1
|
Ali MG, Abdelhamid AG, Yousef AE. How colonizing alfalfa sprouts modulates the virulence of Shiga toxin-producing Escherichia coli. Int J Food Microbiol 2025; 428:110972. [PMID: 39608275 DOI: 10.1016/j.ijfoodmicro.2024.110972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/30/2024]
Abstract
Shiga toxin-producing Escherichia coli (STEC), a significant cause of foodborne illnesses, is often associated with the consumption of fresh produce, including alfalfa sprouts. This study was executed to determine how quickly STEC grows, adapts, and colonizes alfalfa sprouts during production and storage, and whether the pathogen's virulence and infectious doses are affected by physiological adaptation to sprouts as an environment. A reporter STEC O157:H7 EDL933 strain was developed to track the transcription of eae, a virulence gene involved in colonizing human intestinal enterocytes. When the seeds were inoculated with 2.1 × 103 CFU/g of the reporter strain, the pathogen's population increased to 1.5 × 106 CFU/g sprouts within 1.38 days and then remained stable during the remainder of the 5-day sprouting, indicating physiological adaptation to this environment. Seeds were inoculated with ∼108 CFU/g and subsequently treated with 2000 ppm calcium hypochlorite solution, followed by a water-rinse (treated seeds), or just rinsed with water (untreated seeds). After 5 days of sprouting, the resulting fresh sprouts were refrigerated for three days at 4 °C. Sprout samples were collected and treated with 2000 ppm calcium hypochlorite solution and rinsed thoroughly with water before counting internalized STEC, or just water-washed before measuring total STEC. The transcription of eae (normalized to cell count) was the highest on the second day of sprouting, but the transcription of other virulence and stress-related genes varied, with sodA being upregulated in STEC cells. Lethal dose 50 (LD50) to Galleria mellonella, a STEC infection animal model, was lower (i.e., virulence was higher) in total STEC collected from fresh sprouts produced from treated seeds, compared to that from untreated seeds (1.9 × 100 and 6.0 × 101 CFU/larva, respectively). Compared to refrigerated sprouts, the LD50 of STEC from freshly produced sprouts was lower. Based on these findings, it can be concluded that (a) STEC quickly adapts physiologically to sprouts as an environment, (b) transcription of STEC virulence genes changed during sprouts production but generally decreased during refrigeration, and (c) STEC from fresh sprouts grown from sanitizer-treated seeds were more virulent in the animal model, but STEC from refrigerated sprouts were less virulent.
Collapse
Affiliation(s)
- Mostafa G Ali
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA; Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt
| | - Ahmed G Abdelhamid
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA; Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt; Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| | - Ahmed E Yousef
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA; Department of Microbiology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
2
|
Thapa K, Julianingsih D, Tung CW, Phan A, Hashmi MA, Bleich K, Biswas D. Berry Pomace Extracts as a Natural Washing Aid to Mitigate Enterohaemorrhagic E. coli in Fresh Produce. Foods 2024; 13:2746. [PMID: 39272511 PMCID: PMC11394880 DOI: 10.3390/foods13172746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) outbreaks have been frequently linked to the consumption of produce. Furthermore, produce grown on organic farms possess a higher risk, as the farmers avoid antibiotics and chemicals. This study sets out to evaluate the effectiveness of advanced postharvest disinfection processes using berry pomace extracts (BPEs) in reducing EHEC load in two common leafy greens, spinach and lettuce. Spinach and lettuce were inoculated with ~5 log CFU/leaf EHEC EDL-933 and then treated with three different concentrations of BPE (1, 1.5, and 2 gallic acid equivalent, GAE mg/mL) for increasing periods of time. After the wash, the bacteria were quantified. Changes in the relative expression of virulence genes and the genes involved in cell division and replication and response against stress/antibiotics were studied. We observed a significant reduction in EHEC EDL933, ranging from 0.5 to 1.6 log CFU/spinach leaf (p < 0.05) washed with BPE water. A similar trend of reduction, ranging from 0.3 to 1.3 log CFU/mL, was observed in pre-inoculated lettuce washed with BPE water. We also quantified the remaining bacterial population in the residual treatment solutions and found the survived bacterial cells (~3 log CFU/mL) were low despite repeated washing with the same solution. In addition, we evaluated the phenolic concentration in leftover BPE, which did not change significantly, even after multiple uses. Alterations in gene expression levels were observed, with downregulation ranging from 1 to 3 log folds in the genes responsible for the adhesion and virulence of EHEC EDL933 and significant upregulation of genes responsible for survival against stress. All other genes were upregulated, ranging from 2 to 7 log folds, with a dose-dependent decrease in expression. This finding shows the potential of BPE to be used for sanitation of fresh produce as a natural and sustainable approach.
Collapse
Affiliation(s)
- Kanchan Thapa
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Dita Julianingsih
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Chuan-Wei Tung
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Anna Phan
- Biological Sciences Program, Molecular and Cellular Biology, University of Maryland, College Park, MD 20742, USA
| | - Muhammad Abrar Hashmi
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Kayla Bleich
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Debabrata Biswas
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
3
|
Cuénod A, Agnetti J, Seth-Smith HMB, Roloff T, Wälchli D, Shcherbakov D, Akbergenov R, Tschudin-Sutter S, Bassetti S, Siegemund M, Nickel CH, Moran-Gilad J, Keys TG, Pflüger V, Thomson NR, Egli A. Bacterial genome-wide association study substantiates papGII of Escherichia coli as a major risk factor for urosepsis. Genome Med 2023; 15:89. [PMID: 37904175 PMCID: PMC10614358 DOI: 10.1186/s13073-023-01243-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/02/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Urinary tract infections (UTIs) are among the most common bacterial infections worldwide, often caused by uropathogenic Escherichia coli. Multiple bacterial virulence factors or patient characteristics have been linked separately to progressive, more invasive infections. In this study, we aim to identify pathogen- and patient-specific factors that drive the progression to urosepsis by jointly analysing bacterial and host characteristics. METHODS We analysed 1076 E. coli strains isolated from 825 clinical cases with UTI and/or bacteraemia by whole-genome sequencing (Illumina). Sequence types (STs) were determined via srst2 and capsule loci via fastKaptive. We compared the isolates from urine and blood to confirm clonality. Furthermore, we performed a bacterial genome-wide association study (bGWAS) (pyseer) using bacteraemia as the primary clinical outcome. Clinical data were collected by an electronic patient chart review. We concurrently analysed the association of the most significant bGWAS hit and important patient characteristics with the clinical endpoint bacteraemia using a generalised linear model (GLM). Finally, we designed qPCR primers and probes to detect papGII-positive E. coli strains and prospectively screened E. coli from urine samples (n = 1657) at two healthcare centres. RESULTS Our patient cohort had a median age of 75.3 years (range: 18.00-103.1) and was predominantly female (574/825, 69.6%). The bacterial phylogroups B2 (60.6%; 500/825) and D (16.6%; 137/825), which are associated with extraintestinal infections, represent the majority of the strains in our collection, many of which encode a polysaccharide capsule (63.4%; 525/825). The most frequently observed STs were ST131 (12.7%; 105/825), ST69 (11.0%; 91/825), and ST73 (10.2%; 84/825). Of interest, in 12.3% (13/106) of cases, the E. coli pairs in urine and blood were only distantly related. In line with previous bGWAS studies, we identified the gene papGII (p-value < 0.001), which encodes the adhesin subunit of the E. coli P-pilus, to be associated with 'bacteraemia' in our bGWAS. In our GLM, correcting for patient characteristics, papGII remained highly significant (odds ratio = 5.27, 95% confidence interval = [3.48, 7.97], p-value < 0.001). An independent cohort of cases which we screened for papGII-carrying E. coli at two healthcare centres further confirmed the increased relative frequency of papGII-positive strains causing invasive infection, compared to papGII-negative strains (p-value = 0.033, chi-squared test). CONCLUSIONS This study builds on previous work linking papGII with invasive infection by showing that it is a major risk factor for progression from UTI to bacteraemia that has diagnostic potential.
Collapse
Affiliation(s)
- Aline Cuénod
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland.
- Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland.
- Parasites and Microbes, Wellcome Trust Sanger Institute, Hinxton, UK.
- Institute for Medical Microbiology, University of Zurich, Zurich, Switzerland.
- Department of Microbiology and Immunology, McGill University, Montréal, Canada.
| | - Jessica Agnetti
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
- Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
| | - Helena M B Seth-Smith
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
- Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
- Institute for Medical Microbiology, University of Zurich, Zurich, Switzerland
- Swiss Institute for Bioinformatics, Basel, Switzerland
| | - Tim Roloff
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
- Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
- Institute for Medical Microbiology, University of Zurich, Zurich, Switzerland
- Swiss Institute for Bioinformatics, Basel, Switzerland
| | - Denise Wälchli
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
- Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
| | - Dimitri Shcherbakov
- Institute for Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Rashid Akbergenov
- Institute for Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Sarah Tschudin-Sutter
- Infectious Diseases and Hospital Epidemiology, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Stefano Bassetti
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland
| | - Martin Siegemund
- Department of Clinical Research, University of Basel, Basel, Switzerland
- Intensive Care Unit, University Hospital Basel, Basel, Switzerland
| | - Christian H Nickel
- Emergency Department, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Jacob Moran-Gilad
- Department of Health Policy and Management, School of Public Health, Faculty of Health Sciences, Ben Gurion University of the Negev, Be'er Sheva, Israel
| | - Timothy G Keys
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | | | - Nicholas R Thomson
- Parasites and Microbes, Wellcome Trust Sanger Institute, Hinxton, UK
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Adrian Egli
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland.
- Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland.
- Institute for Medical Microbiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
4
|
Zhao X, Sun Y, Ma Y, Xu Y, Guan H, Wang D. Research advances on the contamination of vegetables by Enterohemorrhagic Escherichia coli: pathways, processes and interaction. Crit Rev Food Sci Nutr 2022; 64:4833-4847. [PMID: 36377729 DOI: 10.1080/10408398.2022.2146045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Enterohemorrhagic Escherichia coli is considered one of the primary bacterial pathogens that cause foodborne diseases because it can survive in meat, vegetables and so on. Understanding of the effect of vegetable characteristics on the adhesion and proliferation process of EHEC is necessary to develop control measures. In this review, the amount and methods of adhesion, the internalization pathway and proliferation process of EHEC have been described during the vegetable contamination. Types, cultivars, tissue characteristics, leaf age, and damage degree can affect EHEC adhesion on vegetables. EHEC cells contaminate the root surface of vegetables through soil and further internalize. It can also contaminate the stem scar tissue of vegetables by rain or irrigation water and internalize the vertical axis, as well as the stomata, necrotic lesions and damaged tissues of vegetable leaves. After EHEC adhered to the vegetables, they may further proliferate and form biofilms. Leaf and fruit tissues were more sensitive to biofilm formation, and shedding rate of biofilms on epidermis tissue was faster. Insights into the mechanisms of vegetable contamination by EHEC, including the role of exopolysaccharides and proteins responsible for movement, adhesion and oxidative stress response could reveal the molecular mechanism by which EHEC contaminates vegetables.
Collapse
Affiliation(s)
- Xiaoyan Zhao
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yeting Sun
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yue Ma
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yujia Xu
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Hongyang Guan
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Dan Wang
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
5
|
Zhang Z, Wang Y, Chen B, Lei C, Yu Y, Xu N, Zhang Q, Wang T, Gao W, Lu T, Gillings M, Qian H. Xenobiotic pollution affects transcription of antibiotic resistance and virulence factors in aquatic microcosms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119396. [PMID: 35525510 DOI: 10.1016/j.envpol.2022.119396] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/08/2022] [Accepted: 04/30/2022] [Indexed: 06/14/2023]
Abstract
Antibiotic resistance genes (ARGs) and virulence factors (VFs) are critical threats to human health. Their abundance in aquatic ecosystems is maintained and enhanced via selection driven by environmental xenobiotics. However, their activity and expression in these environments under xenobiotic stress remains unknown. Here ARG and VF expression profiles were examined in aquatic microcosms under ciprofloxacin, glyphosate and sertraline hydrochloride treatment. Ciprofloxacin increased total expression of ARGs, particularly multidrug resistance genes. Total expression of ARGs and VFs decreased significantly under glyphosate and sertraline treatments. However, in opportunistic human pathogens, these agents increased expression of both ARGs and VFs. Xenobiotic pollutants, such as the compounds we tested here, have the potential to disrupt microbial ecology, promote resistance, and increase risk to human health. This study systematically evaluated the effects of environmental xenobiotics on transcription of ARGs and VFs, both of which have direct relevance to human health. Transcription of such genes has been overlooked in previous studies.
Collapse
Affiliation(s)
- Zhenyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Yan Wang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Bingfeng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Chaotang Lei
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Yitian Yu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Nuohan Xu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Qi Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Tingzhang Wang
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, 310012, PR China
| | - Wenwen Gao
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, 310012, PR China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Michael Gillings
- ARC Centre of Excellence in Synthetic Biology, Faculty of Science and Engineering, Macquarie University, NSW, 2109, Australia
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China.
| |
Collapse
|
6
|
Inhibitory effect of modified atmosphere packaging on Escherichia coli O157:H7 in fresh-cut cucumbers (Cucumis sativus L.) and effectively maintain quality during storage. Food Chem 2022; 369:130969. [PMID: 34500206 DOI: 10.1016/j.foodchem.2021.130969] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/27/2022]
Abstract
Modified atmosphere packaging (MAP) can inhibit microbial growth and prolong shelf life of fresh-cut cucumbers. This study compared the effects of different packaging gases on the growth of E. coli O157:H7 and sensory characteristics of fresh-cut cucumbers. Changes in key movement, adhesion, and oxidative stress genes expression of strain under optimal MAP and air were determined. Cell population density, the extracellular carbohydrate complex content and expression of curli fimbriae were evaluated. Results revealed that the growth of E. coli O157:H7 in fresh-cut cucumbers could be effectively inhibited under MAP (atmosphere = 2% O2, 7% CO2, 91% N2), and better maintained the sensory characteristics. Furthermore, the inhibition mechanism was revealed by inhibiting the expression of movement (fliC), adhesion (eaeA) and oxidative stress (rpoS and sodB) genes in E. coli O157:H7, reducing biofilm formation, extracellular carbohydrate production and curli fimbriae expression. Proper MAP can maintain the quality and safety of fresh-cut cucumbers.
Collapse
|
7
|
Persistence of Salmonella enterica and Enterococcus faecium NRRL B-2354 on Baby Spinach Subjected to Temperature Abuse after Exposure to Sub-Lethal Stresses. Foods 2021; 10:foods10092141. [PMID: 34574255 PMCID: PMC8472226 DOI: 10.3390/foods10092141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 11/22/2022] Open
Abstract
The exposure of foodborne pathogens such as Salmonella enterica to a sub-lethal stress may protect bacterial cells against distinct stresses during the production of leafy greens, which can constitute potential health hazards to consumers. In this study, we evaluated how the prior exposure of S. enterica to sub-lethal food processing-related stresses influenced its subsequent persistence on baby spinach under cold (4 °C for 7 days) and temperature abuse (37 °C for 2 h + 4 °C for 7 days) conditions. We also compared the survival characteristics of pre-stressed S. enterica and Enterococcus faecium NRRL B-2354 as its surrogate on baby spinach. A cocktail of three S. enterica serovars, as well as S. Typhimurium ATCC 14028 wild type and its ΔrpoS mutant, and E. faecium NRRL B-2354, was first exposed to sub-lethal desiccation, oxidation, heat shock, and acid stresses. Afterward, baby spinach was inoculated with unstressed or pre-stressed cells at 7.0 log CFU/sample unit, followed by 7-day storage under cold and temperature abuse conditions. The unstressed S. enterica (fresh cells in sterile 0.85% saline) decreased rapidly within the first day and thereafter persisted around 5.5 log CFU/sample unit under both conditions. The desiccation-stressed S. enterica showed the highest bacterial counts (p < 0.05) compared to other conditions. The unstressed S. enterica survived better (p < 0.05) than the oxidation- and acid-stressed S. enterica, while there were no significant differences (p > 0.05) between the unstressed and heat-shocked S. enterica. Unlike the wild type, temperature abuse did not lead to the enhanced survival of the ΔrpoS mutant after exposure to desiccation stress, indicating that the rpoS gene could play a critical role in the persistence of desiccation-stressed S. enterica subjected to temperature abuse. E. faecium NRRL B-2354 was more persistent (p < 0.05) than the pre-stressed S. enterica under both conditions, suggesting its use as a suitable surrogate for pre-stressed S. enterica by providing a sufficient safety margin. Our results demonstrate the merit of considering the prior exposure of foodborne pathogens to sub-lethal stresses when validating the storage conditions for leafy greens.
Collapse
|
8
|
Azimirad M, Nadalian B, Alavifard H, Negahdar Panirani S, Mahdigholi Vand Bonab S, Azimirad F, Gholami F, Jabbari P, Yadegar A, Busani L, Asadzadeh Aghdaei H, Zali MR. Microbiological survey and occurrence of bacterial foodborne pathogens in raw and ready-to-eat green leafy vegetables marketed in Tehran, Iran. Int J Hyg Environ Health 2021; 237:113824. [PMID: 34365294 DOI: 10.1016/j.ijheh.2021.113824] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/19/2021] [Accepted: 08/01/2021] [Indexed: 01/28/2023]
Abstract
Fresh leafy (FL) and ready-to-eat (RTE) vegetables are recognized as an important source of foodborne disease outbreaks worldwide. Currently, there are no data available for the prevalnce of bacterial foodborne pathogens (FBPs) in raw vegetables consumed in Iran. Here, we evalated the presence of common bacterial FBPs among 366 samples of raw vegetables including 274 FL and 92 RTE collected from 21 districts of Tehran. The presence of FBPs were screened using conventional microbiological culture methods and real-time PCR assays. Overall, a higher rate of bacterial contamination was detected in FL compared to RTE samples using both detection methods. The results obtained by microbiological methods showed that Staphylococcus aureus (134/366, 36.6%), followed by Escherichia coli (85/366, 23.2%) and Clostridium perfringens (66/366, 18%) were detetcted as the most prevalent pathogens in this study. Vibrio cholerae was not detected in any of the samples either by microbiological methods or by the real-time PCR assays. There was a noticeable reduction in the proportion of Campylobacter positive samples using conventional microbiological methods (3.5%) compared to the real-time PCR assay (20.7%). The proportion of FL and RTE positive samples obtained by conventional microbiological methods was significantly different (P < 0.05) for C. perfringens, Campylobacter spp. and S. aureus. The proportion of positive samples in FL and RTE vegetables obtained by the real-time PCR assays was significantly different (P < 0.05) for C. perfringens, S. aureus, Helicobacter pylori and STEC/EHEC, the last one was found more frequently in RTE than in FL samples. Our findings indicated a contamination of FL and RTE vegetables in Iran with a range of well-known and emerging FBPs. Positivity and the distribution of bacterial species from the current data indicated different contamination sources, and overall a lack of effective decontamination steps during the production chain. Moreover, further information about the quality of the water, the hygiene measures implemented during the processing, storage and marketing are required to better identify the critical points and define the proper measures.
Collapse
Affiliation(s)
- Masoumeh Azimirad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Banafsheh Nadalian
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Helia Alavifard
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shaho Negahdar Panirani
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Solmaz Mahdigholi Vand Bonab
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fahimeh Azimirad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Gholami
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parnia Jabbari
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Luca Busani
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Liao C, Wang L. Evaluation of the bacterial populations present in Spring Mix salad and their impact on the behavior of Escherichia coli O157:H7. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107865] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
10
|
Krahulcová M, Micajová B, Olejníková P, Cverenkárová K, Bírošová L. Microbial Safety of Smoothie Drinks from Fresh Bars Collected in Slovakia. Foods 2021; 10:551. [PMID: 33799940 PMCID: PMC8000542 DOI: 10.3390/foods10030551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/28/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
Among the many consumers in Slovakia, smoothies are nowadays gaining popularity. Smoothie drinks are prepared from raw fruits and vegetables. Therefore, their microbiological safety depends on hygiene standards. The aim of this work was to monitor and quantify selected sensitive and antibiotic-resistant microorganisms present in collected smoothies. Twenty analyzed smoothie samples were collected from six food service establishments (fresh bars) in the capital city of Slovakia, Bratislava. Antibiotic-resistant bacteria were found in at least one of each fresh bar. Antibiotic-resistant coliform bacteria prevailed, especially in green smoothies or juices containing more vegetable ingredients. Resistance to ampicillin, ciprofloxacin, tetracycline, chloramphenicol, and gentamicin was observed in the case of coliform bacteria. More than half of the smoothie drink samples did not contain resistant enterococci. On the other hand, vancomycin-resistant enterococci were detected in 20% of samples. The most frequently isolated antibiotic-resistant strains belonged to the Enterobacter spp. or Klebsiella spp. genus. In the last part of the work, the pretreatment effect of smoothie components on the selected microorganisms' counts in the final product was investigated. Washing ingredients with an aqueous solution of a biocide agent containing silver and hydrogen peroxide proved to be the most effective way to decrease bacterial counts.
Collapse
Affiliation(s)
- Monika Krahulcová
- Faculty of Chemical and Food Technology, Department of Nutrition and Food Quality Assessment, Slovak University of Technology, Radlinského 9, 81237 Bratislava, Slovakia; (B.M.); (K.C.); (L.B.)
| | - Barbora Micajová
- Faculty of Chemical and Food Technology, Department of Nutrition and Food Quality Assessment, Slovak University of Technology, Radlinského 9, 81237 Bratislava, Slovakia; (B.M.); (K.C.); (L.B.)
| | - Petra Olejníková
- Faculty of Chemical and Food Technology, Institute of Biochemistry and Microbiology, Slovak University of Technology, Radlinského 9, 81237 Bratislava, Slovakia;
| | - Klára Cverenkárová
- Faculty of Chemical and Food Technology, Department of Nutrition and Food Quality Assessment, Slovak University of Technology, Radlinského 9, 81237 Bratislava, Slovakia; (B.M.); (K.C.); (L.B.)
| | - Lucia Bírošová
- Faculty of Chemical and Food Technology, Department of Nutrition and Food Quality Assessment, Slovak University of Technology, Radlinského 9, 81237 Bratislava, Slovakia; (B.M.); (K.C.); (L.B.)
| |
Collapse
|
11
|
Yin HB, Gupta N, Chen CH, Boomer A, Pradhan A, Patel J. Persistence of Escherichia coli O157:H12 and Escherichia coli K12 as Non-pathogenic Surrogates for O157:H7 on Lettuce Cultivars Irrigated With Secondary-Treated Wastewater and Roof-Collected Rain Water in the Field. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.555459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Treated wastewater (TW) and roof-collected rain water (RW) that meet the required microbial quality as per Food Safety Modernization Act (FSMA) regulation may serve as alternative irrigation water sources to decrease the pressure on the current water scarcity. Alternative water sources may have different water characteristics that influence the survival and transfer of microorganisms to the irrigated produce. Further, these water sources may contain pathogenic bacteria such as Shiga-toxigenic Escherichia coli. To evaluate the risk associated with TW and RW irrigation on the fresh produce safety, the effect of TW and RW irrigation on the transfer of two non-pathogenic E. coli strains as surrogates for E. coli O157:H7 to different lettuce cultivars grown in the field was investigated. Lettuce cultivars “Annapolis,” “Celinet,” and “Coastline” were grown in the field at the Fulton farm (Chambersburg, PA). Approximately 10 days before harvest, lettuce plants were spray-irrigated with groundwater (GW), TW, or RW containing 6 log CFU ml−1 of a mixture of nalidixic acid-resistant E. coli O157:H12 and chloramphenicol-resistant E. coli K12 in fecal slurry as non-pathogenic surrogates for E. coli O157:H7. On 0, 1, 3, 7, and 10 days post-irrigation, four replicate lettuce leaf samples (30 g per sample) from each group were collected and pummeled in 120 ml of buffered peptone water for 2 min, followed by spiral plating on MacConkey agars with antibiotics. Results showed that the recovery of E. coli O157:H12 was significantly greater than the populations of E. coli K12 recovered from the irrigated lettuce regardless of the water sources and the lettuce cultivars. The TW irrigation resulted in the lowest recovery of the E. coli surrogates on the lettuce compared to the populations of these bacteria recovered from the lettuce with RW and GW irrigation on day 0. The difference in leaf characteristics of lettuce cultivars significantly influenced the recovery of these surrogates on lettuce leaves. Populations of E. coli O157:H12 recovered from the RW-irrigated “Annapolis” lettuce were significantly lower than the recovery of this bacterium from the “Celinet” and “Coastline” lettuce (P < 0.05). Overall, the recovery of specific E. coli surrogates from the RW and TW irrigated lettuce was comparable to the lettuce with the GW irrigation, where GW served as a baseline water source. E. coli O157:H12 could be a more suitable surrogate compared to E. coli K12 because it is an environmental watershed isolate. The findings of this study provide critical information in risk assessment evaluation of RW and TW irrigation on lettuce in Mid-Atlantic area.
Collapse
|
12
|
Bondue P, Milani C, Arnould E, Ventura M, Daube G, LaPointe G, Delcenserie V. Bifidobacterium mongoliense genome seems particularly adapted to milk oligosaccharide digestion leading to production of antivirulent metabolites. BMC Microbiol 2020; 20:111. [PMID: 32380943 PMCID: PMC7206731 DOI: 10.1186/s12866-020-01804-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 04/26/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Human milk oligosaccharides (HMO) could promote the growth of bifidobacteria, improving young children's health. In addition, fermentation of carbohydrates by bifidobacteria can result in the production of metabolites presenting an antivirulent activity against intestinal pathogens. Bovine milk oligosaccharides (BMO), structurally similar to HMO, are found at high concentration in cow whey. This is particularly observed for 3'-sialyllactose (3'SL). This study focused on enzymes and transport systems involved in HMO/BMO metabolism contained in B. crudilactis and B. mongoliense genomes, two species from bovine milk origin. The ability of B. mongoliense to grow in media supplemented with whey or 3'SL was assessed. Next, the effects of cell-free spent media (CFSM) were tested against the virulence expression of Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium. RESULTS Due to the presence of genes encoding β-galactosidases, β-hexosaminidases, α-sialidases and α-fucosidases, B. mongoliense presents a genome more sophisticated and more adapted to the digestion of BMO/HMO than B. crudilactis (which contains only β-galactosidases). In addition, HMO/BMO digestion involves genes encoding oligosaccharide transport systems found in B. mongoliense but not in B. crudilactis. B. mongoliense seemed able to grow on media supplemented with whey or 3'SL as main source of carbon (8.3 ± 1.0 and 6.7 ± 0.3 log cfu/mL, respectively). CFSM obtained from whey resulted in a significant under-expression of ler, fliC, luxS, stx1 and qseA genes (- 2.2, - 5.3, - 2.4, - 2.5 and - 4.8, respectively; P < 0.05) of E. coli O157:H7. CFSM from 3'SL resulted in a significant up-regulation of luxS (2.0; P < 0.05) gene and a down-regulation of fliC (- 5.0; P < 0.05) gene. CFSM obtained from whey resulted in significant up-regulations of sopD and hil genes (2.9 and 3.5, respectively; P < 0.05) of S. Typhimurium, while CFSM obtained from 3'SL fermentation down-regulated hil and sopD genes (- 2.7 and - 4.2, respectively; P < 0.05). CONCLUSION From enzymes and transporters highlighted in the genome of B. mongoliense and its potential ability to metabolise 3'SL and whey, B. mongoliense seems well able to digest HMO/BMO. The exact nature of the metabolites contained in CFSM has to be identified still. These results suggest that BMO associated with B. mongoliense could be an interesting synbiotic formulation to maintain or restore intestinal health of young children.
Collapse
Affiliation(s)
- Pauline Bondue
- Department of Food Science, Fundamental and Applied Research for Animal and Health, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Emilie Arnould
- Department of Food Science, Fundamental and Applied Research for Animal and Health, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Georges Daube
- Department of Food Science, Fundamental and Applied Research for Animal and Health, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Gisèle LaPointe
- Canadian Research Institute for Food Safety, University of Guelph, Guelph, Canada
| | - Véronique Delcenserie
- Department of Food Science, Fundamental and Applied Research for Animal and Health, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium.
| |
Collapse
|
13
|
Mahmoudzadeh M, Hosseini H, Mahmoudzadeh L, Mazaheri Nezhad Fard R. Comparative Effects of Carum copticum Essential Oil on Bacterial Growth and Shiga-Toxin Gene Expression of Escherichia coli O157:H7 at Abused Refrigerated Temperatures. Curr Microbiol 2020; 77:1660-1666. [PMID: 32285153 DOI: 10.1007/s00284-020-01987-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 04/06/2020] [Indexed: 11/30/2022]
Abstract
Abused refrigerated temperatures are described as unacceptable deviations from the optimal temperature, occurring frequently during transportation of food products. Escherichia coli O157:H7 is a serious contaminant of meats and meat products due to its ability to grow at abused temperatures (> 10 °C). The aim of this study was to evaluate the antibacterial activity of Carum copticum essential oil for the control of Escherichia coli O157:H7 using laboratory media and minced beef at severe abused refrigerated temperature (15 °C). A comparative quantitative reverse transcription real-time PCR was used to assess effects of temperature and Carum copticum essential oil at sub-minimum inhibitory concentrations on bacterial growth and Shiga-toxin gene (stx1A and stx2A) expression. Results indicated that Carum copticum essential oil inhibited growth of E. coli O157:H7 in tryptone soy broth (TSB) media at all sub-MIC values until Hour 48. However, bacterial population increased progressively until Hour 72 at essential oil concentration of 0.75% (ml g-1) and reached 8.6 log CFU g-1 in minced beef. The essential oil at concentration of 0.005% (ml g-1) increased stx gene expression at all times, but increased stx gene expression (0.015%) at Hour 24 in TSB media. The expression rate of stx1A in minced beef decreased progressively (10.39 and 7.67 folds for 0.5 and 0.75%, respectively) and expression of stx2A was variable in minced beef during storage. In conclusion, results from this study have shown that effects of Carum copticum essential oil on growth and virulence gene expression are not necessarily correlated and temperature, essential oil concentration, investigated gene type, and bacterial growth environment (in vivo or in vitro) are effective as well.
Collapse
Affiliation(s)
- Maryam Mahmoudzadeh
- Nutrition Research Center and Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | - Ramin Mazaheri Nezhad Fard
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Yu L, Ji S, Yu J, Fu W, Zhang L, Li J, Gao F, Jiang Y. Effects of lactic acid stress with lactic acid adaptation on the survival and expression of virulence‐related genes inEscherichia coliO157:H7. J Food Saf 2019. [DOI: 10.1111/jfs.12701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Lanlin Yu
- College of Animal Science and TechnologyNanjing Agricultural University Nanjing China
- Jiangsu Key Laboratory of Animal Origin Food Production and Safety GuaranteeNanjing Agricultural University Nanjing China
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety ControlNanjing Agricultural University Nanjing China
| | - Saisai Ji
- School of Food Science and Pharmaceutical EngineeringNanjing Normal University Nanjing China
| | - Jinlong Yu
- School of Food Science and Pharmaceutical EngineeringNanjing Normal University Nanjing China
| | - Wenjing Fu
- School of Food Science and Pharmaceutical EngineeringNanjing Normal University Nanjing China
| | - Lin Zhang
- College of Animal Science and TechnologyNanjing Agricultural University Nanjing China
- Jiangsu Key Laboratory of Animal Origin Food Production and Safety GuaranteeNanjing Agricultural University Nanjing China
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety ControlNanjing Agricultural University Nanjing China
| | - Jiaolong Li
- College of Animal Science and TechnologyNanjing Agricultural University Nanjing China
- Jiangsu Key Laboratory of Animal Origin Food Production and Safety GuaranteeNanjing Agricultural University Nanjing China
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety ControlNanjing Agricultural University Nanjing China
| | - Feng Gao
- College of Animal Science and TechnologyNanjing Agricultural University Nanjing China
- Jiangsu Key Laboratory of Animal Origin Food Production and Safety GuaranteeNanjing Agricultural University Nanjing China
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety ControlNanjing Agricultural University Nanjing China
| | - Yun Jiang
- School of Food Science and Pharmaceutical EngineeringNanjing Normal University Nanjing China
| |
Collapse
|
15
|
Na H, Kim Y, Kim D, Yoon H, Ryu S. Transcriptomic Analysis of Shiga Toxin-Producing Escherichia coli FORC_035 Reveals the Essential Role of Iron Acquisition for Survival in Canola Sprouts and Water Dropwort. Front Microbiol 2018; 9:2397. [PMID: 30349522 PMCID: PMC6186786 DOI: 10.3389/fmicb.2018.02397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 09/19/2018] [Indexed: 12/03/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a foodborne pathogen that poses a serious threat to humans. Although EHEC is problematic mainly in food products containing meat, recent studies have revealed that many EHEC-associated foodborne outbreaks were attributable to spoiled produce such as sprouts and green leafy vegetables. To understand how EHEC adapts to the environment in fresh produce, we exposed the EHEC isolate FORC_035 to canola spouts (Brassica napus) and water dropwort (Oenanthe javanica) and profiled the transcriptome of this pathogen at 1 and 3 h after incubation with the plant materials. Transcriptome analysis revealed that the expression of genes associated with iron uptake were down-regulated during adaptation to plant tissues. A mutant strain lacking entB, presumably defective in enterobactin biosynthesis, had growth defects in co-culture with water dropwort, and the defective phenotype was complemented by the addition of ferric ion. Furthermore, gallium treatment to block iron uptake inhibited bacterial growth on water dropwort and also hampered biofilm formation. Taken together, these results indicate that iron uptake is essential for the fitness of EHEC in plants and that gallium can be used to prevent the growth of this pathogen in fresh produce.
Collapse
Affiliation(s)
- Hongjun Na
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Yeonkyung Kim
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Dajeong Kim
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Hyunjin Yoon
- Department of Molecular Science and Technology, Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon, South Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea.,Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| |
Collapse
|
16
|
Feng L, Muyyarikkandy MS, Brown SRB, Amalaradjou MA. Attachment and Survival of Escherichia coli O157:H7 on In-Shell Hazelnuts. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15061122. [PMID: 29849011 PMCID: PMC6025523 DOI: 10.3390/ijerph15061122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 05/26/2018] [Accepted: 05/28/2018] [Indexed: 11/16/2022]
Abstract
The multistate Escherichia coli (E. coli) O157:H7 outbreak associated with in-shell hazelnuts highlights the pathogen's ability to involve non-traditional vehicles in foodborne infections. Furthermore, it underscores significant gaps in our knowledge of pathogen survivability and persistence on nuts. Therefore, this study investigated the ability of E. coli O157:H7 to attach and survive on in-shell hazelnuts. In-shell hazelnuts were inoculated with a four-strain mixture of E. coli O157:H7 at 7.6 log colony forming units (CFU)/nut by wet or dry inoculation, stored at ambient conditions (24 ± 1 °C; 40% ± 3% relative humidity (RH) and sampled for twelve months. For the attachment assay, in-shell hazelnuts were inoculated and the adherent population was enumerated at 30 s-1 h following inoculation. Irrespective of the inoculation method, ~5 log CFU of adherent E. coli O157:H7 was recovered from the hazelnuts as early as 30 s after inoculation. Conversely, pathogen survival was significantly reduced under dry inoculation with samples being enrichment negative after five months of storage (p < 0.05). On the other hand, wet inoculation led to a significantly longer persistence of the pathogen with ~3 log CFU being recovered from the in-shell nuts at 12 months of storage (p < 0.05). These results indicate that E. coli O157:H7 can survive in significant numbers on in-shell hazelnuts when stored under ambient conditions.
Collapse
Affiliation(s)
- Lingyu Feng
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA.
| | | | - Stephanie R B Brown
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA.
| | | |
Collapse
|
17
|
Ocaña de Jesús RL, Gutiérrez Ibáñez AT, Sánchez Pale JR, Mariezcurrena Berasain MD, Eslava Campos CA, Laguna Cerda A. [Persistence, internalization and translocation of Escherichia coli O157:H7, O157:H16 and O105ab in plants and tomato fruits (Solanum lycopersicum L.)]. Rev Argent Microbiol 2018; 50:408-416. [PMID: 29709245 DOI: 10.1016/j.ram.2017.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 11/28/2017] [Accepted: 12/09/2017] [Indexed: 10/17/2022] Open
Abstract
The presence of pathogenic bacteria, such as Escherichia coli affects the quality and safety of vegetables that are consumed fresh and is associated with serious health problems. The objective of this study was to determine if three different strains of E. coli can penetrate and remain in plants and tomato fruits. A completely randomized experimental design was followed for which a tomato crop ("Cid" variety) was established under greenhouse conditions and three treatments were evaluated, T1 (E. coli O157:H7), T2 (E. coli from tomato cultivation [EcT] O157:H16), T3 (E. coli from spinach cultivation [EcH] O105ab) and a T4 control, with 100 plants each and four forms of inoculation: in the substrate, steam, petiole and the peduncle. Samples were carried out in vegetative stage, flowering, fruiting and physiological maturity to quantify in petri dish CFU/g and know if the bacteria managed to move around and recover in root, stem, flower and fruit. The phylogenetic groups that corresponded to the bacteria recovered were confirmed by biochemical tests, serotyping and PCR. At 120 days the recovery of bacteria in the plant was 23% (E. coli O157:H7), 28% (EcT O157:H16) and 55% (EcH O105ab) whit inoculation to the substrate while the inoculation by puncture the recovery was (in the same order) of 5%, 3%, and 4% at 30 days; 37%, 35% and 30% at 90 days; and 42%, 39% and 13% at 65 days. The strains submit the ability to enter the tomato plant and to stay in it and transported to the fruit, without producing that indicate their presence.
Collapse
Affiliation(s)
- Rosa L Ocaña de Jesús
- Facultad de Ciencias Agrícolas, Universidad Autónoma del Estado de México, Toluca, México
| | - Ana T Gutiérrez Ibáñez
- Facultad de Ciencias Agrícolas, Universidad Autónoma del Estado de México, Toluca, México.
| | - Jesús R Sánchez Pale
- Facultad de Ciencias Agrícolas, Universidad Autónoma del Estado de México, Toluca, México
| | | | - Carlos A Eslava Campos
- Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato Oncología e Investigación, Hospital Infantil de México Federico Gómez'/División de Investigación, Facultad de Medicina (UNAM), Ciudad de México, México
| | - Antonio Laguna Cerda
- Facultad de Ciencias Agrícolas, Universidad Autónoma del Estado de México, Toluca, México
| |
Collapse
|
18
|
Desriac N, Postollec F, Coroller L, Pavan S, Combrisson J, Hallier-Soulier S, Sohier D. Trustworthy Identification of Resistance Biomarkers of Bacillus weihenstephanensis: Workflow of the Quality Assurance Procedure. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-1058-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
19
|
Maršálková K, Purevdorj K, Jančová P, Pištěková H, Buňková L. Quantitative Real-time PCR detection of putrescine-producing Gram-negative bacteria. POTRAVINARSTVO 2017. [DOI: 10.5219/739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Biogenic amines are indispensable components of living cells; nevertheless these compounds could be toxic for human health in higher concentrations. Putrescine is supposed to be the major biogenic amine associated with microbial food spoilage. Development of reliable, fast and culture-independent molecular methods to detect bacteria producing biogenic amines deserves the attention, especially of the food industry in purpose to protect health. The objective of this study was to verify the newly designed primer sets for detection of two inducible genes adiA and speF together in Salmonella enterica and Escherichia coli genome by Real-time PCR. These forenamed genes encode enzymes in the metabolic pathway which leads to production of putrescine in Gram-negative bacteria. Moreover, relative expression of these genes was studied in E. coli CCM 3954 strain using Real-time PCR. In this study, sets of new primers for the detection two inducible genes (speF and adiA) in Salmonella enterica and E. coli by Real-time PCR were designed and tested. Amplification efficiency of a Real-time PCR was calculated from the slope of the standard curves (adiA, speF, gapA). An efficiency in a range from 95 to 105 % for all tested reactions was achieved. The gene expression (R) of adiA and speF genes in E. coli was varied depending on culture conditions. The highest gene expression of adiA and speF was observed at 6, 24 and 36 h (RadiA ~ 3, 5, 9; RspeF ~11, 10, 9; respectively) after initiation of growth of this bacteria in nutrient broth medium enchired with amino acids. The results show that these primers could be used for relative quantification analysis of E. coli.
Collapse
|
20
|
Ferrario C, Lugli GA, Ossiprandi MC, Turroni F, Milani C, Duranti S, Mancabelli L, Mangifesta M, Alessandri G, van Sinderen D, Ventura M. Next generation sequencing-based multigene panel for high throughput detection of food-borne pathogens. Int J Food Microbiol 2017; 256:20-29. [PMID: 28578266 DOI: 10.1016/j.ijfoodmicro.2017.05.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 04/28/2017] [Accepted: 05/02/2017] [Indexed: 01/20/2023]
Abstract
Contamination of food by chemicals or pathogenic bacteria may cause particular illnesses that are linked to food consumption, commonly referred to as foodborne diseases. Bacteria are present in/on various foods products, such as fruits, vegetables and ready-to-eat products. Bacteria that cause foodborne diseases are known as foodborne pathogens (FBPs). Accurate detection methods that are able to reveal the presence of FBPs in food matrices are in constant demand, in order to ensure safe foods with a minimal risk of causing foodborne diseases. Here, a multiplex PCR-based Illumina sequencing method for FBP detection in food matrices was developed. Starting from 25 bacterial targets and 49 selected PCR primer pairs, a primer collection called foodborne pathogen - panel (FPP) consisting of 12 oligonucleotide pairs was developed. The FPP allows a more rapid and reliable identification of FBPs compared to classical cultivation methods. Furthermore, FPP permits sensitive and specific FBP detection in about two days from food sample acquisition to bioinformatics-based identification. The FPP is able to simultaneously identify eight different bacterial pathogens, i.e. Listeria monocytogenes, Campylobacter jejuni, Campylobacter coli, Salmonella enterica subsp. enterica serovar enteritidis, Escherichia coli, Shigella sonnei, Staphylococcus aureus and Yersinia enterocolitica, in a given food matrix at a threshold contamination level of 101cell/g. Moreover, this novel detection method may represent an alternative and/or a complementary approach to PCR-based techniques, which are routinely used for FBP detection, and could be implemented in (parts of) the food chain as a quality check.
Collapse
Affiliation(s)
- Chiara Ferrario
- Laboratory of Probiogenomics, Department of Life Sciences, University of Parma, Parma, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Life Sciences, University of Parma, Parma, Italy
| | | | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Life Sciences, University of Parma, Parma, Italy
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Life Sciences, University of Parma, Parma, Italy
| | - Sabrina Duranti
- Laboratory of Probiogenomics, Department of Life Sciences, University of Parma, Parma, Italy
| | - Leonardo Mancabelli
- Laboratory of Probiogenomics, Department of Life Sciences, University of Parma, Parma, Italy
| | | | - Giulia Alessandri
- Laboratory of Probiogenomics, Department of Life Sciences, University of Parma, Parma, Italy
| | - Douwe van Sinderen
- APC Microbiome Institute, School of Microbiology, Bioscience Institute, National University of Ireland, Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Life Sciences, University of Parma, Parma, Italy.
| |
Collapse
|
21
|
Braun HS, Sponder G, Aschenbach JR, Kerner K, Bauerfeind R, Deiner C. The GadX regulon affects virulence gene expression and adhesion of porcine enteropathogenic Escherichia coli in vitro. Vet Anim Sci 2017; 3:10-17. [PMID: 32734036 PMCID: PMC7386710 DOI: 10.1016/j.vas.2017.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 02/19/2017] [Accepted: 04/26/2017] [Indexed: 12/31/2022] Open
Abstract
The ability of enteropathogenic Escherichia coli (EPEC) to express virulence factor genes and develop attaching and effacing (AE) lesions is inhibited in acidic environmental conditions. This inhibition is due to the activation of transcription factor GadX, which upregulates expression of glutamic acid decarboxylase (Gad). Gad, in turn, produces γ-aminobutyric acid (GABA), which was recently shown to have a beneficial effect on the jejunal epithelium in vitro due to increased mucin-1 levels. In the present study, we sought to test whether forced GadX activation/overexpression abolishes virulence associated features of EPEC and provokes increased GABA production. EPEC strains were isolated from diarrheic pigs and submitted to activation of GadX by acidification as well as gadX overexpression via an inducible expression vector plasmid. GABA concentrations in the growth medium, ability for adhesion to porcine intestinal epithelial cells (IPEC-J2) and virulence gene expression were determined. Growth in acidified media led to increased GABA levels, upregulated gadA/B expression and downregulated mRNA synthesis of the bacterial adhesin intimin. EPEC strains transformed with the gadX gene produced 2.1–3.4-fold higher GABA levels than empty-vector controls and completely lost their ability to adhere to IPEC-J2 cells and to induce actin accumulation. We conclude that intensified gadX activation can abolish the ability of EPEC to adhere to the intestinal epithelium by reducing the expression of major virulence genes.
Collapse
Affiliation(s)
- Hannah-Sophie Braun
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
- Corresponding author.
| | - Gerhard Sponder
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| | - Jörg R. Aschenbach
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| | - Katharina Kerner
- Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University, Frankfurter Strasse 85-89, 35392 Gießen, Germany
| | - Rolf Bauerfeind
- Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University, Frankfurter Strasse 85-89, 35392 Gießen, Germany
| | - Carolin Deiner
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| |
Collapse
|
22
|
Bondue P, Crèvecoeur S, Brose F, Daube G, Seghaye MC, Griffiths MW, LaPointe G, Delcenserie V. Cell-Free Spent Media Obtained from Bifidobacterium bifidum and Bifidobacterium crudilactis Grown in Media Supplemented with 3'-Sialyllactose Modulate Virulence Gene Expression in Escherichia coli O157:H7 and Salmonella Typhimurium. Front Microbiol 2016; 7:1460. [PMID: 27713728 PMCID: PMC5031695 DOI: 10.3389/fmicb.2016.01460] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/01/2016] [Indexed: 11/19/2022] Open
Abstract
Complex oligosaccharides from human milk (HMO) possess an antimicrobial activity and can promote the growth of bifidobacteria such as Bifidobacterium bifidum and Bifidobacterium longum subsp. infantis. In addition, fermentation of carbohydrates by bifidobacteria can result in the production of metabolites presenting an antivirulence effect on several pathogenic bacteria. Whey is rich in complex bovine milk oligosaccharides (BMO) structurally similar to HMO and B. crudilactis, a species of bovine origin, is able to metabolize some of those complex carbohydrates. This study focused on the ability of B. bifidum and B. crudilactis to grow in a culture medium supplemented in 3′-sialyllactose (3′SL) as the main source of carbon, a major BMO encountered in cow milk. Next, the effects of cell-free spent media (CFSM) were tested against virulence expression of Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium. Both strains were able to grow in presence of 3′SL, but B. crudilactis showed the best growth (7.92 ± 0.3 log cfu/ml) compared to B. bifidum (6.84 ± 0.9 log cfu/ml). Then, CFSM were tested for their effects on virulence gene expression by ler and hilA promoter activity of luminescent mutants of E. coli and S. Typhimurium, respectively, and on wild type strains of E. coli O157:H7 and S. Typhimurium using RT-qPCR. All CFSM resulted in significant under expression of the ler and hilA genes for the luminescent mutants and ler (ratios of −15.4 and −8.1 respectively) and qseA (ratios of −2.1 and −3.1) for the wild type strain of E. coli O157:H7. The 3′SL, a major BMO, combined with some bifidobacteria strains of bovine or human origin could therefore be an interesting synbiotic to maintain or restore the intestinal health of young children. These effects observed in vitro will be further investigated regarding the overall phenotype of pathogenic agents and the exact nature of the active molecules.
Collapse
Affiliation(s)
- Pauline Bondue
- Department of Food Science, Fundamental and Applied Research for Animal and Health, Faculty of Veterinary Medicine, University of Liège Liège, Belgium
| | - Sébastien Crèvecoeur
- Department of Food Science, Fundamental and Applied Research for Animal and Health, Faculty of Veterinary Medicine, University of Liège Liège, Belgium
| | - François Brose
- Department of Food Science, Fundamental and Applied Research for Animal and Health, Faculty of Veterinary Medicine, University of Liège Liège, Belgium
| | - Georges Daube
- Department of Food Science, Fundamental and Applied Research for Animal and Health, Faculty of Veterinary Medicine, University of Liège Liège, Belgium
| | | | - Mansel W Griffiths
- Canadian Research Institute for Food Safety, University of Guelph Guelph, Canada
| | - Gisèle LaPointe
- Canadian Research Institute for Food Safety, University of Guelph Guelph, Canada
| | - Véronique Delcenserie
- Department of Food Science, Fundamental and Applied Research for Animal and Health, Faculty of Veterinary Medicine, University of Liège Liège, Belgium
| |
Collapse
|
23
|
Kim GH, Fratamico P, Breidt F, Oh DH. Survival and expression of acid resistance genes in Shiga toxin-producing Escherichia coli
acid adapted in pineapple juice and exposed to synthetic gastric fluid. J Appl Microbiol 2016; 121:1416-1426. [DOI: 10.1111/jam.13223] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 06/24/2016] [Accepted: 06/30/2016] [Indexed: 01/19/2023]
Affiliation(s)
- G.-H. Kim
- Department of Food Science and Biotechnology; Kangwon National University; Chuncheon Gangwon South Korea
- USDA-ARS Eastern Regional Research Center; Wyndmoor PA USA
| | - P. Fratamico
- USDA-ARS Eastern Regional Research Center; Wyndmoor PA USA
| | - F. Breidt
- USDA-ARS Food Science Research Unit; Department of Food; Bioprocessing and Nutrition Sciences; North Carolina State University; Raleigh NC USA
| | - D.-H. Oh
- Department of Food Science and Biotechnology; Kangwon National University; Chuncheon Gangwon South Korea
| |
Collapse
|
24
|
Kennedy NM, Mukherjee N, Banerjee P. Escherichia coli O157:H7 Cells Exposed to Lettuce Leaf Lysate in Refrigerated Conditions Exhibit Differential Expression of Selected Virulence and Adhesion-Related Genes with Altered Mammalian Cell Adherence. J Food Prot 2016; 79:1259-65. [PMID: 27357048 DOI: 10.4315/0362-028x.jfp-15-504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Contamination by and persistence of pathogenic bacteria in ready-to-eat produce have emerged as significant food safety and public health concerns. Viable produceborne pathogens cope with several stresses (e.g., temperature fluctuations and lowtemperature storage) during production and storage of the commodities. In this study, we investigated the impact of transient cold shock on Escherichia coli O157:H7 (EcO157) cells in a produce matrix (romaine lettuce leaf lysate). EcO157 cells were exposed to 25°C for 1 h, 4°C for 1 h, and 4°C for 10 min in lettuce lysate. The expression of selected genes coding for virulence, stress response, and heat and cold shock proteins was quantified by real-time quantitative reverse transcription PCR assay. Treated EcO157 cells adhered to MAC-T mammalian cells were enumerated by in vitro bioassay. Expression of the Shiga toxin 1 gene (stx1a) was upregulated significantly (P < 0.05) upon cold shock treatments, but virulence genes related to EcO157 attachment (eaeA, lpfA, and hcpA) were down-regulated. Two key members of the cold shock regulon, cold shock protein (cspA) and gyrA, were significantly induced (P < 0.05) at the refrigeration temperature (4°C). Significant upregulation of an SOS response gene, recA, was also observed. E. coli heat shock regulon member grpE was induced, but a universal stress protein (uspA) was downregulated at the refrigeration temperatures in lettuce lysate. The adhesion assay revealed a temperature-dependent reduction in the attachment of cold-shocked EcO157 cells. The results of the current study indicate a reduction in the attachment of cold-shocked EcO157 to epithelial cells and higher levels of Shiga toxin gene expression at the molecular level.
Collapse
Affiliation(s)
- Nicole M Kennedy
- Department of Food and Animal Sciences, Alabama A&M University, Huntsville, Alabama 35762, USA
| | - Nabanita Mukherjee
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, Tennessee 38152, USA
| | - Pratik Banerjee
- Department of Food and Animal Sciences, Alabama A&M University, Huntsville, Alabama 35762, USA; Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, Tennessee 38152, USA.
| |
Collapse
|
25
|
Antibacterial Activity of Carum copticum Essential Oil Against Escherichia Coli O157:H7 in Meat: Stx Genes Expression. Curr Microbiol 2016; 73:265-72. [PMID: 27155845 DOI: 10.1007/s00284-016-1048-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 04/13/2016] [Indexed: 10/21/2022]
Abstract
This work were aimed to (a) determination of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of Carum copticum essential oil (EO) against Escherichia. coli O157:H7 in vitro Trypticase Soy Broth, (TSB) and in ground beef; (b) evaluation of the effect of sub-inhibitory concentrations (sub-MICs) of EO on the growth of bacterium in TSB over 72 h (at 35 °C) and ground beef over 9 days (at 4 °C); and (c) investigation of gene expression involved in Shiga toxins production using relative quantitative real-time PCR method. The MIC in broth and ground beef medium were determined as 0.05 (v/v) and 1.75 % (v/w), respectively. In comparison with control cultures, the EO concentration of 0.03 % in broth caused reduction of colony counting as 1.93, 1.79, and 2.62 log10 CFU ml(-1) after 24, 48, and 72 h at 35 °C, and similarly EO (0.75 %) in ground beef resulted to reduction of colony counting as 1.03, 0.92, 1.48, and 2.12 log10 CFU g (-1) after 2, 5, 7, and 9 days at 4 °C, respectively. An increase and decrease in gene expression were observed as result of EO addition (0.03 %) to broth and (0.5 %) to ground beef was noticed, respectively.
Collapse
|
26
|
Influence of Low-Shear Modeled Microgravity on Heat Resistance, Membrane Fatty Acid Composition, and Heat Stress-Related Gene Expression in Escherichia coli O157:H7 ATCC 35150, ATCC 43889, ATCC 43890, and ATCC 43895. Appl Environ Microbiol 2016; 82:2893-2901. [PMID: 26944847 DOI: 10.1128/aem.00050-16] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/01/2016] [Indexed: 12/27/2022] Open
Abstract
UNLABELLED We previously showed that modeled microgravity conditions alter the physiological characteristics of Escherichia coli O157:H7. To examine how microgravity conditions affect bacterial heat stress responses, D values, membrane fatty acid composition, and heat stress-related gene expression (clpB, dnaK, grpE, groES, htpG, htpX, ibpB, and rpoH), E. coli O157:H7 ATCC 35150, ATCC 43889, ATCC 43890, and ATCC 43895 were cultured under two different conditions: low-shear modeled microgravity (LSMMG, an analog of spaceflight conditions) and normal gravity (NG, Earth-like conditions). When 24-h cultures were heated to 55°C, cells cultured under LSMMG conditions showed reduced survival compared with cells cultured under NG conditions at all time points (P < 0.05). D values of all tested strains were lower after LSMMG culture than after NG culture. Fourteen of 37 fatty acids examined were present in the bacterial membrane: nine saturated fatty acids (SFA) and five unsaturated fatty acids (USFA). The USFA/SFA ratio, a measure of membrane fluidity, was higher under LSMMG conditions than under NG conditions. Compared with control cells grown under NG conditions, cells cultured under LSMMG conditions showed downregulation of eight heat stress-related genes (average, -1.9- to -3.7-fold). The results of this study indicate that in a simulated space environment, heat resistance of E. coli O157:H7 decreased, and this might be due to the synergistic effects of the increases in membrane fluidity and downregulated relevant heat stress genes. IMPORTANCE Microgravity is a major factor that represents the environmental conditions in space. Since infectious diseases are difficult to deal with in a space environment, comprehensive studies on the behavior of pathogenic bacteria under microgravity conditions are warranted. This study reports the changes in heat stress resistance of E. coli O157:H7, the severe foodborne pathogen, under conditions that mimic microgravity. The results provide scientific clues for further understanding of the bacterial response under the simulated microgravity conditions. It will contribute not only to the improvement of scientific knowledge in the academic fields but also ultimately to the development of a prevention strategy for bacterial disease in the space environment.
Collapse
|
27
|
Mahmoudzadeh M, Hosseini H, Hedayati M, Mousavi Khanghah A, Djalma Chaves R, Azizkhani M. Establishment of a Method for Describing stx
Genes Expression of E
. coli
O157:H7 in Ground Beef Matrix during Refrigerated Storage. J Food Saf 2015. [DOI: 10.1111/jfs.12234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Maryam Mahmoudzadeh
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Amin Mousavi Khanghah
- Department of Food Science and Technology; Islamic Azad University, Science and Research Branch; Tehran Iran
- Department of Food Science, Faculty of Food Engineering; University of Campinas (UNICAMP); Campinas São Paulo Brazil
| | - Rafael Djalma Chaves
- Department of Food Science, Faculty of Food Engineering; University of Campinas (UNICAMP); Campinas São Paulo Brazil
| | - Maryam Azizkhani
- Department of food hygiene, Faculty of Veterinary Medicine; Amol University of Special Modern Technologies; Amol Iran
| |
Collapse
|
28
|
Factors affecting cell population density during enrichment and subsequent molecular detection of Salmonella enterica and Escherichia coli O157:H7 on lettuce contaminated during field production. Food Control 2015. [DOI: 10.1016/j.foodcont.2015.01.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
Effect of Temperature on Fimbrial Gene Expression and Adherence of Enteroaggregative Escherichia coli. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015. [PMID: 26213951 PMCID: PMC4555238 DOI: 10.3390/ijerph120808631] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The influence of temperature on bacterial virulence has been studied worldwide from the viewpoint of climate change and global warming. The bacterium enteroaggregative Escherichia coli (EAEC) is the causative agent of watery diarrhea and shows an increasing incidence worldwide. Its pathogenicity is associated with the virulence factors aggregative adherence fimbria type I and II (AAFI and AAFII), encoded by aggA and aafA in EAEC strains 17-2 and 042, respectively. This study focused on the effect of temperature increases from 29 °C to 40 °C on fimbrial gene expression using real-time PCR, and on its virulence using an aggregative adherence assay and biofilm formation assay. Incubation at 32 °C caused an up-regulation in both EAEC strains 17-2 and strain 042 virulence gene expression. EAEC strain 042 cultured at temperature above 32 °C showed down-regulation of aafA expression except at 38 °C. Interestingly, EAEC cultured at a high temperature showed a reduced adherence to cells and an uneven biofilm formation. These results provide evidence that increases in temperature potentially affect the virulence of pathogenic EAEC, although the response varies in each strain.
Collapse
|
30
|
Desriac N, Coroller L, Jannic F, Postollec F, Sohier D. mRNA biomarkers selection based on Partial Least Square algorithm in order to further predict Bacillus weihenstephanensis acid resistance. Food Microbiol 2015; 45:111-8. [DOI: 10.1016/j.fm.2014.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/02/2014] [Accepted: 01/03/2014] [Indexed: 12/26/2022]
|
31
|
Singh R, Jiang X. Expression of stress and virulence genes in Escherichia coli O157:H7 heat shocked in fresh dairy compost. J Food Prot 2015; 78:31-41. [PMID: 25581175 DOI: 10.4315/0362-028x.jfp-13-529] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The purpose of this study was to determine the gene expression of Escherichia coli O157:H7 heat shocked in dairy compost. A two-step real-time PCR assay was used to evaluate the expression of stress and virulence genes in E. coli O157:H7 heat shocked in compost at 47.5°C for 10 min. Heat-shocked E. coli O157:H7 in compost was isolated by using an immunomagnetic bead separation method, followed by total RNA extraction, which was then converted to cDNA by using a commercial kit. E. coli O157:H7 heat shocked in broth served as the media control. In compost, heat shock genes (clpB, dnaK, and groEL) and the alternative sigma factor (rpoH) of E. coli O157:H7 were upregulated (P < 0.05), whereas the expression of trehalose synthesis genes did not change. Virulence genes, such as stx1 and fliC, were upregulated, while genes stx2, eaeA, and hlyA were downregulated. In the toxin-antitoxin (TA) system, toxin genes, mazF, hipA, and yafQ were upregulated, whereas among antitoxin genes, only dinJ was upregulated (P < 0.05). In tryptic soy broth, all heat shock genes (rpoH, clpB, dnaK, and groEL) were upregulated (P < 0.05), and most virulence genes (stx1, stx2, hlyA, and fliC) and TA genes (mazF-mazE, hipA-hipB, and yafQ-dinJ and toxin gene chpS) were down-regulated. Our results revealed various gene expression patterns when E. coli O157:H7 inoculated in compost was exposed to a sublethal temperature. Clearly, induction of the heat shock response is one of the important protective mechanisms that prolongs the survival of pathogens during the composting process. In addition, other possible mechanisms (such as the TA system) operating along with heat shock response may be responsible for the extended survival of pathogens in compost.
Collapse
Affiliation(s)
- Randhir Singh
- Department of Biological Sciences, Nutrition and Packaging, 228A Life Science Facility, Sciences, Clemson University, South Carolina 29634, USA
| | - Xiuping Jiang
- Department of Food, Nutrition and Packaging, 228A Life Science Facility, Sciences, Clemson University, South Carolina 29634, USA.
| |
Collapse
|
32
|
Jung Y, Jang H, Matthews KR. Effect of the food production chain from farm practices to vegetable processing on outbreak incidence. Microb Biotechnol 2014; 7:517-27. [PMID: 25251466 PMCID: PMC4265071 DOI: 10.1111/1751-7915.12178] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 08/27/2014] [Indexed: 11/26/2022] Open
Abstract
The popularity in the consumption of fresh and fresh-cut vegetables continues to increase globally. Fresh vegetables are an integral part of a healthy diet, providing vitamins, minerals, antioxidants and other health-promoting compounds. The diversity of fresh vegetables and packaging formats (spring mix in clamshell container, bagged heads of lettuce) support increased consumption. Unfortunately, vegetable production and processing practices are not sufficient to ensure complete microbial safety. This review highlights a few specific areas that require greater attention and research. Selected outbreaks are presented to emphasize the need for science-based 'best practices'. Laboratory and field studies have focused on inactivation of pathogens associated with manure in liquid, slurry or solid forms. As production practices change, other forms and types of soil amendments are being used more prevalently. Information regarding the microbial safety of fish emulsion and pellet form of manure is limited. The topic of global climate change is controversial, but the potential effect on agriculture cannot be ignored. Changes in temperature, precipitation, humidity and wind can impact crops and the microorganisms that are associated with production environments. Climate change could potentially enhance the ability of pathogens to survive and persist in soil, water and crops, increasing human health risks. Limited research has focused on the prevalence and behaviour of viruses in pre and post-harvest environments and on vegetable commodities. Globally, viruses are a major cause of foodborne illnesses, but are seldom tested for in soil, soil amendments, manure and crops. Greater attention must also be given to the improvement in the microbial quality of seeds used in sprout production. Human pathogens associated with seeds can result in contamination of sprouts intended for human consumption, even when all appropriate 'best practices' are used by sprout growers.
Collapse
Affiliation(s)
- Yangjin Jung
- Department of Food Science, Rutgers, The State University of New JerseyNew Brunswick, NJ, 08901, USA
| | - Hyein Jang
- Department of Food Science, Rutgers, The State University of New JerseyNew Brunswick, NJ, 08901, USA
| | - Karl R Matthews
- Department of Food Science, Rutgers, The State University of New JerseyNew Brunswick, NJ, 08901, USA
| |
Collapse
|
33
|
Boyacioglu O, Sharma M, Sulakvelidze A, Goktepe I. Biocontrol of Escherichia coli O157: H7 on fresh-cut leafy greens. BACTERIOPHAGE 2014; 3:e24620. [PMID: 23819107 PMCID: PMC3694058 DOI: 10.4161/bact.24620] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 04/09/2013] [Accepted: 04/09/2013] [Indexed: 12/20/2022]
Abstract
The effect of a bacteriophage cocktail (EcoShield™) that is specific against Escherichia coli O157:H7 was evaluated against a nalidixic acid-resistant enterohemorrhagic E. coli O157:H7 RM4407 (EHEC) strain on leafy greens stored under either (1) ambient air or (2) modified atmosphere (MA; 5% O2/35% CO2/60% N2). Pieces (~2 × 2 cm2) of leafy greens (lettuce and spinach) inoculated with 4.5 log CFU/cm2 EHEC were sprayed with EcoShield™ (6.5 log PFU/cm2). Samples were stored at 4 or 10°C for up to 15 d. On spinach, the level of EHEC declined by 2.38 and 2.49 log CFU/cm2 at 4 and 10°C, respectively, 30 min after phage application (p ≤ 0.05). EcoShield™ was also effective in reducing EHEC on the surface of green leaf lettuce stored at 4°C by 2.49 and 3.28 log units in 30 min and 2 h, respectively (p ≤ 0.05).
At 4°C under atmospheric air, the phage cocktail significantly (p ≤ 0.05) lowered the EHEC counts in one day by 1.19, 3.21 and 3.25 log CFU/cm2 on spinach, green leaf and romaine lettuce, respectively compared with control (no bacteriophage) treatments. When stored under MA at 4°C, phages reduced (p ≤ 0.05) EHEC populations by 2.18, 3.50 and 3.13 log CFU/cm2, on spinach, green leaf and romaine lettuce. At 10°C, EHEC reductions under atmospheric air storage were 1.99, 3.90 and 3.99 log CFU/cm2 (p ≤ 0.05), while population reductions under MA were 3.08, 3.89 and 4.34 logs on spinach, green leaf and romaine lettuce, respectively, compared with controls (p ≤ 0.05). The results of this study showed that bacteriophages were effective in reducing the levels of E. coli O157:H7 on fresh leafy produce, and that the reduction was further improved when produce was stored under the MA conditions.
Collapse
Affiliation(s)
- Olcay Boyacioglu
- Energy and Environmental Systems; College of Arts & Sciences; North Carolina A&T State University; Greensboro, NC USA ; Department of Family and Consumer Sciences; Food and Nutritional Sciences Program; North Carolina A&T State University; Greensboro, NC USA
| | | | | | | |
Collapse
|
34
|
Ravva SV, Cooley MB, Sarreal CZ, Mandrell RE. Fitness of Outbreak and Environmental Strains of Escherichia coli O157:H7 in Aerosolizable Soil and Association of Clonal Variation in Stress Gene Regulation. Pathogens 2014; 3:528-48. [PMID: 25438010 PMCID: PMC4243427 DOI: 10.3390/pathogens3030528] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 06/20/2014] [Accepted: 06/24/2014] [Indexed: 11/16/2022] Open
Abstract
Airborne dust from feedlots is a potential mechanism of contamination of nearby vegetable crops with Escherichia coli O157:H7 (EcO157). We compared the fitness of clinical and environmental strains of EcO157 in <45 µm soil from a spinach farm. Differences in survival were observed among the 35 strains with D-values (days for 90% decreases) ranging from 1–12 days. Strains that survived longer, generally, were from environmental sources and lacked expression of curli, a protein associated with attachment and virulence. Furthermore, the proportion of curli-positive (C+) variants of EcO157 strains decreased with repeated soil exposure and the strains that were curli-negative (C−) remained C− post-soil exposure. Soil exposure altered expression of stress-response genes linked to fitness of EcO157, but significant clonal variation in expression was measured. Mutations were detected in the stress-related sigma factor, rpoS, with a greater percentage occurring in parental strains of clinical origin prior to soil exposure. We speculate that these mutations in rpoS may confer a differential expression of genes, associated with mechanisms of survival and/or virulence, and thus may influence the fitness of EcO157.
Collapse
Affiliation(s)
- Subbarao V Ravva
- Produce Safety and Microbiology Research Unit, United States Department of Agriculture, Agriculture Research Service, Western Regional Research Center, Albany, CA 94710, USA.
| | - Michael B Cooley
- Produce Safety and Microbiology Research Unit, United States Department of Agriculture, Agriculture Research Service, Western Regional Research Center, Albany, CA 94710, USA.
| | - Chester Z Sarreal
- Produce Safety and Microbiology Research Unit, United States Department of Agriculture, Agriculture Research Service, Western Regional Research Center, Albany, CA 94710, USA.
| | - Robert E Mandrell
- Produce Safety and Microbiology Research Unit, United States Department of Agriculture, Agriculture Research Service, Western Regional Research Center, Albany, CA 94710, USA.
| |
Collapse
|
35
|
Fusco V, Quero GM. Culture-Dependent and Culture-Independent Nucleic-Acid-Based Methods Used in the Microbial Safety Assessment of Milk and Dairy Products. Compr Rev Food Sci Food Saf 2014; 13:493-537. [DOI: 10.1111/1541-4337.12074] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/08/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Vincenzina Fusco
- Nal. Research Council of Italy; Inst. of Sciences of Food Production (CNR-ISPA); Bari Italy
| | - Grazia Marina Quero
- Nal. Research Council of Italy; Inst. of Sciences of Food Production (CNR-ISPA); Bari Italy
| |
Collapse
|
36
|
Martínez-Vaz BM, Fink RC, Diez-Gonzalez F, Sadowsky MJ. Enteric pathogen-plant interactions: molecular connections leading to colonization and growth and implications for food safety. Microbes Environ 2014; 29:123-35. [PMID: 24859308 PMCID: PMC4103518 DOI: 10.1264/jsme2.me13139] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 01/19/2014] [Indexed: 11/12/2022] Open
Abstract
Leafy green vegetables have been identified as a source of foodborne illnesses worldwide over the past decade. Human enteric pathogens, such as Escherichia coli O157:H7 and Salmonella, have been implicated in numerous food poisoning outbreaks associated with the consumption of fresh produce. An understanding of the mechanisms responsible for the establishment of pathogenic bacteria in or on vegetable plants is critical for understanding and ameliorating this problem as well as ensuring the safety of our food supply. While previous studies have described the growth and survival of enteric pathogens in the environment and also the risk factors associated with the contamination of vegetables, the molecular events involved in the colonization of fresh produce by enteric pathogens are just beginning to be elucidated. This review summarizes recent findings on the interactions of several bacterial pathogens with leafy green vegetables. Changes in gene expression linked to the bacterial attachment and colonization of plant structures are discussed in light of their relevance to plant-microbe interactions. We propose a mechanism for the establishment and association of enteric pathogens with plants and discuss potential strategies to address the problem of foodborne illness linked to the consumption of leafy green vegetables.
Collapse
Affiliation(s)
| | - Ryan C. Fink
- Department of Food Science and Nutrition, University of Minnesota, St Paul, MN 55108, USA
| | | | - Michael J. Sadowsky
- Biotechnology Institute, University of Minnesota, St Paul, MN 55108, USA
- Department of Soil, Water and Climate, University of Minnesota, St Paul, MN 55108, USA
| |
Collapse
|
37
|
Differential Expression of Virulence and Stress Fitness Genes during Interaction betweenListeria monocytogenesandBifidobacterium longum. Biosci Biotechnol Biochem 2014; 76:699-704. [DOI: 10.1271/bbb.110832] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
38
|
Lagha R, Bellon-Fontaine MN, Renault M, Briandet R, Herry JM, Mrabet B, Bakhrouf A, Chehimi MM. Impact of long-term starvation on adhesion to and biofilm formation on stainless steel 316 L and gold surfaces of Salmonella enterica serovar Typhimurium. ANN MICROBIOL 2014. [DOI: 10.1007/s13213-014-0872-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
39
|
Visual endpoint detection of Escherichia coli O157:H7 using isothermal Genome Exponential Amplification Reaction (GEAR) assay and malachite green. J Microbiol Methods 2014; 98:122-7. [DOI: 10.1016/j.mimet.2014.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/02/2014] [Accepted: 01/02/2014] [Indexed: 11/20/2022]
|
40
|
Gordillo R, Rodríguez A, Werning ML, Bermúdez E, Rodríguez M. Quantification of viable Escherichia coli O157:H7 in meat products by duplex real-time PCR assays. Meat Sci 2014; 96:964-70. [DOI: 10.1016/j.meatsci.2013.10.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 05/03/2013] [Accepted: 10/12/2013] [Indexed: 01/04/2023]
|
41
|
Wang L, Li P, Zhang Z, Chen Q, Aguilar ZP, Xu H, Yang L, Xu F, Lai W, Xiong Y, Wei H. Rapid and accurate detection of viable Escherichia coli O157:H7 in milk using a combined IMS, sodium deoxycholate, PMA and real-time quantitative PCR process. Food Control 2014; 36:119-125. [DOI: 10.1016/j.foodcont.2013.08.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
42
|
Desriac N, Postollec F, Coroller L, Sohier D, Abee T, den Besten H. Prediction of Bacillus weihenstephanensis acid resistance: The use of gene expression patterns to select potential biomarkers. Int J Food Microbiol 2013; 167:80-6. [DOI: 10.1016/j.ijfoodmicro.2013.03.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/21/2013] [Accepted: 03/08/2013] [Indexed: 11/26/2022]
|
43
|
Characterizing the mode of action of Brevibacillus laterosporus B4 for control of bacterial brown strip of rice caused by A. avenae subsp. avenae RS-1. World J Microbiol Biotechnol 2013; 30:469-78. [PMID: 23990042 DOI: 10.1007/s11274-013-1469-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 08/20/2013] [Indexed: 12/23/2022]
Abstract
Biological control efficacy of Brevibacillus laterosporus B4 associated with rice rhizosphere was assessed against bacterial brown stripe of rice caused by Acidovorex avenae subsp. avenae. A biochemical bactericide (chitosan) was used as positive control in this experiment. Result of in vitro analysis indicated that B. laterosporus B4 and its culture filtrates (70%; v/v) exhibited low inhibitory effects than chitosan (5 mg/ml). However, culture suspension of B. laterosporus B4 prepared in 1% saline solution presented significant ability to control bacterial brown stripe in vivo. Bacterization of rice seeds for 24 h yielded a greater response (71.9%) for controlling brown stripe in vivo than chitosan (56%). Studies on mechanisms revealed that B. laterosporus B4 suppressed the biofilm formation and severely disrupted cell membrane integrity of A. avenae subsp. avenae, causing the leakage of intracellular substances. In addition, the expression level of virulence-related genes in pathogen recovered from biocontrol-agent-treated plants showed that the genes responsible for biofilm formation, motility, niche adaptation, membrane functionality and virulence of A. avenae subsp. avenae were down-regulated by B. laterosporus B4 treatment. The biocontrol activity of B. laterosporus B4 was attributed to a substance with protein nature. This protein nature was shown by using ammonium sulfate precipitation and subsequent treatment with protease. The results obtained from this study showed the potential effectiveness of B. laterosporus B4 as biocontrol agent in control of bacterial brown stripe of rice.
Collapse
|
44
|
Visvalingam J, Holley RA. Adherence of cold-adapted Escherichia coli O157:H7 to stainless steel and glass surfaces. Food Control 2013. [DOI: 10.1016/j.foodcont.2012.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
45
|
van Hoek AH, Aarts HJ, Bouw E, van Overbeek WM, Franz E. The role ofrpoSinEscherichia coliO157 manure-amended soil survival and distribution of allelic variations among bovine, food and clinical isolates. FEMS Microbiol Lett 2012; 338:18-23. [DOI: 10.1111/1574-6968.12024] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 10/03/2012] [Accepted: 10/04/2012] [Indexed: 12/27/2022] Open
Affiliation(s)
- Angela H.A.M. van Hoek
- National Institute for Public Health and the Environment; Centre for Infectious Disease Control; Laboratory for Zoonoses and Environmental Microbiology; Bilthoven; The Netherlands
| | - Henk J.M. Aarts
- National Institute for Public Health and the Environment; Centre for Infectious Disease Control; Laboratory for Zoonoses and Environmental Microbiology; Bilthoven; The Netherlands
| | - El Bouw
- National Institute for Public Health and the Environment; Centre for Infectious Disease Control; Laboratory for Zoonoses and Environmental Microbiology; Bilthoven; The Netherlands
| | - Wendy M. van Overbeek
- National Institute for Public Health and the Environment; Centre for Infectious Disease Control; Laboratory for Zoonoses and Environmental Microbiology; Bilthoven; The Netherlands
| | - Eelco Franz
- National Institute for Public Health and the Environment; Centre for Infectious Disease Control; Laboratory for Zoonoses and Environmental Microbiology; Bilthoven; The Netherlands
| |
Collapse
|
46
|
Kroj A, Schmidt H. Selection of in vivo expressed genes of Escherichia coli O157:H7 strain EDL933 in ground meat under elevated temperature conditions. J Food Prot 2012; 75:1743-50. [PMID: 23043821 DOI: 10.4315/0362-028x.jfp-11-453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Enterohemorrhagic Escherichia coli O157:H7 strains are important foodborne pathogens that are often transmitted to humans by the ingestion of raw or undercooked meat of bovine origin. To investigate adaptation of this pathogen during persistence and growth in ground meat, we established an in vivo expression technology model to identify genes that are expressed during growth in this food matrix under elevated temperatures (42°C). To improve on the antibiotic-based selection method, we constructed the promoter trap vector pAK-1, containing a promoterless kanamycin resistance gene. A genomic library of E. coli O157:H7 strain EDL933 was constructed in pAK-1 and used for promoter selection in ground meat. The 20 in vivo expressed genes identified were associated with transport processes, metabolism, macromolecule synthesis, and stress response. For most of the identified genes, only hypothetical functions could be assigned. The results of our study provide the first insights into the complex response of E. coli O157:H7 to a ground meat environment under elevated temperatures and establish a suitable vector for promoter studies or selection of in vivo induced promoters in foods such as ground meat.
Collapse
Affiliation(s)
- Andrea Kroj
- Department of Food Microbiology, Institute of Food Science and Biotechnology, Garbenstraße 28, University of Hohenheim, 70599 Stuttgart, Germany
| | | |
Collapse
|
47
|
An integrative approach to identify Bacillus weihenstephanensis resistance biomarkers using gene expression quantification throughout acid inactivation. Food Microbiol 2012; 32:172-8. [DOI: 10.1016/j.fm.2012.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 03/29/2012] [Accepted: 05/27/2012] [Indexed: 12/23/2022]
|
48
|
Caleb OJ, Mahajan PV, Al-Said FAJ, Opara UL. Modified Atmosphere Packaging Technology of Fresh and Fresh-cut Produce and the Microbial Consequences-A Review. FOOD BIOPROCESS TECH 2012; 6:303-329. [PMID: 32215166 PMCID: PMC7089433 DOI: 10.1007/s11947-012-0932-4] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Accepted: 07/09/2012] [Indexed: 11/06/2022]
Abstract
Modified atmosphere packaging (MAP) technology offers the possibility to retard the respiration rate and extend the shelf life of fresh produce, and is increasingly used globally as value adding in the fresh and fresh-cut food industry. However, the outbreaks of foodborne diseases and emergence of resistant foodborne pathogens in MAP have heightened public interest on the effects of MAP technology on the survival and growth of pathogenic organisms. This paper critically reviews the effects of MAP on the microbiological safety of fresh or fresh-cut produce, including the role of innovative tools such as the use of pressurised inert/noble gases, predictive microbiology and intelligent packaging in the advancement of MAP safety. The integration of Hazard Analysis and Critical Control Points-based programs to ensure fresh food quality and microbial safety in packaging technology is highlighted.
Collapse
Affiliation(s)
- Oluwafemi J. Caleb
- Postharvest Technology Research Laboratory, South African Research Chair in Postharvest Technology, Faculty of AgricSciences, Stellenbosch University, Private Bag X1, Stellenbosch, 7602 South Africa
| | - Pramod V. Mahajan
- Department of Process and Chemical Engineering, University College Cork, Cork, Ireland
| | | | - Umezuruike Linus Opara
- Postharvest Technology Research Laboratory, South African Research Chair in Postharvest Technology, Faculty of AgricSciences, Stellenbosch University, Private Bag X1, Stellenbosch, 7602 South Africa
| |
Collapse
|
49
|
Tsuji M, Yokoigawa K. Attachment of Escherichia coli O157:H7 to Abiotic Surfaces of Cooking Utensils. J Food Sci 2012; 77:M194-9. [DOI: 10.1111/j.1750-3841.2012.02654.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
50
|
Bezanson G, Delaquis P, Bach S, McKellar R, Topp E, Gill A, Blais B, Gilmour M. Comparative examination of Escherichia coli O157:H7 survival on romaine lettuce and in soil at two independent experimental sites. J Food Prot 2012; 75:480-7. [PMID: 22410221 DOI: 10.4315/0362-028x.jfp-11-306] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Little is known about the influence of abiotic factors such as climate and soil chemistry on the survival of Escherichia coli O157:H7 in field lettuce. We applied a nalidixic acid-resistant derivative of strain ATCC 700728 to field-grown romaine lettuce in two regions in Canada characterized by large variances in soil type and climate. Surviving populations in soil and on lettuce leaves were estimated on sorbitol MacConkey agar supplemented with nalidixic acid. Data were fitted with the Weibull decline function to permit comparison of decay rates in the two experimental sites. E. coli O157:H7 populations fell from 10⁵ to <10² CFU/g on leaves, and <10³ CFU/g in soil within 7 days after inoculation. Analysis revealed there was no significant difference between decay rates at the two experimental sites in either environment. The results of this study suggest that the inherent ecological fitness of E. coli O157:H7 ATCC 700728 determines the extent of survival in the production environment.
Collapse
Affiliation(s)
- Greg Bezanson
- Agriculture and Agri-Food Canada, Atlantic Food and Horticulture Research Centre, 32 Main Street, Kentville, Nova Scotia B4N 1J5, Canada.
| | | | | | | | | | | | | | | |
Collapse
|