1
|
Rayo E, Pesch T, Onorini D, Leonard C, Marti H, Schoborg R, Low N, Hampel B, Borel N. Viability assessment of Chlamydia trachomatis in men who have sex with men using molecular and culture methods. Clin Microbiol Infect 2025; 31:802-807. [PMID: 39793963 DOI: 10.1016/j.cmi.2024.12.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/17/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025]
Abstract
OBJECTIVES Chlamydia trachomatis (CT) is the most commonly reported bacterial sexually transmitted infection worldwide. Diagnosis relies on nucleic acid amplification techniques, such as PCR, which does not distinguish between viable pathogens and residual bacterial DNA, leading to potential overdiagnosis and overtreatment. PCR with confirmation of pathogen viability has not been widely explored in the sexually transmitted infection field. We aimed to establish a CT viability PCR (V-PCR) and to apply it to anorectal swabs from men who have sex with men (MSM). METHODS We validated a published V-PCR protocol by preparing artificial samples with known ratios of viable and non-viable CT. Mock samples were treated with propidium monoazide (PMAxx) before DNA extraction and quantitative PCR (qPCR) to detect CT. The V-PCR was then applied to CT PCR-positive anorectal swabs from MSM. Viability was expressed as the difference in CT copies between PMAxx untreated and treated samples (ΔLog10 CT/mL). The anorectal samples were inoculated in cell culture for isolation. Genotyping was performed by examining the ompA gene sequence. RESULTS Of 236 anorectal swabs, 69 (29.2%) were CT PCR positive, and we obtained V-PCR data from 54. There were 7 of 54 (12.9%), samples with <1% viable CT (>2.52 ΔLog10 CT/mL) 4 of 54 (7.4%) samples with 1% to 10% viable CT (1.59-2.52), 16 of 54 (29.6%) with 10.01% to 50% viable CT (0.86-1.59) and 27 of 54 (50.0%) with 50.01% to 100% viable CT (<0.35-0.86). CT was isolated successfully from 39 of 69 (56.5%) samples in cell culture. Genotypes based on ompA were obtained for 62 of 69 (89.9%) samples: G (n = 15/62), D/Da (n = 15/62), J (n = 15/62), E (n = 11/62), L1 (n = 4/62), and L2 (n = 2). DISCUSSION We successfully implemented a viability test based on PCR, which can distinguish, detect and quantify viable CT in anorectal swabs from MSM. Rapid, reliable assessment of CT viability could help to improve antimicrobial stewardship.
Collapse
Affiliation(s)
- Enrique Rayo
- Chlamydia Group, Institute of Veterinary Pathology, University of Zürich, Zürich, Switzerland.
| | - Theresa Pesch
- Chlamydia Group, Institute of Veterinary Pathology, University of Zürich, Zürich, Switzerland
| | - Delia Onorini
- Chlamydia Group, Institute of Veterinary Pathology, University of Zürich, Zürich, Switzerland; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA; Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
| | - Cory Leonard
- Chlamydia Group, Institute of Veterinary Pathology, University of Zürich, Zürich, Switzerland
| | - Hanna Marti
- Chlamydia Group, Institute of Veterinary Pathology, University of Zürich, Zürich, Switzerland
| | - Robert Schoborg
- Department of Medical Education, ETSU James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Nicola Low
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Benjamin Hampel
- Department of Public and Global Health, Institute of Epidemiology Biostatistics and Prevention, University of Zurich, Zurich, Switzerland
| | - Nicole Borel
- Chlamydia Group, Institute of Veterinary Pathology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
2
|
Wang Y, Dong H, Yu H, Yuan S, Kawasaki H, Guo Y, Yao W. Single-Port Fluorescence Immunoassay for Concurrent Quantification of Live and Dead Bacteria: A Strategy Based on Extracellular Nucleases and DNase I. Molecules 2025; 30:1374. [PMID: 40142149 PMCID: PMC11944870 DOI: 10.3390/molecules30061374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/12/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
Bacteria are the primary culprits of global foodborne diseases, making bacterial detection one of the most critical aspects of food safety. The quantification of viable and dead bacteria is typically achieved through distinct methodologies, such as culture-based methods and molecular biological techniques. These approaches often have non-overlapping requirements in terms of sample pre-treatment and detection equipment. However, in this presented work, bacterial extracellular nucleases and DNase I were utilized to achieve the simultaneous quantification of both live and dead bacteria in a single well of a microplate. The detection limits of the method for live and dead bacteria are estimated to be 7.13 × 105 CFU/mL and 3.54 × 105 CFU/mL, respectively. In the application of detecting bacteria in pickled pork stewed bamboo shoot soup, the detection limit for live bacteria can be reduced to as low as 102 CFU/mL within 24 h after enrichment cultivation.
Collapse
Affiliation(s)
- Yuhan Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Han Dong
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hang Yu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shaofeng Yuan
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hideya Kawasaki
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita 564-8680, Japan
| | - Yahui Guo
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
3
|
Kushkevych I, Dvořáková M, Dordevic D, Futoma-Kołoch B, Gajdács M, Al-Madboly LA, Abd El-Salam M. Advances in gut microbiota functions in inflammatory bowel disease: Dysbiosis, management, cytotoxicity assessment, and therapeutic perspectives. Comput Struct Biotechnol J 2025; 27:851-868. [PMID: 40115534 PMCID: PMC11925123 DOI: 10.1016/j.csbj.2025.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/21/2025] [Accepted: 02/21/2025] [Indexed: 03/23/2025] Open
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, have become increasingly prevalent across all human generations. Despite advances in diagnosis, effective long-term therapeutic options remain limited, with many patients experiencing recurrent symptoms after treatment. The multifactorial origins of ulcerative colitis are widely recognized, but the intestinal microbiome, particularly bacteria from the Desulfovibrionaceae family, is thought to play a central role in the pathogenesis of the disease. These bacteria contribute significantly to gut microbial functions, yet their cytotoxic and viability characteristics under disease conditions remain poorly understood. Our review provides insights on recent advancements in methodologies for assessing the cytotoxicity and viability of anaerobic intestinal bacteria, with a specific focus on their relevance to gut health and disease. We introduce overview from current literature on modern techniques including flow cytometry, high-throughput screening, and molecular-based assays, highlighting their applications in understanding the role of Desulfovibrionaceae and other gut microbes in IBD pathogenesis. By bridging methodological advancements with functional implications, this review aims to enhance our understanding of gut microbiota-host interactions, which are crucial for maintaining health and preventing disease through immune modulation, where microbiota help regulate immune responses and prevent excessive inflammation; nutrient metabolism, including the breakdown of dietary fibers into short-chain fatty acids that support gut health; and colonization resistance, where beneficial microbes outcompete harmful pathogens to maintain microbial balance.
Collapse
Affiliation(s)
- Ivan Kushkevych
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Michaela Dvořáková
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Dani Dordevic
- Department of Plant Origin Food Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackého tř. 1946/1, Brno 612 42, Czech Republic
| | - Bożena Futoma-Kołoch
- Department of Microbiology, Faculty of Biological Sciences, University of Wroclaw, ul. S. Przybyszewskiego 63, Wrocław 51-148, Poland
| | - Márió Gajdács
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, Tisza Lajos krt. 62-64, Szeged 6720, Hungary
| | - Lamiaa A Al-Madboly
- Department of Microbiology and Immunology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Mohamed Abd El-Salam
- Department of Pharmacognosy, Faculty of Pharmacy, Delta University for Science and Technology, International Coastal Road, Gamasa 11152, Egypt
- Instituto de Formación Continua IL3, University of Barcelona, Barcelona 08018, Spain
| |
Collapse
|
4
|
von Hertwig AM, Pereira AA, Amorim Neto DP, Nascimento MS. Quantification of Viable Salmonella by Propidium Monoazide Real-Time PCR After Long-Term Storage of Peanut Products. Microorganisms 2024; 12:2640. [PMID: 39770842 PMCID: PMC11679600 DOI: 10.3390/microorganisms12122640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
In this study, the performance of quantitative PCR, combined or not with propidium monoazide (PMA), to recover Salmonella from peanut products after different storage times was evaluated. The samples were inoculated with 5-6 log cfu g-1 of Salmonella Typhimurium ATCC 14028 and stored at 28 °C for up to 540 d. The correlation between the threshold cycle number (Ct) and the colony-forming units (cfu) was obtained by a standard curve, which showed a linear correlation (R2 = 0.97). The highest counts were recovered by qPCR (p < 0.05); however, it quantified both viable and non-viable cells. For roasted peanuts, a significant difference (p < 0.05) between qPCR-PMA and the culture method was verified only for samples stored for 30 d, i.e., 2.8 versus 4.0 log cfu g-1. Further, there was no VBNC status in the roasted peanuts, even after long-term exposure to desiccation stress. For peanut-based products, after 540 d, only paçoca showed a significant difference (p < 0.05) among the three methods evaluated. In peanut brittle, qPCR-PMA detected 1.5 log cfu g-1, while, in the culture method, Salmonella was recovered in 1 g. The pathogen was below the detection limit in pé-de-moça either by plate count or qPCR-PMA. Therefore, qPCR-PMA shows potential for use in quantifying Salmonella in peanut products.
Collapse
Affiliation(s)
| | | | | | - Maristela S. Nascimento
- Faculty of Food Engineering, University of Campinas, Campinas 13083-862, Brazil; (A.M.v.H.); (A.A.P.); (D.P.A.N.)
| |
Collapse
|
5
|
Li L, Bae S. Quantitative detection and survival analysis of VBNC Salmonella Typhimurium in flour using droplet digital PCR and DNA-intercalating dyes. Microbiol Spectr 2024; 12:e0024924. [PMID: 38975767 PMCID: PMC11302299 DOI: 10.1128/spectrum.00249-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/13/2024] [Indexed: 07/09/2024] Open
Abstract
The difficulty in detecting viable but non-culturable (VBNC) Salmonella by culture-dependent methods poses a risk to food safety. In our study, we applied a viability test to Salmonella following a lethal treatment and to flour samples inoculated with Salmonella to evaluate the effectiveness of viability polymerase chain reaction (PCR). Our findings revealed that the combination of both ddPCR and qPCR with those DNA-intercalating dyes could quantify viable cells at low concentrations when the plate counting method failed to detect them post-inactivation. Prolonged UV exposure did not induce cell membrane disruption, as confirmed with PMA-ddPCR, with insignificant differences in gene copies. However, samples exposed to DyeTox13 and DyeTox13 + EMA showed lower gene copy numbers, implying that enzymatic activity was decreased by UV exposure duration. In addition, temperature-dependent survival in flour revealed uniform decay rates and D values (time required for a 1 log reduction) of DNA in untreated samples across various temperatures. By contrast, different decay rates were observed with DNA-intercalating dyes (DyeTox13 and DyeTox13 + EMA), showing faster metabolic activity loss at higher temperatures in flour. The decay rates and D values, determined through plate counting and those DNA-intercalating dyes, indicated the potential presence of VBNC Salmonella. A strong correlation between DyeTox13 dyes and the plate counting method suggested DyeTox13 as a rapid alternative for detecting Salmonella in flour. The ddPCR with DNA-intercalating dyes could effectively evaluate Salmonella viability, facilitating more precise monitoring of VBNC in food. IMPORTANCE Salmonella, a major foodborne pathogen, poses significant risks, particularly to vulnerable groups like infants, older people, and the immunocompromised. Accurate detection is vital for public health and food safety, given its potential to cause severe and life-threatening symptoms. Our study demonstrated digital polymerase chain reaction (ddPCR) with DNA-intercalating dyes for identifying the different physiological statuses of Salmonella. Also, the application of ddPCR with DNA-intercalating dyes offers quantification of viable cells post-disinfection as an alternative method in food. Utilizing ddPCR and DNA-intercalating dyes, we enhanced the detection of VBNC Salmonella, a form often undetectable by conventional methods. This innovative approach could significantly improve the precision and efficiency of detection for viable Salmonella. By providing deeper insights into its transmission potential, our method is a critical tool in preventing outbreaks and ensuring the safety of food products. This research contributes substantially to global efforts in controlling foodborne illnesses and safeguarding public health.
Collapse
Affiliation(s)
- Liyan Li
- Department of Civil and Environmental Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Sungwoo Bae
- Department of Civil and Environmental Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
6
|
Bruce-Tagoe TA, Bhaskar S, Kavle RR, Jeevanandam J, Acquah C, Ohemeng-Boahen G, Agyei D, Danquah MK. Advances in aptamer-based biosensors for monitoring foodborne pathogens. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:1252-1271. [PMID: 38910921 PMCID: PMC11190136 DOI: 10.1007/s13197-023-05889-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/27/2023] [Accepted: 10/21/2023] [Indexed: 06/25/2024]
Abstract
Biosensors are analytical devices for detecting a wide range of targets, including cells, proteins, DNA, enzymes, and chemical and biological compounds. They mostly rely on using bioprobes with a high binding affinity to the target for specific detection. However, low specificity and effectiveness of the conventional biosensors has led to the search for novel materials, that can specifically detect biomolecules. Aptamers are a group of single-stranded DNA or RNA oligonucleotides, that can bind to their targets with high specificity and serve as effective bioprobes for developing aptamer-based biosensors. Aptamers have a shorter production time, high stability, compared to traditional bioprobes, and possess ability to develop them for specific target molecules for tailored applications. Thus, various aptasensing approaches, including electrochemical, optical, surface plasmon resonance and chip-dependent approaches, have been investigated in recent times for various biological targets, including foodborne pathogens. Hence, this article is an overview of various conventional foodborne pathogen detection methods, their limitations and the ability of aptamer-based biosensors to overcome those limitations and replace them. In addition, the current status and advances in aptamer-based biosensors for the detection of foodborne pathogens to ensure food safety were also discussed. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-023-05889-8.
Collapse
Affiliation(s)
| | - Shyju Bhaskar
- Department of Food Science, University of Otago, Dunedin, 9056 New Zealand
| | - Ruchita Rao Kavle
- Department of Food Science, University of Otago, Dunedin, 9056 New Zealand
| | - Jaison Jeevanandam
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Caleb Acquah
- Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5 Canada
| | - Godfred Ohemeng-Boahen
- Department of Chemical Engineering, Kwame Nkrumah University of Science and Technology, UPO, Kumasi, Ghana
| | - Dominic Agyei
- Department of Food Science, University of Otago, Dunedin, 9056 New Zealand
| | - Michael K. Danquah
- Chemical Engineering Department, University of Tennessee, Chattanooga, TN 37403 USA
| |
Collapse
|
7
|
Zhuang L, Gong J, Shen Q, Yang J, Song C, Liu Q, Zhao B, Zhang Y, Zhu M. Advances in detection methods for viable Salmonella spp.: current applications and challenges. ANAL SCI 2023; 39:1643-1660. [PMID: 37378821 DOI: 10.1007/s44211-023-00384-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023]
Abstract
Salmonella is a common intestinal pathogen that can cause food poisoning and intestinal disease. The high prevalence of Salmonella necessitates efficient and sensitive methods for its identification, detection, and monitoring, especially of viable Salmonella. Conventional culture methods need to be more laborious and time-consuming. And they are relatively limited in their ability to detect Salmonella in the viable but non-culturable status if present in the sample to be tested. As a result, there is an increasing need for rapid and accurate techniques to detect viable Salmonella spp. This paper reviewed the status and progress of various methods reported in recent years that can be used to detect viable Salmonella, such as culture-based methods, molecular methods targeting RNAs and DNAs, phage-based methods, biosensors, and some techniques that have the potential for future application. This review can provide researchers with a reference for additional method options and help facilitate the development of rapid and accurate assays. In the future, viable Salmonella detection approaches will become more stable, sensitive, and fast and are expected to play a more significant role in food safety and public health.
Collapse
Affiliation(s)
- Linlin Zhuang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering and Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, 210096, People's Republic of China
| | - Jiansen Gong
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, People's Republic of China
| | - Qiuping Shen
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Jianbo Yang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Chunlei Song
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Qingxin Liu
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Bin Zhao
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Yu Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering and Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, 210096, People's Republic of China.
| | - Mengling Zhu
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China.
| |
Collapse
|
8
|
Thilakarathna SH, Chui L. A Pilot Study to Detect Viable Salmonella spp. in Diarrheal Stool Using Viability Real-Time PCR as a Culture-Independent Diagnostic Tool in a Clinical Setting. Int J Mol Sci 2023; 24:9979. [PMID: 37373127 DOI: 10.3390/ijms24129979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Frontline laboratories are adopting culture-independent diagnostic testing (CIDT) such as nucleic acid amplification tests (NAATs) due to numerous advantages over culture-based testing methods. Paradoxically, the viability of pathogens, a crucial factor determining active infections, cannot be confirmed with current NAATs alone. A recent development of viability PCR (vPCR) was introduced to mitigate this limitation associated with real-time PCR (qPCR) by using a DNA-intercalating dye to remove residual and dead cell DNA. This study assessed the applicability of the vPCR assay on diarrheal stools. Eighty-five diarrheal stools confirmed for Salmonellosis were tested via qPCR and vPCR using in-house primers and probe targeting the invA gene. vPCR-negative stools (Ct cut off > 31) were enriched in mannitol selenite broth (MSB) to verify low bacterial loads. vPCR assay showed ~89% sensitivity (qPCR- and vPCR-positive stools: 76/85). vPCR-negative stools (9/85; qPCR-positive: 5; qPCR-negative: 4) were qPCR- and culture-positive post-MSB-enrichment and confirmed the presence of low viable bacterial loads. Random sampling error, low bacterial loads, and receiving stools in batches could contribute to false negatives. This is a pilot study and further investigations are warranted to explore vPCR to assess pathogen viability in a clinical setting, especially when culture-based testing is unavailable.
Collapse
Affiliation(s)
- Surangi H Thilakarathna
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Linda Chui
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 1C9, Canada
- Alberta Precision Laboratories, Public Health Laboratory (ProvLab), Edmonton, AB T6G 2J2, Canada
| |
Collapse
|
9
|
Flores-Ramírez A, Ortega-Cuenca J, Cuetero-Martínez Y, de Los Cobos D, Noyola A. Viability and removal assessment of Escherichia coli and Salmonella spp. by real-time PCR with propidium monoazide in the hygienization of sewage sludge using three anaerobic processes. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 161:254-262. [PMID: 36907017 DOI: 10.1016/j.wasman.2023.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/31/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Sewage sludge should be stabilized for its beneficial use and pathogens, among other factors, should comply with environmental regulations. Three sludge stabilization process were compared to assess their suitability for producing Class A biosolids: MAD-AT (mesophilic (37 °C) anaerobic digestion (MAD) followed by an alkaline treatment (AT)); TAD (thermophilic (55 °C) anaerobic digester); and TP-TAD (mild thermal (80 °C, 1 h) pretreatment (TP) followed by a TAD). E. coli and Salmonella spp. were determined, differentiating three possible states: total cells (qPCR), viable cells using the propidium monoazide method (PMA-qPCR), and culturable cells (MPN). Culture techniques followed by the confirmative biochemical tests identified the presence of Salmonella spp. in PS and MAD samples, while the molecular methods (qPCR and PMA-qPCR) showed negative results in all samples. The TP + TAD arrangement reduced the concentration of total and viable E. coli cells in a greater extent than the TAD process. However, an increase of culturable E. coli was observed in the corresponding TAD step, indicating that the mild thermal pretreatment induced the viable but non-culturable state in E. coli. In addition, the PMA technique did not discriminate viable from non-viable bacteria in complex matrices. The three processes produced Class A biosolids (fecal coliforms < 1000 MPN/gTS and Salmonella spp, < 3 MPN/gTS) maintaining compliance after a 72 h storage period. It appears that the TP step favors the viable but not culturable state in E. coli cells, a finding that should be considered when adopting mild thermal treatment in sludge stabilization process arrangements.
Collapse
Affiliation(s)
- A Flores-Ramírez
- Subdirección de Hidráulica y Ambiental, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, Coyoacán 04510, Ciudad de México, México
| | - J Ortega-Cuenca
- Subdirección de Hidráulica y Ambiental, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, Coyoacán 04510, Ciudad de México, México
| | - Y Cuetero-Martínez
- Subdirección de Hidráulica y Ambiental, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, Coyoacán 04510, Ciudad de México, México
| | - D de Los Cobos
- Subdirección de Hidráulica y Ambiental, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, Coyoacán 04510, Ciudad de México, México
| | - A Noyola
- Subdirección de Hidráulica y Ambiental, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, Coyoacán 04510, Ciudad de México, México.
| |
Collapse
|
10
|
Chan SH, Liau SH, Low YJ, Chng KR, Wu Y, Chan JSH, Tan LK. A Real-Time PCR Approach for Rapid Detection of Viable Salmonella Enteritidis in Shell Eggs. Microorganisms 2023; 11:microorganisms11040844. [PMID: 37110268 PMCID: PMC10143610 DOI: 10.3390/microorganisms11040844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Rapid and robust detection assays for Salmonella Enteritidis (SE) in shell eggs are essential to enable a quick testing turnaround time (TAT) at the earliest checkpoint and to ensure effective food safety control. Real-time polymerase chain reaction (qPCR) assays provide a workaround for the protracted lead times associated with conventional Salmonella diagnostic testing. However, DNA-based analysis cannot reliably discriminate between signals from viable and dead bacteria. We developed a strategy based on an SE qPCR assay that can be integrated into system testing to accelerate the detection of viable SE in egg-enriched cultures and verify the yielded SE isolates. The specificity of the assay was evaluated against 89 Salmonella strains, and SE was accurately identified in every instance. To define the indicator for a viable bacteria readout, viable or heat-inactivated SE were spiked into shell egg contents to generate post-enriched, artificially contaminated cultures to establish the quantification cycle (Cq) for viable SE. Our study has demonstrated that this technique could potentially be applied to accurately identify viable SE during the screening stage of naturally contaminated shell eggs following enrichment to provide an early alert, and that it consistently identified the serotypes of SE isolates in a shorter time than conventional testing.
Collapse
Affiliation(s)
- Siew Herng Chan
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore
| | - Sock Hwee Liau
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore
| | - Ying Jia Low
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore
| | - Kern Rei Chng
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore
| | - Yuansheng Wu
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore
| | - Joanne Sheot Harn Chan
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore
- Department of Food Science and Technology, National University of Singapore, S14 Level 5 Science Drive 2, Singapore 117542, Singapore
| | - Li Kiang Tan
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore
- Correspondence: ; Tel.: +65-6019-5826
| |
Collapse
|
11
|
Cuetero-Martínez Y, Flores-Ramírez A, De Los Cobos-Vasconcelos D, Aguirre-Garrido JF, López-Vidal Y, Noyola A. Removal of bacterial pathogens and antibiotic resistance bacteria by anaerobic sludge digestion with thermal hydrolysis pre-treatment and alkaline stabilization post-treatment. CHEMOSPHERE 2023; 313:137383. [PMID: 36436581 DOI: 10.1016/j.chemosphere.2022.137383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 06/16/2023]
Abstract
Primary sludge (PS) is associated with public health and environmental risks, so regulations focus on reducing the pathogenic and heavy metal contents of the treated material (biosolids), intended for soil amendments and land reclamation. The regulations set limits for Escherichia coli (or fecal coliforms), Salmonella spp., helminth eggs and enterovirus. However, the potential risk due to antibiotic resistant bacteria (ARB) and other human potential pathogenic bacteria (HPB) are not considered. In this work, three sludge treatment processes, having in common an anaerobic digestion step, were applied to assess the removal of regulated bacteria (fecal coliforms, Salmonella spp), ARB and HPB. The treatment arrangements, fed with PS from a full-scale wastewater treatment plant were: 1) Mesophilic anaerobic digestion followed by alkaline stabilization post-treatment (MAD-CaO); 2) Thermophilic anaerobic digestion (TAD) and, 3) Pre-treatment (mild thermo-hydrolysis) followed by TAD (PT-TAD). The results address the identification, quantification (colony forming units) and taxonomic characterization of ARB resistant to β-lactams and vancomycin, as well as the taxonomic characterization of HPB by sequencing with PacBio. In addition, quantification based on culture media of fecal coliforms and Salmonella spp. is presented. The capabilities and limitations of microbiological and metataxonomomic analyses based on PacBio sequencing are discussed, emphasizing that they complement each other. Genus Aeromonas, Acinetobacter, Citrobacter, Enterobacter, Escherichia, Klebsiella, Ochrobactrum, Pseudomonas and Raoultella, among others, were found in the PS, which are of clinical or environmental importance, being either HPB, HPB-ARB, or non-pathogenic ARB with the potentiality of horizontal gene transfer. Based on the analysis of fecal coliforms and Salmonella spp., the three processes produced class A (highest) biosolids, suitable for unrestricted agriculture applications. Mild thermo-hydrolisis was effective in decreasing ARB cultivability, but it reappeared after the following TAD. O. intermedium (HPB-ARB) was enriched in MAD and TAD while Laribacter hongkongensis (HPB) did persist after the applied treatments.
Collapse
Affiliation(s)
- Yovany Cuetero-Martínez
- Subdirección de Hidráulica y Ambiental, Instituto de Ingeniería, Universidad Nacional Autónoma de México, 04510 CDMX, Mexico; Doctorado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, 04510 CDMX, Mexico
| | - Aarón Flores-Ramírez
- Subdirección de Hidráulica y Ambiental, Instituto de Ingeniería, Universidad Nacional Autónoma de México, 04510 CDMX, Mexico
| | - Daniel De Los Cobos-Vasconcelos
- Subdirección de Hidráulica y Ambiental, Instituto de Ingeniería, Universidad Nacional Autónoma de México, 04510 CDMX, Mexico
| | - José Félix Aguirre-Garrido
- Departamento de Ciencias Ambientales, Universidad Autónoma Metropolitana - Unidad Lerma, 52005 Lerma de Villada, Edo. Mex, Mexico
| | - Yolanda López-Vidal
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 CDMX, Mexico
| | - Adalberto Noyola
- Subdirección de Hidráulica y Ambiental, Instituto de Ingeniería, Universidad Nacional Autónoma de México, 04510 CDMX, Mexico.
| |
Collapse
|
12
|
Roumani F, Barros-Velázquez J, Garrido-Maestu A, Prado M. Real-time PCR, and Recombinase Polymerase Amplification combined with SYBR Green I for naked-eye detection, along with Propidium Monoazide (PMA) for the detection of viable patulin-producing fungi in apples and by-products. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Watson F, Wilks SA, Keevil CW, Chewins J. Evaluating the environmental microbiota across four National Health Service hospitals within England. J Hosp Infect 2023; 131:203-212. [PMID: 36343745 DOI: 10.1016/j.jhin.2022.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
Hospital surfaces contaminated with microbial soiling, such as dry surface biofilms (DSBs), can act as a reservoir for pathogenic micro-organisms, and inhibit their detection and removal during routine cleaning. Studies have recognized that such increases in bioburden can hinder the impact of disinfectants and mask the detection of potential pathogens. Cleanliness within healthcare settings is often determined through routine culture-based analysis, whereby surfaces that exhibit >2.5 colony-forming units (CFU) per cm2 pose a risk to patient health; therefore, any underestimation could have detrimental effects. This study quantified microbial growth on high-touch surfaces in four hospitals in England over 19 months. This was achieved using environmental swabs to sample a variety of surfaces within close proximity of the patient, and plating these on to non-specific low nutrient detection agar. The presence of DSBs on surfaces physically removed from the environment was confirmed using real-time imaging through episcopic differential interference contrast microscopy combined with epifluorescence. Approximately two-thirds of surfaces tested exceeded the limit for cleanliness (median 2230 CFU/cm2), whilst 83% of surfaces imaged with BacLight LIVE/DEAD staining confirmed traces of biofilm. Differences in infection control methods, such as choice of surface disinfectants and cleaning personnel, were not reflected in the microbial variation observed and resulting risk to patients. This highlights a potential limitation in the effectiveness of the current standards for all hospital cleaning, and further development using representative clinical data is required to overcome this limitation.
Collapse
Affiliation(s)
- F Watson
- School of Biological Sciences, University of Southampton, Southampton, UK; Bioquell UK Ltd, Andover, UK
| | - S A Wilks
- School of Health Sciences, University of Southampton, Southampton, UK
| | - C W Keevil
- School of Biological Sciences, University of Southampton, Southampton, UK
| | | |
Collapse
|
14
|
Shen J, McFarland AG, Blaustein RA, Rose LJ, Perry-Dow KA, Moghadam AA, Hayden MK, Young VB, Hartmann EM. An improved workflow for accurate and robust healthcare environmental surveillance using metagenomics. MICROBIOME 2022; 10:206. [PMID: 36457108 PMCID: PMC9716758 DOI: 10.1186/s40168-022-01412-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Effective surveillance of microbial communities in the healthcare environment is increasingly important in infection prevention. Metagenomics-based techniques are promising due to their untargeted nature but are currently challenged by several limitations: (1) they are not powerful enough to extract valid signals out of the background noise for low-biomass samples, (2) they do not distinguish between viable and nonviable organisms, and (3) they do not reveal the microbial load quantitatively. An additional practical challenge towards a robust pipeline is the inability to efficiently allocate sequencing resources a priori. Assessment of sequencing depth is generally practiced post hoc, if at all, for most microbiome studies, regardless of the sample type. This practice is inefficient at best, and at worst, poor sequencing depth jeopardizes the interpretation of study results. To address these challenges, we present a workflow for metagenomics-based environmental surveillance that is appropriate for low-biomass samples, distinguishes viability, is quantitative, and estimates sequencing resources. RESULTS The workflow was developed using a representative microbiome sample, which was created by aggregating 120 surface swabs collected from a medical intensive care unit. Upon evaluating and optimizing techniques as well as developing new modules, we recommend best practices and introduce a well-structured workflow. We recommend adopting liquid-liquid extraction to improve DNA yield and only incorporating whole-cell filtration when the nonbacterial proportion is large. We suggest including propidium monoazide treatment coupled with internal standards and absolute abundance profiling for viability assessment and involving cultivation when demanding comprehensive profiling. We further recommend integrating internal standards for quantification and additionally qPCR when we expect poor taxonomic classification. We also introduce a machine learning-based model to predict required sequencing effort from accessible sample features. The model helps make full use of sequencing resources and achieve desired outcomes. Video Abstract CONCLUSIONS: This workflow will contribute to more accurate and robust environmental surveillance and infection prevention. Lessons gained from this study will also benefit the continuing development of methods in relevant fields.
Collapse
Affiliation(s)
- Jiaxian Shen
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208-3109, USA.
| | - Alexander G McFarland
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208-3109, USA
| | - Ryan A Blaustein
- Department of Nutrition and Food Science, University of Maryland, College Park, USA
| | - Laura J Rose
- Centers for Disease Control and Prevention, Atlanta, USA
| | | | - Anahid A Moghadam
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208-3109, USA
| | - Mary K Hayden
- Division of Infectious Diseases, Department of Internal Medicine, Rush Medical College, Chicago, USA
| | - Vincent B Young
- Department of Internal Medicine/Division of Infectious Diseases, The University of Michigan Medical School, Ann Arbor, USA
| | - Erica M Hartmann
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208-3109, USA
| |
Collapse
|
15
|
Thilakarathna SH, Stokowski T, Chui L. An Improved Real-Time Viability PCR Assay to Detect Salmonella in a Culture-Independent Era. Int J Mol Sci 2022; 23:ijms232314708. [PMID: 36499040 PMCID: PMC9738789 DOI: 10.3390/ijms232314708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022] Open
Abstract
Viability PCR (vPCR) uses a DNA intercalating dye to irreversibly bind double-stranded DNA from organisms with compromised cell membranes. This allows the selective amplification of DNA from intact cells. An optimized vPCR protocol should minimize false positives (DNA from compromised cells not fully removed) and false negatives (live cell DNA bound by the dye). We aimed to optimize a vPCR protocol using PMAxx™ as the intercalating agent and Salmonella Enteritidis as the target organism. To do this, we studied (1) single vs. sequential PMAxx™ addition; (2) a wash step post-PMAxx™ treatment; (3) a change of tube post-treatment before DNA extraction. The single vs. sequential PMAxx™ addition showed no difference. Results signified that PMAxx™ potentially attached to polypropylene tube walls and bound the released DNA from PMA-treated live cells when lysed in the same tube. A wash step was ineffective but transfer of the treated live cells to a new tube minimized these false-negative results. Our optimized protocol eliminated 108 CFU/mL heat-killed cell DNA in the presence of different live cell dilutions without compromising the amplification of the live cells, minimizing false positives. With further improvements, vPCR has great potential as a culture-independent diagnostic tool.
Collapse
Affiliation(s)
- Surangi H. Thilakarathna
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Taryn Stokowski
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Linda Chui
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 1C9, Canada
- Alberta Precision Laboratories, Public Health Laboratory (ProvLab), Edmonton, AB T6G 2J2, Canada
- Correspondence:
| |
Collapse
|
16
|
Trinh KTL, Lee NY. Recent Methods for the Viability Assessment of Bacterial Pathogens: Advances, Challenges, and Future Perspectives. Pathogens 2022; 11:1057. [PMID: 36145489 PMCID: PMC9500772 DOI: 10.3390/pathogens11091057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/28/2022] Open
Abstract
Viability assessment is a critical step in evaluating bacterial pathogens to determine infectious risks to public health. Based on three accepted viable criteria (culturability, metabolic activity, and membrane integrity), current viability assessments are categorized into three main strategies. The first strategy relies on the culturability of bacteria. The major limitation of this strategy is that it cannot detect viable but nonculturable (VBNC) bacteria. As the second strategy, based on the metabolic activity of bacteria, VBNC bacteria can be detected. However, VBNC bacteria sometimes can enter a dormant state that allows them to silence reproduction and metabolism; therefore, they cannot be detected based on culturability and metabolic activity. In order to overcome this drawback, viability assessments based on membrane integrity (third strategy) have been developed. However, these techniques generally require multiple steps, bulky machines, and laboratory technicians to conduct the tests, making them less attractive and popular applications. With significant advances in microfluidic technology, these limitations of current technologies for viability assessment can be improved. This review summarized and discussed the advances, challenges, and future perspectives of current methods for the viability assessment of bacterial pathogens.
Collapse
Affiliation(s)
- Kieu The Loan Trinh
- Department of Industrial Environmental Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Korea
| |
Collapse
|
17
|
Liang T, Long H, Zhan Z, Zhu Y, Kuang P, Mo N, Wang Y, Cui S, Wu X. Simultaneous detection of viable Salmonella spp., Escherichia coli, and Staphylococcus aureus in bird's nest, donkey-hide gelatin, and wolfberry using PMA with multiplex real-time quantitative PCR. Food Sci Nutr 2022; 10:3165-3174. [PMID: 36171769 PMCID: PMC9469859 DOI: 10.1002/fsn3.2916] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022] Open
Abstract
Salmonella spp., Escherichia coli, and Staphylococcus aureus are common microbial contaminants within the homology of medicine and food that can cause serious food poisoning. This study describes a highly efficient, sensitive, specific, and simple multiplex real-time quantitative PCR (mRT-qPCR) method for the simultaneous detection of viable Salmonella spp., E. coli, and S. aureus. Primers and probes were designed for the amplification of the target genes invA, uidA, and nuc. Dead bacterial genetic material was excluded by propidium monoazide (PMA) treatment, facilitating the detection of only viable bacteria. This method was capable of detecting Salmonella spp., E. coli, and S. aureus at 102, 102, and 101 CFU/ml, respectively, in pure culture. PMA combined with mRT-qPCR can reliably distinguish between dead and viable bacteria with recovery rates from 95.7% to 105.6%. This PMA-mRT-qPCR technique is a highly sensitive and specific method for the simultaneous detection of three pathogens within the homology of medicine and food.
Collapse
Affiliation(s)
- Taobo Liang
- Jiangxi Institute for Food ControlNanchangChina
| | - Hui Long
- Nanchang Center for Disease Control and PreventionNanchangChina
| | | | - Yingfei Zhu
- Jiangxi Institute for Food ControlNanchangChina
| | | | - Ni Mo
- Jiangxi Institute for Food ControlNanchangChina
| | - Yuping Wang
- Chengdu Institute of Food and Drug ControlChengduChina
| | - Shenghui Cui
- National Institutes for Food and Drug ControlBeijingChina
| | - Xin Wu
- Jiangxi Institute for Food ControlNanchangChina
| |
Collapse
|
18
|
Naseri M, Maliha M, Dehghani M, Simon GP, Batchelor W. Rapid Detection of Gram-Positive and -Negative Bacteria in Water Samples Using Mannan-Binding Lectin-Based Visual Biosensor. ACS Sens 2022; 7:951-959. [PMID: 35290028 DOI: 10.1021/acssensors.1c01748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Waterborne bacterial infection is a health threat worldwide, making accurate and timely bacteria detection crucial to prevent waterborne disease outbreaks. Inspired by the intrinsic capability of mannan-binding lectin (MBL) in recognizing the pathogen-associated molecular patterns (PAMPs), a visual biosensor is developed here for the on-site detection of both Gram-positive and -negative bacteria. The biosensor was synthesized by immobilization of the MBL protein onto the blue carboxyl-functionalized polystyrene microparticles (PSM), which is then used in a two-step assay to detect bacterial cells in water samples. The first step involved a 20 min incubation following the MBL-PSM and calcium chloride solution addition to the samples. The second step was to add ethanol to the resultant blue mixture and observe the color change with the naked eye after 15 min. The biosensor had a binary (all-or-none) response, which in the presence of bacterial cells kept its blue color, while in their absence the color changed from blue to colorless. Testing the water samples spiked with four Gram-negative bacteria including Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa and two Gram-positive bacteria of Enterococcus faecalis and Staphylococcus aureus showed that the biosensor could detect all tested bacteria with a concentration as low as 101.5 CFU/ml. The performance of biosensor using the water samples from a water treatment plant also confirmed its capability to detect the pathogens in real-life water samples without the need for instrumentation.
Collapse
Affiliation(s)
- Mahdi Naseri
- Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Maisha Maliha
- Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Mostafa Dehghani
- Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - George P Simon
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Warren Batchelor
- Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
19
|
A colorimetric lateral flow assay based on multiplex PCR for the rapid detection of viable Escherichia coli O157:H7 and Salmonella Typhimurium without enrichment. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Bermond C, Cherrad S, Trainoy A, Ngari C, Poulet V. Real-time qPCR to evaluate bacterial contamination of cosmetic cream and the efficiency of protective ingredients. J Appl Microbiol 2021; 132:2106-2120. [PMID: 34586708 DOI: 10.1111/jam.15310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 02/04/2023]
Abstract
AIMS The absence of objectionable micro-organisms in cosmetics and the efficiency of preservatives are still mainly assessed by time-consuming cultivation-based methods. We explored the applicability of real-time quantitative polymerase chain reaction (qPCR) and reported on the behaviour of different bacteria in artificially contaminated creams. METHODS AND RESULTS Real-time qPCR on DNA from Burkholderia cepacia, Pluribacter gergoviae, Pseudomonas aeruginosa and Sphingomonas paucimobilis identified specific primer pairs that amplify accurately and efficiently two strains/isolates of each species. Using DNeasy mericon Food Kit, we detected bacterial growth in an inoculated cosmetic cream and persistency of DNA from heat-inactivated bacteria. We were also able to monitor the growth inhibitory effect of caprylyl glycol and EDTA, also showing how different bacterial species interact depending on the presence/absence of these ingredients. Finally, creams supplemented with the protective cosmetic ingredients revealed the various behaviour of five strains/isolates from P. aeruginosa. CONCLUSIONS Successfully extracting bacterial DNA from artificially contaminated cosmetic creams, we could perform real-time qPCR to identify and follow the growth of various strains of 4 bacteria species under different conditions. SIGNIFICANCE AND IMPACT OF THE STUDY Real-time qPCR appears as a promising method to detect bacterial contamination in cosmetic creams and/or to monitor growth inhibition by ingredients.
Collapse
|
21
|
Roumani F, Azinheiro S, Carvalho J, Prado M, Garrido-Maestu A. Loop-mediated isothermal amplification combined with immunomagnetic separation and propidium monoazide for the specific detection of viable Listeria monocytogenes in milk products, with an internal amplification control. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107975] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
Thapa N, Danyluk MD, Gerberich KM, Johnson EG, Dewdney MM. Assessment of the Effect of Thermotherapy on ' Candidatus Liberibacter asiaticus' Viability in Woody Tissue of Citrus via Graft-Based Assays and RNA Assays. PHYTOPATHOLOGY 2021; 111:808-818. [PMID: 32976056 DOI: 10.1094/phyto-04-20-0152-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In 2019, citrus production in Florida declined by more than 70%, mostly because of Huanglongbing (HLB), which is caused by the bacterium 'Candidatus Liberibacter asiaticus' (CLas). Thermotherapy for HLB-affected trees was proposed as a short-term management solution to maintain field productivity. It was hypothesized that thermotherapy could eliminate HLB from affected branches; therefore, the study objectives were to show which time-temperature combinations eliminated CLas from woody tissues. Hardening, rounded Valencia twigs collected from HLB-affected field trees were treated in a steam chamber at different time-temperature combinations (50°C for 60 s; 55°C for 0, 30, 60, 90, and 120 s; 60°C for 30 s; and an untreated control). Three independent repetitions of 13 branches per treatment were grafted onto healthy rootstocks and tested to detect CLas after 6, 9, and 12 months. For the RNA-based CLas viability assay, three branches per treatment were treated and bark samples were peeled for RNA extraction and subsequent gene expression analyses. During the grafting study, at 12 months after grafting, a very low frequency of trees grafted with twigs treated at 55°C for 90 s and 55°C for 120 s had detectable CLas DNA. In the few individuals with CLas, titers were significantly lower (P ≤ 0.0001) and could have been remnants of degrading DNA. Additionally, there was a significant decrease (P ≤ 0.0001) in CLas 16S rRNA expression at 55°C for 90 s, 55°C for 120 s, and 60°C for 30 s (3.4-fold change, 3.4-fold change, and 2.3-fold change, respectively) in samples 5 days after treatment. Heat injury, not total CLas kill, could explain the limited changes in transcriptional activity; however, failed recovery and eventual death of CLas resulted in no CLas detection in most of the grafted trees treated with the highest temperatures or longest durations.
Collapse
Affiliation(s)
- Naweena Thapa
- Plant Pathology Department, Citrus Research and Education Center, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850
| | - Michelle D Danyluk
- Food Science and Human Nutrition, Citrus Research and Education Center, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850
| | - Kayla M Gerberich
- Plant Pathology Department, Citrus Research and Education Center, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850
| | - Evan G Johnson
- Plant Pathology Department, Citrus Research and Education Center, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850
| | - Megan M Dewdney
- Plant Pathology Department, Citrus Research and Education Center, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850
| |
Collapse
|
23
|
Hortelano I, Moreno MY, García-Hernández J, Ferrús MA. Optimization of pre- treatments with Propidium Monoazide and PEMAX™ before real-time quantitative PCR for detection and quantification of viable Helicobacter pylori cells. J Microbiol Methods 2021; 185:106223. [PMID: 33872638 DOI: 10.1016/j.mimet.2021.106223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 12/17/2022]
Abstract
Accurate detection of H. pylori in different environmental and clinical samples is essential for public health strtdudies. Now, a big effort is being made to design PCR methodologies that allow for the detection of viable and viable but non-culturable (VBNC) H. pylori cells, by achieving complete exclusion of dead cells amplification signals. The use of DNA intercalating dyes has been proposed. However, its efficacy is still not well determined. In this study, we aimed to test the suitability of PMA and PEMAX™ dyes used prior to qPCR for only detecting viable cells of H. pylori. Their efficiency was evaluated with cells submitted to different disinfection treatments and confirmed by the absence of growth on culture media and by LIVE/DEAD counts. Our results indicated that an incubation period of 5 min for both, PMA and PEMAX™, did not affect viable cells. Our study also demonstrated that results obtained by using intercalating dyes may vary depending on the cell stress conditions. In all dead cell's samples, both PMA and PEMAX™ pre-qPCR treatments decreased the amplification signal (>103 Genomic Units (GU)), although none of them allowed for its disappearance confirming that intercalating dyes, although useful for screening purposes, cannot be considered as universal viability markers. To investigate the applicability of the method specifically to detect H. pylori cells in environmental samples, PMA-qPCR was performed on samples containing the different morphological and viability states that H. pylori can acquire in environment. The optimized PMA-qPCR methodology showed to be useful to detect mostly (but not only) viable forms, regardless the morphological state of the cell.
Collapse
Affiliation(s)
- Irene Hortelano
- Research Institute of Water and Environmental Engineering (IIAMA), Universitat Politècnica de València, 46022, Valencia, Spain.
| | - María Yolanda Moreno
- Research Institute of Water and Environmental Engineering (IIAMA), Universitat Politècnica de València, 46022, Valencia, Spain
| | | | - María Antonia Ferrús
- Biotechnology Department, Universitat Politècnica de València, 46022, Valencia, Spain.
| |
Collapse
|
24
|
Tut G, Magan N, Brain P, Xu X. Molecular Assay Development to Monitor the Kinetics of Viable Populations of Two Biocontrol Agents, Bacillus subtilis QST 713 and Gliocladium catenulatum J1446, in the Phyllosphere of Lettuce Leaves. BIOLOGY 2021; 10:biology10030224. [PMID: 33804029 PMCID: PMC8001495 DOI: 10.3390/biology10030224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 11/19/2022]
Abstract
Simple Summary There is a need to be able to track the viable populations of biocontrol agents when applied on the foliar surfaces of plants. We have developed a molecular-based method for the quantification of viable cells of two commercial biocontrol agents—a bacterium (Bacillus subtilis) and a fungus (Gliocladium catenulatum). The method has been tested on the leaf surfaces of lettuce plants to examine the changes in viable population over 10–12 days for the first time. Abstract Optimising the use of biocontrol agents (BCAs) requires the temporal tracking of viable populations in the crop phyllosphere to ensure that effective control can be achieved. No sensitive systems for quantifying viable populations of commercially available BCAs, such as Bacillus subtilis and Gliocladium catenulatum, in the phyllosphere of crop plants are available. The objective of this study was to develop a method to quantify viable populations of these two BCAs in the crop phyllosphere. A molecular tool based on propidium monoazide (PMA) (PMAxx™-qPCR) capable of quantifying viable populations of these two BCAs was developed. Samples were treated with PMAxx™ (12.5–100 μM), followed by 15 min incubation, exposure to a 800 W halogen light for 30 min, DNA extraction, and quantification using qPCR. This provided a platform for using the PMAxx™-qPCR technique for both BCAs to differentiate viable from dead cells. The maximum number of dead cells blocked, based on the DNA, was 3.44 log10 for B. subtilis and 5.75 log10 for G. catenulatum. Validation studies showed that this allowed accurate quantification of viable cells. This method provided effective quantification of the temporal changes in viable populations of the BCAs in commercial formulations on lettuce leaves in polytunnel and glasshouse production systems.
Collapse
Affiliation(s)
- Gurkan Tut
- NIAB East Malling Research, West Malling, Kent ME19 6BJ, UK; (G.T.); (P.B.); (X.X.)
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield, Bedford MK43 0AL, UK
| | - Naresh Magan
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield, Bedford MK43 0AL, UK
- Correspondence:
| | - Philip Brain
- NIAB East Malling Research, West Malling, Kent ME19 6BJ, UK; (G.T.); (P.B.); (X.X.)
| | - Xiangming Xu
- NIAB East Malling Research, West Malling, Kent ME19 6BJ, UK; (G.T.); (P.B.); (X.X.)
| |
Collapse
|
25
|
How to Evaluate Non-Growing Cells-Current Strategies for Determining Antimicrobial Resistance of VBNC Bacteria. Antibiotics (Basel) 2021; 10:antibiotics10020115. [PMID: 33530321 PMCID: PMC7912045 DOI: 10.3390/antibiotics10020115] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 12/17/2022] Open
Abstract
Thanks to the achievements in sanitation, hygiene practices, and antibiotics, we have considerably improved in our ongoing battle against pathogenic bacteria. However, with our increasing knowledge about the complex bacterial lifestyles and cycles and their plethora of defense mechanisms, it is clear that the fight is far from over. One of these resistance mechanisms that has received increasing attention is the ability to enter a dormancy state termed viable but non-culturable (VBNC). Bacteria that enter the VBNC state, either through unfavorable environmental conditions or through potentially lethal stress, lose their ability to grow on standard enrichment media, but show a drastically increased tolerance against antimicrobials including antibiotics. The inability to utilize traditional culture-based methods represents a considerable experimental hurdle to investigate their increased antimicrobial resistance and impedes the development and evaluation of effective treatments or interventions against bacteria in the VBNC state. Although experimental approaches were developed to detect and quantify VBNCs, only a few have been utilized for antimicrobial resistance screening and this review aims to provide an overview of possible methodological approaches.
Collapse
|
26
|
Wang Y, Yan Y, Thompson KN, Bae S, Accorsi EK, Zhang Y, Shen J, Vlamakis H, Hartmann EM, Huttenhower C. Whole microbial community viability is not quantitatively reflected by propidium monoazide sequencing approach. MICROBIOME 2021; 9:17. [PMID: 33478576 PMCID: PMC7819323 DOI: 10.1186/s40168-020-00961-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/06/2020] [Indexed: 05/11/2023]
Abstract
BACKGROUND High-throughput sequencing provides a powerful window into the structural and functional profiling of microbial communities, but it is unable to characterize only the viable portion of microbial communities at scale. There is as yet not one best solution to this problem. Previous studies have established viability assessments using propidium monoazide (PMA) treatment coupled with downstream molecular profiling (e.g., qPCR or sequencing). While these studies have met with moderate success, most of them focused on the resulting "viable" communities without systematic evaluations of the technique. Here, we present our work to rigorously benchmark "PMA-seq" (PMA treatment followed by 16S rRNA gene amplicon sequencing) for viability assessment in synthetic and realistic microbial communities. RESULTS PMA-seq was able to successfully reconstruct simple synthetic communities comprising viable/heat-killed Escherichia coli and Streptococcus sanguinis. However, in realistically complex communities (computer screens, computer mice, soil, and human saliva) with E. coli spike-in controls, PMA-seq did not accurately quantify viability (even relative to variability in amplicon sequencing), with its performance largely affected by community properties such as initial biomass, sample types, and compositional diversity. We then applied this technique to environmental swabs from the Boston subway system. Several taxa differed significantly after PMA treatment, while not all microorganisms responded consistently. To elucidate the "PMA-responsive" microbes, we compared our results with previous PMA-based studies and found that PMA responsiveness varied widely when microbes were sourced from different ecosystems but were reproducible within similar environments across studies. CONCLUSIONS This study provides a comprehensive evaluation of PMA-seq exploring its quantitative potential in synthetic and complex microbial communities, where the technique was effective for semi-quantitative purposes in simple synthetic communities but provided only qualitative assessments in realistically complex community samples. Video abstract.
Collapse
Affiliation(s)
- Ya Wang
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, 655 Huntington Avenue, Boston, MA 02115 USA
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142 USA
| | - Yan Yan
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, 655 Huntington Avenue, Boston, MA 02115 USA
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142 USA
| | - Kelsey N. Thompson
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, 655 Huntington Avenue, Boston, MA 02115 USA
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142 USA
| | - Sena Bae
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, 655 Huntington Avenue, Boston, MA 02115 USA
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142 USA
| | - Emma K. Accorsi
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, 655 Huntington Avenue, Boston, MA 02115 USA
| | - Yancong Zhang
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, 655 Huntington Avenue, Boston, MA 02115 USA
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142 USA
| | - Jiaxian Shen
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 USA
| | - Hera Vlamakis
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142 USA
| | - Erica M. Hartmann
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 USA
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, 655 Huntington Avenue, Boston, MA 02115 USA
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142 USA
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Harvard University, 655 Huntington Avenue, Boston, MA 02115 USA
| |
Collapse
|
27
|
Mohammad Z, Beck S, King M, Griffin D, Castillo A. Comparison between the Real-Time PCR and Crystal Diagnostic Xpress Immunoassay Methods for Detecting Salmonella and Shiga Toxin-Producing Escherichia coli in the Air of Beef Slaughter Establishments. J Food Prot 2021; 84:31-38. [PMID: 32818256 DOI: 10.4315/jfp-19-616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 08/10/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT The aim of this study was to compare the effectiveness of a quantitative real-time PCR (qPCR) molecular method and the Crystal Diagnostic Xpress (CDx) immunoassay for detecting Salmonella and Shiga toxin-producing Escherichia coli (STEC) in air samples collected from abattoirs in Texas. The 70 air samples were collected from two small and two large meat processing plants in the spring and summer with a wetted wall cyclone air sampler. The samples were divided equally into two parts: one part was used for the qPCR assay, and the other part was enriched for 18 and 36 h and evaluated with the CDx immunoassay. All samples for which positive results were obtained were confirmed by plating and by biochemical and serological tests as recommended by AOAC International to verify results of rapid methods. With the qPCR and CDx assays and 36 h of enrichment, 37.5 and 57.1% of the samples, respectively, were positive for Salmonella (P < 0.05) and 65.0 and 60.7%, respectively, were positive for STEC (P > 0.05). Air samples required longer enrichment for the CDx immunoassay than recommended by the manufacturer for food samples. Recovery of Salmonella and STEC increased 16 and 47%, respectively, when enrichment was extended from 18 to 36 h. The prevalence of Salmonella and STEC obtained with both methods was affected by the size of the processing plant and the processing stage. Detection rates for samples from larger plants were higher for both pathogens. Significantly higher prevalence was obtained for samples from the stunning and dehiding areas than for those from the fabrication rooms and chillers. Salmonella detection was higher with the CDx assay than with the qPCR assay, but no differences were found for the detection of STEC by the qPCR and CDx assays. These results highlight the importance of method adjustments when testing matrices other than foods. More research is needed to understand the dynamics of pathogen dispersal in aerosols and how this affects the effectiveness of current rapid detection methods. HIGHLIGHTS
Collapse
Affiliation(s)
- Zahra Mohammad
- Department of Nutrition and Food Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas 77843 (ORCID: https://orcid.org/0000-0002-9373-1923 [Z.M.])
| | - Samuel Beck
- Department of Mechanical Engineering, College of Engineering, Texas A&M University, College Station, Texas 77840, USA
| | - Maria King
- Department of Biological & Agricultural Engineering, College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas 77843
| | - Davey Griffin
- Department of Animal Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas 77843
| | - Alejandro Castillo
- Department of Animal Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
28
|
Zhang J, Khan S, Chousalkar KK. Development of PMAxx TM-Based qPCR for the Quantification of Viable and Non-viable Load of Salmonella From Poultry Environment. Front Microbiol 2020; 11:581201. [PMID: 33072053 PMCID: PMC7536286 DOI: 10.3389/fmicb.2020.581201] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/31/2020] [Indexed: 11/29/2022] Open
Abstract
Determining the viable and non-viable load of foodborne pathogens in animal production can be useful in reducing the number of human outbreaks. In this study, we optimized a PMAxxTM-based qPCR for quantifying viable and non-viable load of Salmonella from soil collected from free range poultry environment. The optimized nucleic acid extraction method resulted in a significantly higher (P < 0.05) yield and quality of DNA from the pure culture and Salmonella inoculated soil samples. The optimized primer for the amplification of the invA gene fragment showed high target specificity and a minimum detection limit of 102 viable Salmonella from soil samples. To test the optimized PMAxxTM-based qPCR assay, soil obtained from a free range farm was inoculated with Salmonella Enteritidis or Salmonella Typhimurium, incubated at 5, 25, and 37°C over 6 weeks. The survivability of Salmonella Typhimurium was significantly higher than Salmonella Enteritidis. Both the serovars showed moisture level dependent survivability, which was significantly higher at 5°C compared with 25°C and 37°C. The PMAxxTM-based qPCR was more sensitive in quantifying the viable load compared to the culture method used in the study. Data obtained in the current study demonstrated that the optimized PMAxxTM-based qPCR is a suitable assay for quantification of a viable and non-viable load of Salmonella from poultry environment. The developed assay has applicability in poultry diagnostics for determining the load of important Salmonella serovars containing invA.
Collapse
Affiliation(s)
- Jiawei Zhang
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Samiullah Khan
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Kapil K Chousalkar
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| |
Collapse
|
29
|
Improved culture enrichment broth for isolation of Arcobacter-like species from the marine environment. Sci Rep 2020; 10:14547. [PMID: 32884057 PMCID: PMC7471115 DOI: 10.1038/s41598-020-71442-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/05/2020] [Indexed: 12/17/2022] Open
Abstract
Arcobacter-like species are found associated with many matrices, including shellfish in marine environments. The culture media and conditions play a major role in the recovery of new Arcobacter-like species. This study was aimed to develop a culture media for isolation and enhanced growth of Arcobacter-like spp. from marine and shellfish matrices. For this purpose, 14 different Arcobacter-like spp. mostly isolated from shellfish, were grown in 24 different formulations of enrichment broths. The enrichment broths consisted of five main groups based on the organic contents (fresh oyster homogenate, lyophilized oyster either alone or in combination with other standard media), combined with artificial seawater (ASW) or 2.5% NaCl. Optical density (OD420nm) measurements after every 24 h were compared with the growth in control media (Arcobacter broth) in parallel. The mean and standard deviation were calculated for each species in each broth and statistical differences (p < 0.05) among broths were calculated by ANOVA. The results indicated that shellfish-associated Arcobacter-like species growth was significantly higher in Arcobacter broth + 50% ASW and the same media supplemented with lyophilized oysters. This is the first study to have used fresh or lyophilized oyster flesh in the enrichment broth for isolation of shellfish-associated Arcobacter-like spp.
Collapse
|
30
|
Han L, Wang K, Ma L, Delaquis P, Bach S, Feng J, Lu X. Viable but Nonculturable Escherichia coli O157:H7 and Salmonella enterica in Fresh Produce: Rapid Determination by Loop-Mediated Isothermal Amplification Coupled with a Propidium Monoazide Treatment. Appl Environ Microbiol 2020; 86:e02566-19. [PMID: 32005729 PMCID: PMC7082562 DOI: 10.1128/aem.02566-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/21/2020] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli O157:H7 and Salmonella enterica are leading causes of foodborne outbreaks linked to fresh produce. Both species can enter the "viable but nonculturable" (VBNC) state that precludes detection using conventional culture-based or molecular methods. In this study, we assessed propidium monoazide-quantitative PCR (PMA-qPCR) assays and novel methods combining PMA and loop-mediated isothermal amplification (LAMP) for the detection and quantification of VBNC E. coli O157:H7 and S. enterica in fresh produce. The performance of PMA-LAMP assays targeting the wzy gene of E. coli O157:H7 and the agfA gene of S. enterica and the performance of PMA-qPCR assays were compared in pure culture and spiked tomato, lettuce, and spinach. No cross-reaction was observed in the specificity tests. The values representing the limit of detection (LOD) seen with PMA-LAMP were 9.0 CFU/reaction for E. coli O157:H7 and 4.6 CFU/reaction for S. enterica in pure culture and were 5.13 × 103 or 5.13 × 104 CFU/g for VBNC E. coli O157:H7 and 1.05 × 104 or 1.05 × 105 CFU/g for VBNC S. enterica in fresh produce, representing results comparable to those obtained by PMA-qPCR. Standard curves showed correlation coefficients ranging from 0.925 to 0.996, indicating a good quantitative capacity of PMA-LAMP for determining populations of both bacterial species in the VBNC state. The PMA-LAMP assay was completed with considerable economy of time (30 min versus 1 h) and achieved sensitivity and quantitative capacity comparable to those seen with a PMA-qPCR assay. PMA-LAMP is a rapid, sensitive, and robust method for the detection and quantification of VBNC E. coli O157:H7 and S. enterica in fresh produce.IMPORTANCE VBNC pathogenic bacteria pose a potential risk to the food industry because they do not multiply on routine microbiological media and thus can evade detection in conventional plating assays. Both E. coli O157:H7 and S. enterica have been reported to enter the VBNC state under a range of environmental stress conditions and to resuscitate under favorable conditions and are a potential cause of human infections. PMA-LAMP methods developed in this study provide a rapid, sensitive, and specific way to determine levels of VBNC E. coli O157:H7 and S. enterica in fresh produce, which potentially decreases the risks related to the consumption of fresh produce contaminated by enteric pathogens in this state. PMA-LAMP can be further applied in the field study to enhance our understanding of the fate of VBNC pathogens in the preharvest and postharvest stages of fresh produce.
Collapse
Affiliation(s)
- Lu Han
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Kaidi Wang
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Lina Ma
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Pascal Delaquis
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, British Columbia, Canada
| | - Susan Bach
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, British Columbia, Canada
| | - Jinsong Feng
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Xiaonan Lu
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
31
|
Development of Leuconostoc lactis–Specific Quantitative PCR and its Application for Identification and Enumeration in Fermented Foods. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01720-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
32
|
Sicard A, Merfa MV, Voeltz M, Zeilinger AR, De La Fuente L, Almeida RPP. Discriminating between viable and membrane-damaged cells of the plant pathogen Xylella fastidiosa. PLoS One 2019; 14:e0221119. [PMID: 31442247 PMCID: PMC6707623 DOI: 10.1371/journal.pone.0221119] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/30/2019] [Indexed: 12/31/2022] Open
Abstract
Xylella fastidiosa is a plant pathogenic bacterium with devastating consequences to several crops of economic importance across the world. While this pathogen has been studied for over a century in the United States, several aspects of its biology remain to be investigated. Determining the physiological state of bacteria is essential to understand the effects of its interactions with different biotic and abiotic factors on cell viability. Although X. fastidiosa is culturable, its slow growing nature makes this technique cumbersome to assess the physiological state of cells present in a given environment. PMA-qPCR, i.e. the use of quantitative PCR combined with the pre-treatment of cells with the dye propidium monoazide, has been successfully used in a number of studies on human pathogens to calculate the proportion of viable cells, but has less frequently been tested on plant pathogens. We found that the use of a version of PMA, PMAxx, facilitated distinguishing between viable and non-viable cells based on cell membrane integrity in vitro and in planta. Additional experiments comparing the number of culturable, viable, and total cells in planta would help further confirm our initial results. Enhancers, intended to improve the efficacy of PMAxx, were not effective and appeared to be slightly toxic to X. fastidiosa.
Collapse
Affiliation(s)
- Anne Sicard
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California, United States of America
| | - Marcus V. Merfa
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, United States of America
| | - Michael Voeltz
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California, United States of America
| | - Adam R. Zeilinger
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California, United States of America
| | - Leonardo De La Fuente
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, United States of America
| | - Rodrigo P. P. Almeida
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California, United States of America
| |
Collapse
|
33
|
Kumar SS, Ghosh AR. Assessment of bacterial viability: a comprehensive review on recent advances and challenges. Microbiology (Reading) 2019; 165:593-610. [DOI: 10.1099/mic.0.000786] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Shravanthi S. Kumar
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| | - Asit Ranjan Ghosh
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| |
Collapse
|
34
|
Pala C, Tedde T, Salza S, Uda MT, Lollai S, Carboni V, Fadda A, Marongiu E, Virgilio S. Epidemiological survey on the prevalence of Salmonella spp. in the Sardinian pig production chain, using real-time PCR screening method. Ital J Food Saf 2019; 8:7843. [PMID: 31355154 PMCID: PMC6615067 DOI: 10.4081/ijfs.2019.7843] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 04/12/2019] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to evaluate the prevalence of Salmonella spp. in the Sardinian pig production chain in order to establish the incidence of monophasic serovariant of Salmonella Typhimurium on isolates with molecular methods (real-time PCR and multiplex PCR). Samples were collected in three EC slaughterhouses, four small slaughterhouses annexed to farmhouses, one meat distribution center, four meat cutting laboratories and four sausage processing plants. A total of 166 samples were collected and analyzed: 46 environmental samples, 48 finishing pigs, 16 piglets, 24 samples of non-processed meat, 28 meat preparations and 4 meat products. All samples were processed with an initial screening using the real-time PCR MicroSEQ® Salmonella spp detection Kit (Applied biosystems, life technologies) and with the TaqMan® Real-time PCR to confirm the kit results. Samples that tested positive for Salmonella spp were confirmed with cultural method using the standard ISO 6579. Positive samples were submitted to phenotypic identification. One colony from each positive sample was serotyped with multiplex PCR method. Salmonella spp was isolated in 7 on 166 samples (4.22 %). Among the positive samples, two came from finishing pigs, two belonged to the category meat preparations, two to meat products, one was an environmental sample. Multiplex PCR confirmed that the collected strains belonged to the species Salmonella Typhimurium (1), Salmonella derby (3) and monophasic serovariant of Salmonella Typhimurium (3).
Collapse
Affiliation(s)
| | | | | | | | - Stefano Lollai
- Department Animal Health, Institute for Experimental Veterinary Medicine of Sardinia, Sassari, Italy
| | - Vittoria Carboni
- Department Animal Health, Institute for Experimental Veterinary Medicine of Sardinia, Sassari, Italy
| | | | | | | |
Collapse
|
35
|
Salas-Massó N, Linh QT, Chin WH, Wolff A, Andree KB, Furones MD, Figueras MJ, Bang DD. The Use of a DNA-Intercalating Dye for Quantitative Detection of Viable Arcobacter spp. Cells (v-qPCR) in Shellfish. Front Microbiol 2019; 10:368. [PMID: 30873146 PMCID: PMC6403187 DOI: 10.3389/fmicb.2019.00368] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/12/2019] [Indexed: 11/13/2022] Open
Abstract
The genus Arcobacter (Vandamme et al., 1991), comprised of Campylobacter-related species, are considered zoonotic emergent pathogens. The presence of Arcobacter in food products like shellfish, has an elevated incidence worldwide. In this study, we developed a specific viable quantitative PCR (v-qPCR), using the dye propidium monoazide (PMA), for quantification of the viable Arcobacter spp. cells in raw oysters and mussels. The high selectivity of primers was demonstrated by using purified DNA from 38 different species, 20 of them from the genus Arcobacter. The optimization of PMA concentration showed that 20 μM was considered as an optimal concentration that inhibits the signal from dead cells at different concentrations (OD550 from 0.2 to 0.8) and at different ratios of live: dead cells (50:50 and 90:10). The v-qPCR results from shellfish samples were compared with those obtained in parallel using several culture isolation approaches (i.e., direct plating on marine and blood agar and by post-enrichment culturing in both media). The enrichment was performed in parallel in Arcobacter-CAT broth with and without adding NaCl. Additionally, the v-qPCR results were compared to those obtained with traditional quantitative (qPCR). The v-qPCR and the qPCR resulted in c.a. 94% of positive detection of Arcobacter vs. 41% obtained by culture approaches. When examining the reduction effect resulting from the use of v-qPCR, samples pre-enriched in Arcobacter-CAT broth supplemented with 2.5% NaCl showed a higher reduction (3.27 log copies) than that of samples obtained directly and those pre-enriched in Arcobacter-CAT broth isolation (1.05 and 1.04). When the v-qPCR was applied to detect arcobacter from real shellfish samples, 15/17 samples tested positive for viable Arcobacter with 3.41 to 8.70 log copies 1g-1. This study offers a new tool for Arcobacter surveillance in seafood.
Collapse
Affiliation(s)
- Nuria Salas-Massó
- Unitat de Microbiologia, Departament de Ciènces Médiques Bàsiques, Facultat de Medicina i Ciències de la Salut, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
- IRTA-Sant Carles de la Ràpita, Sant Carles de la Ràpita, Spain
| | - Quyen Than Linh
- Department of Bioengineering and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | | | - Anders Wolff
- Department of Bioengineering and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Karl B. Andree
- IRTA-Sant Carles de la Ràpita, Sant Carles de la Ràpita, Spain
| | | | - María José Figueras
- Unitat de Microbiologia, Departament de Ciènces Médiques Bàsiques, Facultat de Medicina i Ciències de la Salut, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Dang Duong Bang
- Division of Microbiology, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
36
|
Abdullah A, Dastider SG, Jasim I, Shen Z, Yuksek N, Zhang S, Dweik M, Almasri M. Microfluidic based impedance biosensor for pathogens detection in food products. Electrophoresis 2019; 40:508-520. [DOI: 10.1002/elps.201800405] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Amjed Abdullah
- Department of Electrical and Computer Engineering University of Missouri Columbia MO USA
| | | | - Ibrahem Jasim
- Department of Electrical and Computer Engineering University of Missouri Columbia MO USA
| | - Zhenyu Shen
- Department Veterinary Pathobiology University of Missouri Columbia MO USA
| | - Nuh Yuksek
- Department of Electrical and Computer Engineering University of Missouri Columbia MO USA
| | - Shuping Zhang
- Department Veterinary Pathobiology University of Missouri Columbia MO USA
| | - Majed Dweik
- Co‐operative Research and Life and Physical Sciences Lincoln University Jefferson City MO USA
| | - Mahmoud Almasri
- Department of Electrical and Computer Engineering University of Missouri Columbia MO USA
| |
Collapse
|
37
|
Nadin-Davis S, Pope L, Ogunremi D, Brooks B, Devenish J. A real-time PCR regimen for testing environmental samples for Salmonella enterica subsp. enterica serovars of concern to the poultry industry, with special focus on Salmonella Enteritidis. Can J Microbiol 2018; 65:162-173. [PMID: 30395482 DOI: 10.1139/cjm-2018-0417] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A real-time PCR (qPCR) regimen, using up to six genetic targets, was developed to rapidly detect Salmonella and in particular identify Salmonella Enteritidis. The test regimen was first evaluated using a reference culture collection of Salmonella to confirm the appropriateness of the selected targets, which included up to three genetic markers for discrimination of Salmonella Enteritidis from other Salmonella serovars commonly found in poultry facilities. The qPCR procedure was then compared with culture methods used to detect Salmonella using a collection of enrichment broths previously generated from 239 environmental samples collected from a large number of hatchery facilities across Canada over several years. The qPCR regimen facilitated specific detection of Salmonella Enteritidis, and on a sample basis, it showed excellent agreement with the culture methods. Moreover, in many cases, qPCR detected Salmonella earlier in the culture process than did the culture method. Application of this method will significantly shorten test times and allow more timely identification of infected poultry premises, thereby improving present programmes aimed at controlling Salmonella Enteritidis at the environmental source.
Collapse
Affiliation(s)
- S Nadin-Davis
- Animal Health Microbiology, Ottawa Laboratory Fallowfield, Canadian Food Inspection Agency, 3851 Fallowfield Road, Ottawa, ON K2H 8P9, Canada.,Animal Health Microbiology, Ottawa Laboratory Fallowfield, Canadian Food Inspection Agency, 3851 Fallowfield Road, Ottawa, ON K2H 8P9, Canada
| | - L Pope
- Animal Health Microbiology, Ottawa Laboratory Fallowfield, Canadian Food Inspection Agency, 3851 Fallowfield Road, Ottawa, ON K2H 8P9, Canada.,Animal Health Microbiology, Ottawa Laboratory Fallowfield, Canadian Food Inspection Agency, 3851 Fallowfield Road, Ottawa, ON K2H 8P9, Canada
| | - D Ogunremi
- Animal Health Microbiology, Ottawa Laboratory Fallowfield, Canadian Food Inspection Agency, 3851 Fallowfield Road, Ottawa, ON K2H 8P9, Canada
| | - B Brooks
- Animal Health Microbiology, Ottawa Laboratory Fallowfield, Canadian Food Inspection Agency, 3851 Fallowfield Road, Ottawa, ON K2H 8P9, Canada
| | - J Devenish
- Animal Health Microbiology, Ottawa Laboratory Fallowfield, Canadian Food Inspection Agency, 3851 Fallowfield Road, Ottawa, ON K2H 8P9, Canada.,Animal Health Microbiology, Ottawa Laboratory Fallowfield, Canadian Food Inspection Agency, 3851 Fallowfield Road, Ottawa, ON K2H 8P9, Canada
| |
Collapse
|
38
|
Uyguner Demirel CS, Birben NC, Bekbolet M. A comprehensive review on the use of second generation TiO 2 photocatalysts: Microorganism inactivation. CHEMOSPHERE 2018; 211:420-448. [PMID: 30077938 DOI: 10.1016/j.chemosphere.2018.07.121] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/04/2018] [Accepted: 07/21/2018] [Indexed: 05/12/2023]
Abstract
Photocatalytic disinfection practices have been applied for decades and attract current interest along with the developments in synthesis of novel photocatalysts. A survey based investigation was performed for elucidation of photocatalytic treatment details as well as disinfection mechanism of microorganisms. The present work brings significant information on the utilization of second generation TiO2 photocatalysts for inactivation of microorganisms typically using E. coli as the model microorganism. Special interest was devoted to the role of organic matrix either generated during treatment or as a natural component. Studies on photocatalytic disinfection were extensively reviewed and evaluated with respect to basic operational parameters related to photocatalysis, and types and properties of microorganisms investigated. Degradation mechanism and behavior of microorganisms towards reactive oxygen species during disinfection and organic matrix effects were also addressed. For successful utilization and effective assessment of visible light active photocatalysts, standard protocols for disinfection activity testing have to be set. Further improvement of the efficiency of these materials would be promising for future applications in water treatment processes.
Collapse
Affiliation(s)
| | - Nazmiye Cemre Birben
- Bogazici University, Institute of Environmental Sciences, 34342, Bebek, Istanbul, Turkey.
| | - Miray Bekbolet
- Bogazici University, Institute of Environmental Sciences, 34342, Bebek, Istanbul, Turkey.
| |
Collapse
|
39
|
Hansen SJZ, Morovic W, DeMeules M, Stahl B, Sindelar CW. Absolute Enumeration of Probiotic Strains Lactobacillus acidophilus NCFM ® and Bifidobacterium animalis subsp. lactis Bl-04 ® via Chip-Based Digital PCR. Front Microbiol 2018; 9:704. [PMID: 29696008 PMCID: PMC5904286 DOI: 10.3389/fmicb.2018.00704] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 03/27/2018] [Indexed: 12/16/2022] Open
Abstract
The current standard for enumeration of probiotics to obtain colony forming units by plate counts has several drawbacks: long time to results, high variability and the inability to discern between bacterial strains. Accurate probiotic cell counts are important to confirm the delivery of a clinically documented dose for its associated health benefits. A method is described using chip-based digital PCR (cdPCR) to enumerate Bifidobacterium animalis subsp. lactis Bl-04 and Lactobacillus acidophilus NCFM both as single strains and in combination. Primers and probes were designed to differentiate the target strains against other strains of the same species using known single copy, genetic differences. The assay was optimized to include propidium monoazide pre-treatment to prevent amplification of DNA associated with dead probiotic cells as well as liberation of DNA from cells with intact membranes using bead beating. The resulting assay was able to successfully enumerate each strain whether alone or in multiplex. The cdPCR method had a 4 and 5% relative standard deviation (RSD) for Bl-04 and NCFM, respectively, making it more precise than plate counts with an industry accepted RSD of 15%. cdPCR has the potential to replace traditional plate counts because of its precision, strain specificity and the ability to obtain results in a matter of hours.
Collapse
Affiliation(s)
- Sarah J Z Hansen
- Probiotic Development, DuPont Nutrition & Health, Madison, WI, United States
| | - Wesley Morovic
- Genomics and Microbiome Sciences, DuPont Nutrition & Health, Madison, WI, United States
| | - Martha DeMeules
- Probiotic Development, DuPont Nutrition & Health, Madison, WI, United States
| | - Buffy Stahl
- Genomics and Microbiome Sciences, DuPont Nutrition & Health, Madison, WI, United States
| | - Connie W Sindelar
- Probiotic Development, DuPont Nutrition & Health, Madison, WI, United States
| |
Collapse
|
40
|
Growth delay analysis of heat-injured Salmonella Enteritidis in ground beef by real-time PCR. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2017.12.066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Chang CW, Lin MH. Optimization of PMA-qPCR for Staphylococcus aureus and determination of viable bacteria in indoor air. INDOOR AIR 2018; 28:64-72. [PMID: 28683164 DOI: 10.1111/ina.12404] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/01/2017] [Indexed: 06/07/2023]
Abstract
Staphylococcus aureus may cause infections in humans from mild skin disorders to lethal pneumonia. Rapid and accurate monitoring of viable S. aureus is essential to characterize human exposure. This study evaluated quantitative PCR (qPCR) with propidium monoazide (PMA) to quantify S. aureus. The results showed comparable S. aureus counts between exclusively live cells and mixtures of live/dead cells by qPCR with 1.5 or 2.3 μg/mL PMA (P>.05), illustrating the ability of PMA-qPCR to detect DNA exclusively from viable cells. Moreover, qPCR with 1.5 or 2.3 μg/mL PMA performed optimally with linearity over 103 -108 CFU/mL (R2 ≥0.9), whereas qPCR with 10, 23 or 46 μg/mL PMA significantly underestimated viable counts. Staphylococcus aureus and total viable bacteria were further determined with PMA-qPCR (1.5 μg/mL) from 48 samples from a public library and two university dormitories and four from outside. Viable bacteria averaged 1.9×104 cells/m3 , and S. aureus were detected in 22 (42%) samples with a mean of 4.4×103 cells/m3 . The number of S. aureus and viable bacteria were positively correlated (r=.61, P<.005), and percentages of S. aureus relative to viable bacteria averaged 12-44%. The results of field samples suggest that PMA-qPCR can be used to quantify viable S. aureus cells.
Collapse
Affiliation(s)
- C-W Chang
- Institute of Environmental Health, College of Public Health, National Taiwan University, Taipei, Taiwan
- Center for Research on Environmental and Occupational Health, National Taiwan University, Taipei, Taiwan
- Research Center for Genes, Environmental and Human Health, National Taiwan University, Taipei, Taiwan
| | - M-H Lin
- Institute of Environmental Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
42
|
Dinh Thanh M, Agustí G, Mader A, Appel B, Codony F. Improved sample treatment protocol for accurate detection of live Salmonella spp. in food samples by viability PCR. PLoS One 2017; 12:e0189302. [PMID: 29232387 PMCID: PMC5726647 DOI: 10.1371/journal.pone.0189302] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 11/23/2017] [Indexed: 11/19/2022] Open
Abstract
Culture-based detection is still considered as the standard way for detection of Salmonella in foods, although molecular methods, such as viability PCR (vPCR), have been introduced to overcome some disadvantages of traditional culture methods. Despite the success of the vPCR methodology, the problem of false-positive results is a major drawback, especially when applied to environmental samples, hindering the interpretation of the results. To improve the efficiency of vPCR, many approaches have been introduced by several authors during the last years. In the present work, the combination of PEMAX dye, double tube change, and double photo-activation step was established as a strategy to improve vPCR protocol. By combining these approaches, we developed an improved sample treatment protocol able to neutralize DNA signals of up to 5.0×107 dead cells/sample from both pure culture and artificially contaminated food samples. Our results indicate that vPCR can work reliable and has a potential for high throughput detection of live Salmonella cells in food samples, minimizing false-positive signals.
Collapse
Affiliation(s)
- Mai Dinh Thanh
- Freie Universität Berlin, Department of Biology, Chemistry and Pharmacy, Berlin, Germany
- German Federal Institute for Risk Assessment, Department Biological Safety, Berlin, Germany
| | | | - Anneluise Mader
- German Federal Institute for Risk Assessment, Department Biological Safety, Berlin, Germany
| | - Bernd Appel
- German Federal Institute for Risk Assessment, Department Biological Safety, Berlin, Germany
| | | |
Collapse
|
43
|
Quantification and Discrimination of Viable and Dead Escherichia coli O157:H7 Cells from Chicken Without Enrichment by Ethidium Bromide Monoazide Real-time Loop-Mediated Isothermal Amplification. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-1092-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
44
|
Bonardi S, Bruini I, Bolzoni L, Cozzolino P, Pierantoni M, Brindani F, Bellotti P, Renzi M, Pongolini S. Assessment of Salmonella survival in dry-cured Italian salami. Int J Food Microbiol 2017; 262:99-106. [DOI: 10.1016/j.ijfoodmicro.2017.09.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 08/10/2017] [Accepted: 09/24/2017] [Indexed: 01/26/2023]
|
45
|
Comparison of EMA-, PMA- and DNase qPCR for the determination of microbial cell viability. Appl Microbiol Biotechnol 2017; 101:7371-7383. [PMID: 28875372 DOI: 10.1007/s00253-017-8471-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/21/2017] [Accepted: 08/03/2017] [Indexed: 01/13/2023]
Abstract
Ethidium monoazide (EMA) quantitative polymerase chain reaction (qPCR), propidium monoazide (PMA)-qPCR and DNase treatment in combination with qPCR were compared for the determination of microbial cell viability. Additionally, varying EMA and PMA concentrations were analysed to determine which dye and concentration allowed for the optimal identification of viable cells. Viable, heat treated (70 °C for 15 min) and autoclaved cultures of Legionella pneumophila, Pseudomonas aeruginosa, Salmonella typhimurium, Staphylococcus aureus and Enterococcus faecalis were utilised in the respective viability assays. Analysis of the viable and heat-treated samples indicated that variable log reductions were recorded for both EMA [log reductions ranging from 0.01 to 2.71 (viable) and 0.27 to 2.85 (heat treated)], PMA [log reductions ranging from 0.06 to 1.02 (viable) and 0.62 to 2.46 (heat treated)] and DNase treatment [log reductions ranging from 0.06 to 0.82 (viable) and 0.70 to 2.91 (heat treated)], in comparison to the no viability treatment controls. Based on the results obtained, 6 μM EMA and 50 μM PMA were identified as the optimal dye concentrations as low log reductions were recorded (viable and heat-treated samples) in comparison to the no viability treatment control. In addition, the results recorded for the 6 μM EMA concentration were comparable to the results obtained for both the 50 μM PMA and the DNase treatment. The use of EMA-qPCR (6 μM) may therefore allow for the rapid identification and quantification of multiple intact opportunistic pathogens in water sources, which would benefit routine water quality monitoring following disinfection treatment.
Collapse
|
46
|
Pega J, Rizzo S, Rossetti L, Pérez C, Díaz G, Descalzo A, Nanni M. Impact of extracellular nucleic acids from lactic acid bacteria on qPCR and RT-qPCR results in dairy matrices: Implications for defining molecular markers of cell integrity. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
47
|
False-Positive Viability PCR Results: An Association with Microtubes. Curr Microbiol 2017; 74:377-380. [DOI: 10.1007/s00284-016-1189-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 12/22/2016] [Indexed: 10/20/2022]
|
48
|
Kibbee RJ, Örmeci B. Development of a sensitive and false-positive free PMA-qPCR viability assay to quantify VBNC Escherichia coli and evaluate disinfection performance in wastewater effluent. J Microbiol Methods 2017; 132:139-147. [DOI: 10.1016/j.mimet.2016.12.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/03/2016] [Accepted: 12/03/2016] [Indexed: 11/29/2022]
|
49
|
Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat Microbiol 2016; 2:16242. [PMID: 27991881 DOI: 10.1038/nmicrobiol.2016.242] [Citation(s) in RCA: 430] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/20/2016] [Indexed: 12/27/2022]
Abstract
Extracellular DNA from dead microorganisms can persist in soil for weeks to years1-3. Although it is implicitly assumed that the microbial DNA recovered from soil predominantly represents intact cells, it is unclear how extracellular DNA affects molecular analyses of microbial diversity. We examined a wide range of soils using viability PCR based on the photoreactive DNA-intercalating dye propidium monoazide4. We found that, on average, 40% of both prokaryotic and fungal DNA was extracellular or from cells that were no longer intact. Extracellular DNA inflated the observed prokaryotic and fungal richness by up to 55% and caused significant misestimation of taxon relative abundances, including the relative abundances of taxa integral to key ecosystem processes. Extracellular DNA was not found in measurable amounts in all soils; it was more likely to be present in soils with low exchangeable base cation concentrations, and the effect of its removal on microbial community structure was more profound in high-pH soils. Together, these findings imply that this 'relic DNA' remaining in soil after cell death can obscure treatment effects, spatiotemporal patterns and relationships between microbial taxa and environmental conditions.
Collapse
|
50
|
Zeng D, Chen Z, Jiang Y, Xue F, Li B. Advances and Challenges in Viability Detection of Foodborne Pathogens. Front Microbiol 2016; 7:1833. [PMID: 27920757 PMCID: PMC5118415 DOI: 10.3389/fmicb.2016.01833] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/01/2016] [Indexed: 11/13/2022] Open
Abstract
Foodborne outbreaks are a serious public health and food safety concern worldwide. There is a great demand for rapid, sensitive, specific, and accurate methods to detect microbial pathogens in foods. Conventional methods based on cultivation of pathogens have been the gold standard protocols; however, they take up to a week to complete. Molecular assays such as polymerase chain reaction (PCR), sequencing, microarray technologies have been widely used in detection of foodborne pathogens. Among molecular assays, PCR technology [conventional and real-time PCR (qPCR)] is most commonly used in the foodborne pathogen detection because of its high sensitivity and specificity. However, a major drawback of PCR is its inability to differentiate the DNA from dead and viable cells, and this is a critical factor for the food industry, regulatory agencies and the consumer. To remedy this shortcoming, researchers have used biological dyes such as ethidium monoazide and propidium monoazide (PMA) to pretreat samples before DNA extraction to intercalate the DNA of dead cells in food samples, and then proceed with regular DNA preparation and qPCR. By combining PMA treatment with qPCR (PMA-qPCR), scientists have applied this technology to detect viable cells of various bacterial pathogens in foods. The incorporation of PMA into PCR-based assays for viability detection of pathogens in foods has increased significantly in the last decade. On the other hand, some downsides with this approach have been noted, particularly to achieve complete suppression of signal of DNA from the dead cells present in some particular food matrix. Nowadays, there is a tendency of more and more researchers adapting this approach for viability detection; and a few commercial kits based on PMA are available in the market. As time goes on, more scientists apply this approach to a broader range of pathogen detections, this viability approach (PMA or other chemicals such as platinum compound) may eventually become a common methodology for the rapid, sensitive, and accurate detection of foodborne pathogens. In this review, we summarize the development in the field including progress and challenges and give our perspective in this area.
Collapse
Affiliation(s)
- Dexin Zeng
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Zi Chen
- College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China; Animal Quarantine Laboratory, Jiangsu Entry-Exit Inspection and Quarantine BureauNanjing, China
| | - Yuan Jiang
- Animal Quarantine Laboratory, Jiangsu Entry-Exit Inspection and Quarantine BureauNanjing, China; Shanghai Entry-Exit Inspection and Quarantine BureauShanghai, China
| | - Feng Xue
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Baoguang Li
- Division of Molecular Biology, Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, Laurel MD, USA
| |
Collapse
|