenz
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
- Post-Graduate Program in Medical Sciences, Endocrinology, Department of Internal Medicine, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, RS, Brazil
| | - Joiza Lins Camargo
- Post-Graduate Program in Medical Sciences, Endocrinology, Department of Internal Medicine, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, RS, Brazil
- Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
- Diabetes and Metabolism Group, Centro de Pesquisa Clínica, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
| | - Karla Suzana Moresco
- Campus Realeza, Universidade Federal da Fronteira Sul, Realeza 85770-000, PR, Brazil
| | - Lucas Lima da Silva
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
| | - Mariana Rauback Aubin
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
| | - Mayara Souza de Oliveira
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
- Post-Graduate Program in Medical Sciences, Endocrinology, Department of Internal Medicine, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, RS, Brazil
| | - Tatiana Helena Rech
- Post-Graduate Program in Medical Sciences, Endocrinology, Department of Internal Medicine, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, RS, Brazil
- Diabetes and Metabolism Group, Centro de Pesquisa Clínica, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
| | - Luís Henrique Canani
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
- Post-Graduate Program in Medical Sciences, Endocrinology, Department of Internal Medicine, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, RS, Brazil
- Diabetes and Metabolism Group, Centro de Pesquisa Clínica, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
| | - Fernando Gerchman
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
- Post-Graduate Program in Medical Sciences, Endocrinology, Department of Internal Medicine, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, RS, Brazil
- Diabetes and Metabolism Group, Centro de Pesquisa Clínica, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
| | - Cristiane Bauermann Leitão
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
- Post-Graduate Program in Medical Sciences, Endocrinology, Department of Internal Medicine, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, RS, Brazil
- Diabetes and Metabolism Group, Centro de Pesquisa Clínica, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
| | - Daisy Crispim
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
- Post-Graduate Program in Medical Sciences, Endocrinology, Department of Internal Medicine, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, RS, Brazil
- Diabetes and Metabolism Group, Centro de Pesquisa Clínica, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
- Correspondence:
| |
Collapse
|
33
|
Giotis ES, Cil E, Brooke GN. Use of Antiandrogens as Therapeutic Agents in COVID-19 Patients. Viruses 2022; 14:2728. [PMID: 36560732 PMCID: PMC9788624 DOI: 10.3390/v14122728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
COVID-19, caused by the severe acute respiratory syndrome coronavirus 2 (SARS CoV-2), is estimated to have caused over 6.5 million deaths worldwide. The emergence of fast-evolving SARS-CoV-2 variants of concern alongside increased transmissibility and/or virulence, as well as immune and vaccine escape capabilities, highlight the urgent need for more effective antivirals to combat the disease in the long run along with regularly updated vaccine boosters. One of the early risk factors identified during the COVID-19 pandemic was that men are more likely to become infected by the virus, more likely to develop severe disease and exhibit a higher likelihood of hospitalisation and mortality rates compared to women. An association exists between SARS-CoV-2 infectiveness and disease severity with sex steroid hormones and, in particular, androgens. Several studies underlined the importance of the androgen-mediated regulation of the host protease TMPRSS2 and the cell entry protein ACE2, as well as the key role of these factors in the entry of the virus into target cells. In this context, modulating androgen signalling is a promising strategy to block viral infection, and antiandrogens could be used as a preventative measure at the pre- or early hospitalisation stage of COVID-19 disease. Different antiandrogens, including commercial drugs used to treat metastatic castration-sensitive prostate cancer and other conditions, have been tested as antivirals with varying success. In this review, we summarise the most recent updates concerning the use of antiandrogens as prophylactic and therapeutic options for COVID-19.
Collapse
Affiliation(s)
- Efstathios S. Giotis
- Department of Infectious Diseases, Imperial College London, London W2 1PG, UK
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK
| | - Emine Cil
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK
| | - Greg N. Brooke
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK
| |
Collapse
|
34
|
Abdolmaleki G, Taheri MA, Paridehpour S, Mohammadi NM, Tabatabaei YA, Mousavi T, Amin M. A comparison between SARS-CoV-1 and SARS-CoV2: an update on current COVID-19 vaccines. Daru 2022; 30:379-406. [PMID: 36050585 PMCID: PMC9436716 DOI: 10.1007/s40199-022-00446-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/05/2022] [Indexed: 10/31/2022] Open
Abstract
Since the outbreak of the novel coronavirus disease 2019 (COVID-19) in Wuhan, China, many health care systems have been heavily engaged in treating and preventing the disease, and the year 2020 may be called as "historic COVID-19 vaccine breakthrough". Due to the COVID-19 pandemic, many companies have initiated investigations on developing an efficient and safe vaccine against the virus. From Moderna and Pfizer in the United States to PastocoVac in Pasteur Institute of Iran and the University of Oxford in the United Kingdom, different candidates have been introduced to the market. COVID-19 vaccine research has been facilitated based on genome and structural information, bioinformatics predictions, epitope mapping, and data obtained from the previous developments of severe acute respiratory syndrome coronavirus (SARS-CoV or SARS-CoV-1) and middle east respiratory syndrome coronavirus (MERS-CoV) vaccine candidates. SARS-CoV genome sequence is highly homologous to the one in COVID-19 and both viruses use the same receptor, angiotensin-converting enzyme 2 (ACE2). Moreover, the immune system responds to these viruses, partially in the same way. Considering the on-going COVID-19 pandemic and previous attempts to manufacture SARS-CoV vaccines, this paper is going to discuss clinical cases as well as vaccine challenges, including those related to infrastructures, transportation, possible adverse reactions, utilized delivery systems (e.g., nanotechnology and electroporation) and probable vaccine-induced mutations.
Collapse
Affiliation(s)
- Gelareh Abdolmaleki
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Room No. 1-221, 16th Azar Street, Tehran, Iran
| | - Mina Azam Taheri
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Room No. 1-221, 16th Azar Street, Tehran, Iran
| | - Sarina Paridehpour
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Room No. 1-221, 16th Azar Street, Tehran, Iran
| | - Neshaut Mashreghi Mohammadi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Room No. 1-221, 16th Azar Street, Tehran, Iran
- Pharmaceutical Microbiology Group, Pharmaceutical Quality Assurance Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Yasaman Ahmadi Tabatabaei
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Room No. 1-221, 16th Azar Street, Tehran, Iran
| | - Taraneh Mousavi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Amin
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Room No. 1-221, 16th Azar Street, Tehran, Iran.
- Pharmaceutical Microbiology Group, Pharmaceutical Quality Assurance Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
35
|
Bradic M, Taleb S, Thomas B, Chidiac O, Robay A, Hassan N, Malek J, Ait Hssain A, Abi Khalil C. DNA methylation predicts the outcome of COVID-19 patients with acute respiratory distress syndrome. J Transl Med 2022; 20:526. [PMID: 36371196 PMCID: PMC9652914 DOI: 10.1186/s12967-022-03737-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/30/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND COVID-19 infections could be complicated by acute respiratory distress syndrome (ARDS), increasing mortality risk. We sought to assess the methylome of peripheral blood mononuclear cells in COVID-19 with ARDS. METHODS We recruited 100 COVID-19 patients with ARDS under mechanical ventilation and 33 non-COVID-19 controls between April and July 2020. COVID-19 patients were followed at four time points for 60 days. DNA methylation and immune cell populations were measured at each time point. A multivariate cox proportional risk regression analysis was conducted to identify predictive signatures according to survival. RESULTS The comparison of COVID-19 to controls at inclusion revealed the presence of a 14.4% difference in promoter-associated CpGs in genes that control immune-related pathways such as interferon-gamma and interferon-alpha responses. On day 60, 24% of patients died. The inter-comparison of baseline DNA methylation to the last recorded time point in both COVID-19 groups or the intra-comparison between inclusion and the end of follow-up in every group showed that most changes occurred as the disease progressed, mainly in the AIM gene, which is associated with an intensified immune response in those who recovered. The multivariate Cox proportional risk regression analysis showed that higher methylation of the "Apoptotic execution Pathway" genes (ROC1, ZNF789, and H1F0) at inclusion increases mortality risk by over twofold. CONCLUSION We observed an epigenetic signature of immune-related genes in COVID-19 patients with ARDS. Further, Hypermethylation of the apoptotic execution pathway genes predicts the outcome. TRIAL REGISTRATION IMRPOVIE study, NCT04473131.
Collapse
Affiliation(s)
- Martina Bradic
- grid.5386.8000000041936877XDepartment of Genetic Medicine, Weill Cornell Medicine, New York, USA ,grid.51462.340000 0001 2171 9952Marie-Josee and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Sarah Taleb
- grid.452146.00000 0004 1789 3191Division of Genomics and Translational Biomedicine, College of Health and Life Sciences- HBKU, Doha, Qatar
| | - Binitha Thomas
- grid.416973.e0000 0004 0582 4340Epigenetics Cardiovascular Lab, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Omar Chidiac
- grid.416973.e0000 0004 0582 4340Epigenetics Cardiovascular Lab, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Amal Robay
- grid.416973.e0000 0004 0582 4340Epigenetics Cardiovascular Lab, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Nessiya Hassan
- grid.413548.f0000 0004 0571 546XNursery and midwifery research department, Hamad Medical Corporation., Doha, Qatar
| | - Joel Malek
- grid.416973.e0000 0004 0582 4340Genomics Core. Weill Cornell Medicine-Qatar., Doha, Qatar
| | - Ali Ait Hssain
- grid.413548.f0000 0004 0571 546XMedical Intensive Care Unit, Hamad Medical Corporation., Doha, Qatar
| | - Charbel Abi Khalil
- Department of Genetic Medicine, Weill Cornell Medicine, New York, USA. .,Epigenetics Cardiovascular Lab, Weill Cornell Medicine-Qatar, Doha, Qatar. .,Joan and Sanford I. Weill Department of Medicine., Weill Cornell Medicine, New York, USA.
| |
Collapse
|
36
|
Soko ND, Dlamini S, Ntsekhe M, Dandara C. The COVID-19 Pandemic and Explaining Outcomes in Africa: Could Genomic Variation Add to the Debate? OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2022; 26:594-607. [PMID: 36322905 PMCID: PMC9700373 DOI: 10.1089/omi.2022.0108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of COVID-19, emanated from the Wuhan Province in China and rapidly spread across the globe causing extensive morbidity and mortality rate, and affecting the global economy and livelihoods. Contrary to early predictions of "body bags" across Africa, the African COVID-19 pandemic was marked by apparent low case numbers and an overall mortality rate when compared with the other geographical regions. Factors used to describe this unexpected pattern included a younger population, a swifter and more effective national health policy, limited testing capacities, and the possibility of inadequate reporting of the cases, among others. However, despite genomics contributing to interindividual variations in many diseases across the world, there are inadequate genomic and multiomics data on COVID-19 in Africa that prevent richer transdisciplinary discussions on the contribution of genomics to the spread of COVID-19 pandemic. To invite future debates on comparative studies of COVID-19 genomics and the pandemic spread around the world regions, this expert review evaluates the reported frequency distribution of genetic variants in candidate genes that are likely to affect COVID-19 infection dynamics/disease outcomes. We propose here that genomic variation should be considered among the many factors determining the COVID-19 infection and its outcomes in African populations and across the world.
Collapse
Affiliation(s)
- Nyarai D. Soko
- Pharmacogenomics and Drug Metabolism Research Group, Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- UCT/South African Medical Research Council (SAMRC) Platform for Pharmacogenomics Research and Translation, Cape Town, South Africa
| | - Sipho Dlamini
- Division of Infectious Diseases, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Mpiko Ntsekhe
- Division of Cardiology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Collet Dandara
- Pharmacogenomics and Drug Metabolism Research Group, Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- UCT/South African Medical Research Council (SAMRC) Platform for Pharmacogenomics Research and Translation, Cape Town, South Africa
| |
Collapse
|
37
|
Fernández-de-las-Peñas C, Arendt-Nielsen L, Díaz-Gil G, Gómez-Esquer F, Gil-Crujera A, Gómez-Sánchez SM, Ambite-Quesada S, Palomar-Gallego MA, Pellicer-Valero OJ, Giordano R. Genetic Association between ACE2 (rs2285666 and rs2074192) and TMPRSS2 (rs12329760 and rs2070788) Polymorphisms with Post-COVID Symptoms in Previously Hospitalized COVID-19 Survivors. Genes (Basel) 2022; 13:1935. [PMID: 36360172 PMCID: PMC9690177 DOI: 10.3390/genes13111935] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 07/30/2023] Open
Abstract
The aim of the study was to identify the association between four selected COVID-19 polymorphisms of ACE2 and TMPRSS2 receptors genes with the presence of long-COVID symptomatology in COVID-19 survivors. These genes were selected as they associate with the entry of the SARS-CoV-2 virus into the cells, so polymorphisms could be important for the prognoses of long-COVID symptoms. Two hundred and ninety-three (n = 293, 49.5% female, mean age: 55.6 ± 12.9 years) individuals who had been previously hospitalized due to COVID-19 were included. Three potential genotypes of the following single nucleotide polymorphisms (SNPs) were obtained from non-stimulated saliva samples of participants: ACE2 (rs2285666), ACE2 (rs2074192), TMPRSS2 (rs12329760), TMPRSS2 (rs2070788). Participants were asked to self-report the presence of any post-COVID defined as a symptom that started no later than one month after SARS-CoV-2 acute infection and whether the symptom persisted at the time of the study. At the time of the study (mean: 17.8, SD: 5.2 months after hospital discharge), 87.7% patients reported at least one symptom. Fatigue (62.8%), pain (39.9%) or memory loss (32.1%) were the most prevalent post-COVID symptoms. Overall, no differences in long-COVID symptoms were dependent on ACE2 rs2285666, ACE2 rs2074192, TMPRSS2 rs12329760, or TMPRSS2 rs2070788 genotypes. The four SNPs assessed, albeit previously associated with COVID-19 severity, do not predispose for developing long-COVID symptoms in people who were previously hospitalized due to COVID-19 during the first wave of the pandemic.
Collapse
Affiliation(s)
- César Fernández-de-las-Peñas
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Universidad Rey Juan Carlos, 28922 Alcorcón, Spain
- Center for Neuroplasticity and Pain (CNAP), SMI, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, DK-9220 Aalborg, Denmark
| | - Lars Arendt-Nielsen
- Center for Neuroplasticity and Pain (CNAP), SMI, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, DK-9220 Aalborg, Denmark
- Department of Medical Gastroenterology, Mech-Sense, Aalborg University Hospital, DK-9000 Aalborg, Denmark
| | - Gema Díaz-Gil
- Research Group GAMDES, Department of Basic Health Sciences, Universidad Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
| | - Francisco Gómez-Esquer
- Research Group GAMDES, Department of Basic Health Sciences, Universidad Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
| | - Antonio Gil-Crujera
- Research Group GAMDES, Department of Basic Health Sciences, Universidad Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
| | - Stella M. Gómez-Sánchez
- Research Group GAMDES, Department of Basic Health Sciences, Universidad Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
| | - Silvia Ambite-Quesada
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Universidad Rey Juan Carlos, 28922 Alcorcón, Spain
| | - María A. Palomar-Gallego
- Research Group GAMDES, Department of Basic Health Sciences, Universidad Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
| | - Oscar J. Pellicer-Valero
- Intelligent Data Analysis Laboratory, Department of Electronic Engineering, ETSE (Engineering School), Universitat de València, 46100 Valencia, Spain
| | - Rocco Giordano
- Center for Neuroplasticity and Pain (CNAP), SMI, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, DK-9220 Aalborg, Denmark
| |
Collapse
|
38
|
Hattori T, Saito T, Okuya K, Takahashi Y, Miyamoto H, Kajihara M, Igarashi M, Takada A. Human ACE2 Genetic Polymorphism Affecting SARS-CoV and SARS-CoV-2 Entry into Cells. Microbiol Spectr 2022; 10:e0087022. [PMID: 35862965 PMCID: PMC9430119 DOI: 10.1128/spectrum.00870-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2 have a single envelope glycoprotein (S protein) that binds to human angiotensin-converting enzyme 2 (ACE2) on the host cell membrane. Previous mutational scanning studies have suggested that some substitutions corresponding to single nucleotide variants (SNVs) in human ACE2 affect the binding affinity to the receptor binding domain (RBD) of the SARS-CoV-2 S protein. However, the importance of these substitutions in actual virus infection is still unclear. In this study, we investigated the effects of the reported ACE2 SNV substitutions on the entry of SARS-CoV and SARS-CoV-2 into cells, using vesicular stomatitis Indiana virus (VSIV) pseudotyped with S proteins of these coronaviruses (CoVs). HEK293T cells transfected with plasmids expressing ACE2 having each SNV substitution were infected with the pseudotyped VSIVs and relative infectivities were determined compared to the cells expressing wild-type ACE2. We found that some of the SNV substitutions positively or negatively affected the infectivities of the pseudotyped viruses. Particularly, the H505R substitution significantly enhanced the infection with the pseudotyped VSIVs, including those having the substitutions found in the S protein RBD of SARS-CoV-2 variants of concern. Our findings suggest that human ACE2 SNVs may potentially affect cell susceptibilities to SARS-CoV and SARS-CoV-2. IMPORTANCE SARS-CoV and SARS-CoV-2 are known to cause severe pneumonia in humans. The S protein of these CoVs binds to the ACE2 molecule on the plasma membrane and mediates virus entry into cells. The interaction between the S protein and ACE2 is thought to be important for host susceptibility to these CoVs. Although previous studies suggested that some SNV substitutions in ACE2 might affect the binding to the S protein, it remains elusive whether these SNV substitutions actually alter the efficiency of the entry of SARS CoVs into cells. We analyzed the impact of the ACE2 SNVs on the cellular entry of SARS CoVs using pseudotyped VSIVs having the S protein on the viral surface. We found that some of the SNV substitutions positively or negatively affected the infectivities of the viruses. Our data support the notion that genetic polymorphisms of ACE2 may potentially influence cell susceptibilities to SARS CoVs.
Collapse
Affiliation(s)
- Takanari Hattori
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Takeshi Saito
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Kosuke Okuya
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yuji Takahashi
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Hiroko Miyamoto
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Masahiro Kajihara
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Manabu Igarashi
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Ayato Takada
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| |
Collapse
|
39
|
Elbadri SA, Abdallah NMA, El-Shokry M, Gaber A, Elsayed MK. Association between single nucleotide polymorphism of human angiotensin-converting enzyme 2 gene locus and clinical severity of COVID-19. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022; 23:125. [PMID: 37521828 PMCID: PMC9395935 DOI: 10.1186/s43042-022-00331-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/05/2022] [Indexed: 01/08/2023] Open
Abstract
Background Coronavirus disease 2019 (COVID-19) is a devastating pandemic-causing disease with a variable severity among populations. Genetic studies have pinpointed angiotensin-converting enzyme 2 (ACE2), a key enzyme for viral entry, for its possible linkage to the disease progression. The present study aimed to investigate the potential association between single nucleotide polymorphisms (SNPs) of human ACE2 gene with the severity and outcomes of COVID-19 for better patient management. Methods In this observational cross-sectional study, COVID-19 confirmed patients were classified into moderate and severe cases according to the "Ain Shams University Hospitals Pocket Guide for COVID-19 Diagnosis." Genetic analysis of ACE2 SNP rs2048683 was carried out using a TaqMan assay with the real-time polymerase chain reaction (PCR) technique. Results Among 90 confirmed COVID-19 patients, 78.9% (71/90) were classified as severe, and 21.1% (19/90) were classified as moderate. Laboratory biomarkers were significantly (P = 0.000) higher in the severe group than in the moderate group. Similarly, associated comorbidities such as hypertension were significant (P = 0.000) in the severe group, whereas asthma and deep venous thrombosis were significant in the moderate group (P = 0.007 and 0.006, respectively). Elevated serum ferritin level (odds ratio (OR) 162.589, 95% confidence interval (CI) 8.108-3260.293) and ACE2 rs2048683 genotype GG/G (OR 5.852, 95% CI 1.586-21.591) were both considered independent risk factors for severe disease. Conclusion The findings of the present study provide preliminary evidence of an association between ACE2 rs2048683 SNPs and COVID-19 severity in the Egyptian population, which may inform the need for targeted management. Supplementary Information The online version contains supplementary material available at 10.1186/s43042-022-00331-8.
Collapse
Affiliation(s)
- Shaimaa A. Elbadri
- Medical Microbiology and Immunology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Nermeen M. A. Abdallah
- Medical Microbiology and Immunology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mona El-Shokry
- Medical Microbiology and Immunology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Amr Gaber
- Anesthesia, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mahmoud Kh. Elsayed
- Medical Microbiology and Immunology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
40
|
Vitello GA, Federico C, Bruno F, Vinci M, Musumeci A, Ragalmuto A, Sturiale V, Brancato D, Calì F, Saccone S. Allelic Variations in the Human Genes TMPRSS2 and CCR5, and the Resistance to Viral Infection by SARS-CoV-2. Int J Mol Sci 2022; 23:ijms23169171. [PMID: 36012436 PMCID: PMC9409186 DOI: 10.3390/ijms23169171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/18/2022] [Accepted: 08/13/2022] [Indexed: 12/28/2022] Open
Abstract
During the first wave of COVID-19 infection in Italy, the number of cases and the mortality rates were among the highest compared to the rest of Europe and the world. Several studies demonstrated a severe clinical course of COVID-19 associated with old age, comorbidities, and male gender. However, there are cases of virus infection resistance in subjects living in close contact with infected subjects. Thus, to explain the predisposition to virus infection and to COVID-19 disease progression, we must consider, in addition to the genetic variability of the virus and other environmental or comorbidity conditions, the allelic variants of specific human genes, directly or indirectly related to the life cycle of the virus. Here, we analyzed three human genetic polymorphisms belonging to the TMPRSS2 and CCR5 genes in a sample population from Sicily (Italy) to investigate possible correlations with the resistance to viral infection and/or to COVID-19 disease progression as recently described in other human populations. Our results did not show any correlations of the rs35074065, rs12329760, and rs333 polymorphisms with SARS-CoV-2 infection or with COVID-19 disease severity. Further studies on other human genetic polymorphisms should be performed to identify the major human determinants of SARS-CoV-2 viral resistance.
Collapse
Affiliation(s)
| | - Concetta Federico
- Department Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy
| | - Francesca Bruno
- Department Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy
| | - Mirella Vinci
- Oasi Research Institute-IRCCS, Via Conte Ruggero 73, 94018 Troina, Italy
| | - Antonino Musumeci
- Oasi Research Institute-IRCCS, Via Conte Ruggero 73, 94018 Troina, Italy
| | - Alda Ragalmuto
- Oasi Research Institute-IRCCS, Via Conte Ruggero 73, 94018 Troina, Italy
| | - Valentina Sturiale
- Department Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy
| | - Desiree Brancato
- Department Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy
| | - Francesco Calì
- Oasi Research Institute-IRCCS, Via Conte Ruggero 73, 94018 Troina, Italy
| | - Salvatore Saccone
- Department Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy
| |
Collapse
|
41
|
Zhang L, Sarangi V, Liu D, Ho MF, Grassi AR, Wei L, Moon I, Vierkant RA, Larson NB, Lazaridis KN, Athreya AP, Wang L, Weinshilboum R. ACE2 and TMPRSS2 SARS-CoV-2 infectivity genes: deep mutational scanning and characterization of missense variants. Hum Mol Genet 2022; 31:4183-4192. [PMID: 35861636 PMCID: PMC9759330 DOI: 10.1093/hmg/ddac157] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/18/2022] [Accepted: 07/05/2022] [Indexed: 01/21/2023] Open
Abstract
The human angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) proteins play key roles in the cellular internalization of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the coronavirus responsible for the coronavirus disease of 2019 (COVID-19) pandemic. We set out to functionally characterize the ACE2 and TMPRSS2 protein abundance for variant alleles encoding these proteins that contained non-synonymous single-nucleotide polymorphisms (nsSNPs) in their open reading frames (ORFs). Specifically, a high-throughput assay, deep mutational scanning (DMS), was employed to test the functional implications of nsSNPs, which are variants of uncertain significance in these two genes. Specifically, we used a 'landing pad' system designed to quantify the protein expression for 433 nsSNPs that have been observed in the ACE2 and TMPRSS2 ORFs and found that 8 of 127 ACE2, 19 of 157 TMPRSS2 isoform 1 and 13 of 149 TMPRSS2 isoform 2 variant proteins displayed less than ~25% of the wild-type protein expression, whereas 4 ACE2 variants displayed 25% or greater increases in protein expression. As a result, we concluded that nsSNPs in genes encoding ACE2 and TMPRSS2 might potentially influence SARS-CoV-2 infectivity. These results can now be applied to DNA sequence data for patients infected with SARS-CoV-2 to determine the possible impact of patient-based DNA sequence variation on the clinical course of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Lingxin Zhang
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Vivekananda Sarangi
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Duan Liu
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Ming-Fen Ho
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Angela R Grassi
- Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Lixuan Wei
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Irene Moon
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Robert A Vierkant
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Nicholas B Larson
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Konstantinos N Lazaridis
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA,Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Arjun P Athreya
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA,Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Liewei Wang
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA,Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Richard Weinshilboum
- To whom correspondence should be addressed at: Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Center for Individualized Medicine, Mayo Clinic 200 First Street SW, Rochester, MN 55905, USA. Tel: +1 5072842246;
| |
Collapse
|
42
|
Receptor binding domain of SARS-CoV-2 from Wuhan strain to Omicron B.1.1.529 attributes increased affinity to variable structures of human ACE2. J Infect Public Health 2022; 15:781-787. [PMID: 35738053 PMCID: PMC9212875 DOI: 10.1016/j.jiph.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/08/2022] [Accepted: 06/12/2022] [Indexed: 12/02/2022] Open
Abstract
Background COVID-19 is an infectious disease declared as a global pandemic caused by SARS-CoV-2 virus. Genomic changes in the receptor binding domain (RBD) region of SARS‐CoV‐2 led to an increased, infectivity in humans through interaction with the angiotensin-converting enzyme2 (ACE2) receptor. Simultaneously, the genetic variants in ACE2 provide an opportunity for SARS‐CoV‐2 infection and severity. We demonstrate the binding efficiencies of RBDs of SARS‐CoV‐2 strain with ACE2 variants of the human host. Methodology A Total of 615 SARS‐CoV‐2 genomes were retrieved from repository. Eighteen variations were identified contributing to structural changes in RBD that are distributed in 615 isolates. An analyses of 285 single nucleotide variances at the coding region of the ACE2 receptor showed 34 to be pathogenic. Homology models of 34 ACE2 and 18 RBD structures were constructed with 34 and 18 structural variants, respectively. Protein docking of 612 (34 *18) ACE2-RBD complexes showed variable affinities compared to wildtype Wuhan's and other SARS‐CoV‐2 RBDs, including Omicron B.1.1.529. Finally, molecular dynamic simulation was performed to determine the stability of the complexes. Results Among 612, the top 3 complexes showing least binding energy were selected. The ACE2 with rs961360700 variant showed the least binding energy (−895.2 Kcal/mol) on binding with the RBD of Phe160Ser variant compared to Wuhan's RBD complex. Interestingly, the binding energy of RBD of Omicron B.1.1.529 with ACE2 (rs961360700) structure showed least binding energy of −1010 Kcal/mol. Additionally, molecular dynamics showed structure stability for all the analysed complexes with the RMSD (0.22–0.26 nm), RMSF (0.11–0.13 nm), and Rg (2.53–2.56 nm). Conclusion In conclusion, our investigation highlights the clinical variants contributing to structural variants in ACE2 receptors that lead to efficient binding of SARS‐CoV‐2. Therefore, screening of these ACE2 polymorphisms will help detect COVID‐19 risk population so as to provide additional care and for safe management.
Collapse
|
43
|
Chen CH, Lin YJ, Cheng LT, Lin CH, Ke GM. Poloxamer-188 Adjuvant Efficiently Maintains Adaptive Immunity of SARS-CoV-2 RBD Subunit Vaccination through Repressing p38MAPK Signaling. Vaccines (Basel) 2022; 10:vaccines10050715. [PMID: 35632471 PMCID: PMC9145454 DOI: 10.3390/vaccines10050715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023] Open
Abstract
Poloxamer-188 (P188) is a nonionic triblock linear copolymer that can be used as a pharmaceutical excipient because of its amphiphilic nature. This study investigated whether P188 can act as an adjuvant to improve the immunogenicity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor binding domain (RBD) subunit vaccine. BALB/c mice were vaccinated twice with the RBD antigen alone or in combination with P188 or MF59 (a commercial adjuvant for comparison purposes). The resulting humoral and cellular immunity were assessed. Results showed that P188 helped elicit higher neutralizing activity than MF59 after vaccination. P188 induced significant humoral immune response, along with type 1 T helper (Th1) and type 2 T helper (Th2) cellular immune response when compared with MF59 due to repressing p38MAPK phosphorylation. Furthermore, P188 did not result in adverse effects such as fibrosis of liver or kidney after vaccination. In conclusion, P188 is a novel adjuvant that may be used for safe and effective immune enhancement of the SARS-CoV-2 RBD antigen.
Collapse
Affiliation(s)
- Chao-Hung Chen
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 10650, Taiwan; (C.-H.C.); (Y.-J.L.); (L.-T.C.)
- General Research Service Center, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Yu-Jen Lin
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 10650, Taiwan; (C.-H.C.); (Y.-J.L.); (L.-T.C.)
- Country Best Biotech Co., Ltd., Taipei 100411, Taiwan;
| | - Li-Ting Cheng
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 10650, Taiwan; (C.-H.C.); (Y.-J.L.); (L.-T.C.)
| | | | - Guan-Ming Ke
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 10650, Taiwan; (C.-H.C.); (Y.-J.L.); (L.-T.C.)
- Correspondence: ; Tel.: +886-08-7703202 (ext. 5052)
| |
Collapse
|
44
|
Díaz-Troyano N, Gabriel-Medina P, Weber S, Klammer M, Barquín-DelPino R, Castillo-Ribelles L, Esteban A, Hernández-González M, Ferrer-Costa R, Pumarola T, Rodríguez-Frías F. Soluble Angiotensin-Converting Enzyme 2 as a Prognostic Biomarker for Disease Progression in Patients Infected with SARS-CoV-2. Diagnostics (Basel) 2022; 12:886. [PMID: 35453934 PMCID: PMC9031748 DOI: 10.3390/diagnostics12040886] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/25/2022] [Accepted: 03/31/2022] [Indexed: 02/07/2023] Open
Abstract
Predicting disease severity in patients infected with SARS-CoV-2 is difficult. Soluble angiotensin-converting enzyme 2 (sACE2) arises from the shedding of membrane ACE2 (mACE2), which is a receptor for SARS-CoV-2 spike protein. We evaluated the predictive value of sACE2 compared with known biomarkers of inflammation and tissue damage (CRP, GDF-15, IL-6, and sFlt-1) in 850 patients with and without SARS-CoV-2 with different clinical outcomes. For univariate analyses, median differences between biomarker levels were calculated for the following patient groups (classified by clinical outcome): RT-PCR-confirmed SARS-CoV-2 positive (Groups 1−4); RT-PCR-confirmed SARS-CoV-2 negative following previous SARS-CoV-2 infection (Groups 5 and 6); and ‘SARS-CoV-2 unexposed’ patients (Group 7). Median levels of CRP, GDF-15, IL-6, and sFlt-1 were significantly higher in hospitalized patients with SARS-CoV-2 compared with discharged patients (all p < 0.001), whereas levels of sACE2 were significantly lower (p < 0.001). ROC curve analysis of sACE2 provided cut-offs for predicting hospital admission (≤0.05 ng/mL (positive predictive value: 89.1%) and ≥0.42 ng/mL (negative predictive value: 84.0%)). These findings support further investigation of sACE2, as a single biomarker or as part of a panel, to predict hospitalization risk and disease severity in patients with SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Noelia Díaz-Troyano
- Biochemistry Department (Clinical Laboratories), Vall d’Hebron University Hospital, 08035 Barcelona, Spain; (N.D.-T.); (P.G.-M.); (R.B.-D.); (L.C.-R.); (A.E.); (R.F.-C.)
- Vall d’Hebron Research Institute, 08035 Barcelona, Spain; (M.H.-G.); (T.P.)
- Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Pablo Gabriel-Medina
- Biochemistry Department (Clinical Laboratories), Vall d’Hebron University Hospital, 08035 Barcelona, Spain; (N.D.-T.); (P.G.-M.); (R.B.-D.); (L.C.-R.); (A.E.); (R.F.-C.)
- Vall d’Hebron Research Institute, 08035 Barcelona, Spain; (M.H.-G.); (T.P.)
- Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Stephen Weber
- Roche Diagnostics GmbH, 82377 Penzberg, Germany; (S.W.); (M.K.)
| | - Martin Klammer
- Roche Diagnostics GmbH, 82377 Penzberg, Germany; (S.W.); (M.K.)
| | - Raquel Barquín-DelPino
- Biochemistry Department (Clinical Laboratories), Vall d’Hebron University Hospital, 08035 Barcelona, Spain; (N.D.-T.); (P.G.-M.); (R.B.-D.); (L.C.-R.); (A.E.); (R.F.-C.)
- Vall d’Hebron Research Institute, 08035 Barcelona, Spain; (M.H.-G.); (T.P.)
| | - Laura Castillo-Ribelles
- Biochemistry Department (Clinical Laboratories), Vall d’Hebron University Hospital, 08035 Barcelona, Spain; (N.D.-T.); (P.G.-M.); (R.B.-D.); (L.C.-R.); (A.E.); (R.F.-C.)
- Vall d’Hebron Research Institute, 08035 Barcelona, Spain; (M.H.-G.); (T.P.)
- Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Angels Esteban
- Biochemistry Department (Clinical Laboratories), Vall d’Hebron University Hospital, 08035 Barcelona, Spain; (N.D.-T.); (P.G.-M.); (R.B.-D.); (L.C.-R.); (A.E.); (R.F.-C.)
| | - Manuel Hernández-González
- Vall d’Hebron Research Institute, 08035 Barcelona, Spain; (M.H.-G.); (T.P.)
- Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Immunology Department (Clinical Laboratories), Vall d’Hebron University Hospital, 08035 Barcelona, Spain
| | - Roser Ferrer-Costa
- Biochemistry Department (Clinical Laboratories), Vall d’Hebron University Hospital, 08035 Barcelona, Spain; (N.D.-T.); (P.G.-M.); (R.B.-D.); (L.C.-R.); (A.E.); (R.F.-C.)
- Vall d’Hebron Research Institute, 08035 Barcelona, Spain; (M.H.-G.); (T.P.)
| | - Tomas Pumarola
- Vall d’Hebron Research Institute, 08035 Barcelona, Spain; (M.H.-G.); (T.P.)
- Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Microbiology Department (Clinical Laboratories), Vall d’Hebron University Hospital, 08035 Barcelona, Spain
| | - Francisco Rodríguez-Frías
- Biochemistry Department (Clinical Laboratories), Vall d’Hebron University Hospital, 08035 Barcelona, Spain; (N.D.-T.); (P.G.-M.); (R.B.-D.); (L.C.-R.); (A.E.); (R.F.-C.)
- Vall d’Hebron Research Institute, 08035 Barcelona, Spain; (M.H.-G.); (T.P.)
- Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
45
|
Abstract
Coronavirus Disease 2019 (COVID-19) is characterized with a wide range of clinical presentations from asymptomatic to severe disease. In patients with severe disease, the main causes of mortality have been acute respiratory distress syndrome, cytokine storm and thrombotic events. Although all factors that may be associated with disease severity are not yet clear, older age remains a leading risk factor. While age-related immune changes may be at the bottom of severe course of COVID-19, age-related hormonal changes have considerable importance due to their interactions with these immune alterations, and also with endothelial dysfunction and comorbid cardiometabolic disorders. This review aims to provide the current scientific evidence on the pathogenetic mechanisms underlying the pathway to severe COVID-19, from a collaborative perspective of age-related immune and hormonal changes together, in accordance with the clinical knowledge acquired thus far.
Collapse
Affiliation(s)
- Seda Hanife Oguz
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hacettepe University School of Medicine, Ankara, Turkey
| | - Meltem Koca
- Division of Geriatrics, Department of Internal Medicine, Hacettepe University School of Medicine, Ankara, Turkey
| | - Bulent Okan Yildiz
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hacettepe University School of Medicine, Ankara, Turkey.
| |
Collapse
|
46
|
Mahmood ZS, Fadhil HY, Abdul Hussein TA, Ad'hiah AH. Severity of coronavirus disease 19: Profile of inflammatory markers and ACE (rs4646994) and ACE2 (rs2285666) gene polymorphisms in Iraqi patients. Meta Gene 2022; 31:101014. [PMID: 35036327 PMCID: PMC8744396 DOI: 10.1016/j.mgene.2022.101014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/07/2021] [Accepted: 01/06/2022] [Indexed: 12/27/2022] Open
Abstract
Susceptibility to coronavirus disease 2019 (COVID-19) and disease severity has recently been associated with inflammatory markers and genetic polymorphisms of ACE (angiotensin-converting enzyme) and ACE2 genes, but the evidence has been inconclusive. This case-control study (99 COVID-19 patients and 96 controls) sought to assess the significance of age, C-reactive protein (CRP), neutrophil-to-lymphocyte ratio (NLR) and SARS-CoV-2 RT-PCR cycle threshold (Ct) in severity of COVID-19. Besides, two variants of ACE and ACE2 genes (rs4646994 and rs2285666, respectively) were analyzed to determine their role in COVID-19 susceptibility and/or disease severity. Results revealed that age, CRP and NLR were significantly elevated in severe cases compared to moderate cases, while RT-PCR Ct value was significantly decreased. Allele and genotypes of both variants were not associated with COVID-19 risk, with the exception of rs2285666 A allele. It showed a significantly higher frequency in female patients than in female controls (probability = 0.041). In conclusion, the study indicated the role of age, CRP, NLR and SARS-CoV-2 RT-PCR Ct in susceptibility to COVID-19 severity. However, analysis of the ACE and ACE2 gene variants (rs4646994 and rs2285666, respectively) showed that the two variants were not associated with the risk of developing COVID-19.
Collapse
Affiliation(s)
- Zainab S Mahmood
- Department of Biology, College of Science, University of Baghdad, Baghdad, Iraq
| | - Hula Y Fadhil
- Department of Biology, College of Science, University of Baghdad, Baghdad, Iraq
| | | | - Ali H Ad'hiah
- Tropical-Biological Research Unit, College of Science, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
47
|
Cavezzi A, Menicagli R, Troiani E, Corrao S. COVID-19, Cation Dysmetabolism, Sialic Acid, CD147, ACE2, Viroporins, Hepcidin and Ferroptosis: A Possible Unifying Hypothesis. F1000Res 2022; 11:102. [PMID: 35340277 PMCID: PMC8921693 DOI: 10.12688/f1000research.108667.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/20/2022] [Indexed: 08/26/2024] Open
Abstract
Background: iron and calcium dysmetabolism, with hyperferritinemia, hypoferremia, hypocalcemia and anemia have been documented in the majority of COVID-19 patients at later/worse stages. Furthermore, complementary to ACE2, both sialic acid (SA) molecules and CD147 proved relevant host receptors for SARS-CoV-2 entry, which explains the viral attack to multiple types of cells, including erythrocytes, endothelium and neural tissue. Several authors advocated that cell ferroptosis may be the core and final cell degenerative mechanism. Methods: a literature research was performed in several scientific search engines, such as PubMed Central, Cochrane Library, Chemical Abstract Service. More than 500 articles were retrieved until mid-December 2021, to highlight the available evidence about the investigated issues. Results: based on COVID-19 literature data, we have highlighted a few pathophysiological mechanisms, associated with virus-based cation dysmetabolism, multi-organ attack, mitochondria degeneration and ferroptosis. Our suggested elucidated pathological sequence is: a) spike protein subunit S1 docking with sialylated membrane glycoproteins/receptors (ACE2, CD147), and S2 subunit fusion with the lipid layer; b) cell membrane morpho-functional changes due to the consequent electro-chemical variations and viroporin action, which induce an altered ion channel function and intracellular cation accumulation; c) additional intracellular iron concentration due to a deregulated hepcidin-ferroportin axis, with higher hepcidin levels. Viral invasion may also affect erythrocytes/erythroid precursors, endothelial cells and macrophages, through SA and CD147 receptors, with relative hemoglobin and iron/calcium dysmetabolism. AB0 blood group, hemochromatosis, or environmental elements may represent possible factors which affect individual susceptibility to COVID-19. Conclusions: our literature analysis confirms the combined role of SA molecules, ACE2, CD147, viroporins and hepcidin in determining the cation dysmetabolism and final ferroptosis in the cells infected by SARS-CoV-2. The altered ion channels and electrochemical gradients of the cell membrane have a pivotal role in the virus entry and cell dysmetabolism, with subsequent multi-organ immune-inflammatory degeneration and erythrocyte/hemoglobin alterations.
Collapse
Affiliation(s)
- Attilio Cavezzi
- Eurocenter Venalinfa, San Benedetto del Tronto, AP, 63074, Italy
| | | | - Emidio Troiani
- Cardiology Unit, Social Security Institute, State Hospital, Cailungo, 47893, San Marino
| | - Salvatore Corrao
- Department of Clinical Medicine, Internal Medicine Division,, ARNAS Civico Di Cristina Benfratelli Hospital Trust, Palermo, Italy
| |
Collapse
|
48
|
Cavezzi A, Menicagli R, Troiani E, Corrao S. COVID-19, Cation Dysmetabolism, Sialic Acid, CD147, ACE2, Viroporins, Hepcidin and Ferroptosis: A Possible Unifying Hypothesis. F1000Res 2022; 11:102. [PMID: 35340277 PMCID: PMC8921693 DOI: 10.12688/f1000research.108667.2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/17/2022] [Indexed: 12/15/2022] Open
Abstract
Background: iron and calcium dysmetabolism, with hyperferritinemia, hypoferremia, hypocalcemia and anemia have been documented in the majority of COVID-19 patients at later/worse stages. Furthermore, complementary to ACE2, both sialic acid (SA) molecules and CD147 proved relevant host receptors for SARS-CoV-2 entry, which explains the viral attack to multiple types of cells, including erythrocytes, endothelium and neural tissue. Several authors advocated that cell ferroptosis may be the core and final cell degenerative mechanism. Methods: a literature research was performed in several scientific search engines, such as PubMed Central, Cochrane Library, Chemical Abstract Service. More than 500 articles were retrieved until mid-December 2021, to highlight the available evidence about the investigated issues. Results: based on COVID-19 literature data, we have highlighted a few pathophysiological mechanisms, associated with virus-based cation dysmetabolism, multi-organ attack, mitochondria degeneration and ferroptosis. Our suggested elucidated pathological sequence is: a) spike protein subunit S1 docking with sialylated membrane glycoproteins/receptors (ACE2, CD147), and S2 subunit fusion with the lipid layer; b) cell membrane morpho-functional changes due to the consequent electro-chemical variations and viroporin action, which induce an altered ion channel function and intracellular cation accumulation; c) additional intracellular iron concentration due to a deregulated hepcidin-ferroportin axis, with higher hepcidin levels. Viral invasion may also affect erythrocytes/erythroid precursors, endothelial cells and macrophages, through SA and CD147 receptors, with relative hemoglobin and iron/calcium dysmetabolism. AB0 blood group, hemochromatosis, or environmental elements may represent possible factors which affect individual susceptibility to COVID-19. Conclusions: our literature analysis confirms the combined role of SA molecules, ACE2, CD147, viroporins and hepcidin in determining the cation dysmetabolism and final ferroptosis in the cells infected by SARS-CoV-2. The altered ion channels and electrochemical gradients of the cell membrane have a pivotal role in the virus entry and cell dysmetabolism, with subsequent multi-organ immune-inflammatory degeneration and erythrocyte/hemoglobin alterations.
Collapse
Affiliation(s)
- Attilio Cavezzi
- Eurocenter Venalinfa, San Benedetto del Tronto, AP, 63074, Italy
| | | | - Emidio Troiani
- Cardiology Unit, Social Security Institute, State Hospital, Cailungo, 47893, San Marino
| | - Salvatore Corrao
- Department of Clinical Medicine, Internal Medicine Division,, ARNAS Civico Di Cristina Benfratelli Hospital Trust, Palermo, Italy
| |
Collapse
|
49
|
Ng JW, Chong ETJ, Lee PC. An Updated Review on the Role of Single Nucleotide Polymorphisms in COVID-19 Disease Severity: A Global Aspect. Curr Pharm Biotechnol 2022; 23:1596-1611. [PMID: 35034591 DOI: 10.2174/1389201023666220114162347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/09/2021] [Accepted: 12/27/2021] [Indexed: 11/22/2022]
Abstract
Abstract:
Coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and recently has become a serious global pandemic. Age, gender, and comorbidities are known to be common risk factors for severe COVID-19 but are not enough to fully explain the magnitude of their effect on the risk of severity of the disease. Single nucleotide polymorphisms (SNPs) in several genes have been reported as a genetic factor contributing to COVID-19 severity. This comprehensive review focuses on the association between SNPs in four important genes and COVID-19 severity in a global aspect. We discuss a total of 39 SNPs in this review: five SNPs in the ABO gene, nine SNPs in the angiotensin-converting enzyme 2 (ACE2) gene, 19 SNPs in the transmembrane protease serine 2 (TMPRSS2) gene, and six SNPs in the toll-like receptor 7 (TLR7) gene. These SNPs data could assist in monitoring an individual's risk of severe COVID-19 disease, and therefore personalized management and pharmaceutical treatment could be planned in COVID-19 patients.
Collapse
Affiliation(s)
- Jun Wei Ng
- Biotechnology Programme, Faculty of Science and Natural Resources, Universiti Malaysia, Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
| | - Eric Tzyy Jiann Chong
- Biotechnology Programme, Faculty of Science and Natural Resources, Universiti Malaysia, Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
| | - Ping-Chin Lee
- Biotechnology Programme, Faculty of Science and Natural Resources, Universiti Malaysia, Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia;
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
| |
Collapse
|
50
|
Abdelsattar S, Kasemy ZA, Ewida SF, Abo-Elsoud RAA, Zytoon AA, Abdelaal GA, Abdelgawad AS, Khalil FO, Kamel HFM. ACE2 and TMPRSS2 SNPs as Determinants of Susceptibility to, and Severity of, a COVID-19 Infection. Br J Biomed Sci 2022; 79:10238. [PMID: 35996506 PMCID: PMC8915702 DOI: 10.3389/bjbs.2021.10238] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/02/2021] [Indexed: 12/24/2022]
Abstract
Background: Genetic risk factors may be related to the infectivity and severity of SARS-CoV-2 infection. Angiotensin-converting enzyme 2 (ACE2) and host transmembrane serine protease (TMPRSS2) have key role in viral cell entrance and priming. Methods: This case-control study on 147 healthy controls and 299 COVID-19 patients identified potential determinants and risk factors, including gene polymorphism involved in the severity (mild, moderate, severe) of COVID-19 disease defined by CORAD radiological criteria. Results: The ACE2 s2285666 and TMPRSS2 rs12329760 SNPs were significantly linked with COVID-19 disease severity, as were certain co-morbidities (hypertension, heart disease) and laboratory parameters. Both SNPs were amongst the highest predictors of disease severity: TMPRSS2 rs12329760 CT + TT [odds ratio (95% CI) 17.6 (5.1-61.10), ACE2 rs2285666 CT + TT 9.9 (3.2-30.9), both p < 0.001]. There was an increase in the expression of genotype frequencies of ACE2 rs2285666 and TMPRSS2 rs1232976 (TT), (CT + TT), and (T) allele in severe COVID-19 group compared to control and mild groups. Disease severity was also linked to elevated CRP, ferritin and D-dimer, and lower lymphocytes and platelet count (all p < 0.001). Conclusion: ACE2 rs2285666 and TMPRSS2 rs12329760 SNPs, in addition to lymphocyte count, CRP, D-dimers, ferritin, and hypertension, are predictors of COVID-19 disease severity.
Collapse
Affiliation(s)
- S. Abdelsattar
- Department of Clinical Biochemistry and Molecular Diagnostics, National Liver Institute, Menoufia University, Menoufia, Egypt
| | - Z. A. Kasemy
- Department of Public Health and Community Medicine, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - S. F. Ewida
- Department of Medical Physiology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - R. A. A. Abo-Elsoud
- Department of Medical Physiology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - A. A. Zytoon
- Department of Radiodiagnosis, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - G. A. Abdelaal
- Department of Chest Diseases and Tuberculosis, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - A. S. Abdelgawad
- Department of Clinical Pathology, National Liver Institute, Menoufia University, Menoufia, Egypt
| | - F. O. Khalil
- Department of Clinical Microbiology and Immunology, National Liver Institute, Menoufia University, Menoufia, Egypt
| | - H. F. M. Kamel
- Department of Biochemistry, Faculty of Medicine, Umm Aloura University, Makka, Saudi Arabia
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|