1
|
Riddell J, Headon D. Embryonic feather bud development - A keystone model for vertebrate organogenesis. Dev Biol 2025; 521:142-148. [PMID: 39954756 DOI: 10.1016/j.ydbio.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 01/30/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
The development of feathers in the embryonic skin has been used as a model for biological self-organisation for many decades. The availability, size and ease of manipulation of the skin has enabled it to serve as a model revealing concepts of epithelial-mesenchymal interaction, origins of periodic patterns in the anatomy, and the effects of growth factors and structural and mechanical properties on tissue development. These efforts provide a rich history of observation, informing continued development of new concepts in this system. Here we review the process of early feather bud development, the understanding gained from decades of experimentation, and current debate and future directions for progress.
Collapse
Affiliation(s)
- Jon Riddell
- Roslin Institute and the Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, United Kingdom
| | - Denis Headon
- Roslin Institute and the Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, United Kingdom.
| |
Collapse
|
2
|
Guo Y, Wu W, Chen H, Wang X, Zhang Y, Li S, Yang X. Network analysis reveals potential mechanisms that determine the cellular identity of keratinocytes and corneal epithelial cells through the Hox/Gtl2-Dio3 miRNA axis. Front Cell Dev Biol 2025; 13:1475334. [PMID: 39896421 PMCID: PMC11782130 DOI: 10.3389/fcell.2025.1475334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 01/02/2025] [Indexed: 02/04/2025] Open
Abstract
During embryonic development, both corneal epithelial cells (CECs) and keratinocytes (KCs) originate from the surface ectoderm. As a result of this shared origin, corneal epithelial cells may exhibit the same characteristics as the skin epidermis in pathological situations, while keratinocytes are ideal seed cells for tissue-engineered corneas. However, how the identities of keratinocytes and corneal epithelial cells are determined is currently unclear. In this study, to investigate the molecular mechanisms determining the identity of keratinocytes and corneal epithelial cells, small RNA and mRNA sequencing analyses of these two cell types were performed. Analysis of the sequencing data revealed that almost all the miRNAs in the Gtl2-Dio3 imprinting region were highly expressed in keratinocytes and accounted for 30% of all differentially expressed miRNAs (DEMs). Since all the genes in the Gtl2-Dio3 imprinting region form a long polycistronic RNA under the control of the Gtl2 promoter, we next examined the expression of transcription factors and their binding near the Gtl2 locus. The findings indicated that the homeobox family dominated the differentially expressed transcription factors, and almost all Hox genes were silenced in corneal epithelial cells. Transcription binding site prediction and ChIP-seq revealed the binding of Hox proteins near the Gtl2 locus. Analysis of the Gtl-Dio3 miRNA target genes indicated that these miRNAs mainly regulate the Wnt signaling pathway and the PI3K-Akt signaling pathway. The crucial transcription factors in corneal epithelial cells, Pax6, Otx2, and Foxc1, are also targets of Gtl-Dio3 miRNAs. Our study revealed potential mechanisms that determine the cellular identity of keratinocytes and corneal epithelial cells through the Hox/Gtl2-Dio3 miRNA axis, which provides a new perspective for understanding the developmental regulation of corneal epithelial cells and the mechanisms of corneal opacity, as well as for establishing the groundwork for promoting the transdifferentiation of keratinocytes into corneal epithelial cells.
Collapse
Affiliation(s)
- Yanjie Guo
- Life Science College, Luoyang Normal University, Luoyang, Henan, China
| | | | | | | | | | | | - Xueyi Yang
- Life Science College, Luoyang Normal University, Luoyang, Henan, China
| |
Collapse
|
3
|
Desmarquet-Trin Dinh C, Manceau M. Structure, function and formation of the amniote skin pattern. Dev Biol 2025; 517:203-216. [PMID: 39326486 DOI: 10.1016/j.ydbio.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 09/10/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
From feather and hair dotted arrays to pigmented stripes and spots, the spatial distribution of skin appendages and colouration often forms visible ornaments crucial for fitness in the coat of birds and mammals. These geometrical motifs are extremely diverse in nature. Yet, phenotypic surveys evidenced common themes in variation: the orientation, appendage-specificity or pigmentation of a given region may be conserved across groups or species. Here, we review naturalist observations of natural variation in the anatomy and ecological function of the skin pattern in amniotes. We then describe several decades of genetics, mathematical modelling and experimental embryology work aiming at understanding the molecular and morphogenetic mechanisms responsible for pattern formation. We discuss how these studies provided evidence that the morphological trends and differences representative of the phenotypic landscape of skin patterns in wild amniote species is rooted in the mechanisms controlling the production of distinct compartments in the embryonic skin.
Collapse
Affiliation(s)
| | - Marie Manceau
- Centre for Interdisciplinary Research in Biology, Collège de France, Université PSL, CNRS, INSERM, France.
| |
Collapse
|
4
|
Lim HC, Bennett KFP, Justyn NM, Powers MJ, Long KM, Kingston SE, Lindsay WR, Pease JB, Fuxjager MJ, Bolton PE, Balakrishnan CN, Day LB, Parsons TJ, Brawn JD, Hill GE, Braun MJ. Sequential introgression of a carotenoid processing gene underlies sexual ornament diversity in a genus of manakins. SCIENCE ADVANCES 2024; 10:eadn8339. [PMID: 39565864 PMCID: PMC11578183 DOI: 10.1126/sciadv.adn8339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 10/17/2024] [Indexed: 11/22/2024]
Abstract
In a hybrid zone between two tropical lekking birds, yellow male plumage of one species has introgressed asymmetrically replacing white plumage of another via sexual selection. Here, we present a detailed analysis of the plumage trait to uncover its physical and genetic bases and trace its evolutionary history. We determine that the carotenoid lutein underlies the yellow phenotype and describe microstructural feather features likely to enhance color appearance. These same features reduce predicted water shedding capacity of feathers, a potential liability in the tropics. Through genome-scale DNA sequencing of hybrids and each species in the genus, we identify BCO2 as the major gene responsible for the color polymorphism. The BCO2 gene tree and genome-wide allele frequency patterns suggest that carotenoid-pigmented collars initially arose in a third species and reached the hybrid zone through historical gene flow. Complex interplay between sexual selection and hybridization has thus shaped phenotypes of these species, where conspicuous sexual traits are key to male reproductive success.
Collapse
Affiliation(s)
- Haw Chuan Lim
- Department of Biology, George Mason University, Fairfax, VA 22030, USA
- National Zoo and Conservation Biology Institute, Smithsonian Institution, Washington, DC 20013, USA
| | - Kevin F. P. Bennett
- Department of Biology and Biological Sciences Graduate Program, University of Maryland, College Park, MD 20742, USA
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA
| | - Nicholas M. Justyn
- Department of Biological Sciences, Auburn University, Auburn, AL 36830, USA
| | - Matthew J. Powers
- Department of Biological Sciences, Auburn University, Auburn, AL 36830, USA
| | - Kira M. Long
- Program in Ecology Evolution and Conservation Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | | | - Willow R. Lindsay
- Department of Biology and Interdisciplinary Neuroscience Minor, University of Mississippi, University, MS 38677, USA
| | - James B. Pease
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Matthew J. Fuxjager
- Department of Ecology Evolution and Organismal Biology, Brown University, Providence, RI 02912, USA
| | - Peri E. Bolton
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Christopher N. Balakrishnan
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
- Division of Environmental Biology, National Science Foundation, Alexandria, VA 22314, USA
| | - Lainy B. Day
- Department of Biology and Interdisciplinary Neuroscience Minor, University of Mississippi, University, MS 38677, USA
| | - Thomas J. Parsons
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA
| | - Jeffrey D. Brawn
- Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Geoffrey E. Hill
- Department of Biological Sciences, Auburn University, Auburn, AL 36830, USA
| | - Michael J. Braun
- Department of Biology and Biological Sciences Graduate Program, University of Maryland, College Park, MD 20742, USA
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA
| |
Collapse
|
5
|
Wang J, Xing C, Wang H, Zhang H, Wei W, Xu J, Liu Y, Guo X, Jiang R. Identification of key modules and hub genes involved in regulating the feather follicle development of Wannan chickens using WGCNA. Poult Sci 2024; 103:103903. [PMID: 38908121 PMCID: PMC11253687 DOI: 10.1016/j.psj.2024.103903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/24/2024] Open
Abstract
Carcass appearance is important economic trait, which affects customers in making purchase decisions. Both density and diameter of feather follicles are two important indicators of carcass appearance. However, the regulatory network and key genes be involved in feather follicle development remain poorly understood. To identify key genes and modules that involved in feather follicle development in chickens, 16 transcriptome datasets of Wannan chickens skin tissue (3 birds at the E9, E11, and E14, respectively, and 7 birds at the 12W) were used for weighted gene co-expression network analysis (WGCNA) analysis, and 12 skin tissue samples (3 birds for each stage) were selected for DEGs analysis. A total of 5,025, 2,337, and 10,623 DEGs were identified in 3 comparison groups, including the E9 vs. E11, the E11 vs. E14, and the E14 vs. 12W. Additionally, 31 co-expression gene modules were identified by WGCNA and the dark-orange, cyan, and blue module were found to be significantly associated with feather follicle development (p < 0.01). In total, 92,898 and 8,448 hub genes were obtained in the dark-orange, cyan, and blue modules, respectively. We focused on the cyan and blue modules, as 6 and 336 hub genes of these modules were identified to overlap with the DEGs of the three comparison groups, respectively. The 6 overlapped genes such as LAMC2, COL6A3, and COL6A2 etc., were over-represented in 12 categories such as focal adhesion and ECM-receptor interaction signaling pathway. Among the 336 genes that overlapped between the blue module and different DEGs comparison groups several genes including WNT7A and WNT9B were enriched in Wnt and ECM-receptor interaction signaling pathway. These results suggested that the LAMC2, COL6A3, COL6A2, WNT7A, and WNT9B genes may play a crucial role in the regulation of feather follicle development in Wannan chickens. Our results provided a reference for the molecular regulatory network and key genes in the development of feather follicles and contribute to molecular breeding for carcass appearance traits in chickens.
Collapse
Affiliation(s)
- Jiangxian Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Chaohui Xing
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Hao Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Hong Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Wei Wei
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Jinmei Xu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yanan Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xing Guo
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Runshen Jiang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
6
|
Dhouailly D. The avian ectodermal default competence to make feathers. Dev Biol 2024; 508:64-76. [PMID: 38190932 DOI: 10.1016/j.ydbio.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/24/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024]
Abstract
Feathers originate as protofeathers before birds, in pterosaurs and basal dinosaurs. What characterizes a feather is not only its outgrowth, but its barb cells differentiation and a set of beta-corneous proteins. Reticula appear concomitantly with feathers, as small bumps on plantar skin, made only of keratins. Avian scales, with their own set of beta-corneous proteins, appear more recently than feathers on the shank, and only in some species. In the chick embryo, when feather placodes form, all the non-feather areas of the integument are already specified. Among them, midventral apterium, cornea, reticula, and scale morphogenesis appear to be driven by negative regulatory mechanisms, which modulate the inherited capacity of the avian ectoderm to form feathers. Successive dermal/epidermal interactions, initiated by the Wnt/β-catenin pathway, and involving principally Eda/Edar, BMP, FGF20 and Shh signaling, are responsible for the formation not only of feather, but also of scale placodes and reticula, with notable differences in the level of Shh, and probably FGF20 expressions. This sequence is a dynamic and labile process, the turning point being the FGF20 expression by the placode. This epidermal signal endows its associated dermis with the memory to aggregate and to stimulate the morphogenesis that follows, involving even a re-initiation of the placode.
Collapse
Affiliation(s)
- Danielle Dhouailly
- Department of Biology and Chemistry, University Grenoble-Alpes, Institute for Advanced Biosciences, 38700, La Tronche, France.
| |
Collapse
|
7
|
Yang K, Zhang J, Zhao Y, Shao Y, Zhai M, Liu H, Zhang L. Whole Genome Resequencing Revealed the Genetic Relationship and Selected Regions among Baicheng-You, Beijing-You, and European-Origin Broilers. BIOLOGY 2023; 12:1397. [PMID: 37997996 PMCID: PMC10669838 DOI: 10.3390/biology12111397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023]
Abstract
As the only two You-chicken breeds in China, Baicheng-You (BCY) and Beijing-You (BJY) chickens are famous for their good meat quality. However, so far, the molecular basis of germplasm of the two You-chicken breeds is not yet clear. The genetic relationship among BCY, BJY, and European-origin broilers (BRs) was analyzed using whole genome resequencing data to contribute to this issue. A total of 18,852,372 single nucleotide polymorphisms (SNPs) were obtained in this study. After quality control, 8,207,242 SNPs were applied to subsequent analysis. The data indicated that BJY chickens possessed distant distance with BRs (genetic differentiation coefficient (FST) = 0.1681) and BCY (FST = 0.1231), respectively, while BCY and BRs had a closer relationship (FST = 0.0946). In addition, by using FST, cross-population extended haplotype homozygosity (XP-EHH), and cross-population composite likelihood ratio (XP-CLR) methods, we found 374 selected genes between BJY and BRs chickens and 279 selected genes between BCY and BJY chickens, respectively, which contained a number of important candidates or genetic variations associated with feather growth and fat deposition of BJY chickens and potential disease resistance of BCY chickens. Our study demonstrates a genome-wide view of genetic diversity and differentiation among BCY, BJY, and BRs. These results may provide useful information on a molecular basis related to the special characteristics of these broiler breeds, thus enabling us to better understand the formation mechanism of Chinese-You chickens.
Collapse
Affiliation(s)
- Kai Yang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (K.Y.); (Y.Z.)
| | - Jian Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.Z.); (H.L.)
| | - Yuelei Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (K.Y.); (Y.Z.)
| | - Yonggang Shao
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (Y.S.); (M.Z.)
| | - Manjun Zhai
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (Y.S.); (M.Z.)
| | - Huagui Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.Z.); (H.L.)
| | - Lifan Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (K.Y.); (Y.Z.)
| |
Collapse
|
8
|
Du W, Yang Z, Xiao C, Liu Y, Peng J, Li J, Li F, Yang X. Identification of genes involved in regulating the development of feathered feet in chicken embryo. Poult Sci 2023; 102:102837. [PMID: 37390552 PMCID: PMC10331478 DOI: 10.1016/j.psj.2023.102837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/27/2023] [Accepted: 05/31/2023] [Indexed: 07/02/2023] Open
Abstract
The genetic and developmental factors driving the diverse distribution and morphogenesis of feathers and scales on bird feet are yet unclear. Within a single species, Guangxi domestic chickens exhibit dramatic variety in feathered feet, making them an accessible model for research into the molecular basis of variations in skin appendages. In this study, we used H&E staining to observe the morphogenesis of feathered feet, scaled feet and wings skin at different embryonic stages in Longsheng-Feng chickens and Guangxi Partridge chickens. We selected 4 periods (E6, E7, E8, and E12) that play an important role in feather development and performed transcriptome sequencing to screen for candidate genes associated with feathered feet. Through comparison and analysis of transcriptome data, we identified a set of differently expressed genes (DGEs), which were enriched in appendage organ development, hindlimb morphogenesis, activation of transcription factor binding, and binding of sequence-specific DNA in the cis-regulatory region. In addition, we identified some feathered feet-related genes by analyzing the classical signaling pathways that regulate feather development. Finally, we identified candidate genes that regulate feathered feet formation, which include TBX5, PITX1, ZIC1, FGF20, WNT11, WNT7A, WNT16, and SHH. Interestingly, we found that TBX5 was significantly overexpressed in the skin of the feathered feet and had the highest expression at E7 (P < 0.01), whereas PITX1 expression was significantly reduced at E7(P < 0.01). It is hypothesized that TBX5 and PITX1 regulate the development of hair follicles through the Wnt/β-catenin signaling pathway at E7. Our results provide a theoretical basis for investigating the molecular regulatory mechanisms underlying the formation of chicken feathered feet.
Collapse
Affiliation(s)
- Wenya Du
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Zhuliang Yang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Cong Xiao
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Yongcui Liu
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Jiashuo Peng
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Jianneng Li
- Guangxi Gangfeng Agriculture & Animal Husbandry Co., Ltd, Guigang 537000, China
| | - Fuqiu Li
- Guangxi Gangfeng Agriculture & Animal Husbandry Co., Ltd, Guigang 537000, China
| | - Xiurong Yang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China.
| |
Collapse
|
9
|
Ji G, Zhang M, Tu Y, Liu Y, Shan Y, Ju X, Zou J, Shu J, Sheng Z, Li H. Molecular Regulatory Mechanisms in Chicken Feather Follicle Morphogenesis. Genes (Basel) 2023; 14:1646. [PMID: 37628697 PMCID: PMC10454116 DOI: 10.3390/genes14081646] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
In China, the sale of freshly slaughtered chickens is becoming increasingly popular in comparison with that of live chickens, and due to this emerging trend, the skin and feather follicle traits of yellow-feathered broilers have attracted a great deal of research attention. The feather follicle originates from the interaction between the epidermis and dermis in the early embryonic stage. Feather follicle morphogenesis is regulated by the Wnt, ectodysplasin (Eda), epidermal growth factor (EGF), fibroblast growth factor (FGF), bone morphogenetic protein (BMP), sonic hedgehog (Shh), Notch, and other signaling pathways that exist in epithelial and mesenchymal cells. The Wnt pathway is essential for feather follicle and feather morphogenesis. Eda interacts with Wnt to induce FGF expression, which attracts mesenchymal cell movement and aggregates to form feather follicle primordia. BMP acts as an inhibitor of the above signaling pathways to limit the size of the feather tract and distance between neighboring feather primordia in a dose-dependent manner. The Notch/Delta pathway can interact with the FGF pathway to promote feather bud formation. While not a part of the early morphogenesis of feather follicles, Shh and BMP signaling are involved in late feather branching. This review summarizes the roles of miRNAs/lncRNA in the regulation of feather follicle and feather growth and development and suggests topics that need to be solved in a future study. This review focuses on the regulatory mechanisms involved in feather follicle morphogenesis and analyzes the impact of SNP sites on feather follicle traits in poultry. This work may help us to understand the molecular regulatory networks influencing feather follicle growth and provide basic data for poultry carcass quality.
Collapse
Affiliation(s)
- Gaige Ji
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Chinese Academy of Agricultural Science, Institute of Poultry Science, Yangzhou 225125, China
| | - Ming Zhang
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Chinese Academy of Agricultural Science, Institute of Poultry Science, Yangzhou 225125, China
| | - Yunjie Tu
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Chinese Academy of Agricultural Science, Institute of Poultry Science, Yangzhou 225125, China
| | - Yifan Liu
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Chinese Academy of Agricultural Science, Institute of Poultry Science, Yangzhou 225125, China
| | - Yanju Shan
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Chinese Academy of Agricultural Science, Institute of Poultry Science, Yangzhou 225125, China
| | - Xiaojun Ju
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Chinese Academy of Agricultural Science, Institute of Poultry Science, Yangzhou 225125, China
| | - Jianmin Zou
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Chinese Academy of Agricultural Science, Institute of Poultry Science, Yangzhou 225125, China
| | - Jingting Shu
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Chinese Academy of Agricultural Science, Institute of Poultry Science, Yangzhou 225125, China
| | - Zhongwei Sheng
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Chinese Academy of Agricultural Science, Institute of Poultry Science, Yangzhou 225125, China
| | - Hua Li
- School of Life Science and Engineering, Foshan University, Foshan 528231, China
| |
Collapse
|
10
|
Dhouailly D. Evo Devo of the Vertebrates Integument. J Dev Biol 2023; 11:25. [PMID: 37367479 DOI: 10.3390/jdb11020025] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 06/28/2023] Open
Abstract
All living jawed vertebrates possess teeth or did so ancestrally. Integumental surface also includes the cornea. Conversely, no other anatomical feature differentiates the clades so readily as skin appendages do, multicellular glands in amphibians, hair follicle/gland complexes in mammals, feathers in birds, and the different types of scales. Tooth-like scales are characteristic of chondrichthyans, while mineralized dermal scales are characteristic of bony fishes. Corneous epidermal scales might have appeared twice, in squamates, and on feet in avian lineages, but posteriorly to feathers. In contrast to the other skin appendages, the origin of multicellular glands of amphibians has never been addressed. In the seventies, pioneering dermal-epidermal recombination between chick, mouse and lizard embryos showed that: (1) the clade type of the appendage is determined by the epidermis; (2) their morphogenesis requires two groups of dermal messages, first for primordia formation, second for appendage final architecture; (3) the early messages were conserved during amniotes evolution. Molecular biology studies that have identified the involved pathways, extending those data to teeth and dermal scales, suggest that the different vertebrate skin appendages evolved in parallel from a shared placode/dermal cells unit, present in a common toothed ancestor, c.a. 420 mya.
Collapse
Affiliation(s)
- Danielle Dhouailly
- Department of Biology and Chemistry, Institute for Advanced Biosciences, University Grenoble-Alpes, 38700 La Tronche, France
| |
Collapse
|
11
|
Cooper RL, Santos-Durán G, Milinkovitch MC. Protocol for the rapid intravenous in ovo injection of developing amniote embryos. STAR Protoc 2023; 4:102324. [PMID: 37210721 DOI: 10.1016/j.xpro.2023.102324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/12/2023] [Accepted: 04/28/2023] [Indexed: 05/23/2023] Open
Abstract
We present a technique for precise drug delivery into the vascular system of developing amniote embryos via injection into chorioallantoic veins underlying the eggshell membrane. We describe steps for incubating and candling eggs, removing the shell to expose underlying veins, and precise intravenous injection. In addition to chicken embryos, this protocol is applicable to other amniote species that lay hard-shell eggs, including crocodiles and tortoises. This technique is rapid, is reproducible, is of low cost, and will provide an important resource for developmental biologists. For complete details on the use and execution of this protocol, please refer to Cooper & Milinkovitch.1.
Collapse
Affiliation(s)
- Rory L Cooper
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics and Evolution, University of Geneva, 1211 Geneva, Switzerland
| | - Gabriel Santos-Durán
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics and Evolution, University of Geneva, 1211 Geneva, Switzerland
| | - Michel C Milinkovitch
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics and Evolution, University of Geneva, 1211 Geneva, Switzerland; SIB Swiss Institute of Bioinformatics, Geneva, Switzerland.
| |
Collapse
|
12
|
Tseng CC, Woolley TE, Jiang TX, Wu P, Maini PK, Widelitz RB, Chuong CM. Gap junctions in Turing-type periodic feather pattern formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.15.537019. [PMID: 37090608 PMCID: PMC10120740 DOI: 10.1101/2023.04.15.537019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Periodic patterning requires coordinated cell-cell interactions at the tissue level. Turing showed, using mathematical modeling, how spatial patterns could arise from the reactions of a diffusive activator-inhibitor pair in an initially homogenous two-dimensional field. Most activators and inhibitors studied in biological systems are proteins, and the roles of cell-cell interaction, ions, bioelectricity, etc. are only now being identified. Gap junctions (GJs) mediate direct exchanges of ions or small molecules between cells, enabling rapid long-distance communications in a cell collective. They are therefore good candidates for propagating non-protein-based patterning signals that may act according to the Turing principles. Here, we explore the possible roles of GJs in Turing-type patterning using feather pattern formation as a model. We found seven of the twelve investigated GJ isoforms are highly dynamically expressed in the developing chicken skin. In ovo functional perturbations of the GJ isoform, connexin 30, by siRNA and the dominant-negative mutant applied before placode development led to disrupted primary feather bud formation, including patches of smooth skin and buds of irregular sizes. Later, after the primary feather arrays were laid out, inhibition of gap junctional intercellular communication in the ex vivo skin explant culture allowed the emergence of new feather buds in temporal waves at specific spatial locations relative to the existing primary buds. The results suggest that gap junctional communication may facilitate the propagation of long-distance inhibitory signals. Thus, the removal of GJ activity would enable the emergence of new feather buds if the local environment is competent and the threshold to form buds is reached. We propose Turing-based computational simulations that can predict the appearance of these ectopic bud waves. Our models demonstrate how a Turing activator-inhibitor system can continue to generate patterns in the competent morphogenetic field when the level of intercellular communication at the tissue scale is modulated.
Collapse
Affiliation(s)
- Chun-Chih Tseng
- Department of Biochemistry and Molecular Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, U.S.A
- Current address: Department of Molecular Biology, Princeton University, Princeton, NJ 08540, U.S.A
| | - Thomas E. Woolley
- School of Mathematics, Cardiff University, Senghennydd Road, Cardiff, CF24 4AG, U.K
| | - Ting-Xin Jiang
- Department of Pathology, University of Southern California, Los Angeles, CA 90033, U.S.A
| | - Ping Wu
- Department of Pathology, University of Southern California, Los Angeles, CA 90033, U.S.A
| | - Philip K. Maini
- Wolfson Centre for Mathematical Biology, Mathematical Institute, Andrew Wiles Building, University of Oxford, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, U.K
| | - Randall B. Widelitz
- Department of Pathology, University of Southern California, Los Angeles, CA 90033, U.S.A
| | - Cheng-Ming Chuong
- Department of Pathology, University of Southern California, Los Angeles, CA 90033, U.S.A
| |
Collapse
|
13
|
Abstract
Skin is largely composed of an epidermis that overlies a supporting dermis. Recent advancements in our understanding of how diverse groups of dermal fibroblasts regulate epidermal and hair follicle growth and differentiation have been fueled by tools capable of resolving molecular heterogeneity at a single-cell level. Fibroblast heterogeneity can be traced back to their developmental origin before their segregation into spatially distinct fibroblast subtypes. The mechanisms that drive this lineage diversification during development are being unraveled, with studies showing that both large- and small-scale positional signals play important roles during dermal development. Here, we first delineate what is known about the origins of the dermis and the central role of Wnt/β-catenin signaling in its specification across anatomical locations. We then discuss how one of the first morphologically recognizable fibroblast subtypes, the hair follicle dermal condensate lineage, emerges. Leveraging the natural variation of skin and its appendages between species and between different anatomical locations, these collective studies have identified shared and divergent factors that contribute to the extraordinary diversity of skin.
Collapse
Affiliation(s)
- Peggy Myung
- Department of Dermatology, Yale University, New Haven, CT 06510, USA
| | - Thomas Andl
- Burnett School of Biomedical Sciences, Orlando, FL 32827, USA
| | - Radhika Atit
- Department of Biology, Department of Genetics and Genome Sciences, Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
14
|
Curantz C, Bailleul R, Castro-Scherianz M, Hidalgo M, Durande M, Graner F, Manceau M. Cell shape anisotropy contributes to self-organized feather pattern fidelity in birds. PLoS Biol 2022; 20:e3001807. [PMID: 36215298 PMCID: PMC9584522 DOI: 10.1371/journal.pbio.3001807] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 10/20/2022] [Accepted: 08/26/2022] [Indexed: 11/05/2022] Open
Abstract
Developing tissues can self-organize into a variety of patterned structures through the stabilization of stochastic fluctuations in their molecular and cellular properties. While molecular factors and cell dynamics contributing to self-organization have been identified in vivo, events channeling self-organized systems such that they achieve stable pattern outcomes remain unknown. Here, we described natural variation in the fidelity of self-organized arrays formed by feather follicle precursors in bird embryos. By surveying skin cells prior to and during tissue self-organization and performing species-specific ex vivo drug treatments and mechanical stress tests, we demonstrated that pattern fidelity depends on the initial amplitude of cell anisotropy in regions of the developing dermis competent to produce a pattern. Using live imaging, we showed that cell shape anisotropy is associated with a limited increase in cell motility for sharp and precisely located primordia formation, and thus, proper pattern geometry. These results evidence a mechanism through which initial tissue properties ensure stability in self-organization and thus, reproducible pattern production. A study of natural variation in feather pattern geometry and a combination of pharmacological and mechanical manipulations ex vivo provides evidence for a mechanism by which initial tissue properties ensure stability in self-organization and species-specific pattern production.
Collapse
Affiliation(s)
- Camille Curantz
- Center for Interdisciplinary Research in Biology, CNRS UMR7241, INSERM U1050, Collège de France, Paris, France
- Sorbonne University, UPMC Paris VI, Paris, France
- Centre for Chromosome Biology, National University of Ireland Galway, Galway, Ireland
| | - Richard Bailleul
- Center for Interdisciplinary Research in Biology, CNRS UMR7241, INSERM U1050, Collège de France, Paris, France
- Sorbonne University, UPMC Paris VI, Paris, France
- Developmental Biology & Cell Biology and Biophysics Units, European Molecular Biology Laboratory, Heidelberg, Germany
| | - María Castro-Scherianz
- Center for Interdisciplinary Research in Biology, CNRS UMR7241, INSERM U1050, Collège de France, Paris, France
| | - Magdalena Hidalgo
- Center for Interdisciplinary Research in Biology, CNRS UMR7241, INSERM U1050, Collège de France, Paris, France
| | - Melina Durande
- Matière et Systèmes Complexes, Université de Paris, CNRS UMR 7057, Paris, France
| | - François Graner
- Matière et Systèmes Complexes, Université de Paris, CNRS UMR 7057, Paris, France
| | - Marie Manceau
- Center for Interdisciplinary Research in Biology, CNRS UMR7241, INSERM U1050, Collège de France, Paris, France
- * E-mail:
| |
Collapse
|
15
|
Li S, Yang G, Chu J, Wang J, Liu A, Mou C. Revealing the impacts on shaping scutate scales in goose skin. Gene 2022; 844:146840. [PMID: 36031017 DOI: 10.1016/j.gene.2022.146840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 07/30/2022] [Accepted: 08/22/2022] [Indexed: 11/04/2022]
Abstract
Feather follicles and scales are two types of skin appendages distributed on different parts of avian skin. The morphogenesis and development of scales in waterfowl remain largely unknown. Here, we used H&E staining, ISH and RNA sequencing to reveal the morphological and molecular variations at the early development of scutate scales in goose shank skin. Transcriptome analysis produced 1824 differentially expressed genes (DEGs) regulating the induction of scales and further enriched gene function in cell adhesion and Wnt signaling pathway, etc. A total of 8 candidate genes (ALDOC, CSRP2, KRT15, KRT75, LGALS1, S100A6, OGN and SFRP2) were further detected by RT-qPCR to show upregulated (6 genes) and downregulated (2 genes) from pre-placodal to placode stage during the induction of goose scales. The localization of 7 candidate genes (ALDOC, CSRP2, CD109, KRT15, KRT75, S100A6, and OGN) by ISH suggests the potential roles for dermal and epidermal development during the induction of scutate scales. The dynamic molecular changes and specific gene expression patterns revealed in this report provide general knowledge of scale development in waterfowl as well as skin appendage diversity.
Collapse
Affiliation(s)
- Shaomei Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Ge Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Jinyu Chu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Jian Wang
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou 215300, China
| | - Anfang Liu
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| | - Chunyan Mou
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| |
Collapse
|
16
|
Peñalba JV, Peters JL, Joseph L. Sustained plumage divergence despite weak genomic differentiation and broad sympatry in sister species of Australian woodswallows (
Artamus
spp.). Mol Ecol 2022; 31:5060-5073. [DOI: 10.1111/mec.16637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/13/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Joshua V. Peñalba
- Museum für Naturkunde Berlin Leibniz Institute for Evolution and Biodiversity Science Center for Integrative Biodiversity Discovery, Invalidenstr. 43, D‐10115 Berlin Germany
| | - Jeffrey L. Peters
- Department of Biological Sciences Wright State University Dayton OH USA
| | - Leo Joseph
- Australian National Wildlife Collection, CSIRO National Research Collections Australia Canberra Australia
| |
Collapse
|
17
|
Painter KJ, Ptashnyk M, Headon DJ. Systems for intricate patterning of the vertebrate anatomy. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200270. [PMID: 34743605 PMCID: PMC8580425 DOI: 10.1098/rsta.2020.0270] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/11/2021] [Indexed: 05/05/2023]
Abstract
Periodic patterns form intricate arrays in the vertebrate anatomy, notably the hair and feather follicles of the skin, but also internally the villi of the gut and the many branches of the lung, kidney, mammary and salivary glands. These tissues are composite structures, being composed of adjoined epithelium and mesenchyme, and the patterns that arise within them require interaction between these two tissue layers. In embryonic development, cells change both their distribution and state in a periodic manner, defining the size and relative positions of these specialized structures. Their placement is determined by simple spacing mechanisms, with substantial evidence pointing to a variety of local enhancement/lateral inhibition systems underlying the breaking of symmetry. The nature of the cellular processes involved, however, has been less clear. While much attention has focused on intercellular soluble signals, such as protein growth factors, experimental evidence has grown for contributions of cell movement or mechanical forces to symmetry breaking. In the mesenchyme, unlike the epithelium, cells may move freely and can self-organize into aggregates by chemotaxis, or through generation and response to mechanical strain on their surrounding matrix. Different modes of self-organization may coexist, either coordinated into a single system or with hierarchical relationships. Consideration of a broad range of distinct biological processes is required to advance understanding of biological pattern formation. This article is part of the theme issue 'Recent progress and open frontiers in Turing's theory of morphogenesis'.
Collapse
Affiliation(s)
- Kevin J. Painter
- Dipartimento Interateneo di Scienze, Progetto e Politiche del Territorio, Politecnico di Torino, Torino, Italy
| | - Mariya Ptashnyk
- School of Mathematical and Computer Sciences and Maxwell Institute, Heriot-Watt University, Edinburgh, UK
| | | |
Collapse
|
18
|
Jacob T, Chakravarty A, Panchal A, Patil M, Ghodadra G, Sudhakaran J, Nuesslein-Volhard C. Zebrafish twist2/dermo1 regulates scale shape and scale organization during skin development and regeneration. Cells Dev 2021; 166:203684. [PMID: 33994357 DOI: 10.1016/j.cdev.2021.203684] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 12/22/2020] [Accepted: 04/26/2021] [Indexed: 01/01/2023]
Abstract
Scales are skin appendages in fishes that evolutionarily predate feathers in birds and hair in mammals. Zebrafish scales are dermal in origin and develop during metamorphosis. Understanding regulation of scale development in zebrafish offers an exciting possibility of unraveling how the mechanisms of skin appendage formation evolved in lower vertebrates and whether these mechanisms remained conserved in birds and mammals. Here we have investigated the expression and function of twist 2/dermo1 gene - known for its function in feather and hair formation - in scale development and regeneration. We show that of the four zebrafish twist paralogues, twist2/dermo1 and twist3 are expressed in the scale forming cells during scale development. Their expression is also upregulated during scale regeneration. Our knockout analysis reveals that twist2/dermo1 gene functions in the maintenance of the scale shape and organization during development as well as regeneration. We further show that the expression of twist2/dermo1 and twist3 is regulated by Wnt signaling. Our results demonstrate that the function of twist2/dermo1 in skin appendage formation, presumably under regulation of Wnt signaling, originated during evolution of basal vertebrates.
Collapse
Affiliation(s)
- Tressa Jacob
- Department of Biology, Indian Institute of Science Education and Research-Pune (IISER-Pune), Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Antara Chakravarty
- Department of Biology, Indian Institute of Science Education and Research-Pune (IISER-Pune), Dr Homi Bhabha Road, Pashan, Pune 411008, India
| | - Ankita Panchal
- Dr. Vikram Sarabhai Institute of Cell and Molecular Biology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Gujarat, India
| | - Manjiri Patil
- Department of Biology, Indian Institute of Science Education and Research-Pune (IISER-Pune), Dr Homi Bhabha Road, Pashan, Pune 411008, India
| | - Gautami Ghodadra
- Dr. Vikram Sarabhai Institute of Cell and Molecular Biology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Gujarat, India
| | - Jyotish Sudhakaran
- Department of Biology, Indian Institute of Science Education and Research-Pune (IISER-Pune), Dr Homi Bhabha Road, Pashan, Pune 411008, India
| | | |
Collapse
|
19
|
Zhao H, Guo T, Lu Z, Liu J, Zhu S, Qiao G, Han M, Yuan C, Wang T, Li F, Zhang Y, Hou F, Yue Y, Yang B. Genome-wide association studies detects candidate genes for wool traits by re-sequencing in Chinese fine-wool sheep. BMC Genomics 2021; 22:127. [PMID: 33602144 PMCID: PMC7893944 DOI: 10.1186/s12864-021-07399-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 01/19/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The quality and yield of wool determine the economic value of the fine-wool sheep. Therefore, discovering markers or genes relevant to wool traits is the cornerstone for the breeding of fine-wool sheep. In this study, we used the Illumina HiSeq X Ten platform to re-sequence 460 sheep belonging to four different fine-wool sheep breeds, namely, Alpine Merino sheep (AMS), Chinese Merino sheep (CMS), Aohan fine-wool sheep (AHS) and Qinghai fine-wool sheep (QHS). Eight wool traits, including fiber diameter (FD), fiber diameter coefficient of variance (FDCV), fiber diameter standard deviation (FDSD), staple length (SL), greasy fleece weight (GFW), clean wool rate (CWR), staple strength (SS) and staple elongation (SE) were examined. A genome-wide association study (GWAS) was performed to detect the candidate genes for the eight wool traits. RESULTS A total of 8.222 Tb of raw data was generated, with an average of approximately 8.59X sequencing depth. After quality control, 12,561,225 SNPs were available for analysis. And a total of 57 genome-wide significant SNPs and 30 candidate genes were detected for the desired wool traits. Among them, 7 SNPs and 6 genes are related to wool fineness indicators (FD, FDCV and FDSD), 10 SNPs and 7 genes are related to staple length, 13 SNPs and 7 genes are related to wool production indicators (GFW and CWR), 27 SNPs and 10 genes associated with staple elongation. Among these candidate genes, UBE2E3 and RHPN2 associated with fiber diameter, were found to play an important role in keratinocyte differentiation and cell proliferation. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment results, revealed that multitude significant pathways are related to keratin and cell proliferation and differentiation, such as positive regulation of canonical Wnt signaling pathway (GO:0090263). CONCLUSION This is the first GWAS on the wool traits by using re-sequencing data in Chinese fine-wool sheep. The newly detected significant SNPs in this study can be used in genome-selective breeding for the fine-wool sheep. And the new candidate genes would provide a good theoretical basis for the fine-wool sheep breeding.
Collapse
Affiliation(s)
- Hongchang Zhao
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Tingting Guo
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Zengkui Lu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Jianbin Liu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Shaohua Zhu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Guoyan Qiao
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Mei Han
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Chao Yuan
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Tianxiang Wang
- Gansu Provincial Sheep Breeding Technology Extension Station, Sunan, 734031, China
| | - Fanwen Li
- Gansu Provincial Sheep Breeding Technology Extension Station, Sunan, 734031, China
| | - Yajun Zhang
- Xinjiang Gongnaisi Breeding Sheep Farm, Xinyuan, 835808, China
| | - Fujun Hou
- Aohan Banner Breeding Sheep Farm, Chifeng, 024300, China
| | - Yaojing Yue
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China.
| | - Bohui Yang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China.
| |
Collapse
|
20
|
Tidu A, Schanne-Klein MC, Borderie VM. Development, structure, and bioengineering of the human corneal stroma: A review of collagen-based implants. Exp Eye Res 2020; 200:108256. [PMID: 32971095 DOI: 10.1016/j.exer.2020.108256] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 01/15/2023]
Abstract
Bio-engineering technologies are currently used to produce biomimetic artificial corneas that should present structural, chemical, optical, and biomechanical properties close to the native tissue. These properties are mainly supported by the corneal stroma which accounts for 90% of corneal thickness and is mainly made of collagen type I. The stromal collagen fibrils are arranged in lamellae that have a plywood-like organization. The fibril diameter is between 25 and 35 nm and the interfibrillar space about 57 nm. The number of lamellae in the central stroma is estimated to be 300. In the anterior part, their size is 10-40 μm. They appear to be larger in the posterior part of the stroma with a size of 60-120 μm. Their thicknesses also vary from 0.2 to 2.5 μm. During development, the acellular corneal stroma, which features a complex pattern of organization, serves as a scaffold for mesenchymal cells that invade and further produce the cellular stroma. Several pathways including Bmp4, Wnt/β-catenin, Notch, retinoic acid, and TGF-β, in addition to EFTFs including the mastering gene Pax-6, are involved in corneal development. Besides, retinoic acid and TGF- β seem to have a crucial role in the neural crest cell migration in the stroma. Several technologies can be used to produce artificial stroma. Taking advantage of the liquid-crystal properties of acid-soluble collagen, it is possible to produce transparent stroma-like matrices with native-like collagen I fibrils and plywood-like organization, where epithelial cells can adhere and proliferate. Other approaches include the use of recombinant collagen, cross-linkers, vitrification, plastically compressed collagen or magnetically aligned collagen, providing interesting optical and mechanical properties. These technologies can be classified according to collagen type and origin, presence of telopeptides and native-like fibrils, structure, and transparency. Collagen matrices feature transparency >80% for the appropriate 500-μm thickness. Non-collagenous matrices made of biopolymers including gelatin, silk, or fish scale have been developed which feature interesting properties but are less biomimetic. These bioengineered matrices still need to be colonized by stromal cells to fully reproduce the native stroma.
Collapse
Affiliation(s)
- Aurélien Tidu
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Centre Hospitalier, National d'Ophtalmologie des 15-20, 75571, Paris, France; Groupe de Recherche Clinique 32, Sorbonne Université, Paris, France
| | - Marie-Claire Schanne-Klein
- Laboratory for Optics and Biosciences, LOB, Ecole Polytechnique, CNRS, Inserm, Université Paris-Saclay, 91128, Palaiseau, France
| | - Vincent M Borderie
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Centre Hospitalier, National d'Ophtalmologie des 15-20, 75571, Paris, France; Groupe de Recherche Clinique 32, Sorbonne Université, Paris, France.
| |
Collapse
|
21
|
Yuan X, Guo Q, Bai H, Jiang Y, Zhang Y, Liang W, Wang Z, Xu Q, Chang G, Chen G. Identification of key genes and pathways associated with duck ( Anas platyrhynchos) embryonic skin development using weighted gene co-expression network analysis. Genome 2020; 63:615-628. [PMID: 32956594 DOI: 10.1139/gen-2020-0054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Skin and feather follicle morphogenesis are important processes for duck development; however, the mechanisms underlying morphogenesis at the embryonic stage remain unclear. To improve the understanding of these processes, we used transcriptome and weighted gene co-expression network analyses to identify the critical genes and pathways involved in duck skin development. Five modules were found to be the most related to five key stages in skin development that span from embryonic day 8 (E8) to postnatal day 7 (D7). Using STEM software, 6519 genes from five modules were clustered into 10 profiles to reveal key genes. Above all, we obtained several key module genes including WNT3A, NOTCH1, SHH, BMP2, NOG, SMAD3, and TGFβ2. Furthermore, we revealed that several pathways play critical roles throughout the skin development process, including the Wnt pathway and cytoskeletal rearrangement-related pathways, whereas others are involved in specific stages of skin development, such as the Notch, Hedgehog, and TGF-beta signaling pathways. Overall, this study identified the pathways and genes that play critical roles in skin development, which may provide a basis for high-quality down-type meat duck breeding.
Collapse
Affiliation(s)
- Xiaoya Yuan
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Qixin Guo
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Hao Bai
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, China
| | - Yong Jiang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yi Zhang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Wenshuang Liang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Zhixiu Wang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Qi Xu
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Guobin Chang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, China
| | - Guohong Chen
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
22
|
Ji G, Zhang M, Liu Y, Shan Y, Tu Y, Ju X, Zou J, Shu J, Wu J, Xie J. A gene co‐expression network analysis of the candidate genes and molecular pathways associated with feather follicle traits of chicken skin. J Anim Breed Genet 2020; 138:122-134. [DOI: 10.1111/jbg.12481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/23/2020] [Accepted: 04/03/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Gai‐ge Ji
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province Institute of Poultry Science Chinese Academy of Agricultural Science Yangzhou China
| | - Ming Zhang
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province Institute of Poultry Science Chinese Academy of Agricultural Science Yangzhou China
| | - Yi‐fan Liu
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province Institute of Poultry Science Chinese Academy of Agricultural Science Yangzhou China
| | - Yan‐ju Shan
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province Institute of Poultry Science Chinese Academy of Agricultural Science Yangzhou China
| | - Yun‐jie Tu
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province Institute of Poultry Science Chinese Academy of Agricultural Science Yangzhou China
| | - Xiao‐jun Ju
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province Institute of Poultry Science Chinese Academy of Agricultural Science Yangzhou China
| | - Jian‐min Zou
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province Institute of Poultry Science Chinese Academy of Agricultural Science Yangzhou China
| | - Jing‐ting Shu
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province Institute of Poultry Science Chinese Academy of Agricultural Science Yangzhou China
| | - Jun‐feng Wu
- Jiangsu Li‐hua Animal Husbandry Company Jiangsu China
| | - Jin‐fang Xie
- Jiangxi Academy of Agricultural Sciences Nanchang China
| |
Collapse
|
23
|
The Wnt/β-catenin signaling pathway is involved in regulating feather growth of embryonic chicks. Poult Sci 2020; 99:2315-2323. [PMID: 32359566 PMCID: PMC7597444 DOI: 10.1016/j.psj.2020.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/06/2019] [Accepted: 01/20/2020] [Indexed: 02/07/2023] Open
Abstract
Avian feathers have robust growth and regeneration capability and serve as a useful model for decoding hair morphogenesis and other developmental studies. However, the molecular signaling involved in regulating the development of feather follicles is unclear. The purpose of this study was to investigate the role of the Wnt/β-catenin pathway in regulating feather morphogenesis in embryonic chicks through in ovo injection of different doses of Dickkopf-1 (DKK1, a specific inhibitor of the target of the Wnt/β-catenin pathway). A total of 120 fertilized embryo eggs were randomly divided into 4 treatments, including a noninjection group (control group) and groups injected with 100 μL of phosphate-buffered saline (PBS)/egg (PBS control group), 100 μL of PBS/egg containing 600-ng DKK1/egg (600-ng DKK1 group), and 100-μL PBS/egg containing 1,200-ng DKK1/egg (1,200-ng DKK1 group). Feathers and skin tissues were sampled on embryonic (E) day 15 and the day of hatching to examine the feather mass, diameter and density of feather follicles, and the protein expression of the Wnt/β-catenin pathway. The results showed that, compared with CON and PBS treatment, the injection of DKK1 into the yolk sac of chick embryos had no significant effect on the hatching rate and embryo weight (P > 0.05), while it significantly decreased the relative mass of feathers in the whole body (P < 0.05). The high dose of DKK1 (1,200-ng DKK1/egg) decreased the relative mass of feathers on the back, chest, belly, neck, wings, head, and legs, which was more obvious than that in the 600-ng DKK1 group, which presented a dose-dependent effect. In addition, DKK1 injection significantly downregulated the protein expression levels of β-catenin, transcription factor 4, Cyclin D1, and c-Myc (P < 0.05). The immunofluorescence result of β-catenin was consistent with the Western blotting assay results. Altogether, these observations suggested that the Wnt/β-catenin signaling pathway is involved in regulating feather follicle development and feather growth during the embryonic development of chicks.
Collapse
|
24
|
Xie WY, Chen MJ, Jiang SG, Yan HC, Wang XQ, Gao CQ. Investigation of feather follicle morphogenesis and the expression of the Wnt/β-catenin signaling pathway in yellow-feathered broiler chick embryos. Br Poult Sci 2020; 61:557-565. [PMID: 32329625 DOI: 10.1080/00071668.2020.1758302] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
1. This study investigated the pattern of feather follicle morphogenesis and the expression of the Wnt/β-catenin signalling pathway in the skin of yellow-feathered broiler chick embryos during feather development, using haematoxylin and eosin (H&E) staining and Western blot assays, respectively. 2. The results showed that the skin displayed protrusions during embryonic days E7-E9, feather buds elongated during E10-E11 with anterior-posterior and proximal-distal asymmetries, and the epidermis invaginated to form the primary feather follicles (Pfs) at E12. At E13, the formation of the feather follicle and the epidermis at the base of the feather bud further invaginated into the dermis. By E15, Pf formation was essentially complete, and secondary feather follicles (Sfs) appeared. It was speculated that Pfs and Sfs developed independently and that Pfs occurred earlier than Sfs. 3. Quantitative measurements of Pf density reached a maximum at E15 and then decreased gradually. Sf density started to increase from E15. 4. Protein expression levels of β-catenin, TCF4, cyclin D1, and c-Myc were significantly increased during E8-E12 (P < 0.05) and then decreased from E13 to the day of hatching (DOH) (P < 0.05). The result of the β-catenin immunolocalisation signal intensity assay was consistent with the result of the Western blot assay. 5. Collectively, the results indicated that the Wnt/β-catenin signalling pathway is essential for promoting the development of feather follicles, especially during E7-E15.
Collapse
Affiliation(s)
- W Y Xie
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture , Guangzhou, China
| | - M J Chen
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture , Guangzhou, China
| | - S G Jiang
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture , Guangzhou, China
| | - H C Yan
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture , Guangzhou, China
| | - X Q Wang
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture , Guangzhou, China
| | - C Q Gao
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture , Guangzhou, China
| |
Collapse
|
25
|
Chen MJ, Xie WY, Jiang SG, Wang XQ, Yan HC, Gao CQ. Molecular Signaling and Nutritional Regulation in the Context of Poultry Feather Growth and Regeneration. Front Physiol 2020; 10:1609. [PMID: 32038289 PMCID: PMC6985464 DOI: 10.3389/fphys.2019.01609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 12/23/2019] [Indexed: 12/03/2022] Open
Abstract
The normal growth and regeneration of feathers is important for improving the welfare and economic value of poultry. Feather follicle stem cells are the basis for driving feather development and are regulated by various molecular signaling pathways in the feather follicle microenvironment. To date, the roles of the Wnt, Bone Morphogenetic Protein (BMP), Notch, and Sonic Hedgehog (SHH) signaling pathways in the regulation of feather growth and regeneration are among the best understood. While these pathways regulate feather morphogenesis in different stages, their dysregulation results in a low feather growth rate, poor quality of plumage, and depilation. Additionally, exogenous nutrient intervention can affect the feather follicle cycle, promote the formation of the feather shaft and feather branches, preventing plumage abnormalities. This review focuses on our understanding of the signaling pathways involved in the transcriptional control of feather morphogenesis and explores the impact of nutritional factors on feather growth and regeneration in poultry. This work may help to develop novel mechanisms by which follicle stem cells can be manipulated to produce superior plumage that enhances poultry carcass quality.
Collapse
Affiliation(s)
- Meng-Jie Chen
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Wen-Yan Xie
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Shi-Guang Jiang
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Xiu-Qi Wang
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Hui-Chao Yan
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Chun-Qi Gao
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| |
Collapse
|
26
|
Tao Y, Zhou X, Liu Z, Zhang X, Nie Y, Zheng X, Li S, Hu X, Yang G, Zhao Q, Mou C. Expression patterns of three JAK-STAT pathway genes in feather follicle development during chicken embryogenesis. Gene Expr Patterns 2019; 35:119078. [PMID: 31759166 DOI: 10.1016/j.gep.2019.119078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 11/11/2019] [Accepted: 11/15/2019] [Indexed: 10/25/2022]
Abstract
The Janus kinase (JAK)-signal transducer and activator of transcription (STAT) (JAK-STAT) pathway is shown to restrain the hair follicles in catagen and telogen and prevent anagen reentry in murine hair follicle cycling. The early roles of JAK-STAT pathway genes in skin development remain uncharacterized in mouse and chicken models. Here, we revealed the expression patterns of three JAK-STAT pathway genes (JAK1, JAK2, and TYK2) in chicken embryonic skin at E6-E10 stages which are key to feather follicle morphogenesis. Multiple sequence alignment of the three genes from chicken and other species all showed a closely related homology with birds like quail and goose. Whole mount in situ hybridization (WISH) revealed weak expression of JAK1, JAK2, and TYK2 in chicken skin at E6 and E7, and followed with the focally restricted signals in the feather follicles of neck and body skin located dorsally at E8 for JAK1, E9 for TYK2 and E10 for JAK2 gene. All three genes displayed stronger expression in feather follicles of neck skin than that of body skin. The expression levels of JAK1 and TYK2 were much stronger than those of JAK2. Quantitative real-time PCR (qRT-PCR) analysis revealed the increased expression tendency for JAK2 both in the neck and body skin from E6 to E10, and the much stronger expression in neck and body skin at later stages (E8-E10) than earlier stages (E6 and E7) for JAK1 and TYK2. Overall, these findings suggest that JAK1 and TYK2, not JAK2 are important to specify the feather follicle primordia, and to arrange the proximal-distal axis of feather follicles, respectively, during the morphogenesis of feather follicles in embryonic chicken skin.
Collapse
Affiliation(s)
- Yingfeng Tao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, HuaZhong Agricultural University, Wuhan, China
| | - Xiaoliu Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, HuaZhong Agricultural University, Wuhan, China
| | - Zhiwei Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, HuaZhong Agricultural University, Wuhan, China
| | - Xiaokang Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, HuaZhong Agricultural University, Wuhan, China
| | - Yangfan Nie
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, HuaZhong Agricultural University, Wuhan, China
| | - Xinting Zheng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, HuaZhong Agricultural University, Wuhan, China
| | - Shaomei Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, HuaZhong Agricultural University, Wuhan, China
| | - Xuewen Hu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, HuaZhong Agricultural University, Wuhan, China
| | - Ge Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, HuaZhong Agricultural University, Wuhan, China
| | - Qianqian Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, HuaZhong Agricultural University, Wuhan, China
| | - Chunyan Mou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, HuaZhong Agricultural University, Wuhan, China.
| |
Collapse
|
27
|
Ho WKW, Freem L, Zhao D, Painter KJ, Woolley TE, Gaffney EA, McGrew MJ, Tzika A, Milinkovitch MC, Schneider P, Drusko A, Matthäus F, Glover JD, Wells KL, Johansson JA, Davey MG, Sang HM, Clinton M, Headon DJ. Feather arrays are patterned by interacting signalling and cell density waves. PLoS Biol 2019; 17:e3000132. [PMID: 30789897 PMCID: PMC6383868 DOI: 10.1371/journal.pbio.3000132] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/17/2019] [Indexed: 12/30/2022] Open
Abstract
Feathers are arranged in a precise pattern in avian skin. They first arise during development in a row along the dorsal midline, with rows of new feather buds added sequentially in a spreading wave. We show that the patterning of feathers relies on coupled fibroblast growth factor (FGF) and bone morphogenetic protein (BMP) signalling together with mesenchymal cell movement, acting in a coordinated reaction-diffusion-taxis system. This periodic patterning system is partly mechanochemical, with mechanical-chemical integration occurring through a positive feedback loop centred on FGF20, which induces cell aggregation, mechanically compressing the epidermis to rapidly intensify FGF20 expression. The travelling wave of feather formation is imposed by expanding expression of Ectodysplasin A (EDA), which initiates the expression of FGF20. The EDA wave spreads across a mesenchymal cell density gradient, triggering pattern formation by lowering the threshold of mesenchymal cells required to begin to form a feather bud. These waves, and the precise arrangement of feather primordia, are lost in the flightless emu and ostrich, though via different developmental routes. The ostrich retains the tract arrangement characteristic of birds in general but lays down feather primordia without a wave, akin to the process of hair follicle formation in mammalian embryos. The embryonic emu skin lacks sufficient cells to enact feather formation, causing failure of tract formation, and instead the entire skin gains feather primordia through a later process. This work shows that a reaction-diffusion-taxis system, integrated with mechanical processes, generates the feather array. In flighted birds, the key role of the EDA/Ectodysplasin A receptor (EDAR) pathway in vertebrate skin patterning has been recast to activate this process in a quasi-1-dimensional manner, imposing highly ordered pattern formation.
Collapse
Affiliation(s)
- William K. W. Ho
- Roslin Institute Chicken Embryology, Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Lucy Freem
- Roslin Institute Chicken Embryology, Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Debiao Zhao
- Roslin Institute Chicken Embryology, Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Kevin J. Painter
- School of Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh, United Kingdom
| | - Thomas E. Woolley
- School of Mathematics, Cardiff University, Cathays, Cardiff, United Kingdom
| | - Eamonn A. Gaffney
- Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Michael J. McGrew
- Roslin Institute Chicken Embryology, Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Athanasia Tzika
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | | | - Pascal Schneider
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Armin Drusko
- FIAS and Faculty of Biological Sciences, University of Frankfurt, Frankfurt, Germany
| | - Franziska Matthäus
- FIAS and Faculty of Biological Sciences, University of Frankfurt, Frankfurt, Germany
| | - James D. Glover
- Roslin Institute Chicken Embryology, Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Kirsty L. Wells
- Roslin Institute Chicken Embryology, Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Jeanette A. Johansson
- Cancer Research UK Edinburgh Centre and MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom
| | - Megan G. Davey
- Roslin Institute Chicken Embryology, Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Helen M. Sang
- Roslin Institute Chicken Embryology, Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Michael Clinton
- Roslin Institute Chicken Embryology, Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Denis J. Headon
- Roslin Institute Chicken Embryology, Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
28
|
Gupta K, Levinsohn J, Linderman G, Chen D, Sun TY, Dong D, Taketo MM, Bosenberg M, Kluger Y, Choate K, Myung P. Single-Cell Analysis Reveals a Hair Follicle Dermal Niche Molecular Differentiation Trajectory that Begins Prior to Morphogenesis. Dev Cell 2019; 48:17-31.e6. [PMID: 30595533 PMCID: PMC6361530 DOI: 10.1016/j.devcel.2018.11.032] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/18/2018] [Accepted: 11/16/2018] [Indexed: 12/27/2022]
Abstract
Delineating molecular and cellular events that precede appendage morphogenesis has been challenging due to the inability to distinguish quantitative molecular differences between cells that lack histological distinction. The hair follicle (HF) dermal condensate (DC) is a cluster of cells critical for HF development and regeneration. Events that presage emergence of this distinctive population are poorly understood. Using unbiased single-cell RNA sequencing and in vivo methods, we infer a sequence of transcriptional states through which DC cells pass that begins prior to HF morphogenesis. Our data indicate that Wnt/β-catenin signaling is required to progress into an intermediate stage that precedes quiescence and differentiation. Further, we provide evidence that quiescent DC cells are recent progeny of selectively proliferating cells present prior to morphogenesis and that are later identified in the peri-DC zone during DC expansion. Together, these findings provide an inferred path of molecular states that lead to DC cell differentiation.
Collapse
Affiliation(s)
- Khusali Gupta
- Department of Dermatology, Yale University, New Haven, CT 06520, USA; Department of Pathology, Yale University, New Haven, CT 06520, USA
| | - Jonathan Levinsohn
- Department of Dermatology, Yale University, New Haven, CT 06520, USA; Genetics Department, Yale University, New Haven, CT 06520, USA
| | - George Linderman
- Applied Mathematics Program, Yale University, New Haven, CT 06511, USA
| | - Demeng Chen
- Department of Dermatology, Yale University, New Haven, CT 06520, USA; Department of Pathology, Yale University, New Haven, CT 06520, USA
| | - Thomas Yang Sun
- Genetics Department, Yale University, New Haven, CT 06520, USA
| | - Danni Dong
- Department of Dermatology, Yale University, New Haven, CT 06520, USA; Department of Pathology, Yale University, New Haven, CT 06520, USA
| | - M Mark Taketo
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Yoshida-Konoé-Cho, Sakyo, Kyoto 606-8501, Japan
| | - Marcus Bosenberg
- Department of Dermatology, Yale University, New Haven, CT 06520, USA; Department of Pathology, Yale University, New Haven, CT 06520, USA; Yale Cancer Center, New Haven, CT 06520, USA; Yale Stem Cell Center, New Haven, CT 06520, USA
| | - Yuval Kluger
- Department of Pathology, Yale University, New Haven, CT 06520, USA; Applied Mathematics Program, Yale University, New Haven, CT 06511, USA
| | - Keith Choate
- Department of Dermatology, Yale University, New Haven, CT 06520, USA; Department of Pathology, Yale University, New Haven, CT 06520, USA; Genetics Department, Yale University, New Haven, CT 06520, USA; Yale Cancer Center, New Haven, CT 06520, USA; Yale Stem Cell Center, New Haven, CT 06520, USA
| | - Peggy Myung
- Department of Dermatology, Yale University, New Haven, CT 06520, USA; Department of Pathology, Yale University, New Haven, CT 06520, USA; Yale Cancer Center, New Haven, CT 06520, USA; Yale Stem Cell Center, New Haven, CT 06520, USA.
| |
Collapse
|
29
|
Schneider RA. Neural crest and the origin of species-specific pattern. Genesis 2018; 56:e23219. [PMID: 30134069 PMCID: PMC6108449 DOI: 10.1002/dvg.23219] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 12/20/2022]
Abstract
For well over half of the 150 years since the discovery of the neural crest, the special ability of these cells to function as a source of species-specific pattern has been clearly recognized. Initially, this observation arose in association with chimeric transplant experiments among differentially pigmented amphibians, where the neural crest origin for melanocytes had been duly noted. Shortly thereafter, the role of cranial neural crest cells in transmitting species-specific information on size and shape to the pharyngeal arch skeleton as well as in regulating the timing of its differentiation became readily apparent. Since then, what has emerged is a deeper understanding of how the neural crest accomplishes such a presumably difficult mission, and this includes a more complete picture of the molecular and cellular programs whereby neural crest shapes the face of each species. This review covers studies on a broad range of vertebrates and describes neural-crest-mediated mechanisms that endow the craniofacial complex with species-specific pattern. A major focus is on experiments in quail and duck embryos that reveal a hierarchy of cell-autonomous and non-autonomous signaling interactions through which neural crest generates species-specific pattern in the craniofacial integument, skeleton, and musculature. By controlling size and shape throughout the development of these systems, the neural crest underlies the structural and functional integration of the craniofacial complex during evolution.
Collapse
Affiliation(s)
- Richard A. Schneider
- Department of Orthopedic SurgeryUniversity of California at San Francisco, 513 Parnassus AvenueS‐1161San Francisco, California
| |
Collapse
|
30
|
Ishida K, Mitsui T. Role of the boundary in feather bud formation on one-dimensional bioengineered skin. APL Bioeng 2018; 2:016107. [PMID: 31069292 PMCID: PMC6481706 DOI: 10.1063/1.4989414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 12/21/2017] [Indexed: 01/04/2023] Open
Abstract
The role of a boundary in pattern formation from a homogenous state in Turing's reaction–diffusion equations is important, particularly when the domain size is comparable to the pattern scale. Such experimental conditions may be achieved for in vitro regeneration of ectodermal appendages such as feathers, via reconstruction of embryonic single cells. This procedure can eliminate a predefined genetic map, such as the midline of chick feather bud formation, leaving uniformly distributed identical cells as a bioengineered skin. Here, the self-organizing nature of multiple feather bud formation was examined in bioengineered 1D-skin samples. Primal formation of feather buds occurred at a fixed length from the skin edge. This formation was numerically recapitulated by a standard two-component reaction-diffusion model, suggesting that the boundary effect caused this observation. The proper boundary conditions were nonstandard, either mixed Dirichlet–Neumann or partial-flux. In addition, the model implies imperfect or hindered bud formation as well as nearly equal distances between buds. In contrast, experimental observations indicated that the skin curvature, which was not included in our model, also strongly affected bud formation. Thus, bioengineered skin may provide an ideal template for modeling a self-organized process from a homogenous state. This study will examine the possible diffusion activities of activator or inhibitor molecular candidates and mechanical activities during cell aggregation, which will advance our understanding of skin appendage regeneration from pluripotent or embryonic stem cells.
Collapse
Affiliation(s)
- Kentaro Ishida
- Department of Physics and Mathematics, College of Science and Engineering, Aoyama Gakuin University, Kanagawa 252-5258, Japan
| | - Toshiyuki Mitsui
- Department of Physics and Mathematics, College of Science and Engineering, Aoyama Gakuin University, Kanagawa 252-5258, Japan
| |
Collapse
|
31
|
Wang Q, Pi J, Pan A, Shen J, Qu L. A novel sex-linked mutant affecting tail formation in Hongshan chicken. Sci Rep 2017; 7:10079. [PMID: 28855651 PMCID: PMC5577132 DOI: 10.1038/s41598-017-10943-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 08/16/2017] [Indexed: 01/11/2023] Open
Abstract
The Hongshan chicken is a Chinese indigenous breed that has two distinctly different tail types. Some chickens have stunted tails as compared to the normal phenotype, and they are termed rumpless. Rumplessness in other chicken breeds was caused by a reduction in the number of coccygeal vertebrae. However, X-ray examination showed that rumpless Hongshan chickens possess the normal number of coccygeal vertebrae. Our analyses of the main tail feathers and tissue sections led us to speculate that their stunted tail appearance may be the result of abnormal feather development. To investigate the genetic mechanism underlying rumplessness in Hongshan chickens, we analyzed the results of various crosses. The results indicated that rumplessness is a Z-linked dominant character. In addition, we chose some normal and rumpless individuals for pool-sequencing. Nucleotide diversity and Fst were calculated, and a selective sweep was detected on the Z chromosome. These analyses allowed us to reduce the search area to 71.8–72 Mb on the Z chromosome (galGal5.0). A pseudogene LOC431648 located in this region appeared a strong candidate involving in Wnt/β-catenin signaling pathway to regulate feather development in chickens.
Collapse
Affiliation(s)
- Qiong Wang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jinsong Pi
- Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Animal Embryonic Engineering and Molecular Breeding, Wuhan, Hubei Province, China
| | - Ailuan Pan
- Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Animal Embryonic Engineering and Molecular Breeding, Wuhan, Hubei Province, China
| | - Jie Shen
- Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Animal Embryonic Engineering and Molecular Breeding, Wuhan, Hubei Province, China
| | - Lujiang Qu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
32
|
Bao W, Greenwold MJ, Sawyer RH. Using scale and feather traits for module construction provides a functional approach to chicken epidermal development. Funct Integr Genomics 2017; 17:641-651. [PMID: 28477104 DOI: 10.1007/s10142-017-0561-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/16/2017] [Accepted: 04/19/2017] [Indexed: 10/19/2022]
Abstract
Gene co-expression network analysis has been a research method widely used in systematically exploring gene function and interaction. Using the Weighted Gene Co-expression Network Analysis (WGCNA) approach to construct a gene co-expression network using data from a customized 44K microarray transcriptome of chicken epidermal embryogenesis, we have identified two distinct modules that are highly correlated with scale or feather development traits. Signaling pathways related to feather development were enriched in the traditional KEGG pathway analysis and functional terms relating specifically to embryonic epidermal development were also enriched in the Gene Ontology analysis. Significant enrichment annotations were discovered from customized enrichment tools such as Modular Single-Set Enrichment Test (MSET) and Medical Subject Headings (MeSH). Hub genes in both trait-correlated modules showed strong specific functional enrichment toward epidermal development. Also, regulatory elements, such as transcription factors and miRNAs, were targeted in the significant enrichment result. This work highlights the advantage of this methodology for functional prediction of genes not previously associated with scale- and feather trait-related modules.
Collapse
Affiliation(s)
- Weier Bao
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA.
| | - Matthew J Greenwold
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Roger H Sawyer
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| |
Collapse
|
33
|
Sima J, Piao Y, Chen Y, Schlessinger D. Molecular dynamics of Dkk4 modulates Wnt action and regulates meibomian gland development. Development 2016; 143:4723-4735. [PMID: 27864382 DOI: 10.1242/dev.143909] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/06/2016] [Indexed: 01/04/2023]
Abstract
Secreted Dickkopf (Dkk) proteins are major Wnt pathway modulators during organ development. Dkk1 has been widely studied and acts as a general Wnt inhibitor. However, the molecular function of other Dkks remains largely unknown. Here, we show that Dkk4 selectively inhibits a subset of Wnts, but is further inactivated by proteolytic cleavage. Meibomian gland (MG) formation is employed as a model where Dkk4 and its Wnt targets are expressed. Skin-specific expression of Dkk4 arrests MG growth at early germ phase, which is similar to that observed in Eda-ablated Tabby mice. Consistent with transient Dkk4 action, intact Dkk4 inhibits MG extension but the cleaved form progressively increases during MG development with a concomitant upswing in Wnt activity. Furthermore, both Dkk4 and its receptor (and Wnt co-receptor) Lrp6 are direct Eda targets during MG induction. In cell and organotypic cultures, Dkk4 inhibition is eliminated by elevation of Lrp6. Also, Lrp6 upregulation restores MG formation in Tabby mice. Thus, the dynamic state of Dkk4 itself and its interaction with Lrp6 modulates Wnt function during MG development, with a novel limitation of Dkk4 action by proteolytic cleavage.
Collapse
Affiliation(s)
- Jian Sima
- Laboratory of Genetics and Genomics, NIA/NIH-IRP, 251 Bayview Blvd, room 10B014, Baltimore, MD 21224, USA
| | - Yulan Piao
- Laboratory of Genetics and Genomics, NIA/NIH-IRP, 251 Bayview Blvd, room 10B014, Baltimore, MD 21224, USA
| | - Yaohui Chen
- Laboratory of Genetics and Genomics, NIA/NIH-IRP, 251 Bayview Blvd, room 10B014, Baltimore, MD 21224, USA
| | - David Schlessinger
- Laboratory of Genetics and Genomics, NIA/NIH-IRP, 251 Bayview Blvd, room 10B014, Baltimore, MD 21224, USA
| |
Collapse
|
34
|
Domyan ET, Shapiro MD. Pigeonetics takes flight: Evolution, development, and genetics of intraspecific variation. Dev Biol 2016; 427:241-250. [PMID: 27847323 DOI: 10.1016/j.ydbio.2016.11.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 10/28/2016] [Accepted: 11/10/2016] [Indexed: 11/26/2022]
Abstract
Intensive artificial selection over thousands of years has produced hundreds of varieties of domestic pigeon. As Charles Darwin observed, the morphological differences among breeds can rise to the magnitude of variation typically observed among different species. Nevertheless, different pigeon varieties are interfertile, thereby enabling forward genetic and genomic approaches to identify genes that underlie derived traits. Building on classical genetic studies of pigeon variation, recent molecular investigations find a spectrum of coding and regulatory alleles controlling derived traits, including plumage color, feather growth polarity, and limb identity. Developmental and genetic analyses of pigeons are revealing the molecular basis of variation in a classic example of extreme intraspecific diversity, and have the potential to nominate genes that control variation among other birds and vertebrates in general.
Collapse
Affiliation(s)
- Eric T Domyan
- Department of Biology, Utah Valley University, Orem, UT, United States.
| | - Michael D Shapiro
- Department of Biology, University of Utah, Salt Lake City, UT, United States.
| |
Collapse
|
35
|
Zhao J, Liu N, Liu K, He J, Yu J, Bu R, Cheng M, De W, Liu J, Li H. Identification of genes and proteins associated with anagen wool growth. Anim Genet 2016; 48:67-79. [PMID: 27611105 DOI: 10.1111/age.12480] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2016] [Indexed: 02/03/2023]
Abstract
Identifying genes of major effect for wool growth would offer strategies for improving the quality and increasing the yield of fine wool. In this study, we employed the Agilent Sheep Gene Expression Microarray and proteomic technology to investigate the gene expression patterns of body side skin (more wool growing) in Aohan fine wool sheep (a Chinese indigenous breed) in comparison with groin skin (no wool growing) at the anagen stage of the wool follicle. A microarray study revealed that 4772 probes were differentially expressed, including 2071 upregulated and 2701 downregulated probes, in the comparisons of body side skin vs. groin skin (S/G). The microarray results were verified by means of quantitative PCR. A total of 1099 probes were assigned to unique genes/transcripts. The number of distinct genes/transcripts (annotated) was 926, of which 352 were upregulated and 574 were downregulated. In S/G, 13 genes were upregulated by more than 10 fold, whereas 60 genes were downregulated by more than 10 fold. Further analysis revealed that the majority of the genes possibly related to the wool growth could be assigned to categories including regulation of cell division, intermediate filament, cytoskeletal part and growth factor activity. Several potential gene families may participate in hair growth regulation, including fibroblast growth factors, transforming growth factor-β, WNTs, insulin-like growth factor, vascular endothelial growth factors and so on. Proteomic analysis also revealed 196 differentially expressed protein points, of which 121 were identified as single protein points.
Collapse
Affiliation(s)
- J Zhao
- Qingdao Agricultural University, Qingdao, 266109, China.,Qingdao Institute of Animal Science and Veterinary Medicine, Qingdao, 266100, China.,China Agricultural University, Beijing, 100193, China
| | - N Liu
- Qingdao Agricultural University, Qingdao, 266109, China
| | - K Liu
- Qingdao Institute of Animal Science and Veterinary Medicine, Qingdao, 266100, China
| | - J He
- Qingdao Agricultural University, Qingdao, 266109, China
| | - J Yu
- Qingdao Agricultural University, Qingdao, 266109, China
| | - R Bu
- Qingdao Agricultural University, Qingdao, 266109, China
| | - M Cheng
- Qingdao Institute of Animal Science and Veterinary Medicine, Qingdao, 266100, China
| | - W De
- Nanjing Medical University, Nanjing, 210029, China
| | - J Liu
- Qingdao Agricultural University, Qingdao, 266109, China
| | - H Li
- Qingdao Agricultural University, Qingdao, 266109, China.,Qingdao Institute of Animal Science and Veterinary Medicine, Qingdao, 266100, China
| |
Collapse
|
36
|
Zhao J, Li H, Liu K, Zhang B, Li P, He J, Cheng M, De W, Liu J, Zhao Y, Yang L, Liu N. Identification of differentially expressed genes affecting hair and cashmere growth in the Laiwu black goat by microarray. Mol Med Rep 2016; 14:3823-31. [DOI: 10.3892/mmr.2016.5728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 06/30/2016] [Indexed: 11/05/2022] Open
|
37
|
Toews D, Taylor S, Vallender R, Brelsford A, Butcher B, Messer P, Lovette I. Plumage Genes and Little Else Distinguish the Genomes of Hybridizing Warblers. Curr Biol 2016; 26:2313-8. [DOI: 10.1016/j.cub.2016.06.034] [Citation(s) in RCA: 250] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/13/2016] [Accepted: 06/15/2016] [Indexed: 01/04/2023]
|
38
|
Ishida K, Mitsui T. Generation of bioengineered feather buds on a reconstructed chick skin from dissociated epithelial and mesenchymal cells. Dev Growth Differ 2016; 58:303-14. [PMID: 27019985 DOI: 10.1111/dgd.12275] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 02/10/2016] [Indexed: 12/30/2022]
Abstract
Various kinds of in vitro culture systems of tissues and organs have been developed, and applied to understand multicellular systems during embryonic organogenesis. In the research field of feather bud development, tissue recombination assays using an intact epithelial tissue and mesenchymal tissue/cells have contributed to our understanding the mechanisms of feather bud formation and development. However, there are few methods to generate a skin and its appendages from single cells of both epithelium and mesenchyme. In this study, we have developed a bioengineering method to reconstruct an embryonic dorsal skin after completely dissociating single epithelial and mesenchymal cells from chick skin. Multiple feather buds can form on the reconstructed skin in a single row in vitro. The bioengineered feather buds develop into long feather buds by transplantation onto a chorioallantoic membrane. The bioengineered bud sizes were similar to those of native embryo. The number of bioengineered buds was increased linearly with the initial contact length of epithelial and mesenchymal cell layers where the epithelial-mesenchymal interactions occur. In addition, the bioengineered bud formation was also disturbed by the inhibition of major signaling pathways including FGF (fibroblast growth factor), Wnt/β-catenin, Notch and BMP (bone morphogenetic protein). We expect that our bioengineering technique will motivate further extensive research on multicellular developmental systems, such as the formation and sizing of cutaneous appendages, and their regulatory mechanisms.
Collapse
Affiliation(s)
- Kentaro Ishida
- Department of Physics and Mathematics, College of Science and Engineering, Aoyama Gakuin University, Kanagawa, 252-5258, Japan
| | - Toshiyuki Mitsui
- Department of Physics and Mathematics, College of Science and Engineering, Aoyama Gakuin University, Kanagawa, 252-5258, Japan
| |
Collapse
|
39
|
Domyan ET, Kronenberg Z, Infante CR, Vickrey AI, Stringham SA, Bruders R, Guernsey MW, Park S, Payne J, Beckstead RB, Kardon G, Menke DB, Yandell M, Shapiro MD. Molecular shifts in limb identity underlie development of feathered feet in two domestic avian species. eLife 2016; 5:e12115. [PMID: 26977633 PMCID: PMC4805547 DOI: 10.7554/elife.12115] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 02/19/2016] [Indexed: 12/15/2022] Open
Abstract
Birds display remarkable diversity in the distribution and morphology of scales and feathers on their feet, yet the genetic and developmental mechanisms governing this diversity remain unknown. Domestic pigeons have striking variation in foot feathering within a single species, providing a tractable model to investigate the molecular basis of skin appendage differences. We found that feathered feet in pigeons result from a partial transformation from hindlimb to forelimb identity mediated by cis-regulatory changes in the genes encoding the hindlimb-specific transcription factor Pitx1 and forelimb-specific transcription factor Tbx5. We also found that ectopic expression of Tbx5 is associated with foot feathers in chickens, suggesting similar molecular pathways underlie phenotypic convergence between these two species. These results show how changes in expression of regional patterning genes can generate localized changes in organ fate and morphology, and provide viable molecular mechanisms for diversity in hindlimb scale and feather distribution.
Collapse
Affiliation(s)
- Eric T Domyan
- Department of Biology, University of Utah, Salt Lake City, United States
| | - Zev Kronenberg
- Department of Human Genetics, University of Utah, Salt Lake City, United States
| | - Carlos R Infante
- Department of Genetics, University of Georgia, Athens, United States
| | - Anna I Vickrey
- Department of Biology, University of Utah, Salt Lake City, United States
| | - Sydney A Stringham
- Department of Biology, University of Utah, Salt Lake City, United States
| | - Rebecca Bruders
- Department of Biology, University of Utah, Salt Lake City, United States
| | - Michael W Guernsey
- Department of Biology, University of Utah, Salt Lake City, United States
| | - Sungdae Park
- Department of Genetics, University of Georgia, Athens, United States
| | - Jason Payne
- Poultry Science Department, University of Georgia, Athens, United States
| | - Robert B Beckstead
- Poultry Science Department, University of Georgia, Athens, United States
| | - Gabrielle Kardon
- Department of Human Genetics, University of Utah, Salt Lake City, United States
| | - Douglas B Menke
- Department of Genetics, University of Georgia, Athens, United States
| | - Mark Yandell
- Department of Human Genetics, University of Utah, Salt Lake City, United States
- Utah Center for Genetic Discovery, University of Utah, Salt Lake City, United States
| | - Michael D Shapiro
- Department of Biology, University of Utah, Salt Lake City, United States
| |
Collapse
|
40
|
Li A, Lai YC, Figueroa S, Yang T, Widelitz RB, Kobielak K, Nie Q, Chuong CM. Deciphering principles of morphogenesis from temporal and spatial patterns on the integument. Dev Dyn 2015; 244:905-20. [PMID: 25858668 PMCID: PMC4520785 DOI: 10.1002/dvdy.24281] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 03/04/2015] [Accepted: 04/03/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND How tissue patterns form in development and regeneration is a fundamental issue remaining to be fully understood. The integument often forms repetitive units in space (periodic patterning) and time (cyclic renewal), such as feathers and hairs. Integument patterns are visible and experimentally manipulatable, helping us reveal pattern formative processes. Variability is seen in regional phenotypic specificities and temporal cycling at different physiological stages. RESULTS Here we show some cellular/molecular bases revealed by analyzing integument patterns. (1) Localized cellular activity (proliferation, rearrangement, apoptosis, differentiation) transforms prototypic organ primordia into specific shapes. Combinatorial positioning of different localized activity zones generates diverse and complex organ forms. (2) Competitive equilibrium between activators and inhibitors regulates stem cells through cyclic quiescence and activation. CONCLUSIONS Dynamic interactions between stem cells and their adjacent niche regulate regenerative behavior, modulated by multi-layers of macro-environmental factors (dermis, body hormone status, and external environment). Genomics studies may reveal how positional information of localized cellular activity is stored. In vivo skin imaging and lineage tracing unveils new insights into stem cell plasticity. Principles of self-assembly obtained from the integumentary organ model can be applied to help restore damaged patterns during regenerative wound healing and for tissue engineering to rebuild tissues. Developmental Dynamics 244:905-920, 2015. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ang Li
- Department of Pathology, University of Southern California, Los Angeles, California
| | - Yung-Chih Lai
- Department of Pathology, University of Southern California, Los Angeles, California
- Center for Developmental Biology and Regenerative Medicine, Taiwan University, Taipei, Taiwan
| | - Seth Figueroa
- Department of Biomedical Engineering, University of California, Irvine, California
| | - Tian Yang
- Department of Cell Biology, College of Basic Medicine, Third Military Medical University, Chongqing, China
| | - Randall B Widelitz
- Department of Pathology, University of Southern California, Los Angeles, California
| | - Krzysztof Kobielak
- Department of Pathology, University of Southern California, Los Angeles, California
| | - Qing Nie
- Department of Mathematics, University of California, Irvine, California
| | - Cheng Ming Chuong
- Department of Pathology, University of Southern California, Los Angeles, California
- Center for Developmental Biology and Regenerative Medicine, Taiwan University, Taipei, Taiwan
- Stem Cell and Regenerative Medicine Center, China Medical University, Taichung, Taiwan
| |
Collapse
|
41
|
Sarko DK, Rice FL, Reep RL. Elaboration and Innervation of the Vibrissal System in the Rock Hyrax (Procavia capensis). BRAIN, BEHAVIOR AND EVOLUTION 2015; 85:170-88. [PMID: 26022696 PMCID: PMC4490970 DOI: 10.1159/000381415] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/04/2015] [Indexed: 12/16/2022]
Abstract
Mammalian tactile hairs are commonly found on specific, restricted regions of the body, but Florida manatees represent a unique exception, exhibiting follicle-sinus complexes (FSCs, also known as vibrissae or tactile hairs) on their entire body. The orders Sirenia (including manatees and dugongs) and Hyracoidea (hyraxes) are thought to have diverged approximately 60 million years ago, yet hyraxes are among the closest relatives to sirenians. We investigated the possibility that hyraxes, like manatees, are tactile specialists with vibrissae that cover the entire postfacial body. Previous studies suggested that rock hyraxes possess postfacial vibrissae in addition to pelage hair, but this observation was not verified through histological examination. Using a detailed immunohistochemical analysis, we characterized the gross morphology, innervation and mechanoreceptors present in FSCs sampled from facial and postfacial vibrissae body regions to determine that the long postfacial hairs on the hyrax body are in fact true vibrissae. The types and relative densities of mechanoreceptors associated with each FSC also appeared to be relatively consistent between facial and postfacial FSCs. The presence of vibrissae covering the hyrax body presumably facilitates navigation in the dark caves and rocky crevices of the hyrax's environment where visual cues are limited, and may alert the animal to predatory or conspecific threats approaching the body. Furthermore, the presence of vibrissae on the postfacial body in both manatees and hyraxes indicates that this distribution may represent the ancestral condition for the supraorder Paenungulata.
Collapse
Affiliation(s)
- Diana K. Sarko
- Dept of Anatomy, Cell Biology & Physiology, Edward Via College of Osteopathic Medicine, 350 Howard Street, Spartanburg, SC 29303
| | - Frank L. Rice
- Integrated Tissue Dynamics, 7 University Place, Suite B236, Rensselaer, NY 12144
| | - Roger L. Reep
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32610
| |
Collapse
|
42
|
|
43
|
Chang KW, Huang NA, Liu IH, Wang YH, Wu P, Tseng YT, Hughes MW, Jiang TX, Tsai MH, Chen CY, Oyang YJ, Lin EC, Chuong CM, Lin SP. Emergence of differentially regulated pathways associated with the development of regional specificity in chicken skin. BMC Genomics 2015; 16:22. [PMID: 25612663 PMCID: PMC4326372 DOI: 10.1186/s12864-014-1202-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 12/22/2014] [Indexed: 01/17/2023] Open
Abstract
Background Regional specificity allows different skin regions to exhibit different characteristics, enabling complementary functions to make effective use of the integumentary surface. Chickens exhibit a high degree of regional specificity in the skin and can serve as a good model for when and how these regional differences begin to emerge. Results We used developing feather and scale regions in embryonic chickens as a model to gauge the differences in their molecular pathways. We employed cosine similarity analysis to identify the differentially regulated and co-regulated genes. We applied low cell techniques for expression validation and chromatin immunoprecipitation (ChIP)-based enhancer identification to overcome limited cell availabilities from embryonic chicken skin. We identified a specific set of genes demonstrating a high correlation as being differentially expressed during feather and scale development and maturation. Some members of the WNT, TGF-beta/BMP, and Notch family known to be involved in feathering skin differentiation were found to be differentially regulated. Interestingly, we also found genes along calcium channel pathways that are differentially regulated. From the analysis of differentially regulated pathways, we used calcium signaling pathways as an example for further verification. Some voltage-gated calcium channel subunits, particularly CACNA1D, are expressed spatio-temporally in the skin epithelium. These calcium signaling pathway members may be involved in developmental decisions, morphogenesis, or epithelial maturation. We further characterized enhancers associated with histone modifications, including H3K4me1, H3K27ac, and H3K27me3, near calcium channel-related genes and identified signature intensive hotspots that may be correlated with certain voltage-gated calcium channel genes. Conclusion We demonstrated the applicability of cosine similarity analysis for identifying novel regulatory pathways that are differentially regulated during development. Our study concerning the effects of signaling pathways and histone signatures on enhancers suggests that voltage-gated calcium signaling may be involved in early skin development. This work lays the foundation for studying the roles of these gene pathways and their genomic regulation during the establishment of skin regional specificity. Electronic supplementary material The online version of this article (doi:10.1186/s12864-014-1202-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kai-Wei Chang
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan. .,Genome and Systems Biology Degree Program, Academia Sinica, Taipei, Taiwan.
| | - Nancy A Huang
- Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan.
| | - I-Hsuan Liu
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan. .,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.
| | - Yi-Hui Wang
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan.
| | - Ping Wu
- Department of Pathology, School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Yen-Tzu Tseng
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan.
| | - Michael W Hughes
- Department of Pathology, School of Medicine, University of Southern California, Los Angeles, CA, USA. .,International Research Center for Wound Repair and Regeneration, National Cheng-Kung University, Tainan, Taiwan.
| | - Ting Xin Jiang
- Department of Pathology, School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Mong-Hsun Tsai
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan. .,Agricultural Biotechnology Research Centre, Academia Sinica, Taipei, Taiwan. .,Center for Systems Biology, National Taiwan University, Taipei, Taiwan.
| | - Chien-Yu Chen
- Department of Bio-Industrial Mechatronics Engineering, National Taiwan University, Taipei, Taiwan. .,Center for Systems Biology, National Taiwan University, Taipei, Taiwan.
| | - Yen-Jen Oyang
- Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan. .,Center for Systems Biology, National Taiwan University, Taipei, Taiwan.
| | - En-Chung Lin
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan.
| | - Cheng-Ming Chuong
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan. .,Department of Pathology, School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Shau-Ping Lin
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan. .,Institute of Biotechnology, National Taiwan University, Taipei, Taiwan. .,Agricultural Biotechnology Research Centre, Academia Sinica, Taipei, Taiwan. .,Center for Systems Biology, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
44
|
Chen CF, Foley J, Tang PC, Li A, Jiang TX, Wu P, Widelitz RB, Chuong CM. Development, regeneration, and evolution of feathers. Annu Rev Anim Biosci 2014; 3:169-95. [PMID: 25387232 PMCID: PMC5662002 DOI: 10.1146/annurev-animal-022513-114127] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The feather is a complex ectodermal organ with hierarchical branching patterns. It provides functions in endothermy, communication, and flight. Studies of feather growth, cycling, and health are of fundamental importance to avian biology and poultry science. In addition, feathers are an excellent model for morphogenesis studies because of their accessibility, and their distinct patterns can be used to assay the roles of specific molecular pathways. Here we review the progress in aspects of development, regeneration, and evolution during the past three decades. We cover the development of feather buds in chicken embryos, regenerative cycling of feather follicle stem cells, formation of barb branching patterns, emergence of intrafeather pigmentation patterns, interplay of hormones and feather growth, and the genetic identification of several feather variants. The discovery of feathered dinosaurs redefines the relationship between feathers and birds. Inspiration from biomaterials and flight research further fuels biomimetic potential of feathers as a multidisciplinary research focal point.
Collapse
Affiliation(s)
- Chih-Feng Chen
- Center for the Integrative and Evolutionary Galliformes Genomics, Taichung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Aguiar DP, Sghari S, Creuzet S. The facial neural crest controls fore- and midbrain patterning by regulating Foxg1 expression through Smad1 activity. Development 2014; 141:2494-505. [PMID: 24917504 DOI: 10.1242/dev.101790] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The facial neural crest (FNC), a pluripotent embryonic structure forming craniofacial structures, controls the activity of brain organisers and stimulates cerebrum growth. To understand how the FNC conveys its trophic effect, we have studied the role of Smad1, which encodes an intracellular transducer, to which multiple signalling pathways converge, in the regulation of Foxg1. Foxg1 is a transcription factor essential for telencephalic specification, the mutation of which leads to microcephaly and mental retardation. Smad1 silencing, based on RNA interference (RNAi), was performed in pre-migratory FNC cells. Soon after electroporation of RNAi molecules, Smad1 inactivation abolished the expression of Foxg1 in the chick telencephalon, resulting in dramatic microcephaly and partial holoprosencephaly. In addition, the depletion of Foxg1 activity altered the expression Otx2 and Foxa2 in di/mesencephalic neuroepithelium. However, when mutated forms of Smad1 mediating Fgf and Wnt signalling were transfected into FNC cells, these defects were overcome. We also show that, downstream of Smad1 activity, Dkk1, a Wnt antagonist produced by the FNC, initiated the specification of the telencephalon by regulating Foxg1 activity. Additionally, the activity of Cerberus in FNC-derived mesenchyme synergised with Dkk1 to control Foxg1 expression and maintain the balance between Otx2 and Foxa2.
Collapse
Affiliation(s)
- Diego P Aguiar
- Institut de Neurobiologie, Laboratoire de Neurobiologie et Développement, Avenue de la Terrasse, Gif-sur-Yvette 91198, France
| | - Soufien Sghari
- Institut de Neurobiologie, Laboratoire de Neurobiologie et Développement, Avenue de la Terrasse, Gif-sur-Yvette 91198, France
| | - Sophie Creuzet
- Institut de Neurobiologie, Laboratoire de Neurobiologie et Développement, Avenue de la Terrasse, Gif-sur-Yvette 91198, France
| |
Collapse
|
46
|
Dong L, Hao H, Xia L, Liu J, Ti D, Tong C, Hou Q, Han Q, Zhao Y, Liu H, Fu X, Han W. Treatment of MSCs with Wnt1a-conditioned medium activates DP cells and promotes hair follicle regrowth. Sci Rep 2014; 4:5432. [PMID: 24961246 PMCID: PMC4069670 DOI: 10.1038/srep05432] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 06/05/2014] [Indexed: 12/24/2022] Open
Abstract
Hair loss (alopecia) is a common problem for people. The dermal papilla is the key signaling center that regulates hair growth and it engage in crosstalk with the microenvironment, including Wnt signaling and stem cells. In this study, we explored the effects of bone marrow mesenchymal stem cell overexpression of Wnt1a on mouse hair follicle regeneration. Wnt-CM accelerated hair follicle progression from telogen to anagen and enhanced the ALP expression in the DP area. Moreover, the hair induction-related genes were upregulated, as demonstrated by qRT-PCR. Wnt-CM treatment restored and increased DP cell expression of genes downregulated by dihydrotestosterone treatment, as demonstrated by qRT-PCR assays. Our study reveals that BM-MSC-generated Wnt1a promotes the DP's ability to induce hair cycling and regeneration.
Collapse
Affiliation(s)
- Liang Dong
- 1] Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing 100853, China [2]
| | - Haojie Hao
- 1] Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing 100853, China [2]
| | - Lei Xia
- 1] Department of Medical Administration,Chinese PLA General Hospital, Beijing 100853, China [2]
| | - Jiejie Liu
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing 100853, China
| | - Dongdong Ti
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing 100853, China
| | - Chuan Tong
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing 100853, China
| | - Qian Hou
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing 100853, China
| | - Qingwang Han
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing 100853, China
| | - Yali Zhao
- Central laboratory, Hainan branch of Chinese PLA General Hospital, Sanya, 572013, China
| | - Huiling Liu
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiaobing Fu
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing 100853, China
| | - Weidong Han
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
47
|
Chang CH, Tsai RK, Tsai MH, Lin YH, Hirobe T. The roles of Frizzled-3 and Wnt3a on melanocyte development: in vitro studies on neural crest cells and melanocyte precursor cell lines. J Dermatol Sci 2014; 75:100-8. [PMID: 24815018 DOI: 10.1016/j.jdermsci.2014.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 04/13/2014] [Accepted: 04/21/2014] [Indexed: 12/25/2022]
Abstract
BACKGROUND Wnt3a and Frizzled-3 are both expressed in the dorsal neural tube that gives rise to the neural crest in Xenopus, zebrafish and mice. Melanocytes originate from the neural crest (NC) and postnatally, melanocyte stem cells reside in the hair follicle bulge and in the dermis. However, the roles of Wnt3a and Frizzled-3 in melanocyte development have not been clarified. OBJECTIVE The aim of this study was to delineate the expression of Frizzled-3 in murine melanocyte lineage and human melanocytes, and to study the effects of Wnt3a on melanocyte development at various stages. METHODS Murine NC explant cultures and three NC-derived melanocyte lineage cell lines, including NCCmelb4M5 (Kit(-) melanocyte precursors), NCCmelb4 (Kit(+) melanoblasts) and NCCmelan5 (differentiated melanocytes), and human epidermal melanocytes were treated with pure recombinant Wnt3a protein and their cell behaviors were analyzed including their proliferation, Kit expression, tyrosinase (Tyr) activity, melanin production, dendrite formation and migration. RESULTS Frizzled-3 was expressed in Tyr-related protein (TRP)-1(+) cells in NC explant cultures, in all 3 melanocyte precursor cell lines and in human melanocytes. Wnt3a increased the population of TRP-1(+) cells, the number of L-3,4-dihydroxyphenylalanine (DOPA)(+) cells and dendrite formation in NC explant cultures. Wnt3a stimulated the proliferation of all 3 melanocyte precursor cell lines in a dose-dependent manner and also stimulated human melanocyte proliferation. Moreover, Wnt3a increased Tyr activity and melanin content of differentiated melanocytes, but did not activate Tyr activity in melanoblasts. Wnt3a stimulated dendrite formation in differentiated melanocytes, but not in melanoblasts. Wnt3a did not affect melanoblast or melanocyte migration. Wnt3a did not induce c-Kit expression in Kit(-) NCCmelb4M5 cells and did not affect c-Kit expression in any cell line tested. CONCLUSIONS Frizzled-3 is constitutively expressed in murine melanocyte precursors, melanocytes and human melanocytes. Wnt3a and Frizzled-3 signalings play important roles in regulating the proliferation and differentiation of murine NCCs and various developmental stages of melanocyte precursors. The effect of Wnt3a on human melanocytes is similar to its effects on murine melanocytes. Therefore Wnt3a/Frizzled-3 signaling is a promising target for human melanocyte regeneration.
Collapse
Affiliation(s)
- Chung-Hsing Chang
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Rong-Kung Tsai
- Institute of Eye Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan; Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan.
| | - Ming-Hsien Tsai
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Hsiung Lin
- National Applied Research Laboratories, Instrument Technology Research Center, Hsinchu, Taiwan
| | - Tomohisa Hirobe
- Fukushima Project Headquarters, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
48
|
Kim BK, Yoon SK. Expression of sfrp2 is increased in catagen of hair follicles and inhibits keratinocyte proliferation. Ann Dermatol 2014; 26:79-87. [PMID: 24648690 PMCID: PMC3956799 DOI: 10.5021/ad.2014.26.1.79] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 01/24/2013] [Accepted: 02/14/2013] [Indexed: 12/16/2022] Open
Abstract
Background Hair follicles undergo cycles of repeated growth and regression. The Wnt pathway plays an important role in the regeneration and differentiation of hair follicles. Sfrp2, a Wnt inhibitor, is involved in the developmental and disease processes of various cells and tissues by modulating the Wnt pathway. Objective The aim of this study was to understand the role of Sfrp2 in hair follicles through investigation of the Sfrp2 expression pattern in the skin and its effect on keratinocytes. Methods We investigated Sfrp2 mRNA expression and the expression of the wnt target genes, Ccnd1 and C-myc, at various mouse hair follicle developmental stages using Real-time polymerase chain reaction. We also investigated the effect of SFRP2 on the proliferation and differentiation of mouse keratinocyte cells by adding SFRP2 protein or overexpressing Sfrp2 using an in vitro culture system. Results Sfrp2 expression peaked in the catagen phase and remained high until telogen, and then declined at the beginning of the next anagen. An inverse relationship to Sfrp2 expression was found for the expression of the Wnt target genes, C-myc and Ccnd1. In addition, we also observed inhibited proliferation of mouse keratinocytes in the presence of SFRP2. Conclusion These results suggest that Sfrp2 may play a role in the catagen phase by inhibiting the proliferation of keratinocyte and functioning as a Wnt inhibitor in keratinocytes.
Collapse
Affiliation(s)
- Bong-Kyu Kim
- Department of Medical Lifesciences, The Catholic University of Korea, School of Medicine, Seoul, Korea
| | - Sungjoo Kim Yoon
- Department of Medical Lifesciences, The Catholic University of Korea, School of Medicine, Seoul, Korea
| |
Collapse
|
49
|
Chu Q, Cai L, Fu Y, Chen X, Yan Z, Lin X, Zhou G, Han H, Widelitz RB, Chuong CM, Wu W, Yue Z. Dkk2/Frzb in the dermal papillae regulates feather regeneration. Dev Biol 2014; 387:167-78. [PMID: 24463139 DOI: 10.1016/j.ydbio.2014.01.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 12/20/2013] [Accepted: 01/13/2014] [Indexed: 01/06/2023]
Abstract
Avian feathers have robust growth and regeneration capability. To evaluate the contribution of signaling molecules and pathways in these processes, we profiled gene expression in the feather follicle using an absolute quantification approach. We identified hundreds of genes that mark specific components of the feather follicle: the dermal papillae (DP) which controls feather regeneration and axis formation, the pulp mesenchyme (Pp) which is derived from DP cells and nourishes the feather follicle, and the ramogenic zone epithelium (Erz) where a feather starts to branch. The feather DP is enriched in BMP/TGF-β signaling molecules and inhibitors for Wnt signaling including Dkk2/Frzb. Wnt ligands are mainly expressed in the feather epithelium and pulp. We find that while Wnt signaling is required for the maintenance of DP marker gene expression and feather regeneration, excessive Wnt signaling delays regeneration and reduces pulp formation. Manipulating Dkk2/Frzb expression by lentiviral-mediated overexpression, shRNA-knockdown, or by antibody neutralization resulted in dual feather axes formation. Our results suggest that the Wnt signaling in the proximal feather follicle is fine-tuned to accommodate feather regeneration and axis formation.
Collapse
Affiliation(s)
- Qiqi Chu
- Institute of Life Sciences, Fuzhou University, Fuzhou, # 2 Xue Yuan Road, University Campus, Fujian 350108, China
| | - Linyan Cai
- Institute of Life Sciences, Fuzhou University, Fuzhou, # 2 Xue Yuan Road, University Campus, Fujian 350108, China
| | - Yu Fu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xi Chen
- Institute of Life Sciences, Fuzhou University, Fuzhou, # 2 Xue Yuan Road, University Campus, Fujian 350108, China
| | - Zhipeng Yan
- Institute of Life Sciences, Fuzhou University, Fuzhou, # 2 Xue Yuan Road, University Campus, Fujian 350108, China
| | - Xiang Lin
- Institute of Life Sciences, Fuzhou University, Fuzhou, # 2 Xue Yuan Road, University Campus, Fujian 350108, China
| | - Guixuan Zhou
- Institute of Life Sciences, Fuzhou University, Fuzhou, # 2 Xue Yuan Road, University Campus, Fujian 350108, China
| | - Hao Han
- Bioinformatics Institute, Agency for Science, Technology and Research, Singapore
| | - Randall B Widelitz
- Department of Pathology, University of Southern California, Los Angeles, CA 90033, USA
| | - Cheng-ming Chuong
- Department of Pathology, University of Southern California, Los Angeles, CA 90033, USA
| | - Wei Wu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhicao Yue
- Institute of Life Sciences, Fuzhou University, Fuzhou, # 2 Xue Yuan Road, University Campus, Fujian 350108, China.
| |
Collapse
|
50
|
Jager M, Dayraud C, Mialot A, Quéinnec E, le Guyader H, Manuel M. Evidence for involvement of Wnt signalling in body polarities, cell proliferation, and the neuro-sensory system in an adult ctenophore. PLoS One 2013; 8:e84363. [PMID: 24391946 PMCID: PMC3877318 DOI: 10.1371/journal.pone.0084363] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 11/22/2013] [Indexed: 11/19/2022] Open
Abstract
Signalling through the Wnt family of secreted proteins originated in a common metazoan ancestor and greatly influenced the evolution of animal body plans. In bilaterians, Wnt signalling plays multiple fundamental roles during embryonic development and in adult tissues, notably in axial patterning, neural development and stem cell regulation. Studies in various cnidarian species have particularly highlighted the evolutionarily conserved role of the Wnt/β-catenin pathway in specification and patterning of the primary embryonic axis. However in another key non-bilaterian phylum, Ctenophora, Wnts are not involved in early establishment of the body axis during embryogenesis. We analysed the expression in the adult of the ctenophore Pleurobrachia pileus of 11 orthologues of Wnt signalling genes including all ctenophore Wnt ligands and Fz receptors and several members of the intracellular β-catenin pathway machinery. All genes are strongly expressed around the mouth margin at the oral pole, evoking the Wnt oral centre of cnidarians. This observation is consistent with primary axis polarisation by the Wnts being a universal metazoan feature, secondarily lost in ctenophores during early development but retained in the adult. In addition, local expression of Wnt signalling genes was seen in various anatomical structures of the body including in the locomotory comb rows, where their complex deployment suggests control by the Wnts of local comb polarity. Other important contexts of Wnt involvement which probably evolved before the ctenophore/cnidarian/bilaterian split include proliferating stem cells and progenitors irrespective of cell types, and developing as well as differentiated neuro-sensory structures.
Collapse
Affiliation(s)
- Muriel Jager
- Systématique, Adaptation, Evolution, Unité Mixte de Recherche (UMR) 7138 CNRS (Centre National de la Recherche Scientifique), Université Pierre et Marie Curie – Paris 6, Paris, France
| | - Cyrielle Dayraud
- Systématique, Adaptation, Evolution, Unité Mixte de Recherche (UMR) 7138 CNRS (Centre National de la Recherche Scientifique), Université Pierre et Marie Curie – Paris 6, Paris, France
| | - Antoine Mialot
- Systématique, Adaptation, Evolution, Unité Mixte de Recherche (UMR) 7138 CNRS (Centre National de la Recherche Scientifique), Université Pierre et Marie Curie – Paris 6, Paris, France
| | - Eric Quéinnec
- Systématique, Adaptation, Evolution, Unité Mixte de Recherche (UMR) 7138 CNRS (Centre National de la Recherche Scientifique), Université Pierre et Marie Curie – Paris 6, Paris, France
| | - Hervé le Guyader
- Systématique, Adaptation, Evolution, Unité Mixte de Recherche (UMR) 7138 CNRS (Centre National de la Recherche Scientifique), Université Pierre et Marie Curie – Paris 6, Paris, France
| | - Michaël Manuel
- Systématique, Adaptation, Evolution, Unité Mixte de Recherche (UMR) 7138 CNRS (Centre National de la Recherche Scientifique), Université Pierre et Marie Curie – Paris 6, Paris, France
| |
Collapse
|