1
|
Dudaniec RY, Yadav S, Catchen J, Kleindorfer S. Genomic Introgression Between Critically Endangered and Stable Species of Darwin's Tree Finches on the Galapagos Islands. Evol Appl 2025; 18:e70066. [PMID: 39760018 PMCID: PMC11695273 DOI: 10.1111/eva.70066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 11/24/2024] [Accepted: 12/15/2024] [Indexed: 01/07/2025] Open
Abstract
Natural hybridisation among rare or endangered species and stable congenerics is increasingly topical for the conservation of species-level diversity under anthropogenic impacts. Evidence for beneficial genes being introgressed into or selected for in hybrids raises concurrent questions about its evolutionary significance. In Darwin's tree finches on the island of Floreana (Galapagos Islands, Ecuador), the Critically Endangered medium tree finch (Camarhynchus pauper) undergoes introgression with the stable small tree finch (Camarhynchus parvulus), and hybrids regularly backcross with C. parvulus. Earlier studies in 2005-2013 documented an increase in the frequency of Camarhynchus hybridisation on Floreana using field-based and microsatellite data. With single nucleotide polymorphism (SNP) data from the same Floreana tree finches sampled in 2005 and 2013 (n = 95), we examine genome-wide divergence across parental and hybrid birds and evidence for selection in hybrids. We found that just 18% of previously assigned hybrid birds based on microsatellites could be assigned to hybrids using SNPs. Over half of the previously assigned hybrids (63%) were reassigned to C. parvulus, though parental species showed concordance with prior assignments. Of 4869 private alleles found in hybrid birds, 348 were at a high frequency (≥ 0.30) that exceeded their parental species of origin 89%-96% of the time. For private alleles detected in both years (N = 536) between 11%-76% of alleles underwent a frequency increase and 13%-61% a frequency decrease between 2005 and 2013, which was sensitive to sampling effort. We identified 28 private alleles that were candidates under selection via local PCA and outlier tests. Alleles were annotated to genes associated with inflammation, immunity, brain function and development. We provide evidence that introgression among a critically endangered and stable species of Darwin's tree finch across years may aid in the retention of adaptive alleles and genetic diversity in birds threatened with extinction.
Collapse
Affiliation(s)
- Rachael Y. Dudaniec
- School of Natural SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Sonu Yadav
- Biosecurity and Animal WelfareNorthern Territory GovernmentDarwinNorthwest TerritoriesAustralia
- Research Institute for the Environment and Livelihoods, Faculty of Science and TechnologyCharles Darwin UniversityDarwinNorthern TerritoryAustralia
| | - Julian Catchen
- Department of Evolution, Ecology, and BehaviorUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Sonia Kleindorfer
- College of Science and EngineeringFlinders UniversityBedford ParkSouth AustraliaAustralia
- Konrad Lorenz Research Center for Behavior and CognitionCore Facility of the University of ViennaViennaAustria
- Department of Behavioral and Cognitive BiologyUniversity of ViennaViennaAustria
| |
Collapse
|
2
|
El-Magd MA, Abdelfattah-Hassan A, Elsisy RA, Hawsawi YM, Oyouni AA, Al-Amer OM, El-Shetry ES. Expression and function of Ebf1 gene during chondrogenesis in chick embryo limb buds. Gene 2021; 803:145895. [PMID: 34384862 DOI: 10.1016/j.gene.2021.145895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 07/17/2021] [Accepted: 08/06/2021] [Indexed: 11/19/2022]
Abstract
The expression profile of early B-cell factor (Ebf) genes and loss of function experiments denote a crucial role for these genes during the late stage of skeletogenesis. However, little is known regarding the expression and function of these genes during the early stage of skeletogenesis. Therefore, this study aimed to detail the spatiotemporal expression pattern of cEbf1, in comparison to cEbf2 and cEbf3, in chick limb buds and investigate its function during chondrogenesis. cEbf1-3 were co-expressed in the distal mesenchyme from a very early stage and later in the outer perichondrium and the surrounding noncartilaginous mesenchymal cells. Ebf1 loss of function through injection of RCASBP virus-carrying Ebf1 dominant-negative form (ΔEbf1) into the wing buds resulted in shortened skeletal elements with a clear defect in the chondrocyte differentiation program. In RCASBP-ΔEbf1 injected wing, the chondrogenesis was initiated normally but hindered at the maturation stage. Subsequently, the chondrocytes failed to become mature or hypertrophic and the long bone diaphysis was not properly developed. The final phenotype included shorter, thicker, and fused long bones. These phenotypic changes were associated with downregulation of the early [Sox9 and collagen type II (Col2a1)] and the late [alkaline phosphatase (AP)] chondrocytes differentiation markers in the limb buds. These results conclude that cEbf1 could be involved in a molecular cascade that promotes the terminal stages of chondrogenesis in the long bone anlagen.
Collapse
Affiliation(s)
- Mohammed A El-Magd
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Post Box 33516, Kafrelsheikh, Egypt.
| | - Ahmed Abdelfattah-Hassan
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt; Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza 12578, Egypt
| | - Rasha A Elsisy
- Department of Anatomy, Faculty of Medicine, Kafrelsheikh University, Post Box 33516, Kafrelsheikh, Egypt
| | - Yousef M Hawsawi
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah 21499, P.O. Box 40047, Saudi Arabia; College of Medicine, Al-Faisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia
| | - Atif A Oyouni
- Genome and Biotechnology Unit, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia; Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Osama M Al-Amer
- Genome and Biotechnology Unit, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Eman S El-Shetry
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Egypt
| |
Collapse
|
3
|
El-Magd MA, Elsayed SA, El-Shetry ES, Abdelfattah-Hassan A, Saleh AA, Allen S, McGonnell I, Patel K. The role of chick Ebf genes in the mediolateral patterning of the somites. Genesis 2019; 57:e23339. [PMID: 31724301 DOI: 10.1002/dvg.23339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 11/06/2022]
Abstract
This study was conducted to check whether the three chick Early B-cell Factor (Ebf) genes, particularly cEbf1, would be targets for Shh and Bmp signals during somites mediolateral (ML) patterning. Tissue manipulations and gain and loss of function experiments for Shh and Bmp4 were performed and the results revealed that cEbf1 expression was initiated in the cranial presomitic mesoderm by low dose of Bmp4 from the lateral mesoderm and maintained in the ventromedial part of the epithelial somite and the medial sclerotome by Shh from the notochord; while cEbf2/3 expression was induced and maintained by Bmp4 and inhibited by high dose of Shh. To determine whether Ebf1 plays a role in somite patterning, transfection of a dominant-negative construct was carried out; this showed suppression of cPax1 expression in the medial sclerotome and upregulation and medial expansion of cEbf3 and cPax3 expression in sclerotome and dermomyotome, respectively, suggesting that Ebf1 is important for ML patterning. Thus, it is possible that low doses of Bmp4 set up Ebf1 expression which, together with Shh from the notochord, leads to establishment of the medial sclerotome and suppression of lateral identities. These data also conclude that Bmp4 is required in both the medial and lateral domain of the somitic mesoderm to keep the ML identity of the sclerotome through maintenance of cEbf gene expression. These striking findings are novel and give a new insight on the role of Bmp4 on mediolateral patterning of somites.
Collapse
Affiliation(s)
- Mohammed A El-Magd
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kfrelsheikh, Egypt
| | - Shafika A Elsayed
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Eman S El-Shetry
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed Abdelfattah-Hassan
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ayman A Saleh
- Department of Animal Wealth Development, Genetics and Genetic Engineering, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Steve Allen
- Department of Veterinary Basic Sciences, Royal Veterinary College, London, United Kingdom
| | - Imelda McGonnell
- Department of Veterinary Basic Sciences, Royal Veterinary College, London, United Kingdom
| | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| |
Collapse
|
4
|
Kim SY, Ko HS, Kim N, Yim SH, Jung SH, Kim J, Lee MD, Chung YJ. A missense mutation in EBF2 was segregated with imperforate anus in a family across three generations. Am J Med Genet A 2018; 176:1632-1636. [PMID: 29704291 DOI: 10.1002/ajmg.a.38722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 03/29/2018] [Accepted: 04/01/2018] [Indexed: 12/26/2022]
Abstract
The etiology of imperforate anus, a major phenotype of anorectal malformation (ARM), is still unknown and not a single gene has been reported to be associated with it. We studied a Korean family with six affected members with imperforate anus across three generations by whole exome sequencing and identified a missense mutation in the EBF2 gene (c.215C > T; p.Ala72Val). This mutation is completely segregated with the disease phenotype in the family and is evolutionarily highly conserved among diverse vertebrates. Also, this mutation was predicted to be functionally damaging. These results support that missense mutation in the EBF2 c.215C > T (p.Ala72Val) is very likely to contribute to the pathogenesis of ARM in this family.
Collapse
Affiliation(s)
- Shinn Young Kim
- Department of Microbiology, Integrated Research Center for Genome Polymorphism, Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyun-Sun Ko
- Department of Obstetrics & Gynecology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Namshin Kim
- Korean Bioinformation Center, , Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Seon-Hee Yim
- Department of Microbiology, Integrated Research Center for Genome Polymorphism, Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Department of Preventive Medicine, Baekje General Hospital, Seoul, Korea
| | - Seung-Hyun Jung
- Department of Microbiology, Integrated Research Center for Genome Polymorphism, Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jiwoong Kim
- Korean Bioinformation Center, , Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Myung-Duk Lee
- Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yeun-Jun Chung
- Department of Microbiology, Integrated Research Center for Genome Polymorphism, Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
5
|
Abstract
Background Genome-wide mapping reveals chromatin landscapes unique to cell states. Histone marks of regulatory genes involved in cell specification and organ development provide a powerful tool to map regulatory sequences. H3K4me3 marks promoter regions; H3K27me3 marks repressed regions, and Pol II presence indicates active transcription. The presence of both H3K4me3 and H3K27me3 characterize poised sequences, a common characteristic of genes involved in pattern formation during organogenesis. Results We used genome-wide profiling for H3K27me3, H3K4me3, and Pol II to map chromatin states in mouse embryonic day 12 forelimbs in wild type (control) and Pitx2-null mutant mice. We compared these data with previous gene expression studies from forelimb Lbx1+ migratory myoblasts and correlated Pitx2-dependent expression profiles and chromatin states. During forelimb development, several lineages including myoblast, osteoblast, neurons, angioblasts etc., require synchronized growth to form a functional limb. We identified 125 genes in the developing forelimb that are Pitx2-dependent. Genes involved in muscle specification and cytoskeleton architecture were positively regulated, while genes involved in axonal path finding were poised. Conclusion Our results have established histone modification profiles as a useful tool for identifying gene regulatory states in muscle development, and identified the role of Pitx2 in extending the time of myoblast progression, promoting formation of sarcomeric structures, and suppressing attachment of neuronal axons.
Collapse
Affiliation(s)
- Arun J Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - Michael K Gross
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - Theresa M Filtz
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - Chrissa Kioussi
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
6
|
Liu H, Xu J, Liu CF, Lan Y, Wylie C, Jiang R. Whole transcriptome expression profiling of mouse limb tendon development by using RNA-seq. J Orthop Res 2015; 33:840-8. [PMID: 25729011 PMCID: PMC4616261 DOI: 10.1002/jor.22886] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/26/2015] [Indexed: 02/04/2023]
Abstract
Tendons are fibrous connective tissues that transmit force between muscle and bone. Whereas the molecular and cellular mechanisms of bone and muscle development have been well studied, that of tendon development is poorly understood. Using the Scx-GFP transgenic mice, we isolated GFP(+) cells from the developing mouse limbs at E11.5, E13.5, and E15.5, respectively, and carried out whole transcriptome RNA-seq analysis. Comparing the gene expression profiles of GFP(+) and GFP(-) cells in the E13.5 limb isolated over 1,500 genes that exhibited enrichment of mRNA expression by at least 1.5-fold in the GFP(+) cells. Of these, 778 genes showed expression up-regulated by more than 1.5-fold from E11.5 to E13.5 and 516 genes showed expression up-regulated by more than 1.5-fold from E13.5 to E15.5 in the GFP(+) cell population. Interestingly, over 30 genes encoding transcription factors are among the early-activated genes in the GFP(+) cells. Whole mount and section in situ hybridization analyses showed that many of these transcription factor genes have distinct patterns of expression during limb development and identified Foxf2 expression as a specific marker for differentiated dorsal limb tendon cells. Together, these data provide a valuable resource for further investigation of the molecular mechanisms regulating tendon development.
Collapse
Affiliation(s)
- Han Liu
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jingyue Xu
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Chia-Feng Liu
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Yu Lan
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA,Division of Plastic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Christopher Wylie
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Rulang Jiang
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA,Author for correspondence: Rulang Jiang, PhD, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, MLC 7007, Cincinnati, OH 45229, USA, Phone: 513-636-3212,
| |
Collapse
|
7
|
Engrailed 1 mediates correct formation of limb innervation through two distinct mechanisms. PLoS One 2015; 10:e0118505. [PMID: 25710467 PMCID: PMC4340014 DOI: 10.1371/journal.pone.0118505] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 01/19/2015] [Indexed: 12/24/2022] Open
Abstract
Engrailed-1 (En1) is expressed in the ventral ectoderm of the developing limb where it plays an instructive role in the dorsal-ventral patterning of the forelimb. Besides its well-described role as a transcription factor in regulating gene expression through its DNA-binding domain, En1 may also be secreted to form an extracellular gradient, and directly impact on the formation of the retinotectal map. We show here that absence of En1 causes mispatterning of the forelimb and thus defects in the dorsal-ventral pathfinding choice of motor axons in vivo. In addition, En1 but not En2 also has a direct and specific repulsive effect on motor axons of the lateral aspect of the lateral motor column (LMC) but not on medial LMC projections. Moreover, an ectopic dorsal source of En1 pushes lateral LMC axons to the ventral limb in vivo. Thus, En1 controls the establishment of limb innervation through two distinct molecular mechanisms.
Collapse
|
8
|
El-Magd MA, Saleh AA, Farrag F, Abd El-Aziz RM, Ali HA, Salama MF. Regulation of Chick Ebf1-3 Gene Expression in the Pharyngeal Arches, Cranial Sensory Ganglia and Placodes. Cells Tissues Organs 2015; 199:278-93. [DOI: 10.1159/000369880] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2014] [Indexed: 11/19/2022] Open
|
9
|
El-Magd MA, Allen S, McGonnell I, Mansour AA, Otto A, Patel K. Shh regulates chick Ebf1 gene expression in somite development. Gene 2015; 554:87-95. [DOI: 10.1016/j.gene.2014.10.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 10/09/2014] [Accepted: 10/13/2014] [Indexed: 11/16/2022]
|
10
|
El-Magd MA, Saleh AA, El-Aziz RMA, Salama MF. The effect of RA on the chick Ebf1-3 genes expression in somites and pharyngeal arches. Dev Genes Evol 2014; 224:245-53. [PMID: 25331756 DOI: 10.1007/s00427-014-0483-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 10/13/2014] [Indexed: 01/18/2023]
Abstract
Expression of chick early B cell factor 1-3 (cEbf1-3) genes in regions of high retinoic acid (RA) activity, such as somites and pharyngeal arches (PAs), and regulation of other EBF members by RA raise the possibility that the internal cue RA may regulate cEbf1-3 expression in these tissues. To check this possibility, RA gain and loss of function experiments were conducted. Ectopic expression of RA led to up-regulation of cEbf2, 3 but did not change cEbf1 expression in somites. Expectedly, inhibition of RA by disulfiram resulted in downregulation of cEbf2, 3, but did not change cEbf1 expression in somites. The same RA gain and loss of function experiments did not change cEbf1-3 expression in PAs. However, ectopic expression of RA in the cranial neural tube before migration of neural crest cells downregulated cEbf1, 3 and up-regulated cEbf2 expression in the PAs. The same experiment, but with application of disulfiram, resulted in downregulation of cEbf2, but did not alter the expression of the other two genes. We conclude that the three cEbf genes act differently in response to RA signals in somitic mesoderm. cEbf1 may be not RA dependant in somites; however, the other two cEbf genes positively respond to RA signalling in somites. Additionally, only the migratory cEbf-expressing cells into the PAs are affected by RA signals.
Collapse
Affiliation(s)
- Mohammed Abu El-Magd
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, El-Geish Street, Post Box 33516, Kafrelsheikh, Egypt,
| | | | | | | |
Collapse
|
11
|
El-Magd MA, Sayed-Ahmed A, Awad A, Shukry M. Regulation of chick early B-cell factor-1 gene expression in feather development. Acta Histochem 2014; 116:577-82. [PMID: 24365066 DOI: 10.1016/j.acthis.2013.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 11/13/2013] [Accepted: 11/14/2013] [Indexed: 01/03/2023]
Abstract
The chick Ebf1 (early B-cell factor-1) gene is a member of a novel family of helix loop helix transcription factors. The expression profile, regulation and significance of this gene have been extensively studied in lymphatic, nervous, adipose and muscular tissues. However, cEbf1 expression, regulation and function in the feather of chick embryo have not yet been investigated. cEbf1 expression was first detected throughout the mesenchymal core of some few feather placodes (D7-D7.5). After feathers became mature and grew distally (D9 and D10), the mesenchymal expression of cEbf1 became confined to the caudal margin of the proximal half of all formed feather buds. Because this dynamic pattern of expression resembles that of Sonic Hedgehog (Shh) protein and bone morphogenetic protein (Bmp4) plus the crucial role of these two major signals in feather development, we hypothesized that cEbf1 expression in the feather may be regulated by Shh and Bmp4. In a feather explant culture system, Shh signals are necessary to initiate and maintain cEbf1 expression in the posterior half of the feather bud, while Bmp4 is crucial for the initial cEbf1 expression in the anterior half of the feather bud. Inhibition of Shh, not only down-regulates cEbf1, but also changes the morphology of feather buds, which become irregular and fused. This is the first study to demonstrate that cEbf1 expression in the feather bud is under the control of Shh and Bmp4 signals and that expression may play a role in the normal development of feathers.
Collapse
|
12
|
Kim J, Badaloni A, Willert T, Zimber-Strobl U, Kühn R, Wurst W, Kieslinger M. An RNAi-based approach to down-regulate a gene family in vivo. PLoS One 2013; 8:e80312. [PMID: 24265806 PMCID: PMC3827190 DOI: 10.1371/journal.pone.0080312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 10/01/2013] [Indexed: 11/19/2022] Open
Abstract
Genetic redundancy poses a major problem to the analysis of gene function. RNA interference allows the down-regulation of several genes simultaneously, offering the possibility to overcome genetic redundancy, something not easily achieved with traditional genetic approaches. Previously we have used a polycistronic miR155-based framework to knockdown expression of three genes of the early B cell factor family in cultured cells. Here we develop the system further by generating transgenic mice expressing the RNAi construct in vivo in an inducible manner. Expression of the transgene from the strong CAG promoter is compatible with a normal function of the basal miRNA/RNAi machinery, and the miR155 framework readily allows inducible expression from the Rosa26 locus as shown by Gfp. However, expression of the transgene in hematopoietic cells does not lead to changes in B cell development and neuronal expression does not affect cerebellar architecture as predicted from genetic deletion studies. Protein as well as mRNA levels generated from Ebf genes in hetero- and homozygous animals are comparable to wild-type levels. A likely explanation for the discrepancy in the effectiveness of the RNAi construct between cultured cells and transgenic animals lies in the efficiency of the sequences used, possibly together with the complexity of the transgene. Since new approaches allow to overcome efficiency problems of RNAi sequences, the data lay the foundation for future work on the simultaneous knockdown of several genes in vivo.
Collapse
Affiliation(s)
- Jeehee Kim
- Institute of Clinical Molecular Biology and Tumor Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Aurora Badaloni
- Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Torsten Willert
- Institute of Clinical Molecular Biology and Tumor Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Ursula Zimber-Strobl
- Department of Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Ralf Kühn
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Matthias Kieslinger
- Institute of Clinical Molecular Biology and Tumor Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- * E-mail:
| |
Collapse
|
13
|
El-Magd MA, Allen S, McGonnell I, Otto A, Patel K. Bmp4regulates chickEbf2andEbf3gene expression in somite development. Dev Growth Differ 2013; 55:710-22. [DOI: 10.1111/dgd.12077] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 08/12/2013] [Accepted: 08/13/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Mohammed A. El-Magd
- Department of Anatomy and Embryology; Faculty of Veterinary Medicine; Kafrelsheikh University; El-Geish Street Kafrelsheikh Post Box 33516 Egypt
- Department of Veterinary Basic Sciences; The Royal Veterinary College; Royal College Street Camden London NW1 0TU UK
| | - Steve Allen
- Department of Veterinary Basic Sciences; The Royal Veterinary College; Royal College Street Camden London NW1 0TU UK
| | - Imelda McGonnell
- Department of Veterinary Basic Sciences; The Royal Veterinary College; Royal College Street Camden London NW1 0TU UK
| | - Anthony Otto
- School of Biological Sciences; University of Reading; Whiteknights PO Box 228 Reading UK
| | - Ketan Patel
- School of Biological Sciences; University of Reading; Whiteknights PO Box 228 Reading UK
| |
Collapse
|
14
|
Developmental expression of COE across the Metazoa supports a conserved role in neuronal cell-type specification and mesodermal development. Dev Genes Evol 2010; 220:221-34. [PMID: 21069538 PMCID: PMC2990012 DOI: 10.1007/s00427-010-0343-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 10/19/2010] [Indexed: 10/28/2022]
Abstract
The transcription factor COE (collier/olfactory-1/early B cell factor) is an unusual basic helix-loop-helix transcription factor as it lacks a basic domain and is maintained as a single copy gene in the genomes of all currently analysed non-vertebrate Metazoan genomes. Given the unique features of the COE gene, its proposed ancestral role in the specification of chemosensory neurons and the wealth of functional data from vertebrates and Drosophila, the evolutionary history of the COE gene can be readily investigated. We have examined the ways in which COE expression has diversified among the Metazoa by analysing its expression from representatives of four disparate invertebrate phyla: Ctenophora (Mnemiopsis leidyi); Mollusca (Haliotis asinina); Annelida (Capitella teleta and Chaetopterus) and Echinodermata (Strongylocentrotus purpuratus). In addition, we have studied COE function with knockdown experiments in S. purpuratus, which indicate that COE is likely to be involved in repressing serotonergic cell fate in the apical ganglion of dipleurula larvae. These analyses suggest that COE has played an important role in the evolution of ectodermally derived tissues (likely primarily nervous tissues) and mesodermally derived tissues. Our results provide a broad evolutionary foundation from which further studies aimed at the functional characterisation and evolution of COE can be investigated.
Collapse
|
15
|
Jin K, Jiang H, Mo Z, Xiang M. Early B-cell factors are required for specifying multiple retinal cell types and subtypes from postmitotic precursors. J Neurosci 2010; 30:11902-16. [PMID: 20826655 PMCID: PMC2951389 DOI: 10.1523/jneurosci.2187-10.2010] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 06/19/2010] [Accepted: 07/10/2010] [Indexed: 01/28/2023] Open
Abstract
The establishment of functional retinal circuits in the mammalian retina depends critically on the proper generation and assembly of six classes of neurons, five of which consist of two or more subtypes that differ in morphologies, physiological properties, and/or sublaminar positions. How these diverse neuronal types and subtypes arise during retinogenesis still remains largely to be defined at the molecular level. Here we show that all four family members of the early B-cell factor (Ebf) helix-loop-helix transcription factors are similarly expressed during mouse retinogenesis in several neuronal types and subtypes including ganglion, amacrine, bipolar, and horizontal cells, and that their expression in ganglion cells depends on the ganglion cell specification factor Brn3b. Misexpressed Ebfs bias retinal precursors toward the fates of non-AII glycinergic amacrine, type 2 OFF-cone bipolar and horizontal cells, whereas a dominant-negative Ebf suppresses the differentiation of these cells as well as ganglion cells. Reducing Ebf1 expression by RNA interference (RNAi) leads to an inhibitory effect similar to that of the dominant-negative Ebf, effectively neutralizes the promotive effect of wild-type Ebf1, but has no impact on the promotive effect of an RNAi-resistant Ebf1. These data indicate that Ebfs are both necessary and sufficient for specifying non-AII glycinergic amacrine, type 2 OFF-cone bipolar and horizontal cells, whereas they are only necessary but not sufficient for specifying ganglion cells; and further suggest that Ebfs may coordinate and cooperate with other retinogenic factors to ensure proper specification and differentiation of diverse retinal cell types and subtypes.
Collapse
Affiliation(s)
- Kangxin Jin
- Center for Advanced Biotechnology and Medicine and Department of Pediatrics
- Graduate Program in Molecular Genetics, Microbiology and Immunology, and
| | - Haisong Jiang
- Center for Advanced Biotechnology and Medicine and Department of Pediatrics
- Graduate Program in Molecular Genetics, Microbiology and Immunology, and
| | - Zeqian Mo
- Department of Cell Biology and Neuroscience, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Mengqing Xiang
- Center for Advanced Biotechnology and Medicine and Department of Pediatrics
- Graduate Program in Molecular Genetics, Microbiology and Immunology, and
| |
Collapse
|
16
|
Sandell LJ, Xing X, Franz C, Davies S, Chang LW, Patra D. Exuberant expression of chemokine genes by adult human articular chondrocytes in response to IL-1beta. Osteoarthritis Cartilage 2008; 16:1560-71. [PMID: 18565769 PMCID: PMC2605974 DOI: 10.1016/j.joca.2008.04.027] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Accepted: 04/27/2008] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To provide a more complete picture of the effect of interleukin-1 beta (IL-1beta) on adult human articular chondrocyte gene expression, in contrast to the candidate gene approach. DESIGN Chondrocytes from human knee cartilage were cultured in medium containing IL-1beta. Changes in gene expression were analyzed by microarray and reverse transcriptase-polymerase chain reaction analysis. The ability of transforming growth factor beta-1 (TGF-beta1), fibroblast growth factor (FGF)-18, and bone morphogenetic protein 2 (BMP-2) to alter the effects of IL-1beta was analyzed. Computational analysis of the promoter regions of differentially expressed genes for transcription factor binding motifs was performed. RESULTS IL-1beta-treated human chondrocytes showed significant increases in the expression of granulocyte colony stimulating factor-3, endothelial leukocyte adhesion molecule 1 and leukemia inhibitory factor as well as for a large group of chemokines that include CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, CXCL8, CCL2, CCL3, CCL4, CCL5, CCL8, CCL20, CCL3L1, CX3CL1 and the cytokine IL-6. As expected, the mRNA for matrix metalloproteinase (MMP)-13 and BMP-2 also increased while mRNA for the matrix genes COL2A1 and aggrecan was down-regulated. A subset of chemokines increased rapidly at very low levels of IL-1beta. The phenotype induced by IL-1beta was partially reversed by TGF-beta1, but not by BMP-2. In the presence of IL-1beta, FGF-18 increased expression of ADAMTS-4, aggrecan, BMP-2, COL2A1, CCL3, CCL4, CCL20, CXCL1, CXCL3, CXCL6, IL-1beta, IL-6, and IL-8 and decreased ADAMTS-5, MMP-13, CCL2, and CCL8. Computational analysis revealed a high likelihood that the most up-regulated chemokines are regulated by the transcription factors myocyte enhancer binding factor-3 (MEF-3), CCAAT/enhancer binding protein (C/EBP) and nuclear factor-kappa B (NF-kappaB). CONCLUSION IL-1beta has a diverse effect on gene expression profile in human chondrocytes affecting matrix genes as well as chemokines and cytokines. TGF-beta1 has the ability to antagonize some of the phenotype induced by IL-1beta.
Collapse
Affiliation(s)
- L J Sandell
- Department of Orthopaedic Surgery, Washington University School of Medicine at Barnes-Jewish Hospital, St Louis, MO 63110, United States.
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
PU.1, IKAROS, E2A, EBF, and PAX5 comprise a transcriptional network that orchestrates B-cell lineage specification, commitment, and differentiation. Here we identify interferon regulatory factor 8 (IRF8) as another component of this complex, and show that it also modulates lineage choice by hematopoietic stem cells (HSCs). IRF8 binds directly to an IRF8/Ets consensus sequence located in promoter regions of Sfpi1 and Ebf1, which encode PU.1 and EBF, respectively, and is associated with transcriptional repression of Sfpi1 and transcriptional activation of Ebf1. Bone marrows of IRF8 knockout mice (IRF8(-/-)) had significantly reduced numbers of pre-pro-B cells and increased numbers of myeloid cells. Although HSCs of IRF8(-/-) mice failed to differentiate to B220(+) B-lineage cells in vitro, the defect could be rescued by transfecting HSCs with wild-type but not with a signaling-deficient IRF8 mutant. In contrast, overexpression of IRF8 in HSC-differentiated progenitor cells resulted in growth inhibition and apoptosis. We also found that IRF8 was expressed at higher levels in pre-pro-B cells than more mature B cells in wild-type mice. Together, these results indicate that IRF8 modulates lineage choice by HSCs and is part of the transcriptional network governing B-cell lineage specification, commitment, and differentiation.
Collapse
|
18
|
Krawchuk D, Kania A. Identification of genes controlled by LMX1B in the developing mouse limb bud. Dev Dyn 2008; 237:1183-92. [PMID: 18351676 DOI: 10.1002/dvdy.21514] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In the developing limb, dorsal-ventral patterning is controlled by the transcription factor LMX1B, expressed in the dorsal mesenchyme. Loss of Lmx1b function in mice or humans results in the loss of dorsal limb structures and Nail-Patella syndrome, but the effectors through which LMX1B controls limb patterning are virtually unknown. Using microarrays to analyze the differential expression of mRNAs in wild-type vs. Lmx1b(-/-) limb buds, we have identified hundreds of genes as putative LMX1B targets. Analysis of a subset of these candidates by in situ mRNA localization has identified eight genes previously unknown to require Lmx1b for their dorsal-ventral restriction of expression in the limb. Furthermore, our results suggest that LMX1B controls different targets along the proximal-distal axis of the limb, and suggest the existence of a dorsal proximal limb region that is rich in mRNAs requiring Lmx1b for their expression.
Collapse
Affiliation(s)
- Dayana Krawchuk
- Laboratory of Neural Circuit Development, Institut de recherches cliniques de Montréal (IRCM), QC, Canada
| | | |
Collapse
|
19
|
Lukin K, Fields S, Hartley J, Hagman J. Early B cell factor: Regulator of B lineage specification and commitment. Semin Immunol 2008; 20:221-7. [PMID: 18722139 PMCID: PMC2577021 DOI: 10.1016/j.smim.2008.07.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 07/02/2008] [Accepted: 07/10/2008] [Indexed: 12/21/2022]
Abstract
B lymphocytes are generated from hematopoietic stem cells in a series of steps controlled by transcription factors. One of the most important regulators of this process is early B cell factor (EBF). Multiple lines of evidence indicate that expression of EBF is a principle determinant of the B cell fate. In the absence of EBF, progenitor cells fail to express classical markers of B cells, including immunoglobulins. EBF drives B cell differentiation by activating the Pax5 gene and other genes required for the pre-B and B cell receptors. New evidence suggests that expression of EBF in common lymphoid progenitors directs B cell fate decisions. Specification and commitment of cells to the B cell lineage are further established by Pax5, which increases expression of EBF. Recently, it was demonstrated that both EBF and Pax5 contribute to the commitment of cells to the B lineage. Together, these studies confirm that EBF is a keystone in the regulatory network that coordinates B cell lineage specification and commitment.
Collapse
Affiliation(s)
- Kara Lukin
- Integrated Department of Immunology, National Jewish Medical and Research Center, Denver, CO 80206, USA
| | - Scott Fields
- Integrated Department of Immunology, National Jewish Medical and Research Center, Denver, CO 80206, USA
| | - Jacqueline Hartley
- Integrated Department of Immunology, National Jewish Medical and Research Center, Denver, CO 80206, USA
| | - James Hagman
- Integrated Department of Immunology, National Jewish Medical and Research Center, Denver, CO 80206, USA
| |
Collapse
|
20
|
Kieslinger M, Folberth S, Dobreva G, Dorn T, Croci L, Erben R, Consalez GG, Grosschedl R. EBF2 regulates osteoblast-dependent differentiation of osteoclasts. Dev Cell 2005; 9:757-67. [PMID: 16326388 DOI: 10.1016/j.devcel.2005.10.009] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Revised: 09/20/2005] [Accepted: 10/17/2005] [Indexed: 11/22/2022]
Abstract
Communication between bone-depositing osteoblasts and bone-resorbing osteoclasts is required for bone development and homeostasis. Here, we identify EBF2, a member of the early B cell factor (EBF) family of transcription factors that is expressed in osteoblast progenitors, as a regulator of osteoclast differentiation. We find that mice homozygous for a targeted inactivation of Ebf2 show reduced bone mass and an increase in the number of osteoclasts. These defects are accompanied by a marked downregulation of the osteoprotegerin (Opg) gene, encoding a RANK decoy receptor. EBF2 binds to sequences in the Opg promoter and transactivates the Opg promoter in synergy with the Wnt-responsive LEF1/TCF:beta-catenin pathway. Taken together, these data identify EBF2 as a regulator of RANK-RANKL signaling and osteoblast-dependent differentiation of osteoclasts.
Collapse
Affiliation(s)
- Matthias Kieslinger
- Gene center and Institute for Biochemistry, University of Munich, 81377 Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Porter JD, Israel S, Gong B, Merriam AP, Feuerman J, Khanna S, Kaminski HJ. Distinctive morphological and gene/protein expression signatures during myogenesis in novel cell lines from extraocular and hindlimb muscle. Physiol Genomics 2005; 24:264-75. [PMID: 16291736 DOI: 10.1152/physiolgenomics.00234.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Skeletal muscles are not created equal. The underutilized concept of muscle allotypes defines distinct muscle groups that differ in their intrinsic capacity to express novel traits when exposed to a facilitating extrinsic environment. Allotype-specific traits may have significance as determinants of the preferential involvement or sparing of muscle groups that is observed in a variety of neuromuscular diseases. Little is known, however, of the developmental mechanisms underlying the distinctive skeletal muscle allotypes. The lack of appropriate in vitro models, to dissociate the cell-autonomous and non-cell-autonomous mechanisms behind allotype diversity, has been a barrier to such studies. Here, we derived novel cell lines from the extraocular and hindlimb muscle allotypes and assessed their similarities and differences during early myogenesis using morphological and gene/protein expression profiling tools. Our data establish that there are fundamental differences in the transcriptional and cellular signaling pathways used by the two myoblast lineages. Taken together, these data show that myoblast lineage plays a significant role in the divergence of the distinctive muscle groups or allotypes.
Collapse
Affiliation(s)
- John D Porter
- Department of Neurology, Case Western Reserve University, University Hospitals of Cleveland, Cleveland, Ohio, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Hagman J, Lukin K. Early B-cell factor ‘pioneers’ the way for B-cell development. Trends Immunol 2005; 26:455-61. [PMID: 16027038 DOI: 10.1016/j.it.2005.07.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 06/20/2005] [Accepted: 07/06/2005] [Indexed: 01/14/2023]
Abstract
Early B-cell factor (EBF) is a DNA-binding protein required for B-cell lymphopoiesis. The lack of EBF results in an early developmental blockade, including the lack of functional B cells and Igs. Recent studies have elucidated a central role for EBF in the specification of B-lineage cells. EBF directs progenitor cells to undergo B lymphopoiesis and activates transcription of B cell-specific genes in the absence of upstream regulators. How EBF mediates these effects has yet to be thoroughly explored, however, it initiates epigenetic modifications necessary for gene activation and the function of other transcriptional regulators, including Pax5. Together, these observations suggest a molecular basis for the role of EBF in the hierarchical network of factors that control B lymphopoiesis.
Collapse
Affiliation(s)
- James Hagman
- Integrated Department of Immunology, National Jewish Medical and Research Center, Denver, CO 80206, USA.
| | | |
Collapse
|
23
|
Abstract
Caenorhabditis elegans motor neurons control a range of activities including locomotion, foraging, defecation, and gender-specific functions. In this chapter,we focus primarily on motor neurons that regulate body movement, with particular emphasis on those in the ventral nerve cord (VNC). We describe the basic architecture and development of the motor circuit, genes that specify motor neuron fates, and models of how the motor circuit controls locomotion. We identify surprising similarities between the structure and development of the nematode and vertebrate axial nerve cords and speculate about the potential roles of conserved families of transcription factors in the evolution of these motor circuits.
Collapse
Affiliation(s)
- Stephen E Von Stetina
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | | | | |
Collapse
|
24
|
Abstract
The development of the Drosophila wing is a classical model for studying the genetic control of tissue size, shape and patterning. A detailed picture of how positional information is interpreted by cells in the imaginal disc and translated into the adult wing vein pattern has recently emerged. It highlights the central role of dose-dependent activation of distinct cell transcription programs in response to the Hedgehog (Hh) and Decapentaplegic (Dpp) morphogens, as well as an early role of Notch signalling, in connecting the positioning of vein primordia and vein differentiation proper. The biochemical basis of the cross-talk that operates between these different signalling pathways is less well understood. New strategies made possible by the genome sequencing of several insect models should provide an important complement to the knowledge obtained from >60 years of genetic studies.
Collapse
Affiliation(s)
- Michèle Crozatier
- Centre de Biologie du Développement, UMR 5547 and IFR 109, CNRS/Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France
| | | | | |
Collapse
|