1
|
Jasim SA, Farhan SH, Ahmad I, Hjazi A, Kumar A, Jawad MA, Pramanik A, Altalbawy MAF, Alsaadi SB, Abosaoda MK. A cutting-edge investigation of the multifaceted role of SOX family genes in cancer pathogenesis through the modulation of various signaling pathways. Funct Integr Genomics 2025; 25:6. [PMID: 39753912 DOI: 10.1007/s10142-024-01517-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/20/2024] [Accepted: 12/27/2024] [Indexed: 01/14/2025]
Abstract
This detailed study examines the complex role of the SOX family in various tumorigenic contexts, offering insights into how these transcription factors function in cancer. As the study progresses, it explores the specific contributions of each SOX family member. The significant roles of the SOX family in the oncogenic environment are well-recognized, highlighting a range of regulatory mechanisms that influence tumor progression. In brain, lung, and colorectal cancers, SOX types like SOX2, SOX3, and SOX4 promote the migration, proliferation, and angiogenesis of cancer cells. Conversely, in pancreatic, gastric, and breast cancers, SOX types, including SOX1, SOX9, and SOX17 inhibit various cancer cell activities such as proliferation and invasion. This thorough investigation enhances our understanding of the SOX family's complex role in cancer, establishing a foundation for future research and potential therapeutic strategies targeting these versatile transcription factors.
Collapse
Affiliation(s)
- Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, College of Health and Medical Technology, University of Al-maarif, Anbar, Iraq.
| | | | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Ashwani Kumar
- Department of Life Sciences, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, Karnataka, 560069, India
- Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | | | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | - M A Farag Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Salim B Alsaadi
- Department of Pharmaceutics, Al-Hadi University College, Baghdad, 10011, Iraq
| | - Munther Kadhim Abosaoda
- College of Pharmacy, The Islamic University, Najaf, Iraq
- College of Pharmacy, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Pharmacy, The Islamic University of Babylon, Al Diwaniyah, Iraq
| |
Collapse
|
2
|
Eom TY, Schmitt JE, Li Y, Davenport CM, Steinberg J, Bonnan A, Alam S, Ryu YS, Paul L, Hansen BS, Khairy K, Pelletier S, Pruett-Miller SM, Roalf DR, Gur RE, Emanuel BS, McDonald-McGinn DM, Smith JN, Li C, Christie JM, Northcott PA, Zakharenko SS. Tbx1 haploinsufficiency leads to local skull deformity, paraflocculus and flocculus dysplasia, and motor-learning deficit in 22q11.2 deletion syndrome. Nat Commun 2024; 15:10510. [PMID: 39638997 PMCID: PMC11621701 DOI: 10.1038/s41467-024-54837-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024] Open
Abstract
Neurodevelopmental disorders are thought to arise from intrinsic brain abnormalities. Alternatively, they may arise from disrupted crosstalk among tissues. Here we show the local reduction of two vestibulo-cerebellar lobules, the paraflocculus and flocculus, in mouse models and humans with 22q11.2 deletion syndrome (22q11DS). In mice, this paraflocculus/flocculus dysplasia is associated with haploinsufficiency of the Tbx1 gene. Tbx1 haploinsufficiency also leads to impaired cerebellar synaptic plasticity and motor learning. However, neural cell compositions and neurogenesis are not altered in the dysplastic paraflocculus/flocculus. Interestingly, 22q11DS and Tbx1+/- mice have malformations of the subarcuate fossa, a part of the petrous temporal bone, which encapsulates the paraflocculus/flocculus. Single-nuclei RNA sequencing reveals that Tbx1 haploinsufficiency leads to precocious differentiation of chondrocytes to osteoblasts in the petrous temporal bone autonomous to paraflocculus/flocculus cell populations. These findings suggest a previously unrecognized pathogenic structure/function relation in 22q11DS in which local skeletal deformity and cerebellar dysplasia result in behavioral deficiencies.
Collapse
Affiliation(s)
- Tae-Yeon Eom
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - J Eric Schmitt
- Division of Neuroradiology, Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104, USA
- Brain Behavior Laboratory, Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yiran Li
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Christopher M Davenport
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jeffrey Steinberg
- Center for In Vivo Imaging and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Audrey Bonnan
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, 33458, USA
| | - Shahinur Alam
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Center for Bioimage Informatics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Young Sang Ryu
- Center for In Vivo Imaging and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Leena Paul
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Baranda S Hansen
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Khaled Khairy
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Center for Bioimage Informatics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Stephane Pelletier
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - David R Roalf
- Brain Behavior Laboratory, Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Raquel E Gur
- Brain Behavior Laboratory, Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Beverly S Emanuel
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Donna M McDonald-McGinn
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Molecular Medicine, Division of Human Biology and Medical Genetics, Sapienza University, Rome, 00185, Italy
| | - Jesse N Smith
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Cai Li
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jason M Christie
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, 33458, USA
- Department of Physiology and Biophysics, University of Colorado Anschutz School of Medicine, Aurora, CO, 80045, USA
| | - Paul A Northcott
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Stanislav S Zakharenko
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
3
|
Keer S, Neilson KM, Cousin H, Majumdar HD, Alfandari D, Klein SL, Moody SA. Bop1 is required to establish precursor domains of craniofacial tissues. Genesis 2024; 62:e23580. [PMID: 37974491 PMCID: PMC11021169 DOI: 10.1002/dvg.23580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
Bop1 can promote cell proliferation and is a component of the Pes1-Bop1-WDR12 (PeBoW) complex that regulates ribosomal RNA processing and biogenesis. In embryos, however, bop1 mRNA is highly enriched in the neural plate, cranial neural crest and placodes, and potentially may interact with Six1, which also is expressed in these tissues. Recent work demonstrated that during development, Bop1 is required for establishing the size of the tadpole brain, retina and cranial cartilages, as well as controlling neural tissue gene expression levels. Herein, we extend this work by assessing the effects of Bop1 knockdown at neural plate and larval stages. Loss of Bop1 expanded neural plate gene expression domains (sox2, sox11, irx1) and reduced neural crest (foxd3, sox9), placode (six1, sox11, irx1, sox9) and epidermal (dlx5) expression domains. At larval stages, Bop1 knockdown reduced the expression of several otic vesicle genes (six1, pax2, irx1, sox9, dlx5, otx2, tbx1) and branchial arch genes that are required for chondrogenesis (sox9, tbx1, dlx5). The latter was not the result of impaired neural crest migration. Together these observations indicate that Bop1 is a multifunctional protein that in addition to its well-known role in ribosomal biogenesis functions during early development to establish the craniofacial precursor domains.
Collapse
Affiliation(s)
- Stephanie Keer
- Department of Anatomy and Cell Biology, George Washington University, School of Medicine and Health Sciences, Washington, DC, USA
| | - Karen M. Neilson
- Department of Anatomy and Cell Biology, George Washington University, School of Medicine and Health Sciences, Washington, DC, USA
| | - Helene Cousin
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Himani D. Majumdar
- Department of Anatomy and Cell Biology, George Washington University, School of Medicine and Health Sciences, Washington, DC, USA
| | - Dominique Alfandari
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Steven L. Klein
- Department of Anatomy and Cell Biology, George Washington University, School of Medicine and Health Sciences, Washington, DC, USA
| | - Sally A. Moody
- Department of Anatomy and Cell Biology, George Washington University, School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
4
|
Marchak A, Neilson KM, Majumdar HD, Yamauchi K, Klein SL, Moody SA. The sulfotransferase XB5850668.L is required to apportion embryonic ectodermal domains. Dev Dyn 2023; 252:1407-1427. [PMID: 37597164 PMCID: PMC10842325 DOI: 10.1002/dvdy.648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/08/2023] [Accepted: 07/26/2023] [Indexed: 08/21/2023] Open
Abstract
BACKGROUND Members of the sulfotransferase superfamily (SULT) influence the activity of a wide range of hormones, neurotransmitters, metabolites and xenobiotics. However, their roles in developmental processes are not well characterized even though they are expressed during embryogenesis. We previously found in a microarray screen that Six1 up-regulates LOC100037047, which encodes XB5850668.L, an uncharacterized sulfotransferase. RESULTS Since Six1 is required for patterning the embryonic ectoderm into its neural plate, neural crest, preplacodal and epidermal domains, we used loss- and gain-of function assays to characterize the role of XB5850668.L during this process. Knockdown of endogenous XB5850668.L resulted in the reduction of epidermal, neural crest, cranial placode and otic vesicle gene expression domains, concomitant with neural plate expansion. Increased levels had minimal effects, but infrequently expanded neural plate and neural crest gene domains, and infrequently reduced cranial placode and otic vesicle gene domains. Mutation of two key amino acids in the sulfotransferase catalytic domain required for PAPS binding and enzymatic activity tended to reduce the effects of overexpressing the wild-type protein. CONCLUSIONS Our analyses indicates that XB5850668.L is a member of the SULT2 family that plays important roles in patterning the embryonic ectoderm. Some aspects of its influence likely depend on sulfotransferase activity.
Collapse
Affiliation(s)
- Alexander Marchak
- Department of Anatomy and Cell Biology George Washington University School of Medicine and Health Sciences Washington, DC, USA
| | - Karen M. Neilson
- Department of Anatomy and Cell Biology George Washington University School of Medicine and Health Sciences Washington, DC, USA
| | - Himani D. Majumdar
- Department of Anatomy and Cell Biology George Washington University School of Medicine and Health Sciences Washington, DC, USA
| | - Kiyoshi Yamauchi
- Department of Biological Science Shizuoka University Shizuoka, Japan
| | - Steven L. Klein
- Department of Anatomy and Cell Biology George Washington University School of Medicine and Health Sciences Washington, DC, USA
| | - Sally A. Moody
- Department of Anatomy and Cell Biology George Washington University School of Medicine and Health Sciences Washington, DC, USA
| |
Collapse
|
5
|
Jourdeuil K, Neilson KM, Cousin H, Tavares ALP, Majumdar HD, Alfandari D, Moody SA. Zmym4 is required for early cranial gene expression and craniofacial cartilage formation. Front Cell Dev Biol 2023; 11:1274788. [PMID: 37854072 PMCID: PMC10579616 DOI: 10.3389/fcell.2023.1274788] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023] Open
Abstract
Introduction: The Six1 transcription factor plays important roles in the development of cranial sensory organs, and point mutations underlie craniofacial birth defects. Because Six1's transcriptional activity can be modulated by interacting proteins, we previously screened for candidate interactors and identified zinc-finger MYM-containing protein 4 (Zmym4) by its inclusion of a few domains with a bona fide cofactor, Sine oculis binding protein (Sobp). Although Zmym4 has been implicated in regulating early brain development and certain cancers, its role in craniofacial development has not previously been described. Methods: We used co-immunoprecipitation and luciferase-reporter assays in cultured cells to test interactions between Zmym4 and Six1. We used knock-down and overexpression of Zmym4 in embryos to test for its effects on early ectodermal gene expression, neural crest migration and craniofacial cartilage formation. Results: We found no evidence that Zmym4 physically or transcriptionally interacts with Six1 in cultured cells. Nonetheless, knockdown of endogenous Zmym4 in embryos resulted in altered early cranial gene expression, including those expressed in the neural border, neural plate, neural crest and preplacodal ectoderm. Experimentally increasing Zmym4 levels had minor effects on neural border or neural plate genes, but altered the expression of neural crest and preplacodal genes. At larval stages, genes expressed in the otic vesicle and branchial arches showed reduced expression in Zmym4 morphants. Although we did not detect defects in neural crest migration into the branchial arches, loss of Zmym4 resulted in aberrant morphology of several craniofacial cartilages. Discussion: Although Zmym4 does not appear to function as a Six1 transcriptional cofactor, it plays an important role in regulating the expression of embryonic cranial genes in tissues critical for normal craniofacial development.
Collapse
Affiliation(s)
- Karyn Jourdeuil
- Department of Anatomy and Cell Biology, George Washington University, School of Medicine and Health Sciences, Washington, DC, United States
| | - Karen M. Neilson
- Department of Anatomy and Cell Biology, George Washington University, School of Medicine and Health Sciences, Washington, DC, United States
| | - Helene Cousin
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States
| | - Andre L. P. Tavares
- Department of Anatomy and Cell Biology, George Washington University, School of Medicine and Health Sciences, Washington, DC, United States
| | - Himani D. Majumdar
- Department of Anatomy and Cell Biology, George Washington University, School of Medicine and Health Sciences, Washington, DC, United States
| | - Dominique Alfandari
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States
| | - Sally A. Moody
- Department of Anatomy and Cell Biology, George Washington University, School of Medicine and Health Sciences, Washington, DC, United States
| |
Collapse
|
6
|
Koontz A, Urrutia HA, Bronner ME. Making a head: Neural crest and ectodermal placodes in cranial sensory development. Semin Cell Dev Biol 2023; 138:15-27. [PMID: 35760729 PMCID: PMC10224775 DOI: 10.1016/j.semcdb.2022.06.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 04/11/2022] [Accepted: 06/19/2022] [Indexed: 01/04/2023]
Abstract
During development of the vertebrate sensory system, many important components like the sense organs and cranial sensory ganglia arise within the head and neck. Two progenitor populations, the neural crest, and cranial ectodermal placodes, contribute to these developing vertebrate peripheral sensory structures. The interactions and contributions of these cell populations to the development of the lens, olfactory, otic, pituitary gland, and cranial ganglia are vital for appropriate peripheral nervous system development. Here, we review the origins of both neural crest and placode cells at the neural plate border of the early vertebrate embryo and investigate the molecular and environmental signals that influence specification of different sensory regions. Finally, we discuss the underlying molecular pathways contributing to the complex vertebrate sensory system from an evolutionary perspective, from basal vertebrates to amniotes.
Collapse
Affiliation(s)
- Alison Koontz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Hugo A Urrutia
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
7
|
Keer S, Cousin H, Jourdeuil K, Neilson KM, Tavares ALP, Alfandari D, Moody SA. Mcrs1 is required for branchial arch and cranial cartilage development. Dev Biol 2022; 489:62-75. [PMID: 35697116 PMCID: PMC10426812 DOI: 10.1016/j.ydbio.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 11/22/2022]
Abstract
Mcrs1 is a multifunctional protein that is critical for many cellular processes in a wide range of cell types. Previously, we showed that Mcrs1 binds to the Six1 transcription factor and reduces the ability of the Six1-Eya1 complex to upregulate transcription, and that Mcrs1 loss-of-function leads to the expansion of several neural plate genes, reduction of neural border and pre-placodal ectoderm (PPR) genes, and pleiotropic effects on various neural crest (NC) genes. Because the affected embryonic structures give rise to several of the cranial tissues affected in Branchio-otic/Branchio-oto-renal (BOR) syndrome, herein we tested whether these gene expression changes subsequently alter the development of the proximate precursors of BOR affected structures - the otic vesicles (OV) and branchial arches (BA). We found that Mcrs1 is required for the expression of several OV genes involved in inner ear formation, patterning and otic capsule cartilage formation. Mcrs1 knockdown also reduced the expression domains of many genes expressed in the larval BA, derived from either NC or PPR, except for emx2, which was expanded. Reduced Mcrs1 also diminished the length of the expression domain of tbx1 in BA1 and BA2 and interfered with cranial NC migration from the dorsal neural tube; this subsequently resulted in defects in the morphology of lower jaw cartilages derived from BA1 and BA2, including the infrarostral, Meckel's, and ceratohyal as well as the otic capsule. These results demonstrate that Mcrs1 plays an important role in processes that lead to the formation of craniofacial cartilages and its loss results in phenotypes consistent with reduced Six1 activity associated with BOR.
Collapse
Affiliation(s)
- Stephanie Keer
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, 2300 I (eye) Street, NW, Washington, DC, 20037, USA
| | - Helene Cousin
- Department of Animal Science, University of Massachusetts Amherst, Integrated Science Building, 661 N. Pleasant Street, Amherst, MA, 01003, USA
| | - Karyn Jourdeuil
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, 2300 I (eye) Street, NW, Washington, DC, 20037, USA
| | - Karen M Neilson
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, 2300 I (eye) Street, NW, Washington, DC, 20037, USA
| | - Andre L P Tavares
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, 2300 I (eye) Street, NW, Washington, DC, 20037, USA
| | - Dominique Alfandari
- Department of Animal Science, University of Massachusetts Amherst, Integrated Science Building, 661 N. Pleasant Street, Amherst, MA, 01003, USA
| | - Sally A Moody
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, 2300 I (eye) Street, NW, Washington, DC, 20037, USA.
| |
Collapse
|
8
|
Gomez-Picos P, Ovens K, Eames BF. Limb Mesoderm and Head Ectomesenchyme Both Express a Core Transcriptional Program During Chondrocyte Differentiation. Front Cell Dev Biol 2022; 10:876825. [PMID: 35784462 PMCID: PMC9247276 DOI: 10.3389/fcell.2022.876825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
To explain how cartilage appeared in different parts of the vertebrate body at discrete times during evolution, we hypothesize that different embryonic populations co-opted expression of a core gene regulatory network (GRN) driving chondrocyte differentiation. To test this hypothesis, laser-capture microdissection coupled with RNA-seq was used to reveal chondrocyte transcriptomes in the developing chick humerus and ceratobranchial, which are mesoderm- and neural crest-derived, respectively. During endochondral ossification, two general types of chondrocytes differentiate. Immature chondrocytes (IMM) represent the early stages of cartilage differentiation, while mature chondrocytes (MAT) undergo additional stages of differentiation, including hypertrophy and stimulating matrix mineralization and degradation. Venn diagram analyses generally revealed a high degree of conservation between chondrocyte transcriptomes of the limb and head, including SOX9, COL2A1, and ACAN expression. Typical maturation genes, such as COL10A1, IBSP, and SPP1, were upregulated in MAT compared to IMM in both limb and head chondrocytes. Gene co-expression network (GCN) analyses of limb and head chondrocyte transcriptomes estimated the core GRN governing cartilage differentiation. Two discrete portions of the GCN contained genes that were differentially expressed in limb or head chondrocytes, but these genes were enriched for biological processes related to limb/forelimb morphogenesis or neural crest-dependent processes, respectively, perhaps simply reflecting the embryonic origin of the cells. A core GRN driving cartilage differentiation in limb and head was revealed that included typical chondrocyte differentiation and maturation markers, as well as putative novel "chondrocyte" genes. Conservation of a core transcriptional program during chondrocyte differentiation in both the limb and head suggest that the same core GRN was co-opted when cartilage appeared in different regions of the skeleton during vertebrate evolution.
Collapse
Affiliation(s)
- Patsy Gomez-Picos
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Katie Ovens
- Department of Computer Science, University of Calgary, Calgary, AB, Canada
| | - B. Frank Eames
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
9
|
Chen X, Xu Y, Li C, Lu X, Fu Y, Huang Q, Ma D, Ma J, Zhang T. Key Genes Identified in Nonsyndromic Microtia by the Analysis of Transcriptomics and Proteomics. ACS OMEGA 2022; 7:16917-16927. [PMID: 35647449 PMCID: PMC9134388 DOI: 10.1021/acsomega.1c07059] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
As one of the common birth defects worldwide, nonsyndromic microtia is a complex disease that results from interactions between environmental and genetic factors. However, the underlying causes of nonsyndromic microtia are currently not well understood. The present study determined transcriptomic and proteomic profiles of auricular cartilage tissues in 10 patients with third-degree nonsyndromic microtia and five control subjects by RNA microarray and tandem mass tag-based quantitative proteomics technology. Relative mRNA and protein abundances were compared and evaluated for their function and putative involvement in nonsyndromic microtia. A total of 3971 differentially expressed genes and 256 differentially expressed proteins were identified. Bioinformatics analysis demonstrated that some of these genes and proteins showed potential associations with nonsyndromic microtia. Thirteen proteins with the same trend at the mRNA level obtained by the integrated analysis were validated by parallel reaction monitoring analysis. Several key genes, namely, LAMB2, COMP, APOA2, APOC2, APOC3, and A2M, were found to be dysregulated, which could contribute to nonsyndromic microtia. The present study is the first report on the transcriptomic and proteomic integrated analysis of nonsyndromic microtia using the same auricular cartilage sample. Additional studies are required to clarify the roles of potential key genes in nonsyndromic microtia.
Collapse
Affiliation(s)
- Xin Chen
- ENT
institute, Eye & ENT Hospital, Fudan
University, Shanghai 200031, China
| | - Yuexin Xu
- Key
Laboratory of Metabolism and Molecular Medicine, Ministry of Education,
Department of Biochemistry and Molecular Biology, School of Basic
Medical Sciences, Fudan University, Shanghai 200032, China
| | - Chenlong Li
- Department
of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Xinyu Lu
- ENT
institute, Eye & ENT Hospital, Fudan
University, Shanghai 200031, China
| | - Yaoyao Fu
- Department
of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Qingqing Huang
- Department
of Bioinformatics, Medical Laboratory of
Nantong Zhongke, Nantong, Jiangsu 226133, China
| | - Duan Ma
- Key
Laboratory of Metabolism and Molecular Medicine, Ministry of Education,
Department of Biochemistry and Molecular Biology, School of Basic
Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jing Ma
- ENT
institute, Eye & ENT Hospital, Fudan
University, Shanghai 200031, China
- Department
of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Tianyu Zhang
- ENT
institute, Eye & ENT Hospital, Fudan
University, Shanghai 200031, China
- Department
of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC
Key Laboratory of Hearing Medicine, Fudan
University, Shanghai 200031, China
| |
Collapse
|
10
|
Funato N. Craniofacial Phenotypes and Genetics of DiGeorge Syndrome. J Dev Biol 2022; 10:jdb10020018. [PMID: 35645294 PMCID: PMC9149807 DOI: 10.3390/jdb10020018] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 02/06/2023] Open
Abstract
The 22q11.2 deletion is one of the most common genetic microdeletions, affecting approximately 1 in 4000 live births in humans. A 1.5 to 2.5 Mb hemizygous deletion of chromosome 22q11.2 causes DiGeorge syndrome (DGS) and velocardiofacial syndrome (VCFS). DGS/VCFS are associated with prevalent cardiac malformations, thymic and parathyroid hypoplasia, and craniofacial defects. Patients with DGS/VCFS manifest craniofacial anomalies involving the cranium, cranial base, jaws, pharyngeal muscles, ear-nose-throat, palate, teeth, and cervical spine. Most craniofacial phenotypes of DGS/VCFS are caused by proximal 1.5 Mb microdeletions, resulting in a hemizygosity of coding genes, microRNAs, and long noncoding RNAs. TBX1, located on chromosome 22q11.21, encodes a T-box transcription factor and is a candidate gene for DGS/VCFS. TBX1 regulates the fate of progenitor cells in the cranial and pharyngeal apparatus during embryogenesis. Tbx1-null mice exhibit the most clinical features of DGS/VCFS, including craniofacial phenotypes. Despite the frequency of DGS/VCFS, there has been a limited review of the craniofacial phenotypes of DGC/VCFS. This review focuses on these phenotypes and summarizes the current understanding of the genetic factors that impact DGS/VCFS-related phenotypes. We also review DGS/VCFS mouse models that have been designed to better understand the pathogenic processes of DGS/VCFS.
Collapse
Affiliation(s)
- Noriko Funato
- Department of Signal Gene Regulation, Advanced Therapeutic Sciences, Medical and Dental Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| |
Collapse
|
11
|
Prevost AS, Bannoura S, Ngan BY, Siu JM, Ziai H, Campisi P. Pseudodiverticulum of the Cervical Esophagus With Remnant of Branchial Tissues in a Newborn: A Case Report. Pediatr Dev Pathol 2022; 25:330-333. [PMID: 34996321 DOI: 10.1177/10935266211066398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Congenital pseudodiverticula of the esophagus are very rare. This case report describes the presentation, management and histopathology of a peudodiverticulum of the cervical esophagus in a neonate. The infant presented with respiratory distress and a right neck mass that required surgical excision. Pathology revealed a pseudodiverticulum that contained ectopic thymic, thyroid, and parathyroid tissue within the wall of the lesion. The presence of ectopic tissues of branchial origin and an aberrant right subclavian artery suggest an error in branchial development and neural crest cell migration.
Collapse
Affiliation(s)
- Anne-Sophie Prevost
- Department of Otolaryngology-Head & Neck Surgery, 7979Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Sami Bannoura
- Department of Pediatric Laboratory Medicine, Division of Pathology, 7979Hospital for Sick Children, Toronto, ON, Canada
| | - Bo-Yee Ngan
- Department of Pediatric Laboratory Medicine, Division of Pathology, 7979Hospital for Sick Children, Toronto, ON, Canada
| | - Jennifer M Siu
- Department of Otolaryngology-Head & Neck Surgery, 7979Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Hedyeh Ziai
- Department of Otolaryngology-Head & Neck Surgery, 7979Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Paolo Campisi
- Department of Otolaryngology-Head & Neck Surgery, 7979Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
12
|
Ankamreddy H, Bok J, Groves AK. Uncovering the secreted signals and transcription factors regulating the development of mammalian middle ear ossicles. Dev Dyn 2020; 249:1410-1424. [PMID: 33058336 DOI: 10.1002/dvdy.260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/11/2020] [Accepted: 10/11/2020] [Indexed: 12/22/2022] Open
Abstract
The mammalian middle ear comprises a chain of ossicles, the malleus, incus, and stapes that act as an impedance matching device during the transmission of sound from the tympanic membrane to the inner ear. These ossicles are derived from cranial neural crest cells that undergo endochondral ossification and subsequently differentiate into their final functional forms. Defects that occur during middle ear development can result in conductive hearing loss. In this review, we summarize studies describing the crucial roles played by signaling molecules such as sonic hedgehog, bone morphogenetic proteins, fibroblast growth factors, notch ligands, and chemokines during the differentiation of neural crest into the middle ear ossicles. In addition to these cell-extrinsic signals, we also discuss studies on the function of transcription factor genes such as Foxi3, Tbx1, Bapx1, Pou3f4, and Gsc in regulating the development and morphology of the middle ear ossicles.
Collapse
Affiliation(s)
| | - Jinwoong Bok
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea.,Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Andrew K Groves
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
13
|
Tian C, Johnson KR. TBX1 is required for normal stria vascularis and semicircular canal development. Dev Biol 2019; 457:91-103. [PMID: 31550482 DOI: 10.1016/j.ydbio.2019.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/12/2019] [Accepted: 09/20/2019] [Indexed: 12/15/2022]
Abstract
Little is known about the role of TBX1 in post-otocyst stages of inner ear development. Here, we report on mice with a missense mutation of Tbx1 that are viable with fully developed but abnormally formed inner ears. Mutant mice are deaf due to an undeveloped stria vascularis and show vestibular dysfunction associated with abnormal semicircular canal formation. We show that TBX1 is expressed in endolymph-producing strial marginal cells and vestibular dark cells of the inner ear and is an upstream regulator of Esrrb, which previously was shown to control the developmental fate of these cells. We also show that TBX1 is expressed in sensory cells of the crista ampullaris, which may relate to the semicircular canal abnormalities observed in mutant mice. Inner ears of mutant embryos have a non-resorbed fusion plate in the posterior semicircular canal and a single ampulla connecting anterior and lateral canals. We hypothesize that the TBX1 missense mutation prevents binding with specific co-regulatory proteins. These findings reveal previously unknown functions of TBX1 during later stages of inner ear development.
Collapse
Affiliation(s)
- Cong Tian
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA
| | | |
Collapse
|
14
|
Kindberg AA, Bush JO. Cellular organization and boundary formation in craniofacial development. Genesis 2019; 57:e23271. [PMID: 30548771 PMCID: PMC6503678 DOI: 10.1002/dvg.23271] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 12/24/2022]
Abstract
Craniofacial morphogenesis is a highly dynamic process that requires changes in the behaviors and physical properties of cells in order to achieve the proper organization of different craniofacial structures. Boundary formation is a critical process in cellular organization, patterning, and ultimately tissue separation. There are several recurring cellular mechanisms through which boundary formation and cellular organization occur including, transcriptional patterning, cell segregation, cell adhesion and migratory guidance. Disruption of normal boundary formation has dramatic morphological consequences, and can result in human craniofacial congenital anomalies. In this review we discuss boundary formation during craniofacial development, specifically focusing on the cellular behaviors and mechanisms underlying the self-organizing properties that are critical for craniofacial morphogenesis.
Collapse
Affiliation(s)
- Abigail A. Kindberg
- Department of Cell and Tissue Biology, Program in Craniofacial Biology, and Institute of Human Genetics, University of California at San Francisco, San Francisco, CA 94143, USA
| | - Jeffrey O. Bush
- Department of Cell and Tissue Biology, Program in Craniofacial Biology, and Institute of Human Genetics, University of California at San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
15
|
Ritter KE, Martin DM. Neural crest contributions to the ear: Implications for congenital hearing disorders. Hear Res 2018; 376:22-32. [PMID: 30455064 DOI: 10.1016/j.heares.2018.11.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/30/2018] [Accepted: 11/12/2018] [Indexed: 12/16/2022]
Abstract
Congenital hearing disorders affect millions of children worldwide and can significantly impact acquisition of speech and language. Efforts to identify the developmental genetic etiologies of conductive and sensorineural hearing losses have revealed critical roles for cranial neural crest cells (NCCs) in ear development. Cranial NCCs contribute to all portions of the ear, and defects in neural crest development can lead to neurocristopathies associated with profound hearing loss. The molecular mechanisms governing the development of neural crest derivatives within the ear are partially understood, but many questions remain. In this review, we describe recent advancements in determining neural crest contributions to the ear, how they inform our understanding of neurocristopathies, and highlight new avenues for further research using bioinformatic approaches.
Collapse
Affiliation(s)
- K Elaine Ritter
- Department of Pediatrics, The University of Michigan Medical School, Ann Arbor, MI, USA
| | - Donna M Martin
- Department of Pediatrics, The University of Michigan Medical School, Ann Arbor, MI, USA; Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
16
|
Kurosaka H. Choanal atresia and stenosis: Development and diseases of the nasal cavity. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2018; 8:e336. [PMID: 30320458 DOI: 10.1002/wdev.336] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 09/10/2018] [Accepted: 09/19/2018] [Indexed: 12/16/2022]
Abstract
Proper craniofacial development in vertebrates depends on growth and fusion of the facial processes during embryogenesis. Failure of any step in this process could lead to craniofacial anomalies such as facial clefting, which has been well studied with regard to its molecular etiology and cellular pathogenesis. Nasal cavity invagination is also a critical event in proper craniofacial development, and is required for the formation of a functional nasal cavity and airway. The nasal cavity must connect the nasopharynx with the primitive choanae to complete an airway from the nostril to the nasopharynx. In contrast to orofacial clefts, defects in nasal cavity and airway formation, such as choanal atresia (CA), in which the connection between the nasal airway and nasopharynx is physically blocked, have largely been understudied. This is also true for a narrowed connection between the nasal cavity and the nasopharynx, which is known as choanal stenosis (CS). CA occurs in approximately 1 in 5,000 live births, and can present in isolation but typically arises as part of a syndrome. Despite the fact that CA and CS usually require immediate intervention, and substantially affect the quality of life of affected individuals, the etiology and pathogenesis of CA and CS have remained elusive. In this review I focus on the process of nasal cavity development with respect to forming a functional airway and discuss the cellular behavior and molecular networks governing this process. Additionally, the etiology of human CA is discussed using examples of disorders which involve CA or CS. This article is categorized under: Signaling Pathways > Cell Fate Signaling Comparative Development and Evolution > Model Systems Birth Defects > Craniofacial and Nervous System Anomalies.
Collapse
Affiliation(s)
- Hiroshi Kurosaka
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Osaka, Japan
| |
Collapse
|
17
|
LaMantia AS, Moody SA, Maynard TM, Karpinski BA, Zohn IE, Mendelowitz D, Lee NH, Popratiloff A. Hard to swallow: Developmental biological insights into pediatric dysphagia. Dev Biol 2015; 409:329-42. [PMID: 26554723 DOI: 10.1016/j.ydbio.2015.09.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/10/2015] [Accepted: 09/15/2015] [Indexed: 12/16/2022]
Abstract
Pediatric dysphagia-feeding and swallowing difficulties that begin at birth, last throughout childhood, and continue into maturity--is one of the most common, least understood complications in children with developmental disorders. We argue that a major cause of pediatric dysphagia is altered hindbrain patterning during pre-natal development. Such changes can compromise craniofacial structures including oropharyngeal muscles and skeletal elements as well as motor and sensory circuits necessary for normal feeding and swallowing. Animal models of developmental disorders that include pediatric dysphagia in their phenotypic spectrum can provide mechanistic insight into pathogenesis of feeding and swallowing difficulties. A fairly common human genetic developmental disorder, DiGeorge/22q11.2 Deletion Syndrome (22q11DS) includes a substantial incidence of pediatric dysphagia in its phenotypic spectrum. Infant mice carrying a parallel deletion to 22q11DS patients have feeding and swallowing difficulties that approximate those seen in pediatric dysphagia. Altered hindbrain patterning, craniofacial malformations, and changes in cranial nerve growth prefigure these difficulties. Thus, in addition to craniofacial and pharyngeal anomalies that arise independently of altered neural development, pediatric dysphagia may result from disrupted hindbrain patterning and its impact on peripheral and central neural circuit development critical for feeding and swallowing. The mechanisms that disrupt hindbrain patterning and circuitry may provide a foundation to develop novel therapeutic approaches for improved clinical management of pediatric dysphagia.
Collapse
Affiliation(s)
- Anthony-Samuel LaMantia
- Institute for Neuroscience, The George Washington University School of Medicine and Health Sciences, Washington D.C., USA; Department of Pharmacology and Physiology, George Washington University, School of Medicine and Health Sciences, Washington D.C., USA
| | - Sally A Moody
- Institute for Neuroscience, The George Washington University School of Medicine and Health Sciences, Washington D.C., USA; Department of Anatomy and Regenerative Biology, George Washington University, School of Medicine and Health Sciences, Washington D.C., USA
| | - Thomas M Maynard
- Institute for Neuroscience, The George Washington University School of Medicine and Health Sciences, Washington D.C., USA; Department of Pharmacology and Physiology, George Washington University, School of Medicine and Health Sciences, Washington D.C., USA
| | - Beverly A Karpinski
- Institute for Neuroscience, The George Washington University School of Medicine and Health Sciences, Washington D.C., USA; Department of Pharmacology and Physiology, George Washington University, School of Medicine and Health Sciences, Washington D.C., USA
| | - Irene E Zohn
- Institute for Neuroscience, The George Washington University School of Medicine and Health Sciences, Washington D.C., USA; Center for Neuroscience Research, Children's National Health System, Washington D.C., USA
| | - David Mendelowitz
- Institute for Neuroscience, The George Washington University School of Medicine and Health Sciences, Washington D.C., USA; Department of Pharmacology and Physiology, George Washington University, School of Medicine and Health Sciences, Washington D.C., USA
| | - Norman H Lee
- Institute for Neuroscience, The George Washington University School of Medicine and Health Sciences, Washington D.C., USA; Department of Pharmacology and Physiology, George Washington University, School of Medicine and Health Sciences, Washington D.C., USA
| | - Anastas Popratiloff
- Institute for Neuroscience, The George Washington University School of Medicine and Health Sciences, Washington D.C., USA; Department of Anatomy and Regenerative Biology, George Washington University, School of Medicine and Health Sciences, Washington D.C., USA
| |
Collapse
|
18
|
Abstract
The perception of our environment via sensory organs plays a crucial role in survival and evolution. Hearing, one of our most developed senses, depends on the proper function of the auditory system and plays a key role in social communication, integration, and learning ability. The ear is a composite structure, comprised of the external, middle, and inner ear. During development, the ear is formed from the integration of a number of tissues of different embryonic origin, which initiate in distinct areas of the embryo at different time points. Functional connections between the components of the hearing apparatus have to be established and maintained during development and adulthood to allow proper sound submission from the outer to the middle and inner ear. This highly organized and intimate connectivity depends on intricate spatiotemporal signaling between the various tissues that give rise to the structures of the ear. Any alterations in this chain of events can lead to the loss of integration, which can subsequently lead to conductive hearing loss, in case of outer and middle ear defects or sensorineural hearing loss, if inner ear structures are defective. This chapter aims to review the current knowledge concerning the development of the three ear compartments as well as mechanisms and signaling pathways that have been implicated in the coordination and integration process of the ear.
Collapse
Affiliation(s)
- Jennifer C Fuchs
- Department of Craniofacial Development & Stem Cell Biology, King's College London, London, United Kingdom
| | - Abigail S Tucker
- Department of Craniofacial Development & Stem Cell Biology, King's College London, London, United Kingdom.
| |
Collapse
|
19
|
Fuchs JC, Linden JF, Baldini A, Tucker AS. A defect in early myogenesis causes Otitis media in two mouse models of 22q11.2 Deletion Syndrome. Hum Mol Genet 2014; 24:1869-82. [PMID: 25452432 PMCID: PMC4355021 DOI: 10.1093/hmg/ddu604] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Otitis media (OM), the inflammation of the middle ear, is the most common disease and cause for surgery in infants worldwide. Chronic Otitis media with effusion (OME) often leads to conductive hearing loss and is a common feature of a number of craniofacial syndromes, such as 22q11.2 Deletion Syndrome (22q11.2DS). OM is more common in children because the more horizontal position of the Eustachian tube (ET) in infants limits or delays clearance of middle ear effusions. Some mouse models with OM have shown alterations in the morphology and angle of the ET. Here, we present a novel mechanism in which OM is caused not by a defect in the ET itself but in the muscles that control its function. Our results show that in two mouse models of 22q11.2DS (Df1/+ and Tbx1(+/-)) presenting with bi- or unilateral OME, the fourth pharyngeal arch-derived levator veli palatini muscles were hypoplastic, which was associated with an earlier altered pattern of MyoD expression. Importantly, in mice with unilateral OME, the side with the inflammation was associated with significantly smaller muscles than the contralateral unaffected ear. Functional tests examining ET patency confirmed a reduced clearing ability in the heterozygous mice. Our findings are also of clinical relevance as targeting hypoplastic muscles might present a novel preventative measure for reducing the high rates of OM in 22q11.2DS patients.
Collapse
Affiliation(s)
- Jennifer C Fuchs
- Department of Craniofacial Development and Stem Cell Biology, King's College London, London SE1 9RT, UK
| | - Jennifer F Linden
- Ear Institute and Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 8XX, UK
| | - Antonio Baldini
- Institute of Genetics and Biophysics, National Research Council, and Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples 80138, Italy
| | - Abigail S Tucker
- Department of Craniofacial Development and Stem Cell Biology, King's College London, London SE1 9RT, UK,
| |
Collapse
|
20
|
Funato N, Nakamura M, Richardson JA, Srivastava D, Yanagisawa H. Loss of Tbx1 induces bone phenotypes similar to cleidocranial dysplasia. Hum Mol Genet 2014; 24:424-35. [PMID: 25209980 DOI: 10.1093/hmg/ddu458] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
T-box transcription factor, TBX1, is the major candidate gene for 22q11.2 deletion syndrome (DiGeorge/ Velo-cardio-facial syndrome) characterized by facial defects, thymus hypoplasia, cardiovascular anomalies and cleft palates. Here, we report that the loss of Tbx1 in mouse (Tbx1(-/-)) results in skeletal abnormalities similar to those of cleidocranial dysplasia (CCD) in humans, which is an autosomal-dominant skeletal disease caused by mutations in RUNX2. Tbx1(-/-) mice display short stature, absence of hyoid bone, failed closure of fontanelle, bifid xiphoid process and hypoplasia of clavicle and zygomatic arch. A cell-type-specific deletion of Tbx1 in osteochondro-progenitor (Tbx1(OPKO)) or mesodermal (Tbx1(MKO)) lineage partially recapitulates the Tbx1(-/-) bone phenotypes. Although Tbx1 expression has not been previously reported in neural crest, inactivation of Tbx1 in the neural crest lineage (Tbx1(NCKO)) leads to an absence of the body of hyoid bone and postnatal lethality, indicating an unanticipated role of Tbx1 in neural crest development. Indeed, Tbx1 is expressed in the neural crest-derived hyoid bone primordium, in addition to mesoderm-derived osteochondral progenitors. Ablation of Tbx1 affected Runx2 expression in calvarial bones and overexpression of Tbx1 induced Runx2 expression in vitro. Taken together, our current studies reveal that Tbx1 is required for mesoderm- and neural crest-derived osteoblast differentiation and normal skeletal development. TBX1 mutation could lead to CCD-like bone phenotypes in human.
Collapse
Affiliation(s)
- Noriko Funato
- Research Center for Medical and Dental Sciences, Human Gene Sciences Research Division, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan Department of Molecular Biology and
| | - Masataka Nakamura
- Research Center for Medical and Dental Sciences, Human Gene Sciences Research Division, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - James A Richardson
- Department of Pathology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9148, USA and
| | - Deepak Srivastava
- Gladstone Institute of Cardiovascular Disease and Department of Pediatrics, University of California, San Francisco, 1650 Owens Street, San Francisco, CA 94158, USA
| | | |
Collapse
|
21
|
Jiang H, Li L, Yang H, Bai Y, Jiang H, Li Y. Pax2 may play a role in kidney development by regulating the expression of TBX1. Mol Biol Rep 2014; 41:7491-8. [PMID: 25106525 DOI: 10.1007/s11033-014-3639-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 07/21/2014] [Indexed: 11/24/2022]
Abstract
Renal anomaly is commonly found among patients with loss of TBX1 gene, encoding an important transcriptional factor implicated in numerous developmental processes. Pax2 is a member of the "paired-box" (PAX) family of homeotic genes that orchestrates the patterns of gene expression in specific cells during nephrogenesis. In this study, we hypothesized that Pax2 might activate expression of TBX1, a member of T-box family that closely involving in kidney development. Immunohistochemical and immunofluorescence staining was performed to detect TBX1 expression in E16.5 embryonic rat kidney, while luciferase assay, electrophoretic mobility shift assay (EMSA), and chromatin immunoprecipitation (ChIP) assay were used to confirm the interaction between the Pax2 protein and TBX1 genes. TBX1 was expressed in the cytoplasm of renal tubular epithelial cells in the cortex of E16.5 fetal rat kidney. Inspection of the 5'-flanking sequence of the TBX1 gene identified a putative Pax2 recognition motif (TBX1-577). Luciferase assay and EMSA confirmed this novel promoter region of TBX1 that directly interacted with Pax2, and a site mutation could abolish the transcriptional activation of the TBX1 promoter by Pax2. ChIP assay of the Pax2-TBX1 promoter complex from human kidney epithelial cells further confirmed that endogenous Pax2 interacted with TBX1 promoter region. Thus, Pax2 directly regulates TBX1 expression in vivo. These findings suggest that Pax2 may regulate the TBX1 expression through specific binding to the TBX1 promoter, which may shed light on the potential mechanism of Pax2 and TBX1 in nephrogenesis and renal malformations.
Collapse
Affiliation(s)
- Hongkun Jiang
- Department of Pediatrics, First Affiliated Hospital of China Medical University, Shenyang, 110001, China,
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
Otitis media (OM) is a common cause of childhood hearing loss. The large medical costs involved in treating this condition have meant that research to understand the pathology of this disease and identify new therapeutic interventions is important. There is evidence that susceptibility to OM has a significant genetic component, although little is known about the key genetic pathways involved. Mouse models for disease have become an important resource to understand a variety of human pathologies, including OM, due to the ability to easily manipulate their genetic components. This has enabled researchers to create models of acute OM, and has aided in the identification of a number of new genes associated with chronic disease, through the use of mutagenesis programs. The use of mouse models has identified a number of key molecular signalling pathways involved in the development of this condition, with genes identified from models shown to be associated with human OM.
Collapse
|
23
|
Mc Laughlin D, Murphy P, Puri P. Altered Tbx1 gene expression is associated with abnormal oesophageal development in the adriamycin mouse model of oesophageal atresia/tracheo-oesophageal fistula. Pediatr Surg Int 2014; 30:143-9. [PMID: 24356861 DOI: 10.1007/s00383-013-3455-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Oesophageal atresia/tracheo-oesophageal atresia (OA/TOF) frequently arises with associated anomalies and has been clinically linked with 22q11 deletion syndromes, a group of conditions due to Tbx1 gene mutation which include Di George syndrome. Tbx1 and Tbx2 genes modulate pharyngeal and cardiac development, but are also expressed in the developing foregut and are known to interact with key signalling pathways described in oesophageal formation including bone morphogenic proteins. The adriamycin mouse model (AMM) reliably displays OA/TOF-like foregut malformations providing a powerful system for investigating the disturbances in gene regulation and morphology involved in tracheo-oesophageal malformations. We hypothesised that foregut abnormalities observed in the AMM are associated with altered Tbx1 and Tbx2 gene expression. METHODS Time-mated CBA/Ca mice received intra-peritoneal injection of adriamycin (for treated) or saline (for controls) on embryonic days (E)7 and 8. Untreated Cd1 embryos were used to establish normal expression patterns. Embryos harvested on E9-E11 underwent whole-mount in situ hybridization with labelled RNA probes for Tbx1 and Tbx2. Optical projection tomography was used to visualise expression in whole embryos by 3D imaging. RESULTS Tbx1 expression was visualised in a highly specific pattern in the proximal oesophageal endoderm in normal and control embryos. In the AMM, extensive ectopic expression of Tbx1 was detected in the dorsal foregut and adjacent to the TOF. The focally restricted oesophageal expression pattern persisted in the AMM, but was posteriorly displaced in relation to the tracheal bifurcation. Tbx2 was widely expressed in the ventral foregut mesoderm of controls, lacking specific endoderm localisation. In the AMM, altered Tbx2 expression in the foregut was only seen in severely affected embryos. CONCLUSION Highly specific Tbx1 expression in the proximal oesophageal endoderm suggests that Tbx1 may be an important regulator of normal oesophageal development. Altered Tbx1 expression in dorsal foregut and adjacent to the TOF in the AMM suggests that Tbx1 gene disruption may contribute to the pathogenesis of tracheo-oesophageal malformations.
Collapse
|
24
|
Rana MS, Christoffels VM, Moorman AFM. A molecular and genetic outline of cardiac morphogenesis. Acta Physiol (Oxf) 2013; 207:588-615. [PMID: 23297764 DOI: 10.1111/apha.12061] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Revised: 10/26/2012] [Accepted: 01/02/2013] [Indexed: 12/15/2022]
Abstract
Perturbations in cardiac development result in congenital heart disease, the leading cause of birth defect-related infant morbidity and mortality. Advances in cardiac developmental biology have significantly augmented our understanding of signalling pathways and transcriptional networks underlying heart formation. Cardiogenesis is initiated with the formation of mesodermal multipotent cardiac progenitor cells and is governed by cross-talk between developmental cues emanating from endodermal, mesodermal and ectodermal cells. The molecular and transcriptional machineries that direct the specification and differentiation of these cardiac precursors are part of an evolutionarily conserved programme that includes the Nkx-, Gata-, Hand-, T-box- and Mef2 family of transcription factors. Unravelling the hierarchical networks governing the fate and differentiation of cardiac precursors is crucial for our understanding of congenital heart disease and future stem cell-based and gene therapies. Recent molecular and genetic lineage analyses have revealed that subpopulations of cardiac progenitor cells follow distinctive specification and differentiation paths, which determine their final contribution to the heart. In the last decade, progenitor cells that contribute to the arterial pole and right ventricle have received much attention, as abnormal development of these cells frequently results in congenital defects of the aortic and pulmonary outlets, representing the most commonly occurring congenital cardiac defects. In this review, we provide an overview of the building plan of the vertebrate four-chambered heart, with a special focus on cardiac progenitor cell specification, differentiation and deployment during arterial pole development.
Collapse
Affiliation(s)
- M. S. Rana
- Heart Failure Research Center; Department of Anatomy, Embryology & Physiology; Academic Medical Center; University of Amsterdam; Amsterdam; the Netherlands
| | - V. M. Christoffels
- Heart Failure Research Center; Department of Anatomy, Embryology & Physiology; Academic Medical Center; University of Amsterdam; Amsterdam; the Netherlands
| | - A. F. M. Moorman
- Heart Failure Research Center; Department of Anatomy, Embryology & Physiology; Academic Medical Center; University of Amsterdam; Amsterdam; the Netherlands
| |
Collapse
|
25
|
Papangeli I, Scambler PJ. Tbx1 genetically interacts with the transforming growth factor-β/bone morphogenetic protein inhibitor Smad7 during great vessel remodeling. Circ Res 2012; 112:90-102. [PMID: 23011393 DOI: 10.1161/circresaha.112.270223] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
RATIONALE Growth and remodeling of the pharyngeal arch arteries are vital for the development of a mature great vessel system. Dysmorphogenesis of the fourth arch arteries can result in interruption of the aortic arch type B, typically found in DiGeorge syndrome. Tbx1 haploinsufficient embryos, which model DiGeorge syndrome, display fourth arch artery defects during formation of the vessels. Recovery from such defects is a documented yet unexplained phenotype in Tbx1 haploinsufficiency. OBJECTIVE To understand the nature of fourth arch artery growth recovery in Tbx1 haploinsufficiency and its underlying genetic control. METHODS AND RESULTS We categorized vessel phenotypes of Tbx1 heterozygotes as hypoplastic or aplastic at the conclusion of pharyngeal artery formation and compared these against the frequency of vessel defects scored at the end of great vessel development. The frequency of hypoplastic vessels decreased during embryogenesis, whereas no reduction of vessel aplasia was seen, implying recovery is attributable to remodeling of hypoplastic vessels. We showed that Smad7, an inhibitory Smad within the transforming growth factor-β pathway, is regulated by Tbx1, is required for arch artery remodeling, and genetically interacts with Tbx1 in this process. Tbx1 and Tbx1;Smad7 haploinsufficiency affected several remodeling processes; however, concurrent haploinsufficiency particularly impacted on the earliest stage of vascular smooth muscle cell vessel coverage and subsequent fibronectin deposition. Conditional reconstitution of Smad7 with a Tbx1Cre driver indicated that the interaction between the 2 genes is cell autonomous. CONCLUSIONS Tbx1 acts upstream of Smad7 controlling vascular smooth muscle and extracellular matrix investment of the fourth arch artery.
Collapse
|
26
|
Papangeli I, Scambler P. The 22q11 deletion: DiGeorge and velocardiofacial syndromes and the role of TBX1. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 2:393-403. [PMID: 23799583 DOI: 10.1002/wdev.75] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hemizygous deletion of 22q11 affects approximately 1:4000 live births and may give rise to many different malformations but classically results in a constellation of phenotypes that receive a diagnosis of DiGeorge syndrome or velocardiofacial syndrome. Particularly affected are the heart and great vessels, the endocrine glands of the neck, the face, the soft palate, and cognitive development. Although up to 50 genes may be deleted, it is haploinsufficiency of the transcription factor TBX1 that is thought to make the greatest contribution to the disorder. Mouse embryos are exquisitely sensitive to varying levels of Tbx1 mRNA, and Tbx1 is required in all three germ layers of the embryonic pharyngeal region for normal development. TBX1 controls cell proliferation and affects cellular differentiation in a cell autonomous fashion, but it also directs non-cell autonomous effects, most notably in the signaling between pharyngeal surface ectoderm and the rostral neural crest. TBX1 interacts with several signaling pathways, including fibroblast growth factor, retinoic acid, CTNNB1 (formerly known as β-catenin), and bone morphogenetic protein (BMP), and may regulate pathways by both DNA-binding and non-binding activity. In addition to the structural abnormalities seen in 22q11 deletion syndrome (DS) and Tbx1 mutant mouse models, patients reaching adolescence and adulthood have a predisposition to psychiatric illness. Whether this has a developmental basis and, if so, which genes are involved is an ongoing strand of research. Thus, knowledge of the genetic and developmental mechanisms underlying 22q11DS has the potential to inform about common disease as well as developmental defect.
Collapse
Affiliation(s)
- Irinna Papangeli
- Department of Molecular Medicine, UCL Institute of Child Health, London, UK
| | | |
Collapse
|
27
|
Yuan Y, Zhang X, Huang S, Zuo L, Zhang G, Song Y, Wang G, Wang H, Huang D, Han D, Dai P. Common molecular etiologies are rare in nonsyndromic Tibetan Chinese patients with hearing impairment. PLoS One 2012; 7:e30720. [PMID: 22389666 PMCID: PMC3289614 DOI: 10.1371/journal.pone.0030720] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 12/20/2011] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Thirty thousand infants are born every year with congenital hearing impairment in mainland China. Racial and regional factors are important in clinical diagnosis of genetic deafness. However, molecular etiology of hearing impairment in the Tibetan Chinese population living in the Tibetan Plateau has not been investigated. To provide appropriate genetic testing and counseling to Tibetan families, we investigated molecular etiology of nonsyndromic deafness in this population. METHODS A total of 114 unrelated deaf Tibetan children from the Tibet Autonomous Region were enrolled. Five prominent deafness-related genes, GJB2, SLC26A4, GJB6, POU3F4, and mtDNA 12S rRNA, were analyzed. Inner ear development was evaluated by temporal CT. A total of 106 Tibetan hearing normal individuals were included as genetic controls. For radiological comparison, 120 patients, mainly of Han ethnicity, with sensorineural hearing loss were analyzed by temporal CT. RESULTS None of the Tibetan patients carried diallelic GJB2 or SLC26A4 mutations. Two patients with a history of aminoglycoside usage carried homogeneous mtDNA 12S rRNA A1555G mutation. Two controls were homozygous for 12S rRNA A1555G. There were no mutations in GJB6 or POU3F4. A diagnosis of inner ear malformation was made in 20.18% of the Tibetan patients and 21.67% of the Han deaf group. Enlarged vestibular aqueduct, the most common inner ear deformity, was not found in theTibetan patients, but was seen in 18.33% of the Han patients. Common molecular etiologies, GJB2 and SLC26A4 mutations, were rare in the Tibetan Chinese deaf population. CONCLUSION The mutation spectrum of hearing loss differs significantly between Chinese Tibetan patients and Han patients. The incidence of inner ear malformation in Tibetans is almost as high as that in Han deaf patients, but the types of malformation vary greatly. Hypoxia and special environment in plateau may be one cause of developmental inner ear deformity in this population.
Collapse
Affiliation(s)
- Yongyi Yuan
- Department of Otolaryngology, PLA General Hospital, Beijing, People's Republic of China
- Department of Otolaryngology, Hainan Branch of PLA General Hospital, Sanya, People's Republic of China
| | - Xun Zhang
- Department of Otolaryngology, 3rd hospital of Hebei Medical University, Shijiazhuang, Hebei Province, People's Republic of China
| | - Shasha Huang
- Department of Otolaryngology, PLA General Hospital, Beijing, People's Republic of China
| | - Lujie Zuo
- Department of Otolaryngology, PLA General Hospital, Beijing, People's Republic of China
- Department of Otolaryngology, 3rd hospital of Hebei Medical University, Shijiazhuang, Hebei Province, People's Republic of China
| | - Guozheng Zhang
- Department of Otolaryngology, PLA General Hospital, Beijing, People's Republic of China
- Department of Otolaryngology, 3rd hospital of Hebei Medical University, Shijiazhuang, Hebei Province, People's Republic of China
| | - Yueshuai Song
- Department of Otolaryngology, PLA General Hospital, Beijing, People's Republic of China
| | - Guojian Wang
- Department of Otolaryngology, PLA General Hospital, Beijing, People's Republic of China
- Department of Otolaryngology, Hainan Branch of PLA General Hospital, Sanya, People's Republic of China
| | - Hongtian Wang
- Department of Otolaryngology, PLA General Hospital, Beijing, People's Republic of China
| | - Deliang Huang
- Department of Otolaryngology, PLA General Hospital, Beijing, People's Republic of China
| | - Dongyi Han
- Department of Otolaryngology, PLA General Hospital, Beijing, People's Republic of China
| | - Pu Dai
- Department of Otolaryngology, PLA General Hospital, Beijing, People's Republic of China
- Department of Otolaryngology, Hainan Branch of PLA General Hospital, Sanya, People's Republic of China
| |
Collapse
|
28
|
Hurd EA, Adams ME, Layman WS, Swiderski DL, Beyer LA, Halsey KE, Benson JM, Gong TW, Dolan DF, Raphael Y, Martin DM. Mature middle and inner ears express Chd7 and exhibit distinctive pathologies in a mouse model of CHARGE syndrome. Hear Res 2011; 282:184-95. [PMID: 21875659 DOI: 10.1016/j.heares.2011.08.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 08/15/2011] [Accepted: 08/16/2011] [Indexed: 10/17/2022]
Abstract
Heterozygous mutations in the gene encoding chromodomain-DNA-binding-protein 7 (CHD7) cause CHARGE syndrome, a multiple anomaly condition which includes vestibular dysfunction and hearing loss. Mice with heterozygous Chd7 mutations exhibit semicircular canal dysgenesis and abnormal inner ear neurogenesis, and are an excellent model of CHARGE syndrome. Here we characterized Chd7 expression in mature middle and inner ears, analyzed morphological features of mutant ears and tested whether Chd7 mutant mice have altered responses to noise exposure and correlated those responses to inner and middle ear structure. We found that Chd7 is highly expressed in mature inner and outer hair cells, spiral ganglion neurons, vestibular sensory epithelia and middle ear ossicles. There were no obvious defects in individual hair cell morphology by prestin immunostaining or scanning electron microscopy, and cochlear innervation appeared normal in Chd7(Gt)(/+) mice. Hearing thresholds by auditory brainstem response (ABR) testing were elevated at 4 and 16 kHz in Chd7(Gt)(/+) mice, and there were reduced distortion product otoacoustic emissions (DPOAE). Exposure of Chd7(Gt)(/+) mice to broadband noise resulted in variable degrees of hair cell loss which inversely correlated with severity of stapedial defects. The degrees of hair cell loss and threshold shifts after noise exposure were more severe in wild type mice than in mutants. Together, these data indicate that Chd7(Gt)(/+) mice have combined conductive and sensorineural hearing loss, correlating with changes in both middle and inner ears.
Collapse
Affiliation(s)
- Elizabeth A Hurd
- Department of Pediatrics, 3520A MSRB I, University of Michigan, Ann Arbor, MI 48109-5652, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Appler JM, Goodrich LV. Connecting the ear to the brain: Molecular mechanisms of auditory circuit assembly. Prog Neurobiol 2011; 93:488-508. [PMID: 21232575 PMCID: PMC3078955 DOI: 10.1016/j.pneurobio.2011.01.004] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 12/09/2010] [Accepted: 01/03/2011] [Indexed: 12/21/2022]
Abstract
Our sense of hearing depends on precisely organized circuits that allow us to sense, perceive, and respond to complex sounds in our environment, from music and language to simple warning signals. Auditory processing begins in the cochlea of the inner ear, where sounds are detected by sensory hair cells and then transmitted to the central nervous system by spiral ganglion neurons, which faithfully preserve the frequency, intensity, and timing of each stimulus. During the assembly of auditory circuits, spiral ganglion neurons establish precise connections that link hair cells in the cochlea to target neurons in the auditory brainstem, develop specific firing properties, and elaborate unusual synapses both in the periphery and in the CNS. Understanding how spiral ganglion neurons acquire these unique properties is a key goal in auditory neuroscience, as these neurons represent the sole input of auditory information to the brain. In addition, the best currently available treatment for many forms of deafness is the cochlear implant, which compensates for lost hair cell function by directly stimulating the auditory nerve. Historically, studies of the auditory system have lagged behind other sensory systems due to the small size and inaccessibility of the inner ear. With the advent of new molecular genetic tools, this gap is narrowing. Here, we summarize recent insights into the cellular and molecular cues that guide the development of spiral ganglion neurons, from their origin in the proneurosensory domain of the otic vesicle to the formation of specialized synapses that ensure rapid and reliable transmission of sound information from the ear to the brain.
Collapse
Affiliation(s)
- Jessica M Appler
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
30
|
Radosevic M, Robert-Moreno À, Coolen M, Bally-Cuif L, Alsina B. Her9 represses neurogenic fate downstream of Tbx1 and retinoic acid signaling in the inner ear. Development 2011; 138:397-408. [DOI: 10.1242/dev.056093] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Proper spatial control of neurogenesis in the inner ear ensures the precise innervation of mechanotransducing cells and the propagation of auditory and equilibrium stimuli to the brain. Members of the Hairy and enhancer of split (Hes) gene family regulate neurogenesis by inhibiting neuronal differentiation and maintaining neural stem cell pools in non-neurogenic zones. Remarkably, their role in the spatial control of neurogenesis in the ear is unknown. In this study, we identify her9, a zebrafish ortholog of Hes1, as a key gene in regulating otic neurogenesis through the definition of the posterolateral non-neurogenic field. First, her9 emerges as a novel otic patterning gene that represses proneural function and regulates the extent of the neurogenic domain. Second, we place Her9 downstream of Tbx1, linking these two families of transcription factors for the first time in the inner ear and suggesting that the reported role of Tbx1 in repressing neurogenesis is in part mediated by the bHLH transcriptional repressor Her9. Third, we have identified retinoic acid (RA) signaling as the upstream patterning signal of otic posterolateral genes such as tbx1 and her9. Finally, we show that at the level of the cranial otic field, opposing RA and Hedgehog signaling position the boundary between the neurogenic and non-neurogenic compartments. These findings permit modeling of the complex genetic cascade that underlies neural patterning of the otic vesicle.
Collapse
Affiliation(s)
- Marija Radosevic
- Developmental Biology Laboratory, Dept. Ciències Experimentals i de la Salut, Universitat Pompeu Fabra-Parc de Recerca Biomèdica de Barcelona, Dr Aiguader 88, 08003 Barcelona, Spain
| | - Àlex Robert-Moreno
- Developmental Biology Laboratory, Dept. Ciències Experimentals i de la Salut, Universitat Pompeu Fabra-Parc de Recerca Biomèdica de Barcelona, Dr Aiguader 88, 08003 Barcelona, Spain
| | - Marion Coolen
- Laboratory of Neurobiology and Development, Institute of Neurobiology Alfred Fessard, CNRS, Avenue de Terrasse, 91198 cedex, Gif-sur-Yvette, France
| | - Laure Bally-Cuif
- Laboratory of Neurobiology and Development, Institute of Neurobiology Alfred Fessard, CNRS, Avenue de Terrasse, 91198 cedex, Gif-sur-Yvette, France
| | - Berta Alsina
- Developmental Biology Laboratory, Dept. Ciències Experimentals i de la Salut, Universitat Pompeu Fabra-Parc de Recerca Biomèdica de Barcelona, Dr Aiguader 88, 08003 Barcelona, Spain
| |
Collapse
|
31
|
Abstract
The middle ear is a composite organ formed from all three germ layers and the neural crest. It provides the link between the outside world and the inner ear, where sound is transduced and routed to the brain for processing. Extensive classical and modern studies have described the complex morphology and origin of the middle ear. Non-mammalian vertebrates have a single ossicle, the columella. Mammals have three functionally equivalent ossicles, designated the malleus, incus and stapes. In this review, I focus on the role of genes known to function in the middle ear. Genetic studies are beginning to unravel the induction and patterning of the multiple middle ear elements including the tympanum, skeletal elements, the air-filled cavity, and the insertion point into the inner ear oval window. Future studies that elucidate the integrated spatio-temporal signaling mechanisms required to pattern the middle ear organ system are needed. The longer-term translational benefits of understanding normal and abnormal ear development will have a direct impact on human health outcomes.
Collapse
|
32
|
Nie X, Brown CB, Wang Q, Jiao K. Inactivation of Bmp4 from the Tbx1 expression domain causes abnormal pharyngeal arch artery and cardiac outflow tract remodeling. Cells Tissues Organs 2010; 193:393-403. [PMID: 21123999 PMCID: PMC3124451 DOI: 10.1159/000321170] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2010] [Indexed: 11/19/2022] Open
Abstract
Maldevelopment of outflow tract and aortic arch arteries is among the most common forms of human congenital heart diseases. Both Bmp4 and Tbx1 are known to play critical roles during cardiovascular development. Expression of these two genes partially overlaps in pharyngeal arch areas in mouse embryos. In this study, we applied a conditional gene inactivation approach to test the hypothesis that Bmp4 expressed from the Tbx1 expression domain plays a critical role for normal development of outflow tract and pharyngeal arch arteries. We showed that inactivation of Bmp4 from Tbx1-expressing cells leads to the spectrum of deformities resembling the cardiovascular defects observed in human DiGeorge syndrome patients. Inactivation of Bmp4 from the Tbx1 expression domain did not cause patterning defects, but affected remodeling of outflow tract and pharyngeal arch arteries. Our further examination revealed that Bmp4 is required for normal recruitment/differentiation of smooth muscle cells surrounding the PAA4 and survival of outflow tract cushion mesenchymal cells.
Collapse
Affiliation(s)
- Xuguang Nie
- Division of Research, Department of Genetics, University of Alabama at Birmingham, Birmingham, Ala., USA
| | - Christopher B. Brown
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tenn., USA
| | - Qin Wang
- Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, Ala., USA
| | - Kai Jiao
- Division of Research, Department of Genetics, University of Alabama at Birmingham, Birmingham, Ala., USA
| |
Collapse
|
33
|
Minoux M, Rijli FM. Molecular mechanisms of cranial neural crest cell migration and patterning in craniofacial development. Development 2010; 137:2605-21. [DOI: 10.1242/dev.040048] [Citation(s) in RCA: 329] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During vertebrate craniofacial development, neural crest cells (NCCs) contribute much of the cartilage, bone and connective tissue that make up the developing head. Although the initial patterns of NCC segmentation and migration are conserved between species, the variety of vertebrate facial morphologies that exist indicates that a complex interplay occurs between intrinsic genetic NCC programs and extrinsic environmental signals during morphogenesis. Here, we review recent work that has begun to shed light on the molecular mechanisms that govern the spatiotemporal patterning of NCC-derived skeletal structures – advances that are central to understanding craniofacial development and its evolution.
Collapse
Affiliation(s)
- Maryline Minoux
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
- Faculté de Chirurgie Dentaire, 1, Place de l'Hôpital, 67000 Strasbourg, France
| | - Filippo M. Rijli
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| |
Collapse
|
34
|
Aggarwal VS, Carpenter C, Freyer L, Liao J, Petti M, Morrow BE. Mesodermal Tbx1 is required for patterning the proximal mandible in mice. Dev Biol 2010; 344:669-81. [PMID: 20501333 PMCID: PMC2917794 DOI: 10.1016/j.ydbio.2010.05.496] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2009] [Revised: 05/13/2010] [Accepted: 05/17/2010] [Indexed: 11/23/2022]
Abstract
Defects in the lower jaw, or mandible, occur commonly either as isolated malformations or in association with genetic syndromes. Understanding its formation and genetic pathways required for shaping its structure in mammalian model organisms will shed light into the pathogenesis of malformations in humans. The lower jaw is derived from the mandibular process of the first pharyngeal arch (MdPA1) during embryogenesis. Integral to the development of the mandible is the signaling interplay between Fgf8 and Bmp4 in the rostral ectoderm and their downstream effector genes in the underlying neural crest derived mesenchyme. The non-neural crest MdPA1 core mesoderm is needed to form muscles of mastication, but its role in patterning the mandible is unknown. Here, we show that mesoderm specific deletion of Tbx1, a T-box transcription factor and gene for velo-cardio-facial/DiGeorge syndrome, results in defects in formation of the proximal mandible by shifting expression of Fgf8, Bmp4 and their downstream effector genes in mouse embryos at E10.5. This occurs without significant changes in cell proliferation or apoptosis at the same stage. Our results elucidate a new function for the non-neural crest core mesoderm and specifically, mesodermal Tbx1, in shaping the lower jaw.
Collapse
Affiliation(s)
- Vimla S. Aggarwal
- Department of Molecular Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Courtney Carpenter
- Department of Surgery, Montefiore Medical Center, 111 East 210 Street, Bronx, NY 10467, USA
| | - Laina Freyer
- Department of Molecular Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Jun Liao
- Department of Molecular Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Marilena Petti
- Department of Molecular Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Bernice E. Morrow
- Department of Molecular Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| |
Collapse
|
35
|
Freyer L, Morrow BE. Canonical Wnt signaling modulates Tbx1, Eya1, and Six1 expression, restricting neurogenesis in the otic vesicle. Dev Dyn 2010; 239:1708-22. [PMID: 20503367 PMCID: PMC2987613 DOI: 10.1002/dvdy.22308] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
To understand the mechanism by which canonical Wnt signaling sets boundaries for pattern formation in the otic vesicle (OV), we examined Tbx1 and Eya1-Six1 downstream of activated beta-catenin. Tbx1, the gene for velo-cardio-facial syndrome/DiGeorge syndrome (VCFS/DGS), is essential for inner ear development where it promotes Bmp4 and Otx1 expression and restricts neurogenesis. Using floxed beta-catenin gain-of-function (GOF) and loss-of-function (LOF) alleles, we found Tbx1 expression was down-regulated and maintained/enhanced in the two mouse mutants, respectively. Bmp4 was ectopically expressed and Otx1 was lost in beta-catenin GOF mutants. Normally, inactivation of Tbx1 causes expanded neurogenesis, but expression of NeuroD was down-regulated in beta-catenin GOF mutants. To explain this paradox, Eya1 and Six1, genes for branchio-oto-renal (BOR) syndrome were down-regulated in the OV of beta-catenin GOF mutants independently of Tbx1. Overall, this work helps explain the mechanism by which Wnt signaling modulates transcription factors required for neurogenesis and patterning of the OV.
Collapse
Affiliation(s)
- Laina Freyer
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY 10461
| | - Bernice E. Morrow
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY 10461
- Departments of Ob/Gyn and Pediatrics, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY 10461
| |
Collapse
|
36
|
Johnson JM, Moonis G, Green GE, Carmody R, Burbank HN. Syndromes of the first and second branchial arches, part 1: embryology and characteristic defects. AJNR Am J Neuroradiol 2010; 32:14-9. [PMID: 20299437 DOI: 10.3174/ajnr.a2072] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A variety of congenital syndromes affecting the face occur due to defects involving the first and second BAs. Radiographic evaluation of craniofacial deformities is necessary to define aberrant anatomy, plan surgical procedures, and evaluate the effects of craniofacial growth and surgical reconstructions. High-resolution CT has proved vital in determining the nature and extent of these syndromes. The radiologic evaluation of syndromes of the first and second BAs should begin first by studying a series of isolated defects: CL with or without CP, micrognathia, and EAC atresia, which compose the major features of these syndromes and allow more specific diagnosis. After discussion of these defects and the associated embryology, we proceed to discuss the VCFS, PRS, ACS, TCS, Stickler syndrome, and HFM.
Collapse
Affiliation(s)
- J M Johnson
- Division of Neuroradiology, Department of Radiology, Fletcher Allen Health Care, Burlington, Vermont 05401, USA.
| | | | | | | | | |
Collapse
|
37
|
Bradshaw L, Chaudhry B, Hildreth V, Webb S, Henderson DJ. Dual role for neural crest cells during outflow tract septation in the neural crest-deficient mutant Splotch(2H). J Anat 2009; 214:245-57. [PMID: 19207986 PMCID: PMC2667882 DOI: 10.1111/j.1469-7580.2008.01028.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2008] [Indexed: 01/02/2023] Open
Abstract
Splotch(2H) (Sp(2H)) is a well-recognized mouse model of neural crest cell (NCC) deficiency that develops a spectrum of cardiac outflow tract malformations including common arterial trunk, double outlet right ventricle, ventricular septal defects and pharyngeal arch artery patterning defects, as well as defects in other neural-crest derived organ systems. These defects have been ascribed to reduced NCC in the pharyngeal and outflow regions. Here we provide a detailed map of NCC within the pharyngeal arches and outflow tract of Sp(2H)/Sp(2H) embryos and fetuses, relating this to the development of the abnormal anatomy of these structures. In the majority of Sp(2H)/Sp(2H) embryos we show that deficiency of NCC in the pharyngeal region results in a failure to stabilize, and early loss of, posterior pharyngeal arch arteries. Furthermore, marked reduction in the NCC-derived mesenchyme in the dorsal wall of the aortic sac disrupts fusion with the distal outflow tract cushions, preventing the initiation of outflow tract septation and resulting in common arterial trunk. In around 25% of Sp(2H)/Sp(2H) embryos, posterior arch arteries are stabilized and fusion occurs between the dorsal wall of the aortic sac and the outflow cushions, initiating outflow tract septation; these embryos develop double outlet right ventricle. Thus, NCC are required in the pharyngeal region both for stabilization of posterior arch arteries and initiation of outflow tract septation. Loss of NCC also disrupts the distribution of second heart field cells in the pharyngeal and outflow regions. These secondary effects of NCC deficiency likely contribute to the overall outflow phenotype, suggesting that disrupted interactions between these two cell types may underlie many common outflow defects.
Collapse
Affiliation(s)
- Lucy Bradshaw
- Institute of Human Genetics, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | | | |
Collapse
|
38
|
Vázquez-Echeverría C, Dominguez-Frutos E, Charnay P, Schimmang T, Pujades C. Analysis of mouse kreisler mutants reveals new roles of hindbrain-derived signals in the establishment of the otic neurogenic domain. Dev Biol 2008; 322:167-78. [PMID: 18703040 DOI: 10.1016/j.ydbio.2008.07.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 07/17/2008] [Accepted: 07/17/2008] [Indexed: 10/21/2022]
Abstract
The inner ear, the sensory organ responsible for hearing and balance, contains specialized sensory and non-sensory epithelia arranged in a highly complex three-dimensional structure. To achieve this complexity, a tight coordination between morphogenesis and cell fate specification is essential during otic development. Tissues surrounding the otic primordium, and more particularly the adjacent segmented hindbrain, have been implicated in specifying structures along the anteroposterior and dorsoventral axes of the inner ear. In this work we have first characterized the generation and axial specification of the otic neurogenic domain, and second, we have investigated the effects of the mutation of kreisler/MafB--a gene transiently expressed in rhombomeres 5 and 6 of the developing hindbrain--in early otic patterning and cell specification. We show that kr/kr embryos display an expansion of the otic neurogenic domain, due to defects in otic patterning. Although many reports have pointed to the role of FGF3 in otic regionalisation, we provide evidence that FGF3 is not sufficient to govern this process. Neither Krox20 nor Fgf3 mutant embryos, characterized by a downregulation or absence of Fgf3 in r5 and r6, display ectopic neuroblasts in the otic primordium. However, Fgf3-/-Fgf10-/- double mutants show a phenotype very similar to kr/kr embryos: they present ectopic neuroblasts along the AP and DV otic axes. Finally, partial rescue of the kr/kr phenotype is obtained when Fgf3 or Fgf10 are ectopically expressed in the hindbrain of kr/kr embryos. These results highlight the importance of hindbrain-derived signals in the regulation of otic neurogenesis.
Collapse
Affiliation(s)
- Citlali Vázquez-Echeverría
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003 Barcelona, Spain
| | | | | | | | | |
Collapse
|
39
|
Liao J, Aggarwal VS, Nowotschin S, Bondarev A, Lipner S, Morrow BE. Identification of downstream genetic pathways of Tbx1 in the second heart field. Dev Biol 2008; 316:524-37. [PMID: 18328475 PMCID: PMC2494702 DOI: 10.1016/j.ydbio.2008.01.037] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 01/09/2008] [Accepted: 01/19/2008] [Indexed: 11/26/2022]
Abstract
Tbx1, a T-box transcription factor, and an important gene for velo-cardio-facial syndrome/DiGeorge syndrome (VCFS/DGS) in humans, causes outflow tract (OFT) heart defects when inactivated in the mouse. Tbx1 is expressed in the second heart field (SHF) and is required in this tissue for OFT development. To identify Tbx1 regulated genetic pathways in the SHF, we performed gene expression profiling of the caudal pharyngeal region in Tbx1(-/-) and wild type embryos. Isl1, a key marker for the SHF, as well as Hod and Nkx2-6, were downregulated in Tbx1(-/-) mutants, while genes required for cardiac morphogenesis, such as Raldh2, Gata4, and Tbx5, as well as a subset of muscle contractile genes, signifying myocardial differentiation, were ectopically expressed. Pan-mesodermal ablation of Tbx1 resulted in similar gene expression changes, suggesting cell-autonomous roles of Tbx1 in regulating these genes. Opposite expression changes concomitant with SHF-derived cardiac defects occurred in TBX1 gain-of-function mutants, indicating that appropriate levels of Tbx1 are required for heart development. When taken together, our studies show that Tbx1 acts upstream in a genetic network that positively regulates SHF cell proliferation and negatively regulates differentiation, cell-autonomously in the caudal pharyngeal region.
Collapse
Affiliation(s)
- Jun Liao
- Department of Molecular Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | - Vimla S. Aggarwal
- Department of Molecular Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | - Sonja Nowotschin
- Department of Molecular Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | - Alexei Bondarev
- Department of Molecular Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | - Shari Lipner
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | - Bernice E. Morrow
- Department of Molecular Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| |
Collapse
|
40
|
Xu H, Chen L, Baldini A. In vivo genetic ablation of the periotic mesoderm affects cell proliferation survival and differentiation in the cochlea. Dev Biol 2007; 310:329-40. [PMID: 17825816 PMCID: PMC2223065 DOI: 10.1016/j.ydbio.2007.08.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2007] [Revised: 07/24/2007] [Accepted: 08/01/2007] [Indexed: 02/08/2023]
Abstract
Tbx1 is required for ear development in humans and mice. Gene manipulation in the mouse has discovered multiple consequences of loss of function on early development of the inner ear, some of which are attributable to a cell autonomous role in maintaining cell proliferation of epithelial progenitors of the cochlear and vestibular apparata. However, ablation of the mesodermal domain of the gene also results in severe but more restricted abnormalities. Here we show that Tbx1 has a dynamic expression during late development of the ear, in particular, is expressed in the sensory epithelium of the vestibular organs but not of the cochlea. Vice versa, it is expressed in the condensed mesenchyme that surrounds the cochlea but not in the one that surrounds the vestibule. Loss of Tbx1 in the mesoderm disrupts this peri-cochlear capsule by strongly reducing the proliferation of mesenchymal cells. The organogenesis of the cochlea, which normally occurs inside the capsule, was dramatically affected in terms of growth of the organ, as well as proliferation, differentiation and survival of its epithelial cells. This model provides a striking demonstration of the essential role played by the periotic mesenchyme in the organogenesis of the cochlea.
Collapse
Affiliation(s)
- Huansheng Xu
- Institute of Biosciences and Technology, Texas A&M University Health Sciences Center, Houston, TX 77030
| | - Li Chen
- Institute of Biosciences and Technology, Texas A&M University Health Sciences Center, Houston, TX 77030
- Program in Cardiovascular Sciences, Baylor College of Medicine, Houston, TX 77030
| | - Antonio Baldini
- Institute of Biosciences and Technology, Texas A&M University Health Sciences Center, Houston, TX 77030
- Program in Cardiovascular Sciences, Baylor College of Medicine, Houston, TX 77030
- Telethon Institute of Genetics and Medicine, Naples, Italy
| |
Collapse
|
41
|
Chen J, Nathans J. Estrogen-Related Receptor β/NR3B2 Controls Epithelial Cell Fate and Endolymph Production by the Stria Vascularis. Dev Cell 2007; 13:325-37. [PMID: 17765677 DOI: 10.1016/j.devcel.2007.07.011] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 07/16/2007] [Accepted: 07/18/2007] [Indexed: 11/24/2022]
Abstract
In the mammalian inner ear, endolymph is produced and resorbed by a complex series of epithelia. We show here that estrogen-related receptor beta (ERR-beta; NR3B2), an orphan nuclear receptor, is specifically expressed in and controls the development of the endolymph-producing cells of the inner ear: the strial marginal cells in the cochlea and the vestibular dark cells in the ampulla and utricle. Nr3b2(-/-) strial marginal cells fail to express multiple ion channel and transporter genes, and they show a partial transformation toward the fate of the immediately adjacent Pendrin-expressing epithelial cells. In genetically mosaic mice, Nr3b2(-/-) strial marginal cells produce secondary alterations in gene expression in the underlying intermediate cells and a local loss of strial capillaries. A systematic comparison of transcripts in the WT versus Nr3b2(-/-) stria vascularis has identified a set of genes that is likely to play a role in the development and/or function of endolymph-producing epithelia.
Collapse
Affiliation(s)
- Jichao Chen
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
42
|
Abstract
In the year 1955, Sedlácková described a syndrome of congenitally shortened velum accompanied by hypernasal speech, facial dysmorphisms and further anomalies, as well as mental retardation. In the following years, she also reported on cardiac malformations and submucous clefts. In 1978, Shprintzen's group published a very similar pattern apart from overt clefts, coined it as velocardiofacial syndrome (VCFS) and explained it in 1992 by microdeletion 22q11.2. Between 1996 and 2001, Vrticka and colleagues demonstrated del 22q11.2 in 16 of 20 cases classified as Sedlácková syndrome. Thus, the common etiology and the identity of Sedlácková syndrome with Shprintzen syndrome were proven. Our findings of frequent cardiovascular malformations, of prevailing mental retardation and of several late-onset psychoses emphasize the necessity of genetic testing in all individuals suspected of VCFS. In del 22q11.2-proven cases, we recommend genetic counseling because of the risk of more severe expression of the VCFS symptoms in subsequent generations. Recently, several authors repeatedly stressed the importance of VCFS by pointing out the associated cardiac and laryngeal malformations and by warning against the risk of innate carotid medialization in velopharyngeal surgery, by evoking linked otological problems, by elucidating the accompanying immune and hormonal dysfunctions, by summarizing the voice and resonance disorders as well as by discussing the difficulties in rehabilitation due to mental, language and speech retardation in VCFS subjects. Because of its multiple impact, the clinical pattern of VCFS due to del 22q11.2 remains a persistent and important present-day diagnostic and therapeutic challenge.
Collapse
Affiliation(s)
- Karel Vrticka
- Department of Phoniatrics, Cantonal Hospital Lucerne, Lucerne, Switzerland.
| |
Collapse
|
43
|
Gammill LS, Gonzalez C, Bronner-Fraser M. Neuropilin 2/semaphorin 3F signaling is essential for cranial neural crest migration and trigeminal ganglion condensation. Dev Neurobiol 2007; 67:47-56. [PMID: 17443771 DOI: 10.1002/dneu.20326] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the head of vertebrate embryos, neural crest cells migrate from the neural tube into the presumptive facial region and condense to form cranial ganglia and skeletal elements in the branchial arches. We show that newly formed neural folds and migrating neural crest cells express the neuropilin 2 (npn2) receptor in a manner that is highly conserved in amniotes. The repulsive npn2 ligand semaphorin (sema) 3F is expressed in a complementary pattern in the mouse. Furthermore, mice carrying null mutations for either npn2 or sema3F have abnormal cranial neural crest migration. Most notably, "bridges" of migrating cells are observed crossing between neural crest streams entering branchial arches 1 and 2. In addition, trigeminal ganglia fail to form correctly in the mutants and are improperly condensed and loosely organized. These data show that npn2/sema3F signaling is required for proper cranial neural crest development in the head.
Collapse
Affiliation(s)
- Laura S Gammill
- Division of Biology 139-74, California Institute of Technology, Pasadena, California 91125, USA
| | | | | |
Collapse
|
44
|
Song MR, Shirasaki R, Cai CL, Ruiz EC, Evans SM, Lee SK, Pfaff SL. T-Box transcription factor Tbx20 regulates a genetic program for cranial motor neuron cell body migration. Development 2007; 133:4945-55. [PMID: 17119020 PMCID: PMC5851594 DOI: 10.1242/dev.02694] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Members of the T-box transcription factor family (Tbx) are associated with several human syndromes during embryogenesis. Nevertheless, their functions within the developing CNS remain poorly characterized. Tbx20 is expressed by migrating branchiomotor/visceromotor (BM/VM) neurons within the hindbrain during neuronal circuit formation. We examined Tbx20 function in BM/VM cells using conditional Tbx20-null mutant mice to delete the gene in neurons. Hindbrain rhombomere patterning and the initial generation of post-mitotic BM/VM neurons were normal in Tbx20 mutants. However, Tbx20 was required for the tangential (caudal) migration of facial neurons, the lateral migration of trigeminal cells and the trans-median movement of vestibuloacoustic neurons. Facial cell soma migration defects were associated with the coordinate downregulation of multiple components of the planar cell polarity pathway including Fzd7, Wnt11, Prickle1, Vang1 and Vang2. Our study suggests that Tbx20 programs a variety of hindbrain motor neurons for migration, independent of directionality, and in facial neurons is a positive regulator of the non-canonical Wnt signaling pathway.
Collapse
Affiliation(s)
- Mi-Ryoung Song
- Gene Expression Laboratory, The Salk Institute, La Jolla, CA 92037, USA
| | - Ryuichi Shirasaki
- Gene Expression Laboratory, The Salk Institute, La Jolla, CA 92037, USA
| | - Chen-Leng Cai
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Esmeralda C. Ruiz
- Gene Expression Laboratory, The Salk Institute, La Jolla, CA 92037, USA
| | - Sylvia M. Evans
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Soo-Kyung Lee
- Gene Expression Laboratory, The Salk Institute, La Jolla, CA 92037, USA
| | - Samuel L. Pfaff
- Gene Expression Laboratory, The Salk Institute, La Jolla, CA 92037, USA
- Author for correspondence ()
| |
Collapse
|
45
|
Xu H, Viola A, Zhang Z, Gerken CP, Lindsay-Illingworth EA, Baldini A. Tbx1 regulates population, proliferation and cell fate determination of otic epithelial cells. Dev Biol 2007; 302:670-82. [PMID: 17074316 PMCID: PMC1850623 DOI: 10.1016/j.ydbio.2006.10.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Revised: 09/30/2006] [Accepted: 10/03/2006] [Indexed: 11/21/2022]
Abstract
The T-box transcription factor Tbx1 is required for inner ear morphogenesis. Tbx1 null mutants have a small otocyst that fails to grow and remodel and does not give rise to the vestibular and cochlear apparata. Here we show that Tbx1 expression-driven cell tracing identifies a population of otic epithelial cells that contributes to most of the otocyst. Tbx1 is essential for the contribution of this population to the inner ear. Ablation of Tbx1 after this cell population has established itself in the otocyst, restores marker expression lost in germ line mutants, but causes severe reduction in mitotic activity, cell autonomously. Furthermore, timed cell fate mapping demonstrates that loss of Tbx1 switches the fate of some members of the Tbx1-dependent cell population, from non-neurogenic to neurogenic, an event associated with activation of the Delta-Notch pathway. Finally, tissue-specific ablation of Tbx1 demonstrates that, while the abovementioned phenotypic abnormalities are due to loss of epithelial expression of Tbx1, cochlear morphogenesis requires mesodermal Tbx1 expression. We conclude that the main functions of Tbx1 in the inner ear are to control, cell-autonomously, contribution, size and fate of a large population of otic epithelial cells, and, cell non-autonomously, cochlear morphogenesis.
Collapse
Affiliation(s)
- Huansheng Xu
- Institute of Biosciences and Technology, Texas A&M University System, Houston, TX, 77030
- Program in Cardiovascular Sciences, Baylor College of Medicine, Houston, TX, 77030
| | - Antonella Viola
- Department of Biochemistry, University Federico II, and Tigem, Via P. Castellino Naples, Italy
| | - Zhen Zhang
- Program in Cardiovascular Sciences, Baylor College of Medicine, Houston, TX, 77030
| | - Claudia P. Gerken
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030
| | - Elizabeth A. Lindsay-Illingworth
- Institute of Biosciences and Technology, Texas A&M University System, Houston, TX, 77030
- Department of Biochemistry, University Federico II, and Tigem, Via P. Castellino Naples, Italy
| | - Antonio Baldini
- Institute of Biosciences and Technology, Texas A&M University System, Houston, TX, 77030
- Department of Biochemistry, University Federico II, and Tigem, Via P. Castellino Naples, Italy
- Program in Cardiovascular Sciences, Baylor College of Medicine, Houston, TX, 77030
| |
Collapse
|
46
|
Gammill LS, Gonzalez C, Bronner-Fraser M. Neuropilin 2/semaphorin 3F signaling is essential for cranial neural crest migration and trigeminal ganglion condensation. ACTA ACUST UNITED AC 2007. [DOI: 10.1002/neu.20326] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
47
|
Dastjerdi A, Robson L, Walker R, Hadley J, Zhang Z, Rodriguez-Niedenführ M, Ataliotis P, Baldini A, Scambler P, Francis-West P. Tbx1 regulation of myogenic differentiation in the limb and cranial mesoderm. Dev Dyn 2007; 236:353-63. [PMID: 17117436 DOI: 10.1002/dvdy.21010] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The T-box transcription factor Tbx1 has been implicated in DiGeorge syndrome, the most frequent syndrome due to a chromosomal deletion. Gene inactivation of Tbx1 in mice results in craniofacial and branchial arch defects, including myogenic defects in the first and second branchial arches. A T-box binding site has been identified in the Xenopus Myf5 promoter, and in other species, T-box genes have been implicated in myogenic fate. Here we analyze Tbx1 expression in the developing chick embryo relating its expression to the onset of myogenic differentiation and cellular fate within the craniofacial mesoderm. We show that Tbx1 is expressed before capsulin, the first known marker of branchial arch 1 and 2 muscles. We also show that, as in the mouse, Tbx1 is expressed in endothelial cells, another mesodermal derivative, and, therefore, Tbx1 alone cannot specify the myogenic lineage. In addition, Tbx1 expression was identified in both chick and mouse limb myogenic cells, initially being restricted to the dorsal muscle mass, but in contrast, to the head, here Tbx1 is expressed after the onset of myogenic commitment. Functional studies revealed that loss of Tbx1 function reduces the number of myocytes in the head and limb, whereas increasing Tbx1 activity has the converse effect. Finally, analysis of the Tbx1-mesoderm-specific knockout mouse demonstrated the cell autonomous requirement for Tbx1 during myocyte development in the cranial mesoderm.
Collapse
Affiliation(s)
- Akbar Dastjerdi
- Department of Craniofacial Development, King's College London, Guy's Tower, London Bridge, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Nissen RM, Amsterdam A, Hopkins N. A zebrafish screen for craniofacial mutants identifies wdr68 as a highly conserved gene required for endothelin-1 expression. BMC DEVELOPMENTAL BIOLOGY 2006; 6:28. [PMID: 16759393 PMCID: PMC1523201 DOI: 10.1186/1471-213x-6-28] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Accepted: 06/07/2006] [Indexed: 12/16/2022]
Abstract
BACKGROUND Craniofacial birth defects result from defects in cranial neural crest (NC) patterning and morphogenesis. The vertebrate craniofacial skeleton is derived from cranial NC cells and the patterning of these cells occurs within the pharyngeal arches. Substantial efforts have led to the identification of several genes required for craniofacial skeletal development such as the endothelin-1 (edn1) signaling pathway that is required for lower jaw formation. However, many essential genes required for craniofacial development remain to be identified. RESULTS Through screening a collection of insertional zebrafish mutants containing approximately 25% of the genes essential for embryonic development, we present the identification of 15 essential genes that are required for craniofacial development. We identified 3 genes required for hyomandibular development. We also identified zebrafish models for Campomelic Dysplasia and Ehlers-Danlos syndrome. To further demonstrate the utility of this method, we include a characterization of the wdr68 gene. We show that wdr68 acts upstream of the edn1 pathway and is also required for formation of the upper jaw equivalent, the palatoquadrate. We also present evidence that the level of wdr68 activity required for edn1 pathway function differs between the 1st and 2nd arches. Wdr68 interacts with two minibrain-related kinases, Dyrk1a and Dyrk1b, required for embryonic growth and myotube differentiation, respectively. We show that a GFP-Wdr68 fusion protein localizes to the nucleus with Dyrk1a in contrast to an engineered loss of function mutation Wdr68-T284F that no longer accumulated in the cell nucleus and failed to rescue wdr68 mutant animals. Wdr68 homologs appear to exist in all eukaryotic genomes. Notably, we found that the Drosophila wdr68 homolog CG14614 could substitute for the vertebrate wdr68 gene even though insects lack the NC cell lineage. CONCLUSION This work represents a systematic identification of approximately 25% of the essential genes required for craniofacial development. The identification of zebrafish models for two human disease syndromes indicates that homologs to the other genes are likely to also be relevant for human craniofacial development. The initial characterization of wdr68 suggests an important role in craniofacial development for the highly conserved Wdr68-Dyrk1 protein complexes.
Collapse
Affiliation(s)
- Robert M Nissen
- Center for Cancer Research and Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Department of Biological Sciences, California State University Los Angeles, 5151 State University Drive, Los Angeles, CA 90032, USA
| | - Adam Amsterdam
- Center for Cancer Research and Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Nancy Hopkins
- Center for Cancer Research and Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
49
|
Showell C, Christine KS, Mandel EM, Conlon FL. Developmental expression patterns of Tbx1, Tbx2, Tbx5, and Tbx20 in Xenopus tropicalis. Dev Dyn 2006; 235:1623-30. [PMID: 16477648 PMCID: PMC1635807 DOI: 10.1002/dvdy.20714] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
T-box genes have diverse functions during embryogenesis and are implicated in several human congenital disorders. Here, we report the identification, sequence analysis, and developmental expression patterns of four members of the T-box gene family in the diploid frog Xenopus tropicalis. These four genes-Tbx1, Tbx2, Tbx5, and Tbx20-have been shown to influence cardiac development in a variety of organisms, in addition to their individual roles in regulating other aspects of embryonic development. Our results highlight the high degree of evolutionary conservation between orthologs of these genes in X. tropicalis and other vertebrates, both at the molecular level and in their developmental expression patterns, and also identify novel features of their expression. Thus, X. tropicalis represents a potentially valuable vertebrate model in which to further investigate the functions of these genes through genetic approaches.
Collapse
Affiliation(s)
- Chris Showell
- Carolina Cardiovascular Biology Center and Department of Genetics, University of North Carolina at Chapel Hill, North Carolina
| | - Kathleen S. Christine
- Carolina Cardiovascular Biology Center and Department of Biology, University of North Carolina at Chapel Hill, North Carolina
| | - Elizabeth M. Mandel
- Carolina Cardiovascular Biology Center and Department of Biology, University of North Carolina at Chapel Hill, North Carolina
| | - Frank L. Conlon
- Carolina Cardiovascular Biology Center and Department of Genetics, University of North Carolina at Chapel Hill, North Carolina
- Carolina Cardiovascular Biology Center and Department of Biology, University of North Carolina at Chapel Hill, North Carolina
| |
Collapse
|
50
|
Walker MB, Trainor PA. Craniofacial malformations: intrinsic vs extrinsic neural crest cell defects in Treacher Collins and 22q11 deletion syndromes. Clin Genet 2006; 69:471-9. [PMID: 16712696 DOI: 10.1111/j.0009-9163.2006.00615.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The craniofacial complex is anatomically the most sophisticated part of the body. It houses all the major sensory organ systems and its origins are synonymous with vertebrate evolution. Of fundamental importance to craniofacial development is a specialized population of stem and progenitor cells, known as the neural crest, which generate the majority of the bone, cartilage, connective and peripheral nerve tissue in the head. Approximately one third of all congenital abnormalities exhibit craniofacial malformations and consequently, most craniofacial anomalies are considered to arise through primary defects in neural crest cell development. Recent advances however, have challenged this classical dogma, underscoring the influence of tissues with which the neural crest cells interact as the primary origin of patterning defects in craniofacial morphogenesis. In this review we discuss these neural crest cell interactions with mesoderm, endoderm and ectoderm in the head in the context of a better understanding of craniofacial malformations such as in Treacher Collins and 22q11 deletion syndromes.
Collapse
Affiliation(s)
- M B Walker
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | |
Collapse
|