1
|
Tomikawa C. Pseudouridine Modifications in Transfer RNA and tRNA Pseudouridine Synthases. J Mol Biol 2025:169183. [PMID: 40382211 DOI: 10.1016/j.jmb.2025.169183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 04/02/2025] [Accepted: 04/28/2025] [Indexed: 05/20/2025]
Abstract
Among the various modifications found in transfer RNAs, pseudouridine occurs the most frequently in all organisms and is also found in other RNA species including ribosomal, messenger, small nuclear, small nucleolar, and transfer-messenger RNA. Since the first gene encoding a tRNA pseudouridine synthase (truA) was discovered in 1978, many pseudouridine synthases have been identified, some of which are specific for one site in tRNA, while others act at multiple sites. Furthermore, some enzymes catalyze pseudouridine modification of not only tRNA but also ribosomal RNA and small nuclear RNA or messenger RNA. The functions of pseudouridine in tRNA are diverse, from contributing to the stabilization of tRNA structure to having an essential role in accurate protein synthesis (deficiency induces a frameshift in some cases). Some pseudouridine synthases also function as RNA chaperones. In this review, I summarize the reaction mechanism and functions of pseudouridine synthases with reference to the six pseudouridine synthase families, including similarities and variations in domain structures, motifs, and target uracil bases. I also characterize individual enzymes and highlight recently revealed links between pseudouridine/pseudouridine synthases and viral infections and human diseases.
Collapse
Affiliation(s)
- Chie Tomikawa
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan.
| |
Collapse
|
2
|
Ibañez-Escribano A, Gomez-Muñoz MT, Mateo M, Fonseca-Berzal C, Gomez-Lucia E, Perez RG, Alunda JM, Carrion J. Microbial Matryoshka: Addressing the Relationship between Pathogenic Flagellated Protozoans and Their RNA Viral Endosymbionts (Family Totiviridae). Vet Sci 2024; 11:321. [PMID: 39058005 PMCID: PMC11281412 DOI: 10.3390/vetsci11070321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/12/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024] Open
Abstract
Three genera of viruses of the family Totiviridae establish endosymbiotic associations with flagellated protozoa responsible for parasitic diseases of great impact in the context of One Health. Giardiavirus, Trichomonasvirus, and Leishmaniavirus infect the protozoa Giardia sp., Trichomonas vaginalis, and Leishmania sp., respectively. In the present work, we review the characteristics of the endosymbiotic relationships established, the advantages, and the consequences caused in mammalian hosts. Among the common characteristics of these double-stranded RNA viruses are that they do not integrate into the host genome, do not follow a lytic cycle, and do not cause cytopathic effects. However, in cases of endosymbiosis between Leishmaniavirus and Leishmania species from the Americas, and between Trichomonasvirus and Trichomonas vaginalis, it seems that it can alter their virulence (degree of pathogenicity). In a mammalian host, due to TLR3 activation of immune cells upon the recognition of viral RNA, uncontrolled inflammatory signaling responses are triggered, increasing pathological damage and the risk of failure of conventional standard treatment. Endosymbiosis with Giardiavirus can cause the loss of intestinal adherence of the protozoan, resulting in a benign disease. The current knowledge about viruses infecting flagellated protozoans is still fragmentary, and more research is required to unravel the intricacies of this three-way relationship. We need to develop early and effective diagnostic methods for further development in the field of translational medicine. Taking advantage of promising biotechnological advances, the aim is to develop ad hoc therapeutic strategies that focus not only on the disease-causing protozoan but also on the virus.
Collapse
Affiliation(s)
- Alexandra Ibañez-Escribano
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (A.I.-E.); (M.M.); (C.F.-B.)
| | - Maria Teresa Gomez-Muñoz
- ICPVet Research Group, Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (M.T.G.-M.); (R.G.P.); (J.M.A.)
- Research Institute Hospital 12 de Octubre, 28041 Madrid, Spain
| | - Marta Mateo
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (A.I.-E.); (M.M.); (C.F.-B.)
- ICPVet Research Group, Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (M.T.G.-M.); (R.G.P.); (J.M.A.)
- Research Institute Hospital 12 de Octubre, 28041 Madrid, Spain
| | - Cristina Fonseca-Berzal
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (A.I.-E.); (M.M.); (C.F.-B.)
| | - Esperanza Gomez-Lucia
- Animal Viruses Research Group, Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Raquel Garcia Perez
- ICPVet Research Group, Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (M.T.G.-M.); (R.G.P.); (J.M.A.)
| | - Jose M. Alunda
- ICPVet Research Group, Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (M.T.G.-M.); (R.G.P.); (J.M.A.)
- Research Institute Hospital 12 de Octubre, 28041 Madrid, Spain
| | - Javier Carrion
- ICPVet Research Group, Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (M.T.G.-M.); (R.G.P.); (J.M.A.)
- Research Institute Hospital 12 de Octubre, 28041 Madrid, Spain
| |
Collapse
|
3
|
Reyes-Proaño E, Knerr AJ, Karasev AV. Molecular characterization of birch toti-like virus, a plant-associated member of the new family Orthototiviridae. Arch Virol 2024; 169:140. [PMID: 38850451 DOI: 10.1007/s00705-024-06067-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/02/2024] [Indexed: 06/10/2024]
Abstract
A novel totivirus, named "birch toti-like virus" (BTLV), was discovered in European white birch (Betula pendula) plants. The genome of BTLV is 4,967 nucleotides long and contains two overlapping open reading frames (ORFs) coding for the capsid protein (CP) and an RNA-dependent RNA-polymerase (RdRP). The encoded CP and RdRP proteins shared 46.9% and 60.2% amino acid sequence identity, respectively, with those of Panax notoginseng virus B. The presence of a putative slippery heptamer signal 82 nt upstream of the stop codon of ORF1 suggests that a -1 translational frameshifting strategy is involved in the expression of ORF2, like in other totiviruses. Phylogenetic analysis based on the CP and RdRP amino acid sequences placed this virus within a clade of plant-associated totiviruses, with taro-associated virus as its closest relative. Hence, based on its distinct host and the amino acid sequence similarity between BTLV and its relatives, we conclude that birch toti-like virus is a new member of the genus Totivirus.
Collapse
Affiliation(s)
- Edison Reyes-Proaño
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, 83844, USA
| | - A Jenny Knerr
- Department of Plant Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Alexander V Karasev
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, 83844, USA.
| |
Collapse
|
4
|
Bowles IE, Jackman JE. Diversity in Biological Function and Mechanism of the tRNA Methyltransferase Trm10. Acc Chem Res 2023; 56:3595-3603. [PMID: 38048440 PMCID: PMC11210281 DOI: 10.1021/acs.accounts.3c00533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Transfer ribonucleic acid (tRNA) is the most highly modified RNA species in the cell, and loss of tRNA modifications can lead to growth defects in yeast as well as metabolic, neurological, and mitochondrial disorders in humans. Significant progress has been made toward identifying the enzymes that are responsible for installing diverse modifications in tRNA, revealing a landscape of fascinating biological and mechanistic diversity that remains to be fully explored. Most early discoveries of tRNA modification enzymes were in model systems, where many enzymes were not strictly required for viability, an observation somewhat at odds with the extreme conservation of many of the same enzymes throughout multiple domains of life. Moreover, many tRNA modification enzymes act on more than one type of tRNA substrate, which is not necessarily surprising given the similar overall secondary and tertiary structures of tRNA, yet biochemical characterization has revealed interesting patterns of substrate specificity that can be challenging to rationalize on a molecular level. Questions about how many enzymes efficiently select a precise set of target tRNAs from among a structurally similar pool of molecules persist.The tRNA methyltransferase Trm10 provides an exciting paradigm to study the biological and mechanistic questions surrounding tRNA modifications. Even though the enzyme was originally characterized in Saccharomyces cerevisiae where its deletion causes no detectable phenotype under standard lab conditions, several more recently identified phenotypes provide insight into the requirement for this modification in the overall quality control of the tRNA pool. Studies of Trm10 in yeast also revealed another characteristic feature that has turned out to be a conserved feature of enzymes throughout the Trm10 family tree. We were initially surprised to see that purified S. cerevisiae Trm10 was capable of modifying tRNA substrates that were not detectably modified by the enzyme in vivo in yeast. This pattern has continued to emerge as we and others have studied Trm10 orthologs from Archaea and Eukarya, with enzymes exhibiting in vitro substrate specificities that can differ significantly from in vivo patterns of modification. While this feature complicates efforts to predict substrate specificities of Trm10 enzymes in the absence of appropriate genetic systems, it also provides an exciting opportunity for studying how enzyme activities can be regulated to achieve dynamic patterns of biological tRNA modification, which have been shown to be increasingly important for stress responses and human disease. Finally, the intriguing diversity in target nucleotide modification that has been revealed among Trm10 orthologs is distinctive among known tRNA modifying enzymes and necessitates unusual and likely novel catalytic strategies for methylation that are being revealed by biochemical and structural studies directed toward various family members. These efforts will no doubt yield more surprising discoveries in terms of tRNA modification enzymology.
Collapse
Affiliation(s)
- Isobel E. Bowles
- Department of Chemistry and Biochemistry, Center for RNA Biology and Ohio State Biochemistry Program, 484 W. 12th Avenue, Columbus, OH, 43210, USA
| | - Jane E. Jackman
- Department of Chemistry and Biochemistry, Center for RNA Biology and Ohio State Biochemistry Program, 484 W. 12th Avenue, Columbus, OH, 43210, USA
| |
Collapse
|
5
|
Khalifa ME, MacDiarmid RM. Molecular Characterization of Two Totiviruses from the Commensal Yeast Geotrichum candidum. Viruses 2023; 15:2150. [PMID: 38005831 PMCID: PMC10674808 DOI: 10.3390/v15112150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Mycoviruses can infect many of the major taxa of fungi including yeasts. Mycoviruses in the yeast fungus Geotrichum candidum are not well studied with only three G. candidum-associated viral species characterized to date, all of which belong to the Totiviridae genus Totivirus. In this study, we report the molecular characteristics of another two totiviruses co-infecting isolate Gc6 of G. candidum. The two totiviruses were tentatively named Geotrichum candidum totivirus 2 isolate Gc6 (GcTV2-Gc6) and Geotrichum candidum totivirus 4 isolate Gc6 (GcTV4-Gc6). Both viruses have the typical genome organization of totiviruses comprising two ORFs encoding capsid protein (CP) and RNA-dependent RNA polymerase (RdRp) at the N and C termini, respectively. The genomes of GcTV2-Gc6 and GcTV4-Gc6 are 4592 and 4530 bp long, respectively. Both viruses contain the-frameshifting elements and their proteins could be expressed as a single fusion protein. GcTV2-Gc6 is closely related to a totivirus isolated from the same host whereas GcTV4-Gc6 is related to insect-associated totiviruses. The phylogenetic analysis indicated that GcTV2-Gc6 and GcTV4-Gc6 belong to two different sister clades, I-A and I-B, respectively. It is interesting that all viruses identified from G. candidum belong to the genus Totivirus; however, this might be due to the lack of research reporting the characterization of mycoviruses from this fungal host. It is possible that the RNA interference (RNAi) mechanism cannot actively suppress totivirus accumulation in G. candidum Gc6.
Collapse
Affiliation(s)
- Mahmoud E. Khalifa
- Botany and Microbiology Department, Faculty of Science, Damietta University, Damietta 34517, Egypt;
| | - Robin M. MacDiarmid
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1025, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
6
|
Abstract
The study of eukaryotic tRNA processing has given rise to an explosion of new information and insights in the last several years. We now have unprecedented knowledge of each step in the tRNA processing pathway, revealing unexpected twists in biochemical pathways, multiple new connections with regulatory pathways, and numerous biological effects of defects in processing steps that have profound consequences throughout eukaryotes, leading to growth phenotypes in the yeast Saccharomyces cerevisiae and to neurological and other disorders in humans. This review highlights seminal new results within the pathways that comprise the life of a tRNA, from its birth after transcription until its death by decay. We focus on new findings and revelations in each step of the pathway including the end-processing and splicing steps, many of the numerous modifications throughout the main body and anticodon loop of tRNA that are so crucial for tRNA function, the intricate tRNA trafficking pathways, and the quality control decay pathways, as well as the biogenesis and biology of tRNA-derived fragments. We also describe the many interactions of these pathways with signaling and other pathways in the cell.
Collapse
Affiliation(s)
- Eric M Phizicky
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Anita K Hopper
- Department of Molecular Genetics and Center for RNA Biology, Ohio State University, Columbus, Ohio 43235, USA
| |
Collapse
|
7
|
Bedada FB, Gorfu G, Teng S, Neita ME. Insight into genomic organization of pathogenic coronaviruses, SARS-CoV-2: Implication for emergence of new variants, laboratory diagnosis and treatment options. FRONTIERS IN MOLECULAR MEDICINE 2022; 2:917201. [PMID: 39157715 PMCID: PMC11328875 DOI: 10.3389/fmmed.2022.917201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 09/13/2022] [Indexed: 08/20/2024]
Abstract
SARS-CoV-2 is a novel zoonotic positive-sense RNA virus (ssRNA+) belonging to the genus beta coronaviruses (CoVs) in the Coronaviridae family. It is the causative agent for the outbreak of the disease, COVID-19. It is the third CoV causing pneumonia around the world in the past 2 decades. To date, it has caused significant deaths worldwide. Notably, the emergence of new genetic variants conferring efficient transmission and immune evasion remained a challenge, despite the reduction in the number of death cases, owing to effective vaccination regimen (boosting) and safety protocols. Thus, information harnessed from SARS-CoV-2 genomic organization is indispensable for seeking laboratory diagnosis and treatment options. Here in, we review previously circulating variants of SARS-CoV-2 designated variant of concern (VOC) including the Alpha (United Kingdom), Beta (South Africa), Gamma (Brazil), Delta (India), and recently circulating VOC, Omicron (South Africa) and its divergent subvariants (BA.1, BA.2, BA.3, BA.2.12.1, BA.4 and BA.5) with BA.5 currently becoming dominant and prolonging the COVID pandemic. In addition, we address the role of computational models for mutagenesis analysis which can predict important residues that contribute to transmissibility, virulence, immune evasion, and molecular detections of SARS-CoV-2. Concomitantly, the importance of harnessing the immunobiology of SARS-CoV-2 and host interaction for therapeutic purpose; and use of an in slilico based biocomputational approaches to achieve this purpose via predicting novel therapeutic agents targeting PRR such as toll like receptor, design of universal vaccine and chimeric antibodies tailored to the emergent variant have been highlighted.
Collapse
Affiliation(s)
- Fikru B. Bedada
- Department of Clinical Laboratory Science, College of Nursing and Allied Health Sciences, Howard University, Washington, DC, United States
| | - Gezahegn Gorfu
- Department of Clinical Laboratory Science, College of Nursing and Allied Health Sciences, Howard University, Washington, DC, United States
- Department of Pathology, College of Medicine, Howard University, Washington, DC, United States
| | - Shaolei Teng
- Department of Biology, College of Arts and Sciences, Howard University, Washington, DC, United States
| | - Marguerite E. Neita
- Department of Clinical Laboratory Science, College of Nursing and Allied Health Sciences, Howard University, Washington, DC, United States
| |
Collapse
|
8
|
mRNA and tRNA modification states influence ribosome speed and frame maintenance during poly(lysine) peptide synthesis. J Biol Chem 2022; 298:102039. [PMID: 35595100 PMCID: PMC9207662 DOI: 10.1016/j.jbc.2022.102039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/16/2022] Open
Abstract
Ribosome speed is dictated by multiple factors including substrate availability, cellular conditions, and product (peptide) formation. Translation slows during the synthesis of cationic peptide sequences, potentially influencing the expression of thousands of proteins. Available evidence suggests that ionic interactions between positively charged nascent peptides and the negatively charged ribosome exit tunnel impede translation. However, this hypothesis was difficult to test directly because of inability to decouple the contributions of amino acid charge from mRNA sequence and tRNA identity/abundance in cells. Furthermore, it is unclear if other components of the translation system central to ribosome function (e.g., RNA modification) influence the speed and accuracy of positively charged peptide synthesis. In this study, we used a fully reconstituted Escherichia coli translation system to evaluate the effects of peptide charge, mRNA sequence, and RNA modification status on the translation of lysine-rich peptides. Comparison of translation reactions on poly(lysine)-encoding mRNAs conducted with either Lys-tRNALys or Val-tRNALys reveals that that amino acid charge, while important, only partially accounts for slowed translation on these transcripts. We further find that in addition to peptide charge, mRNA sequence and both tRNA and mRNA modification status influence the rates of amino acid addition and the ribosome’s ability to maintain frame (instead of entering the −2, −1, and +1 frames) during poly(lysine) peptide synthesis. Our observations lead us to expand the model for explaining how the ribosome slows during poly(lysine) peptide synthesis and suggest that posttranscriptional RNA modifications can provide cells a mechanism to precisely control ribosome movements along an mRNA.
Collapse
|
9
|
Zhao M, Xu L, Bowers H, Schott EJ. Characterization of Two Novel Toti-Like Viruses Co-infecting the Atlantic Blue Crab, Callinectes sapidus, in Its Northern Range of the United States. Front Microbiol 2022; 13:855750. [PMID: 35369474 PMCID: PMC8973213 DOI: 10.3389/fmicb.2022.855750] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/14/2022] [Indexed: 11/23/2022] Open
Abstract
The advancement of high throughput sequencing has greatly facilitated the exploration of viruses that infect marine hosts. For example, a number of putative virus genomes belonging to the Totiviridae family have been described in crustacean hosts. However, there has been no characterization of the most newly discovered putative viruses beyond description of their genomes. In this study, two novel double-stranded RNA (dsRNA) virus genomes were discovered in the Atlantic blue crab (Callinectes sapidus) and further investigated. Sequencing of both virus genomes revealed that they each encode RNA dependent RNA polymerase proteins (RdRps) with similarities to toti-like viruses. The viruses were tentatively named Callinectes sapidus toti-like virus 1 (CsTLV1) and Callinectes sapidus toti-like virus 2 (CsTLV2). Both genomes have typical elements required for −1 ribosomal frameshifting, which may induce the expression of an encoded ORF1–ORF2 (gag-pol) fusion protein. Phylogenetic analyses of CsTLV1 and CsTLV2 RdRp amino acid sequences suggested that they are members of two new genera in the family Totiviridae. The CsTLV1 and CsTLV2 genomes were detected in muscle, gill, and hepatopancreas of blue crabs by real-time reverse transcription quantitative PCR (RT-qPCR). The presence of ~40 nm totivirus-like viral particles in all three tissues was verified by transmission electron microscopy, and pathology associated with CsTLV1 and CsTLV2 infections were observed by histology. PCR assays showed the prevalence and geographic range of these viruses, to be restricted to the northeast United States sites sampled. The two virus genomes co-occurred in almost all cases, with the CsTLV2 genome being found on its own in 8.5% cases, and the CsTLV1 genome not yet found on its own. To our knowledge, this is the first report of toti-like viruses in C. sapidus. The information reported here provides the knowledge and tools to investigate transmission and potential pathogenicity of these viruses.
Collapse
Affiliation(s)
- Mingli Zhao
- Institute of Marine and Environmental Technology, University of Maryland, Baltimore County, MD, United States
| | - Lan Xu
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland, Baltimore County, MD, United States
| | - Holly Bowers
- Moss Landing Marine Laboratory, San Jose State University, San Jose, CA, United States
| | - Eric J. Schott
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Cambridge, MD, United States
- *Correspondence: Eric J. Schott,
| |
Collapse
|
10
|
Cook GM, Brown K, Shang P, Li Y, Soday L, Dinan AM, Tumescheit C, Mockett APA, Fang Y, Firth AE, Brierley I. Ribosome profiling of porcine reproductive and respiratory syndrome virus reveals novel features of viral gene expression. eLife 2022; 11:e75668. [PMID: 35226596 PMCID: PMC9000960 DOI: 10.7554/elife.75668] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/26/2022] [Indexed: 11/13/2022] Open
Abstract
The arterivirus porcine reproductive and respiratory syndrome virus (PRRSV) causes significant economic losses to the swine industry worldwide. Here we apply ribosome profiling (RiboSeq) and parallel RNA sequencing (RNASeq) to characterise the transcriptome and translatome of both species of PRRSV and to analyse the host response to infection. We calculated programmed ribosomal frameshift (PRF) efficiency at both sites on the viral genome. This revealed the nsp2 PRF site as the second known example where temporally regulated frameshifting occurs, with increasing -2 PRF efficiency likely facilitated by accumulation of the PRF-stimulatory viral protein, nsp1β. Surprisingly, we find that PRF efficiency at the canonical ORF1ab frameshift site also increases over time, in contradiction of the common assumption that RNA structure-directed frameshift sites operate at a fixed efficiency. This has potential implications for the numerous other viruses with canonical PRF sites. Furthermore, we discovered several highly translated additional viral ORFs, the translation of which may be facilitated by multiple novel viral transcripts. For example, we found a highly expressed 125-codon ORF overlapping nsp12, which is likely translated from novel subgenomic RNA transcripts that overlap the 3' end of ORF1b. Similar transcripts were discovered for both PRRSV-1 and PRRSV-2, suggesting a potential conserved mechanism for temporally regulating expression of the 3'-proximal region of ORF1b. We also identified a highly translated, short upstream ORF in the 5' UTR, the presence of which is highly conserved amongst PRRSV-2 isolates. These findings reveal hidden complexity in the gene expression programmes of these important nidoviruses.
Collapse
Affiliation(s)
- Georgia M Cook
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| | - Katherine Brown
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| | - Pengcheng Shang
- Department of Diagnostic Medicine and Pathobiology, Kansas State UniversityManhattanUnited States
| | - Yanhua Li
- Department of Diagnostic Medicine and Pathobiology, Kansas State UniversityManhattanUnited States
| | - Lior Soday
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| | - Adam M Dinan
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| | | | | | - Ying Fang
- Department of Diagnostic Medicine and Pathobiology, Kansas State UniversityManhattanUnited States
| | - Andrew E Firth
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| | - Ian Brierley
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
11
|
Nahalka J. Transcription of the Envelope Protein by 1-L Protein-RNA Recognition Code Leads to Genes/Proteins That Are Relevant to the SARS-CoV-2 Life Cycle and Pathogenesis. Curr Issues Mol Biol 2022; 44:791-816. [PMID: 35723340 PMCID: PMC8928949 DOI: 10.3390/cimb44020055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/21/2022] [Accepted: 02/03/2022] [Indexed: 12/02/2022] Open
Abstract
The theoretical protein-RNA recognition code was used in this study to research the compatibility of the SARS-CoV-2 envelope protein (E) with mRNAs in the human transcriptome. According to a review of the literature, the spectrum of identified genes showed that the virus post-transcriptionally promotes or represses the genes involved in the SARS-CoV-2 life cycle. The identified genes/proteins are also involved in adaptive immunity, in the function of the cilia and wound healing (EMT and MET) in the pulmonary epithelial tissue, in Alzheimer's and Parkinson's disease and in type 2 diabetes. For example, the E-protein promotes BHLHE40, which switches off the IL-10 inflammatory "brake" and inhibits antiviral THαβ cells. In the viral cycle, E supports the COPII-SCAP-SREBP-HSP90α transport complex by the lowering of cholesterol in the ER and by the repression of insulin signaling, which explains the positive effect of HSP90 inhibitors in COVID-19 (geldanamycin), and E also supports importin α/β-mediated transport to the nucleus, which explains the positive effect of ivermectin, a blocker of importins α/β. In summary, transcription of the envelope protein by the 1-L protein-RNA recognition code leads to genes/proteins that are relevant to the SARS-CoV-2 life cycle and pathogenesis.
Collapse
Affiliation(s)
- Jozef Nahalka
- Centre for Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Dubravska Cesta 9, SK-84538 Bratislava, Slovakia
- Centre of Excellence for White-Green Biotechnology, Institute of Chemistry, Slovak Academy of Sciences, Trieda Andreja Hlinku 2, SK-94976 Nitra, Slovakia
| |
Collapse
|
12
|
Tagel M, Ilves H, Leppik M, Jürgenstein K, Remme J, Kivisaar M. Pseudouridines of tRNA Anticodon Stem-Loop Have Unexpected Role in Mutagenesis in Pseudomonas sp. Microorganisms 2020; 9:microorganisms9010025. [PMID: 33374637 PMCID: PMC7822408 DOI: 10.3390/microorganisms9010025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Pseudouridines are known to be important for optimal translation. In this study we demonstrate an unexpected link between pseudouridylation of tRNA and mutation frequency in Pseudomonas species. We observed that the lack of pseudouridylation activity of pseudouridine synthases TruA or RluA elevates the mutation frequency in Pseudomonas putida 3 to 5-fold. The absence of TruA but not RluA elevates mutation frequency also in Pseudomonas aeruginosa. Based on the results of genetic studies and analysis of proteome data, the mutagenic effect of the pseudouridylation deficiency cannot be ascribed to the involvement of error-prone DNA polymerases or malfunctioning of DNA repair pathways. In addition, although the deficiency in TruA-dependent pseudouridylation made P. putida cells more sensitive to antimicrobial compounds that may cause oxidative stress and DNA damage, cultivation of bacteria in the presence of reactive oxygen species (ROS)-scavenging compounds did not eliminate the mutator phenotype. Thus, the elevated mutation frequency in the absence of tRNA pseudouridylation could be the result of a more specific response or, alternatively, of a cumulative effect of several small effects disturbing distinct cellular functions, which remain undetected when studied independently. This work suggests that pseudouridines link the translation machinery to mutation frequency.
Collapse
Affiliation(s)
- Mari Tagel
- Correspondence: (M.T.); (J.R.); (M.K.); Tel.: +372-737-5036 (M.K.)
| | | | | | | | - Jaanus Remme
- Correspondence: (M.T.); (J.R.); (M.K.); Tel.: +372-737-5036 (M.K.)
| | - Maia Kivisaar
- Correspondence: (M.T.); (J.R.); (M.K.); Tel.: +372-737-5036 (M.K.)
| |
Collapse
|
13
|
Funk HM, Zhao R, Thomas M, Spigelmyer SM, Sebree NJ, Bales RO, Burchett JB, Mamaril JB, Limbach PA, Guy MP. Identification of the enzymes responsible for m2,2G and acp3U formation on cytosolic tRNA from insects and plants. PLoS One 2020; 15:e0242737. [PMID: 33253256 PMCID: PMC7704012 DOI: 10.1371/journal.pone.0242737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 11/06/2020] [Indexed: 11/18/2022] Open
Abstract
Posttranscriptional modification of tRNA is critical for efficient protein translation and proper cell growth, and defects in tRNA modifications are often associated with human disease. Although most of the enzymes required for eukaryotic tRNA modifications are known, many of these enzymes have not been identified and characterized in several model multicellular eukaryotes. Here, we present two related approaches to identify the genes required for tRNA modifications in multicellular organisms using primer extension assays with fluorescent oligonucleotides. To demonstrate the utility of these approaches we first use expression of exogenous genes in yeast to experimentally identify two TRM1 orthologs capable of forming N2,N2-dimethylguanosine (m2,2G) on residue 26 of cytosolic tRNA in the model plant Arabidopsis thaliana. We also show that a predicted catalytic aspartate residue is required for function in each of the proteins. We next use RNA interference in cultured Drosophila melanogaster cells to identify the gene required for m2,2G26 formation on cytosolic tRNA. Additionally, using these approaches we experimentally identify D. melanogaster gene CG10050 as the corresponding ortholog of human DTWD2, which encodes the protein required for formation of 3-amino-3-propylcarboxyuridine (acp3U) on residue 20a of cytosolic tRNA. We further show that A. thaliana gene AT2G41750 can form acp3U20b on an A. thaliana tRNA expressed in yeast cells, and that the aspartate and tryptophan residues in the DXTW motif of this protein are required for modification activity. These results demonstrate that these approaches can be used to study tRNA modification enzymes.
Collapse
Affiliation(s)
- Holly M. Funk
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, Kentucky, United States of America
| | - Ruoxia Zhao
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Maggie Thomas
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, Kentucky, United States of America
| | - Sarah M. Spigelmyer
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, Kentucky, United States of America
| | - Nichlas J. Sebree
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, Kentucky, United States of America
| | - Regan O. Bales
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, Kentucky, United States of America
| | - Jamison B. Burchett
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, Kentucky, United States of America
| | - Justen B. Mamaril
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, Kentucky, United States of America
| | - Patrick A. Limbach
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Michael P. Guy
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, Kentucky, United States of America
| |
Collapse
|
14
|
Fernandes JD, Hinrichs AS, Clawson H, Gonzalez JN, Lee BT, Nassar LR, Raney BJ, Rosenbloom KR, Nerli S, Rao AA, Schmelter D, Fyfe A, Maulding N, Zweig AS, Lowe TM, Ares M, Corbet-Detig R, Kent WJ, Haussler D, Haeussler M. The UCSC SARS-CoV-2 Genome Browser. Nat Genet 2020; 52:991-998. [PMID: 32908258 PMCID: PMC8016453 DOI: 10.1038/s41588-020-0700-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Background: Researchers are generating molecular data pertaining to the SARS-CoV-2 RNA genome and its proteins at an unprecedented rate during the COVID-19 pandemic. As a result, there is a critical need for rapid and continuously updated access to the latest molecular data in a format in which all data can be quickly cross-referenced and compared. We adapted our genome browser visualization tool to the viral genome for this purpose. Molecular data, curated from published studies or from database submissions, are mapped to the viral genome and grouped together into “annotation tracks” where they can be visualized along the linear map of the viral genome sequence and programmatically downloaded in standard format for analysis. Results: The UCSC Genome Browser for SARS-CoV-2 (https://genome.ucsc.edu/covid19.html ) provides continuously updated access to the mutations in the many thousands of SARS-CoV-2 genomes deposited in GISAID and the international nucleotide sequencing databases, displayed alongside phylogenetic trees. These data are augmented with alignments of bat, pangolin, and other animal and human coronavirus genomes, including per-base evolutionary rate analysis. All available annotations are cross-referenced on the virus genome, including those from major databases (PDB, RFAM, IEDB, UniProt) as well as up-to-date individual results from preprints. Annotated data include predicted and validated immune epitopes, promising antibodies, RT-PCR and sequencing primers, CRISPR guides (from research, diagnostics, vaccines, and therapies), and points of interaction between human and viral genes. As a community resource, any user can add manual annotations which are quality checked and shared publicly on the browser the next day. Conclusions: We invite all investigators to contribute additional data and annotations to this resource to accelerate research and development activities globally. Contact us at genome-www@soe.ucsc.edu with data suggestions or requests for support for adding data. Rapid sharing of data will accelerate SARS-CoV-2 research, especially when researchers take time to integrate their data with those from other labs on a widely-used community browser platform with standardized machine-readable data formats, such as the SARS-CoV-2 Genome Browser.
Collapse
Affiliation(s)
- Jason D Fernandes
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
- Howard Hughes Medical Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Angie S Hinrichs
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Hiram Clawson
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | | | - Brian T Lee
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Luis R Nassar
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Brian J Raney
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Kate R Rosenbloom
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Santrupti Nerli
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Arjun A Rao
- ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA
| | - Daniel Schmelter
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Alastair Fyfe
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Nathan Maulding
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Ann S Zweig
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Todd M Lowe
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Manuel Ares
- Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Russ Corbet-Detig
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - W James Kent
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - David Haussler
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA.
- Howard Hughes Medical Institute, University of California, Santa Cruz, Santa Cruz, CA, USA.
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, CA, USA.
| | | |
Collapse
|
15
|
Khalifa ME, MacDiarmid RM. A Novel Totivirus Naturally Occurring in Two Different Fungal Genera. Front Microbiol 2019; 10:2318. [PMID: 31681196 PMCID: PMC6797558 DOI: 10.3389/fmicb.2019.02318] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/23/2019] [Indexed: 12/18/2022] Open
Abstract
Mycoviruses are widely distributed across different phyla of the fungal kingdom. Viruses that share significant sequence similarities have been reported in different fungi, suggesting descent from a common ancestor. In this study, two fungal genera isolated from the same sample, Trichoderma koningiopsis isolate Mg10 and Clonostachys rosea isolate Mg06, were reported to have identical double-stranded RNA (dsRNA) profiles that consist of two virus-like, dsRNA elements (dsRNA-L and dsRNA-S). The complete sequence and genome organization of dsRNA-L from isolate Mg10 was determined. It is 4712 nucleotides (nt) long and contains two non-overlapping open reading frames (ORFs) that code for proteins with similarities to totiviruses. Consequently the virus was given the proposed name Trichoderma koningiopsis totivirus 1 (TkTV1/Mg10). The TkTV1/Mg10 genome structure resembles that of yeast totiviruses in which the region preceding the stop codon of ORF1 contains the elements required for -1 ribosomal frameshifting which may induce the expression of an ORF1–ORF2 (CP-RdRp) fusion protein. Sequence analyses of viral dsRNA-L from C. rosea isolate Mg06 revealed that it is nearly identical with that of TkTV1/Mg10. This relatedness was confirmed by northern blot hybridization and indicates very recent natural horizontal transmission of this virus between unrelated fungi. TkTV1 purified isometric virions were ∼38–40 nm in diameter and were able to transfect T. koningiopsis and C. rosea protoplasts. This is another report of a mycovirus present naturally in two taxonomically distinct fungi.
Collapse
Affiliation(s)
- Mahmoud E Khalifa
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand.,Botany and Microbiology Department, Faculty of Science, Damietta University, Damietta, Egypt
| | - Robin M MacDiarmid
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand.,School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
16
|
The emerging impact of tRNA modifications in the brain and nervous system. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1862:412-428. [PMID: 30529455 DOI: 10.1016/j.bbagrm.2018.11.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 11/21/2018] [Accepted: 11/23/2018] [Indexed: 01/19/2023]
Abstract
A remarkable number of neurodevelopmental disorders have been linked to defects in tRNA modifications. These discoveries place tRNA modifications in the spotlight as critical modulators of gene expression pathways that are required for proper organismal growth and development. Here, we discuss the emerging molecular and cellular functions of the diverse tRNA modifications linked to cognitive and neurological disorders. In particular, we describe how the structure and location of a tRNA modification influences tRNA folding, stability, and function. We then highlight how modifications in tRNA can impact multiple aspects of protein translation that are instrumental for maintaining proper cellular proteostasis. Importantly, we describe how perturbations in tRNA modification lead to a spectrum of deleterious biological outcomes that can disturb neurodevelopment and neurological function. Finally, we summarize the biological themes shared by the different tRNA modifications linked to cognitive disorders and offer insight into the future questions that remain to decipher the role of tRNA modifications. This article is part of a Special Issue entitled: mRNA modifications in gene expression control edited by Dr. Soller Matthias and Dr. Fray Rupert.
Collapse
|
17
|
RNA Pseudouridylation in Physiology and Medicine: For Better and for Worse. Genes (Basel) 2017; 8:genes8110301. [PMID: 29104216 PMCID: PMC5704214 DOI: 10.3390/genes8110301] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/25/2017] [Accepted: 10/25/2017] [Indexed: 12/30/2022] Open
Abstract
Pseudouridine is the most abundant modification found in RNA. Today, thanks to next-generation sequencing techniques used in the detection of RNA modifications, pseudouridylation sites have been described in most eukaryotic RNA classes. In the present review, we will first consider the available information on the functional roles of pseudouridine(s) in different RNA species. We will then focus on how alterations in the pseudouridylation process may be connected with a series of human pathologies, including inherited disorders, cancer, diabetes, and viral infections. Finally, we will discuss how the availability of novel technical approaches are likely to increase the knowledge in this field.
Collapse
|
18
|
Zheng L, Lu X, Liang X, Jiang S, Zhao J, Zhan G, Liu P, Wu J, Kang Z. Molecular Characterization of Novel Totivirus-Like Double-Stranded RNAs from Puccinia striiformis f. sp. tritici, the Causal Agent of Wheat Stripe Rust. Front Microbiol 2017; 8:1960. [PMID: 29067018 PMCID: PMC5641321 DOI: 10.3389/fmicb.2017.01960] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 09/22/2017] [Indexed: 11/30/2022] Open
Abstract
Characterization of newly isolated mycoviruses may contribute to understanding of the evolution and diversity of viruses. Here, a deep sequencing approach was used to analyze the double-stranded RNA (dsRNA) mycoviruses isolated from field-collected P. striiformis samples in China. Database searches showed the presence of at least four totivirus-like sequences, termed Puccinia striiformis virus 1 to 4 (PsV1 to 4). All of these identified sequences contained two overlapping open reading frames (ORFs) which encode a putative coat protein (CP) and an RNA-dependent RNA polymerase (RdRp) showing similar structures to members of the genus Totivirus. Each PsV contained a -1 ribosomal frameshifting region with a slippery site and a pseudoknot structure in the overlapped regions of these ORFs, indicating that the RdRp is translated as a CP-RdRp fusion. Phylogenetic analyses based on RdRp and CP suggested that these novel viruses belong to the genus Totivirus in the family Totiviridae. The presences of these PsVs were further validated by transmission electron microscope (TEM) and RT-PCR. Taken together, our results demonstrate the presence of diverse, novel totiviruses in the P. striiformis field populations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
19
|
Abstract
Coronaviruses have large positive-strand RNA genomes that are 5' capped and 3' polyadenylated. The 5'-terminal two-thirds of the genome contain two open reading frames (ORFs), 1a and 1b, that together make up the viral replicase gene and encode two large polyproteins that are processed by viral proteases into 15-16 nonstructural proteins, most of them being involved in viral RNA synthesis. ORFs located in the 3'-terminal one-third of the genome encode structural and accessory proteins and are expressed from a set of 5' leader-containing subgenomic mRNAs that are synthesized by a process called discontinuous transcription. Coronavirus protein synthesis not only involves cap-dependent translation mechanisms but also employs regulatory mechanisms, such as ribosomal frameshifting. Coronavirus replication is known to affect cellular translation, involving activation of stress-induced signaling pathways, and employing viral proteins that affect cellular mRNA translation and RNA stability. This chapter describes our current understanding of the mechanisms involved in coronavirus mRNA translation and changes in host mRNA translation observed in coronavirus-infected cells.
Collapse
Affiliation(s)
- K Nakagawa
- The University of Texas Medical Branch, Galveston, TX, United States
| | - K G Lokugamage
- The University of Texas Medical Branch, Galveston, TX, United States
| | - S Makino
- The University of Texas Medical Branch, Galveston, TX, United States; Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, Galveston, TX, United States; UTMB Center for Tropical Diseases, The University of Texas Medical Branch, Galveston, TX, United States; Sealy Center for Vaccine Development, The University of Texas Medical Branch, Galveston, TX, United States; Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, TX, United States.
| |
Collapse
|
20
|
Atkins JF, Loughran G, Bhatt PR, Firth AE, Baranov PV. Ribosomal frameshifting and transcriptional slippage: From genetic steganography and cryptography to adventitious use. Nucleic Acids Res 2016; 44:7007-78. [PMID: 27436286 PMCID: PMC5009743 DOI: 10.1093/nar/gkw530] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/26/2016] [Indexed: 12/15/2022] Open
Abstract
Genetic decoding is not ‘frozen’ as was earlier thought, but dynamic. One facet of this is frameshifting that often results in synthesis of a C-terminal region encoded by a new frame. Ribosomal frameshifting is utilized for the synthesis of additional products, for regulatory purposes and for translational ‘correction’ of problem or ‘savior’ indels. Utilization for synthesis of additional products occurs prominently in the decoding of mobile chromosomal element and viral genomes. One class of regulatory frameshifting of stable chromosomal genes governs cellular polyamine levels from yeasts to humans. In many cases of productively utilized frameshifting, the proportion of ribosomes that frameshift at a shift-prone site is enhanced by specific nascent peptide or mRNA context features. Such mRNA signals, which can be 5′ or 3′ of the shift site or both, can act by pairing with ribosomal RNA or as stem loops or pseudoknots even with one component being 4 kb 3′ from the shift site. Transcriptional realignment at slippage-prone sequences also generates productively utilized products encoded trans-frame with respect to the genomic sequence. This too can be enhanced by nucleic acid structure. Together with dynamic codon redefinition, frameshifting is one of the forms of recoding that enriches gene expression.
Collapse
Affiliation(s)
- John F Atkins
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland School of Microbiology, University College Cork, Cork, Ireland Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Gary Loughran
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Pramod R Bhatt
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Andrew E Firth
- Division of Virology, Department of Pathology, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
21
|
Shaheen R, Han L, Faqeih E, Ewida N, Alobeid E, Phizicky EM, Alkuraya FS. A homozygous truncating mutation in PUS3 expands the role of tRNA modification in normal cognition. Hum Genet 2016; 135:707-13. [PMID: 27055666 PMCID: PMC5152754 DOI: 10.1007/s00439-016-1665-7] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 03/29/2016] [Indexed: 11/28/2022]
Abstract
Intellectual disability is a common and highly heterogeneous disorder etiologically. In a multiplex consanguineous family, we applied autozygosity mapping and exome sequencing and identified a novel homozygous truncating mutation in PUS3 that fully segregates with the intellectual disability phenotype. Consistent with the known role of Pus3 in isomerizing uracil to pseudouridine at positions 38 and 39 in tRNA, we found a significant reduction in this post-transcriptional modification of tRNA in patient cells. Our finding adds to a growing list of intellectual disability disorders that are caused by perturbation of various tRNA modifications, which highlights the sensitivity of the brain to these highly conserved processes.
Collapse
Affiliation(s)
- Ranad Shaheen
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Lu Han
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Eissa Faqeih
- Department of Pediatric Subspecialties, Children's Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Nour Ewida
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Eman Alobeid
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Eric M Phizicky
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| |
Collapse
|
22
|
McKenney KM, Alfonzo JD. From Prebiotics to Probiotics: The Evolution and Functions of tRNA Modifications. Life (Basel) 2016; 6:E13. [PMID: 26985907 PMCID: PMC4810244 DOI: 10.3390/life6010013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/27/2016] [Accepted: 03/07/2016] [Indexed: 12/13/2022] Open
Abstract
All nucleic acids in cells are subject to post-transcriptional chemical modifications. These are catalyzed by a myriad of enzymes with exquisite specificity and that utilize an often-exotic array of chemical substrates. In no molecule are modifications more prevalent than in transfer RNAs. In the present document, we will attempt to take a chemical rollercoaster ride from prebiotic times to the present, with nucleoside modifications as key players and tRNA as the centerpiece that drove the evolution of biological systems to where we are today. These ideas will be put forth while touching on several examples of tRNA modification enzymes and their modus operandi in cells. In passing, we submit that the choice of tRNA is not a whimsical one but rather highlights its critical function as an essential invention for the evolution of protein enzymes.
Collapse
Affiliation(s)
- Katherine M McKenney
- The Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA.
| | - Juan D Alfonzo
- The Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA.
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
23
|
Chen S, Cao L, Huang Q, Qian Y, Zhou X. The complete genome sequence of a novel maize-associated totivirus. Arch Virol 2015; 161:487-90. [PMID: 26559960 DOI: 10.1007/s00705-015-2657-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/20/2015] [Indexed: 11/29/2022]
Abstract
Deep sequencing of small RNA (sRNA) populations in maize plants from southwest China resulted in the identification of a previously unknown dsRNA virus with a sequence and genome organization resembling that of a totivirus. The complete viral genome is 3,956 nucleotides in length and contains two open reading frames (ORFs) with the potential to produce a ORF1-ORF2 fusion protein through a -1 ribosomal frameshift translation mechanism. ORF1 encodes the putative capsid protein (CP), whereas the predicted product of ORF2 contains motifs typical of an RNA-dependent RNA polymerase (RdRp). Phylogenetic analysis using the amino acid sequences of putative RdRp fusion proteins showed that the new virus was grouped in a clade together with the totiviruses, suggesting that it is a new member of the genus Totivirus of the family Totiviridae. The virus is tentatively named "maize-associated totivirus (MATV)". Our findings demonstrate that it is feasible to identify totiviruses by deep sequencing of small RNAs.
Collapse
Affiliation(s)
- Sha Chen
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
| | - Linge Cao
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
| | - Qingqing Huang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
| | - Yajuan Qian
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, People's Republic of China.
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
24
|
Guy MP, Shaw M, Weiner CL, Hobson L, Stark Z, Rose K, Kalscheuer VM, Gecz J, Phizicky EM. Defects in tRNA Anticodon Loop 2'-O-Methylation Are Implicated in Nonsyndromic X-Linked Intellectual Disability due to Mutations in FTSJ1. Hum Mutat 2015; 36:1176-87. [PMID: 26310293 DOI: 10.1002/humu.22897] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/12/2015] [Indexed: 01/18/2023]
Abstract
tRNA modifications are crucial for efficient and accurate protein synthesis, and modification defects are frequently associated with disease. Yeast trm7Δ mutants grow poorly due to lack of 2'-O-methylated C32 (Cm32 ) and Gm34 on tRNA(Phe) , catalyzed by Trm7-Trm732 and Trm7-Trm734, respectively, which in turn results in loss of wybutosine at G37 . Mutations in human FTSJ1, the likely TRM7 homolog, cause nonsyndromic X-linked intellectual disability (NSXLID), but the role of FTSJ1 in tRNA modification is unknown. Here, we report that tRNA(Phe) from two genetically independent cell lines of NSXLID patients with loss-of-function FTSJ1 mutations nearly completely lacks Cm32 and Gm34 , and has reduced peroxywybutosine (o2yW37 ). Additionally, tRNA(Phe) from an NSXLID patient with a novel FTSJ1-p.A26P missense allele specifically lacks Gm34 , but has normal levels of Cm32 and o2yW37 . tRNA(Phe) from the corresponding Saccharomyces cerevisiae trm7-A26P mutant also specifically lacks Gm34 , and the reduced Gm34 is not due to weaker Trm734 binding. These results directly link defective 2'-O-methylation of the tRNA anticodon loop to FTSJ1 mutations, suggest that the modification defects cause NSXLID, and may implicate Gm34 of tRNA(Phe) as the critical modification. These results also underscore the widespread conservation of the circuitry for Trm7-dependent anticodon loop modification of eukaryotic tRNA(Phe) .
Collapse
Affiliation(s)
- Michael P Guy
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, New York, 14642
| | - Marie Shaw
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia 5000, Australia.,School of Paediatrics and Reproductive Health, The University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Catherine L Weiner
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, New York, 14642
| | - Lynne Hobson
- SA Pathology, Women's and Children's Hospital, Adelaide, South Australia 5006, Australia
| | - Zornitza Stark
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, Victoria 3052, Australia
| | - Katherine Rose
- Monash Health, Special Medicine Centre, Monash Medical Centre, Clayton, Victoria 3168, Australia
| | - Vera M Kalscheuer
- Department Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin D14195, Germany
| | - Jozef Gecz
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia 5000, Australia.,School of Paediatrics and Reproductive Health, The University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Eric M Phizicky
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, New York, 14642
| |
Collapse
|
25
|
Dunkle JA, Dunham CM. Mechanisms of mRNA frame maintenance and its subversion during translation of the genetic code. Biochimie 2015; 114:90-6. [PMID: 25708857 PMCID: PMC4458409 DOI: 10.1016/j.biochi.2015.02.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 02/11/2015] [Indexed: 01/26/2023]
Abstract
Important viral and cellular gene products are regulated by stop codon readthrough and mRNA frameshifting, processes whereby the ribosome detours from the reading frame defined by three nucleotide codons after initiation of translation. In the last few years, rapid progress has been made in mechanistically characterizing both processes and also revealing that trans-acting factors play important regulatory roles in frameshifting. Here, we review recent biophysical studies that bring new molecular insights to stop codon readthrough and frameshifting. Lastly, we consider whether there may be common mechanistic themes in -1 and +1 frameshifting based on recent X-ray crystal structures of +1 frameshift-prone tRNAs bound to the ribosome.
Collapse
Affiliation(s)
- Jack A Dunkle
- Emory University School of Medicine, Department of Biochemistry, 1510 Clifton Road NE, Suite G223, Atlanta, GA 30322, USA
| | - Christine M Dunham
- Emory University School of Medicine, Department of Biochemistry, 1510 Clifton Road NE, Suite G223, Atlanta, GA 30322, USA.
| |
Collapse
|
26
|
Mathew SF, Crowe-McAuliffe C, Graves R, Cardno TS, McKinney C, Poole ES, Tate WP. The highly conserved codon following the slippery sequence supports -1 frameshift efficiency at the HIV-1 frameshift site. PLoS One 2015; 10:e0122176. [PMID: 25807539 PMCID: PMC4373837 DOI: 10.1371/journal.pone.0122176] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 02/08/2015] [Indexed: 01/18/2023] Open
Abstract
HIV-1 utilises -1 programmed ribosomal frameshifting to translate structural and enzymatic domains in a defined proportion required for replication. A slippery sequence, U UUU UUA, and a stem-loop are well-defined RNA features modulating -1 frameshifting in HIV-1. The GGG glycine codon immediately following the slippery sequence (the 'intercodon') contributes structurally to the start of the stem-loop but has no defined role in current models of the frameshift mechanism, as slippage is inferred to occur before the intercodon has reached the ribosomal decoding site. This GGG codon is highly conserved in natural isolates of HIV. When the natural intercodon was replaced with a stop codon two different decoding molecules-eRF1 protein or a cognate suppressor tRNA-were able to access and decode the intercodon prior to -1 frameshifting. This implies significant slippage occurs when the intercodon is in the (perhaps distorted) ribosomal A site. We accommodate the influence of the intercodon in a model of frame maintenance versus frameshifting in HIV-1.
Collapse
Affiliation(s)
- Suneeth F. Mathew
- Department of Biochemistry, University of Otago, Dunedin, 9054, New Zealand
| | | | - Ryan Graves
- Department of Biochemistry, University of Otago, Dunedin, 9054, New Zealand
| | - Tony S. Cardno
- Department of Biochemistry, University of Otago, Dunedin, 9054, New Zealand
| | - Cushla McKinney
- Department of Biochemistry, University of Otago, Dunedin, 9054, New Zealand
| | - Elizabeth S. Poole
- Department of Biochemistry, University of Otago, Dunedin, 9054, New Zealand
| | - Warren P. Tate
- Department of Biochemistry, University of Otago, Dunedin, 9054, New Zealand
- * E-mail:
| |
Collapse
|
27
|
Han Y, Dang R, Li J, Jiang J, Zhang N, Jia M, Wei L, Li Z, Li B, Jia W. SUCROSE NONFERMENTING1-RELATED PROTEIN KINASE2.6, an ortholog of OPEN STOMATA1, is a negative regulator of strawberry fruit development and ripening. PLANT PHYSIOLOGY 2015; 167:915-30. [PMID: 25609556 PMCID: PMC4348756 DOI: 10.1104/pp.114.251314] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 01/19/2015] [Indexed: 05/18/2023]
Abstract
Whereas the regulatory mechanisms that direct fruit ripening have been studied extensively, little is known about the signaling mechanisms underlying this process, especially for nonclimacteric fruits. In this study, we demonstrated that a SUCROSE NONFERMENTING1-RELATED PROTEIN KINASE2, designated as FaSnRK2.6, is a negative regulator of fruit development and ripening in the nonclimacteric fruit strawberry (Fragaria × ananassa) and can also mediate temperature-modulated strawberry fruit ripening. FaSnRK2.6 was identified as an ortholog of OPEN STOMATA1. Levels of FaSnRK2.6 transcript rapidly decreased during strawberry fruit development and ripening. FaSnRK2.6 was found to be capable of physically interacting with strawberry ABSCISIC ACID INSENSITIVE1, a negative regulator in strawberry fruit ripening. RNA interference-induced silencing of FaSnRK2.6 significantly promoted fruit ripening. By contrast, overexpression of FaSnRK2.6 arrested fruit ripening. Strawberry fruit ripening is highly sensitive to temperature, with high temperatures promoting ripening and low temperatures delaying it. As the temperature increased, the level of FaSnRK2.6 expression declined. Furthermore, manipulating the level of FaSnRK2.6 expression altered the expression of a variety of temperature-responsive genes. Taken together, this study demonstrates that FaSnRK2.6 is a negative regulator of strawberry fruit development and ripening and, furthermore, that FaSnRK2.6 mediates temperature-modulated strawberry fruit ripening.
Collapse
Affiliation(s)
- Yu Han
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ruihong Dang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jinxi Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jinzhu Jiang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ning Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Meiru Jia
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Lingzhi Wei
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ziqiang Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Bingbing Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Wensuo Jia
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
28
|
Han L, Kon Y, Phizicky EM. Functional importance of Ψ38 and Ψ39 in distinct tRNAs, amplified for tRNAGln(UUG) by unexpected temperature sensitivity of the s2U modification in yeast. RNA (NEW YORK, N.Y.) 2015; 21:188-201. [PMID: 25505024 PMCID: PMC4338347 DOI: 10.1261/rna.048173.114] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The numerous modifications of tRNA play central roles in controlling tRNA structure and translation. Modifications in and around the anticodon loop often have critical roles in decoding mRNA and in maintaining its reading frame. Residues U38 and U39 in the anticodon stem-loop are frequently modified to pseudouridine (Ψ) by members of the widely conserved TruA/Pus3 family of pseudouridylases. We investigate here the cause of the temperature sensitivity of pus3Δ mutants of the yeast Saccharomyces cerevisiae and find that, although Ψ38 or Ψ39 is found on at least 19 characterized cytoplasmic tRNA species, the temperature sensitivity is primarily due to poor function of tRNA(Gln(UUG)), which normally has Ψ38. Further investigation reveals that at elevated temperatures there are substantially reduced levels of the s(2)U moiety of mcm(5)s(2)U34 of tRNA(Gln(UUG)) and the other two cytoplasmic species with mcm(5)s(2)U34, that the reduced s(2)U levels occur in the parent strain BY4741 and in the widely used strain W303, and that reduced levels of the s(2)U moiety are detectable in BY4741 at temperatures as low as 33°C. Additional examination of the role of Ψ38,39 provides evidence that Ψ38 is important for function of tRNA(Gln(UUG)) at permissive temperature, and indicates that Ψ39 is important for the function of tRNA(Trp(CCA)) in trm10Δ pus3Δ mutants and of tRNA(Leu(CAA)) as a UAG nonsense suppressor. These results provide evidence for important roles of both Ψ38 and Ψ39 in specific tRNAs, and establish that modification of the wobble position is subject to change under relatively mild growth conditions.
Collapse
Affiliation(s)
- Lu Han
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Yoshiko Kon
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Eric M Phizicky
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| |
Collapse
|
29
|
Caliskan N, Katunin VI, Belardinelli R, Peske F, Rodnina MV. Programmed -1 frameshifting by kinetic partitioning during impeded translocation. Cell 2014; 157:1619-31. [PMID: 24949973 PMCID: PMC7112342 DOI: 10.1016/j.cell.2014.04.041] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 02/17/2014] [Accepted: 04/10/2014] [Indexed: 02/04/2023]
Abstract
Programmed –1 ribosomal frameshifting (−1PRF) is an mRNA recoding event utilized by cells to enhance the information content of the genome and to regulate gene expression. The mechanism of –1PRF and its timing during translation elongation are unclear. Here, we identified the steps that govern –1PRF by following the stepwise movement of the ribosome through the frameshifting site of a model mRNA derived from the IBV 1a/1b gene in a reconstituted in vitro translation system from Escherichia coli. Frameshifting occurs at a late stage of translocation when the two tRNAs are bound to adjacent slippery sequence codons of the mRNA. The downstream pseudoknot in the mRNA impairs the closing movement of the 30S subunit head, the dissociation of EF-G, and the release of tRNA from the ribosome. The slippage of the ribosome into the –1 frame accelerates the completion of translocation, thereby further favoring translation in the new reading frame. Kinetics of –1 ribosomal frameshifting are monitored at single-codon resolution Frameshifting occurs when the backward movement of the 30S subunit head is impeded Two tRNAs at the XXXYYYZ mRNA sequence are stalled in chimeric POST states The shift to the –1 reading frame occurs prior to EF-G release from the ribosome
Collapse
Affiliation(s)
- Neva Caliskan
- Max Planck Institute for Biophysical Chemistry, Department of Physical Biochemistry, 37077 Göttingen, Germany
| | - Vladimir I Katunin
- B.P. Konstantinov Petersburg Nuclear Physics Institute, Department of Molecular and Radiation Biophysics, 188300 Gatchina, Russia
| | - Riccardo Belardinelli
- Max Planck Institute for Biophysical Chemistry, Department of Physical Biochemistry, 37077 Göttingen, Germany
| | - Frank Peske
- Max Planck Institute for Biophysical Chemistry, Department of Physical Biochemistry, 37077 Göttingen, Germany
| | - Marina V Rodnina
- Max Planck Institute for Biophysical Chemistry, Department of Physical Biochemistry, 37077 Göttingen, Germany.
| |
Collapse
|
30
|
Qin L, Ma Y, Liang P, Tan Z, Li S. Differential distributions of mononucleotide repeat sequences in 256 viral genomes and its potential implications. Gene 2014; 544:159-64. [PMID: 24786215 DOI: 10.1016/j.gene.2014.04.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/14/2014] [Accepted: 04/26/2014] [Indexed: 11/18/2022]
Abstract
Mononucleotide repeats (MNRs) have been systematically investigated in the genomes of eukaryotic and prokaryotic organisms. However, detailed information on the distribution of MNRs in viral genomes is limited. In this study, we examined the distributions of MNRs in 256 fully sequenced virus genomes which showed extensive variations across viral genomes, and is significantly influenced by both genome size and CG content. Furthermore, the ratio of the observed to the expected number of MNRs (O/E ratio) appears to be influenced by both the host range and genome type of a particular virus. Additionally, the densities and frequencies of MNRs in genic regions are lower than in non-coding regions, suggesting that selective pressure acts on viral genomes. We also discuss the potential functional roles that these MNR loci could play in virus genomes. To our knowledge, this is the first analysis focusing on MNRs in viruses, and our study could have potential implications for a deeper understanding of virus genome stability and the co-evolution that occurs between a virus and its host.
Collapse
Affiliation(s)
- Lü Qin
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Biology, State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Yuxin Ma
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Pengbo Liang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100094, China
| | - Zhongyang Tan
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Biology, State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China.
| | - Shifang Li
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
31
|
Sharma V, Prère MF, Canal I, Firth AE, Atkins JF, Baranov PV, Fayet O. Analysis of tetra- and hepta-nucleotides motifs promoting -1 ribosomal frameshifting in Escherichia coli. Nucleic Acids Res 2014; 42:7210-25. [PMID: 24875478 PMCID: PMC4066793 DOI: 10.1093/nar/gku386] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Programmed ribosomal -1 frameshifting is a non-standard decoding process occurring when ribosomes encounter a signal embedded in the mRNA of certain eukaryotic and prokaryotic genes. This signal has a mandatory component, the frameshift motif: it is either a Z_ZZN tetramer or a X_XXZ_ZZN heptamer (where ZZZ and XXX are three identical nucleotides) allowing cognate or near-cognate repairing to the -1 frame of the A site or A and P sites tRNAs. Depending on the signal, the frameshifting frequency can vary over a wide range, from less than 1% to more than 50%. The present study combines experimental and bioinformatics approaches to carry out (i) a systematic analysis of the frameshift propensity of all possible motifs (16 Z_ZZN tetramers and 64 X_XXZ_ZZN heptamers) in Escherichia coli and (ii) the identification of genes potentially using this mode of expression amongst 36 Enterobacteriaceae genomes. While motif efficiency varies widely, a major distinctive rule of bacterial -1 frameshifting is that the most efficient motifs are those allowing cognate re-pairing of the A site tRNA from ZZN to ZZZ. The outcome of the genomic search is a set of 69 gene clusters, 59 of which constitute new candidates for functional utilization of -1 frameshifting.
Collapse
Affiliation(s)
- Virag Sharma
- School of Biochemistry and Cell biology, University College Cork, Cork, Ireland
| | - Marie-Françoise Prère
- Laboratoire de Microbiologie et Génétique moléculaire, UMR5100, Centre National de la Recherche Scientifique, Université Paul Sabatier-Toulouse III, 118 route de Narbonne, Toulouse 31062-cedex, France
| | - Isabelle Canal
- Laboratoire de Microbiologie et Génétique moléculaire, UMR5100, Centre National de la Recherche Scientifique, Université Paul Sabatier-Toulouse III, 118 route de Narbonne, Toulouse 31062-cedex, France
| | - Andrew E Firth
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - John F Atkins
- School of Biochemistry and Cell biology, University College Cork, Cork, Ireland Department of Human Genetics, University of Utah, 15N 2030E, Rm7410, Salt Lake City, UT 84112-5330, USA
| | - Pavel V Baranov
- School of Biochemistry and Cell biology, University College Cork, Cork, Ireland
| | - Olivier Fayet
- Laboratoire de Microbiologie et Génétique moléculaire, UMR5100, Centre National de la Recherche Scientifique, Université Paul Sabatier-Toulouse III, 118 route de Narbonne, Toulouse 31062-cedex, France
| |
Collapse
|
32
|
Qin P, Yu D, Zuo X, Cornish PV. Structured mRNA induces the ribosome into a hyper-rotated state. EMBO Rep 2014; 15:185-90. [PMID: 24401932 DOI: 10.1002/embr.201337762] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
During protein synthesis, mRNA and tRNA are moved through the ribosome by the process of translocation. The small diameter of the mRNA entrance tunnel only permits unstructured mRNA to pass through. However, there are structured elements within mRNA that present a barrier for translocation that must be unwound. The ribosome has been shown to unwind RNA in the absence of additional factors, but the mechanism remains unclear. Here, we show using single molecule Förster resonance energy transfer and small angle X-ray scattering experiments a new global conformational state of the ribosome. In the presence of the frameshift inducing dnaX hairpin, the ribosomal subunits are driven into a hyper-rotated state and the L1 stalk is predominantly in an open conformation. This previously unobserved conformational state provides structural insight into the helicase activity of the ribosome and may have important implications for understanding the mechanism of reading frame maintenance.
Collapse
Affiliation(s)
- Peiwu Qin
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | | | | | | |
Collapse
|
33
|
Guy MP, Podyma BM, Preston MA, Shaheen HH, Krivos KL, Limbach PA, Hopper AK, Phizicky EM. Yeast Trm7 interacts with distinct proteins for critical modifications of the tRNAPhe anticodon loop. RNA (NEW YORK, N.Y.) 2012; 18:1921-33. [PMID: 22912484 PMCID: PMC3446714 DOI: 10.1261/rna.035287.112] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 07/19/2012] [Indexed: 05/17/2023]
Abstract
Post-transcriptional modification of the tRNA anticodon loop is critical for translation. Yeast Trm7 is required for 2'-O-methylation of C(32) and N(34) of tRNA(Phe), tRNA(Trp), and tRNA(Leu(UAA)) to form Cm(32) and Nm(34), and trm7-Δ mutants have severe growth and translation defects, but the reasons for these defects are not known. We show here that overproduction of tRNA(Phe) suppresses the growth defect of trm7-Δ mutants, suggesting that the crucial biological role of Trm7 is the modification of tRNA(Phe). We also provide in vivo and in vitro evidence that Trm7 interacts with ORF YMR259c (now named Trm732) for 2'-O-methylation of C(32), and with Rtt10 (named Trm734) for 2'-O-methylation of N(34) of substrate tRNAs and provide evidence for a complex circuitry of anticodon loop modification of tRNA(Phe), in which formation of Cm(32) and Gm(34) drives modification of m(1)G(37) (1-methylguanosine) to yW (wyebutosine). Further genetic analysis shows that the slow growth of trm7-Δ mutants is due to the lack of both Cm(32) and Nm(34), and the accompanying loss of yW, because trm732-Δ trm734-Δ mutants phenocopy trm7-Δ mutants, whereas each single mutant is healthy; nonetheless, TRM732 and TRM734 each have distinct roles, since mutations in these genes have different genetic interactions with trm1-Δ mutants, which lack m(2,2)G(26) in their tRNAs. We speculate that 2'-O-methylation of the anticodon loop may be important throughout eukaryotes because of the widespread conservation of Trm7, Trm732, and Trm734 proteins, and the corresponding modifications, and because the putative human TRM7 ortholog FTSJ1 is implicated in nonsyndromic X-linked mental retardation.
Collapse
Affiliation(s)
- Michael P. Guy
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Brandon M. Podyma
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Melanie A. Preston
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Hussam H. Shaheen
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Kady L. Krivos
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, USA
| | - Patrick A. Limbach
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, USA
| | - Anita K. Hopper
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Eric M. Phizicky
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, New York 14642, USA
- Corresponding authorE-mail
| |
Collapse
|
34
|
Ribosomal frameshifting into an overlapping gene in the 2B-encoding region of the cardiovirus genome. Proc Natl Acad Sci U S A 2011; 108:E1111-9. [PMID: 22025686 DOI: 10.1073/pnas.1102932108] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The genus Cardiovirus (family Picornaviridae) currently comprises the species Encephalomyocarditis virus (EMCV) and Theilovirus. Cardioviruses have a positive-sense, single-stranded RNA genome that encodes a large polyprotein (L-1ABCD-2ABC-3ABCD) that is cleaved to produce approximately 12 mature proteins. We report on a conserved ORF that overlaps the 2B-encoding sequence of EMCV in the +2 reading frame. The ORF is translated as a 128-129 amino acid transframe fusion (2B*) with the N-terminal 11-12 amino acids of 2B, via ribosomal frameshifting at a conserved GGUUUUY motif. Mutations that knock out expression of 2B* result in a small-plaque phenotype. Curiously, although theilovirus sequences lack a long ORF in the +2 frame at this genomic location, they maintain a conserved GGUUUUU motif just downstream of the 2A-2B junction, and a highly localized peak in conservation at polyprotein-frame synonymous sites suggests that theiloviruses also utilize frameshifting here, albeit into a very short +2-frame ORF. Unlike previous cases of programmed -1 frameshifting, here frameshifting is modulated by virus infection, thus suggesting a novel regulatory role for frameshifting in these viruses.
Collapse
|
35
|
Isawa H, Kuwata R, Hoshino K, Tsuda Y, Sakai K, Watanabe S, Nishimura M, Satho T, Kataoka M, Nagata N, Hasegawa H, Bando H, Yano K, Sasaki T, Kobayashi M, Mizutani T, Sawabe K. Identification and molecular characterization of a new nonsegmented double-stranded RNA virus isolated from Culex mosquitoes in Japan. Virus Res 2010; 155:147-55. [PMID: 20875466 DOI: 10.1016/j.virusres.2010.09.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 09/03/2010] [Accepted: 09/19/2010] [Indexed: 12/21/2022]
Abstract
Two infectious agents were isolated from Culex species mosquitoes in Japan and were identified as distinct strains of a new RNA virus by a method for sequence-independent amplification of viral nucleic acids. The virus designated Omono River virus (OMRV) replicated in mosquito cells in which it produced a severe cytopathic effect. Icosahedral virus particles of approximately 40 nm in diameter were detected in the cytoplasm of infected cells. The OMRV genome was observed to consist of a nonsegmented, 7.6-kb double-stranded RNA (dsRNA) and contain two overlapping open reading frames (ORFs), namely ORF1 and ORF2. ORF1 was found to encode a putative dsRNA-binding protein, a major capsid protein, and other putative proteins, which might be generated by co- and/or post-translational processing of the ORF1 polyprotein precursor, and ORF2 was found to encode a putative RNA-dependent RNA polymerase (RdRp), which could be translated as a fusion with the ORF1 product by a -1 ribosomal frameshift. Phylogenetic analysis based on RdRp revealed that OMRV is closely related to penaeid shrimp infectious myonecrosis virus and Drosophila totivirus, which are tentatively assigned to the family Totiviridae. These results indicated that OMRV is a new member of the family of nonsegmented dsRNA viruses infecting arthropod hosts, but not fungal or protozoan hosts.
Collapse
Affiliation(s)
- Haruhiko Isawa
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Zhai Y, Attoui H, Mohd Jaafar F, Wang HQ, Cao YX, Fan SP, Sun YX, Liu LD, Mertens PPC, Meng WS, Wang D, Liang G. Isolation and full-length sequence analysis of Armigeres subalbatus totivirus, the first totivirus isolate from mosquitoes representing a proposed novel genus (Artivirus) of the family Totiviridae. J Gen Virol 2010; 91:2836-45. [DOI: 10.1099/vir.0.024794-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
37
|
Olsthoorn RCL, Reumerman R, Hilbers CW, Pleij CWA, Heus HA. Functional analysis of the SRV-1 RNA frameshifting pseudoknot. Nucleic Acids Res 2010; 38:7665-72. [PMID: 20639537 PMCID: PMC2995055 DOI: 10.1093/nar/gkq629] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Simian retrovirus type-1 uses programmed ribosomal frameshifting to control expression of the Gag-Pol polyprotein from overlapping gag and pol open-reading frames. The frameshifting signal consists of a heptanucleotide slippery sequence and a downstream-located 12-base pair pseudoknot. The solution structure of this pseudoknot, previously solved by NMR [Michiels,P.J., Versleijen,A.A., Verlaan,P.W., Pleij,C.W., Hilbers,C.W. and Heus,H.A. (2001) Solution structure of the pseudoknot of SRV-1 RNA, involved in ribosomal frameshifting. J. Mol. Biol., 310, 1109-1123] has a classical H-type fold and forms an extended triple helix by interactions between loop 2 and the minor groove of stem 1 involving base-base and base-sugar contacts. A mutational analysis was performed to test the functional importance of the triple helix for -1 frameshifting in vitro. Changing bases in L2 or base pairs in S1 involved in a base triple resulted in a 2- to 5-fold decrease in frameshifting efficiency. Alterations in the length of L2 had adverse effects on frameshifting. The in vitro effects were well reproduced in vivo, although the effect of enlarging L2 was more dramatic in vivo. The putative role of refolding kinetics of frameshifter pseudoknots is discussed. Overall, the data emphasize the role of the triple helix in -1 frameshifting.
Collapse
Affiliation(s)
- René C L Olsthoorn
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
38
|
Firth AE, Blitvich BJ, Wills NM, Miller CL, Atkins JF. Evidence for ribosomal frameshifting and a novel overlapping gene in the genomes of insect-specific flaviviruses. Virology 2010; 399:153-166. [PMID: 20097399 PMCID: PMC2830293 DOI: 10.1016/j.virol.2009.12.033] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 12/15/2009] [Accepted: 12/22/2009] [Indexed: 02/02/2023]
Abstract
Flaviviruses have a positive-sense, single-stranded RNA genome of ∼11 kb, encoding a large polyprotein that is cleaved to produce ∼10 mature proteins. Cell fusing agent virus, Kamiti River virus, Culex flavivirus and several recently discovered flaviviruses have no known vertebrate host and apparently infect only insects. We present compelling bioinformatic evidence for a 253–295 codon overlapping gene (designated fifo) conserved throughout these insect-specific flaviviruses and immunofluorescent detection of its product. Fifo overlaps the NS2A/NS2B coding sequence in the − 1/+ 2 reading frame and is most likely expressed as a trans-frame fusion protein via ribosomal frameshifting at a conserved GGAUUUY slippery heptanucleotide with 3′-adjacent RNA secondary structure (which stimulates efficient frameshifting in vitro). The discovery bears striking parallels to the recently discovered ribosomal frameshifting site in the NS2A coding sequence of the Japanese encephalitis serogroup of flaviviruses and suggests that programmed ribosomal frameshifting may be more widespread in flaviviruses than currently realized.
Collapse
Affiliation(s)
- Andrew E Firth
- BioSciences Institute, University College Cork, Cork, Ireland.
| | - Bradley J Blitvich
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA.
| | - Norma M Wills
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112-5330, USA.
| | - Cathy L Miller
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA.
| | - John F Atkins
- BioSciences Institute, University College Cork, Cork, Ireland; Department of Human Genetics, University of Utah, Salt Lake City, UT 84112-5330, USA.
| |
Collapse
|
39
|
Bekaert M, Firth AE, Zhang Y, Gladyshev VN, Atkins JF, Baranov PV. Recode-2: new design, new search tools, and many more genes. Nucleic Acids Res 2009; 38:D69-74. [PMID: 19783826 PMCID: PMC2808893 DOI: 10.1093/nar/gkp788] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
‘Recoding’ is a term used to describe non-standard read-out of the genetic code, and encompasses such phenomena as programmed ribosomal frameshifting, stop codon readthrough, selenocysteine insertion and translational bypassing. Although only a small proportion of genes utilize recoding in protein synthesis, accurate annotation of ‘recoded’ genes lags far behind annotation of ‘standard’ genes. In order to address this issue, provide a service to researchers in the field, and offer training data for developers of gene-annotation software, we have gathered together known cases of recoding within the Recode database. Recode-2 is an improved and updated version of the database. It provides access to detailed information on genes known to utilize translational recoding and allows complex search queries, browsing of recoding data and enhanced visualization of annotated sequence elements. At present, the Recode-2 database stores information on approximately 1500 genes that are known to utilize recoding in their expression—a factor of approximately three increase over the previous version of the database. Recode-2 is available at http://recode.ucc.ie
Collapse
Affiliation(s)
- Michaël Bekaert
- School of Biology and Environmental Science, University College Dublin, BioSciences Institute, University College Cork, Ireland
| | | | | | | | | | | |
Collapse
|
40
|
Atkins JF, Gesteland RF, Pennell S. Pseudoknot-Dependent Programmed —1 Ribosomal Frameshifting: Structures, Mechanisms and Models. RECODING: EXPANSION OF DECODING RULES ENRICHES GENE EXPRESSION 2009; 24. [PMCID: PMC7119991 DOI: 10.1007/978-0-387-89382-2_7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Programmed —1 ribosomal frameshifting is a translational recoding strategy that takes place during the elongation phase of protein biosynthesis. Frameshifting occurs in response to specific signals in the mRNA; a slippery sequence, where the ribosome changes frame, and a stimulatory RNA secondary structure, usually a pseudoknot, located immediately downstream. During the frameshift the ribosome slips backwards by a single nucleotide (in the 5′-wards/—1 direction) and continues translation in the new, overlapping reading frame, generating a fusion protein composed of the products of both the original and the —1 frame coding regions. In eukaryotes, frameshifting is largely a phenomenon of virus gene expression and associated predominantly with the expression of viral replicases. Research on frameshifting impacts upon diverse topics, including the ribosomal elongation cycle, RNA structure and function, tRNA modification, virus replication, antiviral intervention, evolution and bioinformatics. This chapter focuses on the structure and function of frameshift-stimulatory RNA pseudoknots and mechanistic aspects of ribosomal frameshifting. A variety of models of the frameshifting process are discussed in the light of recent advances in our understanding of ribosome structure and the elongation cycle.
Collapse
Affiliation(s)
- John F. Atkins
- grid.223827.e0000000121930096Molecular Biology Program, University of Utah, N. 2030 E. 15, Salt Late City, 84112-5330 U.S.A.
| | - Raymond F. Gesteland
- grid.223827.e0000000121930096Dept. Bioengineering, University of Utah, Salt Lake City, 84112 U.S.A.
| | | |
Collapse
|
41
|
Plant EP, Dinman JD. The role of programmed-1 ribosomal frameshifting in coronavirus propagation. FRONT BIOSCI-LANDMRK 2008; 13:4873-81. [PMID: 18508552 DOI: 10.2741/3046] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Coronaviruses have the potential to cause significant economic, agricultural and health problems. The severe acute respiratory syndrome (SARS) associated coronavirus outbreak in late 2002, early 2003 called attention to the potential damage that coronaviruses could cause in the human population. The ensuing research has enlightened many to the molecular biology of coronaviruses. A programmed -1 ribosomal frameshift is required by coronaviruses for the production of the RNA dependent RNA polymerase which in turn is essential for viral replication. The frameshifting signal encoded in the viral genome has additional features that are not essential for frameshifting. Elucidation of the differences between coronavirus frameshift signals and signals from other viruses may help our understanding of these features. Here we summarize current knowledge and add additional insight regarding the function of the programmed -1 ribosomal frameshift signal in the coronavirus lifecycle.
Collapse
Affiliation(s)
- Ewan P Plant
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
42
|
Bekaert M, Ivanov IP, Atkins JF, Baranov PV. Ornithine decarboxylase antizyme finder (OAF): fast and reliable detection of antizymes with frameshifts in mRNAs. BMC Bioinformatics 2008; 9:178. [PMID: 18384676 PMCID: PMC2375905 DOI: 10.1186/1471-2105-9-178] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Accepted: 04/02/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ornithine decarboxylase antizymes are proteins which negatively regulate cellular polyamine levels via their affects on polyamine synthesis and cellular uptake. In virtually all organisms from yeast to mammals, antizymes are encoded by two partially overlapping open reading frames (ORFs). A +1 frameshift between frames is required for the synthesis of antizyme. Ribosomes change translation phase at the end of the first ORF in response to stimulatory signals embedded in mRNA. Since standard sequence analysis pipelines are currently unable to recognise sites of programmed ribosomal frameshifting, proper detection of full length antizyme coding sequences (CDS) requires conscientious manual evaluation by a human expert. The rapid growth of sequence information demands less laborious and more cost efficient solutions for this problem. This manuscript describes a rapid and accurate computer tool for antizyme CDS detection that requires minimal human involvement. RESULTS We have developed a computer tool, OAF (ODC antizyme finder) for identifying antizyme encoding sequences in spliced or intronless nucleic acid sequenes. OAF utilizes a combination of profile hidden Markov models (HMM) built separately for the products of each open reading frame constituting the entire antizyme coding sequence. Profile HMMs are based on a set of 218 manually assembled antizyme sequences. To distinguish between antizyme paralogs and orthologs from major phyla, antizyme sequences were clustered into twelve groups and specific combinations of profile HMMs were designed for each group. OAF has been tested on the current version of dbEST, where it identified over six thousand Expressed Sequence Tags (EST) sequences encoding antizyme proteins (over two thousand antizyme CDS in these ESTs are non redundant). CONCLUSION OAF performs well on raw EST sequences and mRNA sequences derived from genomic annotations. OAF will be used for the future updates of the RECODE database. OAF can also be useful for identifying novel antizyme sequences when run with relaxed parameters. It is anticipated that OAF will be used for EST and genome annotation purposes. OAF outputs sequence annotations in fasta, genbank flat file or XML format. The OAF web interface and the source code are freely available at http://recode.ucc.ie/oaf/ and at a mirror site http://recode.genetics.utah.edu/oaf/.
Collapse
Affiliation(s)
- Michaël Bekaert
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | | | | |
Collapse
|
43
|
Léger M, Dulude D, Steinberg SV, Brakier-Gingras L. The three transfer RNAs occupying the A, P and E sites on the ribosome are involved in viral programmed -1 ribosomal frameshift. Nucleic Acids Res 2007; 35:5581-92. [PMID: 17704133 PMCID: PMC2018615 DOI: 10.1093/nar/gkm578] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 06/28/2007] [Accepted: 07/13/2007] [Indexed: 11/17/2022] Open
Abstract
The -1 programmed ribosomal frameshifts (PRF), which are used by many viruses, occur at a heptanucleotide slippery sequence and are currently thought to involve the tRNAs interacting with the ribosomal P- and A-site codons. We investigated here whether the tRNA occupying the ribosomal E site that precedes a slippery site influences -1 PRF. Using the human immunodeficiency virus type 1 (HIV-1) frameshift region, we found that mutating the E-site codon altered the -1 PRF efficiency. When the HIV-1 slippery sequence was replaced with other viral slippery sequences, mutating the E-site codon also altered the -1 PRF efficiency. Because HIV-1 -1 PRF can be recapitulated in bacteria, we used a bacterial ribosome system to select, by random mutagenesis, 16S ribosomal RNA (rRNA) mutations that modify the expression of a reporter requiring HIV-1 -1 PRF. Three mutants were isolated, which are located in helices 21 and 22 of 16S rRNA, a region involved in translocation and E-site tRNA binding. We propose a novel model where -1 PRF is triggered by an incomplete translocation and depends not only on the tRNAs interacting with the P- and A-site codons, but also on the tRNA occupying the E site.
Collapse
Affiliation(s)
| | | | | | - Léa Brakier-Gingras
- Département de Biochimie, Université de Montréal, Montréal, Québec, Canada, H3T 1J4
| |
Collapse
|
44
|
Nibert ML. ‘2A-like’ and ‘shifty heptamer’ motifs in penaeid shrimp infectious myonecrosis virus, a monosegmented double-stranded RNA virus. J Gen Virol 2007; 88:1315-1318. [PMID: 17374777 DOI: 10.1099/vir.0.82681-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Penaeid shrimp infectious myonecrosis virus (IMNV) is a monosegmented double-stranded RNA virus that forms icosahedral virions and is tentatively assigned to the family Totiviridae. New examinations of the IMNV genome sequence revealed features not noted in the original report. These features include (i) two encoded ‘2A-like’ motifs, which are likely involved in open reading frame (ORF) 1 polyprotein ‘cleavage’; (ii) a 199 nt overlap between the end of ORF1 in frame 1 and the start of ORF2 in frame 3; and (iii) a ‘shifty heptamer’ motif and predicted RNA pseudoknot in the region of ORF1–ORF2 overlap, which probably allow ORF2 to be translated as a fusion with ORF1 by −1 ribosomal frameshifting. Features (ii) and (iii) bring the predicted ORF2 coding strategy of IMNV more in line with that of its closest phylogenetic relative, Giardia lamblia virus, as well as with that of several other members of the family Totiviridae including Saccharomyces cerevisiae virus L-A.
Collapse
Affiliation(s)
- Max L Nibert
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
45
|
Plant EP, Dinman JD. Comparative study of the effects of heptameric slippery site composition on -1 frameshifting among different eukaryotic systems. RNA (NEW YORK, N.Y.) 2006; 12:666-73. [PMID: 16497657 PMCID: PMC1421095 DOI: 10.1261/rna.2225206] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Studies of programmed -1 ribosomal frameshifting (-1 PRF) have been approached over the past two decades by many different laboratories using a diverse array of virus-derived frameshift signals in translational assay systems derived from a variety of sources. Though it is generally acknowledged that both absolute and relative -1 PRF efficiency can vary in an assay system-dependent manner, no methodical study of this phenomenon has been undertaken. To address this issue, a series of slippery site mutants of the SARS-associated coronavirus frameshift signal were systematically assayed in four different eukaryotic translational systems. HIV-1 promoted frameshifting was also compared between Escherichia coli and a human T-cell line expression systems. The results of these analyses highlight different aspects of each system, suggesting in general that (1) differences can be due to the assay systems themselves; (2) phylogenetic differences in ribosome structure can affect frameshifting efficiency; and (3) care must be taken to employ the closest phylogenetic match between a specific -1 PRF signal and the choice of translational assay system.
Collapse
Affiliation(s)
- Ewan P Plant
- Department of Cell Biology and Molecular Genetics, Microbiology Building, Room 2135, University of Maryland, College Park, Maryland 20742, USA
| | | |
Collapse
|
46
|
Baranov PV, Fayet O, Hendrix RW, Atkins JF. Recoding in bacteriophages and bacterial IS elements. Trends Genet 2006; 22:174-81. [PMID: 16460832 DOI: 10.1016/j.tig.2006.01.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Revised: 11/30/2005] [Accepted: 01/13/2006] [Indexed: 11/16/2022]
Abstract
Dynamic shifts between open reading frames and the redefinition of codon meaning at specific sites, programmed by signals in mRNA, permits versatility of gene expression. Such alterations are characteristic of organisms in all domains of life and serve a variety of functional purposes. In this article, we concentrate on programmed ribosomal frameshifting, stop codon read-through and transcriptional slippage in the decoding of phage genes and bacterial mobile elements. Together with their eukaryotic counterparts, the genes encoding these elements are the richest known source of nonstandard decoding. Recent analyses revealed several novel sequences encoding programmed alterations in gene decoding and provide a glimpse of the emerging picture.
Collapse
Affiliation(s)
- Pavel V Baranov
- Bioscience Institute, University College Cork, Cork, Ireland
| | | | | | | |
Collapse
|
47
|
Bekaert M, Richard H, Prum B, Rousset JP. Identification of programmed translational -1 frameshifting sites in the genome of Saccharomyces cerevisiae. Genome Res 2006; 15:1411-20. [PMID: 16204194 PMCID: PMC1240084 DOI: 10.1101/gr.4258005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Frameshifting is a recoding event that allows the expression of two polypeptides from the same mRNA molecule. Most recoding events described so far are used by viruses and transposons to express their replicase protein. The very few number of cellular proteins known to be expressed by a -1 ribosomal frameshifting has been identified by chance. The goal of the present work was to set up a systematic strategy, based on complementary bioinformatics, molecular biology, and functional approaches, without a priori knowledge of the mechanism involved. Two independent methods were devised. The first looks for genomic regions in which two ORFs, each carrying a protein pattern, are in a frameshifted arrangement. The second uses Hidden Markov Models and likelihood in a two-step approach. When this strategy was applied to the Saccharomyces cerevisiae genome, 189 candidate regions were found, of which 58 were further functionally investigated. Twenty-eight of them expressed a full-length mRNA covering the two ORFs, and 11 showed a -1 frameshift efficiency varying from 5% to 13% (50-fold higher than background), some of which corresponds to genes with known functions. From other ascomycetes, four frameshifted ORFs are found fully conserved. Strikingly, most of the candidates do not display a classical viral-like frameshift signal and would have escaped a search based on current models of frameshifting. These results strongly suggest that -1 frameshifting might be more widely distributed than previously thought.
Collapse
Affiliation(s)
- Michaël Bekaert
- Institut de Génétique et Microbiologie CNRS UMR 8621, Université Paris-Sud, 91405 Orsay Cedex, France
| | | | | | | |
Collapse
|
48
|
Brierley I, Dos Ramos FJ. Programmed ribosomal frameshifting in HIV-1 and the SARS-CoV. Virus Res 2005; 119:29-42. [PMID: 16310880 PMCID: PMC7114087 DOI: 10.1016/j.virusres.2005.10.008] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Revised: 07/31/2005] [Accepted: 10/19/2005] [Indexed: 01/11/2023]
Abstract
Ribosomal frameshifting is a mechanism of gene expression used by several RNA viruses to express replicase enzymes. This article focuses on frameshifting in two human pathogens, the retrovirus human immunodeficiency virus type 1 (HIV-1) and the coronavirus responsible for severe acute respiratory syndrome (SARS). The nature of the frameshift signals of HIV-1 and the SARS–CoV will be described and the impact of this knowledge on models of frameshifting will be considered. The role of frameshifting in the replication cycle of the two pathogens and potential antiviral therapies targeting frameshifting will also be discussed.
Collapse
Affiliation(s)
- Ian Brierley
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| | | |
Collapse
|
49
|
Cornish PV, Hennig M, Giedroc DP. A loop 2 cytidine-stem 1 minor groove interaction as a positive determinant for pseudoknot-stimulated -1 ribosomal frameshifting. Proc Natl Acad Sci U S A 2005; 102:12694-9. [PMID: 16123125 PMCID: PMC1200304 DOI: 10.1073/pnas.0506166102] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The molecular determinants of stimulation of -1 programmed ribosomal frameshifting (-1 PRF) by RNA pseudoknots are poorly understood. Sugarcane yellow leaf virus (ScYLV) encodes a 28-nt mRNA pseudoknot that promotes -1 PRF between the P1 (protease) and P2 (polymerase) genes in plant luteoviruses. The solution structure of the ScYLV pseudoknot reveals a well ordered loop 2 (L2) that exhibits continuous stacking of A20 through C27 in the minor groove of the upper stem 1 (S1), with C25 flipped out of the triple-stranded stack. Five consecutive triple base pairs flank the helical junction where the 3' nucleotide of L2, C27, adopts a cytidine 27 N3-cytidine 14 2'-OH hydrogen bonding interaction with the C14-G7 base pair. This interaction is isosteric with the adenosine N1-2'-OH interaction in the related mRNA from beet western yellows virus (BWYV); however, the ScYLV and BWYV mRNA structures differ in their detailed L2-S1 hydrogen bonding and L2 stacking interactions. Functional analyses of ScYLV/BWYV chimeric pseudoknots reveal that the ScYLV RNA stimulates a higher level of -1 PRF (15 +/- 2%) relative to the BWYV pseudoknot (6 +/- 1%), a difference traced largely to the identity of the 3' nucleotide of L2 (C27 vs. A25 in BWYV). Strikingly, C27A ScYLV RNA is a poor frameshift stimulator (2.0%) and is destabilized by approximately 1.5 kcal x mol(-1) (pH 7.0, 37 degrees C) with respect to the wild-type pseudoknot. These studies establish that the precise network of weak interactions nearest the helical junction in structurally similar pseudoknots make an important contribution to setting the frameshift efficiency in mRNAs.
Collapse
Affiliation(s)
- Peter V Cornish
- Department of Biochemistry and Biophysics, 2128 TAMU, Texas A&M University, College Station, TX 77843-2128, USA
| | | | | |
Collapse
|
50
|
Su MC, Chang CT, Chu CH, Tsai CH, Chang KY. An atypical RNA pseudoknot stimulator and an upstream attenuation signal for -1 ribosomal frameshifting of SARS coronavirus. Nucleic Acids Res 2005; 33:4265-75. [PMID: 16055920 PMCID: PMC1182165 DOI: 10.1093/nar/gki731] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The −1 ribosomal frameshifting requires the existence of an in cis RNA slippery sequence and is promoted by a downstream stimulator RNA. An atypical RNA pseudoknot with an extra stem formed by complementary sequences within loop 2 of an H-type pseudoknot is characterized in the severe acute respiratory syndrome coronavirus (SARS CoV) genome. This pseudoknot can serve as an efficient stimulator for −1 frameshifting in vitro. Mutational analysis of the extra stem suggests frameshift efficiency can be modulated via manipulation of the secondary structure within the loop 2 of an infectious bronchitis virus-type pseudoknot. More importantly, an upstream RNA sequence separated by a linker 5′ to the slippery site is also identified to be capable of modulating the −1 frameshift efficiency. RNA sequence containing this attenuation element can downregulate −1 frameshifting promoted by an atypical pseudoknot of SARS CoV and two other pseudoknot stimulators. Furthermore, frameshift efficiency can be reduced to half in the presence of the attenuation signal in vivo. Therefore, this in cis RNA attenuator represents a novel negative determinant of general importance for the regulation of −1 frameshift efficiency, and is thus a potential antiviral target.
Collapse
Affiliation(s)
| | | | - Chiu-Hui Chu
- Graduate Institute of Biotechnology, National Chung-Hsing University250 Kuo-Kung Road, Taichung, 402 Taiwan
| | - Ching-Hsiu Tsai
- Graduate Institute of Biotechnology, National Chung-Hsing University250 Kuo-Kung Road, Taichung, 402 Taiwan
| | - Kung-Yao Chang
- To whom correspondence should be addressed. Tel: +886 4 22840468, ext 218; Fax: +886 4 22853487;
| |
Collapse
|