1
|
Asashima M, Satou-Kobayashi Y. Spemann-Mangold organizer and mesoderm induction. Cells Dev 2024; 178:203903. [PMID: 38295873 DOI: 10.1016/j.cdev.2024.203903] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/09/2024]
Abstract
The discovery of the Spemann-Mangold organizer strongly influenced subsequent research on embryonic induction, with research aiming to elucidate the molecular characteristics of organizer activity being currently underway. Herein, we review the history of research on embryonic induction, and describe how the mechanisms of induction phenomena and developmental processes have been investigated. Classical experiments investigating the differentiation capacity and inductive activity of various embryonic regions were conducted by many researchers, and important theories of region-specific induction and the concept for chain of induction were proposed. The transition from experimental embryology to developmental biology has enabled us to understand the mechanisms of embryonic induction at the molecular level. Consequently, many inducing substances and molecules such as transcriptional factors and peptide growth factors involved in the organizer formation were identified. One of peptide growth factors, activin, acts as a mesoderm- and endoderm-inducing substance. Activin induces several tissues and organs from the undifferentiated cell mass of amphibian embryos in a concentration-dependent manner. We review the extent to which we can control in vitro organogenesis from undifferentiated cells, and discuss the application to stem cell-based regenerative medicine based on insights gained from animal experiments, such as in amphibians.
Collapse
Affiliation(s)
- Makoto Asashima
- Advanced Comprehensive Research Organization, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-0003, Japan.
| | - Yumeko Satou-Kobayashi
- Advanced Comprehensive Research Organization, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-0003, Japan
| |
Collapse
|
2
|
Wild SL, Elghajiji A, Grimaldos Rodriguez C, Weston SD, Burke ZD, Tosh D. The Canonical Wnt Pathway as a Key Regulator in Liver Development, Differentiation and Homeostatic Renewal. Genes (Basel) 2020; 11:genes11101163. [PMID: 33008122 PMCID: PMC7599793 DOI: 10.3390/genes11101163] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/21/2020] [Accepted: 09/29/2020] [Indexed: 02/06/2023] Open
Abstract
The canonical Wnt (Wnt/β-catenin) signalling pathway is highly conserved and plays a critical role in regulating cellular processes both during development and in adult tissue homeostasis. The Wnt/β-catenin signalling pathway is vital for correct body patterning and is involved in fate specification of the gut tube, the primitive precursor of liver. In adults, the Wnt/β-catenin pathway is increasingly recognised as an important regulator of metabolic zonation, homeostatic renewal and regeneration in response to injury throughout the liver. Herein, we review recent developments relating to the key role of the pathway in the patterning and fate specification of the liver, in the directed differentiation of pluripotent stem cells into hepatocytes and in governing proliferation and zonation in the adult liver. We pay particular attention to recent contributions to the controversy surrounding homeostatic renewal and proliferation in response to injury. Furthermore, we discuss how crosstalk between the Wnt/β-catenin and Hedgehog (Hh) and hypoxia inducible factor (HIF) pathways works to maintain liver homeostasis. Advancing our understanding of this pathway will benefit our ability to model disease, screen drugs and generate tissue and organ replacements for regenerative medicine.
Collapse
|
3
|
Tadjuidje E, Kofron M, Mir A, Wylie C, Heasman J, Cha SW. Nodal signalling in Xenopus: the role of Xnr5 in left/right asymmetry and heart development. Open Biol 2017; 6:rsob.150187. [PMID: 27488374 PMCID: PMC5008007 DOI: 10.1098/rsob.150187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 07/01/2016] [Indexed: 01/05/2023] Open
Abstract
Nodal class TGF-β signalling molecules play essential roles in establishing the vertebrate body plan. In all vertebrates, nodal family members have specific waves of expression required for tissue specification and axis formation. In Xenopus laevis, six nodal genes are expressed before gastrulation, raising the question of whether they have specific roles or act redundantly with each other. Here, we examine the role of Xnr5. We find it acts at the late blastula stage as a mesoderm inducer and repressor of ectodermal gene expression, a role it shares with Vg1. However, unlike Vg1, Xnr5 depletion reduces the expression of the nodal family member xnr1 at the gastrula stage. It is also required for left/right laterality by controlling the expression of the laterality genes xnr1, antivin (lefty) and pitx2 at the tailbud stage. In Xnr5-depleted embryos, the heart field is established normally, but symmetrical reduction in Xnr5 levels causes a severely stunted midline heart, first evidenced by a reduction in cardiac troponin mRNA levels, while left-sided reduction leads to randomization of the left/right axis. This work identifies Xnr5 as the earliest step in the signalling pathway establishing normal heart laterality in Xenopus.
Collapse
Affiliation(s)
- Emmanuel Tadjuidje
- Department of Biological Sciences, Alabama State University, 1627 Hall Street, Montgomery, AL 36101, USA
| | - Matthew Kofron
- Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Adnan Mir
- Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Christopher Wylie
- Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Janet Heasman
- Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Sang-Wook Cha
- Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| |
Collapse
|
4
|
Charney RM, Paraiso KD, Blitz IL, Cho KWY. A gene regulatory program controlling early Xenopus mesendoderm formation: Network conservation and motifs. Semin Cell Dev Biol 2017; 66:12-24. [PMID: 28341363 DOI: 10.1016/j.semcdb.2017.03.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/12/2017] [Accepted: 03/20/2017] [Indexed: 02/08/2023]
Abstract
Germ layer formation is among the earliest differentiation events in metazoan embryos. In triploblasts, three germ layers are formed, among which the endoderm gives rise to the epithelial lining of the gut tube and associated organs including the liver, pancreas and lungs. In frogs (Xenopus), where early germ layer formation has been studied extensively, the process of endoderm specification involves the interplay of dozens of transcription factors. Here, we review the interactions between these factors, summarized in a transcriptional gene regulatory network (GRN). We highlight regulatory connections conserved between frog, fish, mouse, and human endodermal lineages. Especially prominent is the conserved role and regulatory targets of the Nodal signaling pathway and the T-box transcription factors, Vegt and Eomes. Additionally, we highlight network topologies and motifs, and speculate on their possible roles in development.
Collapse
Affiliation(s)
- Rebekah M Charney
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Kitt D Paraiso
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Ira L Blitz
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Ken W Y Cho
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
5
|
Zhang M, Skirkanich J, Lampson MA, Klein PS. Cell Cycle Remodeling and Zygotic Gene Activation at the Midblastula Transition. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:441-487. [DOI: 10.1007/978-3-319-46095-6_9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
6
|
Houston DW. Vertebrate Axial Patterning: From Egg to Asymmetry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:209-306. [PMID: 27975274 PMCID: PMC6550305 DOI: 10.1007/978-3-319-46095-6_6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The emergence of the bilateral embryonic body axis from a symmetrical egg has been a long-standing question in developmental biology. Historical and modern experiments point to an initial symmetry-breaking event leading to localized Wnt and Nodal growth factor signaling and subsequent induction and formation of a self-regulating dorsal "organizer." This organizer forms at the site of notochord cell internalization and expresses primarily Bone Morphogenetic Protein (BMP) growth factor antagonists that establish a spatiotemporal gradient of BMP signaling across the embryo, directing initial cell differentiation and morphogenesis. Although the basics of this model have been known for some time, many of the molecular and cellular details have only recently been elucidated and the extent that these events remain conserved throughout vertebrate evolution remains unclear. This chapter summarizes historical perspectives as well as recent molecular and genetic advances regarding: (1) the mechanisms that regulate symmetry-breaking in the vertebrate egg and early embryo, (2) the pathways that are activated by these events, in particular the Wnt pathway, and the role of these pathways in the formation and function of the organizer, and (3) how these pathways also mediate anteroposterior patterning and axial morphogenesis. Emphasis is placed on comparative aspects of the egg-to-embryo transition across vertebrates and their evolution. The future prospects for work regarding self-organization and gene regulatory networks in the context of early axis formation are also discussed.
Collapse
Affiliation(s)
- Douglas W Houston
- Department of Biology, The University of Iowa, 257 BB, Iowa City, IA, 52242, USA.
| |
Collapse
|
7
|
Reid CD, Steiner AB, Yaklichkin S, Lu Q, Wang S, Hennessy M, Kessler DS. FoxH1 mediates a Grg4 and Smad2 dependent transcriptional switch in Nodal signaling during Xenopus mesoderm development. Dev Biol 2016; 414:34-44. [PMID: 27085753 DOI: 10.1016/j.ydbio.2016.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/28/2016] [Accepted: 04/06/2016] [Indexed: 02/07/2023]
Abstract
In the vertebrate blastula and gastrula the Nodal pathway is essential for formation of the primary germ layers and the organizer. Nodal autoregulatory feedback potentiates signaling activity, but mechanisms limiting embryonic Nodal ligand transcription are poorly understood. Here we describe a transcriptional switch mechanism mediated by FoxH1, the principle effector of Nodal autoregulation. FoxH1 contains a conserved engrailed homology (EH1) motif that mediates direct binding of groucho-related gene 4 (Grg4), a Groucho family corepressor. Nodal-dependent gene expression is suppressed by FoxH1, but enhanced by a FoxH1 EH1 mutant, indicating that the EH1 motif is necessary for repression. Grg4 blocks Nodal-induced mesodermal gene expression and Nodal autoregulation, suggesting that Grg4 limits Nodal pathway activity. Conversely, blocking Grg4 function in the ectoderm results in ectopic expression of Nodal target genes. FoxH1 and Grg4 occupy the Xnr1 enhancer, and Grg4 occupancy is dependent on the FoxH1 EH1 motif. Grg4 occupancy at the Xnr1 enhancer significantly decreases with Nodal activation or Smad2 overexpression, while FoxH1 occupancy is unaffected. These results suggest that Nodal-activated Smad2 physically displaces Grg4 from FoxH1, an essential feature of the transcriptional switch mechanism. In support of this model, when FoxH1 is unable to bind Smad2, Grg4 occupancy is maintained at the Xnr1 enhancer, even in the presence of Nodal signaling. Our findings reveal that FoxH1 mediates both activation and repression of Nodal gene expression. We propose that this transcriptional switch is essential to delimit Nodal pathway activity in vertebrate germ layer formation.
Collapse
Affiliation(s)
- Christine D Reid
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine Smilow Center for Translational Research, Room 9-104, 3400 Civic Center Blvd Philadelphia, PA 19104, USA
| | - Aaron B Steiner
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine Smilow Center for Translational Research, Room 9-104, 3400 Civic Center Blvd Philadelphia, PA 19104, USA
| | - Sergey Yaklichkin
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine Smilow Center for Translational Research, Room 9-104, 3400 Civic Center Blvd Philadelphia, PA 19104, USA
| | - Qun Lu
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine Smilow Center for Translational Research, Room 9-104, 3400 Civic Center Blvd Philadelphia, PA 19104, USA
| | - Shouwen Wang
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine Smilow Center for Translational Research, Room 9-104, 3400 Civic Center Blvd Philadelphia, PA 19104, USA
| | - Morgan Hennessy
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine Smilow Center for Translational Research, Room 9-104, 3400 Civic Center Blvd Philadelphia, PA 19104, USA
| | - Daniel S Kessler
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine Smilow Center for Translational Research, Room 9-104, 3400 Civic Center Blvd Philadelphia, PA 19104, USA
| |
Collapse
|
8
|
Abstract
The Wnt pathway is a major embryonic signaling pathway that controls cell proliferation, cell fate, and body-axis determination in vertebrate embryos. Soon after egg fertilization, Wnt pathway components play a role in microtubule-dependent dorsoventral axis specification. Later in embryogenesis, another conserved function of the pathway is to specify the anteroposterior axis. The dual role of Wnt signaling in Xenopus and zebrafish embryos is regulated at different developmental stages by distinct sets of Wnt target genes. This review highlights recent progress in the discrimination of different signaling branches and the identification of specific pathway targets during vertebrate axial development.
Collapse
Affiliation(s)
- Hiroki Hikasa
- Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | | |
Collapse
|
9
|
Cao Q, Zhang X, Lu L, Yang L, Gao J, Gao Y, Ma H, Cao Y. Klf4 is required for germ-layer differentiation and body axis patterning during Xenopus embryogenesis. Development 2012; 139:3950-61. [PMID: 22992953 DOI: 10.1242/dev.082024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Klf4 is a transcription factor of the family of Kruppel-like factors and plays important roles in stem cell biology; however, its function during embryogenesis is unknown. Here, we report the characterization of a Klf4 homologue in Xenopus laevis during embryogenesis. Klf4 is transcribed both maternally and zygotically and the transcript is ubiquitous in embryos during germ-layer formation. Klf4 promotes endoderm differentiation in both Nodal/Activin-dependent and -independent manners. Moreover, Klf4 regulates anteroposterior body axis patterning via activation of a subset of genes in the Spemann organizer, such as Noggin, Dkk1 and Cerberus, which encode Nodal, Wnt and BMP antagonists. Loss of Klf4 function leads to the failure of germ-layer differentiation, the loss of responsiveness of early embryonic cells to inducing signals, e.g. Nodal/Activin, and the loss of transcription of genes involved in axis patterning. We conclude that Klf4 is required for germ-layer differentiation and body axis patterning by means of rendering early embryonic cells competent to differentiation signals.
Collapse
Affiliation(s)
- Qing Cao
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, 12 Xuefu Road, Pukou High-Tech Zone, 210061 Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Rankin SA, Kormish J, Kofron M, Jegga A, Zorn AM. A gene regulatory network controlling hhex transcription in the anterior endoderm of the organizer. Dev Biol 2011; 351:297-310. [PMID: 21215263 DOI: 10.1016/j.ydbio.2010.11.037] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 11/15/2010] [Accepted: 11/17/2010] [Indexed: 10/18/2022]
Abstract
The homeobox gene hhex is one of the earliest markers of the anterior endoderm, which gives rise to foregut organs such as the liver, ventral pancreas, thyroid, and lungs. The regulatory networks controlling hhex transcription are poorly understood. In an extensive cis-regulatory analysis of the Xenopus hhex promoter, we determined how the Nodal, Wnt, and BMP pathways and their downstream transcription factors regulate hhex expression in the gastrula organizer. We show that Nodal signaling, present throughout the endoderm, directly activates hhex transcription via FoxH1/Smad2 binding sites in the proximal -0.44 Kb promoter. This positive action of Nodal is suppressed in the ventral-posterior endoderm by Vent 1 and Vent2, homeodomain repressors that are induced by BMP signaling. Maternal Wnt/β-catenin on the dorsal side of the embryo cooperates with Nodal and indirectly activates hhex expression via the homeodomain activators Siamois and Twin. Siamois/Twin stimulate hhex transcription through two mechanisms: (1) they induce the expression of Otx2 and Lim1 and together Siamois, Twin, Otx2, and Lim1 appear to promote hhex transcription through homeobox sites in a Wnt-responsive element located between -0.65 to -0.55 Kb of the hhex promoter. (2) Siamois/Twin also induce the expression of the BMP-antagonists Chordin and Noggin, which are required to exclude Vents from the organizer allowing hhex transcription. This study reveals a complex network regulating anterior endoderm transcription in the early embryo.
Collapse
Affiliation(s)
- Scott A Rankin
- Division of Developmental Biology, Cincinnati Children's Research Foundation and Department of Pediatrics, College of Medicine, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | | | | | | | | |
Collapse
|
11
|
Abstract
The endoderm germ layer contributes to the respiratory and gastrointestinal tracts and to all of their associated organs. Over the past decade, studies in vertebrate model organisms, including frog, fish, chick, and mouse, have greatly enhanced our understanding of the molecular basis of endoderm organ development. We review this progress with a focus on early stages of endoderm organogenesis including endoderm formation, gut tube morphogenesis and patterning, and organ specification. Lastly, we discuss how developmental mechanisms that regulate endoderm organogenesis are used to direct differentiation of embryonic stem cells into specific adult cell types, which function to alleviate disease symptoms in animal models.
Collapse
Affiliation(s)
- Aaron M Zorn
- Division of Developmental Biology, Cincinnati Children's Research Foundation and Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45229, USA.
| | | |
Collapse
|
12
|
Cha SW, Lee JW, Hwang YS, Chae JP, Park KM, Cho HJ, Kim DS, Bae YC, Park MJ. Spatiotemporal regulation of fibroblast growth factor signal blocking for endoderm formation in Xenopus laevis. Exp Mol Med 2009; 40:550-7. [PMID: 18985013 DOI: 10.3858/emm.2008.40.5.550] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have previously shown that the inhibition of fibroblast growth factor (FGF) signaling induced endodermal gene expression in the animal cap and caused the expansion of the endodermal mass in Xenopus embryos. However, we still do not know whether or not the alteration of FGF signaling controls embryonic cell fate, or when FGF signal blocking is required for endoderm formation in Xenopus. Here, we show that FGF signal blocking in embryonic cells causes their descendants to move into the endodermal region and to express endodermal genes. It is also interesting that blocking FGF signaling between fertilization and embryonic stage 10.5 promotes endoderm formation, but persistent FGF signaling blocking after stage 10.5 restricts endoderm formation and differentiation.
Collapse
Affiliation(s)
- Sang-wook Cha
- Department of Anatomy, School of Medicine, Kyungpook National University, Daegu 700-412, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kerr TC, Cuykendall TN, Luettjohann LC, Houston DW. Maternal Tgif1 regulates nodal gene expression in Xenopus. Dev Dyn 2008; 237:2862-73. [PMID: 18816846 DOI: 10.1002/dvdy.21707] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
In Xenopus, the maternal transcription factor VegT is necessary and sufficient to initiate the expression of nodal-related genes, which are central to many aspects of early development. However, little is known about regulation of VegT activity. Using maternal loss-of-function experiments, we show that the maternal homeoprotein, Tgif1, antagonizes VegT and plays a central role in anteroposterior patterning by negatively regulating a subset of nodal-related genes. Depletion of Tgif1 causes the anteriorization of embryos and the up-regulation of nodal paralogues nr5 and nr6. Furthermore, Tgif1 inhibits activation of nr5 by VegT in a manner that requires a C-terminal Sin3 corepressor-interacting domain. Tgif1 has been implicated in the transcriptional corepression of transforming growth factor-beta (TGFbeta) and retinoid signaling. However, we show that Tgif1 does not inhibit these pathways in early development. These results identify an essential role for Tgif1 in the control of nodal expression and provide insight into Tgif1 function and mechanisms controlling VegT activity.
Collapse
Affiliation(s)
- Tyler C Kerr
- University of Iowa, Department of Biology, Iowa City, Iowa 52246-1324, USA
| | | | | | | |
Collapse
|
14
|
Abstract
Asymmetries in the egg, established during oogenesis, set the stage for a cascade of intercellular signaling events leading to differential gene expression and subsequent tissue and organ formation. Maternally supplied Sox-type transcription factors have recently emerged as key components in the patterning of the early embryo and the regulation of embryonic stem cell differentiation. In deuterostomes, B1-type Soxs are asymmetrically localized to the future animal/ectodermal region where they act to suppress mesendodermal, and favor neuroectodermal differentiation, while vegetally localized F-type Soxs are involved in mesendodermal differentiation. Here, we review past observations and present new data from studies on the clawed frog Xenopus laevis. Animally localized Sox3 acts to inhibit Nodal (Xnr5 and Xnr6) expression, and induces the expression of genes (Ectodermin, Xema, and Coco) whose products repress Nodal signaling. Vegetally localized Sox7 positively regulates Nodal (Xnr4, Xnr5, and Xnr6) expression, as well as the expression of genes involved in mesodermal (Xmenf, Slug, and Snail) and endodermal (Endodermin and Sox17beta) differentiation. Given the evolutionary strategy of using common regulatory networks, it seems likely that a homologous Sox-Axis is active during embryonic development in many metazoans.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Molecular, Cellular and Developmental Biology University of Colorado at Boulder Boulder, CO 80309-0347, USA
| | | |
Collapse
|
15
|
Cao Y, Siegel D, Donow C, Knöchel S, Yuan L, Knöchel W. POU-V factors antagonize maternal VegT activity and beta-Catenin signaling in Xenopus embryos. EMBO J 2007; 26:2942-54. [PMID: 17541407 PMCID: PMC1894774 DOI: 10.1038/sj.emboj.7601736] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Accepted: 05/07/2007] [Indexed: 11/09/2022] Open
Abstract
VegT and beta-Catenin are key players in the hierarchy of factors that are required for induction and patterning of mesendoderm in Xenopus embryogenesis. By descending the genetic cascades, cells lose their pluripotent status and are determined to differentiate into distinct tissues. Mammalian Oct-3/4, a POU factor of subclass V (POU-V), is required for the maintenance of pluripotency of embryonic stem cells. However, its molecular function within the early embryo is yet poorly understood. We here show that the two maternal Xenopus POU-V factors, Oct-60 and Oct-25, inhibit transcription of genes activated by VegT and beta-Catenin. Maternal POU-V factors and maternal VegT show an opposite distribution along the animal/vegetal axis. Oct-25, VegT and Tcf3 interact with each other and form repression complexes on promoters of VegT and beta-Catenin target genes. We suggest that POU-V factors antagonize primary inducers to allow germ layer specification in a temporally and spatially coordinated manner.
Collapse
Affiliation(s)
- Ying Cao
- Institute of Biochemistry, University of Ulm, Ulm, Germany
| | - Doreen Siegel
- Institute of Biochemistry, University of Ulm, Ulm, Germany
| | - Cornelia Donow
- Institute of Biochemistry, University of Ulm, Ulm, Germany
| | - Sigrun Knöchel
- Institute of Biochemistry, University of Ulm, Ulm, Germany
| | - Li Yuan
- Institute of Biochemistry, University of Ulm, Ulm, Germany
| | - Walter Knöchel
- Institute of Biochemistry, University of Ulm, Ulm, Germany
- Institut für Biochemie, Universität Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany. Tel.: 0049 731/502 3280; Fax: 0049 731/502 3277; E-mail:
| |
Collapse
|
16
|
Zorn AM, Wells JM. Molecular Basis of Vertebrate Endoderm Development. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 259:49-111. [PMID: 17425939 DOI: 10.1016/s0074-7696(06)59002-3] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The embryonic endoderm gives rise to the epithelial lining of the digestive and respiratory systems and organs such as the thyroid, lungs, liver, gallbladder, and pancreas. Studies in Xenopus, zebrafish, and mice have revealed a conserved molecular pathway controlling vertebrate endoderm development. The TGFbeta/Nodal signaling pathway is at the top of this molecular hierarchy and controls the expression of a number of key transcription factors including Mix-like homeodomain proteins, Gata zinc finger factors, Sox HMG domain proteins, and Fox forkhead factors. Here we review the function of these molecules comparing and contrasting their roles in each model organism. Finally, we will describe how our understanding of the molecular pathway governing endoderm development in embryos is being used to differentiate embryonic stem cells in vitro along endodermal lineages, with the ultimate goal of making therapeutically useful tissue.
Collapse
Affiliation(s)
- Aaron M Zorn
- Division of Developmental Biology, Cincinnati Children's Hospital Research, Foundation and University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA
| | | |
Collapse
|
17
|
Sinner D, Kirilenko P, Rankin S, Wei E, Howard L, Kofron M, Heasman J, Woodland HR, Zorn AM. Global analysis of the transcriptional network controlling Xenopus endoderm formation. Development 2006; 133:1955-66. [PMID: 16651540 DOI: 10.1242/dev.02358] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A conserved molecular pathway has emerged controlling endoderm formation in Xenopus zebrafish and mice. Key genes in this pathway include Nodal ligands and transcription factors of the Mix-like paired homeodomain class, Gata4-6 zinc-finger factors and Sox17 HMG domain proteins. Although a linear epistatic pathway has been proposed, the precise hierarchical relationships between these factors and their downstream targets are largely unresolved. Here, we have used a combination of microarray analysis and loss-of-function experiments to examine the global regulatory network controlling Xenopus endoderm formation. We identified over 300 transcripts enriched in the gastrula endoderm, including most of the known endoderm regulators and over a hundred uncharacterized genes. Surprisingly only 10% of the endoderm transcriptome is regulated as predicted by the current linear model. We find that Nodal genes, Mixer and Sox17 have both shared and distinct sets of downstream targets, and that a number of unexpected autoregulatory loops exist between Sox17 and Gata4-6, between Sox17 and Bix1/Bix2/Bix4, and between Sox17 and Xnr4. Furthermore, we find that Mixer does not function primarily via Sox17 as previously proposed. These data provides new insight into the complexity of endoderm formation and will serve as valuable resource for establishing a complete endoderm gene regulatory network.
Collapse
Affiliation(s)
- Débora Sinner
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45299, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Developmental biology teachers use the example of the frog embryo to introduce young scientists to the wonders of vertebrate development, and to pose the crucial question, 'How does a ball of cells become an exquisitely patterned embryo?'. Classical embryologists also recognized the power of the amphibian model and used extirpation and explant studies to explore early embryo polarity and to define signaling centers in blastula and gastrula stage embryos. This review revisits these early stages of Xenopus development and summarizes the recent explosion of information on the intrinsic and extrinsic factors that are responsible for the first phases of embryonic patterning.
Collapse
Affiliation(s)
- Janet Heasman
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, OH 45229-3039, USA.
| |
Collapse
|
19
|
Abstract
How important is the contribution of mRNAs and proteins stored in the oocyte for determining the body plan of the Xenopus embryo? Here we review the current understanding of the roles of maternally supplied transcription factors, signaling molecules, and signaling regulators in establishing the ectoderm, mesoderm, and endoderm germ layers and the embryonic axes. Key essential asymmetries of VegT, Wnt11, and Ectodermin are described, as well as the complexity of maternal transcription factors that are involved in the initial expression of early zygotic genes.
Collapse
Affiliation(s)
- Janet Heasman
- Division of Developmental Biology ML7007, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA.
| |
Collapse
|
20
|
Takahashi S, Onuma Y, Yokota C, Westmoreland JJ, Asashima M, Wright CVE. Nodal-related geneXnr5 is amplified in theXenopus genome. Genesis 2006; 44:309-21. [PMID: 16791846 DOI: 10.1002/dvg.20217] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In Xenopus, six nodal-related genes (Xnrs) have been identified to date. We found numerous tandem duplications of Xnr5 in the Xenopus laevis and Xenopus tropicalis genomes that involve highly conserved copies of coding and regulatory regions. The duplicated versions of Xnr5 were expressed in both the superficial and deep layer of dorsal endoderm and in the deep layer of ventral endoderm, where the initial inducers of mesendoderm formation would be expected to be localized. Overexpression of secreted inhibitors of Xnrs led to a substantially enhanced transcription of the duplicated Xnr5 genes and Xnr6 in embryos. Therefore, Xnr5 and Xnr6 have a novel feedback loop to inhibit transcription of Xnr5 and Xnr6. These results suggest that the initialization of a strong Xnr5 and Xnr6 signal is enabled by the rapid transcription from multiple genes. The novel feedback loop may negatively regulate transcription of Xnr5s and Xnr6 to limit overproduction of these potent inducers, with the Xnr5/Xnr6 signal then activating positive (Xnrs) and negative (Xlefty) loops, which regulate the range of mesodermal tissues produced.
Collapse
Affiliation(s)
- Shuji Takahashi
- Department of Cell and Developmental Biology, Program in Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8240, USA
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
Mesoderm and endoderm formation in Xenopus involves the coordinated efforts of maternally and zygotically expressed transcription factors together with growth factor signalling, including members of the TGFbeta and wnt families. In this review we discuss our current state of knowledge of these pathways, and describe in more detail some of the transcription factor-DNA interactions that are involved in mesendoderm formation.
Collapse
Affiliation(s)
- Fiona C Wardle
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Zoology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.
| | | |
Collapse
|
22
|
Taylor JJ, Wang T, Kroll KL. Tcf- and Vent-binding sites regulate neural-specific geminin expression in the gastrula embryo. Dev Biol 2005; 289:494-506. [PMID: 16337935 DOI: 10.1016/j.ydbio.2005.10.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Revised: 10/12/2005] [Accepted: 10/14/2005] [Indexed: 01/19/2023]
Abstract
Vertebrate neural development has been extensively investigated. However, it is unknown for any vertebrate gene how the onset of neural-specific expression in early gastrula embryos is transcriptionally regulated. geminin expression is among the earliest markers of dorsal, prospective neurectoderm at early gastrulation in Xenopus laevis. Here, we identified two 5' sequence domains that are necessary and sufficient to drive neural-specific expression during gastrulation in transgenic Xenopus embryos. Each domain contained putative binding sites for the transcription factor Tcf, which can mediate Wnt signaling and for Vent homeodomain proteins, transcriptional repressors that mediate BMP signaling. Results from embryos transgenic for constructs with mutated Tcf or Vent sites demonstrated that signaling through the Tcf sites was required for dorsal-specific expression at early gastrulation, while signaling through the Vent sites restricted geminin expression to the prospective neurectoderm at mid-gastrulation. Consistent with these results, geminin 5' regulatory sequences and endogenous Xgem responded positively to Wnt signaling and negatively to BMP signaling. The two 5' sequence domains were also conserved among geminin orthologs. Together, these results demonstrate that signaling through Tcf and Vent binding sites regulates transcription of geminin in prospective neurectoderm during gastrulation.
Collapse
Affiliation(s)
- Jennifer J Taylor
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
23
|
Houston DW, Wylie C. MaternalXenopus Zic2negatively regulatesNodal-relatedgene expression during anteroposterior patterning. Development 2005; 132:4845-55. [PMID: 16207750 DOI: 10.1242/dev.02066] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During the development of Xenopus laevis, maternal mRNAs and proteins stored in the egg direct early patterning events such as the specification of the dorsoventral axis and primary germ layers. In an expression screen to identify maternal factors important for early development, we isolated a truncated cDNA for maternal Zic2(tZic2), encoding a zinc-finger transcription factor. The predicted tZic2 protein lacked the N-terminal region, but retained the zinc-finger domain. When expressed in embryos, tZic2 inhibited head and axial development,and blocked the ability of full-length Zic2 to induce neural crest genes. Depletion of maternal Zic2 from oocytes, using antisense oligonucleotides, caused exogastrulation, anterior truncations and axial defects. We show that loss of maternal Zic2 results in persistent and increased expression of Xenopus nodal-related (Xnr) genes, except for Xnr4, and overall increased Nodal signaling. Injection of a Nodal antagonist, Cerberus-short, reduced the severity of head and axial defects in Zic2-depleted embryos. Depletion of Zic2 could not restore Xnr expression to embryos additionally depleted of VegT, a T-domain transcription factor and an activator of Xnr gene transcription. Taken together, our results suggest a role for maternal Zic2 in the suppression of Xnr genes in early development. ZIC2 is mutated in human holoprosencephaly (HPE), a severe defect in brain hemisphere separation,and these results strengthen the suggestion that increased Nodal-related activity is a cause of HPE.
Collapse
Affiliation(s)
- Douglas W Houston
- The University of Iowa, Department of Biological Sciences, 257 BB, Iowa City, IA 52246-1324, USA.
| | | |
Collapse
|
24
|
Zhang C, Basta T, Fawcett SR, Klymkowsky MW. SOX7 is an immediate-early target of VegT and regulates Nodal-related gene expression in Xenopus. Dev Biol 2005; 278:526-41. [PMID: 15680368 DOI: 10.1016/j.ydbio.2004.11.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Revised: 10/18/2004] [Accepted: 11/09/2004] [Indexed: 02/06/2023]
Abstract
In zebrafish, the divergent F-type SOX casanova acts downstream of Nodal signaling to specify endoderm. While no casanova orthologs have been identified in tetrapods, the F-type SOX, SOX7, is supplied maternally in Xenopus (Fawcett and Klymkowsky, 2004. GER 4, 29). Subsequent RT-PCR and section-based in situ hybridization analyses indicate that SOX7 mRNA is localized to the vegetal region of the blastula-stage embryo. Overexpression and maternal depletion studies reveal that the T-box transcription factor VegT, which initiates mesoendodermal differentiation, directly regulates SOX7 expression. SOX7, but not SOX17 (another F-type SOX), binds to sites within the Xnr5 promoter and SOX7, but not SOX17, induces expression of the Nodal-related genes Xnr1, Xnr2, Xnr4, Xnr5, and Xnr6, the homeodomain transcription factor Mixer, and the endodermal marker SOX17beta; both SOX7 and SOX17 induce expression of the pan-endodermal marker endodermin. SOX7's induction of Xnr expression in animal caps is independent of Mixer and Nodal signaling. In animal caps, VegT's ability to induce Mixer and Edd appears to depend upon SOX7 activity. Whole embryo experiments suggests that vegetal factors partially compensate for the absence of SOX7. Based on the antagonistic effects of SOX7 and SOX3 (Zhang et al., 2004. Dev. Biol. 273, 23) and their common binding sites in the Xnr5 promoter, we propose a model in which competitive interactions between these two proteins are involved in refining the domain of endodermal differentiation.
Collapse
Affiliation(s)
- Chi Zhang
- Molecular, Cellular and Developmental Biology, University of Colorado, Porter Biosci. Building, Boulder, CO 80309-0347, USA
| | | | | | | |
Collapse
|
25
|
Koide T, Hayata T, Cho KWY. Xenopus as a model system to study transcriptional regulatory networks. Proc Natl Acad Sci U S A 2005; 102:4943-8. [PMID: 15795378 PMCID: PMC555977 DOI: 10.1073/pnas.0408125102] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Indexed: 11/18/2022] Open
Abstract
Development is controlled by a complex series of events requiring sequential gene activation. Understanding the logic of gene networks during development is necessary for a complete understanding of how genes contribute to phenotype. Pioneering work initiated in the sea urchin and Drosophila has demonstrated that reasonable transcriptional regulatory network diagrams representing early development in multicellular animals can be generated through use of appropriate genomic, genetic, and biochemical tools. Establishment of similar regulatory network diagrams for vertebrate development is a necessary step. The amphibian Xenopus has long been used as a model for vertebrate early development and has contributed greatly to the elucidation of gene regulation. Because the best and most extensively studied transcriptional regulatory network in Xenopus is that underlying the formation and function of Spemann's organizer, we describe the current status of our understanding of this gene regulatory network and its relationship to mesodermal patterning. Seventy-four transcription factors currently known to be expressed in the mesoendoderm of Xenopus gastrula were characterized according to their modes of action, DNA binding consensus sequences, and target genes. Among them, nineteen transcription factors were characterized sufficiently in detail, allowing us to generate a gene regulatory network diagram. Additionally, we discuss recent amphibian work using a combined DNA microarray and bioinformatics approach that promises to accelerate regulatory network studies.
Collapse
Affiliation(s)
- Tetsuya Koide
- Developmental Biology Center and the Department of Developmental and Cell Biology, University of California, Irvine, CA 92697-2300, USA
| | | | | |
Collapse
|
26
|
Abstract
Tbx6 is a member of the T-box family of transcription factors. In the mouse, Tbx6 is expressed in the primitive streak, tail bud, and presomitic mesoderm and is essential for the specification of posterior paraxial mesoderm; in its absence, posterior somites are replaced by ectopic neural tubes. Analysis of embryos expressing reduced levels of Tbx6 also revealed that it is required for the correct patterning of the somites as well as their initial specification. As a first step toward identifying downstream targets of Tbx6, we examined the DNA binding properties of Tbx6 and identified a Tbx6 consensus binding site. Previously, we have shown that expression of Dll1, which encodes a Notch ligand, is lost in the Tbx6 mutant and that Tbx6 and Dll1 genetically interact, indicating that Dll1 may be a direct target of Tbx6 in the paraxial mesoderm. We uncovered four putative Tbx6 binding sites within a Dll1 paraxial mesoderm enhancer and show that Tbx6 can bind two of these sites in vitro. Altogether, these results lend further support for Dll1 being a direct target of Tbx6 in the presomitic mesoderm.
Collapse
Affiliation(s)
- Phillip H White
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
27
|
Kofron M, Puck H, Standley H, Wylie C, Old R, Whitman M, Heasman J. New roles for FoxH1 in patterning the early embryo. Development 2004; 131:5065-78. [PMID: 15459100 DOI: 10.1242/dev.01396] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
FoxH1 (Fast1) was first characterized as the transcriptional partner for Smad proteins. Together with Smad2/4, it forms the activin response factor (ARF) that binds to the Mix.2 promoter in Xenopus embryos. Foxh1 is expressed maternally in Xenopus. Depletion of maternal Foxh1 mRNA results in abnormalities of head and dorsal axis formation. We show that FoxH1 is required, together with XTcf3/beta catenin, to activate the zygotic expression of the nodal gene, Xnr3 in a Smad2-independent manner. In contrast, maternal FoxH1 acts as an inhibitor of Xnr5 and 6 transcription, preventing their upregulation on the ventral side of the embryo, by the maternal T-box transcription factor VegT. We conclude that maternal FoxH1 has essential, context-dependent roles in regulating the pattern of zygotic gene expression in the early embryo.
Collapse
Affiliation(s)
- Matt Kofron
- Division of Developmental Biology, Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Zhang C, Basta T, Hernandez-Lagunas L, Simpson P, Stemple DL, Artinger KB, Klymkowsky MW. Repression of nodal expression by maternal B1-type SOXs regulates germ layer formation in Xenopus and zebrafish. Dev Biol 2004; 273:23-37. [PMID: 15302595 DOI: 10.1016/j.ydbio.2004.05.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Revised: 05/24/2004] [Accepted: 05/26/2004] [Indexed: 10/26/2022]
Abstract
B1-type SOXs (SOXs 1, 2, and 3) are the most evolutionarily conserved subgroup of the SOX transcription factor family. To study their maternal functions, we used the affinity-purified antibody antiSOX3c, which inhibits the binding of Xenopus SOX3 to target DNA sequences [Development. 130(2003)5609]. The antibody also cross-reacts with zebrafish embryos. When injected into fertilized Xenopus or zebrafish eggs, antiSOX3c caused a profound gastrulation defect; this defect could be rescued by the injection of RNA encoding SOX3DeltaC-EnR, a SOX3-engrailed repression domain chimera. In antiSOX3c-injected Xenopus embryos, normal animal-vegetal patterning of mesodermal and endodermal markers was disrupted, expression domains were shifted toward the animal pole, and the levels of the endodermal markers SOX17 and endodermin increased. In Xenopus, SOX3 acts as a negative regulator of Xnr5, which encodes a nodal-related TGFbeta-family protein. Two nodal-related proteins are expressed in the early zebrafish embryo, squint and cyclops; antiSOX3c-injection leads to an increase in the level of cyclops expression. In both Xenopus and zebrafish, the antiSOX3c phenotype was rescued by the injection of RNA encoding the nodal inhibitor Cerberus-short (CerS). In Xenopus, antiSOX3c's effects on endodermin expression were suppressed by injection of RNA encoding a dominant negative version of Mixer or a morpholino against SOX17alpha2, both of which act downstream of nodal signaling in the endoderm specification pathway. Based on these data, it appears that maternal B1-type SOX functions together with the VegT/beta-catenin system to regulate nodal expression and to establish the normal pattern of germ layer formation in Xenopus. A mechanistically conserved system appears to act in a similar manner in the zebrafish.
Collapse
Affiliation(s)
- Chi Zhang
- Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, 80309-0347, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Sinner D, Rankin S, Lee M, Zorn AM. Sox17 and beta-catenin cooperate to regulate the transcription of endodermal genes. Development 2004; 131:3069-80. [PMID: 15163629 DOI: 10.1242/dev.01176] [Citation(s) in RCA: 226] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent studies have led to a model of the molecular pathway that specifies the endoderm during vertebrate gastrulation. The HMG box transcription factor Sox17 is a key component of this pathway and is essential for endoderm formation; however, the molecular events controlled by Sox17 are largely unknown. We have identified several direct transcriptional targets of Sox17, including Foxa1 and Foxa2. We show that beta-catenin, a component of Wnt signaling pathway, physically interacts with Sox17 and potentiates its transcriptional activation of target genes. We identify a motif in the C terminus of Sox17, which is conserved in all the SoxF subfamily of Sox proteins, and this motif is required for the ability of Sox17 to both transactivate target genes and bind beta-catenin. Nuclear beta-catenin is present in endoderm cells of the gastrula, and depletion of beta-catenin from embryos results in a repression of Sox17 target genes. These data suggest that in a mechanism analogous to Tcf/Lef interacting with beta-catenin, Sox17 and beta-catenin interact to transcribe endodermal target genes.
Collapse
Affiliation(s)
- Débora Sinner
- Cincinnati Children's Hospital Medical Center, Division of Developmental Biology and The Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| | | | | | | |
Collapse
|