1
|
Nozaki T, Tasaki E, Matsuura K. Cell type specific polyploidization in the royal fat body of termite queens. ZOOLOGICAL LETTERS 2023; 9:20. [PMID: 37821917 PMCID: PMC10566149 DOI: 10.1186/s40851-023-00217-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/09/2023] [Indexed: 10/13/2023]
Abstract
Tissue-specific endopolyploidy is widespread among plants and animals and its role in organ development and function has long been investigated. In insects, the fat body cells of sexually mature females produce substantial amounts of egg yolk precursor proteins (vitellogenins) and exhibit high polyploid levels, which is considered crucial for boosting egg production. Termites are social insects with a reproductive division of labor, and the fat bodies of mature termite queens exhibit higher ploidy levels than those of other females. The fat bodies of mature termite queens are known to be histologically and cytologically specialized in protein synthesis. However, the relationship between such modifications and polyploidization remains unknown. In this study, we investigated the relationship among cell type, queen maturation, and ploidy levels in the fat body of the termite Reticulitermes speratus. We first confirmed that the termite fat body consists of two types of cells, that is, adipocytes, metabolically active cells, and urocytes, urate-storing cells. Our ploidy analysis using flow cytometry has shown that the fat bodies of actively reproducing queens had more polyploid cells than those of newly emerged and pre-reproductive queens, regardless of the queen phenotype (adult or neotenic type). Using image-based analysis, we found that not urocytes, but adipocytes became polyploid during queen differentiation and subsequent sexual maturation. These results suggest that polyploidization in the termite queen fat body is associated with sexual maturation and is regulated in a cell type-specific manner. Our study findings have provided novel insights into the development of insect fat bodies and provide a basis for future studies to understand the functional importance of polyploidy in the fat bodies of termite queens.
Collapse
Affiliation(s)
- Tomonari Nozaki
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
- Laboratory of Evolutionary Genomics, National Institute for Basic Biology, Okazaki, 444-8585, Japan.
| | - Eisuke Tasaki
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
- Department of Biology, Faculty of Science, Niigata University, 8050 Ikarashi 2-No-Cho, Nishi-Ku, Niigata, 950-2181, Japan
| | - Kenji Matsuura
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| |
Collapse
|
2
|
Zülfikaroğlu T, Turgay-İzzetoğlu G, Yikilmaz MS, İzzetoğlu S. Demonstrating the general structure and cell types of the fat body in Blatta orientalis (Oriental Cockroach). Anat Histol Embryol 2021; 51:23-35. [PMID: 34668578 DOI: 10.1111/ahe.12748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 11/30/2022]
Abstract
The fat body is a tissue that originates from mesoderm in insects. It consists of several cell types. The basic cell of the fat body is trophocyte. Glycogen, protein and lipid which are required for energy are stored in these cells. Mycetocyte, urocyte, chromotocyte and haemoglobin cells are the other cell types which originate from differentiated trophocytes. Of the cells found in cockroaches, mycetocytes contain an endosymbiont species of bacteria while urocytes are specialized cells for storing and discharging uric acid. Oenocyte, which is not the fat body cell type but associated with epidermis and the fat body cells, is also found in cockroaches. In this research, the fat body distribution was shown for the first time in three selected sections (thorax, beginning and end of abdomen) in all stages of Blatta orientalis (Linnaeus, 1758). In addition, the fat body cell types and distribution were determined by histological, histochemical and ultrastructural studies. As a result, trophocytes, mycetocytes, urocytes of the fat body and oenocytes which are related to the fat body were determined in B. orientalis. Also, it was revealed that the fat body content increased in the selected regions of the stages depending on the development. We hope that these findings will contribute to data about the fat body and give some directions to insecticide studies.
Collapse
Affiliation(s)
- Tuğba Zülfikaroğlu
- Faculty of Science, Department of Biology, Zoology Section, Ege University, İzmir, Turkey
| | - Gamze Turgay-İzzetoğlu
- Faculty of Science, Department of Biology, Zoology Section, Ege University, İzmir, Turkey
| | - Mehmet Salih Yikilmaz
- Faculty of Science, Department of Biology, Molecular Biology Section, Ege University, İzmir, Turkey
| | - Savaş İzzetoğlu
- Faculty of Science, Department of Biology, Molecular Biology Section, Ege University, İzmir, Turkey
| |
Collapse
|
3
|
Wang D, Huang Z, Billen J, Zhang G, He H, Wei C. Structural diversity of symbionts and related cellular mechanisms underlying vertical symbiont transmission in cicadas. Environ Microbiol 2021; 23:6603-6621. [PMID: 34390615 DOI: 10.1111/1462-2920.15711] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 08/05/2021] [Accepted: 08/08/2021] [Indexed: 11/29/2022]
Abstract
Many insects depend on symbiont(s) for survival. This is particularly the case for sap-feeding hemipteran insects. In this study, we revealed that symbionts harbored in cicadas are diverse and complex, and the yeast-like fungal symbionts (YLS) are present in most cicada species but Hodgkinia is absent. During vertical transmission, Sulcia became swollen with the outer membrane drastically changed, while Hodgkinia became shrunken and changed from irregular to roughly spherical. Sulcia and/or Hodgkinia were exocytosed from the bacteriocytes to the intercellular space of bacteriomes, where they gathered together and were extruded to hemolymph. YLS and associated facultative symbiont(s) in the fat bodies were released to the hemolymph based on bacteriocyte disintegration. The obligate symbiont(s) were endocytosed and exocytosed successively by the epithelial cells of the terminal oocyte, while associated facultative symbiont(s), and possibly also YLS, may take a 'free ride' on the transmission of obligate symbiont(s) to gain entry into the oocyte. Then, the intermixed symbionts formed a characteristic 'symbiont ball' in the oocyte. Our results suggest that YLS in cicadas represent a new example of a relatively early stage of symbiogenesis in insects, and contribute to a better understanding of the diversity and transmission mechanisms of symbionts in insects. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Dandan Wang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China.,State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhi Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Key Laboratory of National Forestry and Grassland Administration for Control of Forest Biological Disasters in Western China, College of Forestry, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Johan Billen
- Zoological Institute, University of Leuven, Naamsestraat 59, B-3000, Leuven, Belgium
| | - Guoyun Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hong He
- Key Laboratory of National Forestry and Grassland Administration for Control of Forest Biological Disasters in Western China, College of Forestry, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Cong Wei
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China.,State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
4
|
Eckelbarger KJ, Hodgson AN. Invertebrate oogenesis – a review and synthesis: comparative ovarian morphology, accessory cell function and the origins of yolk precursors. INVERTEBR REPROD DEV 2021. [DOI: 10.1080/07924259.2021.1927861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Kevin J. Eckelbarger
- Darling Marine Center, School of Marine Sciences, The University of Maine, Walpole, Maine, U.S.A
| | - Alan N. Hodgson
- Department of Zoology and Entomology, Rhodes University, Grahamstown, South Africa
| |
Collapse
|
5
|
Rost-Roszkowska M, Poprawa I, Chajec Ł, Chachulska-Żymełka A, Leśniewska M, Student S. Effects of short- and long-term exposure to cadmium on salivary glands and fat body of soil centipede Lithobius forficatus (Myriapoda, Chilopoda): Histology and ultrastructure. Micron 2020; 137:102915. [PMID: 32652474 DOI: 10.1016/j.micron.2020.102915] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/31/2020] [Accepted: 06/20/2020] [Indexed: 10/24/2022]
Abstract
Cadmium (Cd) is the most widely studied heavy metal in terms of food-chain accumulation and contamination because it can strongly affect all environments (e.g., soil, water, air). It can accumulate in different tissues and organs and can affect the organism at different levels of organization: from organs, tissues and cells though cell organelles and structures to activation of mechanisms of survival and cell death. In soil-dwelling organisms heavy metals gather in all tissues with accumulation properties: midgut, salivary glands, fat body. The aim of this study was to describe the effects of cadmium on the soil species Lithobius forficatus, mainly on two organs responsible for gathering different substances, the fat body and salivary glands, at the ultrastructural level. Changes caused by cadmium short- and long-term intoxication, connected with cell death (autophagy, apoptosis, necrosis), and the crosstalk between them, were analyzed. Adult specimens of L. forficatus were collected in a natural environment and divided into three experimental groups: C (the control group), Cd1 (cultured in soil with 80 mg/kg of CdCl2 for 12 days) and Cd2 (cultured in soil with 80 mg/kg of CdCl2 for 45 days). Transmission electron microscopy revealed ultrastructural alterations in both of the organs analyzed (reduction in the amount of reserve material, the appearance of vacuoles, etc.). Qualitative analysis using TUNEL assay revealed distinct crosstalk between autophagy and necrosis in the fat body adipocytes, while crosstalk between autophagy, apoptosis and necrosis in the salivary glands was detected in salivary glands of the centipedes examined here. We conclude that different organs in the body can react differently to the same stressor, as well as to the same concentration and time of exposure. Different mechanisms at the ultrastructural level activate different types of cell death and with different dynamics.
Collapse
Affiliation(s)
- Magdalena Rost-Roszkowska
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Bankowa 9, 40-007, Katowice, Poland.
| | - Izabela Poprawa
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Bankowa 9, 40-007, Katowice, Poland
| | - Łukasz Chajec
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Bankowa 9, 40-007, Katowice, Poland
| | - Alina Chachulska-Żymełka
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Bankowa 9, 40-007, Katowice, Poland
| | - Małgorzata Leśniewska
- Adam Mickiewicz University, Department of General Zoology, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Sebastian Student
- Silesian University of Technology, Faculty of Automatic Control, Electronics and Computer Science, Akademicka 16, 44-100, Gliwice, Poland; Silesian University of Technology, Biotechnology Centre, Krzywoustego 8, 44-100, Gliwice, Poland
| |
Collapse
|
6
|
Azzollini D, van Iwaarden A, Lakemond CMM, Fogliano V. Mechanical and Enzyme Assisted Fractionation Process for a Sustainable Production of Black Soldier Fly (Hermetia illucens) Ingredients. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.00080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
7
|
Nozaki T, Matsuura K. Evolutionary relationship of fat body endoreduplication and queen fecundity in termites. Ecol Evol 2019; 9:11684-11694. [PMID: 31695878 PMCID: PMC6822035 DOI: 10.1002/ece3.5664] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/24/2019] [Accepted: 08/26/2019] [Indexed: 01/01/2023] Open
Abstract
Endoreduplication or nuclear genome replication without cell division is widely observed in the metabolically active tissues of plants and animals. The fat body cells of adult female insects produce abundant yolk proteins and become polyploid, which is assumed to accelerate egg production. Recently, it was reported that in termites, endopolyploidy in the fat body occurs only in queens but not in the other females; however, the relationship between the fecundity and ploidy level in the fat body remains unclear. Termite queens exhibit a huge variation in their egg-producing capacity among different species; queens in the species with a foraging lifestyle, in which workers leave the nest to forage outside, are much more fecund than those in the species living in a single piece of wood. In this study, we conducted ploidy analyses on three foragings and three wood-dwelling termites via flow cytometry. In all the species, the fat body of queens contained significantly more polyploid cells than that of other nonreproductive females, considering their body size effect. However, the male fat body, which is not involved in yolk production, did not show consistency in polyploid cell numbers among the species studied. Moreover, highly fecund queens in foraging termites exhibit higher levels of endopolyploidy in their fat body than those with less fecundity in wood-dwelling termites. These results suggest that endopolyploidy in the fat body of termite queens can boost their egg production, and the level of endopolyploidy in their fat body is linked to their fecundity. Our study provides a novel insight into the evolutionary relationship between endoreduplication and caste specialization in social insects.
Collapse
Affiliation(s)
- Tomonari Nozaki
- Laboratory of Insect EcologyGraduate School of AgricultureKyoto UniversityKyotoJapan
- Center for the Development of New Model OrganismsNational Institute for Basic BiologyOkazakiJapan
| | - Kenji Matsuura
- Laboratory of Insect EcologyGraduate School of AgricultureKyoto UniversityKyotoJapan
| |
Collapse
|
8
|
Kamińska K, Lipovšek S, Kaszuba F, Rost-Roszkowska M. Ultrastructure of the fat body in the soil centipedes Lithobius forficatus (Lithobiidae) and Geophilus flavus (Geophilidae) according to their seasonal rhythms. ZOOL ANZ 2019. [DOI: 10.1016/j.jcz.2019.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
9
|
Dolejšová K, Křivánek J, Kalinová B, Hadravová R, Kyjaková P, Hanus R. Sex-Pairing Pheromones in Three Sympatric Neotropical Termite Species (Termitidae: Syntermitinae). J Chem Ecol 2018; 44:534-546. [PMID: 29752680 DOI: 10.1007/s10886-018-0965-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/06/2018] [Accepted: 04/30/2018] [Indexed: 11/25/2022]
Abstract
Termite colonies are almost always founded by a pair of winged dispersers, in spite of the high costs and low success rates inherent in independent colony foundation. The dispersal flights of imagoes from natal colonies are followed by mate search, mediated by sex-pairing pheromones. Here, we studied the chemistry of sex-pairing pheromones and the related aspects of mate search in winged imagoes of two facultatively parthenogenetic species, Embiratermes neotenicus and Silvestritermes minutus, and an additional species from the same subfamily, Silvestritermes heyeri. All three species are widespread in the Neotropics, including the rainforests of French Guiana. After the dispersal flight and spontaneous loss of wings, females expose their hypertrophied tergal glands situated under abdominal tergites VIII - X. The females are attractive to males and, upon direct contact, the two sexes form characteristic tandems. Chemical analyses indicated that the females secrete species-specific combinations of unbranched, unsaturated C12 primary alcohols from the tergal glands, (3Z,6Z,8E)-dodeca-3,6,8-trien-1-ol (approx. 200 pg per female) and (3Z)-dodec-3-enol (185 pg) in E. neotenicus, (3Z,6Z)-dodeca-3,6-dien-1-ol (3500 pg) in S. heyeri, and (3Z,6Z)-dodeca-3,6-dien-1-ol (300 pg) and (3Z)-dodec-3-enol (50 pg) in S. minutus. (3Z,6Z,8E)-Dodeca-3,6,8-trien-1-ol and (3Z,6Z)-dodeca-3,6-dien-1-ol act as major pheromone components in the respective species and mimic the function of female tergal gland extracts in electrophysiological and behavioral experiments. Biologically relevant amounts of the third compound, (3Z)-dodec-3-enol, elicited non-significant reactions in males of E. neotenicus and S. minutus, and slight synergistic effects in males of S. minutus when tested in combination with the major component.
Collapse
Affiliation(s)
- Klára Dolejšová
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Jan Křivánek
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Blanka Kalinová
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Romana Hadravová
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague, Czech Republic
| | - Pavlína Kyjaková
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague, Czech Republic.
| | - Robert Hanus
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
10
|
Lipovšek S, Janžekovič F, Novak T. Ultrastructure of fat body cells and Malpighian tubule cells in overwintering Scoliopteryx libatrix (Noctuoidea). PROTOPLASMA 2017; 254:2189-2199. [PMID: 28401359 DOI: 10.1007/s00709-017-1110-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/03/2017] [Indexed: 05/22/2023]
Abstract
The herald moths, Scoliopteryx libatrix, overwinter in hypogean habitats. The ultrastructure of their fat body (FB) cells and Malpighian tubule (MT) epithelial cells was studied by light microscopy and transmission electron microscopy, and essential biometric and biochemical measurements were performed. The FB was composed of adipocytes and sparse urocytes. The ultrastructure of both cells did not change considerably during this natural starvation period, except for rough endoplasmic reticulum (rER) which became more abundant in March females. In the cells, the reserve material consisted of numerous lipid droplets, glycogen rosettes, and protein granula. During overwintering, the lipid droplets diminished, and protein granula became laminated. The MTs consisted of a monolayer epithelium and individual muscle cells. The epithelial cells were attached to the basal lamina by numerous hemidesmosomes. The apical plasma membrane was differentiated into numerous microvilli, many of them containing mitochondria. Nuclei were surrounded by an abundant rER. There were numerous spherites in the perinuclear part of the cells. The basal plasma membrane formed infoldings with mitochondria in between. Nuclei were located either in the basal or in the central part of the cells. During overwintering, spherites were gradually exploited, and autophagic structures appeared: autophagosomes, autolysosomes, and residual bodies. There were no statistical differences between the sexes in any measured biometric and biochemical variables in the same time frames. The energy-supplying lipids and glycogen, and spherite stores were gradually spent during overwintering. In March, the augmented rER signified the intensification of synthetic processes prior to the epigean ecophase.
Collapse
Affiliation(s)
- Saška Lipovšek
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000, Maribor, Slovenia.
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000, Maribor, Slovenia.
- Faculty of Chemistry and Chemical Engineering, University of Maribo, Smetanova ulica 17, 2000, Maribor, Slovenia.
| | - Franc Janžekovič
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000, Maribor, Slovenia
| | - Tone Novak
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000, Maribor, Slovenia
| |
Collapse
|
11
|
Jirošová A, Jančařík A, Menezes RC, Bazalová O, Dolejšová K, Vogel H, Jedlička P, Buček A, Brabcová J, Majer P, Hanus R, Svatoš A. Co-option of the sphingolipid metabolism for the production of nitroalkene defensive chemicals in termite soldiers. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 82:52-61. [PMID: 28126587 DOI: 10.1016/j.ibmb.2017.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 06/06/2023]
Abstract
The aliphatic nitroalkene (E)-1-nitropentadec-1-ene (NPD), reported in early seventies in soldiers of the termite genus Prorhinotermes, was the first documented nitro compound produced by insects. Yet, its biosynthetic origin has long remained unknown. Here, we investigated in detail the biosynthesis of NPD in P. simplex soldiers. First, we track the dynamics in major metabolic pathways during soldier ontogeny, with emphasis on likely NPD precursors and intermediates. Second, we propose a hypothesis of NPD formation and verify its individual steps using in vivo incubations of putative precursors and intermediates. Third, we use a de novo assembled RNA-Seq profiles of workers and soldiers to identify putative enzymes underlying NPD formation. And fourth, we describe the caste- and age-specific expression dynamics of candidate initial genes of the proposed biosynthetic pathway. Our observations provide a strong support to the following biosynthetic scenario of NPD formation, representing an analogy of the sphingolipid pathway starting with the condensation of tetradecanoic acid with l-serine and leading to the formation of a C16 sphinganine. The C16 sphinganine is then oxidized at the terminal carbon to give rise to 2-amino-3-hydroxyhexadecanoic acid, further oxidized to 2-amino-3-oxohexadecanoic acid. Subsequent decarboxylation yields 1-aminopentadecan-2-one, which then proceeds through six-electron oxidation of the amino moiety to give rise to 1-nitropentadecan-2-one. Keto group reduction and hydroxyl moiety elimination lead to NPD. The proposed biosynthetic sequence has been constructed from age-related quantitative dynamics of individual intermediates and confirmed by the detection of labeled products downstream of the administered labeled intermediates. Comparative RNA-Seq analyses followed by qRT-PCR validation identified orthologs of serine palmitoyltransferase and 3-ketodihydrosphingosine reductase genes as highly expressed in the NPD production site, i.e. the frontal gland of soldiers. A dramatic onset of expression of the two genes in the first days of soldier's life coincides with the start of NPD biosynthesis, giving further support to the proposed biosynthetic hypothesis.
Collapse
Affiliation(s)
- Anna Jirošová
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, 166 10 Prague, Czechia
| | - Andrej Jančařík
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, 166 10 Prague, Czechia
| | - Riya C Menezes
- Max-Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| | - Olga Bazalová
- Biology Centre CAS, Branišovská 31, CZ-37005 České Budějovice, Czechia
| | - Klára Dolejšová
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, 166 10 Prague, Czechia; Faculty of Science, Charles University in Prague, Viničná 7, 128 44 Prague, Czechia
| | - Heiko Vogel
- Max-Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| | - Pavel Jedlička
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, 166 10 Prague, Czechia
| | - Aleš Buček
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, 166 10 Prague, Czechia
| | - Jana Brabcová
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, 166 10 Prague, Czechia
| | - Pavel Majer
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, 166 10 Prague, Czechia
| | - Robert Hanus
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, 166 10 Prague, Czechia.
| | - Aleš Svatoš
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, 166 10 Prague, Czechia; Max-Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany.
| |
Collapse
|
12
|
Billen J, Hashim R, Ito F. Ultrastructure of the mandibular gland of the ant Myrmoteras iriodum. ARTHROPOD STRUCTURE & DEVELOPMENT 2016; 45:320-324. [PMID: 27130260 DOI: 10.1016/j.asd.2016.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/14/2016] [Accepted: 04/18/2016] [Indexed: 06/05/2023]
Abstract
The mandibular gland in workers of the formicine ant Myrmoteras iriodum differs from other ants both in its general morphology and ultrastructural organization. The secretory cells appear in a pseudo-epithelial arrangement that gives them a clear polarity. At their apical side, the cells are characterized by a large cup-like extension of the reservoir, from which a bulbous invagination connects to a branched end apparatus. At the basal side, the cells show a labyrinth of basal invaginations, while the lateral cell contacts show clear interdigitations. The cytoplasmic composition reveals the presence of numerous round or elongate inclusions that contain crystalline material. Microtubules are abundant, and locally fibrillar regions are found. The function of the mandibular gland in M. iriodum has not yet been documented, and should be studied using gland extracts and behavioural observations.
Collapse
Affiliation(s)
- Johan Billen
- KU Leuven, Zoological Institute, Naamsestraat 59, box 2466, B-3000, Leuven, Belgium.
| | - Rosli Hashim
- Institute of Biological Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Fuminori Ito
- Faculty of Agriculture, Kagawa University, Ikenobe, Miki, 761-0795, Japan.
| |
Collapse
|
13
|
Poiani SB, Costa-Leonardo AM. Dehiscent organs used for defensive behavior of kamikaze termites of the genus Ruptitermes (Termitidae, Apicotermitinae) are not glands. Micron 2016; 82:63-73. [PMID: 26774748 DOI: 10.1016/j.micron.2015.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 12/22/2015] [Accepted: 12/28/2015] [Indexed: 10/22/2022]
Abstract
During Isoptera evolution, the caste of soldiers disappeared in some Apicotermitinae termites as in the Neotropical Ruptitermes. Paired dorsolateral structures located between the metathorax and abdomen of foraging workers of Ruptitermes were previously denominated dehiscent glands, and are responsible for releasing an adhesive secretion that immobilizes enemies, causing their death. In this study, we investigated the morphology of dehiscent organs of workers of Ruptitermes reconditus, Ruptitermes xanthochiton, and Ruptitermes pitan and also second instar larvae of R. reconditus using light, laser scanning confocal, and transmission electron microscopy. Additionally, we performed a preliminary protein analysis using SDS-PAGE to further characterize the secretion of Ruptitermes dehiscent organs. Our results showed that the dehiscent organs do not exhibit the typical characteristics of the exocrine glandular cells class I, II or III of insects, suggesting that they constitute a new type of defensive organ. Thus, the denomination dehiscent gland was not used but dehiscent organ. Dehiscent organs in larvae are formed by fat body cells. In workers, dehiscent organs are composed by compact masses of cells that accumulate a defensive secretion and are poor in organelles related to the production of secretion. Since the dehiscent organs are not glands, we hypothesize that the dehiscent organs originate from larval fat body. The defensive secretion may have been produced at younger developmental stages of worker or the defensive compounds were absorbed from food and accumulated in the worker fat body. Histochemical techniques and SDS-PAGE revealed that the secretion of Ruptitermes dehiscent organs is constituted mainly by a protein of high molecular weight (200 kDa). In conclusion, the dehiscent organs are extremely different from the exocrine glands of termites and other insects described until now. In fact, they seem to be a specialized fat body that is peculiar and exclusive of Ruptitermes termites.
Collapse
Affiliation(s)
- Silvana B Poiani
- Departamento de Biologia, Instituto de Biociências de Rio Claro, Universidade Estadual Paulista-UNESP, Av. 24A, 1515, Bela Vista, 13.506-900 Rio Claro, SP, Brazil.
| | - Ana M Costa-Leonardo
- Departamento de Biologia, Instituto de Biociências de Rio Claro, Universidade Estadual Paulista-UNESP, Av. 24A, 1515, Bela Vista, 13.506-900 Rio Claro, SP, Brazil
| |
Collapse
|
14
|
Laino A, Mattoni C, Ojanguren-Affilastro A, Cunningham M, Fernando Garcia C. Analysis of lipid and fatty acid composition of three species of scorpions with relation to different organs. Comp Biochem Physiol B Biochem Mol Biol 2015; 190:27-36. [DOI: 10.1016/j.cbpb.2015.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 08/14/2015] [Accepted: 08/14/2015] [Indexed: 11/30/2022]
|
15
|
Votavová A, Tomčala A, Kofroňová E, Kudzejová M, Šobotník J, Jiroš P, Komzáková O, Valterová I. Seasonal Dynamics in the Chemistry and Structure of the Fat Bodies of Bumblebee Queens. PLoS One 2015; 10:e0142261. [PMID: 26559946 PMCID: PMC4641598 DOI: 10.1371/journal.pone.0142261] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 10/20/2015] [Indexed: 11/25/2022] Open
Abstract
Insects’ fat bodies are responsible for nutrient storage and for a significant part of intermediary metabolism. Thus, it can be expected that the structure and content of the fat body will adaptively change, if an insect is going through different life stages. Bumblebee queens belong to such insects as they dramatically change their physiology several times over their lives in relation to their solitary overwintering, independent colony foundation stage, and during the colony life-cycle ending in the senescent stage. Here, we report on changes in the ultrastructure and lipid composition of the peripheral fat body of Bombus terrestris queens in relation to seasonal changes in the queens’ activity. Six life stages are defined and evaluated in particular: pharate, callow, before and after hibernation, egg-laying, and senescence. Transmission electron microscopy revealed that the fat body contained two main cell types–adipocytes and oenocytes. Only adipocytes reveal important changes related to the life phase, and mostly the ration between inclusion and cytoplasm volume varies among particular stages. Both electron microscopy and chemical analyses of lipids highlighted seasonal variability in the quantity of the stored lipids, which peaked prior to hibernation. Triacylglycerols appeared to be the main energy source during hibernation, while the amount of glycogen before and after hibernation remained unchanged. In addition, we observed that the representation of some fatty acids within the triacylglycerols change during the queen’s life. Last but not least, we show that fat body cell membranes do not undergo substantial changes concerning phospholipid composition in relation to overwintering. This finding supports the hypothesis that the cold-adaptation strategy of bumblebee queens is more likely to be based on polyol accumulation than on the restructuring of lipid membranes.
Collapse
Affiliation(s)
| | - Aleš Tomčala
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Edita Kofroňová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Michaela Kudzejová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jan Šobotník
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Pavel Jiroš
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | - Irena Valterová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
16
|
Laranjo LT, Costa-Leonardo AM. Disappearance of fat body proteins during soldier differentiation in the neotropical termite Heterotermes tenuis (Isoptera: Rhinotermitidae). ZOOMORPHOLOGY 2014. [DOI: 10.1007/s00435-014-0241-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Park MS, Takeda M. Cloning of PaAtg8 and roles of autophagy in adaptation to starvation with respect to the fat body and midgut of the Americana cockroach, Periplaneta americana. Cell Tissue Res 2014; 356:405-16. [DOI: 10.1007/s00441-014-1802-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 12/31/2013] [Indexed: 01/06/2023]
|
18
|
Furtado WCA, Azevedo DO, Martins GF, Zanuncio JC, Serrão JE. Histochemistry and ultrastructure of urocytes in the pupae of the stingless bee Melipona quadrifasciata (Hymenoptera: Meliponini). MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2013; 19:1502-1510. [PMID: 24016411 DOI: 10.1017/s1431927613013445] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The main cell types of the adult bee fat body are trophocytes and oenocytes; however, in pupae of some newly emerged bees, trophocytes are modified into cells called urocytes, which possibly function as a substitute for Malpighian tubules during metamorphosis when larval tubules are not functional and/or storage of urate salts is required. This study evaluated the morphology of urocytes in the stingless bee Melipona quadrifasciata and the possibility of maintaining these cells in primary culture. The urocytes M. quadrifasciata are white spherical cells with an irregular surface as observed by stereomicroscopy. They may be found individually or in groups associated with tracheae. Urocytes have a single, small, and spherical nucleus and cytoplasm rich in neutral polysaccharides, lipid droplets, protein, and granules containing calcium and urate salts. Our findings suggest that urocytes play a role in storage of neutral polysaccharides and calcium in M. quadrifasciata pupae and that these cells can be cultured for 72 h.
Collapse
Affiliation(s)
- Waléria C A Furtado
- Department of General Biology, Federal University of Viçosa, 36570-000 Viçosa, MG, Brazil
| | | | | | | | | |
Collapse
|
19
|
Park MS, Park P, Takeda M. Roles of fat body trophocytes, mycetocytes and urocytes in the American cockroach, Periplaneta americana under starvation conditions: an ultrastructural study. ARTHROPOD STRUCTURE & DEVELOPMENT 2013; 42:287-295. [PMID: 23567491 DOI: 10.1016/j.asd.2013.03.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 03/22/2013] [Accepted: 03/22/2013] [Indexed: 06/02/2023]
Abstract
In insects, trophocytes (adipocytes) are major cells of a storage organ, the fat body, from which stored glycogen and lipids are mobilized under starvation. However, cockroaches have 2 additional types of cell in the fat body: mycetocytes harboring an endosymbiont, Blattabacterium cuenoti, and urocytes depositing uric acid in urate vacuoles. These cells have not been investigated in terms of their roles under starvation conditions. To gain insight into the roles of trophocytes, mycetocytes and urocytes in cockroaches, structural changes were first investigated in the cells associated with starvation in the American cockroach, Periplaneta americana, by light and electron microscopy. The area of lipid droplets in trophocytes, the endosymbiont population and mitotic activity in mycetocytes, and the area of urate vacuoles in urocytes were analyzed in association with survival rates of the starved cockroaches. After 2 weeks of starvation, trophocytes lost glycogen rosettes and their area of lipid droplets decreased, but almost all cockroaches survived this period. However, further starvation did not reduce the area, but the survival rates dropped rapidly and all cockroaches died in 7 weeks. Endosymbionts were not affected in terms of population size and mitotic activity, even if the cockroaches were dying. The area of urate vacuoles rapidly decreased in a week of starvation and did not recover upon further starvation. These results indicate that starved cockroaches mobilize glycogen and lipids stored in trophocytes to survive for 2 weeks and then die after the exhaustion of nutrients in these cells. Endosymbionts are not digested for the recycling of nutrients, but uric acid is reused under starvation.
Collapse
Affiliation(s)
- Moon Soo Park
- Research Center for Environmental Genomics, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | | | | |
Collapse
|
20
|
Costa-Leonardo AM, Laranjo LT, Janei V, Haifig I. The fat body of termites: functions and stored materials. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:577-87. [PMID: 23562782 DOI: 10.1016/j.jinsphys.2013.03.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 03/22/2013] [Accepted: 03/25/2013] [Indexed: 05/23/2023]
Abstract
The functions of the fat body in the different castes of termites, and accumulation of energy reserves, proteins and urates within this organ, are reviewed. The termite fat body is involved in multiple metabolic activities, including recycling of nitrogen. Termite fat body showed three different types of cells: adipocytes, urocytes and mycetocytes, the latter restricted to the species Mastotermes darwiniensis. Adipocytes synthesize and store lipids, glycogen and several proteins. These cells also elaborate important peptides, including some that act in immune processes. Urocytes are responsible for the storage of spherocrystals of urates, which vary quantitatively among the termite castes. The different metabolic functions of the fat body in the several castes and stages of termites are associated with specific adipocyte morphologies. The synthesis and storage of different compounds modify the structure of the fat body; this differentiation is coordinated by hormones involved with molting and reproductive cycles.
Collapse
Affiliation(s)
- Ana Maria Costa-Leonardo
- Laboratório de Cupins, Departamento de Biologia, Instituto de Biociências, Universidade Estadual Paulista - UNESP, Campus Rio Claro. Av. 24A, No. 1515, Bela Vista CEP: 13.506-900, Rio Claro, SP, Brazil.
| | | | | | | |
Collapse
|
21
|
Lipovšek S, Novak T, Janžekovič F, Pabst MA. Role of the fat body in the cave crickets Troglophilus cavicola and Troglophilus neglectus (Rhaphidophoridae, Saltatoria) during overwintering. ARTHROPOD STRUCTURE & DEVELOPMENT 2011; 40:54-63. [PMID: 20868768 DOI: 10.1016/j.asd.2010.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 09/09/2010] [Accepted: 09/10/2010] [Indexed: 05/29/2023]
Abstract
The cave crickets Troglophilus cavicola and Troglophilus neglectus are the most widely distributed European species of the family Rhaphidophoridae. Their life cycles span two years. They overwinter twice in caves in 4-6 months lasting diapause, T. cavicola in warmer microhabitats. In caves, older T. cavicola undergo sexual maturation, while T. neglectus do not. We hypothesized that the use of energy-supplying compounds and reserve proteins in the fat body is more extensive in T. cavicola than in T. neglectus. We analyzed the contents and morphology of lipid droplets, glycogen rosettes and protein granula at the beginning, the middle and the end of overwintering applying optic, TEM and biochemical methods. In all individuals, the fat body is composed of about 40 oval ribbons consisted of gradually changing adipocytes and urocytes. T. cavicola use glycogen continuously, and stop using lipids in the middle of overwintering, while this is inverse in T. neglectus. Till the middle of overwintering, all individuals exploit proteins, afterwards they are unevenly exploited. We found that the fat body is differently engaged in metabolism of both cave crickets during overwintering, supporting a more glycogen-dependent metabolism in T. cavicola, and a more lipid-dependent one in T. neglectus.
Collapse
Affiliation(s)
- Saška Lipovšek
- Medical Faculty, University of Maribor, Slomškov trg 15, Maribor, Slovenia.
| | | | | | | |
Collapse
|
22
|
Sobotník J, Hanus R, Piskorski R, Urbanová K, Wimmer Z, Weyda F, Vytisková B, Sillam-Dussès D. Impact of a juvenile hormone analogue on the anatomy and the frontal gland secretion of Prorhinotermes simplex (Isoptera: Rhinotermitidae). JOURNAL OF INSECT PHYSIOLOGY 2010; 56:65-72. [PMID: 19769981 DOI: 10.1016/j.jinsphys.2009.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 09/11/2009] [Accepted: 09/11/2009] [Indexed: 05/28/2023]
Abstract
In termites, juvenile hormone plays a key role in soldier differentiation. To better understand the evolutionary origin of the soldiers, we studied the external and inner morphology of pseudergate-soldier intercastes and neotenic-soldier intercastes formed artificially by the application of juvenile hormone analogue in Prorhinotermes simplex. A majority of these intercastes had a soldier phenotype, whereas the inner anatomy had an intermediary form between two castes or a form specific to intercastes. Our experiments showed that traits of neotenics and soldiers can be shared by the same individuals, although such individuals do not exist naturally in P. simplex, and they have not been reported in other species but in some Termopsidae. Our results reinforce the hypothesis that soldiers may have emerged from soldier neotenics during the evolution of termites.
Collapse
Affiliation(s)
- Jan Sobotník
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Infochemicals Research Team, Flemingovo nám. 2, 166 10 Praha, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Laino A, Cunningham ML, García F, Heras H. First insight into the lipid uptake, storage and mobilization in arachnids: role of midgut diverticula and lipoproteins. JOURNAL OF INSECT PHYSIOLOGY 2009; 55:1118-1124. [PMID: 19686754 DOI: 10.1016/j.jinsphys.2009.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 08/07/2009] [Accepted: 08/10/2009] [Indexed: 05/28/2023]
Abstract
The importance of midgut diverticula (M-diverticula) and hemolymph lipoproteins in the lipid homeostasis of Polybetes phythagoricus was studied. Radioactivity distribution in tissues and hemolymph was analyzed either after feeding or injecting [1-(14)C]-palmitate. In both experiments, radioactivity was mostly taken up by M-diverticula that synthesized diacylglycerols, triacylglycerols and phospholipids in a ratio close to its lipid class composition. M-diverticula total lipids represent 8.08% (by wt), mostly triacylglycerols (74%) and phosphatidylcholine (13%). Major fatty acids were (in decreasing order of abundance) 18:1n-9, 18:2n-6, 16:0, 16:1n-7, 18:0, 18:3n-3. Spider hemocyanin-containing lipoprotein (VHDL) transported 83% of the circulating label at short incubation times. After 24h, VHDL and HDL-1 (comparable to insect lipophorin) were found to be involved in the lipid uptake and release from M-diverticula, HDL-2 playing a negligible role. Lipoprotein's labelled lipid changed with time, phospholipids becoming the main circulating lipid after 24h. These results indicate that arachnid M-diverticula play a central role in lipid synthesis, storage and movilization, analogous to insect fat body or crustacean midgut gland. The relative contribution of HDL-1 and VHDL to lipid dynamics indicated that, unlike insects, spider VHDL significantly contributes to the lipid exchange between M-diverticula and hemolymph.
Collapse
Affiliation(s)
- Aldana Laino
- Instituto de Investigaciones Bioquímicas de La Plata, CCT-La Plata CONICET-UNLP, La Plata 1900, Argentina
| | | | | | | |
Collapse
|
24
|
PISKORSKI RAFAL, HANUS ROBERT, KALINOVÁ BLANKA, VALTEROVÁ IRENA, KŘEČEK JAN, BOURGUIGNON THOMAS, ROISIN YVES, ŠOBOTNÍK JAN. Temporal and geographic variations in the morphology and chemical composition of the frontal gland in imagoes of Prorhinotermes species (Isoptera: Rhinotermitidae). Biol J Linn Soc Lond 2009. [DOI: 10.1111/j.1095-8312.2009.01286.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Cvacka J, Krafková E, Jiros P, Valterová I. Computer-assisted interpretation of atmospheric pressure chemical ionization mass spectra of triacylglycerols. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2006; 20:3586-94. [PMID: 17091535 DOI: 10.1002/rcm.2770] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Current lipidomics approaches require simple and rapid algorithms enabling the interpretation of mass spectra of lipids. Most lipids are complex mixtures of related components in which the composition of the aliphatic fatty acid chains varies from one molecule to the next. Triacylglycerols (TAGs) are an example of such a lipid class. Fatty acid chains are the only parts of the molecule to change from one species to another. Fatty acids, and consequently also TAGs, can be characterized by two parameters; the number of carbon atoms and the number of double bonds. All calculations reflecting relations among ions in the spectra can be easily made using these parameters. An algorithm for the automated interpretation of TAGs from atmospheric pressure chemical ionization mass spectra (TriglyAPCI) is presented in this paper. The algorithm first identifies diacylglycerol fragments and molecular adducts. In the next step, relations among the ions are searched and possible TAG structures are suggested. Individual features of the algorithm are described in detail and the software performance is demonstrated for the liquid chromatography/mass spectrometric (LC/MS) analysis of TAGs isolated from the termite Prorhinotermes canalifrons.
Collapse
Affiliation(s)
- Josef Cvacka
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo námestí 2, 166 10 Prague 6, Czech Republic.
| | | | | | | |
Collapse
|