1
|
Aftab ZEH, Mirza FS, Anjum T, Rizwana H, Akram W, Aftab M, Ali MD, Li G. Antifungal Potential of Biogenic Zinc Oxide Nanoparticles for Controlling Cercospora Leaf Spot in Mung Bean. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:143. [PMID: 39852758 PMCID: PMC11767459 DOI: 10.3390/nano15020143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/26/2025]
Abstract
Agricultural growers worldwide face significant challenges in promoting plant growth. This research introduces a green strategy utilizing nanomaterials to enhance crop production. While high concentrations of nanomaterials are known to be hazardous to plants, this study demonstrates that low doses of biologically synthesized zinc oxide nanoparticles (ZnO NPs) can serve as an effective regulatory tool to boost plant growth. These nanoparticles were produced using Nigella sativa seed extract and characterized through UV-Vis spectroscopy, FT-IR, X-ray diffraction, and scanning electron microscopy (SEM). The antifungal properties of ZnO NPs were evaluated against Cercospora canescens, the causative agent of Cercospora leaf spot in mung bean. Application of ZnO NPs significantly improved plant metrics, including shoot, root, pod, leaf, and root nodule counts, as well as plant length, fresh weight, and dry weight-all indicators of healthy growth. Moreover, low-dose ZnO NPs positively influenced enzymatic activity, physicochemical properties, and photosynthetic parameters. These findings suggest that biologically synthesized ZnO NPs offer a promising approach for enhancing crop yield and accelerating plant growth.
Collapse
Affiliation(s)
- Zill-e-Huma Aftab
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54000, Pakistan; (Z.-e.-H.A.); (F.S.M.); (T.A.); (W.A.)
| | - Faisal Shafiq Mirza
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54000, Pakistan; (Z.-e.-H.A.); (F.S.M.); (T.A.); (W.A.)
| | - Tehmina Anjum
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54000, Pakistan; (Z.-e.-H.A.); (F.S.M.); (T.A.); (W.A.)
| | - Humaira Rizwana
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11495, Saudi Arabia;
| | - Waheed Akram
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54000, Pakistan; (Z.-e.-H.A.); (F.S.M.); (T.A.); (W.A.)
| | - Muzamil Aftab
- Department of Physics, Government Shah Hussain College, Chung, Lahore 54000, Pakistan;
| | - Muhammad Danish Ali
- Institute of Physics Center for Science and Education, Silesian University of Technology, Krasińskiego 8A, 40-019 Katowice, Poland
- PhD School, Silesian University of Technology, 2a Akademicka Str., 44-100 Gliwice, Poland
| | - Guihua Li
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 150640, China;
| |
Collapse
|
2
|
Bazuhair MA, Alsieni M, Abdullah H, Mokhtar JA, Attallah D, Abujamel TS, Alkuwaity KK, Niyazi HA, Niyazi HA, AbdulMajed H, Juma N, Al-Rabia MW, Alfadil A, Ibrahem K. The Combination of 3-Hydrazinoquinoxaline-2-Thiol with Thymoquinone Demonstrates Synergistic Activity Against Different Candida Strains. Infect Drug Resist 2024; 17:2289-2298. [PMID: 38860227 PMCID: PMC11164204 DOI: 10.2147/idr.s464287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/22/2024] [Indexed: 06/12/2024] Open
Abstract
Introduction Candida is the primary cause of invasive fungal disease, candidiasis, especially in developed nations. The increasing resistance observed in multiple antibiotics, coupled with the prolonged process of creating new antibiotics from the ground up, emphasizes the urgent requirement for innovative methods and new compounds to combat Candida infections. Employing a treatment strategy that combines antibiotics can improve efficacy, broaden the spectrum of targeted fungal, and reduce the chances of resistance emergence. This approach shows potential in tackling the escalating problem of antibiotic resistance. The objective of this research is to explore the potential synergistic effects of combining 3-hydrazinoquinoxaline-2-thiol and thymoquinone against a variety of Candida isolates. This investigation aims to offer an understanding of the collective antimicrobial action of these compounds. Methods Broth microdilution was utilized to assess the Minimum Inhibitory Concentrations (MICs) of 3-hydrazinoquinoxaline-2-thiol and thymoquinone for 22 clinical Candida isolates. Following this, a checkerboard assay was employed to analyze the interaction between 3-hydrazinoquinoxaline-2-thiol and thymoquinone, with a specific focus on the Fractional Inhibitory Concentration Index (FICI). Results The MICs of thymoquinone and 3-hydrazinoquinoxaline-2-thiol were determined for 22 clinical Candida strains, with thymoquinone exhibiting MICs ranging from 64 to 8 µg/mL, and 3-hydrazinoquinoxaline-2-thiol displaying MICs varying from 64 to 8 µg/mL. Notably, the combination of 3-hydrazinoquinoxaline-2-thiol and thymoquinone resulted in a synergistic effect, leading to a significant reduction in MICs, with reductions of up to 64-fold with FICI below 0.5 against tested strains. Conclusion The prospect of using 3-hydrazinoquinoxaline-2-thiol in combination with thymoquinone as an effective solution against Candida looks encouraging. Nevertheless, to validate its practical applicability, additional comprehensive testing and experiments are imperative.
Collapse
Affiliation(s)
- Mohammed A Bazuhair
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Centre of Research Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Alsieni
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Hani Abdullah
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jawahir A Mokhtar
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Clinical Microbiology Laboratory, King Abdulaziz University Hospital, Jeddah, 21589, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Dalya Attallah
- Department of Clinical Microbiology Laboratory, King Abdulaziz University Hospital, Jeddah, 21589, Saudi Arabia
| | - Turki S Abujamel
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Khalil K Alkuwaity
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Hanouf A Niyazi
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hatoon A Niyazi
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hind AbdulMajed
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Noha Juma
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed W Al-Rabia
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdelbagi Alfadil
- Centre of Research Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Karem Ibrahem
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
3
|
Bhavikatti SK, Zainuddin SLA, Ramli RB, Nadaf SJ, Dandge PB, Khalate M, Karobari MI. Insights into the antioxidant, anti-inflammatory and anti-microbial potential of Nigella sativa essential oil against oral pathogens. Sci Rep 2024; 14:11878. [PMID: 38789533 PMCID: PMC11126586 DOI: 10.1038/s41598-024-62915-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/22/2024] [Indexed: 05/26/2024] Open
Abstract
Oral disorders can exert systemic ramifications beyond their localized effects on dental tissues, implicating a wide array of physiological conditions. The utilization of essential oils (EOs) for protection of oral health represents a longstanding practice. Consequently, in this investigation, essential oil derived from Nigella sativa seeds (NSEO) underwent isolation via the hydro-distillation process, followed by a comprehensive evaluation of its antioxidant, anti-inflammatory, anti-fungal, antibacterial activities, and cytocompatibility. The isolated NSEO manifested as a pale-yellow substance and was found to harbor a diverse spectrum of bioactive constituents, including steroids, triterpenoids, flavonoids, phenols, proteins, alkaloids, tannin, sesquiterpenoid hydrocarbons, monoterpenoid alcohol, and monoterpenoid ketone (thymoquinone). Notably, the total phenolic content (TPC) and total flavonoid content (TFC) of NSEO were quantified at 641.23 μg GAE/gm and 442.25 μg QE/g, respectively. Furthermore, NSEO exhibited concentration-dependent inhibition of protein denaturation, HRBC membrane stabilization, and hemolysis inhibition. Comparative analysis revealed that NSEO and chlorhexidine (CHX) 0.2% displayed substantial inhibition of hemolysis compared to aspirin. While NSEO and CHX 0.2% demonstrated analogous antibacterial activity against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa, NSEO showcased heightened efficacy against Lactobacillus acidophilus and Candida albicans. Additionally, NSEO exhibited pronounced effects against periodontal pathogens such as Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Tannerella forsythia, and Prevotella intermedia. Importantly, no cytotoxicity was observed on human gingival fibroblast cell lines. These findings underscore the potential of NSEO as a potent antibacterial and antifungal agent in the management of oral microbial pathogens, thereby offering avenues for the development of innovative therapies targeting diverse oral inflammatory conditions. Nevertheless, further investigations are imperative to unlock its full therapeutic repertoire.
Collapse
Affiliation(s)
- Shaeesta Khaleelahmed Bhavikatti
- Department of Periodontics, School of Dental Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, 16150, Kelantan, Malaysia
- Department of Dental Research, Centre for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, Tamil Nadu, India
| | - Siti Lailatul Akmar Zainuddin
- Department of Periodontics, School of Dental Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, 16150, Kelantan, Malaysia.
- Faculty of Dentistry, Manipal University College Malaysia, Jalan Batu Hampar, Bukit Baru, 75150, Melaka, Malaysia.
| | - Rosmaliza Binti Ramli
- Basic and Medical Sciences Unit, School of Dental Sciences, Health Campus, Universiti Sains Malaysia, Kota Bharu16150, Kelantan, Malaysia
| | - Sameer J Nadaf
- Bharati Vidyapeeth College of Pharmacy, Palus, 416310, Maharashtra, India
| | - Padma B Dandge
- Department of Biochemistry, Shivaji University, Kolhapur, 416004, Maharastra, India
| | - Masidd Khalate
- Department of Biotechnology, Shivaji University, Kolhapur, 416004, Maharastra, India
| | - Mohmed Isaqali Karobari
- Department of Dental Research, Centre for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, Tamil Nadu, India.
- Department of Restorative Dentistry and Endodontics, Faculty of Dentistry, University of Puthisastra, Phnom Penh, 12211, Cambodia.
| |
Collapse
|
4
|
Pandey R, Pandey B, Bhargava A. The Emergence of N. sativa L. as a Green Antifungal Agent. Mini Rev Med Chem 2024; 24:1521-1534. [PMID: 38409693 DOI: 10.2174/0113895575282914240217060251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/16/2024] [Accepted: 01/29/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUND Nigella sativa L. has been widely used in the Unani, Ayurveda, Chinese, and Arabic medicine systems and has a long history of medicinal and folk uses. Several phytoconstituents of the plant are reported to have excellent therapeutic properties. In-vitro and in-vivo studies have revealed that seed oil and thymoquinone have excellent inhibitory efficacy on a wide range of both pathogenic and non-pathogenic fungi. OBJECTIVE The present review aims to undertake a comprehensive and systematic evaluation of the antifungal effects of different phytochemical constituents of black cumin. METHOD An exhaustive database retrieval was conducted on PubMed, Scopus, ISI Web of Science, SciFinder, Google Scholar, and CABI to collect scientific information about the antifungal activity of N. sativa L. with 1990 to 2023 as a reference range using 'Nigella sativa,' 'Nigella oil,' 'antifungal uses,' 'dermatophytic fungi,' 'candidiasis,' 'anti-aflatoxin,' 'anti-biofilm' and 'biological activity' as the keywords. RESULTS Black cumin seeds, as well as the extract of aerial parts, were found to exhibit strong antifungal activity against a wide range of fungi. Among the active compounds, thymoquinone exhibited the most potent antifungal effect. Several recent studies proved that black cumin inhibits biofilm formation and growth. CONCLUSION The review provides an in-depth analysis of the antifungal activity of black cumin. This work emphasizes the need to expand studies on this plant to exploit its antifungal properties for biomedical applications.
Collapse
Affiliation(s)
- Raghvendra Pandey
- Department of Botany, Mahatma Gandhi Central University, Motihari-845401 (Bihar), India
| | - Brijesh Pandey
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari-845401 (Bihar), India
| | - Atul Bhargava
- Department of Botany, Mahatma Gandhi Central University, Motihari-845401 (Bihar), India
| |
Collapse
|
5
|
Yao H, Hu L, Jiang N, Jiang N, Gao L, Jiang R, Liu X, Zheng W, Zhao G. Thymoquinone attenuates inflammation in C. Albicans keratitis by activating Nrf2/HO-1 signaling pathway and reducing fungal load. Cytokine 2023; 172:156375. [PMID: 37797357 DOI: 10.1016/j.cyto.2023.156375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/11/2023] [Accepted: 09/19/2023] [Indexed: 10/07/2023]
Abstract
PURPOSE This study aims to investigate the anti-inflammatory and antifungal properties of thymoquinone (TQ) and elucidate its mechanism of action in the context of C. albicans keratitis. METHODS Various methods were employed to identify a safe and effective concentration of TQ with antifungal properties, including the determination of the minimum inhibitory concentration (MIC), the cell counting kit-8 (CCK-8) test, and the Draize experiment. The severity of fungal keratitis (FK) was assessed through clinical ratings and slit-lamp imaging. Fungus burden was determined using plate counting and periodic acid Schiff (PAS) staining. Neutrophil infiltration and activity were investigated through immunofluorescence staining (IFS), myeloperoxidase (MPO) analysis, and hematoxylin and eosin (HE) staining. To explore the anti-inflammatory effects of TQ and its mechanism of action, we employed RT-PCR, ELISA, and western blot techniques. RESULTS TQ effectively controlled fungal growth at a concentration of 50 µg/mL while preserving the integrity of mouse corneas. Human corneal epithelial cells (HCECs) remained unaffected by TQ at concentrations ≤ 3.75 µg/mL. Treatment with TQ led to significant improvements in clinical scores, fungal burden, neutrophil infiltration, and the expression of inflammatory factors compared to the DMSO group. Moreover, TQ demonstrated the ability to reduce the levels of inflammatory factors in HCECs stimulated by C. albicans. Additionally, TQ enhanced the expressions of Nrf2 and HO-1 in mouse corneas. The downregulation of cytokines induced by TQ was reversed upon pretreatment with inhibitors of Nrf2 or HO-1. CONCLUSION TQ exhibits a protective effect in the context of C. albicans keratitis through multiple mechanisms, including inhibition of C. albicans growth, reduction of neutrophil recruitment, activation of the Nrf2/HO-1 pathway, and limitation of the expression of pro-inflammatory factors.
Collapse
Affiliation(s)
- Hua Yao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China.
| | - Liting Hu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Nan Jiang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China.
| | - Nan Jiang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China.
| | - Lin Gao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China.
| | - Runfa Jiang
- Department of Orthopedics, The People's Hospital of Jimo, Qingdao, Shandong Province, China.
| | - Xueqing Liu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China.
| | - Wendan Zheng
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China.
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China.
| |
Collapse
|
6
|
Carvalho RJP, Souza PFN, Malveira EA, Neto NAS, Silva RRS, Melo GLC, Silva AFB, Lima LB, de Albuquerque CC, Bastos RW, Goldman GH, de Freitas CDT. Antimicrobial Activity the Essential Oil from Croton pluriglandulosus Carn. Leaves against Microorganisms of Clinical Interest. J Fungi (Basel) 2023; 9:756. [PMID: 37504744 PMCID: PMC10381380 DOI: 10.3390/jof9070756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/29/2023] Open
Abstract
Multiresistant pathogens pose a serious threat to human health. The genus Candida is one class of human pathogenic yeasts responsible for infections affecting healthy and immunocompromised patients. In this context, plant essential oils emerged as a future natural alternative to control the diseases caused by these pathogens. Based on that, the present study aimed to evaluate the antimicrobial potential of essential oil from C. pluriglandulosus and understand the mechanism of action. Here, it highlighted antimicrobial activity and the mechanisms of action of the essential oil extracted from C. pluriglandulosus Carn.-Torres & Riina (CpEO) leaves on human pathogenic microorganisms in planktonic and biofilm lifestyles. In addition, for the first time, the oil composition was revealed by GC-MS analysis and the toxicity to human red blood cells (HRBC). Twenty-six chemical compounds were identified in CpEO, elemicin, bicyclogermacrene, caryophyllene, brevifolin, and 2,4,6-trimethoxy-styrene. Through hemolytic assay, it was shown that CpEO has no toxicity to human RBCs. At the concentration of 50 μg mL-1, CpEO did not show great antibacterial potential. However, promising data were found for C. krusei and C. parapsilosis inhibiting by 89.3% and 80.7% of planktonic cell growth and 83.5% and 77.9% the biofilm formation, respectively. Furthermore, the mechanisms of action CpEO were elucidated by fluorescence. Scanning electron microscopy revealed damage to the cell membrane and pore formation, ROS overproduction, and induction of apoptosis in candida cells. Our results reinforce the potential of CpEO as an effective alternative molecule of pharmaceutical interest.
Collapse
Affiliation(s)
- Rayara J P Carvalho
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60020-181, Brazil
| | - Pedro F N Souza
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60020-181, Brazil
- Drug Research and Development Center, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza 60430-160, Brazil
| | - Ellen A Malveira
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60020-181, Brazil
| | - Nilton A S Neto
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60020-181, Brazil
| | - Romério R S Silva
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60020-181, Brazil
| | - Gabriel L C Melo
- Department of Fishery Engineering, Federal University of Ceará, Fortaleza 60356-000, Brazil
| | - Ayrles F B Silva
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60020-181, Brazil
| | - Leandro B Lima
- Department of Chemistry, Faculty of Exact and Natural Sciences, State University of Rio Grande do Norte, Mossoró 59650-000, Brazil
| | - Cynthia C de Albuquerque
- Department of Biological Sciences, Faculty of Exact and Natural Sciences, State University of Rio Grande do Norte, Mossoró 59650-000, Brazil
| | - Rafael W Bastos
- Department of Microbiology and Parasitology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Gustavo H Goldman
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo 14040-903, Brazil
| | - Cleverson D T de Freitas
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60020-181, Brazil
| |
Collapse
|
7
|
Wiart C, Kathirvalu G, Raju CS, Nissapatorn V, Rahmatullah M, Paul AK, Rajagopal M, Sathiya Seelan JS, Rusdi NA, Lanting S, Sulaiman M. Antibacterial and Antifungal Terpenes from the Medicinal Angiosperms of Asia and the Pacific: Haystacks and Gold Needles. Molecules 2023; 28:molecules28093873. [PMID: 37175283 PMCID: PMC10180233 DOI: 10.3390/molecules28093873] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 05/15/2023] Open
Abstract
This review identifies terpenes isolated from the medicinal Angiosperms of Asia and the Pacific with antibacterial and/or antifungal activities and analyses their distribution, molecular mass, solubility, and modes of action. All data in this review were compiled from Google Scholar, PubMed, Science Direct, Web of Science, ChemSpider, PubChem, and library searches from 1968 to 2022. About 300 antibacterial and/or antifungal terpenes were identified during this period. Terpenes with a MIC ≤ 2 µg/mL are mostly amphiphilic and active against Gram-positive bacteria, with a molecular mass ranging from about 150 to 550 g/mol, and a polar surface area around 20 Ų. Carvacrol, celastrol, cuminol, dysoxyhainic acid I, ent-1β,14β-diacetoxy-7α-hydroxykaur-16-en-15-one, ergosterol-5,8-endoperoxide, geranylgeraniol, gossypol, 16α-hydroxy-cleroda-3,13 (14)Z-diene-15,16-olide, 7-hydroxycadalene, 17-hydroxyjolkinolide B, (20R)-3β-hydroxy-24,25,26,27-tetranor-5α cycloartan-23,21-olide, mansonone F, (+)-6,6'-methoxygossypol, polygodial, pristimerin, terpinen-4-ol, and α-terpineol are chemical frameworks that could be candidates for the further development of lead antibacterial or antifungal drugs.
Collapse
Affiliation(s)
- Christophe Wiart
- Institute for Tropical Biology & Conservation, University Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Geethanjali Kathirvalu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Chandramathi Samudi Raju
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Veeranoot Nissapatorn
- Research Excellence Centre for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1207, Bangladesh
| | - Alok K Paul
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7001, Australia
| | - Mogana Rajagopal
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | | | - Nor Azizun Rusdi
- Institute for Tropical Biology & Conservation, University Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Scholastica Lanting
- Institute for Tropical Biology & Conservation, University Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Mazdida Sulaiman
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
8
|
Nouri N, Mohammadi SR, Beardsley J, Aslani P, Ghaffarifar F, Roudbary M, Rodrigues CF. Thymoquinone Antifungal Activity against Candida glabrata Oral Isolates from Patients in Intensive Care Units-An In Vitro Study. Metabolites 2023; 13:metabo13040580. [PMID: 37110238 PMCID: PMC10143056 DOI: 10.3390/metabo13040580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/17/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
The number of Candida spp. infections and drug resistance are dramatically increasing worldwide, particularly among immunosuppressed patients, and it is urgent to find novel compounds with antifungal activity. In this work, the antifungal and antibiofilm activity of thymoquinone (TQ), a key bioactive constituent of black cumin seed Nigella sativa L., was evaluated against Candida glabrata, a WHO 'high-priority' pathogen. Then, its effect on the expression of C. glabrata EPA6 and EPA7 genes (related to biofilm adhesion and development, respectively) were analyzed. Swab samples were taken from the oral cavity of 90 hospitalized patients in ICU wards, transferred to sterile falcon tubes, and cultured on Sabouraud Dextrose Agar (SDA) and Chromagar Candida for presumptive identification. Next, a 21-plex PCR was carried out for the confirmation of species level. C. glabrata isolates underwent antifungal drug susceptibility testing against fluconazole (FLZ), itraconazole (ITZ), amphotericin B (AMB), and TQ according to the CLSI microdilution method (M27, A3/S4). Biofilm formation was measured by an MTT assay. EPA6 and EPA7 gene expression was assessed by real-time PCR. From the 90 swab samples, 40 isolates were identified as C. glabrata with the 21-plex PCR. Most isolates were resistant to FLZ (n = 29, 72.5%), whereas 12.5% and 5% were ITZ and AMB resistant, respectively. The minimum inhibitory concentration (MIC50) of TQ against C. glabrata was 50 µg/mL. Importantly, TQ significantly inhibited the biofilm formation of C. glabrata isolates, and EPA6 gene expression was reduced significantly at MIC50 concentration of TQ. TQ seems to have some antifungal, antibiofilm (adhesion) effect on C. glabrata isolates, showing that this plant secondary metabolite is a promising agent to overcome Candida infections, especially oral candidiasis.
Collapse
Affiliation(s)
- Noura Nouri
- Department of Medical Mycology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115111, Iran
| | - Shahla Roudbar Mohammadi
- Department of Medical Mycology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115111, Iran
| | - Justin Beardsley
- Sydney Institute for Infectious Diseases, University of Sydney, Sydney, NSW 2145, Australia
- Westmead Hospital, NSW Health, Sydney, NSW 2145, Australia
| | - Peyman Aslani
- Department of Parasitology and Mycology, Faculty of Medicine, Aja University of Medical Sciences, Tehran 1411718541, Iran
| | - Fatemeh Ghaffarifar
- Department of Parasitology and Entomology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115111, Iran
| | - Maryam Roudbary
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Célia Fortuna Rodrigues
- TOXRUN-Toxicology Research Unit, Cooperativa de Ensino Superior Politécnico e Universitário-CESPU, 4585-116 Gandra PRD, Portugal
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
9
|
Alsaffar N, Fang Y, Walters E. Thymoquinone effect on the Dictyostelium discoideum model correlates with functional roles for glutathione S-transferases in eukaryotic proliferation, chemotaxis, and development. PLoS One 2023; 18:e0282399. [PMID: 36857392 PMCID: PMC9977050 DOI: 10.1371/journal.pone.0282399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 02/14/2023] [Indexed: 03/02/2023] Open
Abstract
An increasing body of literature demonstrates the therapeutic relevance of polyphenols in eukaryotic cell and animal model studies. The phase II glutathione S-transferases (GST) show differential responses to thymoquinone, a major bioactive polyphenol constituent of the black seed, Nigella sativa. Beyond antioxidant defense, GSTs may act in non-enzymatic capacities to effect cell cycle, motility, and differentiation. Here, we report the impact of thymoquinone on the life cycle of the eukaryotic model Dictyostelium discoideum and accompanying profiles of its GST-alpha (DdGSTA) enzyme activity and isozyme expression. In silico molecular modeling revealed strong interaction(s) between thymoquinone and DdGSTA2 and DdGSTA3 isozymes that correlated with in vivo, dose-dependent inhibition of cell proliferation of amoebae at 24, 48, and 72hr. Similarly, cytosolic DdGST enzyme activity (CDNB activity) was also responsive to different thymoquinone concentrations. Thymoquinone generally reduced expression of DdGSTA2 and DdGSTA3 isozymes in proliferating cells, however differential expression of the isozymes occurred during starvation. Thymoquinone effectively reduced early-stage aggregation of starved amoeba, accompanied by increased reactive oxygen species and altered expression of tubulin and contact site A (gp80), which resulted in reduced morphogenesis and fruiting body formation. These observations reveal that thymoquinone can impact signaling mechanisms that regulate proliferation and development in D. discoideum.
Collapse
Affiliation(s)
- Nida Alsaffar
- Department of Biochemistry and Molecular Biology, Howard University College of Medicine, Washington, DC, United States of America
| | - Yayin Fang
- Department of Biochemistry and Molecular Biology, Howard University College of Medicine, Washington, DC, United States of America
| | - Eric Walters
- Department of Biochemistry and Molecular Biology, Howard University College of Medicine, Washington, DC, United States of America
- * E-mail:
| |
Collapse
|
10
|
Nithya G, Santhanasabapathy R, Vanitha MK, Anandakumar P, Sakthisekaran D. Antioxidant, antiproliferative, and apoptotic activity of thymoquinone against benzo(a)pyrene-induced experimental lung cancer. J Biochem Mol Toxicol 2023; 37:e23230. [PMID: 36193556 DOI: 10.1002/jbt.23230] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 08/09/2022] [Accepted: 09/16/2022] [Indexed: 01/18/2023]
Abstract
Several studies have suggested that increased consumption of phytochemicals is a comparatively easy and practical strategy to significantly decrease the incidence of cancer. In the present study, we have reported the protective effect of a natural compound, thymoquinone (TQ) against benzo(a)pyrene (B(a)P)-induced lung carcinogenesis in Swiss albino mice. B(a)P (50 mg/kg body weight) was administered twice weekly for four successive weeks and left until 20 weeks to induce lung cancer in mice. TQ (20 mg/kg body weight) was given orally as a pretreatment and posttreatment drug to determine its chemopreventive and therapeutic effects. B(a)P-induced lung cancer-bearing animals displayed cachexia-like symptoms along with an abnormal increase in lung weight and the activities of marker enzymes adenosine deaminase, aryl hydrocarbon hydroxylase, gamma-glutamyl transpeptidase, 5'-nucleotidase and lactate dehydrogenase; tumor marker carcinoembryonic antigen levels. Furthermore, B(a)P-induced animals showed elevated levels of lipid peroxides with subsequent depletion in the antioxidant status and histological aberrations. These anomalies were accompanied by increased expressions of proliferating cell nuclear antigen and cyclin D1 in the lung sections derived from B(a)P-induced animals. On TQ treatment, all the above alterations were returned to near normalcy. Furthermore, TQ administration in B(a)P-induced animals downregulated phosphatidylinositol 3-kinase/protein kinase B signaling pathway and induced apoptosis as evidenced by a decrease in cytochrome c, proapoptotic Bax, caspase-3, and p53 with a parallel increase in antiapoptotic Bcl-2. Our present results demonstrate the potential effectiveness of TQ as an antioxidant, antiproliferative, and apoptotic agent against B(a)P-induced experimental lung tumorigenesis.
Collapse
Affiliation(s)
- Gajendran Nithya
- Department of Medical Biochemistry, Dr. ALM PGIBMS, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India
| | | | - Manickam Kalappan Vanitha
- Department of Medical Biochemistry, Dr. ALM PGIBMS, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India
| | | | - Dhanapalan Sakthisekaran
- Department of Medical Biochemistry, Dr. ALM PGIBMS, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India
| |
Collapse
|
11
|
Antihelminthic effect of thymoquinone against biliary amphistome, Gigantocotyle explanatum. Exp Parasitol 2022; 243:108421. [DOI: 10.1016/j.exppara.2022.108421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 11/08/2022]
|
12
|
Wang M, Zhan X, Ma X, Wang R, Guo D, Zhang Y, Yu J, Chang Y, Lü X, Shi C. Antibacterial Activity of Thymoquinone Against Shigella flexneri and Its Effect on Biofilm Formation. Foodborne Pathog Dis 2022; 19:767-778. [PMID: 36367548 DOI: 10.1089/fpd.2022.0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Thymoquinone (TQ) has been demonstrated to have anti-cancer, anti-inflammatory, antioxidant, and anti-diabetic activities. Shigella flexneri is the main pathogen causing shigellosis in developing countries. In this study, the antibacterial activity of TQ against S. flexneri and its possible antibacterial mechanism were studied. In addition, the inhibitory effect of TQ on the formation of S. flexneri biofilm was also investigated. The results showed that both the minimum inhibitory concentration and the minimum bactericidal concentration of TQ against S. flexneri ATCC 12022 were 0.2 mg/mL. After treatment with TQ at 0.4 mg/mL in Luria-Bertani broth for 3 h, or treatment with 0.2 mg/mL TQ in phosphate-buffered saline for 60 min, the number of S. flexneri (initial number is 6.5 log colony-forming units/mL) dropped below the detection limit. TQ also displayed good antibacterial activity in contaminated lettuce juice. TQ caused an increase in intracellular reactive oxygen species level, a decrease in intracellular adenosine triphosphate (ATP) concentration, a change in the intracellular protein, damage to cell membrane integrity and changes in cell morphology. In addition, TQ showed the ability to inhibit the formation of S. flexneri biofilm; treatment resulted in a decrease in the amount of biofilm and extracellular polysaccharides, and the destruction of biofilm structure. These findings indicated that TQ had strong antimicrobial and antibiofilm activities and a potential to be applied in the fruit and vegetable processing industry or other food industries to control S. flexneri.
Collapse
Affiliation(s)
- Muxue Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiangjun Zhan
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiao Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Ruixia Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Du Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yingying Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jiangtao Yu
- Yangling Hesheng Irradiation Technologies Co., Ltd., Yangling, China
| | - Yunhe Chang
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
13
|
Jahantiq AS, Ayatollahi Mousavi SA, Mohamadi N, Sharififar F. Inhibitory effect of standardized extract and fractions of Nigella sativa L. on nystatin susceptible and clinically nystatin resistant Candida albicans. Curr Drug Discov Technol 2022; 19:e120522204695. [PMID: 35549875 DOI: 10.2174/1570163819666220512164337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/24/2021] [Accepted: 01/24/2022] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Candidiasis infection is caused by different species of Candida, which are characterized by host immunologic weakness. Black cumin seeds (Nigella sativa) have shown inhibitory effect against Candida albicans. In this work, the inhibitory effect of standardized extract and different fractions of Nigella sativa seeds has been evaluated on nystatin susceptible. MATERIALS AND METHOD Canadida albicans (NSCA) with ATCC 76645 and nystatin resistant Candida albicans (NRCA) was prepared from oral samples of HIV individuals. Total extract and different fractions of N. sativa were prepared using maceration and sonication methods. Thymoquinone (TQ) content of the plant was determined by spectrophotometry. Total extract (TTE) and the fractions along with TQ were evaluated on NSCA and NRCA by microdilution method. TQ content of the plant was 0.92±0.37g/100g dried extract. The least MIC and MFC (62.5 and 125 µg/ml respectively) was due to petroleum ether fraction (PEF) against both NSCA and NRCA followed by chloroform fraction (CHF) with MIC and MFC of 125 and 250 µg/ml. TQ exhibited MIC of 0.78 and 3.12 µg/ml against NSCA and NRCA which was stronger than nystatin (MIC of 2 and 16 µg/ml). Results Thymoquinone was detected in the PEF and CHF. CONCLUSION Considering more inhibitory effects of PEF and CHF than TTE, can conclude that active components of the plant belong to non-polar compounds. PEF showed identical inhibitory effect on NRCA and NSCA that is valuable result for finding novel medicaments against NRCA infections.
Collapse
Affiliation(s)
| | | | - Neda Mohamadi
- Herbal and Traditional Medicines Research Center, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Fariba Sharififar
- Herbal and Traditional Medicines Research Center, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
14
|
Kaypetch R, Rudrakanjana P, Churnjitapirom P, Tua-Ngam P, Tonput P, Tantivitayakul P. Geraniol and thymoquinone inhibit Candida spp. biofilm formation on acrylic denture resin without affecting surface roughness or color. J Oral Sci 2022; 64:161-166. [PMID: 35321964 DOI: 10.2334/josnusd.21-0435] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
PURPOSE This study was designed to investigate the in vitro effects of geraniol (GE) and thymoquinone (TQ) on Candida biofilms on denture acrylic and any accompanying changes in acrylic surface roughness or color. METHODS The susceptibility of Candida species to GE and TQ was determined using the broth microdilution method and time-kill assay. A minimum biofilm eradication concentration (MBEC) assay was performed using 7-day Candida biofilms grown on denture acrylic. RESULTS The minimum inhibitory concentration (MIC) of GE and TQ for Candida spp. was 256 and 32 µg/mL, respectively. The Candida strain complete kill rates for GE and TQ at 5-fold MIC were determined after 1 h of incubation. At 5-fold MIC, GE and TQ inhibited the preformed biofilm activity (MBEC80) of all Candida strains on denture acrylic by more than 80% after treatment for 3 h. At sub-MIC levels, GE and TQ prevented the development of C. albicans and C. tropicalis hyphae. SEM images demonstrated that GE and TQ damaged the fungal cell membrane and induced cell lysis. On the other hand, GE and TQ at 10-fold MIC did not alter the surface roughness or color of the denture acrylic. CONCLUSION GE and TQ are interesting natural substances that could be developed as promising disinfectants for removable dentures.
Collapse
Affiliation(s)
| | | | | | | | - Pairin Tonput
- Research Office, Faculty of Dentistry, Mahidol University
| | | |
Collapse
|
15
|
|
16
|
Allemailem KS, Almatroudi A, Alrumaihi F, Aljaghwani A, Alnuqaydan AM, Khalilullah H, Younus H, El-Kady AM, Aldakheel FM, Khan AA, Khan A, Khan MA. Antimicrobial, Immunomodulatory and Anti-Inflammatory Potential of Liposomal Thymoquinone: Implications in the Treatment of Bacterial Pneumonia in Immunocompromised Mice. Biomedicines 2021; 9:1673. [PMID: 34829902 PMCID: PMC8615793 DOI: 10.3390/biomedicines9111673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022] Open
Abstract
Acinetobacter baumannii has recently been increasing as an aggressive pathogen in immunocompromised persons. In the present study, we determined the in vitro antibacterial and anti-biofilm activity of thymoquinone (TQ) against A. baumannii. A liposomal formulation of TQ (Lip-TQ) was prepared and its therapeutic potential was investigated in the treatment of A. baumannii infection in immunocompromised mice. Leukopenia was induced in mice by injecting cyclophosphamide (CYP) at a dose of 200 mg/kg and the leukopenic mice were infected with 1 × 106 CFUs of A. baumannii. The effectiveness of free TQ or Lip-TQ against A. baumannii infection was assessed by analyzing the survival rate and bacterial burden. Moreover, the efficacy of Lip-TQ was also studied by examining the systemic inflammatory markers and the histological changes in the lung tissues. The results showed that the mice in the group treated with Lip-TQ at a dose of 10 mg/kg exhibited a 60% survival rate on day 40 post-infection, whereas all the mice treated with free TQ at the same dose died within this duration. Likewise, the lowest bacterial burden was found in the lung tissue of mice treated with Lip-TQ (10 mg/kg). Besides, Lip-TQ treatment remarkably alleviated the infection-associated inflammation, oxidative stress, and histological changes in the lung tissues. Based on the findings of the present study, we recommend considering Lip-TQ as a valuable therapeutic formulation in the treatment of A. baumannii-associated pneumonia in immunocompromised subjects.
Collapse
Affiliation(s)
- Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (K.S.A.); (A.A.); (F.A.); (A.A.)
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (K.S.A.); (A.A.); (F.A.); (A.A.)
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (K.S.A.); (A.A.); (F.A.); (A.A.)
| | - Aseel Aljaghwani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (K.S.A.); (A.A.); (F.A.); (A.A.)
| | - Abdullah M. Alnuqaydan
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Habibullah Khalilullah
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia;
| | - Hina Younus
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India;
| | - Asmaa M. El-Kady
- Department of Medical Parasitology, Faculty of Medicine, South Valley University, Qena 83523, Egypt;
| | - Fahad M. Aldakheel
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11564, Saudi Arabia;
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.A.K.); (A.K.)
| | - Arif Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.A.K.); (A.K.)
| | - Masood Alam Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.A.K.); (A.K.)
| |
Collapse
|
17
|
Hossain MS, Sharfaraz A, Dutta A, Ahsan A, Masud MA, Ahmed IA, Goh BH, Urbi Z, Sarker MMR, Ming LC. A review of ethnobotany, phytochemistry, antimicrobial pharmacology and toxicology of Nigella sativa L. Biomed Pharmacother 2021; 143:112182. [PMID: 34649338 DOI: 10.1016/j.biopha.2021.112182] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 12/14/2022] Open
Abstract
Nigella sativa L. is one of the most extensively used traditional medicinal plants. This widely studied plant is known to display diverse pharmacological actions, including antimicrobial activities. Current literature has documented its multi-target mode of antimicrobial actions. N. sativa or its bioactive compounds, such as thymoquinone, can induce oxidative stress, cell apoptosis (by producing reactive oxygen species), increase membrane permeability, inhibit efflux pumps, and impose strong biocidal actions. Despite its well-documented antimicrobial efficacy in the experimental model, to the best of our knowledge its antimicrobial mechanisms highlighting the multi-targeting properties have yet to be well discussed. Is N. sativa or thymoquinone a valuable lead compound for therapeutic development for infectious diseases? Are N. sativa's bioactive compounds potential antimicrobial agents or able to overcome antimicrobial resistance? This review aims to discuss the antimicrobial pharmacology of N. sativa-based treatments. Additionally, it provides a holistic overview of the ethnobotany, ethnopharmacology, and phytochemistry of N. sativa.
Collapse
Affiliation(s)
- Md Sanower Hossain
- Department of Biomedical Science, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, 25200 Kuantan, Malaysia; Faculty of Science, Sristy College of Tangail, 1900 Tangail, Bangladesh.
| | - Ashik Sharfaraz
- Department of Biotechnology & Genetic Engineering, Mawlana Bhashani Science and Technology University, 1902 Tangail, Bangladesh
| | - Amit Dutta
- Department of Biotechnology & Genetic Engineering, Mawlana Bhashani Science and Technology University, 1902 Tangail, Bangladesh
| | - Asif Ahsan
- Department of Biotechnology & Genetic Engineering, Mawlana Bhashani Science and Technology University, 1902 Tangail, Bangladesh
| | - Md Anwarul Masud
- Department of Biotechnology & Genetic Engineering, Mawlana Bhashani Science and Technology University, 1902 Tangail, Bangladesh
| | - Idris Adewale Ahmed
- Center for Natural Products Research and Drug Discovery, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Bey Hing Goh
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Zannat Urbi
- Department of Industrial Biotechnology, Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, 26300 Kuantan, Pahang, Malaysia.
| | - Md Moklesur Rahman Sarker
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka 1205, Bangladesh; Health Med Science Research Limited, 3/1 Block F, Lalmatia, Dhaka 1207, Bangladesh
| | - Long Chiau Ming
- PAP Rashidah Sa'adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, BE1410 Brunei, Darussalam.
| |
Collapse
|
18
|
Spanlastics as an efficient delivery system for the enhancement of thymoquinone anticancer efficacy: Fabrication and cytotoxic studies against breast cancer cell lines. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
19
|
Swingler S, Gupta A, Gibson H, Heaselgrave W, Kowalczuk M, Adamus G, Radecka I. The Mould War: Developing an Armamentarium against Fungal Pathogens Utilising Thymoquinone, Ocimene, and Miramistin within Bacterial Cellulose Matrices. MATERIALS 2021; 14:ma14102654. [PMID: 34070218 PMCID: PMC8158721 DOI: 10.3390/ma14102654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/11/2021] [Accepted: 05/15/2021] [Indexed: 11/17/2022]
Abstract
An increase in antifungal resistance has seen a surge in fungal wound infections in patients who are immunocompromised resulting from chemotherapy, disease, and burns. Human pathogenic fungi are increasingly becoming resistant to a sparse repertoire of existing antifungal drugs, which has given rise to the need to develop novel treatments for potentially lethal infections. Bacterial cellulose (BC) produced by Gluconacetobacter xylinus has been shown to possess many properties that make it innately useful as a next-generation biopolymer to be utilised as a wound dressing. The current study demonstrates the creation of a pharmacologically active wound dressing by loading antifungal agents into a biopolymer hydrogel to produce a novel wound dressing. Amphotericin B is known to be highly hepatotoxic, which reduces its appeal as an antifungal drug, especially in patients who are immunocompromised. This, coupled with an increase in antifungal resistance, has seen a surge in fungal wound infections in patients who are immunodeficient due to chemotherapy, disease, or injury. Antifungal activity was conducted via Clinical & Laboratory Standards Institute (CLSI) M27, M38, M44, and M51 against Candida auris, Candida albicans, Aspergillus fumigatus, and Aspergillus niger. This study showed that thymoquinone has a comparable antifungal activity to amphotericin B with mean zones of inhibition of 21.425 ± 0.925 mm and 22.53 ± 0.969 mm, respectively. However, the mean survival rate of HEp-2 cells when treated with 50 mg/L amphotericin B was 29.25 ± 0.854% compared to 71.25 ± 1.797% when treated with 50 mg/L thymoquinone. Following cytotoxicity assays against HEp-2 cells, thymoquinone showed a 71.25 ± 3.594% cell survival, whereas amphotericin B had a mean cell survival rate of 29.25 ± 1.708%. The purpose of this study was to compare the efficacy of thymoquinone, ocimene, and miramistin against amphotericin B in the application of novel antifungal dressings.
Collapse
Affiliation(s)
- Sam Swingler
- Wolverhampton School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK;
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK; (A.G.); (W.H.)
- Correspondence: (S.S.); (I.R.)
| | - Abhishek Gupta
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK; (A.G.); (W.H.)
- Institute of Health, Faculty of Education, Health and Wellbeing, University of Wolverhampton, Jerome K Jerome Building, Gorway Road, Walsall Campus, Walsall WS1 3BD, UK
| | - Hazel Gibson
- Wolverhampton School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK;
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK; (A.G.); (W.H.)
| | - Wayne Heaselgrave
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK; (A.G.); (W.H.)
- Department of Biomedical Science, University of Wolverhampton, MA Building, Wulfruna Street, Wolverhampton WV1 1LY, UK
| | - Marek Kowalczuk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland; (M.K.); (G.A.)
| | - Grazyna Adamus
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland; (M.K.); (G.A.)
| | - Iza Radecka
- Wolverhampton School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK;
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK; (A.G.); (W.H.)
- Correspondence: (S.S.); (I.R.)
| |
Collapse
|
20
|
Mechanism of Antifungal Activity by 5-Aminoimidazole-4-Carbohydrazonamide Derivatives against Candida albicans and Candida krusei. Antibiotics (Basel) 2021; 10:antibiotics10020183. [PMID: 33673152 PMCID: PMC7917925 DOI: 10.3390/antibiotics10020183] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/30/2022] Open
Abstract
Systemic mycoses are one major cause of morbidity/mortality among immunocompromised/debilitated individuals. Studying the mechanism of action is a strategy to develop safer/potent antifungals, warning resistance emergence. The major goal of this study was to elucidate the mechanism of action of three (Z)-5-amino-N’-aryl-1-methyl-1H-imidazole-4-carbohydrazonamides (2h, 2k, 2l) that had previously demonstrated strong antifungal activity against Candida krusei and C. albicans ATCC strains. Activity was confirmed against clinical isolates, susceptible or resistant to fluconazole by broth microdilution assay. Ergosterol content (HPLC-DAD), mitochondrial dehydrogenase activity (MTT), reactive oxygen species (ROS) generation (flow cytometry), germ tube inhibition and drug interaction were evaluated. None of the compounds inhibited ergosterol synthesis. Ascorbic acid reduced the antifungal effect of compounds and significantly decreased ROS production. The metabolic viability of C. krusei was significantly reduced for values of 2MIC. Compounds 2h and 2k caused a significant increase in ROS production for MIC values while for 2l a significant increase was only observed for concentrations above MIC. ROS production seems to be involved in antifungal activity and the higher activity against C. krusei versus C. albicans may be related to their unequal sensitivity to different ROS. No synergism with fluconazole or amphotericin was observed, but the association of 2h with fluconazole might be valuable due to the significant inhibition of the dimorphic transition, a C. albicans virulence mechanism.
Collapse
|
21
|
Ahmad MF, Ahmad FA, Ashraf SA, Saad HH, Wahab S, Khan MI, Ali M, Mohan S, Hakeem KR, Athar MT. An updated knowledge of Black seed ( Nigella sativa Linn.): Review of phytochemical constituents and pharmacological properties. J Herb Med 2021; 25:100404. [PMID: 32983848 PMCID: PMC7501064 DOI: 10.1016/j.hermed.2020.100404] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 10/08/2019] [Accepted: 09/09/2020] [Indexed: 02/06/2023]
Abstract
N. sativa (N. sativa) has been used since ancient times, when a scientific concept about the use of medicinal plants for the treatment of human illnesses and alleviation of their sufferings was yet to be developed. It has a strong religious significance as it is mentioned in the religious books of Islam and Christianity. In addition to its historical and religious significance, it is also mentioned in ancient medicine. It is widely used in traditional systems of medicine for a number of diseases including asthma, fever, bronchitis, cough, chest congestion, dizziness, paralysis, chronic headache, back pain and inflammation. The importance of this plant led the scientific community to carry out extensive phytochemical and biological investigations on N. sativa. Pharmacological studies on N. sativa have confirmed its antidiabetic, antitussive, anticancer, antioxidant, hepatoprotective, neuro-protective, gastroprotective, immunomodulator, analgesic, antimicrobial, anti-inflammatory, spasmolytic, and bronchodilator activity. The present review is an effort to explore the reported chemical composition and pharmacological activity of this plant. It will help as a reference for scientists, researchers, and other health professionals who are working with this plant and who need up to date knowledge about it.
Collapse
Affiliation(s)
- Md Faruque Ahmad
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Saudi Arabia
| | - Fakhruddin Ali Ahmad
- Department of Laboratory Medicine Al-Hada and Taif Military Hospital, Saudi Arabia
| | - Syed Amir Ashraf
- Dept. of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Saudi Arabia
| | - Hisham H Saad
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Saudi Arabia
| | - Shadma Wahab
- College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Mohammed Idreesh Khan
- Department of Clinical Nutrition, College of Applied Health Sciences in Arras, Qassim University, Saudi Arabia
| | - M Ali
- College of pharmacy, Dept. of Pharmacognosy, Jazan University, Saudi Arabia
| | - Syam Mohan
- Medical Research Center, Jazan University, Jazan, Saudi Arabia
| | - Khalid Rehman Hakeem
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Md Tanwir Athar
- Bioactive Natural Product Laboratory, Hamdard University, India.,Scientific Research Center, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
22
|
Dhakal S, Macreadie I. Protein Homeostasis Networks and the Use of Yeast to Guide Interventions in Alzheimer's Disease. Int J Mol Sci 2020; 21:E8014. [PMID: 33126501 PMCID: PMC7662794 DOI: 10.3390/ijms21218014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's Disease (AD) is a progressive multifactorial age-related neurodegenerative disorder that causes the majority of deaths due to dementia in the elderly. Although various risk factors have been found to be associated with AD progression, the cause of the disease is still unresolved. The loss of proteostasis is one of the major causes of AD: it is evident by aggregation of misfolded proteins, lipid homeostasis disruption, accumulation of autophagic vesicles, and oxidative damage during the disease progression. Different models have been developed to study AD, one of which is a yeast model. Yeasts are simple unicellular eukaryotic cells that have provided great insights into human cell biology. Various yeast models, including unmodified and genetically modified yeasts, have been established for studying AD and have provided significant amount of information on AD pathology and potential interventions. The conservation of various human biological processes, including signal transduction, energy metabolism, protein homeostasis, stress responses, oxidative phosphorylation, vesicle trafficking, apoptosis, endocytosis, and ageing, renders yeast a fascinating, powerful model for AD. In addition, the easy manipulation of the yeast genome and availability of methods to evaluate yeast cells rapidly in high throughput technological platforms strengthen the rationale of using yeast as a model. This review focuses on the description of the proteostasis network in yeast and its comparison with the human proteostasis network. It further elaborates on the AD-associated proteostasis failure and applications of the yeast proteostasis network to understand AD pathology and its potential to guide interventions against AD.
Collapse
Affiliation(s)
| | - Ian Macreadie
- School of Science, RMIT University, Bundoora, Victoria 3083, Australia;
| |
Collapse
|
23
|
Dhakal S, Macreadie I. Tyramine and Amyloid Beta 42: A Toxic Synergy. Biomedicines 2020; 8:biomedicines8060145. [PMID: 32486277 PMCID: PMC7345151 DOI: 10.3390/biomedicines8060145] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/21/2022] Open
Abstract
Implicated in various diseases including Parkinson's disease, Huntington's disease, migraines, schizophrenia and increased blood pressure, tyramine plays a crucial role as a neurotransmitter in the synaptic cleft by reducing serotonergic and dopaminergic signaling through a trace amine-associated receptor (TAAR1). There appear to be no studies investigating a connection of tyramine to Alzheimer's disease. This study aimed to examine whether tyramine could be involved in AD pathology by using Saccharomyces cerevisiae expressing Aβ42. S. cerevisiae cells producing native Aβ42 were treated with different concentrations of tyramine, and the production of reactive oxygen species (ROS) was evaluated using flow cytometric cell analysis. There was dose-dependent ROS generation in wild-type yeast cells with tyramine. In yeast producing Aβ42, ROS levels generated were significantly higher than in controls, suggesting a synergistic toxicity of Aβ42 and tyramine. The addition of exogenous reduced glutathione (GSH) was found to rescue the cells with increased ROS, indicating depletion of intracellular GSH due to tyramine and Aβ42. Additionally, tyramine inhibited the respiratory growth of yeast cells producing GFP-Aβ42, while there was no growth inhibition when cells were producing GFP. Tyramine was also demonstrated to cause increased mitochondrial DNA damage, resulting in the formation of petite mutants that lack respiratory function. These findings indicate that there can be a detrimental synergy between Aβ42 and tyramine, which could be considered in Alzheimer's disease. This work also demonstrates the utility of yeast as a model for studying toxic agents such as Aβ42, tyramine, and agents that might exacerbate AD pathology.
Collapse
|
24
|
Khan MA, Aldebasi YH, Alsuhaibani SA, AlSahli MA, Alzohairy MA, Khan A, Younus H. Therapeutic potential of thymoquinone liposomes against the systemic infection of Candida albicans in diabetic mice. PLoS One 2018; 13:e0208951. [PMID: 30589842 PMCID: PMC6320018 DOI: 10.1371/journal.pone.0208951] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/27/2018] [Indexed: 12/12/2022] Open
Abstract
The present study was aimed to develop a liposomal formulation of thymoquinone (Lip-TQ) to treat Candida albicans infection in diabetic mice. Streptozotocin (STZ) was injected to induce hyperglycemia and on day 3 post STZ administration, mice were intravenously infected with C. albicans. Various doses (2, 5 and 10 mg/kg) of Free or Lip-TQ were administered in C. albicans infected diabetic mice. The effect of Lip-TQ was also determined on the organ indices, liver and kidney function parameters. Lip-TQ at a dose of 10 mg/kg significantly reduced the level of the blood glucose and alleviated the systemic C. albicans infection in diabetic mice. C. albicans infected diabetic mice treated with Lip-TQ at a dose of 10 mg/kg showed the survival rate of 70% as compared to that of 20% in the group treated with free TQ. The treatment with Lip-TQ resulted in the recovery of the organ indices, liver inflammation, kidney functioning and pancreas regeneration in diabetic mice. Moreover, TQ formulations also showed the direct therapeutic effect against candidiasis in the untreated or metformin-treated diabetic mice. Therefore, the findings of the present study support the use of Lip-TQ in the treatment of candidiasis in the diabetic patients.
Collapse
Affiliation(s)
- Masood A Khan
- College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Yousef H Aldebasi
- College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | | | - Mohammed A AlSahli
- College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | | | - Arif Khan
- College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Hina Younus
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
25
|
Antifungal Effects of Saponin Extract from Rhizomes of Dioscorea panthaica Prain et Burk against Candida albicans. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:6095307. [PMID: 29853962 PMCID: PMC5949152 DOI: 10.1155/2018/6095307] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 03/04/2018] [Accepted: 03/21/2018] [Indexed: 01/09/2023]
Abstract
Candida albicans is the most common fungal pathogen causing serious diseases, while there are only a paucity of antifungal drugs. Therefore, the present study was performed to investigate the antifungal effects of saponin extract from rhizomes of Dioscorea panthaica Prain et Burk (Huangshanyao Saponin extract, HSE) against C. albicans. HSE inhibits the planktonic growth and biofilm formation and development of C. albicans. 16–64 μg/mL of HSE could inhibit adhesion to polystyrene surfaces, transition from yeast to filamentous growth, and production of secreted phospholipase and could also induce endogenous reactive oxygen species (ROS) production and disrupt cell membrane in planktonic cells. Inhibitory activities against extracellular exopolysaccharide (EPS) production and ROS production in preformed biofilms could be inhibited by 64–256 μg/mL of HSE. Cytotoxicity against human Chang's liver cells is low, with a half maximal inhibitory concentration (IC50) of about 256 μg/mL. In sum, our study suggested that HSE might be used as a potential antifungal therapeutic against C. albicans.
Collapse
|
26
|
Thymoquinone inhibits biofilm formation and has selective antibacterial activity due to ROS generation. Appl Microbiol Biotechnol 2018; 102:1955-1967. [DOI: 10.1007/s00253-018-8736-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/12/2017] [Accepted: 01/02/2018] [Indexed: 10/18/2022]
|