1
|
Dong G, Douanne N, Fernandez-Prada C, Olivier M. Unique Leishmania mexicana clones secrete populations of extracellular vesicles with unique protein profile and variable infectious capability. Front Cell Infect Microbiol 2024; 14:1443262. [PMID: 39703372 PMCID: PMC11655471 DOI: 10.3389/fcimb.2024.1443262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/12/2024] [Indexed: 12/21/2024] Open
Abstract
The study of extracellular vesicles has become an incredibly important field of study, but the inherent heterogeneity of these vesicles continues to make their study challenging. The genetic variability and well-documented protocols for the growth and vesicle isolation from Leishmania parasites provide a unique opportunity to compare the heterogeneity of different populations secreted by Leishmania clones. Leishmania mexicana was cultured on solid SDM agar plates and 8 clonal colonies were selected. The EVs collected from the liquid cultures of these 8 clones were assessed by NTA, TEM, and proteomic analysis. We found that all 8 clonal L. mexicana cultures were visually indistinguishable from each other and had similar growth rate, and these physical similarities extended to their EVs. However, proteomic analysis reveals that the EVs collected have unique protein profiles compared to each other and EVs isolated from a heterogeneous liquid culture of L. mexicana. We selected 3 clonal EVs for further mouse infection experiments and found that EVs from CL7 L. mexicana consistently caused reduced footpad swelling in C57BL6 mice footpads compared to EVs from CL1, CL8, and heterogenous L. mexicana. This trend was not observed when infecting Balb/C mice and C57BL6 with the parasites alone, with only CL1 L. mexicana causing significantly increased infection in Balb/c mice. Our results together show that EVs isolated from different clonal colonies of L. mexicana have distinct differences in protein cargo which can lead to varying outcomes on Leishmania infection. Further evaluation will be needed to determine the underlying mechanisms behind this and verify that differences observed in infectivity are directly caused by variations between our L. mexicana clones, especially genetic sequencing and immunoblotting to validate our results.
Collapse
Affiliation(s)
- George Dong
- Infectious Diseases and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montréal, QC, Canada
| | - Noélie Douanne
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Christopher Fernandez-Prada
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Martin Olivier
- Infectious Diseases and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montréal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
| |
Collapse
|
2
|
Ashrafmansouri M, Amiri-Dashatan N, Ahmadi N. Identification of protein profile in metacyclic and amastigote-like stages of Leishmania tropica: a proteomic approach. AMB Express 2022; 12:142. [PMID: 36370199 PMCID: PMC9653527 DOI: 10.1186/s13568-022-01481-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 10/23/2022] [Indexed: 11/13/2022] Open
Abstract
Leishmaniasis is a tropical disease that leads to various clinical phenotypes. This study aimed to investigate protein expression changes in metacyclic and amastigote-like stages of L. tropica isolated from Iranian cutaneous leishmaniasis patients. Isolated samples were cultured and species type identified using PCR-RFLP technique. The promastigotes were grown in RPMI1640 media and differentiated to metacyclic and amastigote-like forms, followed by the extracted proteins of both successive stages carried out for proteomics and bioinformatics analysis. Using SWATH-MS quantitative proteomics technique, a total 176 and 155 distinct proteins were identified in metacyclic and axenic amastigote stages, respectively. Of these, 65 proteins were altered significantly (p-value < 0.05 and fold change ≥ 2) between studied stages. Several gene ontology (GO) categories were enriched for biological process during conversion of metacyclic promastigotes into amastigote-like, which "metabolic process" (GO: 0044281, P-Value: 6.52e-5), and "translation" (GO: 0006412, p-value: 5.01e-14) were disclosed as the top category in up and down-regulated proteins, respectively. Also, the KEGG pathway analysis indicated "metabolic pathways" and "ribosome" term as the most important pathways in up and down-regulated proteins, respectively. According to protein interaction network analysis, enolase (ENOL) has been detected as main hub proteins during differentiation, followed by Putative NADH-dependent fumarate reductase (LmjF.35.1180) and 40S ribosomal protein S2 (LmjF.32.0450). Overall, protein changes possibly play important roles in L. tropica biology. Anabolic pathways were down-regulated, whereas catabolic pathways were up-regulated during L. tropica differentiation. These protein expression changes could provide parasite survival in host macrophages, and could use as novel potential drug and vaccine targets for leishmaniasis.
Collapse
Affiliation(s)
- Marzieh Ashrafmansouri
- Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasrin Amiri-Dashatan
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Proteomics Research Center, Department of Medical Lab Sciences, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nayebali Ahmadi
- Proteomics Research Center, Department of Medical Lab Sciences, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Pacakova L, Harant K, Volf P, Lestinova T. Three types of Leishmania mexicana amastigotes: Proteome comparison by quantitative proteomic analysis. Front Cell Infect Microbiol 2022; 12:1022448. [DOI: 10.3389/fcimb.2022.1022448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/21/2022] [Indexed: 11/10/2022] Open
Abstract
Leishmania is the unicellular parasite transmitted by phlebotomine sand fly bite. It exists in two different forms; extracellular promastigotes, occurring in the gut of sand flies, and intracellular, round-shaped amastigotes residing mainly in vertebrate macrophages. As amastigotes originating from infected animals are often present in insufficient quality and quantity, two alternative types of amastigotes were introduced for laboratory experiments: axenic amastigotes and amastigotes from macrophages infected in vitro. Nevertheless, there is very little information about the degree of similarity/difference among these three types of amastigotes on proteomic level, whose comparison is crucial for assessing the suitability of using alternative types of amastigotes in experiments. In this study, L. mexicana amastigotes obtained from lesion of infected BALB/c mice were proteomically compared with alternatively cultivated amastigotes (axenic and macrophage-derived ones). Amastigotes of all three types were isolated, individually treated and analysed by LC-MS/MS proteomic analysis with quantification using TMT10-plex isobaric labeling. Significant differences were observed in the abundance of metabolic enzymes, virulence factors and proteins involved in translation and condensation of DNA. The most pronounced differences were observed between axenic amastigotes and lesion-derived amastigotes, macrophage-derived amastigotes were mostly intermediate between axenic and lesion-derived ones.
Collapse
|
4
|
Sádlová J, Podešvová L, Bečvář T, Bianchi C, Gerasimov ES, Saura A, Glanzová K, Leštinová T, Matveeva NS, Chmelová Ľ, Mlacovská D, Spitzová T, Vojtková B, Volf P, Yurchenko V, Kraeva N. Catalase impairs Leishmania mexicana development and virulence. Virulence 2021; 12:852-867. [PMID: 33724149 PMCID: PMC7971327 DOI: 10.1080/21505594.2021.1896830] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 12/22/2022] Open
Abstract
Catalase is one of the most abundant enzymes on Earth. It decomposes hydrogen peroxide, thus protecting cells from dangerous reactive oxygen species. The catalase-encoding gene is conspicuously absent from the genome of most representatives of the family Trypanosomatidae. Here, we expressed this protein from the Leishmania mexicana Β-TUBULIN locus using a novel bicistronic expression system, which relies on the 2A peptide of Teschovirus A. We demonstrated that catalase-expressing parasites are severely compromised in their ability to develop in insects, to be transmitted and to infect mice, and to cause clinical manifestation in their mammalian host. Taken together, our data support the hypothesis that the presence of catalase is not compatible with the dixenous life cycle of Leishmania, resulting in loss of this gene from the genome during the evolution of these parasites.
Collapse
Affiliation(s)
- Jovana Sádlová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Lucie Podešvová
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Tomáš Bečvář
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Claretta Bianchi
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | | | - Andreu Saura
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Kristýna Glanzová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tereza Leštinová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Nadezhda S. Matveeva
- Faculty of Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia
| | - Ľubomíra Chmelová
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Denisa Mlacovská
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Tatiana Spitzová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Barbora Vojtková
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia
| | - Natalya Kraeva
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
5
|
Pissarra J, Pagniez J, Petitdidier E, Séveno M, Vigy O, Bras-Gonçalves R, Lemesre JL, Holzmuller P. Proteomic Analysis of the Promastigote Secretome of Seven Leishmania Species. J Proteome Res 2021; 21:30-48. [PMID: 34806897 DOI: 10.1021/acs.jproteome.1c00244] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Leishmaniasis is one of the most impactful parasitic diseases worldwide, endangering the lives of 1 billion people every year. There are 20 different species of Leishmania able to infect humans, causing cutaneous (CL), visceral (VL), and/or mucocutaneous leishmaniasis (MCL). Leishmania parasites are known to secrete a plethora of proteins to establish infection and modulate the host's immune system. In this study, we analyzed using tandem mass spectrometry the total protein content of the secretomes produced by promastigote forms from seven Leishmania species grown in serum-free in vitro cultures. The core secretome shared by all seven Leishmania species corresponds to up to one-third of total secreted proteins, suggesting conserved mechanisms of adaptation to the vertebrate host. The relative abundance confirms the importance of known virulence factors and some proteins uniquely present in CL- or VL-causing species and may provide further insight regarding their pathogenesis. Bioinformatic analysis showed that most proteins were secreted via unconventional mechanisms, with an important role for vesicle-based secretion for all species. Gene Ontology annotation and enrichment analyses showed a high level of functional conservation among species. This study contributes to the current knowledge on the biological significance of differently secreted proteins and provides new information on the correlation of Leishmania secretome to clinical outcomes and species-specific pathogenesis.
Collapse
Affiliation(s)
- Joana Pissarra
- UMR 177 INTERTRYP, Institut de Recherche pour le Développement (IRD), 34394 Montpellier, France
| | - Julie Pagniez
- UMR 177 INTERTRYP, Institut de Recherche pour le Développement (IRD), 34394 Montpellier, France
| | - Elodie Petitdidier
- UMR 177 INTERTRYP, Institut de Recherche pour le Développement (IRD), 34394 Montpellier, France
| | - Martial Séveno
- BCM, Univ. Montpellier, CNRS, INSERM, 34090 Montpellier, France
| | - Oana Vigy
- IGF, Univ. Montpellier, CNRS, INSERM, 34090 Montpellier, France
| | - Rachel Bras-Gonçalves
- UMR 177 INTERTRYP, Institut de Recherche pour le Développement (IRD), 34394 Montpellier, France
| | - Jean-Loup Lemesre
- UMR 177 INTERTRYP, Institut de Recherche pour le Développement (IRD), 34394 Montpellier, France
| | - Philippe Holzmuller
- UMR ASTRE, CIRAD, INRAE, University of Montpellier (I-MUSE), 34090 Montpellier, France
| |
Collapse
|
6
|
Dias-Lopes G, Zabala-Peñafiel A, de Albuquerque-Melo BC, Souza-Silva F, Menaguali do Canto L, Cysne-Finkelstein L, Alves CR. Axenic amastigotes of Leishmania species as a suitable model for in vitro studies. Acta Trop 2021; 220:105956. [PMID: 33979642 DOI: 10.1016/j.actatropica.2021.105956] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/26/2022]
Abstract
Leishmania spp. are etiological agents of infection diseases, which in some cases can be fatal. The main forms of their biological cycle, promastigotes and amastigotes, can be maintained in vitro. While promastigotes are easier to maintain, amastigotes are more complex and can be obtained through different ways, including infection assays of tissues or in vitro cells, and differentiation from promastigotes to axenic amastigotes. Several protocols have been proposed for in vitro differentiation for at least 12 Leishmania spp. of both subgenera, Leishmania and Viannia. In this review we propose a critical summary of axenic amastigotes induction, as well as the impact of these strategies on metabolic pathways and regulatory networks analyzed by omics approaches. The parameters used by different research groups show considerable variations in temperature, pH and induction stages, as highlighted here for Leishmania (Viannia) braziliensis. Therefore, a consensus on strategies for inducing amastigogenesis is necessary to improve accuracy and even define stage-specific biomarkers. In fact, the axenic amastigote model has contributed to elucidate several aspects of the parasite cycle, however, since it does not reproduce the intracellular environment, its use requires several precautions. In addition, we present a discussion about using axenic amastigotes for drug screening, suggesting the need of a more sensitive methodology to verify cell viability in these tests. Collectively, this review explores the advantages and limitations found in studies with axenic amastigotes, done for more than 30 years, and discuss the gaps that impair their use as a suitable model for in vitro studies.
Collapse
|
7
|
Amiri-Dashatan N, Rezaei-Tavirani M, Zali H, Koushki M, Ahmadi N. Quantitative proteomic analysis reveals differentially expressed proteins in Leishmania major metacyclogenesis. Microb Pathog 2020; 149:104557. [DOI: 10.1016/j.micpath.2020.104557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 12/15/2022]
|
8
|
Sanchiz Á, Morato E, Rastrojo A, Camacho E, González-de la Fuente S, Marina A, Aguado B, Requena JM. The Experimental Proteome of Leishmania infantum Promastigote and Its Usefulness for Improving Gene Annotations. Genes (Basel) 2020; 11:E1036. [PMID: 32887454 PMCID: PMC7563732 DOI: 10.3390/genes11091036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/02/2022] Open
Abstract
Leishmania infantum causes visceral leishmaniasis (kala-azar), the most severe form of leishmaniasis, which is lethal if untreated. A few years ago, the re-sequencing and de novo assembling of the L. infantum (JPCM5 strain) genome was accomplished, and now we aimed to describe and characterize the experimental proteome of this species. In this work, we performed a proteomic analysis from axenic cultured promastigotes and carried out a detailed comparison with other Leishmania experimental proteomes published to date. We identified 2352 proteins based on a search of mass spectrometry data against a database built from the six-frame translated genome sequence of L. infantum. We detected many proteins belonging to organelles such as glycosomes, mitochondria, or flagellum, as well as many metabolic enzymes and many putative RNA binding proteins and molecular chaperones. Moreover, we listed some proteins presenting post-translational modifications, such as phosphorylations, acetylations, and methylations. On the other hand, the identification of peptides mapping to genomic regions previously annotated as non-coding allowed for the correction of annotations, leading to the N-terminal extension of protein sequences and the uncovering of eight novel protein-coding genes. The alliance of proteomics, genomics, and transcriptomics has resulted in a powerful combination for improving the annotation of the L. infantum reference genome.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jose M. Requena
- Centro de Biología Molecular “Severo Ochoa” (CBMSO, CSIC-UAM) Campus de Excelencia Internacional (CEI) UAM+CSIC, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (Á.S.); (E.M.); (A.R.); (E.C.); (S.G.-d.l.F.); (A.M.); (B.A.)
| |
Collapse
|
9
|
Saviola AJ, Negrão F, Yates JR. Proteomics of Select Neglected Tropical Diseases. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2020; 13:315-336. [PMID: 32109150 DOI: 10.1146/annurev-anchem-091619-093003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Technological advances in mass spectrometry have enabled the extensive identification, characterization, and quantification of proteins in any biological system. In disease processes proteins are often altered in response to external stimuli; therefore, proteomics, the large-scale study of proteins and their functions, represents an invaluable tool for understanding the molecular basis of disease. This review highlights the use of mass spectrometry-based proteomics to study the pathogenesis, etiology, and pathology of several neglected tropical diseases (NTDs), a diverse group of disabling diseases primarily associated with poverty in tropical and subtropical regions of the world. While numerous NTDs have been the subject of proteomic studies, this review focuses on Buruli ulcer, dengue, leishmaniasis, and snakebite envenoming. The proteomic studies highlighted provide substantial information on the pathogenic mechanisms driving these diseases; they also identify molecular targets for drug discovery and development and uncover promising biomarkers that can assist in early diagnosis.
Collapse
Affiliation(s)
- Anthony J Saviola
- Department of Molecular Medicine and Neurobiology, The Scripps Research Institute, La Jolla, California 92037, USA;
| | - Fernanda Negrão
- Department of Biosciences and Technology of Bioactive Products, Institute of Biology, University of Campinas, São Paulo 13083-862, Brazil
| | - John R Yates
- Department of Molecular Medicine and Neurobiology, The Scripps Research Institute, La Jolla, California 92037, USA;
| |
Collapse
|
10
|
Parthasarathy A, Kalesh K. Defeating the trypanosomatid trio: proteomics of the protozoan parasites causing neglected tropical diseases. RSC Med Chem 2020; 11:625-645. [PMID: 33479664 PMCID: PMC7549140 DOI: 10.1039/d0md00122h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/12/2020] [Indexed: 12/20/2022] Open
Abstract
Mass spectrometry-based proteomics enables accurate measurement of the modulations of proteins on a large scale upon perturbation and facilitates the understanding of the functional roles of proteins in biological systems. It is a particularly relevant methodology for studying Leishmania spp., Trypanosoma cruzi and Trypanosoma brucei, as the gene expression in these parasites is primarily regulated by posttranscriptional mechanisms. Large-scale proteomics studies have revealed a plethora of information regarding modulated proteins and their molecular interactions during various life processes of the protozoans, including stress adaptation, life cycle changes and interactions with the host. Important molecular processes within the parasite that regulate the activity and subcellular localisation of its proteins, including several co- and post-translational modifications, are also accurately captured by modern proteomics mass spectrometry techniques. Finally, in combination with synthetic chemistry, proteomic techniques facilitate unbiased profiling of targets and off-targets of pharmacologically active compounds in the parasites. This provides important data sets for their mechanism of action studies, thereby aiding drug development programmes.
Collapse
Affiliation(s)
- Anutthaman Parthasarathy
- Rochester Institute of Technology , Thomas H. Gosnell School of Life Sciences , 85 Lomb Memorial Dr , Rochester , NY 14623 , USA
| | - Karunakaran Kalesh
- Department of Chemistry , Durham University , Lower Mount Joy, South Road , Durham DH1 3LE , UK .
| |
Collapse
|
11
|
Ashrafmansouri M, Amiri‐Dashatan N, Ahmadi N, Rezaei‐Tavirani M, SeyyedTabaei S, Haghighi A. Quantitative proteomic analysis to determine differentially expressed proteins in axenic amastigotes of
Leishmania tropica
and
Leishmania major. IUBMB Life 2020; 72:1715-1724. [DOI: 10.1002/iub.2300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/25/2020] [Accepted: 04/17/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Marzieh Ashrafmansouri
- Department of Medical Parasitology and Mycology, Student Research Committee, School of MedicineShahid Beheshti University of Medical Sciences Tehran Iran
- Diagnostic Laboratory Sciences and Technology Research Center, Faculty of Paramedical SciencesShiraz University of Medical Sciences Shiraz Iran
| | - Nasrin Amiri‐Dashatan
- Proteomics Research Center, Faculty of Paramedical SciencesShahid Beheshti University of Medical Sciences Tehran Iran
| | - Nayebali Ahmadi
- Proteomics Research Center, Faculty of Paramedical SciencesShahid Beheshti University of Medical Sciences Tehran Iran
| | - Mostafa Rezaei‐Tavirani
- Proteomics Research Center, Faculty of Paramedical SciencesShahid Beheshti University of Medical Sciences Tehran Iran
| | - Seyyedjavad SeyyedTabaei
- Department of Medical Parasitology and Mycology, School of MedicineShahid Beheshti University of Medical Sciences Tehran Iran
| | - Ali Haghighi
- Department of Medical Parasitology and Mycology, School of MedicineShahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|
12
|
Capelli-Peixoto J, Mule SN, Tano FT, Palmisano G, Stolf BS. Proteomics and Leishmaniasis: Potential Clinical Applications. Proteomics Clin Appl 2019; 13:e1800136. [PMID: 31347770 DOI: 10.1002/prca.201800136] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 07/02/2019] [Indexed: 02/06/2023]
Abstract
Leishmaniases are diseases caused by protozoan parasites of the genus Leishmania. They are endemic in 98 countries, affect around 12 million people worldwide and may present several distinct clinical forms. Unfortunately, there are only a few drugs available for treatment of leishmaniasis, which are toxic and not always effective. Different parasite species and different clinical forms require optimization of the treatment or more specific therapies, which are not available. The emergence of resistance is also a matter of concern. Besides, diagnosis can sometimes be complicated due to atypical manifestations and associations with other pathologies. In this review, proteomic data are presented and discussed in terms of their application in important issues in leishmaniasis such as parasite resistance to chemotherapy, diagnosis of active disease in patients and dogs, markers for different clinical forms, identification of virulence factors, and their potential use in vaccination. It is shown that proteomics has contributed to the discovery of potential biomarkers for prognosis, diagnosis, therapeutics, monitoring of disease progression, treatment follow-up and identification of vaccine candidates for specific diseases. However, the authors believe its capabilities have not yet been fully explored for routine clinical analysis for several reasons, which will be presented in this review.
Collapse
Affiliation(s)
- Janaína Capelli-Peixoto
- Leishmaniasis laboratory, Institute of Biomedical Sciences, Department of Parasitology, University of São Paulo, São Paulo, Brazil
| | - Simon Ngao Mule
- GlycoProteomics laboratory, Institute of Biomedical Sciences, Department of Parasitology, University of São Paulo, São Paulo, Brazil
| | - Fabia Tomie Tano
- Leishmaniasis laboratory, Institute of Biomedical Sciences, Department of Parasitology, University of São Paulo, São Paulo, Brazil
| | - Giuseppe Palmisano
- GlycoProteomics laboratory, Institute of Biomedical Sciences, Department of Parasitology, University of São Paulo, São Paulo, Brazil
| | - Beatriz Simonsen Stolf
- Leishmaniasis laboratory, Institute of Biomedical Sciences, Department of Parasitology, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Basmaciyan L, Azas N, Casanova M. A potential acetyltransferase involved in Leishmania major metacaspase-dependent cell death. Parasit Vectors 2019; 12:266. [PMID: 31133064 PMCID: PMC6537415 DOI: 10.1186/s13071-019-3526-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/23/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Currently, there is no satisfactory treatment for leishmaniases, owing to the cost, mode of administration, side effects and to the increasing emergence of drug resistance. As a consequence, the proteins involved in Leishmania apoptosis seem a target of choice for the development of new therapeutic tools against these neglected tropical diseases. Indeed, Leishmania cell death, while phenotypically similar to mammalian apoptosis, is very peculiar, involving no homologue of the key mammalian apoptotic proteins such as caspases and death receptors. Furthermore, very few proteins involved in Leishmania apoptosis have been identified. RESULTS We identified a protein involved in Leishmania apoptosis from a library of genes overexpressed during Leishmania differentiation during which autophagy occurs. Indeed, the gene was overexpressed when L. major cell death was induced by curcumin or miltefosine. Furthermore, its overexpression increased L. major curcumin- and miltefosine-induced apoptosis. This gene, named LmjF.22.0600, whose expression is dependent on the expression of the metacaspase, another apoptotic protein, encodes a putative acetyltransferase. CONCLUSIONS This new protein, identified as being involved in Leishmania apoptosis, will contribute to a better understanding of Leishmania death, which is needed owing to the absence of a satisfactory treatment against leishmaniases. It will also allow a better understanding of the original apoptotic pathways of eukaryotes in general, while evidence of the existence of such pathways is accumulating.
Collapse
Affiliation(s)
- Louise Basmaciyan
- UMR PAM A, Valmis team, 2 rue Angélique Ducoudray, BP 37013, 21070 Dijon Cedex, France
| | - Nadine Azas
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Magali Casanova
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| |
Collapse
|
14
|
Barhoumi M, Koutsoni OS, Dotsika E, Guizani I. Leishmania infantum LeIF and its recombinant polypeptides induce the maturation of dendritic cells in vitro: An insight for dendritic cells based vaccine. Immunol Lett 2019; 210:20-28. [PMID: 30998957 DOI: 10.1016/j.imlet.2019.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 03/30/2019] [Accepted: 04/05/2019] [Indexed: 12/13/2022]
Abstract
We previously showed that recombinant Leishmania infantum eukaryotic initiation factor (LieIF) was able to induce the secretion of cytokines IL-12, IL-10 and TNF-α by human monocytes. In this study, we explored in vitro the potential of LieIF to induce phenotypic maturation and functional differentiation of murine bone-marrow derived dendritic cells (BM-DCs). Moreover, in order to identify potential immunnomodulatory regions of LieIF, eight recombinant overlapping protein fragments covering the whole amino acid sequence of protein, were constructed and assessed in vitro for their ability to induce maturation of BM-DCs. Our data showed that LieIF and some of its recombinant polypeptides were able to induce elevated expression of CD40, CD80 and CD86 co-stimulatory molecules with concurrent IL-12 production. Moreover, we used an in vivo experimental model of cutaneous leishmaniasis consisted of susceptible Leishmania major-infected BALB/c mice and we demonstrated that LieIF-pulsed-BM-DCs adoptively transferred in mice were capable to confer protection against a high dose parasite challenge. This study further describes the immunomodulatory properties of LieIF and its polypeptides bringing relevant information for their exploitation as candidate molecules for vaccine development against leishmaniasis.
Collapse
Affiliation(s)
- Mourad Barhoumi
- Laboratory of Molecular Epidemiology and Experimental Pathology, Institut Pasteur de Tunis, Université Tunis El Manar, 13 Place Pasteur, BP 74, 1002 Tunis-Belvedère, Tunisia.
| | - Olga S Koutsoni
- Laboratory of Cellular Immunology, Department of Microbiology, Hellenic Pasteur Institute, 127 Vass Sofias Av, Athens 11521, Greece.
| | - Eleni Dotsika
- Laboratory of Cellular Immunology, Department of Microbiology, Hellenic Pasteur Institute, 127 Vass Sofias Av, Athens 11521, Greece.
| | - Ikram Guizani
- Laboratory of Molecular Epidemiology and Experimental Pathology, Institut Pasteur de Tunis, Université Tunis El Manar, 13 Place Pasteur, BP 74, 1002 Tunis-Belvedère, Tunisia.
| |
Collapse
|
15
|
dos Santos Júnior ADCM, Ricart CAO, Pontes AH, Fontes W, de Souza AR, Castro MS, de Sousa MV, de Lima BD. Proteome analysis of Phytomonas serpens, a phytoparasite of medical interest. PLoS One 2018; 13:e0204818. [PMID: 30303999 PMCID: PMC6179244 DOI: 10.1371/journal.pone.0204818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 09/15/2018] [Indexed: 02/04/2023] Open
Abstract
The protozoan Phytomonas serpens (class Kinetoplastea) is an important phytoparasite that has gained medical importance due to its similarities to Trypanosoma cruzi, the etiological agent of Chagas disease. The present work describes the first proteome analysis of P. serpens. The parasite was separated into cytosolic and high density organelle fractions, which, together with total cell extract, were subjected to LC-MS/MS analyses. Protein identification was conducted using a comprehensive database composed of genome sequences of other related kinetoplastids. A total of 1,540 protein groups were identified among the three sample fractions. Sequences from Phytomonas sp. in the database allowed the highest number of identifications, with T. cruzi and T. brucei the human pathogens providing the greatest contribution to the identifications. Based on the proteomics data obtained, we proposed a central metabolic map of P. serpens, which includes all enzymes of the citric acid cycle. Data also revealed a new range of proteins possibly responsible for immunological cross-reactivity between P. serpens and T. cruzi.
Collapse
Affiliation(s)
- Agenor de Castro Moreira dos Santos Júnior
- Laboratory Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasília, Brasília, Federal District, Brazil
- Laboratory of Gene Biology, Department of Cell Biology, University of Brasília, Brasília, Federal District, Brazil
| | - Carlos André Ornelas Ricart
- Laboratory Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasília, Brasília, Federal District, Brazil
| | - Arthur Henriques Pontes
- Laboratory Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasília, Brasília, Federal District, Brazil
| | - Wagner Fontes
- Laboratory Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasília, Brasília, Federal District, Brazil
| | - Agnelo Rodrigues de Souza
- Laboratory Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasília, Brasília, Federal District, Brazil
- Laboratory of Gene Biology, Department of Cell Biology, University of Brasília, Brasília, Federal District, Brazil
| | - Mariana Souza Castro
- Laboratory Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasília, Brasília, Federal District, Brazil
| | - Marcelo Valle de Sousa
- Laboratory Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasília, Brasília, Federal District, Brazil
| | - Beatriz Dolabela de Lima
- Laboratory of Gene Biology, Department of Cell Biology, University of Brasília, Brasília, Federal District, Brazil
| |
Collapse
|
16
|
Avishek K, Ahuja K, Pradhan D, Gannavaram S, Selvapandiyan A, Nakhasi HL, Salotra P. A Leishmania-specific gene upregulated at the amastigote stage is crucial for parasite survival. Parasitol Res 2018; 117:3215-3228. [DOI: 10.1007/s00436-018-6020-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 07/17/2018] [Indexed: 01/03/2023]
|
17
|
Sundar S, Singh B. Understanding Leishmania parasites through proteomics and implications for the clinic. Expert Rev Proteomics 2018; 15:371-390. [PMID: 29717934 PMCID: PMC5970101 DOI: 10.1080/14789450.2018.1468754] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
INTRODUCTION Leishmania spp. are causative agents of leishmaniasis, a broad-spectrum neglected vector-borne disease. Genomic and transcriptional studies are not capable of solving intricate biological mysteries, leading to the emergence of proteomics, which can provide insights into the field of parasite biology and its interactions with the host. Areas covered: The combination of genomics and informatics with high throughput proteomics may improve our understanding of parasite biology and pathogenesis. This review analyses the roles of diverse proteomic technologies that facilitate our understanding of global protein profiles and definition of parasite development, survival, virulence and drug resistance mechanisms for disease intervention. Additionally, recent innovations in proteomics have provided insights concerning the drawbacks associated with conventional chemotherapeutic approaches and Leishmania biology, host-parasite interactions and the development of new therapeutic approaches. Expert commentary: With progressive breakthroughs in the foreseeable future, proteome profiles could provide target molecules for vaccine development and therapeutic intervention. Furthermore, proteomics, in combination with genomics and informatics, could facilitate the elimination of several diseases. Taken together, this review provides an outlook on developments in Leishmania proteomics and their clinical implications.
Collapse
Affiliation(s)
- Shyam Sundar
- a Department of Medicine, Institute of Medical Sciences , Banaras Hindu University , Varanasi , India
| | - Bhawana Singh
- a Department of Medicine, Institute of Medical Sciences , Banaras Hindu University , Varanasi , India
| |
Collapse
|
18
|
Harigua-Souiai E, Abdelkrim YZ, Bassoumi-Jamoussi I, Zakraoui O, Bouvier G, Essafi-Benkhadir K, Banroques J, Desdouits N, Munier-Lehmann H, Barhoumi M, Tanner NK, Nilges M, Blondel A, Guizani I. Identification of novel leishmanicidal molecules by virtual and biochemical screenings targeting Leishmania eukaryotic translation initiation factor 4A. PLoS Negl Trop Dis 2018; 12:e0006160. [PMID: 29346371 PMCID: PMC5790279 DOI: 10.1371/journal.pntd.0006160] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 01/30/2018] [Accepted: 12/11/2017] [Indexed: 01/25/2023] Open
Abstract
Leishmaniases are neglected parasitic diseases in spite of the major burden they inflict on public health. The identification of novel drugs and targets constitutes a research priority. For that purpose we used Leishmania infantum initiation factor 4A (LieIF), an essential translation initiation factor that belongs to the DEAD-box proteins family, as a potential drug target. We modeled its structure and identified two potential binding sites. A virtual screening of a diverse chemical library was performed for both sites. The results were analyzed with an in-house version of the Self-Organizing Maps algorithm combined with multiple filters, which led to the selection of 305 molecules. Effects of these molecules on the ATPase activity of LieIF permitted the identification of a promising hit (208) having a half maximal inhibitory concentration (IC50) of 150 ± 15 μM for 1 μM of protein. Ten chemical analogues of compound 208 were identified and two additional inhibitors were selected (20 and 48). These compounds inhibited the mammalian eIF4I with IC50 values within the same range. All three hits affected the viability of the extra-cellular form of L. infantum parasites with IC50 values at low micromolar concentrations. These molecules showed non-significant toxicity toward THP-1 macrophages. Furthermore, their anti-leishmanial activity was validated with experimental assays on L. infantum intramacrophage amastigotes showing IC50 values lower than 4.2 μM. Selected compounds exhibited selectivity indexes between 19 to 38, which reflects their potential as promising anti-Leishmania molecules.
Collapse
Affiliation(s)
- Emna Harigua-Souiai
- Laboratory of Molecular Epidemiology and Experimental Pathology – LR11IPT04, Institut Pasteur de Tunis, Université de Tunis el Manar, Tunis, Tunisia
- Institut Pasteur, Unité de Bioinformatique Structurale, CNRS UMR 3528, Département de Biologie Structurale et Chimie, Paris, France
| | - Yosser Zina Abdelkrim
- Laboratory of Molecular Epidemiology and Experimental Pathology – LR11IPT04, Institut Pasteur de Tunis, Université de Tunis el Manar, Tunis, Tunisia
- Laboratory of Microbial Gene Expression (EGM), CNRS UMR8261/Université Paris Diderot P7, Sorbonne Paris Cité & PSL, Institut de Biologie Physico-Chimique, Paris, France
- Faculté des Sciences de Bizerte, Université de Carthage, Tunis, Tunisia
| | - Imen Bassoumi-Jamoussi
- Laboratory of Molecular Epidemiology and Experimental Pathology – LR11IPT04, Institut Pasteur de Tunis, Université de Tunis el Manar, Tunis, Tunisia
| | - Ons Zakraoui
- Laboratory of Molecular Epidemiology and Experimental Pathology – LR11IPT04, Institut Pasteur de Tunis, Université de Tunis el Manar, Tunis, Tunisia
| | - Guillaume Bouvier
- Institut Pasteur, Unité de Bioinformatique Structurale, CNRS UMR 3528, Département de Biologie Structurale et Chimie, Paris, France
| | - Khadija Essafi-Benkhadir
- Laboratory of Molecular Epidemiology and Experimental Pathology – LR11IPT04, Institut Pasteur de Tunis, Université de Tunis el Manar, Tunis, Tunisia
| | - Josette Banroques
- Laboratory of Microbial Gene Expression (EGM), CNRS UMR8261/Université Paris Diderot P7, Sorbonne Paris Cité & PSL, Institut de Biologie Physico-Chimique, Paris, France
| | - Nathan Desdouits
- Institut Pasteur, Unité de Bioinformatique Structurale, CNRS UMR 3528, Département de Biologie Structurale et Chimie, Paris, France
| | - Hélène Munier-Lehmann
- Institut Pasteur, Unité de Chimie et Biocatalyse, Département de Biologie Structurale et Chimie, Paris, France
- Unité Mixte de Recherche 3523, Centre National de la Recherche Scientifique, Paris, France
| | - Mourad Barhoumi
- Laboratory of Molecular Epidemiology and Experimental Pathology – LR11IPT04, Institut Pasteur de Tunis, Université de Tunis el Manar, Tunis, Tunisia
| | - N. Kyle Tanner
- Laboratory of Microbial Gene Expression (EGM), CNRS UMR8261/Université Paris Diderot P7, Sorbonne Paris Cité & PSL, Institut de Biologie Physico-Chimique, Paris, France
| | - Michael Nilges
- Institut Pasteur, Unité de Bioinformatique Structurale, CNRS UMR 3528, Département de Biologie Structurale et Chimie, Paris, France
| | - Arnaud Blondel
- Institut Pasteur, Unité de Bioinformatique Structurale, CNRS UMR 3528, Département de Biologie Structurale et Chimie, Paris, France
| | - Ikram Guizani
- Laboratory of Molecular Epidemiology and Experimental Pathology – LR11IPT04, Institut Pasteur de Tunis, Université de Tunis el Manar, Tunis, Tunisia
| |
Collapse
|
19
|
Proteomic approaches for drug discovery against tegumentary leishmaniasis. Biomed Pharmacother 2017; 95:577-582. [DOI: 10.1016/j.biopha.2017.08.089] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/14/2017] [Accepted: 08/23/2017] [Indexed: 12/21/2022] Open
|
20
|
Semini G, Aebischer T. Phagosome proteomics to study Leishmania's intracellular niche in macrophages. Int J Med Microbiol 2017; 308:68-76. [PMID: 28927848 DOI: 10.1016/j.ijmm.2017.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/23/2017] [Accepted: 09/03/2017] [Indexed: 12/14/2022] Open
Abstract
Intracellular pathogens invade their host cells and replicate within specialized compartments. In turn, the host cell initiates a defensive response trying to kill the invasive agent. As a consequence, intracellular lifestyle implies morphological and physiological changes in both pathogen and host cell. Leishmania spp. are medically important intracellular protozoan parasites that are internalized by professional phagocytes such as macrophages, and reside within the parasitophorous vacuole inhibiting their microbicidal activity. Whereas the proteome of the extracellular promastigote form and the intracellular amastigote form have been extensively studied, the constituents of Leishmania's intracellular niche, an endolysosomal compartment, are not fully deciphered. In this review we discuss protocols to purify such compartments by means of an illustrating example to highlight generally relevant considerations and innovative aspects that allow purification of not only the intracellular parasites but also the phagosomes that harbor them and analyze the latter by gel free proteomics.
Collapse
Affiliation(s)
- Geo Semini
- Mycotic and Parasitic Agents and Mycobacteria, Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany.
| | - Toni Aebischer
- Mycotic and Parasitic Agents and Mycobacteria, Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
21
|
Doehl JSP, Sádlová J, Aslan H, Pružinová K, Metangmo S, Votýpka J, Kamhawi S, Volf P, Smith DF. Leishmania HASP and SHERP Genes Are Required for In Vivo Differentiation, Parasite Transmission and Virulence Attenuation in the Host. PLoS Pathog 2017; 13:e1006130. [PMID: 28095465 PMCID: PMC5271408 DOI: 10.1371/journal.ppat.1006130] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 01/27/2017] [Accepted: 12/15/2016] [Indexed: 12/15/2022] Open
Abstract
Differentiation of extracellular Leishmania promastigotes within their sand fly vector, termed metacyclogenesis, is considered to be essential for parasites to regain mammalian host infectivity. Metacyclogenesis is accompanied by changes in the local parasite environment, including secretion of complex glycoconjugates within the promastigote secretory gel and colonization and degradation of the sand fly stomodeal valve. Deletion of the stage-regulated HASP and SHERP genes on chromosome 23 of Leishmania major is known to stall metacyclogenesis in the sand fly but not in in vitro culture. Here, parasite mutants deficient in specific genes within the HASP/SHERP chromosomal region have been used to investigate their role in metacyclogenesis, parasite transmission and establishment of infection. Metacyclogenesis was stalled in HASP/SHERP mutants in vivo and, although still capable of osmotaxis, these mutants failed to secrete promastigote secretory gel, correlating with a lack of parasite accumulation in the thoracic midgut and failure to colonise the stomodeal valve. These defects prevented parasite transmission to a new mammalian host. Sand fly midgut homogenates modulated parasite behaviour in vitro, suggesting a role for molecular interactions between parasite and vector in Leishmania development within the sand fly. For the first time, stage-regulated expression of the small HASPA proteins in Leishmania (Leishmania) has been demonstrated: HASPA2 is expressed only in extracellular promastigotes and HASPA1 only in intracellular amastigotes. Despite its lack of expression in amastigotes, replacement of HASPA2 into the null locus background delays onset of pathology in BALB/c mice. This HASPA2-dependent effect is reversed by HASPA1 gene addition, suggesting that the HASPAs may have a role in host immunomodulation.
Collapse
Affiliation(s)
- Johannes S. P. Doehl
- Centre for Immunology and Infection, Department of Biology, University of York, York, United Kingdom
| | - Jovana Sádlová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Hamide Aslan
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Kateřina Pružinová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Sonia Metangmo
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Jan Votýpka
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Shaden Kamhawi
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Deborah F. Smith
- Centre for Immunology and Infection, Department of Biology, University of York, York, United Kingdom
| |
Collapse
|
22
|
Using Proteomics to Understand How Leishmania Parasites Survive inside the Host and Establish Infection. Int J Mol Sci 2016; 17:ijms17081270. [PMID: 27548150 PMCID: PMC5000668 DOI: 10.3390/ijms17081270] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 06/21/2016] [Accepted: 07/26/2016] [Indexed: 12/15/2022] Open
Abstract
Leishmania is a protozoan parasite that causes a wide range of different clinical manifestations in mammalian hosts. It is a major public health risk on different continents and represents one of the most important neglected diseases. Due to the high toxicity of the drugs currently used, and in the light of increasing drug resistance, there is a critical need to develop new drugs and vaccines to control Leishmania infection. Over the past few years, proteomics has become an important tool to understand the underlying biology of Leishmania parasites and host interaction. The large-scale study of proteins, both in parasites and within the host in response to infection, can accelerate the discovery of new therapeutic targets. By studying the proteomes of host cells and tissues infected with Leishmania, as well as changes in protein profiles among promastigotes and amastigotes, scientists hope to better understand the biology involved in the parasite survival and the host-parasite interaction. This review demonstrates the feasibility of proteomics as an approach to identify new proteins involved in Leishmania differentiation and intracellular survival.
Collapse
|
23
|
Sosa MH, Giordana L, Nowicki C. Exploring biochemical and functional features of Leishmania major phosphoenolpyruvate carboxykinase. Arch Biochem Biophys 2015; 583:120-9. [PMID: 26271440 DOI: 10.1016/j.abb.2015.07.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 07/20/2015] [Accepted: 07/22/2015] [Indexed: 10/23/2022]
Abstract
This work reports the first functional characterization of leishmanial PEPCK. The recombinant Leishmania major enzyme (Lmj_PEPCK) exhibits equivalent kcat values for the phosphoenolpyruvate (PEP) and oxaloacetate (OAA) forming reactions. The apparent Km towards OAA is 10-fold lower than that for PEP, while the Km values for ADP and ATP are equivalent. Mutagenesis studies showed that D241, D242 and H205 of Lmj_PEPCK like the homologous residues of all known PEPCKs are implicated in metal ions binding. In contrast, the replacement of R43 for Q nearly abolishes Lmj_PEPCK activity. Moreover, the Y180F variant exhibits unchanged Km values for PEP, Mn(2+), and [Formula: see text] , being the kcat for PEP- but not that for OAA-forming reaction more notably decreased. Instead, the Y180A mutant displays an increase in the Km value towards Mn(2+). Therefore in Lmj_PEPCK, Y180 seems to exert different functions to those of the analogous residue in ATP- and GTP-dependant enzymes. Besides, the guanidinium group of R43 appears to play an essential but yet unknown role. These findings promote the need for further structural studies to disclose whether Y180 and R43 participate in the catalytic mechanism or/and in the transitions between the open and the catalytically competent (closed) forms of Lmj_PEPCK.
Collapse
Affiliation(s)
- Máximo Hernán Sosa
- Instituto de Química y Fisicoquímica Biológica IQUIFIB-CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD, Buenos Aires, Argentina
| | - Lucila Giordana
- Instituto de Química y Fisicoquímica Biológica IQUIFIB-CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD, Buenos Aires, Argentina
| | - Cristina Nowicki
- Instituto de Química y Fisicoquímica Biológica IQUIFIB-CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD, Buenos Aires, Argentina.
| |
Collapse
|
24
|
Advances in Development of New Treatment for Leishmaniasis. BIOMED RESEARCH INTERNATIONAL 2015; 2015:815023. [PMID: 26078965 PMCID: PMC4442256 DOI: 10.1155/2015/815023] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 04/07/2015] [Accepted: 04/18/2015] [Indexed: 01/01/2023]
Abstract
Leishmaniasis is a neglected infectious disease caused by several different species of protozoan parasites of the genus Leishmania. Current strategies to control this disease are mainly based on chemotherapy. Despite being available for the last 70 years, leishmanial chemotherapy has lack of efficiency, since its route of administration is difficult and it can cause serious side effects, which results in the emergence of resistant cases. The medical-scientific community is facing difficulties to overcome these problems with new suitable and efficient drugs, as well as the identification of new drug targets. The availability of the complete genome sequence of Leishmania has given the scientific community the possibility of large-scale analysis, which may lead to better understanding of parasite biology and consequent identification of novel drug targets. In this review we focus on how high-throughput analysis is helping us and other groups to identify novel targets for chemotherapeutic interventions. We further discuss recent data produced by our group regarding the use of the high-throughput techniques and how this helped us to identify and assess the potential of new identified targets.
Collapse
|
25
|
Proteomic analysis of metacyclogenesis in Leishmania infantum wild-type and PTR1 null mutant. EUPA OPEN PROTEOMICS 2014. [DOI: 10.1016/j.euprot.2014.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
26
|
Pawar H, Renuse S, Khobragade SN, Chavan S, Sathe G, Kumar P, Mahale KN, Gore K, Kulkarni A, Dixit T, Raju R, Prasad TSK, Harsha HC, Patole MS, Pandey A. Neglected Tropical Diseases and Omics Science: Proteogenomics Analysis of the Promastigote Stage ofLeishmania majorParasite. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2014; 18:499-512. [DOI: 10.1089/omi.2013.0159] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Harsh Pawar
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Rajiv Gandhi University of Health Sciences, Bangalore, India
| | - Santosh Renuse
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Department of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
| | | | - Sandip Chavan
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal University, Madhav Nagar, Manipal, India
| | - Gajanan Sathe
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal University, Madhav Nagar, Manipal, India
| | - Praveen Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | | | | | | | - Tanwi Dixit
- National Centre for Cell Sciences, Pune, India
| | - Rajesh Raju
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | | | - H. C. Harsha
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | | | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
27
|
Selvapandiyan A, Dey R, Gannavaram S, Solanki S, Salotra P, Nakhasi HL. Generation of growth arrested Leishmania amastigotes: a tool to develop live attenuated vaccine candidates against visceral leishmaniasis. Vaccine 2014; 32:3895-901. [PMID: 24837513 DOI: 10.1016/j.vaccine.2014.05.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 04/19/2014] [Accepted: 05/01/2014] [Indexed: 12/24/2022]
Abstract
Visceral leishmaniasis (VL) is fatal if not treated and is prevalent widely in the tropical and sub-tropical regions of world. VL is caused by the protozoan parasite Leishmania donovani or Leishmania infantum. Although several second generation vaccines have been licensed to protect dogs against VL, there are no effective vaccines against human VL [1]. Since people cured of leishmaniasis develop lifelong protection, development of live attenuated Leishmania parasites as vaccines, which can have controlled infection, may be a close surrogate to leishmanization. This can be achieved by deletion of genes involved in the regulation of growth and/or virulence of the parasite. Such mutant parasites generally do not revert to virulence in animal models even under conditions of induced immune suppression due to complete deletion of the essential gene(s). In the Leishmania life cycle, the intracellular amastigote form is the virulent form and causes disease in the mammalian hosts. We developed centrin gene deleted L. donovani parasites that displayed attenuated growth only in the amastigote stage and were found safe and efficacious against virulent challenge in the experimental animal models. Thus, targeting genes differentially expressed in the amastigote stage would potentially attenuate only the amastigote stage and hence controlled infectivity may be effective in developing immunity. This review lays out the strategies for attenuation of the growth of the amastigote form of Leishmania for use as live vaccine against leishmaniasis, with a focus on visceral leishmaniasis.
Collapse
Affiliation(s)
| | - Ranadhir Dey
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Bethesda, MD, USA
| | - Sreenivas Gannavaram
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Bethesda, MD, USA
| | - Sumit Solanki
- Institute of Molecular Medicine, New Delhi, India; C.G. Bhakta Institute of Biotechnology, Tarsadi, Gujarat, India
| | - Poonam Salotra
- National Institute of Pathology (ICMR), New Delhi, India
| | - Hira L Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Bethesda, MD, USA
| |
Collapse
|
28
|
Magalhães RDM, Duarte MC, Mattos EC, Martins VT, Lage PS, Chávez-Fumagalli MA, Lage DP, Menezes-Souza D, Régis WCB, Manso Alves MJ, Soto M, Tavares CAP, Nagen RAP, Coelho EAF. Identification of differentially expressed proteins from Leishmania amazonensis associated with the loss of virulence of the parasites. PLoS Negl Trop Dis 2014; 8:e2764. [PMID: 24699271 PMCID: PMC3974679 DOI: 10.1371/journal.pntd.0002764] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 02/16/2014] [Indexed: 11/18/2022] Open
Abstract
Background The present study analyzed whether or not the in vitro cultivation for long periods of time of pre-isolated Leishmania amazonensis from lesions of chronically infected BALB/c mice was able to interfere in the parasites' infectivity using in vivo and in vitro experiments. In addition, the proteins that presented a significant decrease or increase in their protein expression content were identified applying a proteomic approach. Methodology/Principal Findings Parasites were cultured in vitro for 150 days. Aliquots were collected on the day 0 of culture (R0), as well as after ten (R10; 50 days of culture), twenty (R20; 100 days of culture), and thirty (R30; 150 days of culture) passages, and were used to analyze the parasites' in vitro and in vivo infectivity, as well as to perform the proteomic approach. Approximately 837, 967, 935, and 872 spots were found in 2-DE gels prepared from R0, R10, R20, and R30 samples, respectively. A total of 37 spots presented a significant decrease in their intensity of expression, whereas a significant increase in protein content during cultivation could be observed for 19 proteins (both cases >2.0 folds). Some of these identified proteins can be described, such as diagnosis and/or vaccine candidates, while others are involved in the infectivity of Leishmania. It is interesting to note that six proteins, considered hypothetical in Leishmania, showed a significant decrease in their expression and were also identified. Conclusions/Significance The present study contributes to the understanding that the cultivation of parasites over long periods of time may well be related to the possible loss of infectivity of L. amazonensis. The identified proteins that presented a significant decrease in their expression during cultivation, including the hypothetical, may also be related to this loss of parasites' infectivity, and applied in future studies, including vaccine candidates and/or immunotherapeutic targets against leishmaniasis. Leishmania amazonensis can induce a diversity of clinical manifestations in mammal hosts, including tegumentary and visceral leishmaniasis. The present study evaluated the variation of infectivity of L. amazonensis, which was pre-isolated from lesions of chronically infected mice and in vitro cultured for 150 days, in turn connecting these results with the profile of parasite protein expression using a proteomic approach. Parasites were recovered after the first passage, as well as after 50, 100, and 150 days of axenic cultures, and were subsequently evaluated. A total of 37 proteins presented a significant decrease, whereas 19 proteins presented a significant increase in their protein expression content in the assays (both cases >2.0 fold). Some of the identified proteins have been reported in prior literature, including diagnosis and/or vaccine candidates for leishmaniasis, while others proved to be involved in the infectivity of Leishmania. It is interesting to note that proteins related to the parasites' metabolism were also the majority of the proteins identified in the old cultures of L. amazonensis, suggesting a possible relation between the metabolic state of parasites and their possible loss of infectivity. In conclusion, the proteins identified in this study represent a contribution to the discovery of new vaccine candidates and/or immunotherapeutic targets against leishmaniasis.
Collapse
Affiliation(s)
- Rubens D. M. Magalhães
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mariana C. Duarte
- Programa de Pós-Graduação em Ciências Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Eliciane C. Mattos
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Vivian T. Martins
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Paula S. Lage
- Programa de Pós-Graduação em Ciências Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Miguel A. Chávez-Fumagalli
- Programa de Pós-Graduação em Ciências Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniela P. Lage
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniel Menezes-Souza
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Wiliam C. B. Régis
- Departamento de Bioquímica, PUC Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Maria J. Manso Alves
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Manuel Soto
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - Carlos A. P. Tavares
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ronaldo A. P. Nagen
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Eduardo A. F. Coelho
- Programa de Pós-Graduação em Ciências Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
29
|
de Jesus JB, Mesquita-Rodrigues C, Cuervo P. Proteomics advances in the study of Leishmania parasites and leishmaniasis. Subcell Biochem 2014; 74:323-349. [PMID: 24264252 DOI: 10.1007/978-94-007-7305-9_14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Leishmania spp. are digenetic parasites which cause a broad spectrum of fatal diseases in humans. These parasites, as well as the other trypanosomatid, regulate gene expression at the post-transcriptional and post-translational levels, so that a poor correlation is observed between mRNA content and translated proteins. The completion of the genomic sequencing of several Leishmania species has enormous relevance to the study of the leishmaniasis pathogenesis. The combination of the available genomic resources of these parasites with powerful high-throughput proteomic analysis has shed light on various aspects of Leishmania biology as well as on the mechanisms underlying the disease. Diverse proteomic approaches have been used to describe and catalogue global protein profiles of Leishmania spp., reveal changes in protein expression during development, determine the subcellular localization of gene products, evaluate host-parasite interactions and elucidate drug resistance mechanisms. The characterization of these proteins has advanced, although many fundamental questions remain unanswered. Here, we present a historic review summarizing the different proteomic technologies applied to the study of Leishmania parasites during the last decades and we discuss the proteomic discoveries that have contributed to the understanding of Leishmania parasites biology and leishmaniasis.
Collapse
Affiliation(s)
- Jose Batista de Jesus
- Departamento de Engenharia de Biossistemas, Universidade Federal de São João Del Rei, São João Del Rei, MG, Brazil,
| | | | | |
Collapse
|
30
|
Matrangolo FS, Liarte DB, Andrade LC, de Melo MF, Andrade JM, Ferreira RF, Santiago AS, Pirovani CP, Silva-Pereira RA, Murta SM. Comparative proteomic analysis of antimony-resistant and -susceptible Leishmania braziliensis and Leishmania infantum chagasi lines. Mol Biochem Parasitol 2013; 190:63-75. [DOI: 10.1016/j.molbiopara.2013.06.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 06/19/2013] [Accepted: 06/24/2013] [Indexed: 10/26/2022]
|
31
|
Sardar AH, Kumar S, Kumar A, Purkait B, Das S, Sen A, Kumar M, Sinha KK, Singh D, Equbal A, Ali V, Das P. Proteome changes associated with Leishmania donovani promastigote adaptation to oxidative and nitrosative stresses. J Proteomics 2013; 81:185-99. [DOI: 10.1016/j.jprot.2013.01.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 01/01/2013] [Accepted: 01/03/2013] [Indexed: 01/18/2023]
|
32
|
Abstract
Leishmaniasis, like other neglected diseases is characterized by a small arsenal of drugs for its control. To safeguard the efficacy of current drugs and guide the development of new ones it is thus of utmost importance to acquire a deep understanding of the phenomenon of drug resistance and its link with treatment outcome. We discuss here how (post-)genomic approaches may contribute to this purpose. We highlight the need for a clear definition of the phenotypes under consideration: innate and acquired resistance versus treatment failure. We provide a recent update of our knowledge on the Leishmania genome structure and dynamics, and compare the contribution of targeted and untargeted methods for the understanding of drug resistance and show their limits. We also present the main assays allowing the experimental validation of the genes putatively involved in drug resistance. The importance of analysing information downstream of the genome is stressed and further illustrated by recent metabolomics findings. Finally, the attention is called onto the challenges for implementing the acquired knowledge to the benefit of the patients and the population at risk.
Collapse
|
33
|
Lynn MA, Marr AK, McMaster WR. Differential quantitative proteomic profiling of Leishmania infantum and Leishmania mexicana density gradient separated membranous fractions. J Proteomics 2013; 82:179-92. [PMID: 23466312 DOI: 10.1016/j.jprot.2013.02.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 02/08/2013] [Accepted: 02/09/2013] [Indexed: 12/22/2022]
Abstract
UNLABELLED Leishmaniasis, caused by infection with Leishmania, is a major public health concern affecting more than 20million people globally. Leishmania has a digenetic lifecycle consisting of an extracellular flagellated promastigote, adapted to live in the mid-gut of the sand fly host and an aflagellated intracellular amastigote that resides within the macrophage of the mammalian host. Leishmania mexicana and Leishmania infantum are causative agents of cutaneous and visceral leishmaniasis, respectively. Membrane proteins play a pivotal role in host-pathogen interactions and in regulatory pathways. As the genome of Leishmania is essentially constitutively expressed, regulation of protein expression during differentiation occurs post-transcriptionally and/or post-translationally. Quantitative mass spectrometry using iTRAQ labeling identified differences in the proteomes of density gradient separated membranous fractions of promastigote and amastigote life-stages. We identified 189 L. infantum and 107 L. mexicana non-redundant proteins of which 20-40% showed differential expression levels between promastigote and amastigote lifecycle stages. Differentially expressed proteins mapped to several pathways including cell motility, metabolism, and infectivity as well as virulence factors such as eEF-1α, amastin and leishmanolysin (GP63). Western blot analysis validated iTRAQ quantitation for leishmanolysin. Focusing on differentially expressed proteins essential for pathogenesis, may ultimately lead to the identification of novel potential therapeutic targets. BIOLOGICAL SIGNIFICANCE Leishmania, protozoan parasites of the Trypanosomatidae family, are the causative agents of leishmaniasis that represents a major public health concern affecting more than 20million people globally Membrane associated proteins play a pivotal role in host-pathogen interactions and in regulatory pathways. Quantitative proteomic analysis of the membranous fractions from L. mexicana and L. infantum (causative agents of cutaneous and visceral leishmaniasis, respectively) identified a number of proteins that may have important stage-specific functions in either the sand fly or mammalian host. The function of these proteins includes roles in virulence, as well as differences in metabolic process between life stages. Many of the proteins identified may act as virulence factors playing significant roles in parasite invasion, host-parasite interaction or parasite survival and thus may have therapeutic potential as drug target candidates.
Collapse
Affiliation(s)
- Miriam A Lynn
- Infection and Immunity Research Centre, Vancouver Coastal Health Research Institute, 2660 Oak Street, Vancouver, B.C., V6H 3Z6, Canada
| | | | | |
Collapse
|
34
|
Cordeiro AT, Feliciano PR, Pinheiro MP, Nonato MC. Crystal structure of dihydroorotate dehydrogenase from Leishmania major. Biochimie 2012; 94:1739-48. [DOI: 10.1016/j.biochi.2012.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 04/03/2012] [Indexed: 01/09/2023]
|
35
|
Brotherton MC, Racine G, Ouameur AA, Leprohon P, Papadopoulou B, Ouellette M. Analysis of membrane-enriched and high molecular weight proteins in Leishmania infantum promastigotes and axenic amastigotes. J Proteome Res 2012; 11:3974-85. [PMID: 22716046 DOI: 10.1021/pr201248h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Membrane and high molecular weight (HMW) proteins tend to be underrepresented in proteome analyses. Here, we optimized a protocol designed for the extraction and purification of membranes from the protozoan parasite Leishmania using a combination of serial centrifugation and free-flow zone electrophoresis (ZE-FFE). We also enriched for Leishmania HMW proteins from total extracts using the Gelfree 8100 fractionation system. This allowed the study of expression of both membrane-enriched and HMW proteins in Leishmania infantum promastigotes and amastigotes. We identified 194 proteins with at least one transmembrane domain (TMD) and 171 HMW proteins (≥100 kDa) in the invertebrate promastigote stage and 66 proteins with at least one TMD and 154 HMW proteins in the mammalian amastigote stage. Several of the proteins identified in one of the stages are part of pathways consistent with the known biology of the parasite, with many proteins involved in lipid synthesis, numerous dynein heavy chains, and some surface antigen proteins 2 detected in the promastigote stage. Notably, some proteins involved in transport and proteolysis were detected either in promastigote or amastigote. The present study is using improved proteomic methods for studying membrane-enriched and HMW proteins helping to achieve a better understanding of the parasite life cycle.
Collapse
Affiliation(s)
- Marie-Christine Brotherton
- Centre de Recherche en Infectiologie, Département de Microbiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Canada
| | | | | | | | | | | |
Collapse
|
36
|
Kramer S. Developmental regulation of gene expression in the absence of transcriptional control: The case of kinetoplastids. Mol Biochem Parasitol 2012; 181:61-72. [PMID: 22019385 DOI: 10.1016/j.molbiopara.2011.10.002] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 10/03/2011] [Accepted: 10/04/2011] [Indexed: 11/25/2022]
|
37
|
Coelho VTS, Oliveira JS, Valadares DG, Chávez-Fumagalli MA, Duarte MC, Lage PS, Soto M, Santoro MM, Tavares CAP, Fernandes AP, Coelho EAF. Identification of proteins in promastigote and amastigote-like Leishmania using an immunoproteomic approach. PLoS Negl Trop Dis 2012; 6:e1430. [PMID: 22272364 PMCID: PMC3260309 DOI: 10.1371/journal.pntd.0001430] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 10/27/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The present study aims to identify antigens in protein extracts of promastigote and amastigote-like Leishmania (Leishmania) chagasi syn. L. (L.) infantum recognized by antibodies present in the sera of dogs with asymptomatic and symptomatic visceral leishmaniasis (VL). METHODOLOGY/PRINCIPAL FINDINGS Proteins recognized by sera samples were separated by two-dimensional electrophoresis (2DE) and identified by mass spectrometry. A total of 550 spots were observed in the 2DE gels, and approximately 104 proteins were identified. Several stage-specific proteins could be identified by either or both classes of sera, including, as expected, previously known proteins identified as diagnosis, virulence factors, drug targets, or vaccine candidates. Three, seven, and five hypothetical proteins could be identified in promastigote antigenic extracts; while two, eleven, and three hypothetical proteins could be identified in amastigote-like antigenic extracts by asymptomatic and symptomatic sera, as well as a combination of both, respectively. CONCLUSIONS/SIGNIFICANCE The present study represents a significant contribution not only in identifying stage-specific L. infantum molecules, but also in revealing the expression of a large number of hypothetical proteins. Moreover, when combined, the identified proteins constitute a significant source of information for the improvement of diagnostic tools and/or vaccine development to VL.
Collapse
Affiliation(s)
- Vinicio T. S. Coelho
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Jamil S. Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Diogo G. Valadares
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Miguel A. Chávez-Fumagalli
- Programa de Pós-Graduação em Medicina Molecular, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mariana C. Duarte
- Departamento de Patologia Clínica, Coltec, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Paula S. Lage
- Programa de Pós-Graduação em Ciências Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, Belo Horizonte, Minas Gerais, Brazil
| | - Manuel Soto
- Centro de Biología Molecular Severo Ochoa, CSIC, UAM, Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - Marcelo M. Santoro
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Carlos A. P. Tavares
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Paula Fernandes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Eduardo A. F. Coelho
- Departamento de Patologia Clínica, Coltec, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Programa de Pós-Graduação em Ciências Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
38
|
Paape D, Aebischer T. Contribution of proteomics of Leishmania spp. to the understanding of differentiation, drug resistance mechanisms, vaccine and drug development. J Proteomics 2011; 74:1614-24. [PMID: 21621022 DOI: 10.1016/j.jprot.2011.05.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 05/03/2011] [Accepted: 05/04/2011] [Indexed: 11/20/2022]
Abstract
Leishmania spp., protozoan parasites with a digenetic life cycle, cause a spectrum of diseases in humans. Recently several Leishmania spp. have been sequenced which significantly boosted the number and quality of proteomic studies conducted. Here a historic review will summarize work of the pre-genomic era and then focus on studies after genome information became available. Firstly works comparing the different life cycle stages, in order to identify stage specific proteins, will be discussed. Identifying post-translational modifications by proteomics especially phosphorylation events will be discussed. Further the contribution of proteomics to the understanding of the molecular mechanism of drug resistance and the investigation of immunogenic proteins for the identification of vaccine candidates will be summarized. Approaches of how potentially secreted proteins were identified are discussed. So far 30-35% of the total predicted proteome of Leishmania spp. have been identified. This comprises mainly the abundant proteins, therefore the last section will look into technological approaches on how this coverage may be increased and what the gel-free and gel-based proteomics have to offer will be compared.
Collapse
Affiliation(s)
- Daniel Paape
- Centre for Immunology and Infection, Department of Biology/Hull York Medical School, University of York, YO10 5DD, UK.
| | | |
Collapse
|
39
|
Costa MM, Andrade HM, Bartholomeu DC, Freitas LM, Pires SF, Chapeaurouge AD, Perales J, Ferreira AT, Giusta MS, Melo MN, Gazzinelli RT. Analysis of Leishmania chagasi by 2-D Difference Gel Eletrophoresis (2-D DIGE) and Immunoproteomic: Identification of Novel Candidate Antigens for Diagnostic Tests and Vaccine. J Proteome Res 2011; 10:2172-84. [DOI: 10.1021/pr101286y] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Míriam M. Costa
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Bioquímica e Imunologia, 31270-910 Belo Horizonte, Minas Gerais, Brasil
| | - Hélida M. Andrade
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Parasitologia, 31279-910 Belo Horizonte, Minas Gerais, Brasil
| | - Daniella C. Bartholomeu
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Parasitologia, 31279-910 Belo Horizonte, Minas Gerais, Brasil
| | - Leandro M. Freitas
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Parasitologia, 31279-910 Belo Horizonte, Minas Gerais, Brasil
| | - Simone F. Pires
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Parasitologia, 31279-910 Belo Horizonte, Minas Gerais, Brasil
| | - Alexander D. Chapeaurouge
- Fundação Oswaldo Cruz, Instituto Oswaldo cruz, Laboratório de Toxinologia, 21040360 Rio de Janeiro, Rio de Janeiro, Brasil
| | - Jonas Perales
- Fundação Oswaldo Cruz, Instituto Oswaldo cruz, Laboratório de Toxinologia, 21040360 Rio de Janeiro, Rio de Janeiro, Brasil
| | - André T. Ferreira
- Fundação Oswaldo Cruz, Instituto Oswaldo cruz, Laboratório de Toxinologia, 21040360 Rio de Janeiro, Rio de Janeiro, Brasil
| | - Mário S. Giusta
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Bioquímica e Imunologia, 31270-910 Belo Horizonte, Minas Gerais, Brasil
| | - Maria N. Melo
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Parasitologia, 31279-910 Belo Horizonte, Minas Gerais, Brasil
| | - Ricardo T. Gazzinelli
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Bioquímica e Imunologia, 31270-910 Belo Horizonte, Minas Gerais, Brasil
- Centro de Pesquisas René Rachou−Fundação Oswaldo Cruz, 30190-002 Belo Horizonte, Minas Gerais, Brasil
- University of Massachusetts Medical School, Division of Infectious Diseases and Immunology, Worcester 01605-2324, Massachusetts, United States
| |
Collapse
|
40
|
Tsang C, Ge R, Sun H. Metalloproteomics of Arsenic, Antimony and Bismuth Based Drugs. BIOLOGICAL CHEMISTRY OF ARSENIC, ANTIMONY AND BISMUTH 2010:353-376. [DOI: 10.1002/9780470975503.ch15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
41
|
Castilho TM, Goldsmith-Pestana K, Lozano C, Valderrama L, Saravia NG, McMahon-Pratt D. Murine model of chronic L. (Viannia) panamensis infection: role of IL-13 in disease. Eur J Immunol 2010; 40:2816-29. [PMID: 20827674 DOI: 10.1002/eji.201040384] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Leishmania (Viannia) organisms are the most prevalent etiologic agents of human cutaneous leishmaniasis in the Americas. Nevertheless, our knowledge of the immunological mechanisms exploited by L. (Viannia) organisms remains limited and the mechanisms underlying disease are not well understood. Here, we report the development of a BALB/c mouse model of L. (V.) panamensis infection that is able to reproduce chronic disease, with persistent infection and clinically evident lesions for over 1 year. The immune response of the mouse resembles that found for L. (V.) panamensis-infected patients with chronic and recurrent lesions, presenting a mixed Th1/Th2 response with the presence of TNF-α, IFN-γ, IL-10 and IL-13. Using immunodeficient mice, the critical role for IL-13 and/or IL-4Rα in determining susceptibility to chronic infection was evident. With the induction of healing in the immunodeficient mice, increases in IFN-γ and IL-17 were found, concomitant with parasite control and elimination. Specifically, increases in CD4(+) (but not CD8(+)) T cells producing IFN-γ were observed. These results suggest that IL-13 represents an important target for disease control of L. (V.) panamensis infection. This murine model should be useful to further understand the pathology associated with chronic disease and to develop methods for the treatment and prevention of leishmaniasis caused by L. (Viannia) parasites.
Collapse
Affiliation(s)
- Tiago M Castilho
- Yale University School of Public Health, New Haven, CT 06520-8034, USA
| | | | | | | | | | | |
Collapse
|
42
|
Louw CA, Ludewig MH, Mayer J, Blatch GL. The Hsp70 chaperones of the Tritryps are characterized by unusual features and novel members. Parasitol Int 2010; 59:497-505. [PMID: 20816852 DOI: 10.1016/j.parint.2010.08.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 08/10/2010] [Accepted: 08/23/2010] [Indexed: 12/13/2022]
Abstract
Proteins belonging to the Hsp70 class of molecular chaperones are highly conserved and ubiquitous, performing an essential role in the maintenance of cellular homeostasis in almost all known organisms. Trypanosoma brucei, Trypanosoma cruzi and Leishmania major are human parasites collectively known as the Tritryps. The Tritryps undergo extensive morphological changes during their life cycles, largely triggered by the marked differences between conditions in their insect vector and human host. Hsp70s are synthesised in response to these marked changes in environment and are proposed to be required for these parasites to successfully transition between differentiation stages while remaining viable and infective. While the Tritryps Hsp70 complement consists of homologues of all the major eukaryotic Hsp70s, there are a number of novel members, and some unique structural features. This review critically evaluates the current knowledge on the Tritryps Hsp70 proteins with an emphasis on T. brucei, and highlights some novel and previously unstudied aspects of these multifaceted molecular chaperones.
Collapse
Affiliation(s)
- Cassandra A Louw
- Biomedical and Biotechnology Research Unit, Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, P.O. Box 94, Grahamstown, 6140, South Africa
| | | | | | | |
Collapse
|
43
|
Murray AS, Lynn MA, McMaster WR. The Leishmania mexicana A600 genes are functionally required for amastigote replication. Mol Biochem Parasitol 2010; 172:80-9. [DOI: 10.1016/j.molbiopara.2010.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 03/10/2010] [Accepted: 03/14/2010] [Indexed: 12/17/2022]
|
44
|
Brotherton MC, Racine G, Foucher AL, Drummelsmith J, Papadopoulou B, Ouellette M. Analysis of Stage-Specific Expression of Basic Proteins in Leishmania infantum. J Proteome Res 2010; 9:3842-53. [DOI: 10.1021/pr100048m] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Marie-Christine Brotherton
- Centre de Recherche en Infectiologie du Centre de Recherche du CHUL and Département de Microbiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Gina Racine
- Centre de Recherche en Infectiologie du Centre de Recherche du CHUL and Département de Microbiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Aude L. Foucher
- Centre de Recherche en Infectiologie du Centre de Recherche du CHUL and Département de Microbiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Jolyne Drummelsmith
- Centre de Recherche en Infectiologie du Centre de Recherche du CHUL and Département de Microbiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Barbara Papadopoulou
- Centre de Recherche en Infectiologie du Centre de Recherche du CHUL and Département de Microbiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Marc Ouellette
- Centre de Recherche en Infectiologie du Centre de Recherche du CHUL and Département de Microbiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Canada
| |
Collapse
|
45
|
Toledo JS, Ferreira TR, Defina TPA, Dossin FDM, Beattie KA, Lamont DJ, Cloutier S, Papadopoulou B, Schenkman S, Cruz AK. Cell homeostasis in a Leishmania major mutant overexpressing the spliced leader RNA is maintained by an increased proteolytic activity. Int J Biochem Cell Biol 2010; 42:1661-71. [PMID: 20601086 DOI: 10.1016/j.biocel.2010.06.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 06/04/2010] [Accepted: 06/16/2010] [Indexed: 10/19/2022]
Abstract
Although several stage-specific genes have been identified in Leishmania, the molecular mechanisms governing developmental gene regulation in this organism are still not well understood. We have previously reported an attenuation of virulence in Leishmania major and L. braziliensis carrying extra-copies of the spliced leader RNA gene. Here, we surveyed the major differences in proteome and transcript expression profiles between the spliced leader RNA overexpressor and control lines using two-dimensional gel electrophoresis and differential display reverse transcription PCR, respectively. Thirty-nine genes related to stress response, cytoskeleton, proteolysis, cell cycle control and proliferation, energy generation, gene transcription, RNA processing and post-transcriptional regulation have abnormal patterns of expression in the spliced leader RNA overexpressor line. The evaluation of proteolytic pathways in the mutant revealed a selective increase of cysteine protease activity and an exacerbated ubiquitin-labeled protein population. Polysome profile analysis and measurement of cellular protein aggregates showed that protein translation in the spliced leader RNA overexpressor line is increased when compared to the control line. We found that L. major promastigotes maintain homeostasis in culture when challenged with a metabolic imbalance generated by spliced leader RNA surplus through modulation of intracellular proteolysis. However, this might interfere with a fine-tuned gene expression control necessary for the amastigote multiplication in the mammalian host.
Collapse
Affiliation(s)
- Juliano S Toledo
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Harder S, Thiel M, Clos J, Bruchhaus I. Characterization of a subunit of the outer dynein arm docking complex necessary for correct flagellar assembly in Leishmania donovani. PLoS Negl Trop Dis 2010; 4:e586. [PMID: 20126266 PMCID: PMC2811169 DOI: 10.1371/journal.pntd.0000586] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 12/07/2009] [Indexed: 11/18/2022] Open
Abstract
Background In order to proceed through their life cycle, Leishmania parasites switch between sandflies and mammals. The flagellated promastigote cells transmitted by the insect vector are phagocytized by macrophages within the mammalian host and convert into the amastigote stage, which possesses a rudimentary flagellum only. During an earlier proteomic study of the stage differentiation of the parasite we identified a component of the outer dynein arm docking complex, a structure of the flagellar axoneme. The 70 kDa subunit of the outer dynein arm docking complex consists of three subunits altogether and is essential for the assembly of the outer dynein arm onto the doublet microtubule of the flagella. According to the nomenclature of the well-studied Chlamydomonas reinhardtii complex we named the Leishmania protein LdDC2. Methodology/Principal Findings This study features a characterization of the protein over the life cycle of the parasite. It is synthesized exclusively in the promastigote stage and localizes to the flagellum. Gene replacement mutants of lddc2 show reduced growth rates and diminished flagellar length. Additionally, the normally spindle-shaped promastigote parasites reveal a more spherical cell shape giving them an amastigote-like appearance. The mutants lose their motility and wiggle in place. Ultrastructural analyses reveal that the outer dynein arm is missing. Furthermore, expression of the amastigote-specific A2 gene family was detected in the deletion mutants in the absence of a stage conversion stimulus. In vitro infectivity is slightly increased in the mutant cell line compared to wild-type Leishmania donovani parasites. Conclusions/Significance Our results indicate that the correct assembly of the flagellum has a great influence on the investigated characteristics of Leishmania parasites. The lack of a single flagellar protein causes an aberrant morphology, impaired growth and altered infectiousness of the parasite. Leishmania parasites are responsible for the disease leishmaniasis. They are spread through sandflies. The primary hosts are mammals, including humans. They occur in two different morphological forms. The flagellated promastigotes live in the gut of the sandfly vector. After transmission to the mammalian host they get phagocytized by macrophages and convert into the amastigote form, which is able to survive within the phagolysosome. The molecular mechanisms underlying this transformation process from promastigote to amastigote are poorly understood so far. A striking difference of the life cycle stages is a long flagellum in the promastigote compared to only a rudimentary flagellum in the mammalian stage amastigote. During an earlier study of the stage differentiation of Leishmania donovani we identified a flagellar protein, a subunit of the outer dynein arm docking complex (ODA-DC2). This protein is part of a flagellar structure called the axoneme. Here we have further characterized the protein regarding its role within the life cycle of the parasite. Mutant promastigotes lacking DC2 protein show reduced flagellar length and a more amastigote-like appearance overall. In addition, the motility is heavily retrenched and transmission electron microscopy indicated that the flagellar ultrastructure is affected. Furthermore, the mutants express amastigote-specific genes and show increased in vitro infectiousness towards macrophages. Therefore, we conclude that the correct assembly of the flagellum is vital for maintenance of the promastigote stage of the parasite.
Collapse
Affiliation(s)
- Simone Harder
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
| | | | | | | |
Collapse
|
47
|
Cuervo P, Domont GB, De Jesus JB. Proteomics of trypanosomatids of human medical importance. J Proteomics 2010; 73:845-67. [PMID: 20056176 DOI: 10.1016/j.jprot.2009.12.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2009] [Accepted: 12/18/2009] [Indexed: 12/31/2022]
Abstract
Leishmania spp., Trypanosoma cruzi, and Trypanosoma brucei are protozoan parasites that cause a spectrum of fatal human diseases around the world. Recent completion of the genomic sequencing of these parasites has enormous relevance to the study of their biology and the pathogenesis of the diseases they cause because it opens the door to high-throughput proteomic technologies. This review encompasses studies using diverse proteomic approaches with these organisms to describe and catalogue global protein profiles, reveal changes in protein expression during development, elucidate the subcellular localisation of gene products, and evaluate host-parasite interactions.
Collapse
Affiliation(s)
- Patricia Cuervo
- Laboratorio de Pesquisa em Leishmaniose, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
48
|
Proteomic analysis of Giardia: Studies from the pre- and post-genomic era. Exp Parasitol 2010; 124:26-30. [DOI: 10.1016/j.exppara.2009.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 03/11/2009] [Accepted: 03/17/2009] [Indexed: 01/21/2023]
|
49
|
Abstract
Glucose and related hexoses play central roles in the biochemistry and metabolism of single-cell parasites such as Leishmania, Trypanosoma, and Plasmodium that are the causative agents of leishmaniasis, African sleeping sickness, and malaria. Glucose transporters and the genes that encode them have been identified in each of these parasites and their functional properties have been scrutinized. These transporters are related in sequence and structure to mammalian facilitative glucose transporters of the SLC2 family, but they are nonetheless quite divergent in sequence. Hexose transporters have been shown to be essential for the viability of the infectious stage of each of these parasites and thus may represent targets for development of novel anti-parasitic drugs. The study of these transporters also illuminates many aspects of the basic biology of Leishmania, trypanosomes, and malaria parasites.
Collapse
|
50
|
Sharma S, Singh G, Chavan HD, Dey CS. Proteomic analysis of wild type and arsenite-resistant Leishmania donovani. Exp Parasitol 2009; 123:369-76. [DOI: 10.1016/j.exppara.2009.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 06/23/2009] [Accepted: 08/07/2009] [Indexed: 10/20/2022]
|