1
|
Horn M, Bieliková L, Vostoupalová A, Švéda J, Mareš M. An update on proteases and protease inhibitors from trematodes. ADVANCES IN PARASITOLOGY 2024; 126:97-176. [PMID: 39448195 DOI: 10.1016/bs.apar.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Trematodes, a class of parasitic flatworms, are responsible for a variety of devastating diseases in humans and animals, with schistosomiasis and fascioliasis being prominent examples. Trematode proteolytic systems involved in the host-parasite interaction have emerged as key contributors to the success of trematodes in establishing and maintaining infections. This review concentrates on diverse proteases and protease inhibitors employed by trematodes and provides an update on recent advances in their molecular-level characterization, with a focus on function, structure, and therapeutic target potential.
Collapse
Affiliation(s)
- Martin Horn
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lucia Bieliková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Andrea Vostoupalová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jakub Švéda
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michael Mareš
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
2
|
Geadkaew-Krenc A, Grams R, Siricoon S, Kosa N, Krenc D, Phadungsil W, Martviset P. Cystatins from the Human Liver Fluke Opisthorchis viverrini: Molecular Characterization and Functional Analysis. Pathogens 2023; 12:949. [PMID: 37513796 PMCID: PMC10386146 DOI: 10.3390/pathogens12070949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
A high incidence of cholangiocarcinoma (bile duct cancer) has been observed in Thailand. This usually rare cancer has been associated with infection with the human liver fluke, Opisthorchis viverrini. Secretions of the parasite that interact with the host are thought to be a major component of its pathogenicity and proteolysis is a key biological activity of the secreted molecules. In this study, we present a molecular analysis of cysteine proteinase inhibitors (cystatins) of Opisthorchis viverrini. Six cDNA coding sequences of Opisthorchis viverrini cystatins, OvCys1-6, were cloned from the adult stage of the parasite using RT-PCR. Based on their sequences, OvCys1 and OvCys2 are classified as type 1 cystatins, while OvCys3-6 are classified as type 2 cystatins, with each containing a signal peptide and only one C-terminal disulfide bond. Their C-terminal region sequences are diverse compared with other cystatin members. Cystatins OvCys1, 3 and 4 were found in crude worm extracts and excretory-secretory (ES) products from the adult parasite using Western blot detection, while the other isoforms were not. Thus, OvCys1, 3 and 4 were selected for inhibition analysis and immune reactivity with Opisthorchis viverrini-infected hamster sera. OvCys1, 3, and 4 inhibited mammalian cathepsin L more effectively than cathepsin B. The pH range for their full activity was very wide (pH 3-9) and they were heat stable for at least 3 h. Unlike Fasciola gigantica cystatins, they showed no immune reactivity with infected hamster sera based on indirect ELISA. Our findings suggest that Opisthorchis viverrini cystatins are not major antigenic components in the ES product of this parasite and that other effects of Opisthorchis viverrini cystatins should be investigated.
Collapse
Affiliation(s)
- Amornrat Geadkaew-Krenc
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Khlong Luang, Pathum Thani 12120, Thailand
| | - Rudi Grams
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Khlong Luang, Pathum Thani 12120, Thailand
| | - Sinee Siricoon
- Thailand Institute of Scientific and Technological Research, Khlong Luang, Pathum Thani 12120, Thailand
| | - Nanthawat Kosa
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Khlong Luang, Pathum Thani 12120, Thailand
| | - Dawid Krenc
- Chulabhorn International College of Medicine, Thammasat University, Khlong Luang, Pathum Thani 12120, Thailand
| | - Wansika Phadungsil
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Khlong Luang, Pathum Thani 12120, Thailand
| | - Pongsakorn Martviset
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Khlong Luang, Pathum Thani 12120, Thailand
| |
Collapse
|
3
|
Peterkova K, Vorel J, Ilgova J, Ostasov P, Fajtova P, Konecny L, Chanova M, Kasny M, Horn M, Dvorak J. Proteases and their inhibitors involved in Schistosoma mansoni egg-host interaction revealed by comparative transcriptomics with Fasciola hepatica eggs. Int J Parasitol 2023; 53:253-263. [PMID: 36754342 DOI: 10.1016/j.ijpara.2022.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/13/2022] [Accepted: 12/28/2022] [Indexed: 02/08/2023]
Abstract
Schistosoma mansoni eggs are the main causative agents of the pathological manifestations of schistosomiasis. The eggs are laid in the host bloodstream, then they migrate through the intestinal wall into the lumen. However, a significant proportion of the eggs become lodged in the liver, where they cause inflammation and fibrosis. In this study, we focus on a specific group of proteins expressed by the egg, namely proteases and their inhibitors. These molecules are often involved in schistosome-host interactions, but are still unexplored in the egg stage. Using RNA-seq and comparative transcriptomics of immature and mature S. mansoni eggs, we mapped the portfolio of proteases and their inhibitors, and determined their gene expression levels. In addition, we compared these data with gene expression of proteases and their inhibitors in Fasciola hepatica eggs. Fasciola hepatica eggs served as a useful comparative model, as they do not migrate through tissues and inflict pathology. We detected transcription of 135 and 117 proteases in S. mansoni and F. hepatica eggs, respectively, with 87 identified as orthologous between the two species. In contrast, we observed only four orthologous inhibitors out of 21 and 16 identified in S. mansoni and F. hepatica eggs, respectively. Among others, we measured high and developmentally regulated levels of expression of metalloproteases in S. mansoni eggs, specifically aminopeptidase N1, endothelin-converting enzyme 1, and several leishmanolysin-like peptidases. We identified highly transcribed protease inhibitors serpin and alpha-2-macroglobulin that are unique to S. mansoni eggs, and antistasin-like inhibitor in F. hepatica eggs. This study provides new insights into the portfolio of proteases and inhibitors expressed by S. mansoni with potential roles in egg tissue migration, stimulation of angiogenesis, and interaction with host blood and immunity.
Collapse
Affiliation(s)
- Kristyna Peterkova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia; Department of Zoology and Fisheries, Center of Infectious Animal Diseases, Czech University of Life Sciences, Prague, Czechia.
| | - Jiri Vorel
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Jana Ilgova
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Pavel Ostasov
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Czechia
| | - Pavla Fajtova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| | - Lukas Konecny
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia; Department of Zoology and Fisheries, Center of Infectious Animal Diseases, Czech University of Life Sciences, Prague, Czechia
| | - Marta Chanova
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czechia
| | - Martin Kasny
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Martin Horn
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| | - Jan Dvorak
- Department of Zoology and Fisheries, Center of Infectious Animal Diseases, Czech University of Life Sciences, Prague, Czechia; Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia; Faculty of Environmental Sciences, Center of Infectious Animal Diseases, Czech University of Life Sciences in Prague, Czechia
| |
Collapse
|
4
|
Liu J, Svärd SG, Klotz C. Giardia intestinalis cystatin is a potent inhibitor of papain, parasite cysteine proteases and, to a lesser extent, human cathepsin B. FEBS Lett 2019; 593:1313-1325. [PMID: 31077354 DOI: 10.1002/1873-3468.13433] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/16/2019] [Accepted: 05/04/2019] [Indexed: 11/09/2022]
Abstract
Cystatins are important regulators of papain-like cysteine proteases. In the protozoan parasite Giardia intestinalis, papain-like cysteine proteases play an essential role in the parasite's biology and pathogenicity. Here, we characterized a cysteine protease inhibitor of G. intestinalis that belongs to type-I-cystatins. The parasite cystatin is shown to be a strong inhibitor of papain (Ki ≈ 0.3 nm) and three parasite cysteine proteases (CP14019, CP16160 and CP16779, Ki ≈ 0.9-5.8 nm), but a weaker inhibitor of human cathepsin B (Ki ≈ 79.9 nm). The protein localizes mainly in the cytoplasm. Together, these data suggest that cystatin of G. intestinalis plays a role in the regulation of cysteine protease activities in the parasite and, possibly, in the interaction with the host.
Collapse
Affiliation(s)
- Jingyi Liu
- Department of Cell and Molecular Biology, BMC, Uppsala University, Sweden
| | - Staffan G Svärd
- Department of Cell and Molecular Biology, BMC, Uppsala University, Sweden
| | - Christian Klotz
- Department of Mycotic and Parasitic Agents and Mycobacteria (FG16), Robert Koch-Institute, Berlin, Germany
| |
Collapse
|
5
|
Ilgová J, Jedličková L, Dvořáková H, Benovics M, Mikeš L, Janda L, Vorel J, Roudnický P, Potěšil D, Zdráhal Z, Gelnar M, Kašný M. A novel type I cystatin of parasite origin with atypical legumain-binding domain. Sci Rep 2017; 7:17526. [PMID: 29235483 PMCID: PMC5727476 DOI: 10.1038/s41598-017-17598-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 11/28/2017] [Indexed: 12/26/2022] Open
Abstract
Parasite inhibitors of cysteine peptidases are known to influence a vast range of processes linked to a degradation of either the parasites' own proteins or proteins native to their hosts. We characterise a novel type I cystatin (stefin) found in a sanguinivorous fish parasite Eudiplozoon nipponicum (Platyhelminthes: Monogenea). We have identified a transcript of its coding gene in the transcriptome of adult worms. Its amino acid sequence is similar to other stefins except for containing a legumain-binding domain, which is in this type of cystatins rather unusual. As expected, the recombinant form of E. nipponicum stefin (rEnStef) produced in Escherichia coli inhibits clan CA peptidases - cathepsins L and B of the worm - via the standard papain-binding domain. It also blocks haemoglobinolysis by cysteine peptidases in the worm's excretory-secretory products and soluble extracts. Furthermore, we had confirmed its ability to inhibit clan CD asparaginyl endopeptidase (legumain). The presence of a native EnStef in the excretory-secretory products of adult worms, detected by mass spectrometry, suggests that this protein has an important biological function at the host-parasite interface. We discuss the inhibitor's possible role in the regulation of blood digestion, modulation of antigen presentation, and in the regeneration of host tissues.
Collapse
Affiliation(s)
- Jana Ilgová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, 611 37, Czech Republic.
| | - Lucie Jedličková
- Department of Parasitology, Faculty of Science, Charles University, Prague, 128 44, Czech Republic
| | - Hana Dvořáková
- Department of Parasitology, Faculty of Science, Charles University, Prague, 128 44, Czech Republic
| | - Michal Benovics
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, 611 37, Czech Republic
| | - Libor Mikeš
- Department of Parasitology, Faculty of Science, Charles University, Prague, 128 44, Czech Republic
| | - Lubomír Janda
- Central European Institute of Technology, Masaryk University, Brno, 625 00, Czech Republic
| | - Jiří Vorel
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, 611 37, Czech Republic
| | - Pavel Roudnický
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, 611 37, Czech Republic
| | - David Potěšil
- Central European Institute of Technology, Masaryk University, Brno, 625 00, Czech Republic
| | - Zbyněk Zdráhal
- Central European Institute of Technology, Masaryk University, Brno, 625 00, Czech Republic
| | - Milan Gelnar
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, 611 37, Czech Republic
| | - Martin Kašný
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, 611 37, Czech Republic.,Department of Parasitology, Faculty of Science, Charles University, Prague, 128 44, Czech Republic
| |
Collapse
|
6
|
Functional characterization of single-domain cystatin-like cysteine proteinase inhibitors expressed by the trematode Fasciola hepatica. Parasitology 2017; 144:1695-1707. [PMID: 28697819 DOI: 10.1017/s0031182017001093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cystatins are small, phylogenetically conserved proteins that are tight-binding inhibitors of cysteine proteinases. The liver fluke Fasciola hepatica uses a diverse set of cysteine proteinases of the papain superfamily for host invasion, immune evasion and nutrition, but little is known about the regulation of these enzymes. The aim of this work is to characterize the cystatin repertoire of F. hepatica. For this purpose, we first surveyed the available sequence databases, identifying three different F. hepatica single-domain cystatins. In agreement with the in silico predictions, at least three small proteins with cysteine proteinase binding activity were identified. Phylogenetic analyses showed that the three cystatins (named FhStf-1, -2 and -3) are members of the I25A subfamily (stefins). Whereas FhStf-1 grouped with classical stefins, FhStf-2 and 3 fell in a divergent stefin subgroup unusually featuring signal peptides. Recombinant rFhStf-1, -2 and -3 had potent inhibitory activity against F. hepatica cathepsin L cysteine proteinases but differed in their capacity to inhibit mammalian cathepsin B, L and C. FhStf-1 was localized in the F. hepatica reproductive organs (testes and ovary), and at the surface lamella of the adult gut, where it may regulate cysteine proteinases related with reproduction and digestion, respectively. FhStf-1 was also detected among F. hepatica excretion-secretion (E/S) products of adult flukes. This suggests that it is secreted by non-classical secretory pathway and that it may interact with host lysosomal cysteine proteinases.
Collapse
|
7
|
Ranasinghe SL, McManus DP. Protease Inhibitors of Parasitic Flukes: Emerging Roles in Parasite Survival and Immune Defence. Trends Parasitol 2017; 33:400-413. [PMID: 28089171 DOI: 10.1016/j.pt.2016.12.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 12/16/2016] [Accepted: 12/19/2016] [Indexed: 12/14/2022]
Abstract
Protease inhibitors play crucial roles in parasite development and survival, counteracting the potentially damaging immune responses of their vertebrate hosts. However, limited information is currently available on protease inhibitors from schistosomes and food-borne trematodes. Future characterization of these molecules is important not only to expand knowledge on parasitic fluke biology but also to determine whether they represent novel vaccine and/or drug targets. Moreover, protease inhibitors from flukes may represent lead compounds for the development of a new range of therapeutic agents against inflammatory disorders and cancer. This review discusses already identified protease inhibitors of fluke origin, emphasizing their biological function and their possible future development as new intervention targets.
Collapse
|
8
|
Wang S, Xie Y, Yang X, Wang X, Yan K, Zhong Z, Wang X, Xu Y, Zhang Y, Liu F, Shen J. Therapeutic potential of recombinant cystatin from Schistosoma japonicum in TNBS-induced experimental colitis of mice. Parasit Vectors 2016; 9:6. [PMID: 26728323 PMCID: PMC4700642 DOI: 10.1186/s13071-015-1288-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/28/2015] [Indexed: 12/22/2022] Open
Abstract
Background Helminth infections and their components have been shown to have a protective effect on autoimmune diseases. The isolated purified protein from Schisotosoma japonicum and its potential therapeutic effect on trinitrobenzene sulfonic acid (TNBS)-induced colitis could provide an alternative way to treat inflammatory bowel disease (IBDs). Methods Colitis was induced in Balb/c mice by rectal administration of 2.5 % TNBS, followed by intraperitoneal injection of rSjcystatin 50 μg at 6 h and 24 h afterwards. The inflammation was monitored by recording weight change, stool character and bleeding, colon length, macroscopic score (MAO), microscopic score (MIO), myeloperoxidase activity (MPO) and disease activity index (DAI). The potential underlying mechanism was investigated by examining cytokine profiles including Th1 (IFNγ), Th2 (IL-4), Th17 (IL-17A) and Treg subsets from lymphocytes of spleen, mesenteric lymph nodes (MLN) and intestinal lamina propria mononuclear cells (LPMCs) by flow cytometry. The mRNA relative expressions of the cytokines in splenocytes and MLN were analysed by quantitative real time reverse-transcriptase polymerase chain reaction (qRT-PCR). Simultaneously, the concentrations of the cytokines in the colon homogenate supernatants were tested by enzyme-linked immunosorbent assay (ELISA) and key transcription factors were detected by Western blotting. Results Administration of rSjcystatin significantly reduced inflammatory parameters and ameliorated the severity of the TNBS-induced colitis through decreasing IFNγ in three organs and lifting the level of IL-4, IL-13, IL-10, and TGF-β in the colon tissues, with uptrending Tregs in the MLN and LPMC. Conclusion The findings provide evidence that rSjcystatin has a therapeutic potential for diminishing colitis inflammation in Balb/c mice. The immunological mechanism may involve the down-regulation of Th1 response and up-regulation of Th2 and Tregs in the MLN and colon.
Collapse
Affiliation(s)
- Shushu Wang
- Department of Immunology, Anhui Medical University, Hefei, 230022, China. .,Department of Pathogen Biology, Provincial Laboratories of Pathogen Biology and Zoonoses Anhui, Hefei, 230022, China. .,Pediatrics Department of Affiliated Provincial Hospital, Anhui Medical University, Hefei, 230001, China.
| | - Yuanyuan Xie
- Department of Immunology, Anhui Medical University, Hefei, 230022, China. .,Department of Pathogen Biology, Provincial Laboratories of Pathogen Biology and Zoonoses Anhui, Hefei, 230022, China.
| | - Xiaodi Yang
- Department of Microbiology and Parasitology, Bengbu Medical College; Anhui Key Laboratory of Infection and Immunity, Bengbu, 233000, Anhui, China.
| | - Xuesong Wang
- Pediatrics Department of Affiliated Provincial Hospital, Anhui Medical University, Hefei, 230001, China.
| | - Ke Yan
- Department of Laboratory Diagnosis, the Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China.
| | - Zhengrong Zhong
- Department of Laboratory Diagnosis, the Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China.
| | - Xiaowei Wang
- Department of Laboratory Diagnosis, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| | - Yuanhong Xu
- Department of Laboratory Diagnosis, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| | - Yi Zhang
- Department of Immunology, Anhui Medical University, Hefei, 230022, China. .,Department of Pathogen Biology, Provincial Laboratories of Pathogen Biology and Zoonoses Anhui, Hefei, 230022, China.
| | - Fang Liu
- Department of Immunology, Anhui Medical University, Hefei, 230022, China. .,Department of Pathogen Biology, Provincial Laboratories of Pathogen Biology and Zoonoses Anhui, Hefei, 230022, China.
| | - Jilong Shen
- Department of Immunology, Anhui Medical University, Hefei, 230022, China. .,Department of Pathogen Biology, Provincial Laboratories of Pathogen Biology and Zoonoses Anhui, Hefei, 230022, China.
| |
Collapse
|
9
|
Cuesta-Astroz Y, Scholte LLS, Pais FSM, Oliveira G, Nahum LA. Evolutionary analysis of the cystatin family in three Schistosoma species. Front Genet 2014; 5:206. [PMID: 25071834 PMCID: PMC4089355 DOI: 10.3389/fgene.2014.00206] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 06/18/2014] [Indexed: 11/13/2022] Open
Abstract
The cystatin family comprises cysteine protease inhibitors distributed in 3 subfamilies (I25A–C). Family members lacking cystatin activity are currently unclassified. Little is known about the evolution of Schistosoma cystatins, their physiological roles, and expression patterns in the parasite life cycle. The present study aimed to identify cystatin homologs in the predicted proteome of three Schistosoma species and other Platyhelminthes. We analyzed the amino acid sequence diversity focused in the identification of protein signatures and to establish evolutionary relationships among Schistosoma and experimentally validated human cystatins. Gene expression patterns were obtained from different developmental stages in Schistosoma mansoni using microarray data. In Schistosoma, only I25A and I25B proteins were identified, reflecting little functional diversification. I25C and unclassified subfamily members were not identified in platyhelminth species here analyzed. The resulting phylogeny placed cystatins in different clades, reflecting their molecular diversity. Our findings suggest that Schistosoma cystatins are very divergent from their human homologs, especially regarding the I25B subfamily. Schistosoma cystatins also differ significantly from other platyhelminth homologs. Finally, transcriptome data publicly available indicated that I25A and I25B genes are constitutively expressed thus could be essential for schistosome life cycle progression. In summary, this study provides insights into the evolution, classification, and functional diversification of cystatins in Schistosoma and other Platyhelminthes, improving our understanding of parasite biology and opening new frontiers in the identification of novel therapeutic targets against helminthiases.
Collapse
Affiliation(s)
- Yesid Cuesta-Astroz
- Grupo de Genômica e Biologia Computacional, Centro de Excelência em Bioinformática, Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, Centro de Pesquisas René Rachou (CPqRR), Fundação Oswaldo Cruz (Fiocruz) Belo Horizonte, Brazil ; Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Larissa L S Scholte
- Grupo de Genômica e Biologia Computacional, Centro de Excelência em Bioinformática, Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, Centro de Pesquisas René Rachou (CPqRR), Fundação Oswaldo Cruz (Fiocruz) Belo Horizonte, Brazil ; Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Fabiano Sviatopolk-Mirsky Pais
- Grupo de Genômica e Biologia Computacional, Centro de Excelência em Bioinformática, Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, Centro de Pesquisas René Rachou (CPqRR), Fundação Oswaldo Cruz (Fiocruz) Belo Horizonte, Brazil ; Faculdade Infórium de Tecnologia Belo Horizonte, Brazil
| | - Guilherme Oliveira
- Grupo de Genômica e Biologia Computacional, Centro de Excelência em Bioinformática, Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, Centro de Pesquisas René Rachou (CPqRR), Fundação Oswaldo Cruz (Fiocruz) Belo Horizonte, Brazil
| | - Laila A Nahum
- Grupo de Genômica e Biologia Computacional, Centro de Excelência em Bioinformática, Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, Centro de Pesquisas René Rachou (CPqRR), Fundação Oswaldo Cruz (Fiocruz) Belo Horizonte, Brazil ; Faculdade Infórium de Tecnologia Belo Horizonte, Brazil
| |
Collapse
|
10
|
Siricoon S, Grams SV, Grams R. Efficient inhibition of cathepsin B by a secreted type 1 cystatin of Fasciola gigantica. Mol Biochem Parasitol 2012; 186:126-33. [DOI: 10.1016/j.molbiopara.2012.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 10/09/2012] [Accepted: 10/10/2012] [Indexed: 12/14/2022]
|
11
|
Schwarz A, Valdés JJ, Kotsyfakis M. The role of cystatins in tick physiology and blood feeding. Ticks Tick Borne Dis 2012; 3:117-27. [PMID: 22647711 DOI: 10.1016/j.ttbdis.2012.03.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 03/03/2012] [Accepted: 03/08/2012] [Indexed: 10/28/2022]
Abstract
Ticks, as obligate hematophagous ectoparasites, impact greatly on animal and human health because they transmit various pathogens worldwide. Over the last decade, several cystatins from different hard and soft ticks were identified and biochemically analyzed for their role in the physiology and blood feeding lifestyle of ticks. All these cystatins are potent inhibitors of papain-like cysteine proteases, but not of legumain. Tick cystatins were either detected in the salivary glands and/or the midgut, key tick organs responsible for blood digestion and the expression of pharmacologically potent salivary proteins for blood feeding. For example, the transcription of two cystatins named HlSC-1 and Sialostatin L2 was highly upregulated in these tick tissues during feeding. Vaccinating hosts against Sialostatin L2 and Om-cystatin 2 as well as silencing of a cystatin gene from Amblyomma americanum significantly inhibited the feeding ability of ticks. Additionally, Om-cystatin 2 and Sialostatin L possessed strong host immunosuppressive properties by inhibiting dendritic cell maturation due to their interaction with cathepsin S. These two cystatins, together with Sialostatin L2 are the first tick cystatins with resolved three-dimensional structure. Sialostatin L, furthermore, showed preventive properties against autoimmune diseases. In the case of the cystatin Hlcyst-2, experimental evidence showed its role in tick innate immunity, since increased Hlcyst-2 transcript levels were detected in Babesia gibsoni-infected larval ticks and the protein inhibited Babesia growth. Other cystatins, such as Hlcyst-1 or Om-cystatin 2 are assumed to be involved in regulating blood digestion. Only for Bmcystatin was a role in tick embryogenesis suggested. Finally, all the biochemically analyzed tick cystatins are powerful protease inhibitors, and some may be novel antigens for developing anti-tick vaccines and drugs of medical importance due to their stringent target specificity.
Collapse
Affiliation(s)
- Alexandra Schwarz
- Laboratory of Genomics and Proteomics of Disease Vectors, Institute of Parasitology, Biology Centre, AS CR v.v.i., Ceske Budejovice, Czech Republic.
| | | | | |
Collapse
|
12
|
He B, Cai G, Ni Y, Li Y, Zong H, He L. Characterization and expression of a novel cystatin gene from Schistosoma japonicum. Mol Cell Probes 2011; 25:186-93. [PMID: 21601634 DOI: 10.1016/j.mcp.2011.05.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 05/05/2011] [Accepted: 05/05/2011] [Indexed: 11/24/2022]
Abstract
Cystatins are a family of cysteine protease inhibitors that play a crucial role in the immune evasion from their host and in the adaptation to host defence. Here, we isolated a full-length cDNA sequence inferred to encode a novel cystatin gene from a blood fluke, Schistosoma japonicum. The cDNA, designated SjCystatin, comprised an open reading frame (ORF) of 306 bp, and encoded 101 amino acids with a predicted molecular weight of 11.3 kDa. This predicted protein shared a significant degree of sequence identity with the type I cystatin (stefin) of Schistosoma mansoni and Homo sapiens. These proteins exhibited a typical cystatin topology, including the absence of disulfide bonds and three conserved catalytic motifs, Gly at the N-terminus (Gly(6)), Gln-X-Val-X-Gly motif (Q(49)VVAG(53)) and an LP pair at the C-terminus (L(76)P(77)). The SjCystatin gene spanned 376 bp and contained three exons. The positions of two introns were conserved between the cystatin genes of trematodes and their vertebrate hosts. Reverse transcription polymerase chain reaction confirmed the transcription of SjCystatin in the egg, schistosomula and adult stages of S. japonicum. The encoding ORF region was cloned into pET-28a (+) prokaryotic expression vector. After purification, the recombinant protein SjCystatin (recSjCystatin), expressed in Escherichia coli, was used to immunize animals and produce its specific polyclonal antibody. Western blot analysis revealed that the native SjCystatin was expressed in the egg and adult stages. The enzyme activity assay of the recSjCystatin showed that it inhibited the proteolytic activity of papain. SjCystatin protein was mainly localized on the miracidium within eggs. Immunohistochemistry revealed that SjCystatin mainly localized in the epithelial cells lining the gut as well as the tegument on the surface of adult worms. The conserved genomic DNA structure among cystatin homologues of trematode and their vertebrate host emphasized the characteristics of compatibility between parasites and their hosts. This study provides the first insight into the gene and protein of S. japonicum cystatin and a basis for a further understanding the functions of this gene.
Collapse
Affiliation(s)
- Baohua He
- Department of Human Parasitology, Basic Medical School, Wuhan University, Hubei, PR China
| | | | | | | | | | | |
Collapse
|
13
|
|
14
|
RNA interference in Schistosoma mansoni schistosomula: selectivity, sensitivity and operation for larger-scale screening. PLoS Negl Trop Dis 2010; 4:e850. [PMID: 20976050 PMCID: PMC2957409 DOI: 10.1371/journal.pntd.0000850] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 09/16/2010] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The possible emergence of resistance to the only available drug for schistosomiasis spurs drug discovery that has been recently incentivized by the availability of improved transcriptome and genome sequence information. Transient RNAi has emerged as a straightforward and important technique to interrogate that information through decreased or loss of gene function and identify potential drug targets. To date, RNAi studies in schistosome stages infecting humans have focused on single (or up to 3) genes of interest. Therefore, in the context of standardizing larger RNAi screens, data are limited on the extent of possible off-targeting effects, gene-to-gene variability in RNAi efficiency and the operational capabilities and limits of RNAi. METHODOLOGY/PRINCIPAL FINDINGS We investigated in vitro the sensitivity and selectivity of RNAi using double-stranded (ds)RNA (approximately 500 bp) designed to target 11 Schistosoma mansoni genes that are expressed in different tissues; the gut, tegument and otherwise. Among the genes investigated were 5 that had been previously predicted to be essential for parasite survival. We employed mechanically transformed schistosomula that are relevant to parasitism in humans, amenable to screen automation and easier to obtain in greater numbers than adult parasites. The operational parameters investigated included defined culture media for optimal parasite maintenance, transfection strategy, time- and dose-dependency of RNAi, and dosing limits. Of 7 defined culture media tested, Basch Medium 169 was optimal for parasite maintenance. RNAi was best achieved by co-incubating parasites and dsRNA (standardized to 30 µg/ml for 6 days); electroporation provided no added benefit. RNAi, including interference of more than one transcript, was selective to the gene target(s) within the pools of transcripts representative of each tissue. Concentrations of dsRNA above 90 µg/ml were directly toxic. RNAi efficiency was transcript-dependent (from 40 to >75% knockdown relative to controls) and this may have contributed to the lack of obvious phenotypes observed, even after prolonged incubations of 3 weeks. Within minutes of their mechanical preparation from cercariae, schistosomula accumulated fluorescent macromolecules in the gut indicating that the gut is an important route through which RNAi is expedited in the developing parasite. CONCLUSIONS Transient RNAi operates gene-selectively in S. mansoni newly transformed schistosomula yet the sensitivity of individual gene targets varies. These findings and the operational parameters defined will facilitate larger RNAi screens.
Collapse
|
15
|
Berriman M, Haas BJ, LoVerde PT, Wilson RA, Dillon GP, Cerqueira GC, Mashiyama ST, Al-Lazikani B, Andrade LF, Ashton PD, Aslett MA, Bartholomeu DC, Blandin G, Caffrey CR, Coghlan A, Coulson R, Day TA, Delcher A, DeMarco R, Djikeng A, Eyre T, Gamble JA, Ghedin E, Gu Y, Hertz-Fowler C, Hirai H, Hirai Y, Houston R, Ivens A, Johnston DA, Lacerda D, Macedo CD, McVeigh P, Ning Z, Oliveira G, Overington JP, Parkhill J, Pertea M, Pierce RJ, Protasio AV, Quail MA, Rajandream MA, Rogers J, Sajid M, Salzberg SL, Stanke M, Tivey AR, White O, Williams DL, Wortman J, Wu W, Zamanian M, Zerlotini A, Fraser-Liggett CM, Barrell BG, El-Sayed NM. The genome of the blood fluke Schistosoma mansoni. Nature 2009; 460:352-8. [PMID: 19606141 PMCID: PMC2756445 DOI: 10.1038/nature08160] [Citation(s) in RCA: 820] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2009] [Accepted: 05/22/2009] [Indexed: 11/24/2022]
Abstract
Schistosoma mansoni is responsible for the neglected tropical disease schistosomiasis that affects 210 million people in 76 countries. Here we present analysis of the 363 megabase nuclear genome of the blood fluke. It encodes at least 11,809 genes, with an unusual intron size distribution, and new families of micro-exon genes that undergo frequent alternative splicing. As the first sequenced flatworm, and a representative of the Lophotrochozoa, it offers insights into early events in the evolution of the animals, including the development of a body pattern with bilateral symmetry, and the development of tissues into organs. Our analysis has been informed by the need to find new drug targets. The deficits in lipid metabolism that make schistosomes dependent on the host are revealed, and the identification of membrane receptors, ion channels and more than 300 proteases provide new insights into the biology of the life cycle and new targets. Bioinformatics approaches have identified metabolic chokepoints, and a chemogenomic screen has pinpointed schistosome proteins for which existing drugs may be active. The information generated provides an invaluable resource for the research community to develop much needed new control tools for the treatment and eradication of this important and neglected disease.
Collapse
|
16
|
Tarasuk M, Vichasri Grams S, Viyanant V, Grams R. Type I cystatin (stefin) is a major component of Fasciola gigantica excretion/secretion product. Mol Biochem Parasitol 2009; 167:60-71. [PMID: 19416741 DOI: 10.1016/j.molbiopara.2009.04.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 04/27/2009] [Accepted: 04/27/2009] [Indexed: 10/20/2022]
Abstract
In the present study we describe type 1 cystatin, a cysteine protease inhibitor, as a major released antigen of the tropical liver fluke Fasciola gigantica (FgStefin-1). Immunohistochemical analysis showed that FgStefin-1 is abundant in (a) tissue of tegumental type, including oral and ventral sucker, pharynx, genital atrium, metraterm, cirrus and (b) the intestinal epithelium. Faint staining was observed in the epithelia of ovary and proximal uterus. Immunoblots showed the presence of FgStefin-1 in the parasite's excretion/secretion (ES) product and immunodepletion demonstrated that FgStefin-1 herein is partially complexed with cathepsin L. Furthermore, quantitation of FgStefin-1 in comparison to cathepsin L in ES product and crude worm extract of adults supports a major external function of FgStefin-1 with an estimated 50% being released in at least equimolar amounts to cathepsin L. Sera of an experimentally infected rabbit reacted with recombinant FgStefin-1 starting 8 weeks postinfection. Activity analyses of recombinant FgStefin-1 showed nanomolar inhibition constants for mammalian cathepsin B, L, and S cysteine proteases and released cysteine proteases of the parasite. The protein is active over a wide pH range and is heat stable. Our results suggest protective functions of FgStefin-1, regulating intracellular cysteine protease activity, and possibly protection against extracellular proteolytic damage to the parasite's intestinal and tegumental surface proteins. Considering inhibition kinetics and previously demonstrated immunomodulatory properties of cystatin in parasitic nematodes a comparable function of FgStefin-1 is suggested and is at present under investigation.
Collapse
Affiliation(s)
- Mayuri Tarasuk
- Faculty of Allied Health Sciences, Thammasat University, Pathumthani, Thailand
| | | | | | | |
Collapse
|
17
|
Adisakwattana P, Saunders SP, Nel HJ, Fallon PG. Helminth-Derived Immunomodulatory Molecules. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 666:95-107. [DOI: 10.1007/978-1-4419-1601-3_8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
18
|
Chung YB, Yang HJ. Partial purification and characterization of a cysteine protease inhibitor from the plerocercoid of Spirometra erinacei. THE KOREAN JOURNAL OF PARASITOLOGY 2008; 46:183-6. [PMID: 18830060 DOI: 10.3347/kjp.2008.46.3.183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Helminthic cysteine proteases are well known to play critical roles in tissue invasion, nutrient uptake, and immune evasion of the parasites. In the same manner, the sparganum, the plerocercoid of Spirometra mansoni, is also known to secrete a large amount of cysteine proteases. However, cysteine protease inhibitors regulating the proteolytic activities of the cysteine protease are poorly illustrated. In this regard, we partially purified an endogenous cysteine protease inhibitor from spargana and characterized its biochemical properties. The cysteine protease inhibitor was purified by sequential chromatographies using Resource Q anion exchanger and Superdex 200 HR gel filtration from crude extracts of spargana. The molecular weight of the purified protein was estimated to be about 11 kD on SDS-PAGE. It was able to inhibit papain and 27 kDa cysteine protease of spargana with the ratio of 25.7% and 49.1%, respectively, while did not inhibit chymotrypsin. This finding suggests that the cysteine protease inhibitor of spargana may be involved in regulation of endogenous cysteine proteases of the parasite, rather than interact with cysteine proteases from their hosts.
Collapse
Affiliation(s)
- Young-Bae Chung
- Department of Parasitology, Cheju National University College of Medicine, Institute of Medical Science, Jeju 690-756, Korea
| | | |
Collapse
|
19
|
Delcroix M, Medzihradsky K, Caffrey CR, Fetter RD, McKerrow JH. Proteomic analysis of adult S. mansoni gut contents. Mol Biochem Parasitol 2007; 154:95-7. [PMID: 17451823 PMCID: PMC2732360 DOI: 10.1016/j.molbiopara.2007.03.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 03/12/2007] [Accepted: 03/13/2007] [Indexed: 11/19/2022]
Affiliation(s)
- Melaine Delcroix
- Sandler Center for Basic Research in Parasitic Diseases, California Institute for Quantitative Biomedical Research (QB3), 1700 4th St., University of California, San Francisco, CA 94158-2330, USA
| | | | | | | | | |
Collapse
|
20
|
Hashmi S, Zhang J, Oksov Y, Ji Q, Lustigman S. The Caenorhabditis elegans CPI-2a cystatin-like inhibitor has an essential regulatory role during oogenesis and fertilization. J Biol Chem 2006; 281:28415-29. [PMID: 16857685 DOI: 10.1074/jbc.m600254200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the present study, we characterized a sterile cpi-2a(ok1256) deletion mutant in Caenorhabditis elegans and showed that CPI-2a has an essential regulatory role during oogenesis and fertilization. We have also shown that the CPI2a inhibitor and both Ce-CPL-1 and Ce-CPZ-1 enzymes are present in the myoepithelial sheath surrounding germ cells, oocytes, and embryos as well as in the yolk granules within normal oocytes. Staining of mutant worms with anti-yolk protein antibodies has indicted that the proteins are not present in the mature oocytes. Moreover, green fluorescent protein expression was absence or reduced in cpi-2a/yp170:gfp mutant oocytes, although it was expressed in one of the successfully developed embryos. Based on these results, we hypothesize that the sterility in cpi-2a(ok1256) mutant worms is potentially caused by two possible mechanisms: 1) defects in the uptake and/or processing of yolk proteins by the growing oocytes and 2) indirect induction of defects in cell-cell signaling that is critical for promoting germ line development, oocyte maturation, ovulation, and fertilization. A defect in any of these processes would have detrimental effects on the development of normal embryos and consequently normal production of progenies as we observed in cpi-2a mutant worms. This is the first study that demonstrates the expression of cysteine proteases and their endogenous inhibitor in the gonadal sheath cells surrounding germ cells and oocytes, which indirectly have established their potential involvement in proteolytic processing of molecules within the gonadal sheath cells, such as components of the extracellular matrix or the cytoskeletal proteins, which are essential for proper cell-cell signaling activities of the gonadal sheath cells during normal maturation and ovulation processes.
Collapse
Affiliation(s)
- Sarwar Hashmi
- Laboratory of Molecular Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York 10021, USA.
| | | | | | | | | |
Collapse
|
21
|
Khaznadji E, Collins P, Dalton JP, Bigot Y, Moiré N. A new multi-domain member of the cystatin superfamily expressed by Fasciola hepatica. Int J Parasitol 2006; 35:1115-25. [PMID: 16115636 DOI: 10.1016/j.ijpara.2005.05.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Revised: 04/22/2005] [Accepted: 05/02/2005] [Indexed: 11/23/2022]
Abstract
Cystatins are cysteine protease inhibitors that are widespread in the plant and animal kingdoms. Cystatins are expressed by helminth parasites that may employ these proteins to regulate parasite cysteine protease activity and to modulate host immune responses. Here, we describe the cloning of a cDNA encoding a high molecular weight protein of Fasciola hepatica that contains two domains with significant identity to the cardinal cystatin signatures and four domains with degenerated cystatin signatures. This is the first report of a multi-domain cystatin in an invertebrate species. While cystatins are divided into three evolutionary related families, our phylogenetic analysis shows that all cystatin domains within this protein, like several other helminth cystatins, belong to the cystatin family 2. The DNA region encoding the domain 4 that is the best conserved at the level of its cystatin signatures was expressed in Drosophila cells and a recombinant protein was produced and purified. This protein was a potent inhibitor of the papain and of the major cysteine protease of F. hepatica, the cathepsin L1.
Collapse
Affiliation(s)
- Eric Khaznadji
- INRA, UR86 Bio-Agresseurs, Santé et Environnement 37 380 Nouzilly, France
| | | | | | | | | |
Collapse
|
22
|
Murray J, Manoury B, Balic A, Watts C, Maizels RM. Bm-CPI-2, a cystatin from Brugia malayi nematode parasites, differs from Caenorhabditis elegans cystatins in a specific site mediating inhibition of the antigen-processing enzyme AEP. Mol Biochem Parasitol 2005; 139:197-203. [PMID: 15664654 DOI: 10.1016/j.molbiopara.2004.11.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2004] [Accepted: 11/18/2004] [Indexed: 10/26/2022]
Abstract
The filarial parasite Brugia malayi survives for many years in the human lymphatic system. One immune evasion mechanism employed by Brugia is thought to be the release of cysteine protease inhibitors (cystatins), and we have previously shown that the recombinant cystatin Bm-CPI-2 interferes with protease-dependent antigen processing in the MHC class II antigen presentation pathway. Analogy with vertebrate cystatins suggested that Bm-CPI-2 is bi-functional, with one face of the protein blocking papain-like proteases, and the other able to inhibit legumains such as asparaginyl endopeptidase (AEP). Site-directed mutagenesis was carried out on Bm-CPI-2 at Asn-77, the residue on which AEP inhibition is dependent in vertebrate homologues. Two mutations at this site (to Asp and Lys) showed 10-fold diminished and ablated activity respectively, in assays of AEP inhibition, while blocking of papain-like proteases was reduced by only a small degree. Comparison of the B. malayi cystatins with two homologues encoded by the free-living model organism, Caenorhabditis elegans, suggested that while the papain site may be intact, the AEP site would not be functional. This supposition was tested with recombinant C. elegans proteins, Ce-CPI-1 (K08B4.6) and Ce-CPI-2 (R01B10.1), both of which block cathepsins and neither of which possess the ability to block AEP. Thus, Brugia CPI-2 may have convergently evolved to inhibit an enzyme important only in the mammalian environment.
Collapse
Affiliation(s)
- Janice Murray
- Institute of Immunology and Infection Research, Ashworth Laboratories, University of Edinburgh, West Mains Road, Scotland EH9 3JT, UK
| | | | | | | | | |
Collapse
|