1
|
Chen Y, Chong KL, Liu H, Verzicco R, Lohse D. Buoyancy-driven attraction of active droplets. JOURNAL OF FLUID MECHANICS 2024; 980:jfm.2024.18. [PMID: 38361591 PMCID: PMC7615645 DOI: 10.1017/jfm.2024.18] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
For dissolving active oil droplets in an ambient liquid, it is generally assumed that the Marangoni effect results in repulsive interactions, while the buoyancy effects caused by the density difference between the droplets, diffusing product and the ambient fluid are usually neglected. However, it has been observed in recent experiments that active droplets can form clusters due to buoyancy-driven convection (Krüger et al. Eur. Phys. J. E, vol. 39, 2016, pp. 1-9). In this study, we numerically analyze the buoyancy effect, in addition to the propulsion caused by Marangoni flow (with its strength characterized by Péclet number Pe). The buoyancy effects have their origin in (i) the density difference between the droplet and the ambient liquid, which is characterized by Galileo number Ga, and (ii) the density difference between the diffusing product (i.e. filled micelles) and the ambient liquid, which can be quantified by a solutal Rayleigh number Ra. We analyze how the attracting and repulsing behaviour of neighbouring droplets depends on the control parameters Pe, Ga, and Ra. We find that while the Marangoni effect leads to the well-known repulsion between the interacting droplets, the buoyancy effect of the reaction product leads to buoyancy-driven attraction. At sufficiently large Ra, even collisions between the droplets can take place. Our study on the effect of Ga further shows that with increasing Ga, the collision becomes delayed. Moreover, we derive that the attracting velocity of the droplets, which is characterized by a Reynolds number Red, is proportional to Ra1/4/(ℓ/R), where ℓ/R is the distance between the neighbouring droplets normalized by the droplet radius. Finally, we numerically obtain the repulsive velocity of the droplets, characterized by a Reynolds number Rerep, which is proportional to PeRa-0.38. The balance of attractive and repulsive effect leads to Pe ~ Ra0.63, which agrees well with the transition curve between the regimes with and without collision.
Collapse
Affiliation(s)
- Yibo Chen
- Physics of Fluids Group, Max Planck Center for Complex Fluid Dynamics and J.M.Burgers Center for Fluid Dynamics, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Kai Leong Chong
- Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Shanghai, 200072, PR China
| | - Haoran Liu
- Physics of Fluids Group, Max Planck Center for Complex Fluid Dynamics and J.M.Burgers Center for Fluid Dynamics, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Roberto Verzicco
- Physics of Fluids Group, Max Planck Center for Complex Fluid Dynamics and J.M.Burgers Center for Fluid Dynamics, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- Dipartimento di Ingegneria Industriale, University of Rome ‘Tor Vergata’, Via del Politecnico 1, Roma 00133, Italy
- Gran Sasso Science Institute - Viale F. Crispi, 7 67100 L’Aquila, Italy
| | - Detlef Lohse
- Physics of Fluids Group, Max Planck Center for Complex Fluid Dynamics and J.M.Burgers Center for Fluid Dynamics, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- Max Planck Institute for Dynamics and Self-Organisation, Am Fassberg 17, 37077 Göttingen, Germany
| |
Collapse
|
2
|
Bioluminescence and Photoreception in Unicellular Organisms: Light-Signalling in a Bio-Communication Perspective. Int J Mol Sci 2021; 22:ijms222111311. [PMID: 34768741 PMCID: PMC8582858 DOI: 10.3390/ijms222111311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022] Open
Abstract
Bioluminescence, the emission of light catalysed by luciferases, has evolved in many taxa from bacteria to vertebrates and is predominant in the marine environment. It is now well established that in animals possessing a nervous system capable of integrating light stimuli, bioluminescence triggers various behavioural responses and plays a role in intra- or interspecific visual communication. The function of light emission in unicellular organisms is less clear and it is currently thought that it has evolved in an ecological framework, to be perceived by visual animals. For example, while it is thought that bioluminescence allows bacteria to be ingested by zooplankton or fish, providing them with favourable conditions for growth and dispersal, the luminous flashes emitted by dinoflagellates may have evolved as an anti-predation system against copepods. In this short review, we re-examine this paradigm in light of recent findings in microorganism photoreception, signal integration and complex behaviours. Numerous studies show that on the one hand, bacteria and protists, whether autotrophs or heterotrophs, possess a variety of photoreceptors capable of perceiving and integrating light stimuli of different wavelengths. Single-cell light-perception produces responses ranging from phototaxis to more complex behaviours. On the other hand, there is growing evidence that unicellular prokaryotes and eukaryotes can perform complex tasks ranging from habituation and decision-making to associative learning, despite lacking a nervous system. Here, we focus our analysis on two taxa, bacteria and dinoflagellates, whose bioluminescence is well studied. We propose the hypothesis that similar to visual animals, the interplay between light-emission and reception could play multiple roles in intra- and interspecific communication and participate in complex behaviour in the unicellular world.
Collapse
|
3
|
Khramov RN, Kreslavski VD, Svidchenko EA, Surin NM, Kosobryukhov AA. Influence of photoluminophore-modified agro textile spunbond on growth and photosynthesis of cabbage and lettuce plants. OPTICS EXPRESS 2019; 27:31967-31977. [PMID: 31684418 DOI: 10.1364/oe.27.031967] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
Light-converting polypropylene spunbond was first used in the study of the key physiological parameters of plants. A comparative study of the functioning of the photosynthetic apparatus and the dynamics of growth in late cabbage plants (Olga variety) and leaf lettuce (Emerald variety) was conducted using the ordinary nonwoven polypropylene fabric (spunbond) (density 30 g·m-2) and the spunbond containing a photoluminophore (PL) (1.6% yttrium oxysulfide doped with europium). The plants were grown in a glass greenhouse without spunbond and under the spunbond containing and not containing the PL that transforms a part of UV-radiation into red light radiation. The use of the spunbond led to a decrease in the rate of photosynthesis, activity of the photosystem 2, and the accumulation of plant biomass and to an increase in the stomatal conductance. By contrast to unmodified spunbond, the application of the spunbond containing the PL led to an increase in the rate of photosynthesis, the water-use efficiency (WUE), and the accumulation of the total biomass of plants by 30-50% but to a decrease in the transpiration rate and the stomatal conductance. It is assumed that the positive effect of the PL is associated with an increase in the fraction of fluorescent red light, which enhances photosynthetic activity and accelerates plant growth.
Collapse
|
4
|
Tessaro LWE, Dotta BT, Persinger MA. Bacterial biophotons as non-local information carriers: Species-specific spectral characteristics of a stress response. Microbiologyopen 2019; 8:e00761. [PMID: 30381897 PMCID: PMC6562132 DOI: 10.1002/mbo3.761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/01/2018] [Accepted: 10/02/2018] [Indexed: 12/12/2022] Open
Abstract
Studies by Alexander Gurwitsch in the 1920' s with onion root cells revealed the phenomenon of mitogenetic radiation. Subsequent works by Popp, Van Wijk, Quickenden, Tillbury, and Trushin have demonstrated a link between Gurwitsch's mitogenetic radiation and the biophoton, emissions of light correlated with biological processes. The present study seeks to expand upon these and other works to explore whether biophoton emissions of bacterial cultures is used as an information carrier of environmental stress. Bacterial cultures (Escherichia coli and Serratia marcescens) were incubated for 24 hr in 5 ml of nutrient broth to stationary phase and cell densities of ~107 cells/mL. Cultures of E. coli were placed upon a photomultiplier tube housed within a dark box. A second bacterial culture, either E. coli or S. marcescens, was placed in an identical dark box at a distance of 5 m and received injections of hydrogen peroxide. Spectral analyses revealed significant differences in peak frequencies of 7.2, 10.1, and 24.9 Hz in the amplitude modulation of the emitted biophoton signal with respect to whether a peroxide injection occurred or not, and whether the species receiving the injection was E. coli or S. marcescens. These and the subsequent results of discriminant functions suggest that bacteria may release biophotons as a non-local communication system in response to stress, and that these biophotons are species specific.
Collapse
Affiliation(s)
- Lucas W. E. Tessaro
- Behavioural Neuroscience ProgramLaurentian UniversitySudburyOntarioCanada
- Department of PsychologyLaurentian UniversitySudburyOntarioCanada
- Interdisciplinary Human StudiesLaurentian UniversitySudburyOntarioCanada
| | - Blake T. Dotta
- Behavioural Neuroscience ProgramLaurentian UniversitySudburyOntarioCanada
- Department of PsychologyLaurentian UniversitySudburyOntarioCanada
| | - Michael A. Persinger
- Behavioural Neuroscience ProgramLaurentian UniversitySudburyOntarioCanada
- Department of PsychologyLaurentian UniversitySudburyOntarioCanada
- Interdisciplinary Human StudiesLaurentian UniversitySudburyOntarioCanada
| |
Collapse
|
5
|
Carneiro JO, Machado F, Pereira M, Teixeira V, Costa MF, Ribeiro A, Cavaco-Paulo A, Samantilleke AP. The influence of the morphological characteristics of nanoporous anodic aluminium oxide (AAO) structures on capacitive touch sensor performance: a biological application. RSC Adv 2018; 8:37254-37266. [PMID: 35557785 PMCID: PMC9088894 DOI: 10.1039/c8ra07490a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/29/2018] [Indexed: 01/10/2023] Open
Abstract
This work is devoted to the study of the influence of different anodic aluminium oxide (AAO) morphologies on the sensitivity and performance of an AAO-based capacitive touch sensor. The AAO structures were fabricated in a cylindrical homemade anodization cell made from a solid polycarbonate billet via a lathe machining process. The AAO morphologies were obtained from the anodization of Al foil by using three different types of electrolyte (sulphuric acid, oxalic acid and phosphoric acid) and their morphologies are reported and compared using scanning electron microscopy (SEM) micrographs and current–time characteristic curves. The sensors were fabricated by integrating the AAO structure with a nanotextured gold thin film deposited over the AAO layer by thermal evaporation, thus realizing a type of metal/insulator/metal parallel-plate capacitance sensor. It is demonstrated that AAO morphologies have influence on the performance of the AAO-based capacitive touch sensors. The variation of the capacitance of the sensors is investigated in this work for the AAO structures produced from anodization in an attempt to select anodizing conditions for a biological application aiming to detect small microorganisms such as bacterial colonies of Escherichia coli. This work is devoted to the study of the influence of different anodic aluminium oxide (AAO) morphologies on the sensitivity and performance of an AAO-based capacitive touch sensor.![]()
Collapse
Affiliation(s)
- J O Carneiro
- Centre of Physics, University of Minho Azurém Campus 4800-058 Guimarães Portugal
| | - F Machado
- Centre of Physics, University of Minho Azurém Campus 4800-058 Guimarães Portugal
| | - M Pereira
- Centre of Physics, University of Minho Azurém Campus 4800-058 Guimarães Portugal
| | - V Teixeira
- Centre of Physics, University of Minho Azurém Campus 4800-058 Guimarães Portugal
| | - M F Costa
- Centre of Physics, University of Minho Azurém Campus 4800-058 Guimarães Portugal
| | - Artur Ribeiro
- Centre of Biological Engineering, University of Minho Gualtar Campus 4710-057 Braga Portugal
| | - Artur Cavaco-Paulo
- Centre of Biological Engineering, University of Minho Gualtar Campus 4710-057 Braga Portugal
| | - A P Samantilleke
- Centre of Physics, University of Minho Azurém Campus 4800-058 Guimarães Portugal
| |
Collapse
|
6
|
Murugan NJ, Karbowski LM, Persinger MA. Synergistic interactions between temporal coupling of complex light and magnetic pulses upon melanoma cell proliferation and planarian regeneration. Electromagn Biol Med 2016; 36:141-148. [PMID: 27463225 DOI: 10.1080/15368378.2016.1202838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Synergisms between a physiologically patterned magnetic field that is known to enhance planarian growth and suppress proliferation of malignant cells in culture and three light emitting diode (LED) generated visible wavelengths (blue, green, red) upon planarian regeneration and melanoma cell numbers were discerned. Five days of hourly exposures to either a physiologically patterned (2.5-5.0 μT) magnetic field, one of three wavelengths (3 kLux) or both treatments simultaneously indicated that red light (680 nm), blue light (470 nm) or the magnetic field significantly facilitated regeneration of planarian compared to sham field exposed planarian. Presentation of both light and magnetic field conditions enhanced the effect. Whereas the blue and red light diminished the growth of malignant (melanoma) cells, the effect was not as large as that produced by the magnetic field. Only the paired presentation of the blue light and magnetic field enhanced the suppression. On the other hand, the changes following green light (540 nm) exposure did not differ from the control condition and green light presented with the magnetic field eliminated its effects for both the planarian and melanoma cells. These results indicate specific colors affect positive adaptation that is similar to weak, physiologically patterned frequency modulated (8-24 Hz) magnetic fields and that the two forms of energy can synergistically summate or cancel.
Collapse
Affiliation(s)
- Nirosha J Murugan
- a Biomolecular Sciences Program, Department of Behavioural Neuroscience , Laurentian University , Sudbury , Canada
| | - Lukasz M Karbowski
- a Biomolecular Sciences Program, Department of Behavioural Neuroscience , Laurentian University , Sudbury , Canada
| | - Michael A Persinger
- a Biomolecular Sciences Program, Department of Behavioural Neuroscience , Laurentian University , Sudbury , Canada
| |
Collapse
|
7
|
Karbowski LM, Saroka KS, Murugan NJ, Persinger MA. LORETA indicates frequency-specific suppressions of current sources within the cerebrums of blindfolded subjects from patterns of blue light flashes applied over the skull. Epilepsy Behav 2015; 51:127-32. [PMID: 26276250 DOI: 10.1016/j.yebeh.2015.06.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/27/2015] [Accepted: 06/20/2015] [Indexed: 10/23/2022]
Abstract
An array of eight cloistered (completely covered) 470-nm LEDs was attached to the right caudal scalp of subjects while each sat blindfolded within a darkened chamber. The LEDs were activated by a computer-generated complex (frequency-modulated) temporal pattern that, when applied as weak magnetic fields, has elicited sensed presences and changes in LORETA (low-resolution electromagnetic tomography) configurations. Serial 5-min on to 5-min off presentations of the blue light (10,000lx) resulted in suppression of gamma activity within the right cuneus (including the extrastriate area), beta activity within the left angular and right superior temporal regions, and alpha power within the right parahippocampal region. The effect required about 5min to emerge followed by a transient asymptote for about 15 to 20min when diminished current source density was evident even during no light conditions. Subjective experiences, as measured by our standard exit questionnaire, reflected sensations similar to those reported when the pattern was presented as a weak magnetic field. Given previous evidence that photon flux density of this magnitude can penetrate the skull, these results suggest that properly configured LEDs that generate physiologically patterned light sequences might be employed as noninvasive methods to explore the dynamic characteristics of cerebral activity in epileptic and nonepileptic brains.
Collapse
Affiliation(s)
- Lukasz M Karbowski
- Behavioural Neuroscience Program, Laurentian University, Sudbury, Ontario P3E 2C6, Canada; Biomolecular Sciences Program, Laurentian University, Sudbury, Ontario P3E 2C6, Canada
| | - Kevin S Saroka
- Behavioural Neuroscience Program, Laurentian University, Sudbury, Ontario P3E 2C6, Canada; Human Studies Program, Laurentian University, Sudbury, Ontario P3E 2C6, Canada
| | - Nirosha J Murugan
- Behavioural Neuroscience Program, Laurentian University, Sudbury, Ontario P3E 2C6, Canada; Biomolecular Sciences Program, Laurentian University, Sudbury, Ontario P3E 2C6, Canada
| | - Michael A Persinger
- Behavioural Neuroscience Program, Laurentian University, Sudbury, Ontario P3E 2C6, Canada; Human Studies Program, Laurentian University, Sudbury, Ontario P3E 2C6, Canada; Biomolecular Sciences Program, Laurentian University, Sudbury, Ontario P3E 2C6, Canada.
| |
Collapse
|
8
|
Volodyaev I, Beloussov LV. Revisiting the mitogenetic effect of ultra-weak photon emission. Front Physiol 2015; 6:241. [PMID: 26441668 PMCID: PMC4561347 DOI: 10.3389/fphys.2015.00241] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 08/11/2015] [Indexed: 11/13/2022] Open
Abstract
This paper reviews the 90 years long controversial history of the so-called "mitogenetic radiation," the first case of non-chemical distant interactions, reported by Gurwitsch (1923). It was soon described as ultraweak UV, emitted by a number of biological systems, and stimulating mitosis in "competent" (in this sense) cells. In the following 20 years this phenomenon attracted enormous interest of the scientific community, and gave rise to more than 700 publications around the world. Yet, this wave of research vanished after several ostensibly disproving works in late 1930-s, and was not resumed later, regardless of quite serious grounds for that. The authors discuss separately two aspects of the problem: (1) do living organisms emit ultraweak radiation in the UV range (irrespective of whether it has any biological role), and (2) are there any real effects of this ultraweak photon emission (UPE) upon cell division and/or other biological functions? Analysis of the available data permits to conclude, that UV fraction of UPE should be regarded real, while its biological effects are difficult to reproduce. This causes a paradox. A number of presently known qualities of UPE were initially discovered (predicted?) by the "early workers" on the basis of biological effects. Yet the qualities they discovered were proved later (the UV component of UPE, the sources of UPE among biological systems, etc…), while the biological effect they used for UPE "detection" remains questionable. Importance of this area for basic biology and medicine, and potential usefulness of UPE as a non-invasive research method, invite scientists to attack this problem again, applying powerful research facilities of modern science. Yet, because of complexity and uncertainty of the problem, further progress in this area demands comprehensive examination of both positive and negative works, with particular attention to their methodical details.
Collapse
Affiliation(s)
- Ilya Volodyaev
- Laboratory of Developmental Biophysics, Department of Embryology, Faculty of Biology, Moscow State UniversityMoscow, Russia
| | | |
Collapse
|
9
|
Volodyaev IV, Krasilnikova EN, Ivanovsky RN. CO2 mediated interaction in yeast stimulates budding and growth on minimal media. PLoS One 2013; 8:e62808. [PMID: 23658652 PMCID: PMC3637258 DOI: 10.1371/journal.pone.0062808] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 03/26/2013] [Indexed: 11/18/2022] Open
Abstract
Here we show that carbon dioxide (CO2) stimulates budding and shortens the lag-period of Saccharomyces cerevisiae cultures, grown on specific weak media. CO2 can be both exogenous and secreted by another growing yeast culture. We also show that this effect can be observed only in the lag-period, and demonstrate minimal doses and duration of culture exposition to CO2. Opposite to the effects of CO2 sensitivity, previously shown for pathogens, where increased concentration of CO2 suppressed mitosis and stimulated cell differentiation and invasion, here it stimulates budding and culture growth.
Collapse
Affiliation(s)
- Ilya V Volodyaev
- Department of Microbiology, Faculty of Biology, Moscow State University, Moscow, Russia.
| | | | | |
Collapse
|
10
|
Kubli-Garfias C, Salazar-Salinas K, Perez-Angel EC, Seminario JM. Light activation of the isomerization and deprotonation of the protonated Schiff base retinal. J Mol Model 2011; 17:2539-47. [PMID: 21207087 DOI: 10.1007/s00894-010-0927-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 11/29/2010] [Indexed: 11/29/2022]
Abstract
We perform an ab initio analysis of the photoisomerization of the protonated Schiff base of retinal (PSB-retinal) from 11-cis to 11-trans rotating the C10-C11=C12-C13 dihedral angle from 0° (cis) to -180° (trans). We find that the retinal molecule shows the lowest rotational barrier (0.22 eV) when its charge state is zero as compared to the barrier for the protonated molecule which is ∼0.89 eV. We conclude that rotation most likely takes place in the excited state of the deprotonated retinal. The addition of a proton creates a much larger barrier implying a switching behavior of retinal that might be useful for several applications in molecular electronics. All conformations of the retinal compound absorb in the green region with small shifts following the dihedral angle rotation; however, the Schiff base of retinal (SB-retinal) at trans-conformation absorbs in the violet region. The rotation of the dihedral angle around the C11=C12 π-bond affects the absorption energy of the retinal and the binding energy of the SB-retinal with the proton at the N-Schiff; the binding energy is slightly lower at the trans-SB-retinal than at other conformations of the retinal.
Collapse
Affiliation(s)
- Carlos Kubli-Garfias
- Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | | | | | | |
Collapse
|
11
|
Cifra M, Fields JZ, Farhadi A. Electromagnetic cellular interactions. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2010; 105:223-46. [PMID: 20674588 DOI: 10.1016/j.pbiomolbio.2010.07.003] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 07/21/2010] [Indexed: 12/14/2022]
Abstract
Chemical and electrical interaction within and between cells is well established. Just the opposite is true about cellular interactions via other physical fields. The most probable candidate for an other form of cellular interaction is the electromagnetic field. We review theories and experiments on how cells can generate and detect electromagnetic fields generally, and if the cell-generated electromagnetic field can mediate cellular interactions. We do not limit here ourselves to specialized electro-excitable cells. Rather we describe physical processes that are of a more general nature and probably present in almost every type of living cell. The spectral range included is broad; from kHz to the visible part of the electromagnetic spectrum. We show that there is a rather large number of theories on how cells can generate and detect electromagnetic fields and discuss experimental evidence on electromagnetic cellular interactions in the modern scientific literature. Although small, it is continuously accumulating.
Collapse
Affiliation(s)
- Michal Cifra
- Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | | | | |
Collapse
|
12
|
Mathew M, Amat-Roldan I, Andrés R, Santos SICO, Artigas D, Soriano E, Loza-Alvarez P. Signalling effect of NIR pulsed lasers on axonal growth. J Neurosci Methods 2009; 186:196-201. [PMID: 19945486 DOI: 10.1016/j.jneumeth.2009.11.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 11/20/2009] [Accepted: 11/21/2009] [Indexed: 10/20/2022]
Abstract
In this work we show that a pulsed laser light placed at a distance is able to modulate the growth of axons of primary neuronal cell cultures. In our experiments continuous wave (CW), chopped CW and modelocked fs (FS) laser light was focused through a microscope objective to a point placed at a distance of about 15 microm from the growth cone. We found that CW light does not produce any significant influence on the axon growth. In contrast, when using pulsed light (chopped CW light or FS pulses), the beam was able to modify the trajectory of the axons, attracting approximately 45% of the observed cases to the beam spot. Such effect could possibly indicate the capacity of neurons to interpret the pulsating NIR light as the source of other nearby cells, resulting in extension of processes in the direction of the source.
Collapse
Affiliation(s)
- Manoj Mathew
- ICFO-Institut de Ciències Fotòniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona), Spain
| | | | | | | | | | | | | |
Collapse
|