1
|
Flores-Lagunes L, Del Pozo-Yauner L, Carrillo-Sánchez K, Molina-Garay C, Jiménez-Olivares M, Garcia-Solorio J, Rodríguez Corona U, Herrera GA, Ricardez-Marcial E, Alaez-Verson C. First family with Perry syndrome from Mexico. Biomed Rep 2024; 21:120. [PMID: 38978535 PMCID: PMC11229396 DOI: 10.3892/br.2024.1808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/21/2024] [Indexed: 07/10/2024] Open
Abstract
Perry syndrome (PS) is a rare autosomal dominant disease characterized by parkinsonism, central hypoventilation, weight loss and depression and is caused by pathogenic mutations in the dynactin subunit 1 (DCTN1) gene (encoding p150glued protein). To date, only two cases have been reported in Latin America, specifically in Colombia and Argentina. The present study, to the best of our knowledge, reports the first recorded Mexican family with PS. The clinical features of the proband and a family history of early parkinsonism led to the suspicion of PS. The pathogenic variant NM_004082:c.212G>A, causing a (p.Gly71Glu) mutation in the p150glued protein, was identified in exon 2 of the DCTN1 gene by exome sequencing, confirming the diagnosis of PS. (p.Gly71Glu) has been previously identified in at least 4 cases of PS from different ethnic backgrounds. Genetic counseling was provided to the available family members. To clarify the impact of the (p.Gly71Glu) variant on the structure and function of the cytoskeleton-associated protein Gly rich (CAP-Gly) domain of p150glued, Glu71 mutated CAP-Gly domains were modeled and compared with the wild-type. It was hypothesized that the larger and more charged side chain of Glu may induce conformational and electrostatic changes, imposing a conformational restriction on the peptide backbone that would affect interaction with the p150glued protein partners, causing dysfunction in the dynactin protein complex.
Collapse
Affiliation(s)
- Leonardo Flores-Lagunes
- Laboratory of Genomic Diagnostics, National Institute of Genomic Medicine, Mexico City 14610, Mexico
| | - Luis Del Pozo-Yauner
- Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, Alabama 36617, USA
| | - Karol Carrillo-Sánchez
- Laboratory of Genomic Diagnostics, National Institute of Genomic Medicine, Mexico City 14610, Mexico
| | - Carolina Molina-Garay
- Laboratory of Genomic Diagnostics, National Institute of Genomic Medicine, Mexico City 14610, Mexico
| | - Marco Jiménez-Olivares
- Laboratory of Genomic Diagnostics, National Institute of Genomic Medicine, Mexico City 14610, Mexico
| | - Joaquin Garcia-Solorio
- Laboratory of Genomic Diagnostics, National Institute of Genomic Medicine, Mexico City 14610, Mexico
| | - Ulises Rodríguez Corona
- Montreal Clinical Research Institute Ribonucleoprotein Biochemistry Research Unit, Montréal, Quebec H2W1R7, Canada
| | - Guillermo A. Herrera
- Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, Alabama 36617, USA
| | - Edgar Ricardez-Marcial
- Department of Medical Genetics, La Raza National Medical Center, Mexican Social Security Institute, Mexico City 02990, Mexico
| | - Carmen Alaez-Verson
- Laboratory of Genomic Diagnostics, National Institute of Genomic Medicine, Mexico City 14610, Mexico
| |
Collapse
|
2
|
Venkatramani A, Ashtam A, Panda D. EB1 Increases the Dynamics of Tau Droplets and Inhibits Tau Aggregation: Implications in Tauopathies. ACS Chem Neurosci 2024; 15:1219-1233. [PMID: 38445984 DOI: 10.1021/acschemneuro.3c00815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
EB1, a microtubule plus end-tracking protein (+TIP), regulates microtubule dynamics. Recent evidence indicates cross-talk between EB proteins and tau, a microtubule-associated neuronal protein that is important for the growth and stability of microtubules. We investigated the interaction between tau and EB1 and the effect of binding of EB1 on tau function and aggregation. EB1 colocalized with tau in SH-SY5Y cells and coimmunoprecipitated with tau. Further, purified EB1 impaired the ability of adult tau to induce tubulin polymerization in vitro. EB1 bound to tau with a dissociation constant of 2.5 ± 0.7 μM. EB1 reduced heparin-induced tau aggregation with a half-maximal inhibitory concentration of 4.3 ± 0.2 μM, and increased the dynamics of tau in phase-separated droplets. The fluorescence recovery rate in tau droplets increased from 0.02 ± 0.01 to 0.07 ± 0.03 s-1, while the half-time of recovery decreased from 44.5 ± 14 to 13.5 ± 6 s in the presence of 8 μM EB1, suggesting a delay in the transition of tau from the soluble to aggregated form in tau liquid-liquid phase separation. EB1 decreased the rate of aggregation and increased the critical concentration of tau aggregation. Dynamic light scattering, atomic force microscopy, dot blot assays, and SDS-PAGE analysis showed that EB1 inhibited the formation of oligomers and higher-order aggregates of tau. The data suggest a novel role for EB1 as a regulator of tau function and aggregation, and the findings indicated the role of the EB family proteins in neuronal function and neurodegeneration.
Collapse
Affiliation(s)
- Anuradha Venkatramani
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Anvesh Ashtam
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Dulal Panda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
- National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160062, India
| |
Collapse
|
3
|
Zong YJ, Liu XZ, Tu L, Sun Y. Cytomembrane Trafficking Pathways of Connexin 26, 30, and 43. Int J Mol Sci 2023; 24:10349. [PMID: 37373495 DOI: 10.3390/ijms241210349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The connexin gene family is the most prevalent gene that contributes to hearing loss. Connexins 26 and 30, encoded by GJB2 and GJB6, respectively, are the most abundantly expressed connexins in the inner ear. Connexin 43, which is encoded by GJA1, appears to be widely expressed in various organs, including the heart, skin, the brain, and the inner ear. The mutations that arise in GJB2, GJB6, and GJA1 can all result in comprehensive or non-comprehensive genetic deafness in newborns. As it is predicted that connexins include at least 20 isoforms in humans, the biosynthesis, structural composition, and degradation of connexins must be precisely regulated so that the gap junctions can properly operate. Certain mutations result in connexins possessing a faulty subcellular localization, failing to transport to the cell membrane and preventing gap junction formation, ultimately leading to connexin dysfunction and hearing loss. In this review, we provide a discussion of the transport models for connexin 43, connexins 30 and 26, mutations affecting trafficking pathways of these connexins, the existing controversies in the trafficking pathways of connexins, and the molecules involved in connexin trafficking and their functions. This review can contribute to a new way of understanding the etiological principles of connexin mutations and finding therapeutic strategies for hereditary deafness.
Collapse
Affiliation(s)
- Yan-Jun Zong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiao-Zhou Liu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lei Tu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| |
Collapse
|
4
|
Kawano D, Pinter K, Chlebowski M, Petralia RS, Wang YX, Nechiporuk AV, Drerup CM. NudC regulated Lis1 stability is essential for the maintenance of dynamic microtubule ends in axon terminals. iScience 2022; 25:105072. [PMID: 36147950 PMCID: PMC9485903 DOI: 10.1016/j.isci.2022.105072] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/26/2022] [Accepted: 08/30/2022] [Indexed: 11/28/2022] Open
Abstract
In the axon terminal, microtubule stability is decreased relative to the axon shaft. The dynamic microtubule plus ends found in the axon terminal have many functions, including serving as a docking site for the Cytoplasmic dynein motor. Here, we report an unexplored function of dynein in microtubule regulation in axon terminals: regulation of microtubule stability. Using a forward genetic screen, we identified a mutant with an abnormal axon terminal structure owing to a loss of function mutation in NudC. We show that, in the axon terminal, NudC is a chaperone for the protein Lis1. Decreased Lis1 in nudc axon terminals causes dynein/dynactin accumulation and increased microtubule stability. Microtubule dynamics can be restored by pharmacologically inhibiting dynein, implicating excess dynein motor function in microtubule stabilization. Together, our data support a model in which local NudC-Lis1 modulation of the dynein motor is critical for the regulation of microtubule stability in the axon terminal. NudC, a dynein regulator, is crucial for axon terminal structure NudC mutation leads to a near complete loss of Lis1 protein in axon terminals Lis1 deficits cause accumulation of dynein and cargo in axon terminals Local elevation of dynein increases axon terminal microtubule stability
Collapse
Affiliation(s)
- Dane Kawano
- Unit on Neuronal Cell Biology, National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katherine Pinter
- Unit on Neuronal Cell Biology, National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Madison Chlebowski
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ronald S Petralia
- Advanced Imaging Core, National Institute of Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ya-Xian Wang
- Advanced Imaging Core, National Institute of Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alex V Nechiporuk
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Catherine M Drerup
- Unit on Neuronal Cell Biology, National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, MD 20892, USA.,Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
5
|
Sinsky J, Pichlerova K, Hanes J. Tau Protein Interaction Partners and Their Roles in Alzheimer's Disease and Other Tauopathies. Int J Mol Sci 2021; 22:9207. [PMID: 34502116 PMCID: PMC8431036 DOI: 10.3390/ijms22179207] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023] Open
Abstract
Tau protein plays a critical role in the assembly, stabilization, and modulation of microtubules, which are important for the normal function of neurons and the brain. In diseased conditions, several pathological modifications of tau protein manifest. These changes lead to tau protein aggregation and the formation of paired helical filaments (PHF) and neurofibrillary tangles (NFT), which are common hallmarks of Alzheimer's disease and other tauopathies. The accumulation of PHFs and NFTs results in impairment of physiological functions, apoptosis, and neuronal loss, which is reflected as cognitive impairment, and in the late stages of the disease, leads to death. The causes of this pathological transformation of tau protein haven't been fully understood yet. In both physiological and pathological conditions, tau interacts with several proteins which maintain their proper function or can participate in their pathological modifications. Interaction partners of tau protein and associated molecular pathways can either initiate and drive the tau pathology or can act neuroprotective, by reducing pathological tau proteins or inflammation. In this review, we focus on the tau as a multifunctional protein and its known interacting partners active in regulations of different processes and the roles of these proteins in Alzheimer's disease and tauopathies.
Collapse
Affiliation(s)
| | | | - Jozef Hanes
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10 Bratislava, Slovakia; (J.S.); (K.P.)
| |
Collapse
|
6
|
Petrova DP, Khabudaev KV, Bedoshvili YD, Likhoshway YV. Phylogeny and structural peculiarities of the EB proteins of diatoms. J Struct Biol 2021; 213:107775. [PMID: 34364984 DOI: 10.1016/j.jsb.2021.107775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 11/25/2022]
Abstract
The end-binding proteins are a family of microtubule-associated proteins; this family belongs to plus-end-tracking proteins (+TIPs) that regulate microtubule growth and stabilisation. Although the genes encoding EB proteins are found in all eukaryotic genomes, most studies of them have centred on one or another taxonomic group, without a broad comparative analysis. Here, we present a first phylogenetic analysis and a comparative analysis of domain structures of diatom EB proteins in comparison with other phyla of Chromista, red and green algae, as well as model organisms A. thaliana and H. sapiens. Phylogenetically, diatom EB proteins are separated into six clades, generally corresponding to the phylogeny of their respective organisms. The domain structure of this family is highly variable, but the CH and EBH domains responsible for binding tubulin and other MAPs are mostly conserved. Homologous modelling of the F. cylindrus EB protein shows that conserved motifs of the CH domain are positioned on the protein surface, which is necessary for their functioning. We hypothesise that high variance of the diatom C-terminal domain is caused by previously unknown interactions with a CAP-GLY motif of dynactin subunit p150. Our findings contribute to wider possibilities for further investigations of the cytoskeleton in diatoms.
Collapse
Affiliation(s)
- Darya P Petrova
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
| | - Kirill V Khabudaev
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
| | | | - Yelena V Likhoshway
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia.
| |
Collapse
|
7
|
Ayyappan S, Dharan PS, Krishnan A, Marira RR, Lambert M, Manna TK, Vijayan V. SxIP binding disrupts the constitutive homodimer interface of EB1 and stabilizes EB1 monomer. Biophys J 2021; 120:2019-2029. [PMID: 33737159 DOI: 10.1016/j.bpj.2021.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/16/2021] [Accepted: 03/01/2021] [Indexed: 11/16/2022] Open
Abstract
SxIP is a microtubule tip localizing signal found in many +TIP proteins that bind to the hydrophobic cavity of the C-terminal domain of end binding protein 1 (EB1) and then positively regulate the microtubule plus-end tracking of EBs. However, the exact mechanism of microtubule activation of EBs in the presence of SxIP signaling motif is not known. Here, we studied the effect of SxIP peptide on the native conformation of EB1 in solution. Using various NMR experiments, we found that SxIP peptide promoted the dissociation of natively formed EB1 dimer. We also discovered that I224A mutation of EB1 resulted in an unfolded C-terminal domain, which upon binding with the SxIP motif folded to its native structure. Molecular dynamics simulations also confirmed the relative structural stability of EB1 monomer in the SxIP bound state. Residual dipolar couplings and heteronuclear NOE analysis suggested that the binding of SxIP peptide at the C-terminal domain of EB1 decreased the dynamics and conformational flexibility of the N-terminal domain involved in EB1-microtubule interaction. The SxIP-induced disruption of the dimeric interactions in EB1, coupled with the reduction in conformational flexibility of the N-terminal domain of EB1, might facilitate the microtubule association of EB1.
Collapse
Affiliation(s)
- Shine Ayyappan
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - Pooja S Dharan
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - Arya Krishnan
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - Renjith R Marira
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - Mahil Lambert
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - Tapas K Manna
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - Vinesh Vijayan
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
8
|
Arru C, Serra E, Porcu C, Gadau SD. Confocal investigation on colocalization between tubulin posttranslational modifications and associated proteins in rat C6 glioma cells. J Struct Biol 2020; 213:107676. [PMID: 33279655 DOI: 10.1016/j.jsb.2020.107676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 01/29/2023]
Abstract
Glioblastoma multiforme is the most lethal brain tumor. In the study of mechanisms underlying its development attention has been paid to the microtubular network of its cells, mainly on βIII tubulin, considered as a marker of malignancy. In the present work, we chose to investigate the tubulin code in glioblastoma cells, analyzing the degree of interaction between tubulin post-translational modifications and different proteins associated with them. The pattern of diverse associated proteins such as EB-1, CLIP-170 and kinesin-1 and their degree of co-distribution with the most abundant post-translational tubulin modifications (tyrosination, acetylation and polyglutamylation) were evaluated. Through immunofluorescence we have shown that EB-1, CLIP-170 and kinesin-1 were well detectable in glioblastoma cells. The double fluorescence and colocalization index between the post-translational modifications of tubulin and associated proteins showed that tyrosinated α-tubulin has significantly high affinity with EB-1, CLIP-170 and kinesin-1, while for acetylated and polyglutamylated tubulin, the degree of interaction with the three associated proteins evaluated was less apparent. Data presented in this paper underline the importance of a thorough analysis of the microtubular mechanics in glioblastoma cells. This may suggest new experimental therapeutic approaches able to act more selectively on the microtubular network of cells in this type of cancer.
Collapse
Affiliation(s)
- Caterina Arru
- Department of Veterinary Medicine, University of Sassari, Italy
| | - Elisa Serra
- Department of Veterinary Medicine, University of Sassari, Italy
| | - Cristian Porcu
- Department of Veterinary Medicine, University of Sassari, Italy
| | - Sergio D Gadau
- Department of Veterinary Medicine, University of Sassari, Italy.
| |
Collapse
|
9
|
Villari G, Enrico Bena C, Del Giudice M, Gioelli N, Sandri C, Camillo C, Fiorio Pla A, Bosia C, Serini G. Distinct retrograde microtubule motor sets drive early and late endosome transport. EMBO J 2020; 39:e103661. [PMID: 33215754 PMCID: PMC7737607 DOI: 10.15252/embj.2019103661] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/01/2020] [Accepted: 10/14/2020] [Indexed: 11/23/2022] Open
Abstract
Although subcellular positioning of endosomes significantly impacts on their functions, the molecular mechanisms governing the different steady‐state distribution of early endosomes (EEs) and late endosomes (LEs)/lysosomes (LYs) in peripheral and perinuclear eukaryotic cell areas, respectively, are still unsolved. We unveil that such differences arise because, while LE retrograde transport depends on the dynein microtubule (MT) motor only, the one of EEs requires the cooperative antagonism of dynein and kinesin‐14 KIFC1, a MT minus end‐directed motor involved in cancer progression. Mechanistically, the Ser‐x‐Ile‐Pro (SxIP) motif‐mediated interaction of the endoplasmic reticulum transmembrane protein stromal interaction molecule 1 (STIM1) with the MT plus end‐binding protein 1 (EB1) promotes its association with the p150Glued subunit of the dynein activator complex dynactin and the distinct location of EEs and LEs/LYs. The peripheral distribution of EEs requires their p150Glued‐mediated simultaneous engagement with dynein and SxIP motif‐containing KIFC1, via HOOK1 and HOOK3 adaptors, respectively. In sum, we provide evidence that distinct minus end‐directed MT motor systems drive the differential transport and subcellular distribution of EEs and LEs in mammalian cells.
Collapse
Affiliation(s)
- Giulia Villari
- Department of Oncology, University of Torino School of Medicine, Candiolo, Italy.,Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Torino, Italy
| | - Chiara Enrico Bena
- Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Torino, Italy.,IIGM - Italian Institute for Genomic Medicine, Candiolo, Italy
| | - Marco Del Giudice
- Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Torino, Italy.,IIGM - Italian Institute for Genomic Medicine, Candiolo, Italy
| | - Noemi Gioelli
- Department of Oncology, University of Torino School of Medicine, Candiolo, Italy.,Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Torino, Italy
| | - Chiara Sandri
- Department of Oncology, University of Torino School of Medicine, Candiolo, Italy.,Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Torino, Italy
| | - Chiara Camillo
- Department of Oncology, University of Torino School of Medicine, Candiolo, Italy.,Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Torino, Italy
| | - Alessandra Fiorio Pla
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Carla Bosia
- IIGM - Italian Institute for Genomic Medicine, Candiolo, Italy.,Department of Applied Science and Technology, Polytechnic of Torino, Torino, Italy
| | - Guido Serini
- Department of Oncology, University of Torino School of Medicine, Candiolo, Italy.,Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Torino, Italy
| |
Collapse
|
10
|
Lin SJ, Huang CF, Wu TS, Li CC, Lee FJS. Arl4D-EB1 interaction promotes centrosomal recruitment of EB1 and microtubule growth. Mol Biol Cell 2020; 31:2348-2362. [PMID: 32755434 PMCID: PMC7851962 DOI: 10.1091/mbc.e18-10-0611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
ADP-ribosylation factor (Arf)-like 4D (Arl4D), one of the Arf-like small GTPases, functions in the regulation of cell morphology, cell migration, and actin cytoskeleton remodeling. End-binding 1 (EB1) is a microtubule (MT) plus-end tracking protein that preferentially localizes at the tips of the plus ends of growing MTs and at the centrosome. EB1 depletion results in many centrosome-related defects. Here, we report that Arl4D promotes the recruitment of EB1 to the centrosome and regulates MT nucleation. We first showed that Arl4D interacts with EB1 in a GTP-dependent manner. This interaction is dependent on the C-terminal EB homology region of EB1 and partially dependent on an SxLP motif of Arl4D. We found that Arl4D colocalized with γ-tubulin in centrosomes and the depletion of Arl4D resulted in a centrosomal MT nucleation defect. We further demonstrated that abolishing Arl4D-EB1 interaction decreased MT nucleation rate and diminished the centrosomal recruitment of EB1 without affecting MT growth rate. In addition, Arl4D binding to EB1 increased the association between the p150 subunit of dynactin and the EB1, which is important for MT stabilization. Together, our results indicate that Arl4D modulates MT nucleation through regulation of the EB1–p150 association at the centrosome.
Collapse
Affiliation(s)
- Shin-Jin Lin
- Institute of Molecular Medicine, National Taiwan University, 100225 Taipei, Taiwan.,Department of Medical Research, National Taiwan University Hospital, National Taiwan University, 100225 Taipei, Taiwan
| | - Chun-Fang Huang
- Institute of Molecular Medicine, National Taiwan University, 100225 Taipei, Taiwan
| | - Tsung-Sheng Wu
- Institute of Molecular Medicine, National Taiwan University, 100225 Taipei, Taiwan
| | - Chun-Chun Li
- Institute of Molecular Medicine, National Taiwan University, 100225 Taipei, Taiwan
| | - Fang-Jen S Lee
- Institute of Molecular Medicine, National Taiwan University, 100225 Taipei, Taiwan.,Center of Precision Medicine, College of Medicine, National Taiwan University, 100225 Taipei, Taiwan.,Department of Medical Research, National Taiwan University Hospital, National Taiwan University, 100225 Taipei, Taiwan
| |
Collapse
|
11
|
MiR-93 is related to poor prognosis in pancreatic cancer and promotes tumor progression by targeting microtubule dynamics. Oncogenesis 2020; 9:43. [PMID: 32366853 PMCID: PMC7198506 DOI: 10.1038/s41389-020-0227-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 04/05/2020] [Accepted: 04/15/2020] [Indexed: 01/18/2023] Open
Abstract
Biomarkers and effective therapeutic agents to improve the dismal prognosis of pancreatic ductal adenocarcinoma (PDAC) are urgently required. We aimed to analyze the prognostic value and mechanistic action of miR-93 in PDAC. Correlation of miR-93 tumor levels from 83 PDAC patients and overall survival (OS) was analyzed by Kaplan-Meier. MiR-93 depletion in PANC-1 and MIA PaCa-2 cells was achieved by CRISPR/Cas9 and miR-93 overexpression in HPDE cells by retroviral transduction. Cell proliferation, migration and invasion, cell cycle analysis, and in vivo tumor xenografts in nude mice were assessed. Proteomic analysis by mass spectrometry and western-blot was also performed. Finally, miR-93 direct binding to candidate mRNA targets was evaluated by luciferase reporter assays. High miR-93 tumor levels are significantly correlated with a worst prognosis in PDAC patients. MiR-93 abolition altered pancreatic cancer cells phenotype inducing a significant increase in cell size and a significant decrease in cell invasion and proliferation accompanied by a G2/M arrest. In vivo, lack of miR-93 significantly impaired xenograft tumor growth. Conversely, miR-93 overexpression induced a pro-tumorigenic behavior by significantly increasing cell proliferation, migration, and invasion. Proteomic analysis unveiled a large group of deregulated proteins, mainly related to G2/M phase, microtubule dynamics, and cytoskeletal remodeling. CRMP2, MAPRE1, and YES1 were confirmed as direct targets of miR-93. MiR-93 exerts oncogenic functions by targeting multiple genes involved in microtubule dynamics at different levels, thus affecting the normal cell division rate. MiR-93 or its direct targets (CRMP2, MAPRE1, or YES1) are new potential therapeutic targets for PDAC.
Collapse
|
12
|
Chen M, Cao Y, Dong D, Zhang Z, Zhang Y, Chen J, Luo Y, Chen Q, Xiao X, Zhou J, Xie W, Li D, Xie S, Liu M. Regulation of mitotic spindle orientation by phosphorylation of end binding protein 1. Exp Cell Res 2019; 384:111618. [PMID: 31505167 DOI: 10.1016/j.yexcr.2019.111618] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 12/21/2022]
Abstract
End binding protein 1 (EB1) is a key regulator of microtubule dynamics that orchestrates hierarchical interaction networks at microtubule plus ends to control proper cell division. EB1 activity is known to be regulated by serine/threonine phosphorylation; however, how tyrosine phosphorylation affects EB1 activity remains poorly understood. In this study, we mapped the tyrosine phosphorylation pattern of EB1 in synchronized cells and identified two tyrosine phosphorylation sites (Y217 and Y247) in mitotic cells. Using phospho-deficient (Y/F) and phospho-mimic (Y/D) mutants, we revealed that Y247, but not Y217, is critical for astral microtubule stability. The Y247D mutant contributed to increased spindle angle, indicative of defects in spindle orientation. Time-lapse microscopy revealed that the Y247D mutant significantly delayed mitotic progression by increasing the duration times of prometaphase and metaphase. Structural analysis suggests that Y247 mutants lead to instability of the hydrophobic cavity in the EB homology (EBH) domain, thereby affecting its interactions with p150glued, a protein essential for Gαi/LGN/NuMA complex capture. These findings uncover a crucial role for EB1 phosphorylation in the regulation of mitotic spindle orientation and cell division.
Collapse
Affiliation(s)
- Miao Chen
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Yu Cao
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Dan Dong
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Zhenhua Zhang
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Yijun Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jie Chen
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Youguang Luo
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Qiang Chen
- Department of Emergency, Shanxian Dongda Hospital, Shandong, 274300, China
| | - Xin Xiao
- Department of Pathology, Zaozhuang Central District People's Hospital, Shandong, 277011, China
| | - Jun Zhou
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong, 250014, China; State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Wei Xie
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Songbo Xie
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong, 250014, China.
| | - Min Liu
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong, 250014, China.
| |
Collapse
|
13
|
Cuenca-Zamora EJ, Ferrer-Marín F, Rivera J, Teruel-Montoya R. Tubulin in Platelets: When the Shape Matters. Int J Mol Sci 2019; 20:E3484. [PMID: 31315202 PMCID: PMC6678703 DOI: 10.3390/ijms20143484] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/15/2019] [Accepted: 06/17/2019] [Indexed: 12/12/2022] Open
Abstract
Platelets are anuclear cells with a short lifespan that play an essential role in many pathophysiological processes, including haemostasis, inflammation, infection, vascular integrity, and metastasis. Billions of platelets are produced daily from megakaryocytes (platelet precursors). Despite this high production, the number of circulating platelets is stable and, under resting conditions, they maintain their typical discoid shape thanks to cytoskeleton proteins. The activation of platelets is associated with dynamic and rapid changes in the cytoskeleton. Two cytoskeletal polymer systems exist in megakaryocytes and platelets: actin filaments and microtubules, based on actin, and α- and β-tubulin heterodimers, respectively. Herein, we will focus on platelet-specific tubulins and their alterations and role of the microtubules skeleton in platelet formation (thrombopoiesis). During this process, microtubules mediate elongation of the megakaryocyte extensions (proplatelet) and granule trafficking from megakaryocytes to nascent platelets. In platelets, microtubules form a subcortical ring, the so-called marginal band, which confers the typical platelet discoid shape and is also responsible for changes in platelet morphology upon activation. Molecular alterations in the gene encoding β1 tubulin and microtubules post-translational modifications may result in quantitative or qualitative changes in tubulin, leading to altered cytoskeleton reorganization that may induce changes in the platelet number (thrombocytopenia), morphology or function. Consequently, β1-tubulin modifications may participate in pathological and physiological processes, such as development.
Collapse
Affiliation(s)
- Ernesto José Cuenca-Zamora
- Servicio de Hematología y Oncología Médica, Centro Regional de Hemodonación, Hospital Universitario Morales Meseguer, IMIB-Arrixaca, Red CIBERER CB15/00055, 30003 Murcia, Spain
| | - Francisca Ferrer-Marín
- Servicio de Hematología y Oncología Médica, Centro Regional de Hemodonación, Hospital Universitario Morales Meseguer, IMIB-Arrixaca, Red CIBERER CB15/00055, 30003 Murcia, Spain.
- Grado de Medicina, Universidad Católica San Antonio (UCAM), Campus de los Jerónimos, 30107 Murcia, Spain.
| | - José Rivera
- Servicio de Hematología y Oncología Médica, Centro Regional de Hemodonación, Hospital Universitario Morales Meseguer, IMIB-Arrixaca, Red CIBERER CB15/00055, 30003 Murcia, Spain
| | - Raúl Teruel-Montoya
- Servicio de Hematología y Oncología Médica, Centro Regional de Hemodonación, Hospital Universitario Morales Meseguer, IMIB-Arrixaca, Red CIBERER CB15/00055, 30003 Murcia, Spain
| |
Collapse
|
14
|
Russell RW, Fritz MP, Kraus J, Quinn CM, Polenova T, Gronenborn AM. Accuracy and precision of protein structures determined by magic angle spinning NMR spectroscopy: for some 'with a little help from a friend'. JOURNAL OF BIOMOLECULAR NMR 2019; 73:333-346. [PMID: 30847635 PMCID: PMC6693955 DOI: 10.1007/s10858-019-00233-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/06/2019] [Indexed: 06/09/2023]
Abstract
We present a systematic investigation into the attainable accuracy and precision of protein structures determined by heteronuclear magic angle spinning solid-state NMR for a set of four proteins of varied size and secondary structure content. Structures were calculated using synthetically generated random sets of C-C distances up to 7 Å at different degrees of completeness. For single-domain proteins, 9-15 restraints per residue are sufficient to derive an accurate model structure, while maximum accuracy and precision are reached with over 15 restraints per residue. For multi-domain proteins and protein assemblies, additional information on domain orientations, quaternary structure and/or protein shape is needed. As demonstrated for the HIV-1 capsid protein assembly, this can be accomplished by integrating MAS NMR with cryoEM data. In all cases, inclusion of TALOS-derived backbone torsion angles improves the accuracy for small number of restraints, while no further increases are noted for restraint completeness above 40%. In contrast, inclusion of TALOS-derived torsion angle restraints consistently increases the precision of the structural ensemble at all degrees of distance restraint completeness.
Collapse
Affiliation(s)
- Ryan W Russell
- Department of Chemistry and Biochemistry, University of Delaware, 19716, Newark, DE, USA
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave, 15261, Pittsburgh, PA, USA
| | - Matthew P Fritz
- Department of Chemistry and Biochemistry, University of Delaware, 19716, Newark, DE, USA
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave, 15261, Pittsburgh, PA, USA
| | - Jodi Kraus
- Department of Chemistry and Biochemistry, University of Delaware, 19716, Newark, DE, USA
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave, 15261, Pittsburgh, PA, USA
| | - Caitlin M Quinn
- Department of Chemistry and Biochemistry, University of Delaware, 19716, Newark, DE, USA
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave, 15261, Pittsburgh, PA, USA
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, 19716, Newark, DE, USA.
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave, 15261, Pittsburgh, PA, USA.
| | - Angela M Gronenborn
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave, 15261, Pittsburgh, PA, USA.
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave, 15261, Pittsburgh, PA, USA.
| |
Collapse
|
15
|
Chen Y, Wang P, Slep KC. Mapping multivalency in the CLIP-170-EB1 microtubule plus-end complex. J Biol Chem 2018; 294:918-931. [PMID: 30455356 DOI: 10.1074/jbc.ra118.006125] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/09/2018] [Indexed: 11/06/2022] Open
Abstract
Cytoplasmic linker protein 170 (CLIP-170) is a microtubule plus-end factor that links vesicles to microtubules and recruits the dynein-dynactin complex to microtubule plus ends. CLIP-170 plus-end localization is end binding 1 (EB1)-dependent. CLIP-170 contains two N-terminal cytoskeleton-associated protein glycine-rich (CAP-Gly) domains flanked by serine-rich regions. The CAP-Gly domains are known EB1-binding domains, and the serine-rich regions have also been implicated in CLIP-170's microtubule plus-end localization mechanism. However, the determinants in these serine-rich regions have not been identified. Here we elucidated multiple EB1-binding modules in the CLIP-170 N-terminal region. Using isothermal titration calorimetry and size-exclusion chromatography, we mapped and biophysically characterized these EB1-binding modules, including the two CAP-Gly domains, a bridging SXIP motif, and a unique array of divergent SXIP-like motifs located N-terminally to the first CAP-Gly domain. We found that, unlike the EB1-binding mode of the CAP-Gly domain in the dynactin-associated protein p150Glued, which dually engages the EB1 C-terminal EEY motif as well as the EB homology domain and sterically occludes SXIP motif binding, the CLIP-170 CAP-Gly domains engage only the EEY motif, enabling the flanking SXIP and SXIP-like motifs to bind the EB homology domain. These multivalent EB1-binding modules provided avidity to the CLIP-170-EB1 interaction, likely clarifying why CLIP-170 preferentially binds EB1 rather than the α-tubulin C-terminal EEY motif. Our finding that CLIP-170 has multiple non-CAP-Gly EB1-binding modules may explain why autoinhibition of CLIP-170 GAP-Gly domains does not fully abrogate its microtubule plus-end localization. This work expands our understanding of EB1-binding motifs and their multivalent networks.
Collapse
Affiliation(s)
- Yaodong Chen
- From the Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China.,the Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, and
| | - Ping Wang
- the Department of Neurology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Kevin C Slep
- the Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, and
| |
Collapse
|
16
|
Gireesh KK, Shine A, Lakshmi RB, Vijayan V, Manna TK. GTP-binding facilitates EB1 recruitment onto microtubules by relieving its auto-inhibition. Sci Rep 2018; 8:9792. [PMID: 29955158 PMCID: PMC6023887 DOI: 10.1038/s41598-018-28056-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 06/14/2018] [Indexed: 12/23/2022] Open
Abstract
Microtubule plus end-binding protein, EB1 is a key regulator of microtubule dynamics. Auto-inhibitory interaction in EB1 has previously been shown to inhibit its ability to bind to microtubules and regulate microtubule dynamics. However, the factors that promote its microtubule regulatory activity by over-coming the auto-inhibition are less known. Here, we show that GTP plays a critical role in promoting the microtubule-targeting activity of EB1 by suppressing its auto-inhibition. Our biophysical data demonstrate that GTP binds to EB1 at a distinct site in its conserved N-terminal domain. Detailed analyses reveal that GTP-binding suppresses the intra-molecular inhibitory interaction between the globular N-terminus and the C-terminal coiled-coil domain. We further show that mutation of the GTP-binding site residues in N-terminus weakens the affinity for GTP, but also for the C-terminus, indicating overlapping binding sites. Confocal imaging and biochemical analysis reveal that EB1 localization on the microtubules is significantly increased upon mutations of the GTP-binding site residues. The results demonstrate a unique role of GTP in facilitating EB1 interaction with the microtubules by relieving its intra-molecular inhibition. They also implicate that GTP-binding may regulate the functions of EB1 on the cellular microtubules.
Collapse
Affiliation(s)
- K K Gireesh
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, CET Campus, Thiruvananthapuram, 695016, Kerala, India
| | - A Shine
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, CET Campus, Thiruvananthapuram, 695016, Kerala, India
| | - R Bhagya Lakshmi
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, CET Campus, Thiruvananthapuram, 695016, Kerala, India
| | - Vinesh Vijayan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, CET Campus, Thiruvananthapuram, 695016, Kerala, India.
| | - Tapas K Manna
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, CET Campus, Thiruvananthapuram, 695016, Kerala, India.
| |
Collapse
|
17
|
Kumari A, Panda D. Regulation of microtubule stability by centrosomal proteins. IUBMB Life 2018; 70:602-611. [DOI: 10.1002/iub.1865] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Anuradha Kumari
- Department of Biosciences and Bioengineering; Indian Institute of Technology Bombay; Mumbai India
| | - Dulal Panda
- Department of Biosciences and Bioengineering; Indian Institute of Technology Bombay; Mumbai India
| |
Collapse
|
18
|
IP 3 receptor signaling and endothelial barrier function. Cell Mol Life Sci 2017; 74:4189-4207. [PMID: 28803370 DOI: 10.1007/s00018-017-2624-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 07/18/2017] [Accepted: 08/08/2017] [Indexed: 12/14/2022]
Abstract
The endothelium, a monolayer of endothelial cells lining vessel walls, maintains tissue-fluid homeostasis by restricting the passage of the plasma proteins and blood cells into the interstitium. The ion Ca2+, a ubiquitous secondary messenger, initiates signal transduction events in endothelial cells that is critical to control of vascular tone and endothelial permeability. The ion Ca2+ is stored inside the intracellular organelles and released into the cytosol in response to environmental cues. The inositol 1,4,5-trisphosphate (IP3) messenger facilitates Ca2+ release through IP3 receptors which are Ca2+-selective intracellular channels located within the membrane of the endoplasmic reticulum. Binding of IP3 to the IP3Rs initiates assembly of IP3R clusters, a key event responsible for amplification of Ca2+ signals in endothelial cells. This review discusses emerging concepts related to architecture and dynamics of IP3R clusters, and their specific role in propagation of Ca2+ signals in endothelial cells.
Collapse
|
19
|
Mustyatsa VV, Boyakhchyan AV, Ataullakhanov FI, Gudimchuk NB. EB-family proteins: Functions and microtubule interaction mechanisms. BIOCHEMISTRY (MOSCOW) 2017; 82:791-802. [DOI: 10.1134/s0006297917070045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Barbosa DJ, Duro J, Prevo B, Cheerambathur DK, Carvalho AX, Gassmann R. Dynactin binding to tyrosinated microtubules promotes centrosome centration in C. elegans by enhancing dynein-mediated organelle transport. PLoS Genet 2017; 13:e1006941. [PMID: 28759579 PMCID: PMC5552355 DOI: 10.1371/journal.pgen.1006941] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/10/2017] [Accepted: 07/25/2017] [Indexed: 12/01/2022] Open
Abstract
The microtubule-based motor dynein generates pulling forces for centrosome centration and mitotic spindle positioning in animal cells. How the essential dynein activator dynactin regulates these functions of the motor is incompletely understood. Here, we dissect the role of dynactin's microtubule binding activity, located in the p150 CAP-Gly domain and an adjacent basic patch, in the C. elegans zygote. Analysis of p150 mutants engineered by genome editing suggests that microtubule tip tracking of dynein-dynactin is dispensable for targeting the motor to the cell cortex and for generating robust cortical pulling forces. Instead, mutations in p150's CAP-Gly domain inhibit cytoplasmic pulling forces responsible for centration of centrosomes and attached pronuclei. The centration defects are mimicked by mutations of α-tubulin's C-terminal tyrosine, and both p150 CAP-Gly and tubulin tyrosine mutants decrease the frequency of early endosome transport from the cell periphery towards centrosomes during centration. Our results suggest that p150 GAP-Gly domain binding to tyrosinated microtubules promotes initiation of dynein-mediated organelle transport in the dividing one-cell embryo, and that this function of p150 is critical for generating cytoplasmic pulling forces for centrosome centration.
Collapse
Affiliation(s)
- Daniel J. Barbosa
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Porto, Portugal
| | - Joana Duro
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Porto, Portugal
| | - Bram Prevo
- Ludwig Institute for Cancer Research/Dept of Cellular & Molecular Medicine UCSD, La Jolla, CA, United States of America
| | - Dhanya K. Cheerambathur
- Ludwig Institute for Cancer Research/Dept of Cellular & Molecular Medicine UCSD, La Jolla, CA, United States of America
| | - Ana X. Carvalho
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Porto, Portugal
| | - Reto Gassmann
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Porto, Portugal
| |
Collapse
|
21
|
Fong KW, Au FKC, Jia Y, Yang S, Zhou L, Qi RZ. Microtubule plus-end tracking of end-binding protein 1 (EB1) is regulated by CDK5 regulatory subunit-associated protein 2. J Biol Chem 2017; 292:7675-7687. [PMID: 28320860 DOI: 10.1074/jbc.m116.759746] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 03/15/2017] [Indexed: 01/08/2023] Open
Abstract
Microtubules are polar cytoskeleton filaments that extend via growth at their plus ends. Microtubule plus-end-tracking proteins (+TIPs) accumulate at these growing plus ends to control microtubule dynamics and attachment. The +TIP end-binding protein 1 (EB1) and its homologs possess an autonomous plus-end-tracking mechanism and interact with other known +TIPs, which then recruit those +TIPs to the growing plus ends. A major +TIP class contains the SXIP (Ser-X-Ile-Pro, with X denoting any amino acid residue) motif, known to interact with EB1 and its homologs for plus-end tracking, but the role of SXIP in regulating EB1 activities is unclear. We show here that an interaction of EB1 with the SXIP-containing +TIP CDK5 regulatory subunit-associated protein 2 (CDK5RAP2) regulates several EB1 activities, including microtubule plus-end tracking, dynamics at microtubule plus ends, microtubule and α/β-tubulin binding, and microtubule polymerization. The SXIP motif fused with a dimerization domain from CDK5RAP2 significantly enhanced EB1 plus-end-tracking and microtubule-polymerizing and bundling activities, but the SXIP motif alone failed to do so. An SXIP-binding-deficient EB1 mutant displayed significantly lower microtubule plus-end tracking than the wild-type protein in transfected cells. These results suggest that EB1 cooperates with CDK5RAP2 and perhaps other SXIP-containing +TIPs in tracking growing microtubule tips. We also generated plus-end-tracking chimeras of CDK5RAP2 and the adenomatous polyposis coli protein (APC) and found that overexpression of the dimerization domains interfered with microtubule plus-end tracking of their respective SXIP-containing chimeras. Our results suggest that disruption of SXIP dimerization enables detailed investigations of microtubule plus-end-associated functions of individual SXIP-containing +TIPs.
Collapse
Affiliation(s)
- Ka-Wing Fong
- From the Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Franco K C Au
- From the Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yue Jia
- From the Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Shaozhong Yang
- From the Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Liying Zhou
- From the Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Robert Z Qi
- From the Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
22
|
Xie S, Chen M, Gao S, Zhong T, Zhou P, Li D, Zhou J, Gao J, Liu M. The B-box module of CYLD is responsible for its intermolecular interaction and cytoplasmic localization. Oncotarget 2017; 8:50889-50895. [PMID: 28881612 PMCID: PMC5584213 DOI: 10.18632/oncotarget.15142] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/11/2017] [Indexed: 12/26/2022] Open
Abstract
The tumor suppressor protein cylindromatosis (CYLD), as a microtubule-associated deubiquitinase, plays a pivotal role in a wide range of cellular activities, including innate immunity, cell division, and ciliogenesis. Structural characterization reveals a small zinc-binding B-box inserted within the ubiquitin specific protease (USP) domain of CYLD; however, the exact role for this module remains yet to be elucidated. Here we identify a critical role for the B-box in facilitating the intermolecular interaction and subcellular localization of CYLD. By co-immunoprecipitation assays we uncover that CYLD has the ability to form an intermolecular complex. Native gel electrophoresis analysis and pull down assays show that the USP domain of CYLD is essential for its intermolecular interaction. Further investigation reveals that deletion of the B-box from the USP domain disrupts the intermolecular interaction of CYLD. Importantly, although loss of the B-box has no obvious effect on the deubiquitinase activity of CYLD, it abolishes the USP domain-mediated retention of CYLD in the cytoplasm. Collectively, these data demonstrate an important role for the B-box module of CYLD in mediating its assembly and subcellular distribution, which might be related to the functions of CYLD in various biological processes.
Collapse
Affiliation(s)
- Songbo Xie
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China
| | - Miao Chen
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China
| | - Siqi Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Tao Zhong
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China
| | - Peng Zhou
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jun Zhou
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China.,State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jinmin Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Min Liu
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
23
|
Ran J, Luo Y, Zhang Y, Yang Y, Chen M, Liu M, Li D, Zhou J. Phosphorylation of EB1 regulates the recruitment of CLIP-170 and p150glued to the plus ends of astral microtubules. Oncotarget 2017; 8:9858-9867. [PMID: 28039481 PMCID: PMC5354776 DOI: 10.18632/oncotarget.14222] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 11/24/2016] [Indexed: 12/31/2022] Open
Abstract
Phosphorylation of end-binding protein 1 (EB1), a key member of microtubule plus end-tracking proteins (+TIPs), by apoptosis signal-regulating kinase 1 (ASK1) has been demonstrated to promote the stability of astral microtubules during mitosis by stimulating the binding of EB1 to microtubule plus ends. However, the roles of other members of the +TIPs family in ASK1/EB1-mediated regulation of astral microtubules are unknown. Herein, we show that ASK1-mediated phosphorylation of EB1 enhances the localization of cytoplasmic linker protein 170 (CLIP-170) and p150glued to the plus ends of astral microtubules. Depletion of ASK1 or expression of phospho-deficient or phospho-mimetic EB1 mutants results in changes in the levels of plus-end localized CLIP-170 or p150glued. Mechanistic studies reveal that EB1 phosphorylation promotes its interactions with CLIP-170 and p150glued, thereby recruiting these +TIPs to microtubules. Structural analysis suggests that serine-40 is the primary phosphorylation site on EB1 that exerts these effects. Together, these findings provide novel insight into the molecular mechanisms that regulate the interactions of EB1 with other +TIPs.
Collapse
Affiliation(s)
- Jie Ran
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong 250014, China
| | - Youguang Luo
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yijun Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yang Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Miao Chen
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong 250014, China
| | - Min Liu
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong 250014, China
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jun Zhou
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong 250014, China
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
24
|
Guo C, Hou G, Lu X, Polenova T. Mapping protein-protein interactions by double-REDOR-filtered magic angle spinning NMR spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2017; 67:95-108. [PMID: 28120201 PMCID: PMC6258002 DOI: 10.1007/s10858-016-0086-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/25/2016] [Indexed: 05/03/2023]
Abstract
REDOR-based experiments with simultaneous 1H-13C and 1H-15N dipolar dephasing are explored for investigating intermolecular protein-protein interfaces in complexes formed by a U-13C,15N-labeled protein and its natural abundance binding partner. The application of a double-REDOR filter (dREDOR) results in a complete dephasing of proton magnetization in the U-13C,15N-enriched molecule while the proton magnetization of the unlabeled binding partner is not dephased. This retained proton magnetization is then transferred across the intermolecular interface by 1H-13C or 1H-15N cross polarization, permitting to establish the residues of the U-13C,15N-labeled protein, which constitute the binding interface. To assign the interface residues, this dREDOR-CPMAS element is incorporated as a building block into 13C-13C correlation experiments. We established the validity of this approach on U-13C,15N-histidine and on a structurally characterized complex of dynactin's U-13C,15N-CAP-Gly domain with end-binding protein 1 (EB1). The approach introduced here is broadly applicable to the analysis of intermolecular interfaces when one of the binding partners in a complex cannot be isotopically labeled.
Collapse
Affiliation(s)
- Changmiao Guo
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Guangjin Hou
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA.
| | - Xingyu Lu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
25
|
Quinn CM, Polenova T. Structural biology of supramolecular assemblies by magic-angle spinning NMR spectroscopy. Q Rev Biophys 2017; 50:e1. [PMID: 28093096 PMCID: PMC5483179 DOI: 10.1017/s0033583516000159] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In recent years, exciting developments in instrument technology and experimental methodology have advanced the field of magic-angle spinning (MAS) nuclear magnetic resonance (NMR) to new heights. Contemporary MAS NMR yields atomic-level insights into structure and dynamics of an astounding range of biological systems, many of which cannot be studied by other methods. With the advent of fast MAS, proton detection, and novel pulse sequences, large supramolecular assemblies, such as cytoskeletal proteins and intact viruses, are now accessible for detailed analysis. In this review, we will discuss the current MAS NMR methodologies that enable characterization of complex biomolecular systems and will present examples of applications to several classes of assemblies comprising bacterial and mammalian cytoskeleton as well as human immunodeficiency virus 1 and bacteriophage viruses. The body of work reviewed herein is representative of the recent advancements in the field, with respect to the complexity of the systems studied, the quality of the data, and the significance to the biology.
Collapse
Affiliation(s)
- Caitlin M. Quinn
- University of Delaware, Department of Chemistry and Biochemistry, Newark, DE 19711; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA 15306
| | - Tatyana Polenova
- University of Delaware, Department of Chemistry and Biochemistry, Newark, DE 19711; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA 15306
| |
Collapse
|
26
|
Alberico EO, Zhu ZC, Wu YFO, Gardner MK, Kovar DR, Goodson HV. Interactions between the Microtubule Binding Protein EB1 and F-Actin. J Mol Biol 2016; 428:1304-1314. [PMID: 26854759 DOI: 10.1016/j.jmb.2016.01.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 01/27/2016] [Accepted: 01/30/2016] [Indexed: 12/24/2022]
Abstract
Many cellular processes including cell division and cell migration require coordination between the actin and microtubule (MT) cytoskeletons. This coordination is as-yet poorly understood, but proteins such as formins and IQGAP1 are known to be involved. We show that the MT binding protein EB1 (end-binding protein 1), a key regulator of MT dynamics, can bind directly to filamentous actin (F-actin) F-actin. We determined that the EB1:F-actin interaction is salt sensitive and weak under physiological salt concentrations but might be relevant in contexts where the local concentration of actin is high. Using bioinformatics and mutagenesis, we found that the EB1:F-actin binding site partially overlaps the well-characterized EB1:MT binding interface. Congruently, competition experiments indicate that EB1 can bind to F-actin or MTs but not both simultaneously. These observations suggest that EB1:F-actin interactions may negatively regulate EB1:MT interactions, and we speculate that this interaction may assist cells in differentially regulating MT stability in the actin-rich cortex as opposed to the cell interior.
Collapse
Affiliation(s)
- Emily O Alberico
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Zhiqing C Zhu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Yueh-Fu O Wu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Melissa K Gardner
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Dave R Kovar
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Holly V Goodson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
27
|
Reboutier D, Benaud C, Prigent C. Aurora A's Functions During Mitotic Exit: The Guess Who Game. Front Oncol 2015; 5:290. [PMID: 26734572 PMCID: PMC4685928 DOI: 10.3389/fonc.2015.00290] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/07/2015] [Indexed: 11/24/2022] Open
Abstract
Until recently, the knowledge of Aurora A kinase functions during mitosis was limited to pre-metaphase events, particularly centrosome maturation, G2/M transition, and mitotic spindle assembly. However, an involvement of Aurora A in post-metaphase events was also suspected, but not clearly demonstrated due to the technical difficulty to perform the appropriate experiments. Recent developments of both an analog-specific version of Aurora A and small molecule inhibitors have led to the first demonstration that Aurora A is required for the early steps of cytokinesis. As in pre-metaphase, Aurora A plays diverse functions during anaphase, essentially participating in astral microtubules dynamics and central spindle assembly and functioning. The present review describes the experimental systems used to decipher new functions of Aurora A during late mitosis and situate these functions into the context of cytokinesis mechanisms.
Collapse
Affiliation(s)
- David Reboutier
- Unité Mixte de Recherche 6290, Équipe labellisée Ligue, Centre National de la Recherche Scientifique, Rennes, France; Institut de Génétique et Développement de Rennes, Université Rennes 1, Rennes, France
| | - Christelle Benaud
- Unité Mixte de Recherche 6290, Équipe labellisée Ligue, Centre National de la Recherche Scientifique, Rennes, France; Institut de Génétique et Développement de Rennes, Université Rennes 1, Rennes, France
| | - Claude Prigent
- Unité Mixte de Recherche 6290, Équipe labellisée Ligue, Centre National de la Recherche Scientifique, Rennes, France; Institut de Génétique et Développement de Rennes, Université Rennes 1, Rennes, France
| |
Collapse
|
28
|
Yan S, Guo C, Hou G, Zhang H, Lu X, Williams JC, Polenova T. Atomic-resolution structure of the CAP-Gly domain of dynactin on polymeric microtubules determined by magic angle spinning NMR spectroscopy. Proc Natl Acad Sci U S A 2015; 112:14611-6. [PMID: 26604305 PMCID: PMC4664305 DOI: 10.1073/pnas.1509852112] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Microtubules and their associated proteins perform a broad array of essential physiological functions, including mitosis, polarization and differentiation, cell migration, and vesicle and organelle transport. As such, they have been extensively studied at multiple levels of resolution (e.g., from structural biology to cell biology). Despite these efforts, there remain significant gaps in our knowledge concerning how microtubule-binding proteins bind to microtubules, how dynamics connect different conformational states, and how these interactions and dynamics affect cellular processes. Structures of microtubule-associated proteins assembled on polymeric microtubules are not known at atomic resolution. Here, we report a structure of the cytoskeleton-associated protein glycine-rich (CAP-Gly) domain of dynactin motor on polymeric microtubules, solved by magic angle spinning NMR spectroscopy. We present the intermolecular interface of CAP-Gly with microtubules, derived by recording direct dipolar contacts between CAP-Gly and tubulin using double rotational echo double resonance (dREDOR)-filtered experiments. Our results indicate that the structure adopted by CAP-Gly varies, particularly around its loop regions, permitting its interaction with multiple binding partners and with the microtubules. To our knowledge, this study reports the first atomic-resolution structure of a microtubule-associated protein on polymeric microtubules. Our approach lays the foundation for atomic-resolution structural analysis of other microtubule-associated motors.
Collapse
Affiliation(s)
- Si Yan
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716
| | - Changmiao Guo
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716
| | - Guangjin Hou
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716
| | - Huilan Zhang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716
| | - Xingyu Lu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716
| | - John Charles Williams
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716;
| |
Collapse
|
29
|
Moleschi KJ, Akimoto M, Melacini G. Measurement of State-Specific Association Constants in Allosteric Sensors through Molecular Stapling and NMR. J Am Chem Soc 2015; 137:10777-85. [PMID: 26247242 DOI: 10.1021/jacs.5b06557] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Allostery is a ubiquitous mechanism to control biological function and arises from the coupling of inhibitory and binding equilibria. The extent of coupling reflects the inactive vs active state selectivity of the allosteric effector. Hence, dissecting allosteric determinants requires quantification of state-specific association constants. However, observed association constants are typically population-averages, reporting on overall affinities but not on allosteric coupling. Here we propose a general method to measure state-specific association constants in allosteric sensors based on three key elements, i.e., state-selective molecular stapling through disulfide bridges, competition binding saturation transfer experiments and chemical shift correlation analyses to gauge state populations. The proposed approach was applied to the prototypical cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA-RIα), for which the structures of the inactive and active states are available, as needed to design the state-selective disulfide bridges. Surprisingly, the PKA-RIα state-specific association constants are comparable to those of a structurally homologous domain with ∼10(3)-fold lower cAMP-affinity, suggesting that the affinity difference arises primarily from changes in the position of the dynamic apo inhibitory equilibrium.
Collapse
Affiliation(s)
- Kody J Moleschi
- Department of Chemistry and Chemical Biology, and ‡Department of Biochemistry and Biomedical Sciences, McMaster University , 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Madoka Akimoto
- Department of Chemistry and Chemical Biology, and ‡Department of Biochemistry and Biomedical Sciences, McMaster University , 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Giuseppe Melacini
- Department of Chemistry and Chemical Biology, and ‡Department of Biochemistry and Biomedical Sciences, McMaster University , 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
30
|
Golubkova EV, Atsapkina AA, Mamon LA. The role of sbr/Dm nxf1 gene in syncytial development in Drosophila melanogaster. ACTA ACUST UNITED AC 2015. [DOI: 10.1134/s1990519x15040057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
31
|
Furlong H, Smith R, Wang J, Seymour C, Mothersill C, Howe O. Identification of Key Proteins in Human Epithelial Cells Responding to Bystander Signals From Irradiated Trout Skin. Dose Response 2015; 13:1559325815597669. [PMID: 26673684 PMCID: PMC4674182 DOI: 10.1177/1559325815597669] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Radiation-induced bystander signaling has been found to occur in live rainbow trout fish (Oncorhynchus mykiss). This article reports identification of key proteomic changes in a bystander reporter cell line (HaCaT) grown in low-dose irradiated tissue-conditioned media (ITCM) from rainbow trout fish. In vitro explant cultures were generated from the skin of fish previously exposed to low doses (0.1 and 0.5 Gy) of X-ray radiation in vivo. The ITCM was harvested from all donor explant cultures and placed on recipient HaCaT cells to observe any change in protein expression caused by the bystander signals. Proteomic methods using 2-dimensional (2D) gel electrophoresis and mass spectroscopy were employed to screen for novel proteins expressed. The proteomic changes measured in HaCaT cells receiving the ITCM revealed that exposure to 0.5 Gy induced an upregulation of annexin A2 and cingulin and a downregulation of Rho-GDI2, F-actin-capping protein subunit beta, microtubule-associated protein RP/EB family member, and 14-3-3 proteins. The 0.1 Gy dose also induced a downregulation of Rho-GDI2, hMMS19, F-actin-capping protein subunit beta, and microtubule-associated protein RP/EB family member proteins. The proteins reported may influence apoptotic signaling, as the results were suggestive of an induction of cell communication, repair mechanisms, and dysregulation of growth signals.
Collapse
Affiliation(s)
- Hayley Furlong
- DIT Centre for Radiation and Environmental Science, Focas Research Institute, Dublin Institute of Technology, Dublin, Ireland
- School of Biological Sciences, College of Sciences and Health, Dublin Institute of Technology, Dublin, Ireland
| | - Richard Smith
- Medical Physics and Applied Radiation Sciences, Nuclear Research Building, Hamilton, Canada
| | - Jiaxi Wang
- Queen’s Mass Spectrometry and Proteomics Unit, Department of Chemistry, Queen’s University, Bader Lane, Kingston, Canada
| | - Colin Seymour
- Medical Physics and Applied Radiation Sciences, Nuclear Research Building, Hamilton, Canada
| | - Carmel Mothersill
- Medical Physics and Applied Radiation Sciences, Nuclear Research Building, Hamilton, Canada
| | - Orla Howe
- DIT Centre for Radiation and Environmental Science, Focas Research Institute, Dublin Institute of Technology, Dublin, Ireland
- School of Biological Sciences, College of Sciences and Health, Dublin Institute of Technology, Dublin, Ireland
| |
Collapse
|
32
|
Maki T, Grimaldi AD, Fuchigami S, Kaverina I, Hayashi I. CLASP2 Has Two Distinct TOG Domains That Contribute Differently to Microtubule Dynamics. J Mol Biol 2015; 427:2379-95. [PMID: 26003921 DOI: 10.1016/j.jmb.2015.05.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 05/01/2015] [Accepted: 05/11/2015] [Indexed: 11/17/2022]
Abstract
CLIP-associated proteins CLASPs are mammalian microtubule (MT) plus-end tracking proteins (+TIPs) that promote MT rescue in vivo. Their plus-end localization is dependent on other +TIPs, EB1 and CLIP-170, but in the leading edge of the cell, CLASPs display lattice-binding activity. MT association of CLASPs is suggested to be regulated by multiple TOG (tumor overexpressed gene) domains and by the serine-arginine (SR)-rich region, which contains binding sites for EB1. Here, we report the crystal structures of the two TOG domains of CLASP2. Both domains consist of six HEAT repeats, which are similar to the canonical paddle-like tubulin-binding TOG domains, but have arched conformations. The degrees and directions of curvature are different between the two TOG domains, implying that they have distinct roles in MT binding. Using biochemical, molecular modeling and cell biological analyses, we have investigated the interactions between the TOG domains and αβ-tubulin and found that each domain associates differently with αβ-tubulin. Our findings suggest that, by varying the degrees of domain curvature, the TOG domains may distinguish the structural conformation of the tubulin dimer, discriminate between different states of MT dynamic instability and thereby function differentially as stabilizers of MTs.
Collapse
Affiliation(s)
- Takahisa Maki
- Department of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Ashley D Grimaldi
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sotaro Fuchigami
- Department of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Irina Kaverina
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ikuko Hayashi
- Department of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
33
|
Sayas CL, Tortosa E, Bollati F, Ramírez-Ríos S, Arnal I, Avila J. Tau regulates the localization and function of End-binding proteins 1 and 3 in developing neuronal cells. J Neurochem 2015; 133:653-67. [PMID: 25761518 DOI: 10.1111/jnc.13091] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 03/03/2015] [Accepted: 03/05/2015] [Indexed: 11/29/2022]
Abstract
The axonal microtubule-associated protein tau is a well-known regulator of microtubule stability in neurons. However, the putative interplay between tau and End-binding proteins 1 and 3 (EB1/3), the core microtubule plus-end tracking proteins, has not been elucidated yet. Here, we show that a cross-talk between tau and EB1/3 exists in developing neuronal cells. Tau and EBs partially colocalize at extending neurites of N1E-115 neuroblastoma cells and axons of primary hippocampal neurons, as shown by confocal immunofluorescence analyses. Tau down-regulation leads to a reduction of EB1/3 comet length, as observed in shRNA-stably depleted neuroblastoma cells and TAU-/- neurons. EB1/3 localization depends on the expression levels and localization of tau protein. Over-expression of tau at high levels induces EBs relocalization to microtubule bundles at extending neurites of N1E-115 cells. In differentiating primary neurons, tau is required for the proper accumulation of EBs at stretches of microtubule bundles at the medial and distal regions of the axon. Tau interacts with EB proteins, as shown by immunoprecipitation in different non-neuronal and neuronal cells and in whole brain lysates. A tau/EB1 direct interaction was corroborated by in vitro pull-down assays. Fluorescence recovery after photobleaching assays performed in neuroblastoma cells confirmed that tau modulates EB3 cellular mobility. In summary, we provide evidence of a new function of tau as a direct regulator of EB proteins in developing neuronal cells. This cross-talk between a classical microtubule-associated protein and a core microtubule plus-end tracking protein may contribute to the fine-tuned regulation of microtubule dynamics and stability during neuronal differentiation. We describe here a novel function for tau as a direct regulator of End binding (EB) proteins in differentiating neuronal cells. EB1/3 cellular mobility and localization in extending neurites and axons is modulated by tau levels and localization. We provide new evidence of the interplay between classical microtubule-associated proteins (MAPs) and "core" microtubule plus-end tracking proteins (+TIPs) during neuronal development.
Collapse
Affiliation(s)
- Carmen Laura Sayas
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain; Centre for Biomedical Research of the Canary Islands (CIBICAN), Institute for Biomedical Technologies (ITB), University of La Laguna (ULL), Tenerife, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
Neurons begin their life as simple spheres, but can ultimately assume an elaborate morphology with numerous, highly arborized dendrites, and long axons. This is achieved via an astounding developmental progression which is dependent upon regulated assembly and dynamics of the cellular cytoskeleton. As neurites emerge out of the soma, neurons break their spherical symmetry and begin to acquire the morphological features that define their structure and function. Neurons regulate their cytoskeleton to achieve changes in cell shape, velocity, and direction as they migrate, extend neurites, and polarize. Of particular importance, the organization and dynamics of actin and microtubules directs the migration and morphogenesis of neurons. This review focuses on the regulation of intrinsic properties of the actin and microtubule cytoskeletons and how specific cytoskeletal structures and dynamics are associated with the earliest phase of neuronal morphogenesis—neuritogenesis.
Collapse
|
35
|
Abstract
Microtubules are dynamic polymers of αβ-tubulin that form diverse cellular structures, such as the mitotic spindle for cell division, the backbone of neurons, and axonemes. To control the architecture of microtubule networks, microtubule-associated proteins (MAPs) and motor proteins regulate microtubule growth, shrinkage, and the transitions between these states. Recent evidence shows that many MAPs exert their effects by selectively binding to distinct conformations of polymerized or unpolymerized αβ-tubulin. The ability of αβ-tubulin to adopt distinct conformations contributes to the intrinsic polymerization dynamics of microtubules. αβ-Tubulin conformation is a fundamental property that MAPs monitor and control to build proper microtubule networks.
Collapse
Affiliation(s)
- Gary J Brouhard
- Department of Biology, McGill University, Montréal, Quebec, Canada H3A1B1
| | - Luke M Rice
- Department of Biophysics and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390 Department of Biophysics and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
36
|
Yan S, Zhang H, Hou G, Ahmed S, Williams JC, Polenova T. Internal dynamics of dynactin CAP-Gly is regulated by microtubules and plus end tracking protein EB1. J Biol Chem 2014; 290:1607-22. [PMID: 25451937 DOI: 10.1074/jbc.m114.603118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CAP-Gly domain of dynactin, a microtubule-associated activator of dynein motor, participates in multiple cellular processes, and its point mutations are associated with neurodegenerative diseases. Recently, we have demonstrated that conformational plasticity is an intrinsic property of CAP-Gly. To understand its origin, we addressed internal dynamics of CAP-Gly assembled on polymeric microtubules, bound to end-binding protein EB1 and free, by magic angle spinning NMR and molecular dynamics simulations. The analysis of residue-specific dynamics of CAP-Gly on time scales spanning nano- through milliseconds reveals its unusually high mobility, both free and assembled on polymeric microtubules. On the contrary, CAP-Gly bound to EB1 is significantly more rigid. Molecular dynamics simulations indicate that these motions are strongly temperature-dependent, and loop regions are surprisingly mobile. These findings establish the connection between conformational plasticity and internal dynamics in CAP-Gly, which is essential for the biological functions of CAP-Gly and its ability to bind to polymeric microtubules and multiple binding partners. In this work, we establish an approach, for the first time, to probe atomic resolution dynamic profiles of a microtubule-associated protein assembled on polymeric microtubules. More broadly, the methodology established here can be applied for atomic resolution analysis of dynamics in other microtubule-associated protein assemblies, including but not limited to dynactin, dynein, and kinesin motors assembled on microtubules.
Collapse
Affiliation(s)
- Si Yan
- From the Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716 and
| | - Huilan Zhang
- From the Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716 and
| | - Guangjin Hou
- From the Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716 and
| | - Shubbir Ahmed
- the Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, California 91010
| | - John C Williams
- the Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, California 91010
| | - Tatyana Polenova
- From the Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716 and
| |
Collapse
|
37
|
Duellberg C, Trokter M, Jha R, Sen I, Steinmetz MO, Surrey T. Reconstitution of a hierarchical +TIP interaction network controlling microtubule end tracking of dynein. Nat Cell Biol 2014; 16:804-11. [PMID: 24997520 DOI: 10.1038/ncb2999] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 05/29/2014] [Indexed: 11/08/2022]
Abstract
Growing microtubule end regions recruit a variety of proteins collectively termed +TIPs, which confer local functions to the microtubule cytoskeleton. +TIPs form dynamic interaction networks whose behaviour depends on a number of potentially competitive and hierarchical interaction modes. The rules that determine which of the various +TIPs are recruited to the limited number of available binding sites at microtubule ends remain poorly understood. Here we examined how the human dynein complex, the main minus-end-directed motor and an important +TIP (refs , , ), is targeted to growing microtubule ends in the presence of different +TIP competitors. Using a total internal reflection fluorescence microscopy-based reconstitution assay, we found that a hierarchical recruitment mode targets the large dynactin subunit p150Glued to growing microtubule ends via EB1 and CLIP-170 in the presence of competing SxIP-motif-containing peptides. We further show that the human dynein complex is targeted to growing microtubule ends through an interaction of the tail domain of dynein with p150Glued. Our results highlight how the connectivity and hierarchy within dynamic +TIP networks are orchestrated.
Collapse
Affiliation(s)
- Christian Duellberg
- 1] London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3LY, UK [2] European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Martina Trokter
- 1] London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3LY, UK [2] European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany [3]
| | - Rupam Jha
- London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Indrani Sen
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - Michel O Steinmetz
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - Thomas Surrey
- 1] London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3LY, UK [2] European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| |
Collapse
|
38
|
Structural basis for the extended CAP-Gly domains of p150(glued) binding to microtubules and the implication for tubulin dynamics. Proc Natl Acad Sci U S A 2014; 111:11347-52. [PMID: 25059720 DOI: 10.1073/pnas.1403135111] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
p150(glued) belongs to a group of proteins accumulating at microtubule plus ends (+TIPs). It plays a key role in initiating retrograde transport by recruiting and tethering endosomes and dynein to microtubules. p150(glued) contains an N-terminal microtubule-binding cytoskeleton-associated protein glycine-rich (CAP-Gly) domain that accelerates tubulin polymerization. Although this copolymerization is well-studied using light microscopic techniques, structural consequences of this interaction are elusive. Here, using electron-microscopic and spectroscopic approaches, we provide a detailed structural view of p150(glued) CAP-Gly binding to microtubules and tubulin. Cryo-EM 3D reconstructions of p150(glued)-CAP-Gly complexed with microtubules revealed the recognition of the microtubule surface, including tubulin C-terminal tails by CAP-Gly. These binding surfaces differ from other retrograde initiation proteins like EB1 or dynein, which could facilitate the simultaneous attachment of all accessory components. Furthermore, the CAP-Gly domain, with its basic extensions, facilitates lateral and longitudinal interactions of tubulin molecules by covering the tubulin acidic tails. This shielding effect of CAP-Gly and its basic extensions may provide a molecular basis of the roles of p150(glued) in microtubule dynamics.
Collapse
|
39
|
Gupta KK, Alberico EO, Näthke IS, Goodson HV. Promoting microtubule assembly: A hypothesis for the functional significance of the +TIP network. Bioessays 2014; 36:818-26. [PMID: 24943963 DOI: 10.1002/bies.201400029] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Regulation of microtubule (MT) dynamics is essential for many cellular processes, but the machinery that controls MT dynamics remains poorly understood. MT plus-end tracking proteins (+TIPs) are a set of MT-associated proteins that dynamically track growing MT ends and are uniquely positioned to govern MT dynamics. +TIPs associate with each other in a complex array of inter- and intra-molecular interactions known as the "+TIP network." Why do so many +TIPs bind to other +TIPs? Typical answers include the ideas that these interactions localize proteins where they are needed, deliver proteins to the cortex, and/or create regulatory pathways. We propose an additional and more mechanistic hypothesis: that +TIPs bind each other to create a superstructure that promotes MT assembly by constraining the structural fluctuations of the MT tip, thus acting as a polymerization chaperone.
Collapse
Affiliation(s)
- Kamlesh K Gupta
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | | | | | | |
Collapse
|
40
|
Characterization of microtubule-binding and dimerization activity of Giardia lamblia end-binding 1 protein. PLoS One 2014; 9:e97850. [PMID: 24828878 PMCID: PMC4020936 DOI: 10.1371/journal.pone.0097850] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 04/25/2014] [Indexed: 12/03/2022] Open
Abstract
End-binding 1 (EB1) proteins are evolutionarily conserved components of microtubule (MT) plus-end tracking protein that regulate MT dynamics. Giardia lamblia, with two nuclei and cytoskeletal structures, requires accurate MT distribution for division. In this study, we show that a single EB1 homolog gene of G. lamblia regulates MT dynamics in mitosis. The haemagglutinin-tagged G. lamblia EB1 (GlEB1) localizes to the nuclear envelopes and median bodies, and is transiently present in mitotic spindles of dividing cells. Knockdown of GlEB1 expression using the morpholinos-based anti-EB1 oligonucleotides, resulted in a significant defect in mitosis of Giardia trophozoites. The MT-binding assays using recombinant GlEB1 (rGlEB1) proteins demonstrated that rGlEB1102–238, but not rGlEB11–184, maintains an MT-binding ability comparable with that of the full length protein, rGlEB11–238. Size exclusion chromatography showed that rGlEB1 is present as a dimer formed by its C-terminal domain and a disulfide bond. In vitro-mutagenesis of GlEB1 indicated that an intermolecular disulfide bond is made between cysteine #13 of the two monomers. Complementation assay using the BIM1 knockout mutant yeast, the yeast homolog of mammalian EB1, indicated that expression of the C13S mutant GlEB1 protein cannot rescue the mitotic defect of the BIM1 mutant yeast. These results suggest that dimerization of GlEB1 via the 13th cysteine residues plays a role during mitosis in Giardia.
Collapse
|
41
|
Abstract
Protein kinase A (PKA) is a prototype of multidomain signaling proteins functioning as allosteric conformational switches. Allosteric transitions have been the subject of extensive structural and dynamic investigations focusing mainly on folded domains. However, the current understanding of the allosteric role of partially unstructured linkers flanking globular domains is limited. Here, we show that a dynamic linker in the regulatory subunit (R) of PKA serves not only as a passive covalent thread, but also as an active allosteric element that controls activation of the kinase subunit (C) by tuning the inhibitory preequilibrium of a minimally populated intermediate (apo R). Apo R samples both C-binding competent (inactive) and incompetent (active) conformations within a nearly degenerate free-energy landscape and such degeneracy maximally amplifies the response to weak (∼2RT), but conformation-selective interactions elicited by the linker. Specifically, the R linker that in the R:C complex docks in the active site of C in apo R preferentially interacts with the C-binding incompetent state of the adjacent cAMP-binding domain (CBD). These unanticipated findings imply that the formation of the intermolecular R:C inhibitory interface occurs at the expense of destabilizing the intramolecular linker/CBD interactions in R. A direct implication of this model, which was not predictable solely based on protein structure, is that the disruption of a linker/CBD salt bridge in the R:C complex unexpectedly leads to increased affinity of R for C. The linker includes therefore sites of R:C complex frustration and frustration-relieving mutations enhance the kinase inhibitory potency of R without compromising its specificity.
Collapse
|
42
|
Mouriño-Pérez RR, Linacre-Rojas LP, Román-Gavilanes AI, Lew TK, Callejas-Negrete OA, Roberson RW, Freitag M. MTB-3, a microtubule plus-end tracking protein (+TIP) of Neurospora crassa. PLoS One 2013; 8:e70655. [PMID: 23950979 PMCID: PMC3741187 DOI: 10.1371/journal.pone.0070655] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 06/21/2013] [Indexed: 11/18/2022] Open
Abstract
The microtubule (MT) “plus end” constitutes the platform for the accumulation of a structurally and functionally diverse group of proteins, collectively called “MT plus-end tracking proteins” (+TIPs). +TIPs control MT dynamics and link MTs to diverse sub-cellular structures. Neurospora crassaMicroTubule Binding protein-3 (MTB-3) is the homolog of yeast EB1, a highly conserved +TIP. To address the function of MTB-3, we examined strains with mtb-3 deletions, and we tagged MTB-3 with GFP to assess its dynamic behavior. MTB-3-GFP was present as comet-like structures distributed more or less homogeneously within the hyphal cytoplasm, and moving mainly towards the apex at speeds up to 4× faster than the normal hyphal elongation rates. MTB-3-GFP comets were present in all developmental stages, but were most abundant in mature hyphae. MTB-3-GFP comets were observed moving in anterograde and retrograde direction along the hypha. Retrograde movement was also observed as originating from the apical dome. The integrity of the microtubular cytoskeleton affects the presence and dynamics of MTB-3-GFP comets, while actin does not seem to play a role. The size of MTB-3-GFP comets is affected by the absence of dynactin and conventional kinesin. We detected no obvious morphological phenotypes in Δmtb-3 mutants but there were fewer MTs in Δmtb-3, MTs were less bundled and less organized. Compared to WT, both MT polymerization and depolymerization rates were significantly decreased in Δmtb-3. In summary, the lack of MTB-3 affects overall growth and morphological phenotypes of N. crassa only slightly, but deletion of mtb-3 has strong effect on MT dynamics.
Collapse
Affiliation(s)
- Rosa R Mouriño-Pérez
- Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, México.
| | | | | | | | | | | | | |
Collapse
|
43
|
Lazarus JE, Moughamian AJ, Tokito MK, Holzbaur ELF. Dynactin subunit p150(Glued) is a neuron-specific anti-catastrophe factor. PLoS Biol 2013; 11:e1001611. [PMID: 23874158 PMCID: PMC3712912 DOI: 10.1371/journal.pbio.1001611] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 05/31/2013] [Indexed: 01/25/2023] Open
Abstract
The dynein partner dynactin not only binds to microtubules, but is found to potently influence microtubule dynamics in neurons. Regulation of microtubule dynamics in neurons is critical, as defects in the microtubule-based transport of axonal organelles lead to neurodegenerative disease. The microtubule motor cytoplasmic dynein and its partner complex dynactin drive retrograde transport from the distal axon. We have recently shown that the p150Glued subunit of dynactin promotes the initiation of dynein-driven cargo motility from the microtubule plus-end. Because plus end-localized microtubule-associated proteins like p150Glued may also modulate the dynamics of microtubules, we hypothesized that p150Glued might promote cargo initiation by stabilizing the microtubule track. Here, we demonstrate in vitro using assembly assays and TIRF microscopy, and in primary neurons using live-cell imaging, that p150Glued is a potent anti-catastrophe factor for microtubules. p150Glued alters microtubule dynamics by binding both to microtubules and to tubulin dimers; both the N-terminal CAP-Gly and basic domains of p150Glued are required in tandem for this activity. p150Glued is alternatively spliced in vivo, with the full-length isoform including these two domains expressed primarily in neurons. Accordingly, we find that RNAi of p150Glued in nonpolarized cells does not alter microtubule dynamics, while depletion of p150Glued in neurons leads to a dramatic increase in microtubule catastrophe. Strikingly, a mutation in p150Glued causal for the lethal neurodegenerative disorder Perry syndrome abrogates this anti-catastrophe activity. Thus, we find that dynactin has multiple functions in neurons, both activating dynein-mediated retrograde axonal transport and enhancing microtubule stability through a novel anti-catastrophe mechanism regulated by tissue-specific isoform expression; disruption of either or both of these functions may contribute to neurodegenerative disease. Microtubules are polymers of tubulin that undergo successive cycles of growth and shrinkage so that the cell can maintain a stable yet adaptable cytoskeleton. In neurons, the microtubule motor protein dynein and its partner complex dynactin drive retrograde transport along microtubules from the distal axon towards the cell body. In addition to binding to dynein, the p150Glued subunit of dynactin independently binds directly to microtubules. We hypothesized that by binding to microtubules, p150Glued might also alter microtubule dynamics. We demonstrate using biochemistry and microscopy in vitro and in cells that p150Glued stabilizes microtubules by inhibiting the transition from growth to shrinkage. We show that specific domains of p150Glued encoded by neuronally enriched splice-forms are necessary for this activity. Although depletion of p150Glued in nonpolarized cells does not alter microtubule dynamics, depletion of endogenous p150Glued in neurons leads to dramatic microtubule instability. Strikingly, a mutation in p150Glued known to cause the neurodegenerative disorder Perry syndrome abolishes this activity. In summary, we identified a previously unappreciated function of dynactin in direct regulation of the microtubule cytoskeleton. This activity may enhance generic microtubule stability in the cell, but could be especially important in specific areas of the cell where dynactin and dynein are loaded onto microtubules.
Collapse
Affiliation(s)
- Jacob E. Lazarus
- Department of Physiology and Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Armen J. Moughamian
- Department of Physiology and Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Mariko K. Tokito
- Department of Physiology and Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Erika L. F. Holzbaur
- Department of Physiology and Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
44
|
Rovini A, Gauthier G, Bergès R, Kruczynski A, Braguer D, Honoré S. Anti-migratory effect of vinflunine in endothelial and glioblastoma cells is associated with changes in EB1 C-terminal detyrosinated/tyrosinated status. PLoS One 2013; 8:e65694. [PMID: 23750272 PMCID: PMC3672205 DOI: 10.1371/journal.pone.0065694] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 05/01/2013] [Indexed: 12/26/2022] Open
Abstract
We previously showed that vinflunine, a microtubule-targeting drug of the Vinca-alkaloid family exerted its anti-angiogenic/anti-migratory activities through an increase in microtubule dynamics and an inhibition of microtubule targeting to adhesion sites. Such effect was associated with a reduction of EB1 comet length at microtubule (+) ends. In this work we first showed that the pro-angiogenic vascular endothelial growth factor VEGF suppressed microtubule dynamics in living Human Umbilical Vein Endothelial Cells (HUVECs), increased EB1 comet length by 40%, and induced EB1 to bind all along the microtubules, without modifying its expression level. Such microtubule (+) end stabilization occurred close to the plasma membrane in the vicinity of focal adhesion as shown by TIRF microscopy experiments. Vinflunine completely abolished the effect of VEGF on EB1 comets. Interestingly, we found a correlation between the reduction of EB1 comet length by vinflunine and the inhibition of cell migration. By using 2D gel electrophoresis we demonstrated for the first time that EB1 underwent several post-translational modifications in endothelial and tumor cells. Particularly, the C-terminal EEY sequence was poorly detectable in control and VEGF-treated HUVECs suggesting the existence of a non-tyrosinated form of EB1. By using specific antibodies that specifically recognized and discriminated the native tyrosinated form of EB1 and a putative C-terminal detyrosinated form, we showed that a detyrosinated form of EB1 exists in HUVECs and tumor cells. Interestingly, vinflunine decreased the level of the detyrosinated form and increased the native tyrosinated form of EB1. Using 3-L-Nitrotyrosine incorporation experiments, we concluded that the EB1 C-terminal modifications result from a detyrosination/retyrosination cycle as described for tubulin. Altogether, our results show that vinflunine inhibits endothelial cell migration through an alteration of EB1 comet length and EB1 detyrosination/retyrosination cycle.
Collapse
Affiliation(s)
- Amandine Rovini
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale UMR_S 911, Marseille, France
| | - Géraldine Gauthier
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale UMR_S 911, Marseille, France
- APHM, Hôpital Timone, Marseille, France
| | - Raphaël Bergès
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale UMR_S 911, Marseille, France
| | - Anna Kruczynski
- Centre de Recherche d'Oncologie Expérimentale, Institut de Recherche Pierre Fabre, Toulouse, France
| | - Diane Braguer
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale UMR_S 911, Marseille, France
- APHM, Hôpital Timone, Marseille, France
| | - Stéphane Honoré
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale UMR_S 911, Marseille, France
- APHM, Hôpital Timone, Marseille, France
- * E-mail:
| |
Collapse
|
45
|
Reboutier D, Troadec MB, Cremet JY, Chauvin L, Guen V, Salaun P, Prigent C. Aurora A is involved in central spindle assembly through phosphorylation of Ser 19 in P150Glued. ACTA ACUST UNITED AC 2013; 201:65-79. [PMID: 23547029 PMCID: PMC3613693 DOI: 10.1083/jcb.201210060] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A human Aurora A kinase engineered to be specifically inhibited by the ATP analog 1-Na-PP1 allows dissection of a novel role for this protein in central spindle assembly. Knowledge of Aurora A kinase functions is limited to premetaphase events, particularly centrosome maturation, G2/M transition, and mitotic spindle assembly. The involvement of Aurora A in events after metaphase has only been suggested because appropriate experiments are technically difficult. We report here the design of the first human Aurora A kinase (as-AurA) engineered by chemical genetics techniques. This kinase is fully functional biochemically and in cells, and is rapidly and specifically inhibited by the ATP analogue 1-Naphthyl-PP1 (1-Na-PP1). By treating cells exclusively expressing the as-AurA with 1-Na-PP1, we discovered that Aurora A is required for central spindle assembly in anaphase through phosphorylation of Ser 19 of P150Glued. This paper thus describes a new Aurora A function that takes place after the metaphase-to-anaphase transition and a new powerful tool to search for and study new Aurora A functions.
Collapse
Affiliation(s)
- David Reboutier
- Unité Mixte de Recherche 6290, Centre National de la Recherche Scientifique, F-35043 Rennes, France.
| | | | | | | | | | | | | |
Collapse
|
46
|
Three-dimensional structure of CAP-gly domain of mammalian dynactin determined by magic angle spinning NMR spectroscopy: conformational plasticity and interactions with end-binding protein EB1. J Mol Biol 2013; 425:4249-66. [PMID: 23648839 DOI: 10.1016/j.jmb.2013.04.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/25/2013] [Accepted: 04/26/2013] [Indexed: 11/23/2022]
Abstract
Microtubules and their associated proteins play important roles in vesicle and organelle transport, cell motility and cell division. Perturbation of these processes by mutation typically gives rise to severe pathological conditions. In our efforts to obtain atomic information on microtubule-associated protein/microtubule interactions with the goal to understand mechanisms that might potentially assist in the development of treatments for these diseases, we have determined the three-dimensional structure of CAP-Gly (cytoskeleton-associated protein, glycine-rich) domain of mammalian dynactin by magic angle spinning NMR spectroscopy. We observe two conformations in the β2 strand encompassing residues T43-V44-A45, residues that are adjacent to the disease-associated mutation, G59S. Upon binding of CAP-Gly to microtubule plus-end tracking protein EB1, the CAP-Gly shifts to a single conformer. We find extensive chemical shift perturbations in several stretches of residues of CAP-Gly upon binding to EB1, from which we define accurately the CAP-Gly/EB1 binding interface. We also observe that the loop regions may exhibit unique flexibility, especially in the GKNDG motif, which participates in the microtubule binding. This study in conjunction with our previous reports suggests that conformational plasticity is an intrinsic property of CAP-Gly likely due to its unusually high loop content and may be required for its biological functions.
Collapse
|
47
|
Alberico EO, Lyons DF, Murphy RJ, Philip JT, Duan AR, Correia JJ, Goodson HV. Biochemical evidence that human EB1 does not bind preferentially to the microtubule seam. Cytoskeleton (Hoboken) 2013; 70:317-27. [PMID: 23864329 DOI: 10.1002/cm.21108] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 03/14/2013] [Accepted: 03/15/2013] [Indexed: 11/08/2022]
Abstract
EB1 is a highly conserved microtubule (MT) plus end tracking protein (+TIP) involved in regulating MT dynamics, but the mechanisms of its effects on MT polymerization remain undefined. Resolving this question requires understanding how EB1 interacts with MTs. Previous electron microscopy of the S. pombe EB1 homolog Mal3p suggested that Mal3p binds specifically to the MT seam, implying that EB1 family members promote MT polymerization by stabilizing the seam. However, more recent electron microscopy indicates that Mal3p binds everywhere except the seam. Neither set of experiments investigated the behavior of human EB1, or provided an explanation for why these studies arrived at different answers. To resolve these questions, we have used a combination of MT-binding assays and theoretical modeling with MTBindingSim. Our results indicate that human EB1 binds to the lattice, consistent with the recent Mal3p results, and show that Mal3p-binding assays that were previously interpreted as evidence for preferential seam binding are equally consistent with weak lattice binding. In addition, we used analytical ultracentrifugation to investigate the possibility that the EB1 monomer-dimer equilibrium might contribute to EB1 binding behavior, and determined that the EB1 dimerization dissociation constant is approximately 90 nM. We and others find that the cellular concentration of EB1 is on the order of 200 nM, suggesting that a portion of EB1 may be monomeric at physiological concentrations. These observations lead us to suggest that regulation of EB1 dimerization might play a role in controlling EB1 function.
Collapse
Affiliation(s)
- Emily O Alberico
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Zhu M, Settele F, Kotak S, Sanchez-Pulido L, Ehret L, Ponting CP, Gönczy P, Hoffmann I. MISP is a novel Plk1 substrate required for proper spindle orientation and mitotic progression. J Cell Biol 2013; 200:773-87. [PMID: 23509069 PMCID: PMC3601349 DOI: 10.1083/jcb.201207050] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 02/13/2013] [Indexed: 02/04/2023] Open
Abstract
Precise positioning of the mitotic spindle determines the correct cell division axis and is crucial for organism development. Spindle positioning is mediated through a cortical machinery by capturing astral microtubules, thereby generating pushing/pulling forces at the cell cortex. However, the molecular link between these two structures remains elusive. Here we describe a previously uncharacterized protein, MISP (C19orf21), as a substrate of Plk1 that is required for correct mitotic spindle positioning. MISP is an actin-associated protein throughout the cell cycle. MISP depletion led to an impaired metaphase-to-anaphase transition, which depended on phosphorylation by Plk1. Loss of MISP induced mitotic defects including spindle misorientation accompanied by shortened astral microtubules. Furthermore, we find that MISP formed a complex with and regulated the cortical distribution of the +TIP binding protein p150(glued), a subunit of the dynein-dynactin complex. We propose that Plk1 phosphorylates MISP, thus stabilizing cortical and astral microtubule attachments required for proper mitotic spindle positioning.
Collapse
Affiliation(s)
- Mei Zhu
- Cell Cycle Control and Carcinogenesis, German Cancer Research Center, DKFZ, D-69120 Heidelberg, Germany
| | - Florian Settele
- Cell Cycle Control and Carcinogenesis, German Cancer Research Center, DKFZ, D-69120 Heidelberg, Germany
| | - Sachin Kotak
- School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Swiss Institute for Experimental Cancer Research (ISREC), CH-1015 Lausanne, Switzerland
| | - Luis Sanchez-Pulido
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, England, UK
| | - Lena Ehret
- Cell Cycle Control and Carcinogenesis, German Cancer Research Center, DKFZ, D-69120 Heidelberg, Germany
| | - Chris P. Ponting
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, England, UK
| | - Pierre Gönczy
- School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Swiss Institute for Experimental Cancer Research (ISREC), CH-1015 Lausanne, Switzerland
| | - Ingrid Hoffmann
- Cell Cycle Control and Carcinogenesis, German Cancer Research Center, DKFZ, D-69120 Heidelberg, Germany
| |
Collapse
|
49
|
Guo Y, Kim C, Mao Y. New insights into the mechanism for chromosome alignment in metaphase. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 303:237-62. [PMID: 23445812 DOI: 10.1016/b978-0-12-407697-6.00006-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
During mitosis, duplicated sister chromatids are properly aligned at the metaphase plate of the mitotic spindle before being segregated into two daughter cells. This requires a complex process to ensure proper interactions between chromosomes and spindle microtubules. The kinetochore, the proteinaceous complex assembled at the centromere region on each chromosome, serves as the microtubule attachment site and powers chromosome movement in mitosis. Numerous proteins/protein complexes have been implicated in the connection between kinetochores and dynamic microtubules. Recent studies have advanced our understanding on the nature of the interface between kinetochores and microtubule plus ends in promoting and maintaining their stable attachment. These efforts have demonstrated the importance of this process to ensure accurate chromosome segregation, an issue which has great significance for understanding and controlling abnormal chromosome segregation (aneuploidy) in human genetic diseases and in cancer progression.
Collapse
Affiliation(s)
- Yige Guo
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, NY, USA
| | | | | |
Collapse
|
50
|
Carranza G, Castaño R, Fanarraga ML, Villegas JC, Gonçalves J, Soares H, Avila J, Marenchino M, Campos-Olivas R, Montoya G, Zabala JC. Autoinhibition of TBCB regulates EB1-mediated microtubule dynamics. Cell Mol Life Sci 2013; 70:357-71. [PMID: 22940919 PMCID: PMC11113326 DOI: 10.1007/s00018-012-1114-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 07/26/2012] [Accepted: 07/31/2012] [Indexed: 12/22/2022]
Abstract
Tubulin cofactors (TBCs) participate in the folding, dimerization, and dissociation pathways of the tubulin dimer. Among them, TBCB and TBCE are two CAP-Gly domain-containing proteins that together efficiently interact with and dissociate the tubulin dimer. In the study reported here we showed that TBCB localizes at spindle and midzone microtubules during mitosis. Furthermore, the motif DEI/M-COO(-) present in TBCB, which is similar to the EEY/F-COO(-) element characteristic of EB proteins, CLIP-170, and α-tubulin, is required for TBCE-TBCB heterodimer formation and thus for tubulin dimer dissociation. This motif is responsible for TBCB autoinhibition, and our analysis suggests that TBCB is a monomer in solution. Mutants of TBCB lacking this motif are derepressed and induce microtubule depolymerization through an interaction with EB1 associated with microtubule tips. TBCB is also able to bind to the chaperonin complex CCT containing α-tubulin, suggesting that it could escort tubulin to facilitate its folding and dimerization, recycling or degradation.
Collapse
Affiliation(s)
- Gerardo Carranza
- Departamento de Biología Molecular, Facultad de Medicina, IFIMAV-Universidad de Cantabria, 39011 Santander, Spain
| | - Raquel Castaño
- Departamento de Biología Molecular, Facultad de Medicina, IFIMAV-Universidad de Cantabria, 39011 Santander, Spain
| | - Mónica L. Fanarraga
- Departamento de Biología Molecular, Facultad de Medicina, IFIMAV-Universidad de Cantabria, 39011 Santander, Spain
| | - Juan Carlos Villegas
- Departamento de Anatomía y Biología Celular, Facultad de Medicina, IFIMAV-Universidad de Cantabria, 39011 Santander, Spain
| | - João Gonçalves
- Centro de Química eBioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
- Instituto Gulbenkian de Ciência, Ap. 14, 2781-901 Oeiras, Portugal
- Escola Superior de Tecnologia, Saude de Lisboa, 1990-096 Lisbon, Portugal
- Present Address: Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Room 1070, Toronto, ON M5G 1X5 Canada
| | - Helena Soares
- Centro de Química eBioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
- Instituto Gulbenkian de Ciência, Ap. 14, 2781-901 Oeiras, Portugal
- Escola Superior de Tecnologia, Saude de Lisboa, 1990-096 Lisbon, Portugal
| | - Jesus Avila
- Centro de Biología Molecular (CSIC-UAM), Universidad Autónoma de Madrid, 28049 Cantoblanco, Madrid, Spain
| | - Marco Marenchino
- Spectroscopy and NMR Unit, Structural Biology and Biocomputing Program, Spanish National Cancer Research Center (CNIO), Melchor Fdez. Almagro 3, 28029 Madrid, Spain
| | - Ramón Campos-Olivas
- Spectroscopy and NMR Unit, Structural Biology and Biocomputing Program, Spanish National Cancer Research Center (CNIO), Melchor Fdez. Almagro 3, 28029 Madrid, Spain
| | - Guillermo Montoya
- Macromolecular Crystallography Group, Structural Biology and Biocomputing Program, Spanish National Cancer Research Center (CNIO), Melchor Fdez. Almagro 3, 28029 Madrid, Spain
| | - Juan Carlos Zabala
- Departamento de Biología Molecular, Facultad de Medicina, IFIMAV-Universidad de Cantabria, 39011 Santander, Spain
| |
Collapse
|