1
|
Platzl C, Kaser-Eichberger A, Trost A, Strohmaier C, Stone R, Nickla D, Schroedl F. Melanopsin in the human and chicken choroid. Exp Eye Res 2024; 247:110053. [PMID: 39151779 PMCID: PMC11542372 DOI: 10.1016/j.exer.2024.110053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/01/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
The choroid embedded in between retina and sclera is essential for retinal photoreceptor nourishment, but is also a source of growth factors in the process of emmetropization that converts retinal visual signals into scleral growth signals. Still, the exact control mechanisms behind those functions are enigmatic while circadian rhythms are involved. These rhythms are attributed to daylight influences that are melanopsin (OPN4) driven. Recently, OPN4-mRNA has been detected in the choroid, and while its origin is unknown we here seek to identify the underlying structures using morphological methods. Human and chicken choroids were prepared for single- and double-immunohistochemistry of OPN4, vasoactive intestinal peptide (VIP), substance P (SP), CD68, and α-smooth muscle actin (ASMA). For documentation, light-, fluorescence-, and confocal laser scanning microscopy was applied. Retinal controls proved the reliability of the OPN4 antibody in both species. In humans, OPN4 immunoreactivity (OPN4-IR) was detected in nerve fibers of the choroid and adjacent ciliary nerve fibers. OPN4+ choroidal nerve fibers lacked VIP, but were co-localized with SP. OPN4-immunoreactivity was further detected in VIP+/SP + intrinsic choroidal neurons, in a hitherto unclassified CD68-negative choroidal cell population thus not representing macrophages, as well as in a subset of choroidal melanocytes. In chicken, choroidal nerve fibers were OPN4+, and further OPN4-IR was detected in clustered suprachoroidal structures that were not co-localized with ASMA and therefore do not represent non-vascular smooth-muscle cells. In the choroidal stroma, numerous cells displayed OPN4-IR, the majority of which was VIP-, while a few of those co-localized with VIP and were therefore classified as avian intrinsic choroidal neurons. OPN4-immunoreactivity was absent in choroidal blood vessels of both species. In summary, OPN4-IR was detected in both species in nerve fibers and cells, some of which could be identified (ICN, melanocytes in human), while others could not be classified yet. Nevertheless, the OPN4+ structures described here might be involved in developmental, light-, thermally-driven or nociceptive mechanisms, as known from other systems, but with respect to choroidal control this needs to be proven in upcoming studies.
Collapse
Affiliation(s)
- Christian Platzl
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology -Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Alexandra Kaser-Eichberger
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology -Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Andrea Trost
- Dept. of Ophthalmology and Optometry, Paracelsus Medical University, Salzburg, Austria
| | - Clemens Strohmaier
- Department of Ophthalmology and Optometry, Johannes Kepler University, Linz, Austria
| | - Richard Stone
- Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Debora Nickla
- Dept. of Biomedical Sciences and Disease, The New England College of Optometry, Boston, USA
| | - Falk Schroedl
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology -Salzburg, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
2
|
Anderson G, Borooah S, Megaw R, Bagnaninchi P, Weller R, McLeod A, Dhillon B. UVR and RPE - The Good, the Bad and the degenerate Macula. Prog Retin Eye Res 2024; 100:101233. [PMID: 38135244 DOI: 10.1016/j.preteyeres.2023.101233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
Ultraviolet Radiation (UVR) has a well-established causative influence within the aetiology of conditions of the skin and the anterior segment of the eye. However, a grounded assessment of the role of UVR within conditions of the retina has been hampered by a historical lack of quantitative, and spectrally resolved, assessment of how UVR impacts upon the retina in terms congruent with contemporary theories of ageing. In this review, we sought to summarise the key findings of research investigating the connection between UVR exposure in retinal cytopathology while identifying necessary avenues for future research which can deliver a deeper understanding of UVR's place within the retinal risk landscape.
Collapse
Affiliation(s)
- Graham Anderson
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh BioQuarter, EH16 4UU, UK
| | - Shyamanga Borooah
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, UC San Diego, CA, 92093-0946, USA
| | - Roly Megaw
- Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, EH4 2XU, UK; Department of Clinical Ophthalmology, National Health Service Scotland, Edinburgh, EH3 9HA, UK
| | - Pierre Bagnaninchi
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh BioQuarter, EH16 4UU, UK; Robert O Curle Eyelab, Instute for Regeneration and Repair, Edinburgh BioQuarter, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Richard Weller
- Centre for Inflammation Research, University of Edinburgh, Edinburgh BioQuarter, EH16 4TJ, UK
| | - Andrew McLeod
- School of GeoSciences, University of Edinburgh, Crew Building, King's Buildings, EH9 3FF, UK
| | - Baljean Dhillon
- Department of Clinical Ophthalmology, National Health Service Scotland, Edinburgh, EH3 9HA, UK; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh BioQuarter, EH16 4SB, UK; Robert O Curle Eyelab, Instute for Regeneration and Repair, Edinburgh BioQuarter, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK.
| |
Collapse
|
3
|
Reifler AN, Wong KY. Adeno-associated virus (AAV)-mediated Cre recombinase expression in melanopsin ganglion cells without leaky expression in rod/cone photoreceptors. J Neurosci Methods 2023; 384:109762. [PMID: 36470470 PMCID: PMC10167896 DOI: 10.1016/j.jneumeth.2022.109762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/07/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Constituting about 5 % of mouse retinal ganglion cells (RGCs), intrinsically photosensitive retinal ganglion cells (ipRGCs) express the photopigment melanopsin (gene symbol Opn4) and drive such photoresponses as pupil constriction, melatonin suppression, and circadian photoentrainment. Opn4Cre mice with Cre recombinase-expressing ipRGCs have enabled genetic manipulation of ipRGCs; unfortunately, while Cre expression within the inner retina is ipRGC-specific, leaky expression also occurs in some outer retinal photoreceptors, so Cre-induced alterations in the latter cells may confound certain studies of ipRGC function. Methods that express Cre in ipRGCs but not rods or cones are needed. NEW METHOD We have constructed a recombinant serotype-2 adeno-associated virus, rAAV2-Opn4-Cre, with the improved Cre recombinase (iCre) gene under the control of a ∼3kbp Opn4 promoter sequence, and injected it intravitreally into mice to transduce inner retinal neurons while sparing the outer retina. RESULTS We introduced rAAV2-Opn4-Cre into Cre reporter mice in which enhanced green fluorescent protein (EGFP) expression indicates Cre expression. Single-cell electrophysiological recordings and intracellular dye fills showed that 84 % of the EGFP+ cells were ipRGCs including M1-M6 types, while 16 % were conventional RGCs. COMPARISON WITH EXISTING METHODS Whereas Opn4Cre mice express Cre in some rod/cone photoreceptors, intravitreally applied rAAV2-Opn4-Cre induces Cre only in the inner retina, albeit with leaky expression in some conventional RGCs. CONCLUSIONS rAAV2-Opn4-Cre has overcome a significant limitation of Opn4Cre mice. We recommend usage scenarios where the Cre-expressing conventional RGCs should not pose a problem.
Collapse
Affiliation(s)
- Aaron N Reifler
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Kwoon Y Wong
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA; Department of Molecular, Cellular, & Developmental Biology, University of Michigan, Ann Arbor, MI 48105, USA.
| |
Collapse
|
4
|
de Grip WJ, Ganapathy S. Rhodopsins: An Excitingly Versatile Protein Species for Research, Development and Creative Engineering. Front Chem 2022; 10:879609. [PMID: 35815212 PMCID: PMC9257189 DOI: 10.3389/fchem.2022.879609] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/16/2022] [Indexed: 01/17/2023] Open
Abstract
The first member and eponym of the rhodopsin family was identified in the 1930s as the visual pigment of the rod photoreceptor cell in the animal retina. It was found to be a membrane protein, owing its photosensitivity to the presence of a covalently bound chromophoric group. This group, derived from vitamin A, was appropriately dubbed retinal. In the 1970s a microbial counterpart of this species was discovered in an archaeon, being a membrane protein also harbouring retinal as a chromophore, and named bacteriorhodopsin. Since their discovery a photogenic panorama unfolded, where up to date new members and subspecies with a variety of light-driven functionality have been added to this family. The animal branch, meanwhile categorized as type-2 rhodopsins, turned out to form a large subclass in the superfamily of G protein-coupled receptors and are essential to multiple elements of light-dependent animal sensory physiology. The microbial branch, the type-1 rhodopsins, largely function as light-driven ion pumps or channels, but also contain sensory-active and enzyme-sustaining subspecies. In this review we will follow the development of this exciting membrane protein panorama in a representative number of highlights and will present a prospect of their extraordinary future potential.
Collapse
Affiliation(s)
- Willem J. de Grip
- Leiden Institute of Chemistry, Department of Biophysical Organic Chemistry, Leiden University, Leiden, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Srividya Ganapathy
- Department of Imaging Physics, Delft University of Technology, Netherlands
| |
Collapse
|
5
|
Constable PA, Kapoor G. Is white the right light for the clinical electrooculogram? Doc Ophthalmol 2021; 143:297-304. [PMID: 34160736 DOI: 10.1007/s10633-021-09845-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/14/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE To investigate if a lower luminance monochromatic LED stimulus could be used as an alternative to a high luminance white light for the clinical electrooculogram. METHODS Clinical electrooculograms were recorded in color normal participants (N = 23) aged 22.6 ± 1.2 years, 7 male and 16 female using the standard 100 cd.m-2 white illuminant and four monochromatic LEDs with peak wavelengths of 448, 534, 596 and 634 nm at 30 cd.m-2. Pupils were dilated and there was a 30 cd.m-2pre-adaptation to white light for 2 min followed by 15 min dark adaptation and 20 min recording in the light stimulus using a Ganzfeld stimulator. RESULTS The normalized LP:DTratio for the short wavelength LED (448 nm) was equivalent in amplitude and timing to the ISCEV standard EOG (p = .99). The LP:DTratio for the white (100 cd.m-2) and 448 nm (30 cd.m-2) were (median ± SEM): 2.49 ± .11 and 2.47 ± .11. The time to light-rise peak was also equivalent being 9.0 ± .2 and 8.0 ± .4 min (p = .54). CONCLUSIONS Consideration may be given to using a short wavelength monochromatic stimulus that is more comfortable for the subject than the current 100 cd.m-2 illuminant.
Collapse
Affiliation(s)
- Paul A Constable
- Caring Futures Institute, College of Nursing and Health Sciences, Flinders University, PO Box 2100, Adelaide, SA, 5001, Australia.
| | - Garima Kapoor
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| |
Collapse
|
6
|
Pinto BJ, Nielsen SV, Gamble T. Transcriptomic data support a nocturnal bottleneck in the ancestor of gecko lizards. Mol Phylogenet Evol 2019; 141:106639. [PMID: 31586687 DOI: 10.1016/j.ympev.2019.106639] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/30/2019] [Accepted: 10/02/2019] [Indexed: 11/17/2022]
Abstract
Gecko lizards are a species-rich clade of primarily-nocturnal squamate reptiles. In geckos, adaptations to nocturnality have dramatically reshaped the eye. Perhaps the most notable change is the loss of rod cells in the retina and subsequent "transmutation" of cones into a rod-like morphology and physiology. While many studies have noted the absence of some rod-specific genes, such as the visual pigment Rhodopsin (RH1), these studies have focused on just a handful of species that are nested deep in the gecko phylogeny. Thus, it is not clear whether these changes arose through convergence, are homologous and ubiquitous across geckos, or restricted to a subset of species. Here, we used de novo eye transcriptomes from five gecko species, and genomes from two additional gecko species, representing the breadth of extant gecko diversity (i.e. 4 of the 7 gecko families, spanning the deepest divergence of crown Gekkota), to show that geckos lost expression of almost the entire suite of necessary rod-cell phototransduction genes in the eye, distinct from all other squamate reptiles. Geckos are the first vertebrate group to have lost their complete rod-cell expression pathway, not just the visual pigment. In addition, all sampled species have also lost expression of the cone-opsin SWS2 visual pigment. These results strongly suggest a single loss of rod cells and subsequent cone-to-rod transmutation that occurred prior to the diversification of extant geckos.
Collapse
Affiliation(s)
- Brendan J Pinto
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA; Milwaukee Public Museum, Milwaukee, WI, USA.
| | - Stuart V Nielsen
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA; Florida Museum of Natural History, University of Florida, Gainesville, FL, USA.
| | - Tony Gamble
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA; Milwaukee Public Museum, Milwaukee, WI, USA; Bell Museum of Natural History, University of Minnesota, Saint Paul, MN, USA.
| |
Collapse
|
7
|
Hauzman E, Kalava V, Bonci DMO, Ventura DF. Characterization of the melanopsin gene (Opn4x) of diurnal and nocturnal snakes. BMC Evol Biol 2019; 19:174. [PMID: 31462236 PMCID: PMC6714106 DOI: 10.1186/s12862-019-1500-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 08/22/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND A number of non-visual responses to light in vertebrates, such as circadian rhythm control and pupillary light reflex, are mediated by melanopsins, G-protein coupled membrane receptors, conjugated to a retinal chromophore. In non-mammalian vertebrates, melanopsin expression is variable within the retina and extra-ocular tissues. Two paralog melanopsin genes were classified in vertebrates, Opn4x and Opn4m. Snakes are highly diversified vertebrates with a wide range of daily activity patterns, which raises questions about differences in structure, function and expression pattern of their melanopsin genes. In this study, we analyzed the melanopsin genes expressed in the retinas of 18 snake species from three families (Viperidae, Elapidae, and Colubridae), and also investigated extra-retinal tissue expression. RESULTS Phylogenetic analysis revealed that the amplified gene belongs to the Opn4x group, and no expression of the Opn4m was found. The same paralog is expressed in the iris, but no extra-ocular expression was detected. Molecular evolutionary analysis indicated that melanopsins are evolving primarily under strong purifying selection, although lower evolutionary constraint was detected in snake lineages (ω = 0.2), compared to non-snake Opn4x and Opn4m (ω = 0.1). Statistical analysis of selective constraint suggests that snake phylogenetic relationships have driven stronger effects on melanopsin evolution, than the species activity pattern. In situ hybridization revealed the presence of melanopsin within cells in the outer and inner nuclear layers, in the ganglion cell layer, and intense labeling in the optic nerve. CONCLUSIONS The loss of the Opn4m gene and extra-ocular photosensitive tissues in snakes may be associated with a prolonged nocturnal/mesopic bottleneck in the early history of snake evolution. The presence of melanopsin-containing cells in all retinal nuclear layers indicates a globally photosensitive retina, and the expression in classic photoreceptor cells suggest a regionalized co-expression of melanopsin and visual opsins.
Collapse
Affiliation(s)
- Einat Hauzman
- Departamento de Psicologia Experimental, Instituto de Psicologia, Universidade de São Paulo, Av. Professor Mello Moraes, 1721, Bloco A - Sala D9. Butantã, São Paulo, SP, 05508-030, Brazil. .,Instituto Israelita de Ensino e Pesquisa Albert Einstein, São Paulo, Brazil.
| | | | - Daniela Maria Oliveira Bonci
- Departamento de Psicologia Experimental, Instituto de Psicologia, Universidade de São Paulo, Av. Professor Mello Moraes, 1721, Bloco A - Sala D9. Butantã, São Paulo, SP, 05508-030, Brazil.,Instituto Israelita de Ensino e Pesquisa Albert Einstein, São Paulo, Brazil
| | - Dora Fix Ventura
- Departamento de Psicologia Experimental, Instituto de Psicologia, Universidade de São Paulo, Av. Professor Mello Moraes, 1721, Bloco A - Sala D9. Butantã, São Paulo, SP, 05508-030, Brazil.,Instituto Israelita de Ensino e Pesquisa Albert Einstein, São Paulo, Brazil
| |
Collapse
|
8
|
Sulaiman RS, Kadmiel M, Cidlowski JA. Glucocorticoid receptor signaling in the eye. Steroids 2018; 133:60-66. [PMID: 29129720 PMCID: PMC5875721 DOI: 10.1016/j.steroids.2017.11.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/30/2017] [Accepted: 11/06/2017] [Indexed: 02/01/2023]
Abstract
Glucocorticoids (GCs) are essential steroid hormones that regulate numerous metabolic and homeostatic functions in almost all physiological systems. Synthetic glucocorticoids are among the most commonly prescribed drugs for the treatment of various conditions including autoimmune, allergic and inflammatory diseases. Glucocorticoids are mainly used for their potent anti-inflammatory and immunosuppressive activities mediated through signal transduction by their nuclear receptor, the glucocorticoid receptor (GR). Emerging evidence showing that diverse physiological and therapeutic actions of glucocorticoids are tissue-, cell-, and sex-specific, suggests more complex actions of glucocorticoids than previously anticipated. While several synthetic glucocorticoids are widely used in the ophthalmology clinic for the treatment of several ocular diseases, little is yet known about the mechanism of glucocorticoid signaling in different layers of the eye. GR has been shown to be expressed in different cell types of the eye such as cornea, lens, and retina, suggesting an important role of GR signaling in the physiology of these ocular tissues. In this review, we provide an update on the recent findings from in vitro and in vivo studies reported in the last 5 years that aim at understanding the role of GR signaling specifically in the eye. Advances in studying the physiological effects of glucocorticoids in the eye are vital for the elaboration of optimized and targeted GC therapies with potent anti-inflammatory potential while minimizing adverse effects.
Collapse
Affiliation(s)
- Rania S Sulaiman
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institute of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Mahita Kadmiel
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institute of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - John A Cidlowski
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institute of Health, Department of Health and Human Services, Research Triangle Park, NC, USA.
| |
Collapse
|
9
|
Berkowitz BA, Schmidt T, Podolsky RH, Roberts R. Melanopsin Phototransduction Contributes to Light-Evoked Choroidal Expansion and Rod L-Type Calcium Channel Function In Vivo. Invest Ophthalmol Vis Sci 2017; 57:5314-5319. [PMID: 27727394 PMCID: PMC5063053 DOI: 10.1167/iovs.16-20186] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose In humans, rodents, and pigeons, the dark → light transition signals nonretinal brain tissue to increase choroidal thickness, a major control element of choroidal blood flow, and thus of photoreceptor and retinal pigment epithelium function. However, it is unclear which photopigments in the retina relay the light signal to the brain. Here, we test the hypothesis that melanopsin (Opn4)-regulated phototransduction modulates light-evoked choroidal thickness expansion in mice. Methods Two-month-old C57Bl/6 wild-type (B6), 4- to 5-month-old C57Bl/6/129S6 wild-type (B6 + S6), and 2-month-old melanopsin knockout (Opn4−/−) on a B6 + S6 background were studied. Retinal anatomy was evaluated in vivo by optical coherence tomography and MRI. Choroidal thickness in dark and light were measured by diffusion-weighted MRI. Rod cell L-type calcium channel (LTCC) function in dark and light (manganese-enhanced MRI [MEMRI]) was also measured. Results Opn4−/− mice did not show the light-evoked expansion of choroidal thickness observed in B6 and B6 + S6 controls. Additionally, Opn4−/− mice had lower than normal rod cell and inner retinal LTCC function in the dark but not in the light. These deficits were not due to structural abnormalities because retinal laminar architecture and thickness, and choroidal thickness in the Opn4−/− mice were similar to controls. Conclusions First time evidence is provided that melanopsin phototransduction contributes to dark → light control of murine choroidal thickness. The data also highlight a contribution in vivo of melanopsin phototransduction to rod cell and inner retinal depolarization in the dark.
Collapse
Affiliation(s)
- Bruce A Berkowitz
- Department of Anatomy and Cell Biology, Wayne State University, Detroit, Michigan, United States 2Department of Ophthalmology, Wayne State University, Detroit, Michigan, United States
| | - Tiffany Schmidt
- Department of Neurobiology, Northwestern University, Evanston, Illinois, United States
| | - Robert H Podolsky
- Department of Family Medicine and Public Health Sciences, Wayne State University, Detroit, Michigan, United States
| | - Robin Roberts
- Department of Anatomy and Cell Biology, Wayne State University, Detroit, Michigan, United States
| |
Collapse
|
10
|
Thompson CL, Selby CP, Van Gelder RN, Blaner WS, Lee J, Quadro L, Lai K, Gottesman ME, Sancar A. Effect of Vitamin A Depletion on Nonvisual Phototransduction Pathways in Cryptochromeless Mice. J Biol Rhythms 2016; 19:504-17. [PMID: 15523112 DOI: 10.1177/0748730404270519] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Mice exhibit multiple nonvisual responses to light, including 1) photoentrainment of circadian rhythm; 2) “masking,” which refers to the acute effect of light on behavior, either negative (activity suppressing) or positive (activity inducing); and 3) pupillary constriction. In mammals, the eye is the sole photosensory organ for these responses, and it contains only 2 known classes of pigments: opsins and cryptochromes. No individual opsin or cryptochrome gene is essential for circadian photoreception, gene photoinduction, or masking. Previously, the authors found that mice lacking retinol-binding protein, in which dietary depletion of ocular retinaldehyde can be achieved, had normal light signaling to the SCN, as determined by per gene photoinduction. In the present study, the authors analyzed phototransduction to the SCN in vitamin A-replete and vitamin A-depleted rbp-/- and rbp-/-cry1-/-cry2-/- mice using molecular and behavioral end points. They found that vitamin A-depleted rbp-/- mice exhibit either normal photoentrainment or become diurnal. In contrast, while vitamin A-replete rbp-/-cry1-/-cry2-/- mice are light responsive (with reduced sensitivity), vitamin A-depleted rbp-/-cry1-/-cry2-/- mice, which presumably lack functional opsins and cryptochromes, lose most behavioral and molecular responses to light. These data demonstrate that both cryptochromes and opsins regulate nonvisual photoresponses.
Collapse
Affiliation(s)
- Carol L Thompson
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Comparison of In Vivo Gene Expression Profiling of RPE/Choroid following Intravitreal Injection of Dexamethasone and Triamcinolone Acetonide. J Ophthalmol 2016; 2016:9856736. [PMID: 27429799 PMCID: PMC4939337 DOI: 10.1155/2016/9856736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/29/2016] [Accepted: 05/03/2016] [Indexed: 11/17/2022] Open
Abstract
Purpose. To identify retinal pigment epithelium (RPE)/choroid genes and their relevant expression pathways affected by intravitreal injections of dexamethasone and triamcinolone acetonide in mice at clinically relevant time points for patient care. Methods. Differential gene expression of over 34,000 well-characterized mouse genes in the RPE/choroid of 6-week-old C57BL/6J mice was analyzed after intravitreal steroid injections at 1 week and 1 month postinjection, using Affymetrix Mouse Genome 430 2.0 microarrays. The data were analyzed using GeneSpring GX 12.5 and Ingenuity Pathway Analysis (IPA) microarray analysis software for biologically relevant changes. Results. Both triamcinolone and dexamethasone caused differential activation of genes involved in “Circadian Rhythm Signaling” pathway at both time points tested. Triamcinolone (TAA) uniquely induced significant changes in gene expression in “Calcium Signaling” (1 week) and “Glutamate Receptor Signaling” pathways (1 month). In contrast, dexamethasone (Dex) affected the “GABA Receptor Signaling” (1 week) and “Serotonin Receptor Signaling” (1 month) pathways. Understanding how intraocular steroids affect the gene expression of RPE/choroid is clinically relevant. Conclusions. This in vivo study has elucidated several genes and pathways that are potentially altering the circadian rhythms and several other neurotransmitter pathways in RPE/choroid during intravitreal steroid injections, which likely has consequences in the dysregulation of RPE function and neurodegeneration of the retina.
Collapse
|
12
|
Shirzad-Wasei N, DeGrip WJ. Heterologous expression of melanopsin: Present, problems and prospects. Prog Retin Eye Res 2016; 52:1-21. [DOI: 10.1016/j.preteyeres.2016.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/25/2016] [Accepted: 02/01/2016] [Indexed: 12/12/2022]
|
13
|
Bertolesi GE, Hehr CL, McFarlane S. Melanopsin photoreception in the eye regulates light-induced skin colour changes through the production of α
-MSH in the pituitary gland. Pigment Cell Melanoma Res 2015; 28:559-71. [DOI: 10.1111/pcmr.12387] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 06/09/2015] [Indexed: 01/04/2023]
Affiliation(s)
- Gabriel E. Bertolesi
- Department of Cell Biology and Anatomy; Hotchkiss Brain Institute; University of Calgary; Calgary AB Canada
| | - Carrie L. Hehr
- Department of Cell Biology and Anatomy; Hotchkiss Brain Institute; University of Calgary; Calgary AB Canada
| | - Sarah McFarlane
- Department of Cell Biology and Anatomy; Hotchkiss Brain Institute; University of Calgary; Calgary AB Canada
| |
Collapse
|
14
|
A role for the outer retina in development of the intrinsic pupillary light reflex in mice. Neuroscience 2014; 286:60-78. [PMID: 25433236 DOI: 10.1016/j.neuroscience.2014.11.044] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 11/12/2014] [Accepted: 11/13/2014] [Indexed: 02/02/2023]
Abstract
Mice do not require the brain in order to maintain constricted pupils. However, little is known about this intrinsic pupillary light reflex (iPLR) beyond a requirement for melanopsin in the iris and an intact retinal ciliary marginal zone (CMZ). Here, we study the mouse iPLR in vitro and examine a potential role for outer retina (rods and cones) in this response. In wild-type mice the iPLR was absent at postnatal day 17 (P17), developing progressively from P21-P49. However, the iPLR only achieved ∼ 30% of the wild-type constriction in adult mice with severe outer retinal degeneration (rd and rdcl). Paradoxically, the iPLR increased significantly in retinal degenerate mice >1.5 years of age. This was accompanied by an increase in baseline pupil tone in the dark to levels indistinguishable from those in adult wild types. This rejuvenated iPLR response was slowed by atropine application, suggesting the involvement of cholinergic neurotransmission. We could find no evidence of an increase in melanopsin expression by quantitative PCR in the iris and ciliary body of aged retinal degenerates and a detailed anatomical analysis revealed a significant decline in melanopsin-positive intrinsically photosensitive retinal ganglion cells (ipRGCs) in rdcl mice >1.5 years. Adult mice lacking rod function (Gnat1(-/-)) also had a weak iPLR, while mice lacking functional cones (Cpfl5) maintained a robust response. We also identify an important role for pigmentation in the development of the mouse iPLR, with only a weak and transient response present in albino animals. Our results show that the iPLR in mice develops unexpectedly late and are consistent with a role for rods and pigmentation in the development of this response in mice. The enhancement of the iPLR in aged degenerate mice was extremely surprising but may have relevance to behavioral observations in mice and patients with retinitis pigmentosa.
Collapse
|
15
|
Hughes S, Jagannath A, Hickey D, Gatti S, Wood M, Peirson SN, Foster RG, Hankins MW. Using siRNA to define functional interactions between melanopsin and multiple G Protein partners. Cell Mol Life Sci 2014; 72:165-79. [PMID: 24958088 PMCID: PMC4282707 DOI: 10.1007/s00018-014-1664-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 05/10/2014] [Accepted: 06/02/2014] [Indexed: 12/13/2022]
Abstract
Melanopsin expressing photosensitive retinal ganglion cells (pRGCs) represent a third class of ocular photoreceptors and mediate a range of non-image forming responses to light. Melanopsin is a G protein coupled receptor (GPCR) and existing data suggest that it employs a membrane bound signalling cascade involving Gnaq/11 type G proteins. However, to date the precise identity of the Gα subunits involved in melanopsin phototransduction remains poorly defined. Here we show that Gnaq, Gna11 and Gna14 are highly co-expressed in pRGCs of the mouse retina. Furthermore, using RNAi based gene silencing we show that melanopsin can signal via Gnaq, Gna11 or Gna14 in vitro, and demonstrate that multiple members of the Gnaq/11 subfamily, including Gna14 and at least Gnaq or Gna11, can participate in melanopsin phototransduction in vivo and contribute to the pupillary light responses of mice lacking rod and cone photoreceptors. This diversity of G protein interactions suggests additional complexity in the melanopsin phototransduction cascade and may provide a basis for generating the diversity of light responses observed from pRGC subtypes.
Collapse
Affiliation(s)
- Steven Hughes
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, OX3 9DU UK
| | - Aarti Jagannath
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, OX3 9DU UK
- F. Hoffman La Roche, RED Research and Development, CNS DTA, Basel, Switzerland
| | - Doron Hickey
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, OX3 9DU UK
| | - Silvia Gatti
- F. Hoffman La Roche, RED Research and Development, CNS DTA, Basel, Switzerland
| | - Matthew Wood
- Department of Anatomy, Physiology and Genetics, University of Oxford, Le Gros Clark Building, South Parks Road, Oxford, OX1 3QX UK
| | - Stuart N. Peirson
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, OX3 9DU UK
| | - Russell G. Foster
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, OX3 9DU UK
| | - Mark W. Hankins
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, OX3 9DU UK
| |
Collapse
|
16
|
McMahon DG, Iuvone PM, Tosini G. Circadian organization of the mammalian retina: from gene regulation to physiology and diseases. Prog Retin Eye Res 2013; 39:58-76. [PMID: 24333669 DOI: 10.1016/j.preteyeres.2013.12.001] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 11/27/2013] [Accepted: 12/01/2013] [Indexed: 01/27/2023]
Abstract
The retinal circadian system represents a unique structure. It contains a complete circadian system and thus the retina represents an ideal model to study fundamental questions of how neural circadian systems are organized and what signaling pathways are used to maintain synchrony of the different structures in the system. In addition, several studies have shown that multiple sites within the retina are capable of generating circadian oscillations. The strength of circadian clock gene expression and the emphasis of rhythmic expression are divergent across vertebrate retinas, with photoreceptors as the primary locus of rhythm generation in amphibians, while in mammals clock activity is most robust in the inner nuclear layer. Melatonin and dopamine serve as signaling molecules to entrain circadian rhythms in the retina and also in other ocular structures. Recent studies have also suggested GABA as an important component of the system that regulates retinal circadian rhythms. These transmitter-driven influences on clock molecules apparently reinforce the autonomous transcription-translation cycling of clock genes. The molecular organization of the retinal clock is similar to what has been reported for the SCN although inter-neural communication among retinal neurons that form the circadian network is apparently weaker than those present in the SCN, and it is more sensitive to genetic disruption than the central brain clock. The melatonin-dopamine system is the signaling pathway that allows the retinal circadian clock to reconfigure retinal circuits to enhance light-adapted cone-mediated visual function during the day and dark-adapted rod-mediated visual signaling at night. Additionally, the retinal circadian clock also controls circadian rhythms in disk shedding and phagocytosis, and possibly intraocular pressure. Emerging experimental data also indicate that circadian clock is also implicated in the pathogenesis of eye disease and compelling experimental data indicate that dysfunction of the retinal circadian system negatively impacts the retina and possibly the cornea and the lens.
Collapse
Affiliation(s)
- Douglas G McMahon
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - P Michael Iuvone
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, USA; Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
| | - Gianluca Tosini
- Neuroscience Institute and Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, 30310 GA, USA.
| |
Collapse
|
17
|
Dkhissi-Benyahya O, Coutanson C, Knoblauch K, Lahouaoui H, Leviel V, Rey C, Bennis M, Cooper HM. The absence of melanopsin alters retinal clock function and dopamine regulation by light. Cell Mol Life Sci 2013; 70:3435-47. [PMID: 23604021 PMCID: PMC11113582 DOI: 10.1007/s00018-013-1338-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 03/29/2013] [Accepted: 04/08/2013] [Indexed: 01/25/2023]
Abstract
The retinal circadian clock is crucial for optimal regulation of retinal physiology and function, yet its cellular location in mammals is still controversial. We used laser microdissection to investigate the circadian profiles and phase relations of clock gene expression and Period gene induction by light in the isolated outer (rods/cones) and inner (inner nuclear and ganglion cell layers) regions in wild-type and melanopsin-knockout (Opn 4 (-/-) ) mouse retinas. In the wild-type mouse, all clock genes are rhythmically expressed in the photoreceptor layer but not in the inner retina. For clock genes that are rhythmic in both retinal compartments, the circadian profiles are out of phase. These results are consistent with the view that photoreceptors are a potential site of circadian rhythm generation. In mice lacking melanopsin, we found an unexpected loss of clock gene rhythms and of the photic induction of Per1-Per2 mRNAs only in the outer retina. Since melanopsin ganglion cells are known to provide a feed-back signalling pathway for photic information to dopaminergic cells, we further examined dopamine (DA) synthesis in Opn 4 (-/-) mice. The lack of melanopsin prevented the light-dependent increase of tyrosine hydroxylase (TH) mRNA and of DA and, in constant darkness, led to comparatively high levels of both components. These results suggest that melanopsin is required for molecular clock function and DA regulation in the retina, and that Period gene induction by light is mediated by a melanopsin-dependent, DA-driven signal acting on retinal photoreceptors.
Collapse
Affiliation(s)
- Ouria Dkhissi-Benyahya
- Department of Chronobiology, INSERM U846, Stem Cell and Brain Research Institute, 18 Avenue du Doyen Lépine, 69500, Bron, France.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Borges R, Johnson WE, O’Brien SJ, Vasconcelos V, Antunes A. The role of gene duplication and unconstrained selective pressures in the melanopsin gene family evolution and vertebrate circadian rhythm regulation. PLoS One 2012; 7:e52413. [PMID: 23285031 PMCID: PMC3528684 DOI: 10.1371/journal.pone.0052413] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 11/15/2012] [Indexed: 12/27/2022] Open
Abstract
Melanopsin is a photosensitive cell protein involved in regulating circadian rhythms and other non-visual responses to light. The melanopsin gene family is represented by two paralogs, OPN4x and OPN4m, which originated through gene duplication early in the emergence of vertebrates. Here we studied the melanopsin gene family using an integrated gene/protein evolutionary approach, which revealed that the rhabdomeric urbilaterian ancestor had the same amino acid patterns (DRY motif and the Y and E conterions) as extant vertebrate species, suggesting that the mechanism for light detection and regulation is similar to rhabdomeric rhodopsins. Both OPN4m and OPN4x paralogs are found in vertebrate genomic paralogons, suggesting that they diverged following this duplication event about 600 million years ago, when the complex eye emerged in the vertebrate ancestor. Melanopsins generally evolved under negative selection (ω = 0.171) with some minor episodes of positive selection (proportion of sites = 25%) and functional divergence (θ(I) = 0.349 and θ(II) = 0.126). The OPN4m and OPN4x melanopsin paralogs show evidence of spectral divergence at sites likely involved in melanopsin light absorbance (200F, 273S and 276A). Also, following the teleost lineage-specific whole genome duplication (3R) that prompted the teleost fish radiation, type I divergence (θ(I) = 0.181) and positive selection (affecting 11% of sites) contributed to amino acid variability that we related with the photo-activation stability of melanopsin. The melanopsin intracellular regions had unexpectedly high variability in their coupling specificity of G-proteins and we propose that Gq/11 and Gi/o are the two G-proteins most-likely to mediate the melanopsin phototransduction pathway. The selection signatures were mainly observed on retinal-related sites and the third and second intracellular loops, demonstrating the physiological plasticity of the melanopsin protein group. Our results provide new insights on the phototransduction process and additional tools for disentangling and understanding the links between melanopsin gene evolution and the specializations observed in vertebrates, especially in teleost fish.
Collapse
Affiliation(s)
- Rui Borges
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas, Porto, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Porto, Portugal
| | - Warren E. Johnson
- Laboratory of Genomic Diversity, National Cancer Institute, Frederick, Maryland, United States of America
| | - Stephen J. O’Brien
- Laboratory of Genomic Diversity, National Cancer Institute, Frederick, Maryland, United States of America
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia
| | - Vitor Vasconcelos
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas, Porto, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Porto, Portugal
| | - Agostinho Antunes
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas, Porto, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Porto, Portugal
- Laboratory of Genomic Diversity, National Cancer Institute, Frederick, Maryland, United States of America
| |
Collapse
|
19
|
Blasic JR, Brown RL, Robinson PR. Phosphorylation of mouse melanopsin by protein kinase A. PLoS One 2012; 7:e45387. [PMID: 23049792 PMCID: PMC3458869 DOI: 10.1371/journal.pone.0045387] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 08/13/2012] [Indexed: 01/21/2023] Open
Abstract
The visual pigment melanopsin is expressed in intrinsically photosensitive retinal ganglion cells (ipRGCs) in the mammalian retina, where it is involved in non-image forming light responses including circadian photoentrainment, pupil constriction, suppression of pineal melatonin synthesis, and direct photic regulation of sleep. It has recently been shown that the melanopsin-based light response in ipRGCs is attenuated by the neurotransmitter dopamine. Here, we use a heterologous expression system to demonstrate that mouse melanopsin can be phosphorylated by protein kinase A, and that phosphorylation can inhibit melanopsin signaling in HEK cells. Site-directed mutagenesis experiments revealed that this inhibitory effect is primarily mediated by phosphorylation of sites T186 and S287 located in the second and third intracellular loops of melanopsin, respectively. Furthermore, we show that this phosphorylation can occur in vivo using an in situ proximity-dependent ligation assay (PLA). Based on these data, we suggest that the attenuation of the melanopsin-based light response by dopamine is mediated by direct PKA phosphorylation of melanopsin, rather than phosphorylation of a downstream component of the signaling cascade.
Collapse
Affiliation(s)
- Joseph R. Blasic
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
| | - R. Lane Brown
- Department of Veterinary & Comparative Anatomy, Pharmacology, and Physiology, Washington State University, Pullman, Washington, United States of America
| | - Phyllis R. Robinson
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
20
|
The daily rhythm of mice. FEBS Lett 2011; 585:1384-92. [PMID: 21354419 DOI: 10.1016/j.febslet.2011.02.027] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 01/28/2011] [Accepted: 02/21/2011] [Indexed: 12/29/2022]
Abstract
The house mouse Mus musculus represents a valuable tool for the analysis and the understanding of the mammalian circadian oscillator. Forward and reverse genetics allowed the identification of clock components and the verification of their function within the circadian clockwork. In many cases unforeseen links were discovered between a particular circadian regulatory protein and various diseases or syndromes. Thus, this model system is not only perfectly suited to pinpoint the components of the mammalian circadian clock, but also to unravel metabolic, physiological, and pathological processes linked to the circadian timing system.
Collapse
|
21
|
Abstract
Life on earth is subject to alternating cycles of day and night imposed by the rotation of the earth. Consequently, living things have evolved photodetective systems to synchronize their physiology and behavior with the external light-dark cycle. This form of photodetection is unlike the familiar "image vision," in that the basic information is light or darkness over time, independent of spatial patterns. "Nonimage" vision is probably far more ancient than image vision and is widespread in living species. For mammals, it has long been assumed that the photoreceptors for nonimage vision are also the textbook rods and cones. However, recent years have witnessed the discovery of a small population of retinal ganglion cells in the mammalian eye that express a unique visual pigment called melanopsin. These ganglion cells are intrinsically photosensitive and drive a variety of nonimage visual functions. In addition to being photoreceptors themselves, they also constitute the major conduit for rod and cone signals to the brain for nonimage visual functions such as circadian photoentrainment and the pupillary light reflex. Here we review what is known about these novel mammalian photoreceptors.
Collapse
Affiliation(s)
- Michael Tri Hoang Do
- Solomon H. Snyder Department of Neuroscience and Center for Sensory Biology, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
22
|
Matejů K, Sumová A, Bendová Z. Expression and light sensitivity of clock genes Per1 and Per2 and immediate-early gene c-fos within the retina of early postnatal Wistar rats. J Comp Neurol 2010; 518:3630-44. [PMID: 20589906 DOI: 10.1002/cne.22421] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Mammalian retina contains a circadian clock that is composed of components similar to those of the master circadian clock within the suprachiasmatic nuclei of the hypothalamus. The aim of the present study was to elucidate whether, when, and where the transcripts of the clock genes Per1 and Per2 and the immediate early gene c-fos are spontaneously expressed and/or induced by light in the newborn rat retina. At postnatal day 1 (P1), P3, P5, and P10, Wistar rat pups were released into constant darkness, and a 30-minute light pulse was administered during the subjective day or during the first or second part of subjective night. Gene expression was determined 30 minutes, 1 hour, 2 hours, and 4 hours after the light pulse by in situ hybridization followed by emulsion autoradiography. Endogenous expression of Per1 was detected in the neuroblastic retina, and Per2 expression was detected in the inner part of the neuroblastic retina from birth. Light pulses induced c-fos expression in ganglion cells from P1. Until P5, the cells were localized in the dorsal part of the retina, but, at P10, they were already distributed across the entire retinal circumference. Light pulses also induced the expression of c-fos and Per1 in the retinal pigment epithelium until P3, but not afterward. Expression of the Per2 gene was not photoresponsive until P10. These data demonstrate that the rat retina is light-sensitive immediately after birth. During early postnatal development, the spatial distribution of spontaneous and light-induced gene expression within the retinal layers changes gradually.
Collapse
Affiliation(s)
- Kristýna Matejů
- Department of Neurohumoral Regulations, Institute of Physiology, Academy of Sciences of the Czech Republic v.v.i., Prague 14220, Czech Republic
| | | | | |
Collapse
|
23
|
Davies WL, Hankins MW, Foster RG. Vertebrate ancient opsin and melanopsin: divergent irradiance detectors. Photochem Photobiol Sci 2010; 9:1444-57. [PMID: 20922256 DOI: 10.1039/c0pp00203h] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Both vertebrates and invertebrates respond to light by utilising a wide-ranging array of photosensory systems, with diverse photoreceptor organs expressing a characteristic photopigment, itself consisting of an opsin apoprotein linked to a light-sensitive retinoid chromophore based on vitamin A. In the eye, the pigments expressed in both cone and rod photoreceptors have been studied in great depth and mediate contrast perception, measurement of the spectral composition of environmental light, and thus classical image forming vision. By contrast, the molecular basis for non-visual and extraocular photoreception is far less understood; however, two photopigment genes have become the focus of much study, the vertebrate ancient (va) opsin and melanopsin (opn4). In this review, we discuss the history of discovery for each gene, as well as focusing on the evolution, expression profile, functional role and broader physiological significance of each photopigment. Recently, it has been suggested independently by Arendt et al. and Lamb that an ancestral opsin bifurcated in early metazoans and evolved into two quite different photopigments, one expressed in rhabdomeric photoreceptors and the other in ciliary photoreceptors. This interpretation of the evolution of the metazoan eye has provided a powerful framework for understanding photobiological organization. Their proposal, however, does not encompass all current experimental observations that would be consistent with what we term a central "Evolution of Photosensory Opsins with Common Heredity (EPOCH)" hypothesis to explain the complexity of animal photosensory systems. Clearly, many opsin genes (e.g. va opsin) simply do not fit neatly within this scheme. Thus, the review concludes with a discussion of these anomalies and their context regarding the phylogeny of photoreceptor and photopigment development.
Collapse
Affiliation(s)
- Wayne L Davies
- Circadian and Visual Neuroscience, Nuffield Laboratory of Ophthalmology, University of Oxford, Levels 5-6 West Wing, John Radcliffe Hospital, Headley Way, Oxford, UK OX3 9DU
| | | | | |
Collapse
|
24
|
Bailes HJ, Lucas RJ. Melanopsin and inner retinal photoreception. Cell Mol Life Sci 2010; 67:99-111. [PMID: 19865798 PMCID: PMC11115928 DOI: 10.1007/s00018-009-0155-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 09/07/2009] [Accepted: 09/07/2009] [Indexed: 10/20/2022]
Abstract
Over the last ten years there has been growing acceptance that retinal photoreception among mammals extends beyond rods and cones to include a small number of intrinsically photosensitive retinal ganglion cells (ipRGCs). These ipRGCs are capable of responding to light in the absence of rod/cone input thanks to expression of an opsin photopigment called melanopsin. They are specialised for measuring ambient levels of light (irradiance) for a wide variety of so-called non-image-forming light responses. These include synchronisation of circadian clocks to light:dark cycles and the regulation of pupil size, sleep propensity and pineal melatonin production. Here, we provide a review of some of the landmark discoveries in this fast developing field, paying particular emphasis to recent findings and key areas for future investigation.
Collapse
Affiliation(s)
- Helena J Bailes
- Faculty of Life Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| | | |
Collapse
|
25
|
Peirson SN, Halford S, Foster RG. The evolution of irradiance detection: melanopsin and the non-visual opsins. Philos Trans R Soc Lond B Biol Sci 2009; 364:2849-65. [PMID: 19720649 PMCID: PMC2781857 DOI: 10.1098/rstb.2009.0050] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Circadian rhythms are endogenous 24 h cycles that persist in the absence of external time cues. These rhythms provide an internal representation of day length and optimize physiology and behaviour to the varying demands of the solar cycle. These clocks require daily adjustment to local time and the primary time cue (zeitgeber) used by most vertebrates is the daily change in the amount of environmental light (irradiance) at dawn and dusk, a process termed photoentrainment. Attempts to understand the photoreceptor mechanisms mediating non-image-forming responses to light, such as photoentrainment, have resulted in the discovery of a remarkable array of different photoreceptors and photopigment families, all of which appear to use a basic opsin/vitamin A-based photopigment biochemistry. In non-mammalian vertebrates, specialized photoreceptors are located within the pineal complex, deep brain and dermal melanophores. There is also strong evidence in fish and amphibians for the direct photic regulation of circadian clocks in multiple tissues. By contrast, mammals possess only ocular photoreceptors. However, in addition to the image-forming rods and cones of the retina, there exists a third photoreceptor system based on a subset of melanopsin-expressing photosensitive retinal ganglion cells (pRGCs). In this review, we discuss the range of vertebrate photoreceptors and their opsin photopigments, describe the melanopsin/pRGC system in some detail and then finally consider the molecular evolution and sensory ecology of these non-image-forming photoreceptor systems.
Collapse
Affiliation(s)
- Stuart N Peirson
- Nuffield Laboratory of Ophthalmology, University of Oxford, The John Radcliffe Hospital, Headley Way, Headington, Oxford OX3 9DU, UK
| | | | | |
Collapse
|
26
|
Differential expression of two distinct functional isoforms of melanopsin (Opn4) in the mammalian retina. J Neurosci 2009; 29:12332-42. [PMID: 19793992 DOI: 10.1523/jneurosci.2036-09.2009] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Melanopsin is the photopigment that confers photosensitivity to a subset of retinal ganglion cells (pRGCs) that regulate many non-image-forming tasks such as the detection of light for circadian entrainment. Recent studies have begun to subdivide the pRGCs on the basis of morphology and function, but the origin of these differences is not yet fully understood. Here we report the identification of two isoforms of melanopsin from the mouse Opn4 locus, a previously described long isoform (Opn4L) and a novel short isoform (Opn4S) that more closely resembles the sequence and structure of rat and human melanopsins. Both isoforms, Opn4L and Opn4S, are expressed in the ganglion cell layer of the retina, traffic to the plasma membrane and form a functional photopigment in vitro. Quantitative PCR revealed that Opn4S is 40 times more abundant than Opn4L. The two variants encode predicted proteins of 521 and 466 aa and only differ in the length of their C-terminal tails. Antibodies raised to isoform-specific epitopes identified two discrete populations of melanopsin-expressing RGCs, those that coexpress Opn4L and Opn4S and those that express Opn4L only. Recent evidence suggests that pRGCs show a range of anatomical subtypes, which may reflect the functional diversity reported for mouse Opn4-mediated light responses. The distinct isoforms of Opn4 described in this study provide a potential molecular basis for generating this diversity, and it seems likely that their differential expression plays a role in generating the variety of pRGC light responses found in the mammalian retina.
Collapse
|
27
|
Tsai JW, Hannibal J, Hagiwara G, Colas D, Ruppert E, Ruby NF, Heller HC, Franken P, Bourgin P. Melanopsin as a sleep modulator: circadian gating of the direct effects of light on sleep and altered sleep homeostasis in Opn4(-/-) mice. PLoS Biol 2009; 7:e1000125. [PMID: 19513122 PMCID: PMC2688840 DOI: 10.1371/journal.pbio.1000125] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Accepted: 04/28/2009] [Indexed: 11/18/2022] Open
Abstract
Analyses in mice deficient for the blue-light-sensitive photopigment melanopsin show that direct effects of light on behavior and EEG depend on the time of day. The data further suggest an unexpected role for melanopsin in sleep homeostasis. Light influences sleep and alertness either indirectly through a well-characterized circadian pathway or directly through yet poorly understood mechanisms. Melanopsin (Opn4) is a retinal photopigment crucial for conveying nonvisual light information to the brain. Through extensive characterization of sleep and the electrocorticogram (ECoG) in melanopsin-deficient (Opn4−/−) mice under various light–dark (LD) schedules, we assessed the role of melanopsin in mediating the effects of light on sleep and ECoG activity. In control mice, a light pulse given during the habitual dark period readily induced sleep, whereas a dark pulse given during the habitual light period induced waking with pronounced theta (7–10 Hz) and gamma (40–70 Hz) activity, the ECoG correlates of alertness. In contrast, light failed to induce sleep in Opn4−/− mice, and the dark-pulse-induced increase in theta and gamma activity was delayed. A 24-h recording under a LD 1-h∶1-h schedule revealed that the failure to respond to light in Opn4−/− mice was restricted to the subjective dark period. Light induced c-Fos immunoreactivity in the suprachiasmatic nuclei (SCN) and in sleep-active ventrolateral preoptic (VLPO) neurons was importantly reduced in Opn4−/− mice, implicating both sleep-regulatory structures in the melanopsin-mediated effects of light. In addition to these acute light effects, Opn4−/− mice slept 1 h less during the 12-h light period of a LD 12∶12 schedule owing to a lengthening of waking bouts. Despite this reduction in sleep time, ECoG delta power, a marker of sleep need, was decreased in Opn4−/− mice for most of the (subjective) dark period. Delta power reached after a 6-h sleep deprivation was similarly reduced in Opn4−/− mice. In mice, melanopsin's contribution to the direct effects of light on sleep is limited to the dark or active period, suggesting that at this circadian phase, melanopsin compensates for circadian variations in the photo sensitivity of other light-encoding pathways such as rod and cones. Our study, furthermore, demonstrates that lack of melanopsin alters sleep homeostasis. These findings call for a reevaluation of the role of light on mammalian physiology and behavior. Light affects sleep in two ways: indirectly through the phase adjustment of circadian rhythms and directly through nonvisual mechanisms that are independent of the circadian system. The direct effects of light include the promotion of sleep in night-active animals and of alertness in diurnal species. We analyzed sleep and the electroencephalogram (EEG) under various light–dark regimens in mice lacking melanopsin (Opn4−/−), a retinal photopigment crucial for conveying light-level information to the brain, to determine the role of melanopsin, as opposed to rod and cones, in mediating these direct effects of light. We show that melanopsin mediates the direct effects of light during the subjective dark period, whereas rods and cones contribute to these effects in the light period. Our finding that “sleep-active” (i.e., galanin-positive) neurons of the anterior hypothalamus are not activated by light in Opn4−/− mice suggests that these neurons are part of the circuitry whereby light promotes sleep. Also, the alerting effects of transitions into darkness were less pronounced in Opn4−/− mice judged on the reduced increase in EEG theta and gamma activity. Finally, and unexpectedly, the rate at which the need for sleep, quantified as EEG delta power, accumulated during wakefulness was found to be reduced in Opn4−/− mice both during baseline and sleep deprivation conditions, implicating a photopigment in the homeostatic regulation of sleep. We conclude that melanopsin contributes to the direct effects of light and darkness, and in interaction with circadian and homeostatic drive, determines the occurrence and quality of both sleep and waking. If confirmed in humans, our observations will have applications for the clinical use of light as well as for societal lighting conditions.
Collapse
Affiliation(s)
- Jessica W. Tsai
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Jens Hannibal
- Department of Clinical Biochemistry, Rigshopitalet, Copenhagen, Denmark
| | - Grace Hagiwara
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Damien Colas
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Elisabeth Ruppert
- Laboratory of Rhythms - CNRS UMR 7168/LC2, Louis Pasteur University and Department of Neurology - School of Medicine, Strasbourg, France
| | - Norman F. Ruby
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - H. Craig Heller
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Paul Franken
- Department of Biology, Stanford University, Stanford, California, United States of America
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne-Dorigny, Switzerland
- * E-mail: (PF); (PB)
| | - Patrice Bourgin
- Department of Biology, Stanford University, Stanford, California, United States of America
- Laboratory of Rhythms - CNRS UMR 7168/LC2, Louis Pasteur University and Department of Neurology - School of Medicine, Strasbourg, France
- * E-mail: (PF); (PB)
| |
Collapse
|
28
|
Kisselbach L, Merges M, Bossie A, Boyd A. CD90 Expression on human primary cells and elimination of contaminating fibroblasts from cell cultures. Cytotechnology 2009; 59:31-44. [PMID: 19296231 DOI: 10.1007/s10616-009-9190-3] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 02/26/2009] [Indexed: 10/21/2022] Open
Abstract
Cluster Differentiation 90 (CD90) is a cell surface glycoprotein originally identified on mouse thymocytes. Although CD90 has been identified on a variety of stem cells and at varying levels in non-lymphoid tissues such as on fibroblasts, brain cells, and activated endothelial cells, the knowledge about the levels of CD90 expression on different cell types, including human primary cells, is limited. The goal of this study was to identify CD90 as a human primary cell biomarker and to develop an efficient and reliable method for eliminating unwanted or contaminating fibroblasts from human primary cell cultures suitable for research pursuant to cell based therapy technologies.
Collapse
Affiliation(s)
- Lynn Kisselbach
- Department of Cell Therapy, Lonza Walkersville, Inc., Walkersville, MD, 21793, USA,
| | | | | | | |
Collapse
|
29
|
Abstract
AbstractThe melanopsin positive, intrinsically photosensitive retinal ganglion cells (ipRGCs) of the inner retina have been shown to send wide-ranging projections throughout the brain. To investigate the response of this important cell type during retinal dystrophy, we use the Royal College of Surgeons (RCS) dystrophic rat, a major model of retinal degeneration. We find that ipRGCs exhibit a distinctive molecular profile that remains unaltered during early stages of outer retinal pathology (15 weeks of age). In particular, these cells express βIII tubulin, α-acetylated tubulin, and microtubule-associated proteins (MAPs), while remaining negative for other RGC markers such as neurofilaments, calretinin, and parvalbumin. By 14 months of age, melanopsin positive fibers invade ectopic locations in the dystrophic retina and ipRGC axons/dendrites become distorted (a process that may involve vascular remodeling). The morphological abnormalities in melanopsin processes are associated with elevated immunoreactivity for MAP1b and a reduction in α-acetylated tubulin. Quantification of ipRGCs in whole mounts reveals reduced melanopsin cell number with increasing age. Focusing on the retinal periphery, we find a significant decline in melanopsin cell density contrasted by a stability of melanopsin positive processes. In addition to these findings, we describe for the first time, a distinct plexus of melanopsin processes in the far peripheral retina, a structure that is coincident with a short wavelength opsin cone-enriched rim. We conclude that some ipRGCs are lost in RCS dystrophic rats as the disease progresses and that this loss may involve vascular remodeling. However, a significant number of melanopsin positive cells survive into advanced stages of retinal degeneration and show indications of remodeling in response to pathology. Our findings underline the importance of early intervention in human retinal disease in order to preserve integrity of the inner retinal photoreceptive network.
Collapse
|
30
|
Giesbers ME, Shirzad-Wasei N, Bosman GJCGM, de Grip WJ. Functional expression, targeting and Ca2+ signaling of a mouse melanopsin-eYFP fusion protein in a retinal pigment epithelium cell line. Photochem Photobiol 2008; 84:990-5. [PMID: 18422879 DOI: 10.1111/j.1751-1097.2008.00347.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Melanopsin, first discovered in Xenopus melanophores, is now established as a functional sensory photopigment of the intrinsically photosensitive retinal ganglion cells. These ganglion cells drive circadian rhythm and pupillary adjustments through projection to the brain. Melanopsin shares structural similarities with all known opsins. Comprehensive characterization of melanopsin with respect to its spectral properties, photochemical cascade and signaling partners requires a suitable recombinant system and high expression levels. This combination has not yet been described. To address this issue, we have expressed recombinant mouse melanopsin in several cell lines. Using enhanced yellow fluorescent protein (eYFP) as a visualization tag, expression was observed in all cell lines. Confocal microscopy revealed that melanopsin was properly routed to the plasma membrane only in retinal pigment epithelium (RPE)-derived D407 cells and in human embryonic kidney (HEK) cells. Further, we performed intracellular calcium measurements in order to probe the melanopsin signaling activity of this fusion protein. Transfected cells were loaded with the calcium indicator Fura2-AM. Upon illumination, an immediate but transient calcium response was observed in HEK as well as in D407 cells, while mock-transfected cells showed no calcium response under identical conditions. Supplementation with 11-cis retinal or all-trans retinal enhanced the response. After prolonged illumination the cells became desensitized. Thus, RPE-derived cells expressing recombinant melanopsin may constitute a suitable system for the study of the structural and functional characteristics of melanopsin.
Collapse
Affiliation(s)
- Maikel E Giesbers
- Department of Biochemistry, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
31
|
Peirson SN, Oster H, Jones SL, Leitges M, Hankins MW, Foster RG. Microarray Analysis and Functional Genomics Identify Novel Components of Melanopsin Signaling. Curr Biol 2007; 17:1363-72. [PMID: 17702581 DOI: 10.1016/j.cub.2007.07.045] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Revised: 07/11/2007] [Accepted: 07/12/2007] [Indexed: 11/26/2022]
Abstract
BACKGROUND Within the mammalian retina, there exists a third photoreceptive system based upon a population of melanopsin (Opn4) expressing photosensitive retinal ganglion cells (pRGCs; also termed ipRGCs or intrinsically photosensitive RGCs). Here, we use a microarray-based approach, which we term transcriptional recalibration, coupled with functional genomics to identify downstream targets of melanopsin signaling. RESULTS In a mouse with genetically ablated rods and cones (rd/rd cl), approximately 30% of the ocular transcriptome is transiently regulated in response to nocturnal light exposure (3112 genes). A total of 163 of these genes were associated with the "intracellular signaling" gene ontology term. On the basis of their similarity to invertebrate phototransduction genes, 14 were selected for further study. Laser capture microdissection demonstrated that eight of these genes (Gnas, Gnb2l1, Gnaq, Prkcz, Pik3r1, Inadl, Slc9a3r1, and Drd1a) colocalized with melanopsin. The impact of genetic ablation of one of these genes, protein kinase C zeta (Prkcz), was assessed. Prkcz-/- animals show attenuated phase-shifting responses to light, reduced period lengthening under constant light, and attenuated pupillary responses at high irradiances, as well as impaired light-induced gene expression in the suprachiasmatic nuclei (SCN). These attenuated responses are indistinguishable from the deficits observed in melanopsin knockout mice. CONCLUSIONS Here, we show that (1) Prkcz plays an as yet unidentified role in melanopsin signaling, (2) the proteins of seven further light-regulated genes emerge as strong candidates in melanopsin signaling, and (3) transcriptional recalibration may provide a powerful new approach for dissecting unmapped signaling pathways.
Collapse
Affiliation(s)
- Stuart N Peirson
- Circadian and Visual Neuroscience Group, University of Oxford, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
| | | | | | | | | | | |
Collapse
|
32
|
Berson DM. Phototransduction in ganglion-cell photoreceptors. Pflugers Arch 2007; 454:849-55. [PMID: 17351786 DOI: 10.1007/s00424-007-0242-2] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2006] [Accepted: 02/13/2007] [Indexed: 11/26/2022]
Abstract
A third class of photoreceptors has recently been identified in the mammalian retina. They are a rare cell type within the class of ganglion cells, which are the output cells of the retina. These intrinsically photosensitive retinal ganglion cells support a variety of physiological responses to daylight, including synchronization of circadian rhythms, modulation of melatonin release, and regulation of pupil size. The goal of this review is to summarize what is currently known concerning the cellular and biochemical basis of phototransduction in these cells. I summarize the overwhelming evidence that melanopsin serves as the photopigment in these cells and review the emerging evidence that the downstream signaling cascade, including the light-gated channel, might resemble those found in rhabdomeric invertebrate photoreceptors.
Collapse
Affiliation(s)
- David M Berson
- Department of Neuroscience, Brown University, P.O. Box G-L4, Providence, RI 02912, USA.
| |
Collapse
|
33
|
Bellingham J, Chaurasia SS, Melyan Z, Liu C, Cameron MA, Tarttelin EE, Iuvone PM, Hankins MW, Tosini G, Lucas RJ. Evolution of melanopsin photoreceptors: discovery and characterization of a new melanopsin in nonmammalian vertebrates. PLoS Biol 2006; 4:e254. [PMID: 16856781 PMCID: PMC1514791 DOI: 10.1371/journal.pbio.0040254] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Accepted: 05/25/2006] [Indexed: 11/18/2022] Open
Abstract
In mammals, the melanopsin gene
(Opn4) encodes a sensory photopigment that underpins newly discovered inner retinal photoreceptors. Since its first discovery in
Xenopus laevis and subsequent description in humans and mice, melanopsin genes have been described in all vertebrate classes. Until now, all of these sequences have been considered representatives of a single orthologous gene (albeit with duplications in the teleost fish). Here, we describe the discovery and functional characterisation of a new melanopsin gene in fish, bird, and amphibian genomes, demonstrating that, in fact, the vertebrates have evolved two quite separate melanopsins. On the basis of sequence similarity, chromosomal localisation, and phylogeny, we identify our new melanopsins as the true orthologs of the melanopsin gene previously described in mammals and term this grouping
Opn4m. By contrast, the previously published melanopsin genes in nonmammalian vertebrates represent a separate branch of the melanopsin family which we term
Opn4x. RT-PCR analysis in chicken, zebrafish, and
Xenopus identifies expression of both
Opn4m and
Opn4x genes in tissues known to be photosensitive (eye, brain, and skin). In the day-14 chicken eye,
Opn4m mRNA is found in a subset of cells in the outer nuclear, inner nuclear, and ganglion cell layers, the vast majority of which also express
Opn4x. Importantly, we show that a representative of the new melanopsins (chicken
Opn4m) encodes a photosensory pigment capable of activating G protein signalling cascades in a light- and retinaldehyde-dependent manner under heterologous expression in Neuro-2a cells. A comprehensive in silico analysis of vertebrate genomes indicates that while most vertebrate species have both
Opn4m and
Opn4x genes, the latter is absent from eutherian and, possibly, marsupial mammals, lost in the course of their evolution as a result of chromosomal reorganisation. Thus, our findings show for the first time that nonmammalian vertebrates retain two quite separate melanopsin genes, while mammals have just one. These data raise important questions regarding the functional differences between Opn4x and Opn4m pigments, the associated adaptive advantages for most vertebrate species in retaining both melanopsins, and the implications for mammalian biology of lacking Opn4x.
A new melanopsin gene, identified in fish, bird, and amphibian genomes, is the true ortholog of the melanopsin gene previously described in mammals.
Collapse
Affiliation(s)
- James Bellingham
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Fèvre-Montange M, Champier J, Szathmari A, Wierinckx A, Mottolese C, Guyotat J, Figarella-Branger D, Jouvet A, Lachuer J. Microarray Analysis Reveals Differential Gene Expression Patterns in Tumors of the Pineal Region. J Neuropathol Exp Neurol 2006; 65:675-84. [PMID: 16825954 DOI: 10.1097/01.jnen.0000225907.90052.e3] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Several types of tumors are known to originate from the pineal region, among them pineal parenchymal tumors (PPTs) and papillary tumors of the pineal region (PTPRs), probably derived from the subcommissural organ. As a result of their rarity, their histologic diagnosis remains difficult. To identify molecular markers, using CodeLink oligonucleotide arrays, gene expression was studied in 3 PPTs (2 pineocytomas and one pineoblastoma), 2 PTPRs, and one chordoid glioma, another rare tumor of the third ventricle. Because PTPR and chordoid glioma may present ependymal differentiation, gene expression was also analyzed in 4 ependymomas. The gene patterns of the 3 PPTs fell in the same cluster. The pineocytomas showed high expression of TPH, HIOMT, and genes related to phototransduction in the retina (OPN4, RGS16, and CRB3), whereas the pineoblastoma showed high expression of UBEC2, SOX4, TERT, TEP1, PRAME, CD24, POU4F2, and HOXD13. Using reverse transcriptase-polymerase chain reaction on 13 PPTs, we demonstrated that PRAME, CD24, POU4F2, and HOXD13 might be candidates for grading PPT with intermediate differentiation. PTPRs, classified with chordoid glioma and separately from ependymomas, showed high expression of SPEDF, KRT18, and genes encoding proteins reported to be expressed in the subcommissural organ, namely ZFH4, RFX3, TTR, and CGRP. Our results highlight the usefulness of gene expression profiling for classify tumors of the pineal region and identify genes with potential use as diagnostic markers.
Collapse
|
35
|
Sakamoto K, Liu C, Kasamatsu M, Pozdeyev NV, Iuvone PM, Tosini G. Dopamine regulates melanopsin mRNA expression in intrinsically photosensitive retinal ganglion cells. Eur J Neurosci 2006; 22:3129-36. [PMID: 16367779 DOI: 10.1111/j.1460-9568.2005.04512.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In mammals a subpopulation of retinal ganglion cells are intrinsically photosensitive (ipRGCs), express the photopigment melanopsin, and play an important role in the regulation of the nonimage-forming visual system. We have recently reported that melanopsin mRNA and protein levels in the rat retina are under photic and circadian control. The aim of the present work was to investigate the mechanisms that control melanopsin expression in the rat retina. We discovered that dopamine (DA) is involved in the regulation of melanopsin mRNA, possibly via dopamine D2 receptors that are located on these ipRGCs. Interestingly, we also discovered that pituitary adenylate cyclase-activating peptide (PACAP) mRNA levels are affected by DA. Dopamine synthesis and release in the retina are regulated by the rod and the cone photoreceptors via retinal circuitry; our new data indicate that DA controls melanopsin expression, indicating that classical photoreceptors may modulate the transcription of this new photopigment. Our study also suggests that DA may have an important role in mediating the light signals that are used for circadian entrainment and for other responses that are mediated by the nonimage-forming visual system.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- 3,4-Dihydroxyphenylacetic Acid/metabolism
- Animals
- Blotting, Western/methods
- Circadian Rhythm/drug effects
- Circadian Rhythm/physiology
- Dopamine/metabolism
- Dopamine/pharmacology
- Dopamine Agonists/pharmacology
- Dose-Response Relationship, Drug
- Drug Interactions
- Excitatory Amino Acid Agonists/pharmacology
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- Immunohistochemistry/methods
- In Situ Hybridization/methods
- Kainic Acid/pharmacology
- Male
- Quinpirole/pharmacology
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred F344
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D2/metabolism
- Retina/cytology
- Retinal Ganglion Cells/drug effects
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Rod Opsins/genetics
- Rod Opsins/metabolism
- Time Factors
Collapse
Affiliation(s)
- Katsuhiko Sakamoto
- Neuroscience Institute and NSF Center for Behavioural Neuroscience, Morehouse School of Medicine, 720, Westview Dr. SW, Atlanta, GA 30310-1495, USA
| | | | | | | | | | | |
Collapse
|
36
|
Tu DC, Zhang D, Demas J, Slutsky EB, Provencio I, Holy TE, Van Gelder RN. Physiologic diversity and development of intrinsically photosensitive retinal ganglion cells. Neuron 2006; 48:987-99. [PMID: 16364902 DOI: 10.1016/j.neuron.2005.09.031] [Citation(s) in RCA: 180] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 07/28/2005] [Accepted: 09/22/2005] [Indexed: 01/17/2023]
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) mediate numerous nonvisual phenomena, including entrainment of the circadian clock to light-dark cycles, pupillary light responsiveness, and light-regulated hormone release. We have applied multielectrode array recording to characterize murine ipRGCs. We find that all ipRGC photosensitivity is melanopsin dependent. At least three populations of ipRGCs are present in the postnatal day 8 (P8) murine retina: slow onset, sensitive, fast off (type I); slow onset, insensitive, slow off (type II); and rapid onset, sensitive, very slow off (type III). Recordings from adult rd/rd retinas reveal cells comparable to postnatal types II and III. Recordings from early postnatal retinas demonstrate intrinsic light responses from P0. Early light responses are transient and insensitive but by P6 show increased photosensitivity and persistence. These results demonstrate that ipRGCs are the first light-sensitive cells in the retina and suggest previously unappreciated diversity in this cell population.
Collapse
Affiliation(s)
- Daniel C Tu
- Department of Ophthalmology and Visual Sciences, Washington University Medical School, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Fu Y, Liao HW, Do MTH, Yau KW. Non-image-forming ocular photoreception in vertebrates. Curr Opin Neurobiol 2005; 15:415-22. [PMID: 16023851 PMCID: PMC2885887 DOI: 10.1016/j.conb.2005.06.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2005] [Accepted: 06/30/2005] [Indexed: 11/23/2022]
Abstract
It has been accepted for a hundred years or more that rods and cones are the only photoreceptive cells in the retina. The light signals generated in rods and cones, after processing by downstream retinal neurons (bipolar, horizontal, amacrine and ganglion cells), are transmitted to the brain via the axons of the ganglion cells for further analysis. In the past few years, however, convincing evidence has rapidly emerged indicating that a small subset of retinal ganglion cells in mammals is also intrinsically photosensitive. Melanopsin is the signaling photopigment in these cells. The main function of the inner-retina photoreceptors is to generate and transmit non-image-forming visual information, although some role in conventional vision (image detection) is also possible.
Collapse
Affiliation(s)
- Yingbin Fu
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
38
|
Fu Y, Zhong H, Wang MHH, Luo DG, Liao HW, Maeda H, Hattar S, Frishman LJ, Yau KW. Intrinsically photosensitive retinal ganglion cells detect light with a vitamin A-based photopigment, melanopsin. Proc Natl Acad Sci U S A 2005; 102:10339-44. [PMID: 16014418 PMCID: PMC1177370 DOI: 10.1073/pnas.0501866102] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In mammals, intrinsically photosensitive retinal ganglion cells (ipRGCs) mediate non-image-forming visual functions such as pupillary light reflex (PLR) and circadian photoentrainment. This photosensitivity requires melanopsin, an invertebrate opsin-like protein expressed by the ipRGCs. The precise role of melanopsin remains uncertain. One suggestion has been that melanopsin may be a photoisomerase, serving to regenerate an unidentified pigment in ipRGCs. This possibility was echoed by a recent report that melanopsin is expressed also in the mouse retinal pigment epithelium (RPE), a key center for regeneration of rod and cone pigments. To address this question, we studied mice lacking RPE65, a protein essential for the regeneration of rod and cone pigments. Rpe65-/- ipRGCs were approximately 20- to 40-fold less photosensitive than normal at both single-cell and behavioral (PLR) levels but were rescued by exogenous 9-cis-retinal (an 11-cis-retinal analog), indicating the requirement of a vitamin A-based chromophore for ipRGC photosensitivity. In contrast, 9-cis-retinal was unable to restore intrinsic photosensitivity to melanopsin-ablated ipRGCs, arguing against melanopsin functioning merely in photopigment regeneration. Interestingly, exogenous all-trans-retinal was also able to rescue the low sensitivity of rpe65-/- ipRGCs, suggesting that melanopsin could be a bistable pigment. Finally, we detected no melanopsin in the RPE and no changes in rod and cone sensitivities due to melanopsin ablation. Together, these results strongly suggest that melanopsin is the photopigment in the ipRGCs.
Collapse
Affiliation(s)
- Yingbin Fu
- Departments of Neuroscience and Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Ghosh S, Salvador-Silva M, Coca-Prados M. The bovine iris-ciliary epithelium expresses components of rod phototransduction. Neurosci Lett 2005; 370:7-12. [PMID: 15489008 DOI: 10.1016/j.neulet.2004.07.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2004] [Revised: 07/12/2004] [Accepted: 07/14/2004] [Indexed: 10/26/2022]
Abstract
Earlier studies have documented that the iris in lower vertebrates is photosensitive. In the present work, we examined whether the bovine iris which exhibits a common embryonic origin with the ocular ciliary epithelium and the neural retina, expresses components of phototransduction. By Northern blot and RT-PCR amplification we detected in the iris, rhodopsin, rhodopsin kinase and arrestin transcripts and DNA products, respectively, of the same size as in the retina. By Western blot, antibodies to rhodopsin, rhodopsin kinase and arrestin detected low levels of protein with similar molecular masses as in the retina. Transient transfections of bovine iris cells in vitro with rhodopsin promoter-luciferase-reporter constructs (p130-Luc, p176-Luc, 1225-Luc and p2000-Luc) containing proximal and distal promoter elements led to a significant stimulation of promoter activity over the basal activity. In particular, the construct p225-Luc containing proximal promoter elements upstream of the transcription start site (-225 to +70 bp) led to 3.1-fold stimulation of activity over p176-Luc, 2.1-fold over p130 or p2000-Luc and 190-fold over the basal activity. These results suggested that the bovine iris cells contain factors that could either stimulate or attenuate rhodopsin transcription. The data also supported the view that components associated with non-visual phototransduction are expressed in extraretinal sites including the ciliary epithelium and the iris.
Collapse
Affiliation(s)
- Sikha Ghosh
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, 330 Cedar St., New Haven, CT 06510, USA
| | | | | |
Collapse
|
40
|
Chaurasia SS, Rollag MD, Jiang G, Hayes WP, Haque R, Natesan A, Zatz M, Tosini G, Liu C, Korf HW, Iuvone PM, Provencio I. Molecular cloning, localization and circadian expression of chicken melanopsin (Opn4): differential regulation of expression in pineal and retinal cell types. J Neurochem 2005; 92:158-70. [PMID: 15606905 DOI: 10.1111/j.1471-4159.2004.02874.x] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The avian retina and pineal gland contain autonomous circadian oscillators and photo-entrainment pathways, but the photopigment(s) that mediate entrainment have not been definitively identified. Melanopsin (Opn4) is a novel opsin involved in entrainment of circadian rhythms in mammals. Here, we report the cDNA cloning of chicken melanopsin and show its expression in retina, brain and pineal gland. Like the melanopsins identified in amphibians and mammals, chicken melanopsin is more similar to the invertebrate retinaldehyde-based photopigments than the retinaldehyde-based photopigments typically found in vertebrates. In retina, melanopsin mRNA is expressed in cells of all retinal layers. In pineal gland, expression was strong throughout the parenchyma of the gland. In brain, expression was observed in a few discrete nuclei, including the lateral septal area and medial preoptic nucleus. The retina and pineal gland showed distinct diurnal expression patterns. In pineal gland, melanopsin mRNA levels were highest at night at Zeitgeber time (ZT) 16. In contrast, transcript levels in the whole retina reached their highest levels in the early morning (ZT 0-4). Further analysis of melanopsin mRNA expression in retinal layers isolated by laser capture microdissection revealed different patterns in different layers. There was diurnal expression in all retinal layers except the ganglion cell layer, where heavy expression was localized to a small number of cells. Expression of melanopsin mRNA peaked during the daytime in the retinal pigment epithelium and inner nuclear layer but, like in the pineal, at night in the photoreceptors. Localization and regulation of melanopsin mRNA in the retina and pineal gland is consistent with the hypothesis that this novel photopigment plays a role in photic regulation of circadian function in these tissues.
Collapse
Affiliation(s)
- S S Chaurasia
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Peirson SN, Thompson S, Hankins MW, Foster RG. Mammalian photoentrainment: results, methods, and approaches. Methods Enzymol 2005; 393:697-726. [PMID: 15817320 DOI: 10.1016/s0076-6879(05)93037-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Research on circadian biology over the past decade has paid increasing attention to the photoreceptor mechanisms that align the molecular clock to the 24-h light/dark cycle, and some of the results to emerge are surprising. For example, the rods and cones within the mammalian eye are not required for entrainment. A population of directly light-sensitive ganglion cells exists within the retina and acts as brightness detectors. This article provides a brief history of the discovery of these novel ocular photoreceptors and then describes the methods that have been used to study the photopigments mediating these responses to light. Photopigment characterization has traditionally been based on a number of complementary approaches, but one of the most useful techniques has been action spectroscopy. A photopigment has a discrete absorbance spectrum, which describes the probability of photons being absorbed as a function of wavelength, and the magnitude of any light-dependent response depends on the number of photons absorbed by the photopigment. Thus, a description of the spectral sensitivity profile (action spectrum) of any light-dependent response must, by necessity, match absorbance spectra of the photopigment mediating the response. We provide a step-by-step approach to conducting action spectra, including the construction of irradiance response curves, the calculation of relative spectral sensitivities, and photopigment template fitting, and discuss the underlying assumptions behind this approach. We then illustrate action spectrum methodologies by an in-depth analysis of action spectra obtained from rodless/coneless (rd/rd cl) mice and discuss, for the first time, the full implications of these findings.
Collapse
Affiliation(s)
- Stuart N Peirson
- Department of Visual Neuroscience, Imperial College, Charing Cross Hospital, London W6 8RF, United Kingdom
| | | | | | | |
Collapse
|
42
|
Page-McCaw PS, Chung SC, Muto A, Roeser T, Staub W, Finger-Baier KC, Korenbrot JI, Baier H. Retinal network adaptation to bright light requires tyrosinase. Nat Neurosci 2004; 7:1329-36. [PMID: 15516923 DOI: 10.1038/nn1344] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Accepted: 08/26/2004] [Indexed: 11/08/2022]
Abstract
The visual system adjusts its sensitivity to a wide range of light intensities. We report here that mutation of the zebrafish sdy gene, which encodes tyrosinase, slows down the onset of adaptation to bright light. When fish larvae were challenged with periods of darkness during the day, the sdy mutants required nearly an hour to recover optokinetic behavior after return to bright light, whereas wild types recovered within minutes. This behavioral deficit was phenocopied in fully pigmented fish by inhibiting tyrosinase and thus does not depend on the absence of melanin pigment in sdy. Electroretinograms showed that the dark-adapted retinal network recovers sensitivity to a pulse of light more slowly in sdy mutants than in wild types. This failure is localized in the retinal neural network, postsynaptic to photoreceptors. We propose that retinal pigment epithelium (which normally expresses tyrosinase) secretes a modulatory factor, possibly L-DOPA, which regulates light adaptation in the retinal circuitry.
Collapse
Affiliation(s)
- Patrick S Page-McCaw
- University of California, San Francisco, Department of Physiology, Program in Neuroscience, 513 Parnassus Ave., San Francisco, California 94143-0444, USA
| | | | | | | | | | | | | | | |
Collapse
|