1
|
Zhao J, Wang Y, Song H, Luo C, Cheng C, Mao L. Promoting Effects of Piriformospora indica on the Growth and Development of Asparagus ( Asparagus officinalis L.) Seedlings. PLANTS (BASEL, SWITZERLAND) 2025; 14:1232. [PMID: 40284120 PMCID: PMC12030300 DOI: 10.3390/plants14081232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 03/26/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025]
Abstract
As an endophytic fungus, Piriformospora indica has attracted great attention for its plant growth- and stress resistance-promoting effects on various host plants. However, up until now, there have been no reports on its application in asparagus. In this study, we report the colonization ability of P. indica in the roots of three asparagus varieties, 'Guanjun' (GJ), 'Fengdao No. 2' (FD), and 'Jin Lusun No. 1' (JL), with colonization ratios of 80.0%, 76.6%, and 73.3%, respectively. The influences of this fungal colonization on the growth of GJ, FD, and JL seedlings were further studied by determining the growth- and phytohormone-related parameters. The results showed that, at 2 months post inoculation (mpi), the P. indica-colonized seedlings exhibited improved total root length, peroxidase (POD) activity, and jasmonic acid (JA) accumulation in their roots and photosynthetic pigment accumulation in the leaves of all three varieties. At 8 mpi, most of the detected growth-related parameters, such as plant height, stem number and width, dry weight, photosynthetic pigment accumulation, and POD activity, were improved by the fungal colonization. However, the contents of 1-aminocyclopropane-1-carboxylic acid (ACC) in the P. indica-colonized roots were lower than that in the non-colonized ones. Moreover, the fungus's promoting effects on GJ were found to be the best of the three varieties. These results indicate that P. indica colonization can promote asparagus seedling growth and development by enhancing root development and by regulating phytohormone balance, with some variety-specific and temporal differences.
Collapse
Affiliation(s)
| | | | | | | | - Chunzhen Cheng
- College of Horticulture, Shanxi Agricultural University, Jinzhong 030801, China; (J.Z.); (Y.W.); (H.S.); (C.L.)
| | - Liping Mao
- College of Horticulture, Shanxi Agricultural University, Jinzhong 030801, China; (J.Z.); (Y.W.); (H.S.); (C.L.)
| |
Collapse
|
2
|
Gao J, Wang C, Tian PC, Liu C, Ahsan T, Wei Y, Huang YQ, Zhang SH. Peanut-Colonized Piriformospora indica Enhanced Drought Tolerance by Modulating the Enzymes and Expression of Drought-Related Genes. J Basic Microbiol 2024:e2400305. [PMID: 39439269 DOI: 10.1002/jobm.202400305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/13/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Peanut (Arachis hypogaea L.) is an important cash and oil seed crop, mostly distributed in arid and semi-arid areas. In recent years, due to the influence of atmospheric circulation anomalies and other factors, drought has become frequent and increasingly serious in China. This has posed serious challenges to peanut production. The objective of this study was to investigate the potential of the endophytic fungus Piriformospora indica to form a symbiotic relationship with peanut plants and to evaluate the drought tolerance of P. indica-colonized peanut plants subjected to a simulated drought stress treatment using 20% polyethylene glycol 6000 (PEG6000). The endophytic fungus P. indica affected the physiological characteristics of the host plant by colonizing the plant roots, thereby conferring greater resistance to drought stress. This fungus strongly colonized the roots of peanuts and was found to enhance root activity after 24 h of P. indica colonization under PEG6000. Catalase (CAT) and peroxidase (POD) activities were increased at 24 h in peanut leaves colonized with P. indica. Expression of drought-related genes, such as AhNCED1, AhP5CS, and DREB2A was upregulated at 24 h of P. indica colonization. In addition, after PEG6000 treatment, proline, soluble protein, and abscisic acid (ABA) concentrations in plants were increased, while the accumulation of malondialdehyde (MDA), and hydrogen peroxide (H2O2) was decreased in P. indica colonized peanut. In conclusion, P. indica mediated peanut plant protection against the detrimental effects of drought resulted from enhanced antioxidant enzyme activities, and the upregulated expression of drought-related genes for lower membrane damage.
Collapse
Affiliation(s)
- Jie Gao
- Department of Plant Pathology, The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Chen Wang
- Department of Plant Pathology, The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Pei-Cong Tian
- Department of Plant Pathology, The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Chuang Liu
- Department of Plant Pathology, The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Taswar Ahsan
- Department of Plant Pathology, Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Yi Wei
- Department of Plant Pathology, The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yu-Qian Huang
- Department of Plant Pathology, The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Shi-Hong Zhang
- Department of Plant Pathology, The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
3
|
González Ortega-Villaizán A, King E, Patel MK, Pérez-Alonso MM, Scholz SS, Sakakibara H, Kiba T, Kojima M, Takebayashi Y, Ramos P, Morales-Quintana L, Breitenbach S, Smolko A, Salopek-Sondi B, Bauer N, Ludwig-Müller J, Krapp A, Oelmüller R, Vicente-Carbajosa J, Pollmann S. The endophytic fungus Serendipita indica affects auxin distribution in Arabidopsis thaliana roots through alteration of auxin transport and conjugation to promote plant growth. PLANT, CELL & ENVIRONMENT 2024; 47:3899-3919. [PMID: 38847336 DOI: 10.1111/pce.14989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/09/2024] [Accepted: 05/13/2024] [Indexed: 11/20/2024]
Abstract
Plants share their habitats with a multitude of different microbes. This close vicinity promoted the evolution of interorganismic interactions between plants and many different microorganisms that provide mutual growth benefits both to the plant and the microbial partner. The symbiosis of Arabidopsis thaliana with the beneficial root colonizing endophyte Serendipita indica represents a well-studied system. Colonization of Arabidopsis roots with S. indica promotes plant growth and stress tolerance of the host plant. However, until now, the molecular mechanism by which S. indica reprograms plant growth remains largely unknown. This study used comprehensive transcriptomics, metabolomics, reverse genetics, and life cell imaging to reveal the intricacies of auxin-related processes that affect root growth in the symbiosis between A. thaliana and S. indica. Our experiments revealed the sustained stimulation of auxin signalling in fungus infected Arabidopsis roots and disclosed the essential role of tightly controlled auxin conjugation in the plant-fungus interaction. It particularly highlighted the importance of two GRETCHEN HAGEN 3 (GH3) genes, GH3.5 and GH3.17, for the fungus infection-triggered stimulation of biomass production, thus broadening our knowledge about the function of GH3s in plants. Furthermore, we provide evidence for the transcriptional alteration of the PIN2 auxin transporter gene in roots of Arabidopsis seedlings infected with S. indica and demonstrate that this transcriptional adjustment affects auxin signalling in roots, which results in increased plant growth.
Collapse
Affiliation(s)
- Adrián González Ortega-Villaizán
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC), Campus de Montegancedo, Madrid, Spain
| | - Eoghan King
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC), Campus de Montegancedo, Madrid, Spain
| | - Manish K Patel
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC), Campus de Montegancedo, Madrid, Spain
| | - Marta-Marina Pérez-Alonso
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC), Campus de Montegancedo, Madrid, Spain
| | - Sandra S Scholz
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Takatoshi Kiba
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | | | - Patricio Ramos
- Instituto de Ciencias Biológicas, Campus Talca, Universidad de Talca, Talca, Chile
| | - Luis Morales-Quintana
- Multidisciplinary Agroindustry Research Laboratory, Instituto de Ciencias Biomédicas, Universidad Autonóma de Chile, Talca, Chile
| | - Sarah Breitenbach
- Institute of Botany, Technische Universität Dresden, Dresden, Germany
| | - Ana Smolko
- Department for Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | | | - Nataša Bauer
- Department of Molecular Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | | | - Anne Krapp
- INRAE, AgroParisTech, Institut Jean-Pierre Bourgin, Université Paris-Saclay, Versailles, France
| | - Ralf Oelmüller
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Jesús Vicente-Carbajosa
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC), Campus de Montegancedo, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Stephan Pollmann
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC), Campus de Montegancedo, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| |
Collapse
|
4
|
Yin L, Qu P, Wang D, Yan S, Gong Q, Yang R, Hu Y, Liu N, Cheng C, Wang P, Zhang S, Mu X, Zhang J. The Influence of Piriformospora indica Colonization on the Root Development and Growth of Cerasus humilis Cuttings. PLANTS (BASEL, SWITZERLAND) 2024; 13:1482. [PMID: 38891290 PMCID: PMC11175094 DOI: 10.3390/plants13111482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/11/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024]
Abstract
Numerous studies have shown that the endophytic fungus Piriformospora indica has a broad range of promoting effects on root development and plant growth in host plants. However, there are currently no reports on the application of this fungus on Cerasus humilis. This study first compared the colonization ability of P. indica on 11 C. humilis varieties and found that the colonization rate of this fungus on these varieties ranged from 90% to 100%, with the colonization rate of the varieties '09-01' and 'Nongda 7' being as high as 100%. Subsequently, the effect of P. indica on root development and plant growth of C. humilis was investigated using cuttings of '09-01' and 'Nongda 7' as materials. P. indica colonization was found to increase the biomass of '09-01' and 'Nongda 7' plants; root activity, POD enzymes, and chlorophyll content were also significantly increased. In addition, indole-3-acetic acid (IAA) content in the roots of C. humilis plants increased after colonization, while jasmonic acid (JA) and 1-aminocyclopropane-1-car- boxylic acid (ACC) content decreased. In conclusion, it has been demonstrated that P. indica can promote the growth of C. humilis plants by accelerating biomass accumulation, promoting rooting, and enhancing the production of photosynthetic pigments, as well as regulating hormone synthesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Xiaopeng Mu
- College of Horticulture, Shanxi Agricultural University, Jinzhong 030801, China; (L.Y.); (P.Q.); (D.W.); (S.Y.); (Q.G.); (R.Y.); (Y.H.); (N.L.); (C.C.); (P.W.); (S.Z.)
| | - Jiancheng Zhang
- College of Horticulture, Shanxi Agricultural University, Jinzhong 030801, China; (L.Y.); (P.Q.); (D.W.); (S.Y.); (Q.G.); (R.Y.); (Y.H.); (N.L.); (C.C.); (P.W.); (S.Z.)
| |
Collapse
|
5
|
Hu JR, Li JM, Wang HY, Sun ML, Huang CY, Wang HC. Analysis of growth dynamics in five different media and metabolic phenotypic characteristics of Piriformospora indica. Front Microbiol 2024; 14:1301743. [PMID: 38260913 PMCID: PMC10800966 DOI: 10.3389/fmicb.2023.1301743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024] Open
Abstract
Piriformospora indica is an important endophytic fungus with broad potential for alleviating biotic and abiotic stress on host plants. This study monitored the growth dynamics of P. indica on five commonly used artificial media for microorganisms and analyzed its metabolic characteristics using Biolog Phenotype Microarray (PM) technology. The results showed that P. indica grew fastest on Potato Dextrose Agar (PDA), followed by Kidney Bean Agar (KBA), Alkyl Ester Agar (AEA), Oatmeal Agar (OA), and Luria-Bertani Agar (LB), and the most suitable medium for spore production was OA. Using Biolog PM1-10, 950 metabolic phenotypes of P. indica were obtained. P. indica could metabolize 87.89% of the tested carbon sources, 87.63% of the tested nitrogen sources, 96.61% of the tested phosphorus sources, and 100% of the tested sulfur sources. P. indica displayed 92 kinds of tested biosynthetic pathways, and it could grow under 92 kinds of tested osmotic pressures and 88 kinds of tested pH conditions. PM plates 1-2 revealed 43 efficient carbon sources, including M-Hydroxyphenyl acid, N-Acetyl-D-Glucosamine, Tyramine, Maltotrios, α-D-Glucosine, I-Erythritol, L-Valine, D-Melezitose, D-Tagatose, and Turanose. PM plates 3,6-8 indicated 170 efficient nitrogen sources, including Adenosine, Inosine Allantoin, D, L-Lactamide, Arg-Met, lle-Trp, Ala-Arg, Thr-Arg, Trp-Tyr, Val-Asn, Gly-Gly-D-Leu, Gly-Gly-Phe, and Leu-Leu-Leu. This study demonstrates that P. indica can metabolize a variety of substrates, such as carbon and nitrogen sources, and has a wide range of environmental adaptability. The growth dynamics on artificial culture media and metabolic phenotypes of P. indica can be used to investigate its biological characteristics, screen for more suitable growth and sporulation conditions, and elucidate the physiological mechanisms that enhance the stress resistance of host plants. This study provides a theoretical basis for its better application in agriculture.
Collapse
Affiliation(s)
- Jing-rong Hu
- Institute of Advanced Agricultural Science, Hubei University of Arts and Science, Xiangyang, Hubei, China
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Jin-meng Li
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Hai-yan Wang
- Institute of Advanced Agricultural Science, Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Mei-li Sun
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Chun-yang Huang
- Guizhou Provincial Tobacco Company, Zunyi Branch, Zunyi, China
| | - Han-cheng Wang
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, Guizhou, China
| |
Collapse
|
6
|
Zheng M, Zhong S, Wang W, Tang Z, Bu T, Li Q. Serendipita indica Promotes the Growth of Tartary Buckwheat by Stimulating Hormone Synthesis, Metabolite Production, and Increasing Systemic Resistance. J Fungi (Basel) 2023; 9:1114. [PMID: 37998919 PMCID: PMC10671858 DOI: 10.3390/jof9111114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023] Open
Abstract
The main objective of this study was to investigate the influence of Serendipita indica on the growth of Tartary buckwheat plants. This study highlighted that the roots of Tartary buckwheat can be colonized by S. indica and that this fungal endophyte improved plants height, fresh weight, dry weight, and grain yield. In the meantime, the colonization of S. indica in Tartary buckwheat leaves resulted in elevated levels of photosynthesis, plant hormone content, antioxidant enzyme activity, proline content, chlorophyll content, soluble sugars, and protein content. Additionally, the introduction of S. indica to Tartary buckwheat roots led to a substantial rise in the levels of flavonoids and phenols found in the leaves and seeds of Tartary buckwheat. In addition, S. indica colonization reduced the content of malondialdehyde and hydrogen peroxide when compared to non-colonized plants. Importantly, the drought tolerance of Tartary buckwheat plants is increased, which benefits from physiology and bio-chemical changes in plants after S. indica colonized. In conclusion, we have shown that S. indica can improve systematic resistance and promote the growth of Tartary buckwheat by enhancing the photosynthetic capacity of Tartary buckwheat, inducing the production of IAA, increasing the content of secondary metabolites such as total phenols and total flavonoids, and improving the antioxidant enzyme activity of the plant.
Collapse
Affiliation(s)
| | | | | | | | | | - Qingfeng Li
- College of Life Sciences, Sichuan Agricultural University, Ya’an 625014, China; (M.Z.); (S.Z.); (W.W.); (Z.T.); (T.B.)
| |
Collapse
|
7
|
Mehri M, Ghabooli M, Movahedi Z. Contribution of Serendipita indica on growth improvement, antioxidative capacity of Dracocephalum kotschyi, and its resistance against cadmium stress. Int Microbiol 2023; 26:821-831. [PMID: 36801987 DOI: 10.1007/s10123-023-00339-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/28/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023]
Abstract
Cadmium pollution is a severe issue worldwide which causes an elevated concern in agriculture. The utilization of plant-microbial interactions offers a promising approach for the remediation of cadmium-polluted soils. To elucidate the mechanism of Serendipita indica-mediated cadmium stress tolerance, a potting experiment was conducted to study the impact of S. indica on Dracocephalum kotschyi plants grown under different cadmium concentrations (0, 5, 10, and 20 mg/kg). The effects of cadmium and S. indica on plant growth, antioxidant enzyme activities, and accumulation of cadmium were investigated. The results showed that cadmium stress significantly decreases biomass, photosynthetic pigments, and carbohydrate content concomitantly with increasing antioxidant activities, electrolyte leakage, and hydrogen peroxide, proline, and cadmium content. Inoculation with S. indica alleviated the adverse effect of cadmium stress by enhancing shoot and root dry weight, photosynthetic pigments, and carbohydrate, proline, and catalase activity. Unlike cadmium stress, the presence of fungus led to a reduction in electrolyte leakage and hydrogen peroxide content as well as the content of cadmium in D. kotschyi leaf which mitigates cadmium-induced oxidative stress. Our findings demonstrated S. indica inoculation alleviates the adverse effects of cadmium stress in D. kotschyi plants which could prolong their survival under stressful conditions. Due to the importance of D. kotschyi and the effect of biomass increase on the amount of its medicinal substances, exploiting S. indica not only promotes plant growth, but also may be used as a potential eco-friendly method for relieving the phytotoxicity of Cd and remediating Cd-contaminated soil.
Collapse
Affiliation(s)
- Mohammad Mehri
- Department of Plant Production and Genetics, Faculty of Agriculture, Malayer University, Malayer, Iran
| | - Mehdi Ghabooli
- Department of Plant Production and Genetics, Faculty of Agriculture, Malayer University, Malayer, Iran.
| | - Zahra Movahedi
- Department of Plant Production and Genetics, Faculty of Agriculture, Malayer University, Malayer, Iran
| |
Collapse
|
8
|
Li L, Feng Y, Qi F, Hao R. Research Progress of Piriformospora indica in Improving Plant Growth and Stress Resistance to Plant. J Fungi (Basel) 2023; 9:965. [PMID: 37888222 PMCID: PMC10607969 DOI: 10.3390/jof9100965] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
Piriformospora indica (Serendipita indica), a mycorrhizal fungus, has garnered significant attention in recent decades owing to its distinctive capacity to stimulate plant growth and augment plant resilience against environmental stressors. As an axenically cultivable fungus, P. indica exhibits a remarkable ability to colonize varieties of plants and promote symbiotic processes by directly influencing nutrient acquisition and hormone metabolism. The interaction of plant and P. indica raises hormone production including ethylene (ET), jasmonic acid (JA), gibberellin (GA), salicylic acid (SA), and abscisic acid (ABA), which also promotes root proliferation, facilitating improved nutrient acquisition, and subsequently leading to enhanced plant growth and productivity. Additionally, the plant defense system was employed by P. indica colonization and the defense genes associated with oxidation resistance were activated subsequently. This fungus-mediated defense response elicits an elevation in the enzyme activity of antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), and, finally, bolsters plant tolerance. Furthermore, P. indica colonization can initiate local and systemic immune responses against fungal and viral plant diseases through signal transduction mechanisms and RNA interference by regulating defense gene expression and sRNA secretion. Consequently, P. indica can serve diverse roles such as plant promoter, biofertilizer, bioprotectant, bioregulator, and bioactivator. A comprehensive review of recent literature will facilitate the elucidation of the mechanistic foundations underlying P. indica-crop interactions. Such discussions will significantly contribute to an in-depth comprehension of the interaction mechanisms, potential applications, and the consequential effects of P. indica on crop protection, enhancement, and sustainable agricultural practices.
Collapse
Affiliation(s)
- Liang Li
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China; (Y.F.); (F.Q.); (R.H.)
| | | | | | | |
Collapse
|
9
|
Kaboosi E, Ghabooli M, Karimi R. Combined Effect of Trehalose and Serendipita indica Inoculation Might Participate in Solanum lycopersicum Induced Cold Tolerance. Curr Microbiol 2023; 80:224. [PMID: 37222791 DOI: 10.1007/s00284-023-03335-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 05/16/2023] [Indexed: 05/25/2023]
Abstract
The exploitation of symbiotic interactions between fungi and plants, coupled with the application of osmoprotectants such as trehalose (Tre), presents a promising strategy for mitigating environmental stress. To determine the mechanism of Serendipita indica and Tre-mediated cold stress tolerance, a comparative experiment was designed to study the impact of S. indica, Tre and their combination on tomato plants grown under cold stress. The results showed that cold stress significantly decreased biomass, relative water content, photosynthetic pigments and elements concomitantly with increasing antioxidant activities, malondialdehyde (MDA), electrolyte leakage, hydrogen peroxide and proline content. Meanwhile, S. indica and Tre treatments promoted biomass and enhanced carbohydrate, protein, proline, potassium, phosphorous, antioxidant enzymes and photosynthetic pigments content under cold stress. Furthermore, single or dual application of endophyte and Tre mitigated physiological disorders induced by cold stress and increased the integrity of cell membranes by decreasing hydrogen peroxide, MDA, and electrolyte leakage (EL). Our findings suggest that S. indica and Tre combination could significantly promote cold stress tolerance compared with single treatment. This study is novel in showing the cold adaptation of tomato plants by combination use of S. indica and Tre, which can be a promising strategy for improving cold tolerance. The underlying molecular mechanisms of sugar-fungus interaction must be further investigated.
Collapse
Affiliation(s)
- Esmaeel Kaboosi
- Department of Plant Production and Genetics, Faculty of Agriculture, Malayer University, Malayer, Iran
| | - Mehdi Ghabooli
- Department of Plant Production and Genetics, Faculty of Agriculture, Malayer University, Malayer, Iran.
| | - Rouhollah Karimi
- Department of Landscape Engineering, Faculty of Agriculture, Malayer University, Malayer, Iran
| |
Collapse
|
10
|
Watts D, Palombo EA, Jaimes Castillo A, Zaferanloo B. Endophytes in Agriculture: Potential to Improve Yields and Tolerances of Agricultural Crops. Microorganisms 2023; 11:1276. [PMID: 37317250 DOI: 10.3390/microorganisms11051276] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 06/16/2023] Open
Abstract
Endophytic fungi and bacteria live asymptomatically within plant tissues. In recent decades, research on endophytes has revealed that their significant role in promoting plants as endophytes has been shown to enhance nutrient uptake, stress tolerance, and disease resistance in the host plants, resulting in improved crop yields. Evidence shows that endophytes can provide improved tolerances to salinity, moisture, and drought conditions, highlighting the capacity to farm them in marginal land with the use of endophyte-based strategies. Furthermore, endophytes offer a sustainable alternative to traditional agricultural practices, reducing the need for synthetic fertilizers and pesticides, and in turn reducing the risks associated with chemical treatments. In this review, we summarise the current knowledge on endophytes in agriculture, highlighting their potential as a sustainable solution for improving crop productivity and general plant health. This review outlines key nutrient, environmental, and biotic stressors, providing examples of endophytes mitigating the effects of stress. We also discuss the challenges associated with the use of endophytes in agriculture and the need for further research to fully realise their potential.
Collapse
Affiliation(s)
- Declan Watts
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Enzo A Palombo
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Alex Jaimes Castillo
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Bita Zaferanloo
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| |
Collapse
|
11
|
Li X, Wajjiha B, Zhang P, Dang Y, Prasad R, Wei Y, Zhang SH. Serendipita indica chitinase protects rice from the blast and bakanae diseases. J Basic Microbiol 2023. [PMID: 37032320 DOI: 10.1002/jobm.202200349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 01/15/2023] [Accepted: 02/25/2023] [Indexed: 04/11/2023]
Abstract
Serendipita indica, a multifunctional and useful endophyte fungus, has been intensively investigated in promoting plant growth and resistance towards biotic and abiotic stress. Multiple chitinases from microorganisms or plants have been identified to have a high antifungal activity as a biological control. However, chitinase of S. indica still needs to be characterized. We functionally characterized a chitinase (SiChi) in S. indica. The result showed that the purified SiChi protein confers high chitinase activity; importantly, SiChi inhibits the conidial germination of Magnaporthe oryzae and Fusarium moniliforme. After the successful colonization of rice roots by S. indica, both the rice blast disease and bakanae disease were significantly reduced. Interestingly, the purified SiChi could promptly induce rice disease resistance towards M. oryzae and F. moniliforme pathogens when sprayed on rice leaves. Like S. indica, SiChi could upregulate rice pathogen-resistant proteins and defense enzymes. In conclusion, chitinase of S. indica has direct antifungal activity and indirect induced resistance activity, implying an efficient and economic strategy for rice disease control by applying S. indica and SiChi.
Collapse
Affiliation(s)
- Xinrui Li
- The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
- College of Plant Sciences, Jilin University, Changchun, Jilin, China
| | - Batool Wajjiha
- The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Penghui Zhang
- The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
- College of Plant Sciences, Jilin University, Changchun, Jilin, China
| | - Yuejia Dang
- The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | | | - Yi Wei
- The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Shi-Hong Zhang
- The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
- College of Plant Sciences, Jilin University, Changchun, Jilin, China
| |
Collapse
|
12
|
Saleem S, Sekara A, Pokluda R. Serendipita indica-A Review from Agricultural Point of View. PLANTS (BASEL, SWITZERLAND) 2022; 11:3417. [PMID: 36559533 PMCID: PMC9787873 DOI: 10.3390/plants11243417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Fulfilling the food demand of a fast-growing population is a global concern, resulting in increased dependence of the agricultural sector on various chemical formulations for enhancing crop production. This leads to an overuse of chemicals, which is not only harmful to human and animal health, but also to the environment and the global economy. Environmental safety and sustainable production are major responsibilities of the agricultural sector, which is inherently linked to the conservation of the biodiversity, the economy, and human and animal health. Scientists, therefore, across the globe are seeking to develop eco-friendly and cost-effective strategies to mitigate these issues by putting more emphasis on the use of beneficial microorganisms. Here, we review the literature on Serendipita indica, a beneficial endophytic fungus, to bring to the fore its properties of cultivation, the ability to enhance plant growth, improve the quality of produced crops, mitigate various plant stresses, as well as protect the environment. The major points in this review are as follows: (1) Although various plant growth promoting microorganisms are available, the distinguishing character of S. indica being axenically cultivable with a wide range of hosts makes it more interesting for research. (2) S. indica has numerous functions, ranging from promoting plant growth and quality to alleviating abiotic and biotic stresses, suggesting the use of this fungus as a biofertiliser. It also improves the soil quality by limiting the movement of heavy metals in the soil, thus, protecting the environment. (3) S. indica's modes of action are due to interactions with phytohormones, metabolites, photosynthates, and gene regulation, in addition to enhancing nutrient and water absorption. (4) Combined application of S. indica and nanoparticles showed synergistic promotion in crop growth, but the beneficial effects of these interactions require further investigation. This review concluded that S. indica has a great potential to be used as a plant growth promoter or biofertiliser, ensuring sustainable crop production and a healthy environment.
Collapse
Affiliation(s)
- Sana Saleem
- Department of Vegetable Sciences and Floriculture, Faculty of Horticulture, Mendel University in Brno, Valticka 337, 691 44 Lednice, Czech Republic
| | - Agnieszka Sekara
- Department of Horticulture, Faculty of Biotechnology and Horticulture, University of Agriculture, 31-120 Krakow, Poland
| | - Robert Pokluda
- Department of Vegetable Sciences and Floriculture, Faculty of Horticulture, Mendel University in Brno, Valticka 337, 691 44 Lednice, Czech Republic
| |
Collapse
|
13
|
Sabeem M, Abdul Aziz M, Mullath SK, Brini F, Rouached H, Masmoudi K. Enhancing growth and salinity stress tolerance of date palm using Piriformospora indica. FRONTIERS IN PLANT SCIENCE 2022; 13:1037273. [PMID: 36507455 PMCID: PMC9733834 DOI: 10.3389/fpls.2022.1037273] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
Endophytic fungi are known to enhance plant growth and performance under salt stress. The current study investigated the growth, as well as biochemical and molecular properties of Phoenix dactylifera colonized with the mutualistic fungus Piriformospora indica, under control and salinity stress. Our findings indicated an increase in the plant biomass, lateral root density, and chlorophyll content of P. indica-colonized plants under both normal and salt stress conditions. Furthermore, there was a decline in the inoculated plants leaf and root Na+/K+ ratio. The colonization enhanced the levels of antioxidant enzymes such as catalase, superoxide dismutase, and peroxidase in plants. Increased ionic content of Zn and P were also found in salt-stressed date palm. The fungus colonization was also associated with altered expression levels of essential Na+ and K+ ion channels in roots like HKT1;5 and SOS1 genes. This alteration improved plant growth due to their preservation of Na+ and K+ ions balanced homeostasis under salinity stress. Moreover, it was confirmed that RSA1 and LEA2 genes were highly expressed in salt-stressed and colonized plant roots and leaves, respectively. The current study exploited P. indica as an effective natural salt stress modulator to ameliorate salinity tolerance in plants.
Collapse
Affiliation(s)
- Miloofer Sabeem
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al−Ain, Abu−Dhabi, United Arab Emirates
| | - Mughair Abdul Aziz
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al−Ain, Abu−Dhabi, United Arab Emirates
| | - Sangeeta K. Mullath
- Department of Vegetable Science, College of Agriculture, Kerala Agricultural University, Vellanikkara, Thrissur, India
| | - Faical Brini
- Plant Protection Laboratory, Center of Biotechnology, Sfax (CBS), University of Sfax, Sfax, Tunisia
| | - Hatem Rouached
- Michigan State University, Plant and Soil Science Building, East Lansing, MI, United States
| | - Khaled Masmoudi
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al−Ain, Abu−Dhabi, United Arab Emirates
| |
Collapse
|
14
|
Yaghoubian I, Modarres-Sanavy SAM, Smith DL. Plant growth promoting microorganisms (PGPM) as an eco-friendly option to mitigate water deficit in soybean (Glycine max L.): Growth, physio-biochemical properties and oil content. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 191:55-66. [PMID: 36183672 DOI: 10.1016/j.plaphy.2022.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Drought, as an important challenge in Iran, affects all growth indicators for plants. Application of plant growth promoting microorganisms (PGPM) can reduce the detrimental effects of water deficit on plants. Two separate field experiments were conducted at the Tehran and Hashtrood sites, Iran in 2019 to study the influences of Azotobacter chroococcum (Az) and Piriformospora indica (Pi) or Az + Pi on growth, physio-biochemical properties and oil content of soybean (Glycine max L.) under water deficit conditions. Although water deficit dramatically reduced the plant height, percent vegetation cover and relative water content (RWC), plots treated with Az and Pi exhibited higher performance mentioned traits at both sites. Besides, co-inoculation of Az and Pi increased proline in Tehran (48.85 and 29.24% in leaf and root, respectively) and Hashtrood (46.91 and 48.91% in leaf and root, respectively) under severe water deficit. Accumulation of glycine betaine, soluble sugars and proteins increased for plots which received Az and Pi. Under severe water deficit conditions, the co-inoculation with Az and Pi enhanced the oil content of soybean by 12.87 and 9.37% at Tehran and Hashtrood sites respectively. Application of Az and Pi resulted in reducing the adverse effects of water deficit on oil quality of soybean by increasing the linoleic and linolenic acid in oil. Moreover, inoculation of soybean with Az and Pi can provide drought tolerance by improving ascorbate peroxidase (APX), catalase (CAT), superoxide dismutase (SOD) and peroxidase (POX) activity. However, co-inoculation with Az and Pi was generally more effective in the alleviation of water deficit detrimental effects than sole inoculation with Az and Pi. Consequently, it can be a good approach for improving tolerance, growth and oil production of soybean under water deficit conditions.
Collapse
Affiliation(s)
- Iraj Yaghoubian
- Department of Agronomy, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| | | | - Donald L Smith
- Department of Plant Sciences, McGill University, Montreal, QC, Canada.
| |
Collapse
|
15
|
Poveda J, Díaz-González S, Díaz-Urbano M, Velasco P, Sacristán S. Fungal endophytes of Brassicaceae: Molecular interactions and crop benefits. FRONTIERS IN PLANT SCIENCE 2022; 13:932288. [PMID: 35991403 PMCID: PMC9390090 DOI: 10.3389/fpls.2022.932288] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Brassicaceae family includes an important group of plants of great scientific interest, e.g., the model plant Arabidopsis thaliana, and of economic interest, such as crops of the genus Brassica (Brassica oleracea, Brassica napus, Brassica rapa, etc.). This group of plants is characterized by the synthesis and accumulation in their tissues of secondary metabolites called glucosinolates (GSLs), sulfur-containing compounds mainly involved in plant defense against pathogens and pests. Brassicaceae plants are among the 30% of plant species that cannot establish optimal associations with mycorrhizal hosts (together with other plant families such as Proteaceae, Chenopodiaceae, and Caryophyllaceae), and GSLs could be involved in this evolutionary process of non-interaction. However, this group of plants can establish beneficial interactions with endophytic fungi, which requires a reduction of defensive responses by the host plant and/or an evasion, tolerance, or suppression of plant defenses by the fungus. Although much remains to be known about the mechanisms involved in the Brassicaceae-endophyte fungal interaction, several cases have been described, in which the fungi need to interfere with the GSL synthesis and hydrolysis in the host plant, or even directly degrade GSLs before they are hydrolyzed to antifungal isothiocyanates. Once the Brassicaceae-endophyte fungus symbiosis is formed, the host plant can obtain important benefits from an agricultural point of view, such as plant growth promotion and increase in yield and quality, increased tolerance to abiotic stresses, and direct and indirect control of plant pests and diseases. This review compiles the studies on the interaction between endophytic fungi and Brassicaceae plants, discussing the mechanisms involved in the success of the symbiosis, together with the benefits obtained by these plants. Due to their unique characteristics, the family Brassicaceae can be seen as a fruitful source of novel beneficial endophytes with applications to crops, as well as to generate new models of study that allow us to better understand the interactions of these amazing fungi with plants.
Collapse
Affiliation(s)
- Jorge Poveda
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Sandra Díaz-González
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA/CSIC), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain
| | - María Díaz-Urbano
- Group of Genetics, Breeding and Biochemistry of Brassicas, Misión Biológica de Galicia (MBG), Spanish National Research Council (CSIC), Pontevedra, Spain
| | - Pablo Velasco
- Group of Genetics, Breeding and Biochemistry of Brassicas, Misión Biológica de Galicia (MBG), Spanish National Research Council (CSIC), Pontevedra, Spain
| | - Soledad Sacristán
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA/CSIC), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| |
Collapse
|
16
|
Symbiotic interplay of Piriformospora indica and Azotobacter chroococcum augments crop productivity and biofortification of Zinc and Iron. Microbiol Res 2022; 262:127075. [DOI: 10.1016/j.micres.2022.127075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 11/21/2022]
|
17
|
Chen XL, Sun MC, Chong SL, Si JP, Wu LS. Transcriptomic and Metabolomic Approaches Deepen Our Knowledge of Plant-Endophyte Interactions. FRONTIERS IN PLANT SCIENCE 2022; 12:700200. [PMID: 35154169 PMCID: PMC8828500 DOI: 10.3389/fpls.2021.700200] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 12/22/2021] [Indexed: 05/10/2023]
Abstract
In natural systems, plant-symbiont-pathogen interactions play important roles in mitigating abiotic and biotic stresses in plants. Symbionts have their own special recognition ways, but they may share some similar characteristics with pathogens based on studies of model microbes and plants. Multi-omics technologies could be applied to study plant-microbe interactions, especially plant-endophyte interactions. Endophytes are naturally occurring microbes that inhabit plants, but do not cause apparent symptoms in them, and arise as an advantageous source of novel metabolites, agriculturally important promoters, and stress resisters in their host plants. Although biochemical, physiological, and molecular investigations have demonstrated that endophytes confer benefits to their hosts, especially in terms of promoting plant growth, increasing metabolic capabilities, and enhancing stress resistance, plant-endophyte interactions consist of complex mechanisms between the two symbionts. Further knowledge of these mechanisms may be gained by adopting a multi-omics approach. The involved interaction, which can range from colonization to protection against adverse conditions, has been investigated by transcriptomics and metabolomics. This review aims to provide effective means and ways of applying multi-omics studies to solve the current problems in the characterization of plant-microbe interactions, involving recognition and colonization. The obtained results should be useful for identifying the key determinants in such interactions and would also provide a timely theoretical and material basis for the study of interaction mechanisms and their applications.
Collapse
Affiliation(s)
| | | | | | | | - Ling-shang Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
18
|
Mechanism of the synergistic impact of Piriformospora indica and Azotobacter chroococcum on Zn and Fe biofortification. CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
19
|
Khalvandi M, Amerian M, Pirdashti H, Keramati S. Does co-inoculation of mycorrhiza and Piriformospora indica fungi enhance the efficiency of chlorophyll fluorescence and essential oil composition in peppermint under irrigation with saline water from the Caspian Sea? PLoS One 2021; 16:e0254076. [PMID: 34242262 PMCID: PMC8270468 DOI: 10.1371/journal.pone.0254076] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/19/2021] [Indexed: 11/27/2022] Open
Abstract
Symbiotic associations with endophytic fungi are ecologically important for medicinal and aromatic plants. Endophytic fungi highly affect the quantity and quality of herbal products. In this study, a pot experiment was carried out in the greenhouse to investigate the interactive effects of Piriformospora indica and arbuscular mycorrhizal (AMF) inoculation on the chlorophyll fluorescence, essential oil composition, and antioxidant enzymes of peppermint under saline condition. The results showed that Fo, YNPQ, YNO, and NPQ values were obviously increased under salinity conditions, while essential oil content, chlorophyll a and b, gs, Fm, Fv, ETR, ФPSII and Fv/Fm ratio decreased by increasing salinity. In addition, salt induced the excess Na+ uptake, whereas the opposite trend was observed for P and K+. The synergistic association of P. indica and AMF caused a considerable increase in the antioxidant ability, essential oil content, Fv/Fm ratio, ФPSII, and amount of P and K+ uptake in salt-stressed plants. The main peppermint oil constituents, menthol, menthone, and 1,8-cineole increased considerably in inoculated plants. Besides, the applied endophytic fungi positively enhanced the ability of peppermint to alleviate the negative effect of the salinity stress.
Collapse
Affiliation(s)
- Masoumeh Khalvandi
- Department of Agronomy, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran
- * E-mail:
| | - Mohammadreza Amerian
- Department of Agronomy, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran
| | - Hematollah Pirdashti
- Department of Agronomy, Genetic and Agricultural Biotechnology Institute of Tabarestan, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Sara Keramati
- Department of Agronomy, Genetic and Agricultural Biotechnology Institute of Tabarestan, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| |
Collapse
|
20
|
Piriformospora indica: Biodiversity, Ecological Significances, and Biotechnological Applications for Agriculture and Allied Sectors. Fungal Biol 2021. [DOI: 10.1007/978-3-030-67561-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Brassica oleracea var. acephala (kale) improvement by biological activity of root endophytic fungi. Sci Rep 2020; 10:20224. [PMID: 33214647 PMCID: PMC7678862 DOI: 10.1038/s41598-020-77215-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/06/2020] [Indexed: 11/08/2022] Open
Abstract
Brassica oleracea var. acephala (kale) is a cruciferous vegetable widely cultivated for its leaves and flower buds in Atlantic Europe and the Mediterranean area, being a food of great interest as a "superfood" today. Little has been studied about the diversity of endophytic fungi in the Brassica genus, and there are no studies regarding kale. In this study, we made a survey of the diversity of endophytic fungi present in the roots of six different Galician kale local populations. In addition, we investigated whether the presence of endophytes in the roots was beneficial to the plants in terms of growth, cold tolerance, or resistance to bacteria and insects. The fungal isolates obtained belonged to 33 different taxa. Among those, a Fusarium sp. and Pleosporales sp. A between Setophoma and Edenia (called as Setophoma/Edenia) were present in many plants of all five local populations, being possible components of a core kale microbiome. For the first time, several interactions between endophytic fungus and Brassica plants are described and is proved how different interactions are beneficial for the plant. Fusarium sp. and Pleosporales sp. B close to Pyrenophora (called as Pyrenophora) promoted plant growth and increased cold tolerance. On the other hand, isolates of Trichoderma sp., Pleosporales sp. C close to Phialocephala (called as Phialocephala), Fusarium sp., Curvularia sp., Setophoma/Edenia and Acrocalymma sp. were able to activate plant systemic resistance against the bacterial pathogen Xanthomonas campestris. We also observed that Fusarium sp., Curvularia sp. and Setophoma/Edenia confered resistance against Mamestra brassicae larvae.
Collapse
|
22
|
Pérez-Alonso MM, Guerrero-Galán C, Scholz SS, Kiba T, Sakakibara H, Ludwig-Müller J, Krapp A, Oelmüller R, Vicente-Carbajosa J, Pollmann S. Harnessing symbiotic plant-fungus interactions to unleash hidden forces from extreme plant ecosystems. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3865-3877. [PMID: 31976537 PMCID: PMC7316966 DOI: 10.1093/jxb/eraa040] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/21/2020] [Indexed: 05/15/2023]
Abstract
Global climate change is arguably one of the biggest threats of modern times and has already led to a wide range of impacts on the environment, economy, and society. Owing to past emissions and climate system inertia, global climate change is predicted to continue for decades even if anthropogenic greenhouse gas emissions were to stop immediately. In many regions, such as central Europe and the Mediterranean region, the temperature is likely to rise by 2-5 °C and annual precipitation is predicted to decrease. Expected heat and drought periods followed by floods, and unpredictable growing seasons, are predicted to have detrimental effects on agricultural production systems, causing immense economic losses and food supply problems. To mitigate the risks of climate change, agricultural innovations counteracting these effects need to be embraced and accelerated. To achieve maximum improvement, the required agricultural innovations should not focus only on crops but rather pursue a holistic approach including the entire ecosystem. Over millions of years, plants have evolved in close association with other organisms, particularly soil microbes that have shaped their evolution and contemporary ecology. Many studies have already highlighted beneficial interactions among plants and the communities of microorganisms with which they coexist. Questions arising from these discoveries are whether it will be possible to decipher a common molecular pattern and the underlying biochemical framework of interspecies communication, and whether such knowledge can be used to improve agricultural performance under environmental stress conditions. In this review, we summarize the current knowledge of plant interactions with fungal endosymbionts found in extreme ecosystems. Special attention will be paid to the interaction of plants with the symbiotic root-colonizing endophytic fungus Serendipita indica, which has been developed as a model system for beneficial plant-fungus interactions.
Collapse
Affiliation(s)
- Marta-Marina Pérez-Alonso
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Campus de Montegancedo, Pozuelo de Alarcón (Madrid), Spain
| | - Carmen Guerrero-Galán
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Campus de Montegancedo, Pozuelo de Alarcón (Madrid), Spain
| | - Sandra S Scholz
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Takatoshi Kiba
- RIKEN Center for Sustainable Resource Science, Suehiro, Tsurumi, Yokohama, Japan
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, Suehiro, Tsurumi, Yokohama, Japan
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | | | - Anne Krapp
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Ralf Oelmüller
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Jesús Vicente-Carbajosa
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Campus de Montegancedo, Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Stephan Pollmann
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Campus de Montegancedo, Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| |
Collapse
|
23
|
Kuang C, Li J, Liu H, Liu J, Sun X, Zhu X, Hua W. Genome-Wide Identification and Evolutionary Analysis of the Fruit-Weight 2.2-Like Gene Family in Polyploid Oilseed Rape (Brassica napus L.). DNA Cell Biol 2020; 39:766-782. [DOI: 10.1089/dna.2019.5036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Chen Kuang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Hongfang Liu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Jun Liu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Xingchao Sun
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Xiaoyi Zhu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Wei Hua
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| |
Collapse
|
24
|
Liu B, Liu X, Liu F, Ma H, Ma B, Zhang W, Peng L. Growth improvement of Lolium multiflorum Lam. induced by seed inoculation with fungus suspension of Xerocomus badius and Serendipita indica. AMB Express 2019; 9:145. [PMID: 31515637 PMCID: PMC6742681 DOI: 10.1186/s13568-019-0865-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 08/27/2019] [Indexed: 01/03/2023] Open
Abstract
In this study, a pot experiment was carried out in greenhouse to investigate the potentials of Xerocomus badius and Serendipita indica to penetrate and colonize roots of ryegrass (Lolium multiflorum Lam.) and to induce beneficial effects on seed germination and seedling growth. The results showed that X. badius and S. indica successfully colonized in the root system of L. multiflorum seedlings and the root colonization rate was 72.65% and 88.42%, respectively. By microscopy, the hyphae, chlamydospores and spores produced by S. indica were observed in roots cortex of L. multiflorum seedlings. In comparison with the non-inoculated seedlings, seedlings inoculated with X. badius and S. indica showed significant increase in growth parameters with plant height, basal diameter, biomass accumulation, relative growth rate, leaf relative water content and chlorophyll content. Also, we found that seedlings inoculated with S. indica exhibited a greater growth-promotion as compared with X. badius-inoculated seedlings. No significant influence of the two fungus application has been observed with respect to seed germination. It suggested that well establishments of mutualistic symbiosis between L. multiflorum and X. badius or S. indica were not so essential to seed germination but contributed highly to the survival and growth of the seedlings.
Collapse
|
25
|
Ghorbani A, Omran VOG, Razavi SM, Pirdashti H, Ranjbar M. Piriformospora indica confers salinity tolerance on tomato (Lycopersicon esculentum Mill.) through amelioration of nutrient accumulation, K +/Na + homeostasis and water status. PLANT CELL REPORTS 2019; 38:1151-1163. [PMID: 31152194 DOI: 10.1007/s00299-019-02434-w] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 05/28/2019] [Indexed: 05/21/2023]
Abstract
Piriformospora indica confers salt tolerance in tomato seedlings by increasing the uptake of nutrients such as N, P and Ca, improving K+/Na+ homoeostasis by regulating the expression of NHXs, SOS1 and CNGC15 genes, maintaining water status by regulating the expression of aquaporins. Piriformospora indica, an endophytic basidiomycete, has been shown to increase the growth and improve the plants tolerance to stressful conditions, especially salinity, by establishing the arbuscular mycorrhiza-like symbiotic relationship in various plant hosts. In the present research, the effect of NaCl treatment (150 mM) and P. indica inoculation on growth, accumulation of nutrients, the transcription level of genes involved in ionic homeostasis (NHXs, SOS1 and CNGC15) and regulating water status (PIP1;2, PIP2;4, TIP1;1 and TIP2;2) in roots and leaves of tomato seedlings were investigated. The P. indica improved the uptake of N, P, Ca and K, and reduced Na accumulation, and had no significant effect on Cl accumulation in roots and leaves. The endophytic fungus also increased in K+/Na+ ratio in roots and leaves of tomato by regulating the expression of NHX isoforms and upregulating SOS1 and CNGC15 expression. Salinity stress increased the transcription of PIP2;4 gene and reduced the transcription of PIP1;2, TIP1;1 and TIP2;2 genes compared to the control treatment. However, P. indica inoculation upregulated the expression of PIP1;2 and PIP2;4 genes versus non-inoculated plants but did not have a significant effect on TIP1;1 and TIP2;2 expression. These results conclude that the positive effects of P. indica on nutrients accumulation, ionic homeostasis and water status lead to the increased salinity tolerance and the improved plant growth under NaCl treatment.
Collapse
Affiliation(s)
- Abazar Ghorbani
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Islamic Republic of Iran.
| | - Vali Ollah Ghasemi Omran
- Department of Agronomy, Genetics and Agricultural Biotechnology Institute of Tabarestan, Sari Agricultural Science and Natural Resources University, Sari, Iran.
| | - Seyed Mehdi Razavi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Islamic Republic of Iran
| | - Hemmatollah Pirdashti
- Department of Agronomy, Genetics and Agricultural Biotechnology Institute of Tabarestan, Sari Agricultural Science and Natural Resources University, Sari, Iran
| | - Mojtaba Ranjbar
- Microbial Biotechnology Department, College of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| |
Collapse
|
26
|
S J, Kk S, S M. Multifunctional aspects of Piriformospora indica in plant endosymbiosis. Mycology 2019; 10:182-190. [PMID: 31448152 PMCID: PMC6691789 DOI: 10.1080/21501203.2019.1600063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/21/2019] [Indexed: 11/27/2022] Open
Abstract
(Hymenomycetes, Basidiomycota) is an endophytic fungus that colonises plant roots, and
was originally isolated from Rajasthan desert. It is comparable to Arbuscular
Mycorrhizal (AM) fungi in terms of plant growth promotional effects. P. indica has been used as an ideal example to analyse the
mechanisms of mutualistic symbiosis. Major benefit of P.
indica over AM fungi is that it is axenically cultivable in different
synthetic and complex media. A preliminary attempt was made to scrutinise the role of
P. indica co-cultivation on seedling vigour of common
vegetables like Cucumis sativus L., Abelmoschus esculentus (L.) Moench, Solanum
melongena L. and Capsicum annuum L. The
positive effect of P. indica co-culture on seedling
performance was compared to the effects of growth hormones like indole acetic acid and
benzyl amino purine when supplemented to the MS medium at a concentration of 0.1 mg
ml−1. An exogenous supply of auxin resulted in enhanced production of roots
and cytokinin supplement favoured shoot production, whereas P.
indica co-culture favoured simultaneous production of shoot and root over the
control. P. indica colonisation inside the roots of
C. sativus L. was also successfully established. These
preliminary results indicate the prospective role of P.
indica in vegetable farming through its favourable effect on plant
growth.
Collapse
Affiliation(s)
- Jisha S
- Biotechnology and Bioinformatics Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Thiruvananthapuram, India
| | - Sabu Kk
- Biotechnology and Bioinformatics Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Thiruvananthapuram, India
| | - Manjula S
- Division of Plant Molecular Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
27
|
Lin HF, Xiong J, Zhou HM, Chen CM, Lin FZ, Xu XM, Oelmüller R, Xu WF, Yeh KW. Growth promotion and disease resistance induced in Anthurium colonized by the beneficial root endophyte Piriformospora indica. BMC PLANT BIOLOGY 2019; 19:40. [PMID: 30678653 PMCID: PMC6346537 DOI: 10.1186/s12870-019-1649-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 01/14/2019] [Indexed: 05/30/2023]
Abstract
BACKGROUND Anthurium andraeanum, an important ornamental flower, has to go through a growth-delaying period after transfer from tissue culture to soil, which requires time and extra costs. Furthermore, during this period, the plantlets are highly susceptible to bacterial infections, which results in impaired development and severe losses. Here, we aimed to address whether application of the endophytic fungus, Piriformospora indica protects the A. andraeanum root system during the critical propagation period, and whether P. indica reduce the mortality rate by stimulating the host's resistance against diseases. RESULTS We demonstrate that P. indica shortens the recovery period of Anthurium, promotes growth and confers disease resistance. The beneficial effect of P. indica results in faster elongation of Anthurium roots early in the interaction. P. indica-colonized plants absorb more phosphorus and exhibit higher photosynthesis rates than uncolonized control plants. Moreover, higher activities of stress-related enzymes, of jasmonic acid levels and mRNA levels of jasmonic acid-responsive genes suggest that the fungus prepares the plant to respond more efficiently to potentially upcoming threats, including bacterial wilt. CONCLUSION These results suggest that P. indica is a helpful symbiont for promoting Anthurium rooting and development. All our evidences are sufficient to support the disease resistance conferred by P. indica through the plant-fungal symbiosis. Furthermore, it implicates that P. indica has strong potential as bio-fertilizer for utilization in ornamental plant cultivation.
Collapse
Affiliation(s)
- Hui-Feng Lin
- Sanming Academy of Agricultural Sciences, Sanming, Fujian China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian China
| | - Jun Xiong
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian China
| | - Hui-Ming Zhou
- Sanming Academy of Agricultural Sciences, Sanming, Fujian China
| | - Chang-Ming Chen
- Sanming Academy of Agricultural Sciences, Sanming, Fujian China
| | - Fa-Zhuang Lin
- Sanming Academy of Agricultural Sciences, Sanming, Fujian China
| | - Xu-Ming Xu
- Sanming Academy of Agricultural Sciences, Sanming, Fujian China
| | - Ralf Oelmüller
- Department of General Botany and Plant Physiology, Friedrich-Schiller University, Jena, Germany
| | - Wei-Feng Xu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian China
| | - Kai-Wun Yeh
- Sanming Academy of Agricultural Sciences, Sanming, Fujian China
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
- Climate Exchange and Sustainable Development Research Center, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
28
|
Proteomic approach to understand the molecular physiology of symbiotic interaction between Piriformospora indica and Brassica napus. Sci Rep 2018; 8:5773. [PMID: 29636503 PMCID: PMC5893561 DOI: 10.1038/s41598-018-23994-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/15/2018] [Indexed: 01/18/2023] Open
Abstract
Many studies have been now focused on the promising approach of fungal endophytes to protect the plant from nutrient deficiency and environmental stresses along with better development and productivity. Quantitative and qualitative protein characteristics are regulated at genomic, transcriptomic, and posttranscriptional levels. Here, we used integrated in-depth proteome analyses to characterize the relationship between endophyte Piriformospora indica and Brassica napus plant highlighting its potential involvement in symbiosis and overall growth and development of the plant. An LC-MS/MS based label-free quantitative technique was used to evaluate the differential proteomics under P. indica treatment vs. control plants. In this study, 8,123 proteins were assessed, of which 46 showed significant abundance (34 downregulated and 12 upregulated) under high confidence conditions (p-value ≤ 0.05, fold change ≥2, confidence level 95%). Mapping of identified differentially expressed proteins with bioinformatics tools such as GO and KEGG pathway analysis showed significant enrichment of gene sets involves in metabolic processes, symbiotic signaling, stress/defense responses, energy production, nutrient acquisition, biosynthesis of essential metabolites. These proteins are responsible for root's architectural modification, cell remodeling, and cellular homeostasis during the symbiotic growth phase of plant's life. We tried to enhance our knowledge that how the biological pathways modulate during symbiosis?
Collapse
|