1
|
Yao Z, Fang K, Liu G, Bjørås M, Jin VX, Wang J. Integrated analysis of differential intra-chromosomal community interactions: A study of breast cancer. Artif Intell Med 2025; 167:103180. [PMID: 40449144 DOI: 10.1016/j.artmed.2025.103180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 05/15/2025] [Accepted: 05/23/2025] [Indexed: 06/02/2025]
Abstract
It is challenging to analyze the dynamics of intra-chromosomal interactions when considering multiple high-dimensional epigenetic datasets. A computational approach, differential network analysis in intra-chromosomal community interaction (DNAICI), was proposed here to elucidate these dynamics by integrating Hi-C data with other epigenetic data. DNAICI utilized a novel hyperparameter tuning method, for optimizing the network clustering, to identify valid intra-chromosomal community interactions at different resolutions. The approach was first trained on Hi-C data and other epigenetic data in an untreated and one hour estrogen (E2)-treated breast cancer cell line, MCF7, and uncovered two major types of valid intra-chromosomal community interactions (active/repressive) that resembles the properties of A/B compartments (or open/closed chromatin domains). It was further tested on the breast cancer cell line MCF7 and its corresponding tamoxifen-resistant (TR) derivative, MCF7TR, and identified 515 differentially interacting and expressed genes (DIEGs) within intra-chromosomal community interactions. In silico analysis of these DIEGs revealed that endocrine resistance is among the top biological pathways, suggesting an interacting/looping-mediated mechanism in regulating breast cancer tamoxifen resistance. This novel integrated network analysis approach offers a broad application in diverse biological systems for identifying a biological-context-specific differential community interaction.
Collapse
Affiliation(s)
- Zhihao Yao
- Department of Clinical Molecular Biology (EpiGen), Akershus University Hospital and University of Oslo, Lørenskog, Norway; Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Kun Fang
- Division of Biostatistics, Data Science Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; MCW Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Gege Liu
- Department of Pathology, Oslo University Hospital - Norwegian Radium Hospital, Oslo, Norway
| | - Magnar Bjørås
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway; Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Victor X Jin
- Division of Biostatistics, Data Science Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; MCW Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Junbai Wang
- Department of Clinical Molecular Biology (EpiGen), Akershus University Hospital and University of Oslo, Lørenskog, Norway.
| |
Collapse
|
2
|
Majer AD, Hua X, Katona BW. Menin in Cancer. Genes (Basel) 2024; 15:1231. [PMID: 39336822 PMCID: PMC11431421 DOI: 10.3390/genes15091231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
The protein menin is encoded by the MEN1 gene and primarily serves as a nuclear scaffold protein, regulating gene expression through its interaction with and regulation of chromatin modifiers and transcription factors. While the scope of menin's functions continues to expand, one area of growing investigation is the role of menin in cancer. Menin is increasingly recognized for its dual function as either a tumor suppressor or a tumor promoter in a highly tumor-dependent and context-specific manner. While menin serves as a suppressor of neuroendocrine tumor growth, as seen in the cancer risk syndrome multiple endocrine neoplasia type 1 (MEN1) syndrome caused by pathogenic germline variants in MEN1, recent data demonstrate that menin also suppresses cholangiocarcinoma, pancreatic ductal adenocarcinoma, gastric adenocarcinoma, lung adenocarcinoma, and melanoma. On the other hand, menin can also serve as a tumor promoter in leukemia, colorectal cancer, ovarian and endometrial cancers, Ewing sarcoma, and gliomas. Moreover, menin can either suppress or promote tumorigenesis in the breast and prostate depending on hormone receptor status and may also have mixed roles in hepatocellular carcinoma. Here, we review the rapidly expanding literature on the role and function of menin across a broad array of different cancer types, outlining tumor-specific differences in menin's function and mechanism of action, as well as identifying its therapeutic potential and highlighting areas for future investigation.
Collapse
Affiliation(s)
- Ariana D Majer
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xianxin Hua
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bryson W Katona
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Lee HC, Chao HT, Lee SYH, Lin CY, Tsai HJ. The Upstream 1350~1250 Nucleotide Sequences of the Human ENDOU-1 Gene Contain Critical Cis-Elements Responsible for Upregulating Its Transcription during ER Stress. Int J Mol Sci 2023; 24:17393. [PMID: 38139221 PMCID: PMC10744159 DOI: 10.3390/ijms242417393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
ENDOU-1 encodes an endoribonuclease that overcomes the inhibitory upstream open reading frame (uORF)-trap at 5'-untranslated region (UTR) of the CHOP transcript, allowing the downstream coding sequence of CHOP be translated during endoplasmic reticulum (ER) stress. However, transcriptional control of ENDOU-1 remains enigmatic. To address this, we cloned an upstream 2.1 kb (-2055~+77 bp) of human ENDOU-1 (pE2.1p) fused with reporter luciferase (luc) cDNA. The promoter strength driven by pE2.1p was significantly upregulated in both pE2.1p-transfected cells and pE2.1p-injected zebrafish embryos treated with stress inducers. Comparing the luc activities driven by pE2.1p and -1125~+77 (pE1.2p) segments, we revealed that cis-elements located at the -2055~-1125 segment might play a critical role in ENDOU-1 upregulation during ER stress. Since bioinformatics analysis predicted many cis-elements clustered at the -1850~-1250, we further deconstructed this segment to generate pE2.1p-based derivatives lacking -1850~-1750, -1749~-1650, -1649~-1486, -1485~-1350 or -1350~-1250 segments. Quantification of promoter activities driven by these five internal deletion plasmids suggested a repressor binding element within the -1649~-1486 and an activator binding element within the -1350~-1250. Since luc activities driven by the -1649~-1486 were not significantly different between normal and stress conditions, we herein propose that the stress-inducible activator bound at the -1350~-1250 segment makes a major contribution to the increased expression of human ENDOU-1 upon ER stresses.
Collapse
Affiliation(s)
- Hung-Chieh Lee
- Department of Life Science, Fu-Jen Catholic University, New Taipei City 242062, Taiwan
| | - Hsuan-Te Chao
- Department of Life Science, Fu-Jen Catholic University, New Taipei City 242062, Taiwan
| | - Selina Yi-Hsuan Lee
- Faculty of Sciences and Engineering, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Cheng-Yung Lin
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City 25245, Taiwan
| | - Huai-Jen Tsai
- Department of Life Science, Fu-Jen Catholic University, New Taipei City 242062, Taiwan
| |
Collapse
|
4
|
Abou Ziki R, Teinturier R, Luo Y, Cerutti C, Vanacker JM, Poulard C, Bachelot T, Diab-Assaf M, Treilleux I, Zhang CX, Le Romancer M. MEN1 silencing triggers the dysregulation of mTORC1 and MYC pathways in ER+ breast cancer cells. Endocr Relat Cancer 2022; 29:451-465. [PMID: 35583188 DOI: 10.1530/erc-21-0337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/18/2022] [Indexed: 12/24/2022]
Abstract
Menin, encoded by the MEN1 gene, has been identified as a critical factor regulating ESR1 transcription, playing an oncogenic role in ER+ breast cancer (BC) cells. Here, we further dissected the consequences of menin inactivation in ER+ BC cells by focusing on factors within two major pathways involved in BC, mTOR and MYC. MEN1 silencing in MCF7 and T-47D resulted in an increase in phosphor-p70S6K1, phosphor-p85S6K1 and phosphor-4EBP1 expression. The use of an AKT inhibitor inhibited the activation of S6K1 and S6RP triggered by MEN1 knockdown (KD). Moreover, MEN1 silencing in ER+ BC cells led to increased formation of the eIF4E and 4G complex. Clinical studies showed that patients with menin-low breast cancer receiving tamoxifen plus everolimus displayed a trend toward better overall survival. Importantly, MEN1 KD in MCF7 and T-47D cells led to reduced MYC expression. ChIP analysis demonstrated that menin bound not only to the MYC promoter but also to its 5' enhancer. Furthermore, E2-treated MEN1 KD MCF7 cells displayed a decrease in MYC activation, suggesting its role in estrogen-mediated MYC transcription. Finally, expression data mining in tumors revealed a correlation between the expression of MEN1 mRNA and that of several mTORC1 components and targets and a significant inverse correlation between MEN1 and two MYC inhibitory factors, MYCBP2 and MYCT1, in ER+ BC. The current work thus highlights altered mTORC1 and MYC pathways after menin inactivation in ER+ BC cells, providing insight into the crosstalk between menin, mTORC1 and MYC in ER+ BC.
Collapse
Affiliation(s)
- Razan Abou Ziki
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Romain Teinturier
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Yakun Luo
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Catherine Cerutti
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Jean-Marc Vanacker
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Coralie Poulard
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Thomas Bachelot
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France
| | - Mona Diab-Assaf
- Faculty of Sciences II, Lebanese University Fanar, Beirut, Lebanon
| | | | - Chang Xian Zhang
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Muriel Le Romancer
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| |
Collapse
|
5
|
Estrogen Induces c-myc Transcription by Binding to Upstream ERE Element in Promoter. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12146853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Estrogen Receptor α(ERα) is reported to regulate the expression of many target genes by binding to specific estrogen response elements (EREs) in their promoters. c-myc is known to be over-expressed in most of the human carcinomas due to dysregulated transcription, translation, or protein stability. Estrogen (E) can induce the c-myc expression by binding to an upstream enhancer element in its promoter. This suggests that elevated estradiol (E2), a potent form of estrogen, levels could induce the expression of c-myc in breast cancer (BC). The expression of c-myc and estradiol were induced at Stage III and Stage IV of breast cancer. c-myc and estradiol expression was also associated with the established risk factors of breast cancer, such as BMI. Age at the time of the disease was alsocorrelated with the relative expression of c-myc and estradiol (p < 0.0007 and p < 0.000001). The correlation coefficient (R = 0.462) shows a positive relationship between estradiol bound ER, ER, and c-myc. Docking energy −229 kJ/mol suggests the binding affinity of estradiol bound ER binding to 500 bp upstream of proximal promotor of c-myc at three distinct positions. The data presented in this study proposed that the expression of c-myc and estradiol are directly correlated in breast cancer. The prognostic utility of an induced level of c-myc associated with the normal status of the c-myc gene and estradiol for patients with metastatic carcinoma should be explored further.
Collapse
|
6
|
Jafari H, Hussain S, Campbell MJ. Nuclear Receptor Coregulators in Hormone-Dependent Cancers. Cancers (Basel) 2022; 14:2402. [PMID: 35626007 PMCID: PMC9139824 DOI: 10.3390/cancers14102402] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/09/2022] [Indexed: 12/10/2022] Open
Abstract
Nuclear receptors (NRs) function collectively as a transcriptional signaling network that mediates gene regulatory actions to either maintain cellular homeostasis in response to hormonal, dietary and other environmental factors, or act as orphan receptors with no known ligand. NR complexes are large and interact with multiple protein partners, collectively termed coregulators. Coregulators are essential for regulating NR activity and can dictate whether a target gene is activated or repressed by a variety of mechanisms including the regulation of chromatin accessibility. Altered expression of coregulators contributes to a variety of hormone-dependent cancers including breast and prostate cancers. Therefore, understanding the mechanisms by which coregulators interact with and modulate the activity of NRs provides opportunities to develop better prognostic and diagnostic approaches, as well as novel therapeutic targets. This review aims to gather and summarize recent studies, techniques and bioinformatics methods used to identify distorted NR coregulator interactions that contribute as cancer drivers in hormone-dependent cancers.
Collapse
Affiliation(s)
- Hedieh Jafari
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA;
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA;
| | - Shahid Hussain
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA;
| | - Moray J. Campbell
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA;
| |
Collapse
|
7
|
Yin BK, Wang ZQ. Beyond HAT Adaptor: TRRAP Liaisons with Sp1-Mediated Transcription. Int J Mol Sci 2021; 22:12445. [PMID: 34830324 PMCID: PMC8625110 DOI: 10.3390/ijms222212445] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 12/19/2022] Open
Abstract
The members of the phosphatidylinositol 3-kinase-related kinase (PIKK) family play vital roles in multiple biological processes, including DNA damage response, metabolism, cell growth, mRNA decay, and transcription. TRRAP, as the only member lacking the enzymatic activity in this family, is an adaptor protein for several histone acetyltransferase (HAT) complexes and a scaffold protein for multiple transcription factors. TRRAP has been demonstrated to regulate various cellular functions in cell cycle progression, cell stemness maintenance and differentiation, as well as neural homeostasis. TRRAP is known to be an important orchestrator of many molecular machineries in gene transcription by modulating the activity of some key transcription factors, including E2F1, c-Myc, p53, and recently, Sp1. This review summarizes the biological and biochemical studies on the action mode of TRRAP together with the transcription factors, focusing on how TRRAP-HAT mediates the transactivation of Sp1-governing biological processes, including neurodegeneration.
Collapse
Affiliation(s)
- Bo-Kun Yin
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), 07745 Jena, Germany;
| | - Zhao-Qi Wang
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), 07745 Jena, Germany;
- Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
8
|
Bardia A, Su F, Solovieff N, Im SA, Sohn J, Lee KS, Campos-Gomez S, Jung KH, Colleoni M, Vázquez RV, Franke F, Hurvitz S, Harbeck N, Chow L, Taran T, Rodriguez Lorenc K, Babbar N, Tripathy D, Lu YS. Genomic Profiling of Premenopausal HR+ and HER2- Metastatic Breast Cancer by Circulating Tumor DNA and Association of Genetic Alterations With Therapeutic Response to Endocrine Therapy and Ribociclib. JCO Precis Oncol 2021; 5:PO.20.00445. [PMID: 34504990 PMCID: PMC8423397 DOI: 10.1200/po.20.00445] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 04/14/2021] [Accepted: 07/28/2021] [Indexed: 12/31/2022] Open
Abstract
PURPOSE This analysis evaluated the genomic landscape of premenopausal patients with hormone receptor–positive and human epidermal growth factor receptor 2–negative advanced breast cancer and the association of genetic alterations with response to ribociclib in the phase III MONALEESA-7 trial. METHODS Premenopausal patients were randomly assigned 1:1 to receive endocrine therapy plus ribociclib or placebo. Plasma collected at baseline was sequenced using targeted next-generation sequencing for approximately 600 relevant cancer genes. The association of circulating tumor DNA alterations with progression-free survival (PFS) was evaluated to identify biomarkers of response and resistance to ribociclib. RESULTS Baseline circulating tumor DNA was sequenced in 565 patients; 489 had evidence of ≥ 1 alteration. The most frequent alterations included PIK3CA (28%), TP53 (19%), CCND1 (10%), MYC (8%), GATA3 (8%), receptor tyrosine kinases (17%), and the Chr8p11.23 locus (12%). A treatment benefit of ribociclib was seen with wild-type (hazard ratio [HR] 0.45 [95% CI, 0.33 to 0.62]) and altered (HR 0.57 [95% CI, 0.36 to 0.9]) PIK3CA. Overall, patients with altered CCND1 had shorter PFS regardless of treatment, suggesting CCND1 as a potential prognostic biomarker. Benefit with ribociclib was seen in patients with altered (HR 0.21 [95% CI, 0.08 to 0.54]) or wild-type (HR 0.52 [95% CI, 0.39 to 0.68]) CCND1, but greater benefit was observed with altered, suggesting predictive potential of CCND1. Alterations in TP53, MYC, Chr8p11.23 locus, and receptor tyrosine kinases were associated with worse PFS, but ribociclib benefit was independent of alteration status. CONCLUSION In this study—to our knowledge, the first large study of premenopausal patients with hormone receptor–positive and human epidermal growth factor receptor 2–negative advanced breast cancer—multiple genomic alterations were associated with poor outcome. A PFS benefit of ribociclib was observed regardless of gene alteration status, although in this exploratory analysis, a magnitude of benefits varied by alteration.
Collapse
Affiliation(s)
- Aditya Bardia
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA
| | - Fei Su
- Novartis Pharmaceuticals Corporation, East Hanover, NJ
| | | | - Seock-Ah Im
- Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Joohyuk Sohn
- Yonsei Cancer Center, Yonsei University Health System, Seoul, South Korea
| | - Keun Seok Lee
- Center for Breast Cancer, National Cancer Center, Goyang, South Korea
| | - Saul Campos-Gomez
- Centro Oncológico Estatal, Instituto de Seguridad Social del Estado de México y Municipios, Toluca, Mexico
| | - Kyung Hae Jung
- Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Marco Colleoni
- Division of Medical Senology, IEO, European Institute of Oncology, IRCCS, Milan, Italy
| | | | - Fabio Franke
- Hospital de Caridade de Ijuí, CACON, Ijuí, Brazil
| | - Sara Hurvitz
- University of California, Los Angeles Jonsson Comprehensive Cancer Center, Los Angeles, CA
| | - Nadia Harbeck
- Department of Obstetrics and Gynecology, Breast Center, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Louis Chow
- Organisation for Oncology and Translational Research, Hong Kong, China
| | - Tetiana Taran
- Novartis Pharmaceuticals Corporation, East Hanover, NJ
| | | | | | - Debu Tripathy
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Yen-Shen Lu
- National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
9
|
ChIP-GSM: Inferring active transcription factor modules to predict functional regulatory elements. PLoS Comput Biol 2021; 17:e1009203. [PMID: 34292930 PMCID: PMC8330942 DOI: 10.1371/journal.pcbi.1009203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 08/03/2021] [Accepted: 06/20/2021] [Indexed: 11/19/2022] Open
Abstract
Transcription factors (TFs) often function as a module including both master factors and mediators binding at cis-regulatory regions to modulate nearby gene transcription. ChIP-seq profiling of multiple TFs makes it feasible to infer functional TF modules. However, when inferring TF modules based on co-localization of ChIP-seq peaks, often many weak binding events are missed, especially for mediators, resulting in incomplete identification of modules. To address this problem, we develop a ChIP-seq data-driven Gibbs Sampler to infer Modules (ChIP-GSM) using a Bayesian framework that integrates ChIP-seq profiles of multiple TFs. ChIP-GSM samples read counts of module TFs iteratively to estimate the binding potential of a module to each region and, across all regions, estimates the module abundance. Using inferred module-region probabilistic bindings as feature units, ChIP-GSM then employs logistic regression to predict active regulatory elements. Validation of ChIP-GSM predicted regulatory regions on multiple independent datasets sharing the same context confirms the advantage of using TF modules for predicting regulatory activity. In a case study of K562 cells, we demonstrate that the ChIP-GSM inferred modules form as groups, activate gene expression at different time points, and mediate diverse functional cellular processes. Hence, ChIP-GSM infers biologically meaningful TF modules and improves the prediction accuracy of regulatory region activities.
Collapse
|
10
|
Prakash A, Saxena VK, Kumar R, Tomar S, Singh MK, Singh G. Differential gene expression in liver of colored broiler chicken divergently selected for residual feed intake. Trop Anim Health Prod 2021; 53:403. [PMID: 34268607 DOI: 10.1007/s11250-021-02844-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 07/02/2021] [Indexed: 10/20/2022]
Abstract
Feed constitutes about 60-70% of the total cost of poultry production. So maximizing the feed efficiency will reduce production cost. The rapid growth in the juvenile period is essential to achieve higher body weight. Therefore, identifying the genes and pathways involved in rapid growth at an early age with a lesser requirement of feed is of utmost importance to further economize the broiler production. The efficiency of feed utilization was measured using RFI (residual feed intake). The present study aimed to estimate the RFI (0-5 week) in a population of indigenously developed colored broiler sire line chicken as well as identifying the differentially expressed genes influencing RFI in high and low RFI groups. The liver samples of high and low RFI broiler chicken aged 35 days were used for microarray analysis. A total of 2798 differentially expressed genes (DEGs) were identified, out of which 913 genes were downregulated and 1885 were upregulated. The fold change varied from - 475.17 to 552.94. A subset of genes was confirmed by qRT-PCR, and outcomes were matched well with microarray data. In the functional annotation study of DEGs, the highest significant GO (Gene Ontology) terms in the biological process included protein transport, protein localization, regulation of apoptosis, and mitochondrial transport. Gene network analysis of these DEGs plays an important role to understand the interaction among genes. Study of the important genes which were differentially expressed and the related molecular pathways in this population may hold the potential for future breeding strategies for augmenting feed efficiency.
Collapse
Affiliation(s)
- A Prakash
- College of Veterinary Science, GADVASU, Rampura Phul, Bathinda, Punjab, India.
| | - V K Saxena
- Division of Avian Genetics and Breeding, Central Avian Research Institute - Indian Council of Agricultural Research, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Ravi Kumar
- Department of Animal Biotechnology, National Institute of Animal Biotechnology, Hyderabad, 500075, Telangana, India
| | - S Tomar
- Division of Avian Genetics and Breeding, Central Avian Research Institute - Indian Council of Agricultural Research, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - M K Singh
- COVS, DUVASU, Mathura, Uttar Pradesh, India
| | - Gagandeep Singh
- College of Veterinary Science, GADVASU, Rampura Phul, Bathinda, Punjab, India
| |
Collapse
|
11
|
Jiang JC, Rothnagel JA, Upton KR. Integrated transcription factor profiling with transcriptome analysis identifies L1PA2 transposons as global regulatory modulators in a breast cancer model. Sci Rep 2021; 11:8083. [PMID: 33850167 PMCID: PMC8044218 DOI: 10.1038/s41598-021-86395-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/26/2021] [Indexed: 12/13/2022] Open
Abstract
While transposons are generally silenced in somatic tissues, many transposons escape epigenetic repression in epithelial cancers, become transcriptionally active and contribute to the regulation of human gene expression. We have developed a bioinformatic pipeline for the integrated analysis of transcription factor binding and transcriptomic data to identify transposon-derived promoters that are activated in specific diseases and developmental states. We applied this pipeline to a breast cancer model, and found that the L1PA2 transposon subfamily contributes abundant regulatory sequences to co-ordinated transcriptional regulation in breast cancer. Transcription factor profiling demonstrates that over 27% of L1PA2 transposons harbour co-localised binding sites of functionally interacting, cancer-associated transcription factors in MCF7 cells, a cell line used to model breast cancer. Transcriptomic analysis reveals that L1PA2 transposons also contribute transcription start sites to up-regulated transcripts in MCF7 cells, including some transcripts with established oncogenic properties. In addition, we verified the utility of our pipeline on other transposon subfamilies, as well as on leukemia and lung carcinoma cell lines. We demonstrate that the normally quiescent regulatory activities of transposons can be activated and alter the cancer transcriptome. In particular, the L1PA2 subfamily contributes abundant regulatory sequences, and likely plays a global role in modulating breast cancer transcriptional regulation. Understanding the regulatory impact of L1PA2 on breast cancer genomes provides additional insights into cancer genome regulation, and may provide novel biomarkers for disease diagnosis, prognosis and therapy.
Collapse
Affiliation(s)
- Jiayue-Clara Jiang
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Joseph A Rothnagel
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Kyle R Upton
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
12
|
Simeone P, Tacconi S, Longo S, Lanuti P, Bravaccini S, Pirini F, Ravaioli S, Dini L, Giudetti AM. Expanding Roles of De Novo Lipogenesis in Breast Cancer. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:3575. [PMID: 33808259 PMCID: PMC8036647 DOI: 10.3390/ijerph18073575] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/12/2021] [Accepted: 03/27/2021] [Indexed: 12/23/2022]
Abstract
In recent years, lipid metabolism has gained greater attention in several diseases including cancer. Dysregulation of fatty acid metabolism is a key component in breast cancer malignant transformation. In particular, de novo lipogenesis provides the substrate required by the proliferating tumor cells to maintain their membrane composition and energetic functions during enhanced growth. However, it appears that not all breast cancer subtypes depend on de novo lipogenesis for fatty acid replenishment. Indeed, while breast cancer luminal subtypes rely on de novo lipogenesis, the basal-like receptor-negative subtype overexpresses genes involved in the utilization of exogenous-derived fatty acids, in the synthesis of triacylglycerols and lipid droplets, and fatty acid oxidation. These metabolic differences are specifically associated with genomic and proteomic changes that can perturb lipogenic enzymes and related pathways. This behavior is further supported by the observation that breast cancer patients can be stratified according to their molecular profiles. Moreover, the discovery that extracellular vesicles act as a vehicle of metabolic enzymes and oncometabolites may provide the opportunity to noninvasively define tumor metabolic signature. Here, we focus on de novo lipogenesis and the specific differences exhibited by breast cancer subtypes and examine the functional contribution of lipogenic enzymes and associated transcription factors in the regulation of tumorigenic processes.
Collapse
Affiliation(s)
- Pasquale Simeone
- Department of Medicine and Aging Sciences, University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (P.S.); (P.L.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy
| | - Stefano Tacconi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy; (S.T.); (S.L.)
| | - Serena Longo
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy; (S.T.); (S.L.)
| | - Paola Lanuti
- Department of Medicine and Aging Sciences, University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (P.S.); (P.L.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy
| | - Sara Bravaccini
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (S.B.); (F.P.); (S.R.)
| | - Francesca Pirini
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (S.B.); (F.P.); (S.R.)
| | - Sara Ravaioli
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (S.B.); (F.P.); (S.R.)
| | - Luciana Dini
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy;
- CNR Nanotec, 73100 Lecce, Italy
| | - Anna M. Giudetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy; (S.T.); (S.L.)
| |
Collapse
|
13
|
Wang L, Zhang S, Wang X. The Metabolic Mechanisms of Breast Cancer Metastasis. Front Oncol 2021; 10:602416. [PMID: 33489906 PMCID: PMC7817624 DOI: 10.3389/fonc.2020.602416] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is one of the most common malignancy among women worldwide. Metastasis is mainly responsible for treatment failure and is the cause of most breast cancer deaths. The role of metabolism in the progression and metastasis of breast cancer is gradually being emphasized. However, the regulatory mechanisms that conduce to cancer metastasis by metabolic reprogramming in breast cancer have not been expounded. Breast cancer cells exhibit different metabolic phenotypes depending on their molecular subtypes and metastatic sites. Both intrinsic factors, such as MYC amplification, PIK3CA, and TP53 mutations, and extrinsic factors, such as hypoxia, oxidative stress, and acidosis, contribute to different metabolic reprogramming phenotypes in metastatic breast cancers. Understanding the metabolic mechanisms underlying breast cancer metastasis will provide important clues to develop novel therapeutic approaches for treatment of metastatic breast cancer.
Collapse
Affiliation(s)
- Lingling Wang
- Department of Breast Surgery, Zhejiang Provincial People's Hospital, Hangzhou, China.,Department of Surgical Oncology and Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shizhen Zhang
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaochen Wang
- Department of Breast Surgery, Zhejiang Provincial People's Hospital, Hangzhou, China
| |
Collapse
|
14
|
Involvement of the MEN1 Gene in Hormone-Related Cancers: Clues from Molecular Studies, Mouse Models, and Patient Investigations. ENDOCRINES 2020. [DOI: 10.3390/endocrines1020007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
MEN1 mutation predisposes patients to multiple endocrine neoplasia type 1 (MEN1), a genetic syndrome associated with the predominant co-occurrence of endocrine tumors. Intriguingly, recent evidence has suggested that MEN1 could also be involved in the development of breast and prostate cancers, two major hormone-related cancers. The first clues as to its possible role arose from the identification of the physical and functional interactions between the menin protein, encoded by MEN1, and estrogen receptor α and androgen receptor. In parallel, our team observed that aged heterozygous Men1 mutant mice developed cancerous lesions in mammary glands of female and in the prostate of male mutant mice at low frequencies, in addition to endocrine tumors. Finally, observations made both in MEN1 patients and in sporadic breast and prostate cancers further confirmed the role played by menin in these two cancers. In this review, we present the currently available data concerning the complex and multifaceted involvement of MEN1 in these two types of hormone-dependent cancers.
Collapse
|
15
|
Intrinsic and Extrinsic Factors Governing the Transcriptional Regulation of ESR1. Discov Oncol 2020; 11:129-147. [PMID: 32592004 DOI: 10.1007/s12672-020-00388-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023] Open
Abstract
Transcriptional regulation of ESR1, the gene that encodes for estrogen receptor α (ER), is critical for regulating the downstream effects of the estrogen signaling pathway in breast cancer such as cell growth. ESR1 is a large and complex gene that is regulated by multiple regulatory elements, which has complicated our understanding of how ESR1 expression is controlled in the context of breast cancer. Early studies characterized the genomic structure of ESR1 with subsequent studies focused on identifying intrinsic (chromatin environment, transcription factors, signaling pathways) and extrinsic (tumor microenvironment, secreted factors) mechanisms that impact ESR1 gene expression. Currently, the introduction of genomic sequencing platforms and additional genome-wide technologies has provided additional insight on how chromatin structures may coordinate with these intrinsic and extrinsic mechanisms to regulate ESR1 expression. Understanding these interactions will allow us to have a clearer understanding of how ESR1 expression is regulated and eventually provide clues on how to influence its regulation with potential treatments. In this review, we highlight key studies concerning the genomic structure of ESR1, mechanisms that affect the dynamics of ESR1 expression, and considerations towards affecting ESR1 expression and hormone responsiveness in breast cancer.
Collapse
|
16
|
Attia YM, Shouman SA, Salama SA, Ivan C, Elsayed AM, Amero P, Rodriguez-Aguayo C, Lopez-Berestein G. Blockade of CDK7 Reverses Endocrine Therapy Resistance in Breast Cancer. Int J Mol Sci 2020; 21:ijms21082974. [PMID: 32340192 PMCID: PMC7215326 DOI: 10.3390/ijms21082974] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/15/2020] [Accepted: 04/18/2020] [Indexed: 12/19/2022] Open
Abstract
Cyclin-dependent kinase (CDK)-7 inhibitors are emerging as promising drugs for the treatment of different types of cancer that show chemotherapy resistance. Evaluation of the effects of CDK7 inhibitor, THZ1, alone and combined with tamoxifen is of paramount importance. Thus, in the current work, we assessed the effects of THZ1 and/or tamoxifen in two estrogen receptor-positive (ER+) breast cancer cell lines (MCF7) and its tamoxifen resistant counterpart (LCC2) in vitro and in xenograft mouse models of breast cancer. Furthermore, we evaluated the expression of CDK7 in clinical samples from breast cancer patients. Cell viability, apoptosis, and genes involved in cell cycle regulation and tamoxifen resistance were determined. Tumor volume and weight, proliferation marker (Ki67), angiogenic marker (CD31), and apoptotic markers were assayed. Bioinformatic data indicated CDK7 expression was associated with negative prognosis, enhanced pro-oncogenic pathways, and decreased response to tamoxifen. Treatment with THZ1 enhanced tamoxifen-induced cytotoxicity, while it inhibited genes involved in tumor progression in MCF-7 and LCC2 cells. In vivo, THZ1 boosted the effect of tamoxifen on tumor weight and tumor volume, reduced Ki67 and CD31 expression, and increased apoptotic cell death. Our findings identify CDK7 as a possible therapeutic target for breast cancer whether it is sensitive or resistant to tamoxifen therapy.
Collapse
Affiliation(s)
- Yasmin M. Attia
- Pharmacology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Kasr Al Eini Street, Fom El Khalig, Cairo 11796, Egypt; (Y.M.A.); (S.A.S.)
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.I.); (A.M.E.); (P.A.); (C.R.-A.); (G.L.-B.)
| | - Samia A. Shouman
- Pharmacology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Kasr Al Eini Street, Fom El Khalig, Cairo 11796, Egypt; (Y.M.A.); (S.A.S.)
| | - Salama A. Salama
- Pharmacology & Toxicology Department, Al-Azhar University, Cairo 11675, Egypt
- Correspondence: ; Tel.: +20-109-550-8894
| | - Cristina Ivan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.I.); (A.M.E.); (P.A.); (C.R.-A.); (G.L.-B.)
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Abdelrahman M. Elsayed
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.I.); (A.M.E.); (P.A.); (C.R.-A.); (G.L.-B.)
- Pharmacology & Toxicology Department, Al-Azhar University, Cairo 11675, Egypt
| | - Paola Amero
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.I.); (A.M.E.); (P.A.); (C.R.-A.); (G.L.-B.)
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.I.); (A.M.E.); (P.A.); (C.R.-A.); (G.L.-B.)
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.I.); (A.M.E.); (P.A.); (C.R.-A.); (G.L.-B.)
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
17
|
Chen R, Guo S, Yang C, Sun L, Zong B, Li K, Liu L, Tu G, Liu M, Liu S. Although c‑MYC contributes to tamoxifen resistance, it improves cisplatin sensitivity in ER‑positive breast cancer. Int J Oncol 2020; 56:932-944. [PMID: 32319562 PMCID: PMC7050981 DOI: 10.3892/ijo.2020.4987] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 01/24/2020] [Indexed: 12/19/2022] Open
Abstract
Tamoxifen (TAM) resistance is a major challenge in the treatment of estrogen receptor‑positive (ER+) breast cancer. To date, to the best of our knowledge, there are only a few studies available examining the response of patients with TAM‑resistant breast cancer to chemotherapy, and the guidelines do not specify recommended drugs for these patients. In the present study, TAM‑resistant cells were shown to exhibit increased proliferation and invasion compared with the parent cells, and the increased expression of c‑MYC was demonstrated to play an important role in TAM resistance. Furthermore, the TAM‑resistant cells were significantly more sensitive to cisplatin compared with the parent cells, and the silencing of c‑MYC expression desensitized the cells to cisplatin through the inhibition of the cell cycle. An increased c‑MYC expression was observed in 28 pairs of primary and metastatic tumors from patients treated with TAM, and the clinical remission rate of cisplatin‑based chemotherapy was significantly higher compared with other chemotherapy‑based regimens in 122 patients with TAM resistant breast cancer. Taken together, the data of the present study demonstrated that although c‑MYC was involved in TAM resistance, it increased the sensitivity of ER+ breast cancer to cisplatin. Thus, cisplatin may be a preferred chemotherapeutic agent for the treatment of patients with TAM‑resistant breast cancer, particularly in patients where the rapid control of disease progression is required.
Collapse
Affiliation(s)
- Rui Chen
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Shipeng Guo
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Chengcheng Yang
- Department of Breast Surgery, The People's Hospital of Deyang, Deyang, Sichuan 618000, P.R. China
| | - Lu Sun
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Beige Zong
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Kang Li
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Li Liu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Gang Tu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Manran Liu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Shengchun Liu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
18
|
Liang C, Niu L, Xiao Z, Zheng C, Shen Y, Shi Y, Han X. Whole-genome sequencing of prostate cancer reveals novel mutation-driven processes and molecular subgroups. Life Sci 2019; 254:117218. [PMID: 31884093 DOI: 10.1016/j.lfs.2019.117218] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 12/02/2019] [Accepted: 12/19/2019] [Indexed: 01/27/2023]
Abstract
Prostate cancer (PCa) is the second most frequently diagnosed cancer in men. However, its genetic characteristics in the Chinese population have not been extensively profiled. Here we screened 27 Chinese patients and preformed whole-genome sequencing to dissect their genomic patterns. We found that 18.5% (5/27) tumors harbored non-protein coding mutations on FOXA1. Besides, novel focal amplifications/deletions involving ZBTB7B, SLC4A4, TBX18, CYSLTR2 and EFNA5 were frequently present in tumors. Notably, group specificity of base substitution signature B displayed a strong link to hotspot mutations on SPOP gene. Furthermore, based on six rearrangement signatures, tumors were assigned to five subgroups that revealed different biological mechanisms. Of which, tandem duplicator subgroup harbored all CDK12 mutations, small deletor subgroup owned 75% TP53 changes, and large deletor subgroup had 66.7% SPOP mutations. Taken together, we provide a comprehensive view of genomic patterns which affect the critical cell regulators of PCa in the Chinese population. Our findings may provide valuable insights for designing specific treatments for Chinese patients with PCa.
Collapse
Affiliation(s)
- Caixia Liang
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Lijuan Niu
- Department of Ultrasound, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Zejun Xiao
- Department of Urinary Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Cuiling Zheng
- Department of Clinical Laboratory, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yinchen Shen
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yuankai Shi
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.
| | - Xiaohong Han
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Department of Clinical Laboratory, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
19
|
Ectopic Methylation of a Single Persistently Unmethylated CpG in the Promoter of the Vitellogenin Gene Abolishes Its Inducibility by Estrogen through Attenuation of Upstream Stimulating Factor Binding. Mol Cell Biol 2019; 39:MCB.00436-19. [PMID: 31548262 DOI: 10.1128/mcb.00436-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 09/15/2019] [Indexed: 01/02/2023] Open
Abstract
The enhancer/promoter of the vitellogenin II gene (VTG) has been extensively studied as a model system of vertebrate transcriptional control. While deletion mutagenesis and in vivo footprinting identified the transcription factor (TF) binding sites governing its tissue specificity, DNase hypersensitivity and DNA methylation studies revealed the epigenetic changes accompanying its hormone-dependent activation. Moreover, upon induction with estrogen (E2), the region flanking the estrogen-responsive element (ERE) was reported to undergo active DNA demethylation. We now show that although the VTG ERE is methylated in embryonic chicken liver and in LMH/2A hepatocytes, its induction by E2 was not accompanied by extensive demethylation. In contrast, E2 failed to activate a VTG enhancer/promoter-controlled luciferase reporter gene methylated by SssI. Surprisingly, this inducibility difference could be traced not to the ERE but rather to a single CpG in an E-box (CACGTG) sequence upstream of the VTG TATA box, which is unmethylated in vivo but methylated by SssI. We demonstrate that this E-box binds the upstream stimulating factor USF1/2. Selective methylation of the CpG within this binding site with an E-box-specific DNA methyltransferase, Eco72IM, was sufficient to attenuate USF1/2 binding in vitro and abolish the hormone-induced transcription of the VTG gene in the reporter system.
Collapse
|
20
|
McKiernan PJ, Smith SGJ, Durham AL, Adcock IM, McElvaney NG, Greene CM. The Estrogen-Induced miR-19 Downregulates Secretory Leucoprotease Inhibitor Expression in Monocytes. J Innate Immun 2019; 12:90-102. [PMID: 31266011 DOI: 10.1159/000500419] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 04/16/2019] [Indexed: 12/11/2022] Open
Abstract
Compared to females, males are more susceptible to acute viral and other respiratory tract infections that display greater severity and higher mortality. In contrast, females tend to fare worse with chronic inflammatory diseases. Circulating 17β-estradiol (E2) is a female-specific factor that may influence the progression of human lung diseases. Here we hypothesize that E2 modulates the inflammatory response of monocytes through microRNA (miRNA)-based modulation of secretory leucoprotease inhibitor (SLPI), an antiprotease with immunomodulatory effects. Monocytic cells were treated ± E2, and differentially expressed miRNAs were identified using PCR profiling. Cells were transfected with miRNA mimics or antimiRs and SLPI mRNA and protein levels were quantified. Luciferase activity assay using wildtype and ΔmiR-19a/b-SLPI3'UTR reporter constructs and chromatin immunoprecipitation on E2-treated monocytes were performed. E2 downregulated SLPI and upregulated miR-19 expression in monocytes. Transfection with premiR-19b reduced SLPI mRNA and protein levels and this effect was abrogated using antimiRs against miR-19b. miR-19b directly binds the SLPI 3'UTR. The mechanism responsible for E2-mediated upregulation of miR-19 occurs via increased MIR17HG promoter activity mediated by c-MYC. Overall E2 decreases SLPI expression in human monocytic cells, via changes in miRNA expression and highlights the potential for estrogen to modulate the innate immune system.
Collapse
Affiliation(s)
- Paul J McKiernan
- Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Stephen G J Smith
- Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Andrew L Durham
- Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Ian M Adcock
- Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Noel G McElvaney
- Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Catherine M Greene
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland,
| |
Collapse
|
21
|
Kulkoyluoglu-Cotul E, Arca A, Madak-Erdogan Z. Crosstalk between Estrogen Signaling and Breast Cancer Metabolism. Trends Endocrinol Metab 2019; 30:25-38. [PMID: 30471920 DOI: 10.1016/j.tem.2018.10.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/23/2018] [Accepted: 10/26/2018] [Indexed: 02/06/2023]
Abstract
Estrogens and estrogen receptors (ERs) regulate metabolism in both normal physiology and in disease. The metabolic characteristics of intrinsic breast cancer subtypes change based on their ER expression. Crosstalk between estrogen signaling elements and several key metabolic regulators alters metabolism in breast cancer cells, and enables tumors to rewire their metabolism to adapt to poor perfusion, transient nutrient deprivation, and increased acidity. This leads to the selection of drug-resistant and metastatic clones. In this review we discuss studies revealing the role of estrogen signaling elements in drug resistance development and metabolic adaptation during breast cancer progression.
Collapse
Affiliation(s)
- Eylem Kulkoyluoglu-Cotul
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, Urbana, IL, USA. https://twitter.com/@eylemkul
| | - Alexandra Arca
- School of Kinesiology and Community Health, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Zeynep Madak-Erdogan
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, Urbana, IL, USA; Division of Nutritional Sciences, University of Illinois, Urbana-Champaign, Urbana, IL, USA; Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, IL, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL, USA; National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
22
|
Jaiswal B, Gupta A. Modulation of Nuclear Receptor Function by Chromatin Modifying Factor TIP60. Endocrinology 2018; 159:2199-2215. [PMID: 29420715 DOI: 10.1210/en.2017-03190] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/31/2018] [Indexed: 02/07/2023]
Abstract
Nuclear receptors (NRs) are transcription factors that bind to specific DNA sequences known as hormone response elements located upstream of their target genes. Transcriptional activity of NRs can be modulated by binding of the compatible ligand and transient interaction with cellular coregulators, functioning either as coactivators or as corepressors. Many coactivator proteins possess intrinsic histone acetyltransferase (HAT) activity that catalyzes the acetylation of specific lysine residues in histone tails and loosens the histone-DNA interaction, thereby facilitating access of transcriptional factors to the regulatory sequences of the DNA. Tat interactive protein 60 (TIP60), a member of the Mof-Ybf2-Sas2-TIP60 family of HAT protein, is a multifunctional coregulator that controls a number of physiological processes including apoptosis, DNA damage repair, and transcriptional regulation. Over the last two decades or so, TIP60 has been extensively studied for its role as NR coregulator, controlling various aspect of steroid receptor functions. The aim of this review is to summarize the findings on the role of TIP60 as a coregulator for different classes of NRs and its overall functional implications. We also discuss the latest studies linking TIP60 to NR-associated metabolic disorders and cancers for its potential use as a therapeutic drug target in future.
Collapse
Affiliation(s)
- Bharti Jaiswal
- Department of Life Sciences, Shiv Nadar University, Greater Noida, Uttar Pradesh, India
| | - Ashish Gupta
- Department of Life Sciences, Shiv Nadar University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
23
|
Chen CC, Chiu CC, Lee KD, Hsu CC, Chen HC, Huang THM, Hsiao SH, Leu YW. JAK2V617F influences epigenomic changes in myeloproliferative neoplasms. Biochem Biophys Res Commun 2017; 494:470-476. [PMID: 29066347 DOI: 10.1016/j.bbrc.2017.10.108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 10/20/2017] [Indexed: 12/11/2022]
Abstract
Negative valine (V) to phenylalanine (F) switch at the Janus kinase (JAK2) 617 codon (V617F) is the dominant driver mutation in patients with myeloproliferative neoplasms (MPNs). JAK2V617F was proved to be sufficient for cell transformation; however, independent mutations might influence the following epigenomic modifications. To assess the JAK2V617F-induced downstream epigenomic changes without interferences, we profiled the epigenomic changes in ectopically expressed JAK2V617F in Ba/F3 cells. Antibodies against phosphorylated signal transducer and activator of transcription 3 (pSTAT3) and enhancer of zeste homolog 2 (EZH2) were used for chromatin-immunoprecipitation sequencing (ChIP-seq) to detect the downstream epigenomic targets in the JAK2-STAT3 signaling pathway. To confirm the JAK2V617F-induced epigenetic changes in vivo, DNA methylation changes in the target loci in patients with MPNs were detected through methylation-specific polymerase chain reaction and were clustered against the changes within controls. We found that ectopically expressed JAK2V617F in Ba/F3 cells reduced the binding specificity; it was associated with cis-regulatory elements and recognized DNA motifs in both pSTAT3-downstream and EZH2-associated targets. Overlapping target loci between the control and JAK2V617F were <3% and 0.4%, respectively, as identified through pSTAT3 and EZH2 ChIP-seq. Furthermore, the methylation changes in the direct target loci (FOXH1, HOXC9, and SRF) were clustered independently from the control locus (L1TD1) and other mutation genes (HMGA2 and Lin28A) in the analyzed MPN samples. Therefore, JAK2V617F influences target binding in both pSTAT3 and EZH2. Without mutations in epigenetic regulators, JAK2V617F can induce downstream epigenomic modifications. Thus, epigenetic changes in JAK2 downstream targets might be trackable in vivo.
Collapse
Affiliation(s)
- Chih-Cheng Chen
- Department of Hematology and Oncology, Chang Gung Memorial Hospital, Chiayi, Chang Gung University College of Medicine, Taoyuan, Taiwan; Chang Gung Institute of Technology, Taoyuan, Taiwan
| | - Chia-Chen Chiu
- Department of Hematology and Oncology, Chang Gung Memorial Hospital, Chiayi, Chang Gung University College of Medicine, Taoyuan, Taiwan; Chang Gung Institute of Technology, Taoyuan, Taiwan; Human Epigenomics Center, Department of Life Science, Institute of Molecular Biology and Institute of Biomedical Science, National Chung Cheng University, Chia-Yi, Taiwan
| | - Kuan-Der Lee
- Division of Hematology and Oncology, Department of Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chia-Chen Hsu
- Department of Hematology and Oncology, Chang Gung Memorial Hospital, Chiayi, Chang Gung University College of Medicine, Taoyuan, Taiwan; Chang Gung Institute of Technology, Taoyuan, Taiwan
| | - Hong-Chi Chen
- Department of Life Science and Gene Therapy Division, Tzu-Chi University and Hospital, Hualien, Taiwan
| | - Tim H-M Huang
- Cancer Therapy and Research Center, Department of Molecular Medicine and Institute of Biotechnology, School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Shu-Huei Hsiao
- Human Epigenomics Center, Department of Life Science, Institute of Molecular Biology and Institute of Biomedical Science, National Chung Cheng University, Chia-Yi, Taiwan.
| | - Yu-Wei Leu
- Human Epigenomics Center, Department of Life Science, Institute of Molecular Biology and Institute of Biomedical Science, National Chung Cheng University, Chia-Yi, Taiwan.
| |
Collapse
|
24
|
McDermott MSJ, Chumanevich AA, Lim CU, Liang J, Chen M, Altilia S, Oliver D, Rae JM, Shtutman M, Kiaris H, Győrffy B, Roninson IB, Broude EV. Inhibition of CDK8 mediator kinase suppresses estrogen dependent transcription and the growth of estrogen receptor positive breast cancer. Oncotarget 2017; 8:12558-12575. [PMID: 28147342 PMCID: PMC5355036 DOI: 10.18632/oncotarget.14894] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 01/17/2017] [Indexed: 12/15/2022] Open
Abstract
Hormone therapy targeting estrogen receptor (ER) is the principal treatment for ER-positive breast cancers. However, many cancers develop resistance to hormone therapy while retaining ER expression. Identifying new druggable mediators of ER function can help to increase the efficacy of ER-targeting drugs. Cyclin-dependent kinase 8 (CDK8) is a Mediator complex-associated transcriptional regulator with oncogenic activities. Expression of CDK8, its paralog CDK19 and their binding partner Cyclin C are negative prognostic markers in breast cancer. Meta-analysis of transcriptome databases revealed an inverse correlation between CDK8 and ERα expression, suggesting that CDK8 could be functionally associated with ER. We have found that CDK8 inhibition by CDK8/19-selective small-molecule kinase inhibitors, by shRNA knockdown or by CRISPR/CAS9 knockout suppresses estrogen-induced transcription in ER-positive breast cancer cells; this effect was exerted downstream of ER. Estrogen addition stimulated the binding of CDK8 to the ER-responsive GREB1 gene promoter and CDK8/19 inhibition reduced estrogen-stimulated association of an elongation-competent phosphorylated form of RNA Polymerase II with GREB1. CDK8/19 inhibitors abrogated the mitogenic effect of estrogen on ER-positive cells and potentiated the growth-inhibitory effects of ER antagonist fulvestrant. Treatment of estrogen-deprived ER-positive breast cancer cells with CDK8/19 inhibitors strongly impeded the development of estrogen independence. In vivo treatment with a CDK8/19 inhibitor Senexin B suppressed tumor growth and augmented the effects of fulvestrant in ER-positive breast cancer xenografts. These results identify CDK8 as a novel downstream mediator of ER and suggest the utility of CDK8 inhibitors for ER-positive breast cancer therapy.
Collapse
Affiliation(s)
- Martina S J McDermott
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Alexander A Chumanevich
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Chang-Uk Lim
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Jiaxin Liang
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Mengqian Chen
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Serena Altilia
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - David Oliver
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - James M Rae
- University of Michigan Medical School, Ann Arbor, MI, USA
| | - Michael Shtutman
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Hippokratis Kiaris
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Balázs Győrffy
- MTA TTK Lendület Cancer Biomarker Research Group, Semmelweis University 2nd Department of Pediatrics, Budapest, Hungary
| | - Igor B Roninson
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Eugenia V Broude
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
25
|
Tang B. Genomic feature extraction and comparison based on global alignment of ChIP-sequencing data. Bioengineered 2017; 8:248-255. [PMID: 27690208 PMCID: PMC5470523 DOI: 10.1080/21655979.2016.1226714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Enhanced accuracy and high-throughput capability in capturing genetic activities lead ChIP-sequencing technology to be applied prevalently in diverse study for tackling DNA-protein interaction problems. Till now, such questions as deciding suitable ChIP-seq arguments and comparing sample quality still haunt biologists. We propose the methods for answering such questions as deciding optimal argument pairs in global alignment of ChIP sequencing data; then we employ a modern signal processing approach to extract inherent genomic features from the global alignments of transcriptional binding activities; together with pairwise comparison from intra- and inter-sample perspectives; thus we can further determine alignment quality and decide the optimal candidate for multi-source heterogeneous high-throughput sequences. The work provides a practical approach to quantitatively compare the alignment quality for heterogeneous sequencing data, especially in determining the efficiency of transcriptional binding from replicate samples, thus it helps to exploit the potentiality of ChIP-seq for deep comprehension of inherent biological meanings from the high-throughput genomic sequences.
Collapse
Affiliation(s)
- Binhua Tang
- a Epigenetics & Function Group , College of the Internet of Things, Hohai University , Jiangsu , China.,b School of Public Health , Shanghai Jiao Tong University , Shanghai , China
| |
Collapse
|
26
|
Cohen A, Burgos-Aceves MA, Smith Y. Estrogen repression of microRNA as a potential cause of cancer. Biomed Pharmacother 2016; 78:234-238. [PMID: 26898447 DOI: 10.1016/j.biopha.2016.01.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 12/29/2015] [Accepted: 01/13/2016] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenous small molecules that regulate gene expression and have been implicated in the pathogenesis of many human diseases, including cancer. This review describes the results that show a global repression in miRNA expression in various tumors and cancer cell lines. Intriguingly, recent discoveries have shown a widespread downregulation of miRNA after exposure to the steroid hormone estrogen. The integration of the results suggests that estrogen-dependent repression of miRNA is a potential cause of cancer.
Collapse
Affiliation(s)
- Amit Cohen
- Genomic Data Analysis Unit, The Hebrew University of Jerusalem-Hadassah Medical School, P.O. Box 12272, Jerusalem 91120, Israel
| | - Mario Alberto Burgos-Aceves
- Centro de Investigaciones Biolόgicas del Noroeste, S.C. Mar Bermejo 195, Col. Playa Palo de Sta. Rita, La Paz, BCS, 23090, México.
| | - Yoav Smith
- Genomic Data Analysis Unit, The Hebrew University of Jerusalem-Hadassah Medical School, P.O. Box 12272, Jerusalem 91120, Israel
| |
Collapse
|
27
|
Abstract
Two opposing models have been proposed to describe the function of the MYC oncoprotein in shaping cellular transcriptomes: one posits that MYC amplifies transcription at all active loci; the other that MYC differentially controls discrete sets of genes, the products of which affect global transcript levels. Here, we argue that differential gene regulation by MYC is the sole unifying model that is consistent with all available data. Among other effects, MYC endows cells with physiological and metabolic changes that have the potential to feed back on global RNA production, processing and turnover. The field is progressing steadily towards a full characterization of the MYC-regulated genes and pathways that mediate these biological effects and - by the same token - endow MYC with its pervasive oncogenic potential.
Collapse
Affiliation(s)
- Theresia R Kress
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT) and Department of Experimental Oncology, European Institute of Oncology (IEO), Via Adamello 16, 20139 Milan, Italy
| | - Arianna Sabò
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT) and Department of Experimental Oncology, European Institute of Oncology (IEO), Via Adamello 16, 20139 Milan, Italy
| | - Bruno Amati
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT) and Department of Experimental Oncology, European Institute of Oncology (IEO), Via Adamello 16, 20139 Milan, Italy
- Department of Experimental Oncology, European Institute of Oncology (IEO), Via Adamello 16, 20139 Milan, Italy
| |
Collapse
|
28
|
Zhu R, Mok MTS, Kang W, Lau SSK, Yip WK, Chen Y, Lai PBS, Wong VWS, To KF, Sung JJY, Cheng ASL, Chan HLY. Truncated HBx-dependent silencing of GAS2 promotes hepatocarcinogenesis through deregulation of cell cycle, senescence and p53-mediated apoptosis. J Pathol 2015; 237:38-49. [PMID: 25925944 DOI: 10.1002/path.4554] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 04/15/2015] [Accepted: 04/22/2015] [Indexed: 12/27/2022]
Abstract
Hepatocellular carcinoma (HCC) is a worldwide threat to public health, especially in China, where chronic hepatitis B virus (HBV) infection is found in 80-90% of all HCCs. The HBV-encoded X antigen (HBx) is a trans-regulatory protein involved in virus-induced hepatocarcinogenesis. Although the carboxyl-terminus-truncated HBx, rather than the full-length counterpart, is frequently overexpressed in human HCCs, its functional mechanisms are not fully defined. We investigated the molecular function of a naturally occurring HBx variant which has 35 amino acids deleted at the C-terminus (HBxΔ35). Genome-wide scanning analysis and PCR validation identified growth arrest-specific 2 (GAS2) as a direct target of HBxΔ35 at transcriptional level in human immortalized liver cells. HBxΔ35 was found to bind the promoter region of GAS2 and attenuate its expression to promote hepatocellular proliferation and tumourigenicity. Further functional assays demonstrated that GAS2 induces p53-dependent apoptosis and senescence to counteract HBxΔ35-mediated tumourigenesis. Notably, GAS2 expression was significantly down-regulated in HCCs compared with the corresponding normal tissues. In conclusion, our integrated study uncovered a novel viral mechanism in hepatocarcinogenesis, wherein HBxΔ35 deregulates cell growth via direct silencing of GAS2 and thereby provides a survival advantage for pre-neoplastic hepatocytes to facilitate cancer development.
Collapse
Affiliation(s)
- Ranxu Zhu
- Institute of Digestive Disease and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, SAR, China.,Department of Gastroenterology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Myth T S Mok
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Suki S K Lau
- Institute of Digestive Disease and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Wing-Kit Yip
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Yangchao Chen
- Institute of Digestive Disease and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Paul B S Lai
- Institute of Digestive Disease and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, China.,Department of Surgery, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Vincent W S Wong
- Institute of Digestive Disease and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Ka-Fai To
- Institute of Digestive Disease and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, China.,Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Joseph J Y Sung
- Institute of Digestive Disease and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Alfred S L Cheng
- Institute of Digestive Disease and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Henry L Y Chan
- Institute of Digestive Disease and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, SAR, China
| |
Collapse
|
29
|
Synthetic cajanin stilbene acid derivatives inhibit c-MYC in breast cancer cells. Arch Toxicol 2015; 90:575-88. [DOI: 10.1007/s00204-015-1480-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 02/12/2015] [Indexed: 12/15/2022]
|
30
|
Jadhav RR, Ye Z, Huang RL, Liu J, Hsu PY, Huang YW, Rangel LB, Lai HC, Roa JC, Kirma NB, Huang THM, Jin VX. Genome-wide DNA methylation analysis reveals estrogen-mediated epigenetic repression of metallothionein-1 gene cluster in breast cancer. Clin Epigenetics 2015; 7:13. [PMID: 25763113 PMCID: PMC4355986 DOI: 10.1186/s13148-015-0045-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 01/13/2015] [Indexed: 12/23/2022] Open
Abstract
Background Recent genome-wide analysis has shown that DNA methylation spans long stretches of chromosome regions consisting of clusters of contiguous CpG islands or gene families. Hypermethylation of various gene clusters has been reported in many types of cancer. In this study, we conducted methyl-binding domain capture (MBDCap) sequencing (MBD-seq) analysis on a breast cancer cohort consisting of 77 patients and 10 normal controls, as well as a panel of 38 breast cancer cell lines. Results Bioinformatics analysis determined seven gene clusters with a significant difference in overall survival (OS) and further revealed a distinct feature that the conservation of a large gene cluster (approximately 70 kb) metallothionein-1 (MT1) among 45 species is much lower than the average of all RefSeq genes. Furthermore, we found that DNA methylation is an important epigenetic regulator contributing to gene repression of MT1 gene cluster in both ERα positive (ERα+) and ERα negative (ERα−) breast tumors. In silico analysis revealed much lower gene expression of this cluster in The Cancer Genome Atlas (TCGA) cohort for ERα + tumors. To further investigate the role of estrogen, we conducted 17β-estradiol (E2) and demethylating agent 5-aza-2′-deoxycytidine (DAC) treatment in various breast cancer cell types. Cell proliferation and invasion assays suggested MT1F and MT1M may play an anti-oncogenic role in breast cancer. Conclusions Our data suggests that DNA methylation in large contiguous gene clusters can be potential prognostic markers of breast cancer. Further investigation of these clusters revealed that estrogen mediates epigenetic repression of MT1 cluster in ERα + breast cancer cell lines. In all, our studies identify thousands of breast tumor hypermethylated regions for the first time, in particular, discovering seven large contiguous hypermethylated gene clusters. Electronic supplementary material The online version of this article (doi:10.1186/s13148-015-0045-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rohit R Jadhav
- Department of Molecular Medicine/Institute of Biotechnology, University of Texas Health Science Center at San Antonio, STRF, Room 225, 7703 Floyd Curl Drive, San Antonio, 78229 TX USA
| | - Zhenqing Ye
- Department of Molecular Medicine/Institute of Biotechnology, University of Texas Health Science Center at San Antonio, STRF, Room 225, 7703 Floyd Curl Drive, San Antonio, 78229 TX USA
| | - Rui-Lan Huang
- Department of Obstetrics and Gynecology, Taipei Medical University Shuang Ho Hospital, New Taipei City, 23561 Taiwan
| | - Joseph Liu
- Department of Molecular Medicine/Institute of Biotechnology, University of Texas Health Science Center at San Antonio, STRF, Room 225, 7703 Floyd Curl Drive, San Antonio, 78229 TX USA
| | - Pei-Yin Hsu
- Department of Molecular Medicine/Institute of Biotechnology, University of Texas Health Science Center at San Antonio, STRF, Room 225, 7703 Floyd Curl Drive, San Antonio, 78229 TX USA
| | - Yi-Wen Huang
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, 9200 West Wisconsin Avenue, Froedtert Medical College Lab Building (FMCLB) 258, Milwaukee, 53226 WI USA
| | - Leticia B Rangel
- Department of Molecular Medicine/Institute of Biotechnology, University of Texas Health Science Center at San Antonio, STRF, Room 225, 7703 Floyd Curl Drive, San Antonio, 78229 TX USA ; Department of Pharmaceutical Sciences, Biotechnology Program/RENORBIO, Health Sciences Center, Universidade Federal do Espirito Santo, Av. Marechal Campos, 1468, Maruipe, 29040-090 Vitoria ES Brazil ; Programa Ciencias Sem Fronteiras, CNPq, Brasilia, Brazil
| | - Hung-Cheng Lai
- Department of Obstetrics and Gynecology, Taipei Medical University Shuang Ho Hospital, New Taipei City, 23561 Taiwan ; School of Medicine, Taipei Medical University, No. 250, Wu-Hsing Street, Taipei, 110 Taiwan ; Graduate Institute of Life Sciences, Department and Graduate Institute of Biochemistry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Juan Carlos Roa
- Departamento de Pathologı'a, Universidad de la Frontera, Claro Solar 115, Temuco, Chile
| | - Nameer B Kirma
- Department of Molecular Medicine/Institute of Biotechnology, University of Texas Health Science Center at San Antonio, STRF, Room 225, 7703 Floyd Curl Drive, San Antonio, 78229 TX USA ; Cancer Therapy and Research Center, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, 78229 TX USA ; Department of Epidemiology and Biostatistics, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, 78229 TX USA
| | - Tim Hui-Ming Huang
- Department of Molecular Medicine/Institute of Biotechnology, University of Texas Health Science Center at San Antonio, STRF, Room 225, 7703 Floyd Curl Drive, San Antonio, 78229 TX USA ; Cancer Therapy and Research Center, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, 78229 TX USA ; Department of Epidemiology and Biostatistics, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, 78229 TX USA
| | - Victor X Jin
- Department of Molecular Medicine/Institute of Biotechnology, University of Texas Health Science Center at San Antonio, STRF, Room 225, 7703 Floyd Curl Drive, San Antonio, 78229 TX USA ; Cancer Therapy and Research Center, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, 78229 TX USA ; Department of Epidemiology and Biostatistics, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, 78229 TX USA
| |
Collapse
|
31
|
Zhong J, Cao RX, Liu JH, Liu YB, Wang J, Liu LP, Chen YJ, Yang J, Zhang QH, Wu Y, Ding WJ, Hong T, Xiao XH, Zu XY, Wen GB. Nuclear loss of protein arginine N-methyltransferase 2 in breast carcinoma is associated with tumor grade and overexpression of cyclin D1 protein. Oncogene 2014; 33:5546-5558. [PMID: 24292672 DOI: 10.1038/onc.2013.500] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 09/17/2013] [Accepted: 10/18/2013] [Indexed: 11/08/2022]
Abstract
Human protein arginine N-methyltransferase 2 (PRMT2, HRMT1L1) is a protein that belongs to the arginine methyltransferase family, and it has diverse roles in transcriptional regulation through different mechanisms depending on its binding partners. In this study, we provide evidences for the negative effect of PRMT2 on breast cancer cell proliferation in vitro and in vivo. Morever, cyclin D1, one of the key modulators of cell cycle, was found to be downregulated by PRMT2, and PRMT2 was further shown to suppress the estrogen receptor α-binding affinity to the activator protein-1 (AP-1) site in cyclin D1 promoter through indirect binding with AP-1 site, resulting in the inhibition of cyclin D1 promoter activity in MCF-7 cells. Furthermore, a positive correlation between the expression of PRMT2 and cyclin D1 was confirmed in the breast cancer tissues by using tissue microarray assay. In addition, PRMT2 was found to show a high absent percentage in breast caner cell nuclei and the nuclear loss ratio of PRMT2 was demonstrated to positively correlate with cyclin D1 expression and the increasing tumor grade of invasive ductal carcinoma. Those results offer an essential insight into the effect of PRMT2 on breast carcinogenesis, and PRMT2 nuclear loss might be an important biological marker for the diagnosis of breast cancer.
Collapse
Affiliation(s)
- J Zhong
- Institute of Clinical Medicine, First Affiliated Hospital of University of South China, Hengyang, PR China
| | - R-X Cao
- 1] Institute of Clinical Medicine, First Affiliated Hospital of University of South China, Hengyang, PR China [2] Department of Metabolism and Endocrinology, First Affiliated Hospital of University of South China, Hengyang, PR China
| | - J-H Liu
- 1] Institute of Clinical Medicine, First Affiliated Hospital of University of South China, Hengyang, PR China [2] Department of Metabolism and Endocrinology, First Affiliated Hospital of University of South China, Hengyang, PR China
| | - Y-B Liu
- Institute of Clinical Medicine, First Affiliated Hospital of University of South China, Hengyang, PR China
| | - J Wang
- Institute of Clinical Medicine, First Affiliated Hospital of University of South China, Hengyang, PR China
| | - L-P Liu
- Institute of Clinical Medicine, First Affiliated Hospital of University of South China, Hengyang, PR China
| | - Y-J Chen
- Institute of Clinical Medicine, First Affiliated Hospital of University of South China, Hengyang, PR China
| | - J Yang
- 1] Institute of Clinical Medicine, First Affiliated Hospital of University of South China, Hengyang, PR China [2] Department of Metabolism and Endocrinology, First Affiliated Hospital of University of South China, Hengyang, PR China
| | - Q-H Zhang
- Institute of Clinical Medicine, First Affiliated Hospital of University of South China, Hengyang, PR China
| | - Y Wu
- Institute of Clinical Medicine, First Affiliated Hospital of University of South China, Hengyang, PR China
| | - W-J Ding
- Institute of Clinical Medicine, First Affiliated Hospital of University of South China, Hengyang, PR China
| | - T Hong
- 1] Institute of Clinical Medicine, First Affiliated Hospital of University of South China, Hengyang, PR China [2] Department of Metabolism and Endocrinology, First Affiliated Hospital of University of South China, Hengyang, PR China
| | - X-H Xiao
- 1] Institute of Clinical Medicine, First Affiliated Hospital of University of South China, Hengyang, PR China [2] Department of Metabolism and Endocrinology, First Affiliated Hospital of University of South China, Hengyang, PR China
| | - X-Y Zu
- Institute of Clinical Medicine, First Affiliated Hospital of University of South China, Hengyang, PR China
| | - G-B Wen
- Institute of Clinical Medicine, First Affiliated Hospital of University of South China, Hengyang, PR China
| |
Collapse
|
32
|
Laredo SA, Villalon Landeros R, Trainor BC. Rapid effects of estrogens on behavior: environmental modulation and molecular mechanisms. Front Neuroendocrinol 2014; 35:447-58. [PMID: 24685383 PMCID: PMC4175137 DOI: 10.1016/j.yfrne.2014.03.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 03/11/2014] [Accepted: 03/19/2014] [Indexed: 12/24/2022]
Abstract
Estradiol can modulate neural activity and behavior via both genomic and nongenomic mechanisms. Environmental cues have a major impact on the relative importance of these signaling pathways with significant consequences for behavior. First we consider how photoperiod modulates nongenomic estrogen signaling on behavior. Intriguingly, short days permit rapid effects of estrogens on aggression in both rodents and song sparrows. This highlights the importance of considering photoperiod as a variable in laboratory research. Next we review evidence for rapid effects of estradiol on ecologically-relevant behaviors including aggression, copulation, communication, and learning. We also address the impact of endocrine disruptors on estrogen signaling, such as those found in corncob bedding used in rodent research. Finally, we examine the biochemical mechanisms that may mediate rapid estrogen action on behavior in males and females. A common theme across these topics is that the effects of estrogens on social behaviors vary across different environmental conditions.
Collapse
Affiliation(s)
- Sarah A Laredo
- Animal Behavior Graduate Group, University of California, Davis, CA 95616, United States; Center for Neuroscience, University of California, Davis, CA 95616, United States; Department of Psychology, University of California, Davis, CA 95616, United States
| | - Rosalina Villalon Landeros
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI 53715, United States
| | - Brian C Trainor
- Animal Behavior Graduate Group, University of California, Davis, CA 95616, United States; Center for Neuroscience, University of California, Davis, CA 95616, United States; Department of Psychology, University of California, Davis, CA 95616, United States.
| |
Collapse
|
33
|
Lai YH, He RY, Chou JL, Chan MWY, Li YF, Tai CK. Promoter hypermethylation and silencing of tissue factor pathway inhibitor-2 in oral squamous cell carcinoma. J Transl Med 2014; 12:237. [PMID: 25179542 PMCID: PMC4160550 DOI: 10.1186/s12967-014-0237-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 08/21/2014] [Indexed: 02/02/2023] Open
Abstract
Background The treatment of oral squamous cell carcinoma (OSCC) following early detection is associated with good outcomes. Therefore, the survival and prognosis of OSCC patients could be hugely improved by identifying reliable biomarkers for the early diagnosis of the disease. Our previous methylation microarray analysis results have suggested that the gene encoding tissue factor pathway inhibitor-2 (TFPI-2) is a potential clinical predictor as well as a key regulator involved in OSCC malignancy. Methods Methylation of the TFPI-2 promoter in oral tissue specimens was evaluated by bisulfite sequencing assay, quantitative methylation-specific PCR, and pyrosequencing assay. The differences in methylation levels among the groups were compared using the Mann–Whitney U test. The area under the receiver operating characteristic curve (AUROC) was used to evaluate the discrimination ability for detecting OSCC. Cellular TFPI-2 expression was analyzed by quantitative reverse-transcription PCR before and after treatment with 5′-aza-2′-deoxycytidine and trichostatin A, to confirm whether TFPI-2 was epigenetically silenced in OSCC cells. We investigated whether TFPI-2 plays a role as a tumor suppressor by establishing TFPI-2-overexpressing OSCC cells and subjecting them to in vitro cellular proliferation, migration, and invasion assays, as well as an in vivo metastasis assay. Results TFPI-2 was hypermethylated in OSCC tissues versus normal oral tissues (P < 0.0001), with AUROC = 0.91, when using a pyrosequencing assay to quantify the methylation level. TFPI-2 silencing in OSCC was regulated by both DNA methylation and chromatin histone modification. Restoration of TFPI-2 counteracted the invasiveness of OSCC by inhibiting the enzymatic activity of matrix metalloproteinase-2, and consequently interfered with OSCC metastasis in vivo. Conclusions Our data suggest strongly that TFPI-2 is a down-regulated tumor suppressor gene in OSCC, probably involving epigenetic silencing mechanisms. The loss of TFPI-2 expression is a key event for oral tumorigenesis, especially in the process of tumor metastasis.
Collapse
Affiliation(s)
| | | | | | | | - Yu-Fen Li
- Department of Life Science and Institutes of Molecular Biology and Biomedical Science, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan.
| | | |
Collapse
|
34
|
Kiani NA, Kaderali L. Dynamic probabilistic threshold networks to infer signaling pathways from time-course perturbation data. BMC Bioinformatics 2014; 15:250. [PMID: 25047753 PMCID: PMC4133630 DOI: 10.1186/1471-2105-15-250] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 07/15/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Network inference deals with the reconstruction of molecular networks from experimental data. Given N molecular species, the challenge is to find the underlying network. Due to data limitations, this typically is an ill-posed problem, and requires the integration of prior biological knowledge or strong regularization. We here focus on the situation when time-resolved measurements of a system's response after systematic perturbations are available. RESULTS We present a novel method to infer signaling networks from time-course perturbation data. We utilize dynamic Bayesian networks with probabilistic Boolean threshold functions to describe protein activation. The model posterior distribution is analyzed using evolutionary MCMC sampling and subsequent clustering, resulting in probability distributions over alternative networks. We evaluate our method on simulated data, and study its performance with respect to data set size and levels of noise. We then use our method to study EGF-mediated signaling in the ERBB pathway. CONCLUSIONS Dynamic Probabilistic Threshold Networks is a new method to infer signaling networks from time-series perturbation data. It exploits the dynamic response of a system after external perturbation for network reconstruction. On simulated data, we show that the approach outperforms current state of the art methods. On the ERBB data, our approach recovers a significant fraction of the known interactions, and predicts novel mechanisms in the ERBB pathway.
Collapse
Affiliation(s)
- Narsis A Kiani
- Technische Universität Dresden, Medical Faculty Carl Gustav Carus, Institute for Medical Informatics and Biometry, Fetscherstr, 74, 01307 Dresden, Germany.
| | | |
Collapse
|
35
|
O'Neill DJ, Williamson SC, Alkharaif D, Monteiro ICM, Goudreault M, Gaughan L, Robson CN, Gingras AC, Binda O. SETD6 controls the expression of estrogen-responsive genes and proliferation of breast carcinoma cells. Epigenetics 2014; 9:942-50. [PMID: 24751716 PMCID: PMC4143409 DOI: 10.4161/epi.28864] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 04/07/2014] [Accepted: 04/11/2014] [Indexed: 12/24/2022] Open
Abstract
The lysine methyltransferase SETD6 modifies the histone variant H2AZ, a key component of nuclear receptor-dependent transcription. Herein, we report the identification of several factors that associate with SETD6 and are implicated in nuclear hormone receptor signaling. Specifically, SETD6 associates with the estrogen receptor α (ERα), histone deacetylase HDAC1, metastasis protein MTA2, and the transcriptional co-activator TRRAP. Luciferase reporter assays identify SETD6 as a transcriptional repressor, in agreement with its association with HDAC1 and MTA2. However, SETD6 behaves as a co-activator of several estrogen-responsive genes, such as PGR and TFF1. Consistent with these results, silencing of SETD6 in several breast carcinoma cell lines induced cellular proliferation defects accompanied by enhanced expression of the cell cycle inhibitor CDKN1A and induction of apoptosis. Herein, we have identified several chromatin proteins that associate with SETD6 and described SETD6 as an essential factor for nuclear receptor signaling and cellular proliferation.
Collapse
Affiliation(s)
- Daniel J O'Neill
- Northern Institute for Cancer Research; Newcastle University; Newcastle upon Tyne, UK
| | | | - Dhuha Alkharaif
- Northern Institute for Cancer Research; Newcastle University; Newcastle upon Tyne, UK
| | | | - Marilyn Goudreault
- Lunenfeld-Tanenbaum Research Institute; Mount Sinai Hospital; Toronto, ON Canada
| | - Luke Gaughan
- Northern Institute for Cancer Research; Newcastle University; Newcastle upon Tyne, UK
| | - Craig N Robson
- Northern Institute for Cancer Research; Newcastle University; Newcastle upon Tyne, UK
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute; Mount Sinai Hospital; Toronto, ON Canada
- Department of Molecular Genetics; University of Toronto; Toronto, ON Canada
| | - Olivier Binda
- Northern Institute for Cancer Research; Newcastle University; Newcastle upon Tyne, UK
| |
Collapse
|
36
|
Myc and its interactors take shape. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:469-83. [PMID: 24933113 DOI: 10.1016/j.bbagrm.2014.06.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 12/11/2022]
Abstract
The Myc oncoprotein is a key contributor to the development of many human cancers. As such, understanding its molecular activities and biological functions has been a field of active research since its discovery more than three decades ago. Genome-wide studies have revealed Myc to be a global regulator of gene expression. The identification of its DNA-binding partner protein, Max, launched an area of extensive research into both the protein-protein interactions and protein structure of Myc. In this review, we highlight key insights with respect to Myc interactors and protein structure that contribute to the understanding of Myc's roles in transcriptional regulation and cancer. Structural analyses of Myc show many critical regions with transient structures that mediate protein interactions and biological functions. Interactors, such as Max, TRRAP, and PTEF-b, provide mechanistic insight into Myc's transcriptional activities, while others, such as ubiquitin ligases, regulate the Myc protein itself. It is appreciated that Myc possesses a large interactome, yet the functional relevance of many interactors remains unknown. Here, we discuss future research trends that embrace advances in genome-wide and proteome-wide approaches to systematically elucidate mechanisms of Myc action. This article is part of a Special Issue entitled: Myc proteins in cell biology and pathology.
Collapse
|
37
|
Guan D, Shao J, Zhao Z, Wang P, Qin J, Deng Y, Boheler KR, Wang J, Yan B. PTHGRN: unraveling post-translational hierarchical gene regulatory networks using PPI, ChIP-seq and gene expression data. Nucleic Acids Res 2014; 42:W130-6. [PMID: 24875471 PMCID: PMC4086064 DOI: 10.1093/nar/gku471] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Interactions among transcriptional factors (TFs), cofactors and other proteins or enzymes can affect transcriptional regulatory capabilities of eukaryotic organisms. Post-translational modifications (PTMs) cooperate with TFs and epigenetic alterations to constitute a hierarchical complexity in transcriptional gene regulation. While clearly implicated in biological processes, our understanding of these complex regulatory mechanisms is still limited and incomplete. Various online software have been proposed for uncovering transcriptional and epigenetic regulatory networks, however, there is a lack of effective web-based software capable of constructing underlying interactive organizations between post-translational and transcriptional regulatory components. Here, we present an open web server, post-translational hierarchical gene regulatory network (PTHGRN) to unravel relationships among PTMs, TFs, epigenetic modifications and gene expression. PTHGRN utilizes a graphical Gaussian model with partial least squares regression-based methodology, and is able to integrate protein–protein interactions, ChIP-seq and gene expression data and to capture essential regulation features behind high-throughput data. The server provides an integrative platform for users to analyze ready-to-use public high-throughput Omics resources or upload their own data for systems biology study. Users can choose various parameters in the method, build network topologies of interests and dissect their associations with biological functions. Application of the software to stem cell and breast cancer demonstrates that it is an effective tool for understanding regulatory mechanisms in biological complex systems. PTHGRN web server is publically available at web site http://www.byanbioinfo.org/pthgrn.
Collapse
Affiliation(s)
- Daogang Guan
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Jiaofang Shao
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Zhongying Zhao
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Panwen Wang
- Department of Biochemistry and HKU-SIRI, The University of Hong Kong, Hong Kong SAR, China
| | - Jing Qin
- Department of Biochemistry and HKU-SIRI, The University of Hong Kong, Hong Kong SAR, China
| | - Youping Deng
- Department of Internal Medicine and Biochemistry, Rush University Medical Center, Chicago, Illinois 60612, USA
| | - Kenneth R Boheler
- Stem Cell & Regenerative Medicine Consortium, LKS Faculty of Medicine and Department of Physiology, The University of Hong Kong, Hong Kong SAR, China
| | - Junwen Wang
- Department of Biochemistry and HKU-SIRI, The University of Hong Kong, Hong Kong SAR, China Centre for Genomic Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Bin Yan
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China Stem Cell & Regenerative Medicine Consortium, LKS Faculty of Medicine and Department of Physiology, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
38
|
Sawan C, Hernandez-Vargas H, Murr R, Lopez F, Vaissière T, Ghantous AY, Cuenin C, Imbert J, Wang ZQ, Ren B, Herceg Z. Histone acetyltransferase cofactor Trrap maintains self-renewal and restricts differentiation of embryonic stem cells. Stem Cells 2014; 31:979-91. [PMID: 23362228 DOI: 10.1002/stem.1341] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 01/02/2013] [Indexed: 01/03/2023]
Abstract
Chromatin states are believed to play a key role in distinct patterns of gene expression essential for self-renewal and pluripotency of embryonic stem cells (ESCs); however, the genes governing the establishment and propagation of the chromatin signature characteristic of pluripotent cells are poorly understood. Here, we show that conditional deletion of the histone acetyltransferase cofactor Trrap in mouse ESCs triggers unscheduled differentiation associated with loss of histone acetylation, condensation of chromatin into distinct foci (heterochromatization), and uncoupling of H3K4 dimethylation and H3K27 trimethylation. Trrap loss results in downregulation of stemness master genes Nanog, Oct4, and Sox2 and marked upregulation of specific differentiation markers from the three germ layers. Chromatin immunoprecipitation-sequencing analysis of genome-wide binding revealed a significant overlap between Oct4 and Trrap binding in ESCs but not in differentiated mouse embryonic fibroblasts, further supporting a functional interaction between Trrap and Oct4 in the maintenance of stemness. Remarkably, failure to downregulate Trrap prevents differentiation of ESCs, suggesting that downregulation of Trrap may be a critical step guiding transcriptional reprogramming and differentiation of ESCs. These findings establish Trrap as a critical part of the mechanism that restricts differentiation and promotes the maintenance of key features of ESCs.
Collapse
Affiliation(s)
- Carla Sawan
- International Agency for Research on Cancer (IARC), Lyon, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
MYC dimerizes with MAX to bind DNA, with a preference for the E-box consensus CACGTG and several variant motifs. In cells, MYC binds DNA preferentially within transcriptionally active promoter regions. Although several thousand promoters are bound under physiological (low MYC) conditions, these represent only a fraction of all accessible, active promoters. MYC overexpression-as commonly observed in cancer cells-leads to invasion of virtually all active promoters, as well as of distal enhancer elements. We summarize here what is currently known about the mechanisms that may guide this process. We propose that binding site recognition is determined by low-affinity protein-protein interactions between MYC/MAX dimers and components of the basal transcriptional machinery, other chromatin-associated protein complexes, and/or DNA-bound transcription factors. DNA binding occurs subsequently, without an obligate requirement for sequence recognition. Local DNA scanning then leads to preferential stabilization of the MYC/MAX dimer on high-affinity DNA elements. This model is consistent with the invasion of all active promoters that occurs at elevated MYC levels, but posits that important differences in affinity persist between physiological target sites and the newly invaded elements, which may not all be bound in a productive regulatory mode. The implications of this model for transcriptional control by MYC in normal and cancer cells are discussed in the light of the latest literature.
Collapse
Affiliation(s)
- Arianna Sabò
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia, 20139 Milan, Italy
| | | |
Collapse
|
40
|
Conacci-Sorrell M, McFerrin L, Eisenman RN. An overview of MYC and its interactome. Cold Spring Harb Perspect Med 2014; 4:a014357. [PMID: 24384812 DOI: 10.1101/cshperspect.a014357] [Citation(s) in RCA: 326] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review is intended to provide a broad outline of the biological and molecular functions of MYC as well as of the larger protein network within which MYC operates. We present a view of MYC as a sensor that integrates multiple cellular signals to mediate a broad transcriptional response controlling many aspects of cell behavior. We also describe the larger transcriptional network linked to MYC with emphasis on the MXD family of MYC antagonists. Last, we discuss evidence that the network has evolved for millions of years, dating back to the emergence of animals.
Collapse
|
41
|
Dwivedi M, Laddha NC, Begum R. Correlation of increased MYG1 expression and its promoter polymorphism with disease progression and higher susceptibility in vitiligo patients. J Dermatol Sci 2013; 71:195-202. [PMID: 23706493 DOI: 10.1016/j.jdermsci.2013.04.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 03/14/2013] [Accepted: 04/19/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND MYG1 (Melanocyte proliferating gene 1 or C12orf10) -119C/G promoter and Arg4Gln structural polymorphisms have a functional impact on its regulation. The promoter polymorphism was shown to be associated with vitiligo in Caucasian population. OBJECTIVE The present study explores MYG1 polymorphisms and correlates them with MYG1 mRNA expression, disease onset and progression in vitiligo patients. METHODS Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique was used for genotyping of MYG1 -119C/G promoter (rs1465073) and 11-12AA/GC structural polymorphisms (rs1534284-rs1534283; Arg4Gln) in 846 vitiligo patients and 726 age-matched unaffected controls. MYG1 mRNA levels were assessed in whole blood of 166 patients and 175 controls by Real-time PCR. RESULTS The MYG1 -119C/G promoter polymorphism was found to be in significant association with vitiligo being 'G' allele prevalent in patients. However, 11-12AA/GC structural polymorphism was prevalently monogenic in patients and controls with only MYG1 GC (4Arg) allele being present. Significant increase in MYG1 mRNA expression was observed in vitiligo patients compared to controls. The MYG1 mRNA expression was increased in patients with active and generalized vitiligo as compared to stable and localized vitiligo. MYG1 mRNA expression was increased in patients with susceptible -119 GG genotype compared to controls. Also, patients with susceptible -119 GG genotype had early age of onset of vitiligo. Moreover, patients with age groups 1-20 years and 21-40 years showed increased expression of MYG1 mRNA compared to those of controls. Female patients showed significant increase in MYG1 mRNA and early age of onset of vitiligo compared to male patients. CONCLUSION The present study suggests that MYG1 -119C/G promoter polymorphism may be a genetic risk factor for susceptibility and progression of vitiligo. The up-regulation of MYG1 transcript in patients with susceptible -119GG genotype advocates the crucial role of MYG1 in autoimmune pathogenesis of vitiligo.
Collapse
Affiliation(s)
- Mitesh Dwivedi
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India
| | | | | |
Collapse
|
42
|
Cohen A, Smith Y. Estrogen regulation of microRNAs, target genes, and microRNA expression associated with vitellogenesis in the zebrafish. Zebrafish 2013; 11:462-78. [PMID: 23767875 DOI: 10.1089/zeb.2013.0873] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Estrogen is a steroid hormone that has been implicated in a variety of cellular and physiological processes and in the development of diseases such as cancer. Here we show a remarkable widespread microRNA (miRNA) downregulation in the zebrafish (Danio rerio) liver following 17β-estradiol (E2) treatment. This unique miRNA expression signature in the fish liver was further supported by a combination of computational predictions with gene expression microarray data, showing a significant bias toward upregulation of miRNA target genes after E2 treatment. Using pathway analysis of target genes, their involvement in the processes of cell cycle, DNA replication, and proteasome was observed, suggesting that miRNAs are incorporated into robust regulatory networks controlled by estrogen. In oviparous vertebrates, including fish, the formation of yolky eggs during a process known as vitellogenesis is regulated by estrogen. Microarrays were used to compare miRNA expression profiles between the livers of vitellogenic and nonvitellogenic zebrafish females. Among the upregulated miRNAs in vitellogenic females, were five members of the miR-17-92, a polycistronic miRNA cluster with a role in cell proliferation and cancer. Furthermore, a number of miRNA target genes related to fish vitellogenesis were revealed, including vtg3, a putative target of miR-122; the most abundant miRNA in the liver. Moreover, several of the differentially expressed miRNAs were only conserved in oviparous animals, which suggest an additional novel level of regulation during vitellogenesis by miRNAs and consequently, improves our knowledge of the process of oocyte growth in egg-laying animals.
Collapse
Affiliation(s)
- Amit Cohen
- Genomic Data Analysis Unit, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem , Jerusalem, Israel
| | | |
Collapse
|
43
|
Laskowski AI, Knoepfler PS. Myc binds the pluripotency factor Utf1 through the basic-helix-loop-helix leucine zipper domain. Biochem Biophys Res Commun 2013; 435:551-6. [PMID: 23665319 DOI: 10.1016/j.bbrc.2013.04.100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 04/29/2013] [Indexed: 01/10/2023]
Abstract
In order to elucidate the function of Myc in the maintenance of pluripotency and self-renewal in mouse embryonic stem cells (mESCs), we screened for novel ESC-specific interactors of Myc by mass spectrometry. Undifferentiated embryonic cell transcription factor 1 (Utf1) was identified in the screen as a putative Myc binding protein in mESCs. We found that Myc and Utf1 directly interact. Utf1 is a chromatin-associated factor required for maintaining pluripotency and self-renewal in mESCs. It can also replace c-myc during induced pluripotent stem cell (iPSC) generation with relatively high efficiency, and shares target genes with Myc in mESCs highlighting a potentially redundant functional role between Myc and Utf1. A large region of Utf1 was found to be necessary for direct interaction with N-Myc, while the basic helix-loop-helix leucine zipper domain of N-Myc is necessary for direct interaction with Utf1.
Collapse
Affiliation(s)
- Agnieszka I Laskowski
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | | |
Collapse
|
44
|
Cheng ASL, Li MS, Kang W, Cheng VY, Chou JL, Lau SS, Go MY, Lee CC, Ling TK, Ng EK, Yu J, Huang TH, To KF, Chan MW, Sung JJY, Chan FKL. Helicobacter pylori causes epigenetic dysregulation of FOXD3 to promote gastric carcinogenesis. Gastroenterology 2013; 144:122-133.e9. [PMID: 23058321 DOI: 10.1053/j.gastro.2012.10.002] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Revised: 08/25/2012] [Accepted: 10/03/2012] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Deregulation of forkhead box (Fox) proteins, an evolutionarily conserved family of transcriptional regulators, leads to tumorigenesis. Little is known about their regulation or functions in the pathogenesis of gastric cancer. Promoter hypermethylation occurs during Helicobacter pylori-induced gastritis. We investigated whether the deregulated genes contribute to gastric tumorigenesis. METHODS We used integrative genome-wide scans to identify concomitant hypermethylated genes in mice infected with H pylori and human gastric cancer samples. We also analyzed epigenetic gene silencing in gastric tissues from patients with H pylori infection and gastritis, intestinal metaplasia, gastric tumors, or without disease (controls). Target genes were identified by chromatin immunoprecipitation microarrays and expression and luciferase reporter analyses. RESULTS Methylation profile analyses identified the promoter of FOXD3 as the only genomic region with increased methylation in mice and humans during progression of H pylori-associated gastric tumors. FOXD3 methylation also correlated with shorter survival times of patients with gastric cancer. Genome demethylation reactivated FOXD3 expression in gastric cancer cell lines. Transgenic overexpression of FOXD3 significantly inhibited gastric cancer cell proliferation and invasion, and reduced growth of xenograft tumors in mice, at least partially, by promoting tumor cell apoptosis. FOXD3 bound directly to the promoters of, and activated transcription of, genes encoding the cell death regulators CYFIP2 and RARB. Levels of FOXD3, CYFIP2, and RARB messenger RNAs were reduced in human gastric tumor samples, compared with control tissues. CONCLUSIONS FOXD3-mediated transcriptional control of tumor suppressors is deregulated by H pylori infection-induced hypermethylation; this could perturb the balance between cell death and survival. These findings identify a pathway by which epigenetic changes affect gastric tumor suppression.
Collapse
Affiliation(s)
- Alfred S L Cheng
- Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Estrogen receptor (ER) is a hormone-regulated transcription factor that controls cell division and differentiation in the ovary, breast, and uterus. The expression of ER is a common feature of the majority of breast cancers, which is used as a therapeutic target. Recent genetic studies have shown that ER binding occurs in regions distant to the promoters of estrogen target genes. These studies have also demonstrated that ER binding is accompanied with the binding of other transcription factors, which regulate the function of ER and response to anti-estrogen therapies. In this review, we explain how these factors influence the interaction of ER to chromatin and their cooperation for ER transcriptional activity. Moreover, we describe how the expression of these factors dictates the response to anti-estrogen therapies. Finally, we discuss how cytoplasmatic signaling pathways may modulate the function of ER and its cooperating transcription factors.
Collapse
|
46
|
Hierarchical modularity in ERα transcriptional network is associated with distinct functions and implicates clinical outcomes. Sci Rep 2012; 2:875. [PMID: 23166858 PMCID: PMC3500769 DOI: 10.1038/srep00875] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 10/30/2012] [Indexed: 12/18/2022] Open
Abstract
Recent genome-wide profiling reveals highly complex regulation networks among ERα and its targets. We integrated estrogen (E2)-stimulated time-series ERα ChIP-seq and gene expression data to identify the ERα-centered transcription factor (TF) hubs and their target genes, and inferred the time-variant hierarchical network structures using a Bayesian multivariate modeling approach. With its recurrent motif patterns, we determined three embedded regulatory modules from the ERα core transcriptional network. The GO analyses revealed the distinct biological function associated with each of three embedded modules. The survival analysis showed the genes in each module were able to render a significant survival correlation in breast cancer patient cohorts. In summary, our Bayesian statistical modeling and modularity analysis not only reveals the dynamic properties of the ERα-centered regulatory network and associated distinct biological functions, but also provides a reliable and effective genomic analytical approach for the analysis of dynamic regulatory network for any given TF.
Collapse
|
47
|
Wu JZ, Lu P, Liu R, Yang TJ. Transcription Regulation Network Analysis of MCF7 Breast Cancer Cells Exposed to Estradiol. Asian Pac J Cancer Prev 2012; 13:3681-5. [DOI: 10.7314/apjcp.2012.13.8.3681] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
48
|
Jennings P, Limonciel A, Felice L, Leonard MO. An overview of transcriptional regulation in response to toxicological insult. Arch Toxicol 2012; 87:49-72. [DOI: 10.1007/s00204-012-0919-y] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 07/30/2012] [Indexed: 12/30/2022]
|
49
|
Shao L, Wang L, Wei Z, Xiong Y, Wang Y, Tang K, Li Y, Feng G, Xing Q, He L. Dynamic network of transcription and pathway crosstalk to reveal molecular mechanism of MGd-treated human lung cancer cells. PLoS One 2012; 7:e31984. [PMID: 22693540 PMCID: PMC3365074 DOI: 10.1371/journal.pone.0031984] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Accepted: 01/16/2012] [Indexed: 01/16/2023] Open
Abstract
Recent research has revealed various molecular markers in lung cancer. However, the organizational principles underlying their genetic regulatory networks still await investigation. Here we performed Network Component Analysis (NCA) and Pathway Crosstalk Analysis (PCA) to construct a regulatory network in human lung cancer (A549) cells which were treated with 50 uM motexafin gadolinium (MGd), a metal cation-containing chemotherapeutic drug for 4, 12, and 24 hours. We identified a set of key TFs, known target genes for these TFs, and signaling pathways involved in regulatory networks. Our work showed that putative interactions between these TFs (such as ESR1/Sp1, E2F1/Sp1, c-MYC-ESR, Smad3/c-Myc, and NFKB1/RELA), between TFs and their target genes (such as BMP41/Est1, TSC2/Myc, APE1/Sp1/p53, RARA/HOXA1, and SP1/USF2), and between signaling pathways (such as PPAR signaling pathway and Adipocytokines signaling pathway). These results will provide insights into the regulatory mechanism of MGd-treated human lung cancer cells.
Collapse
Affiliation(s)
- Liyan Shao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Lishan Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Zhiyun Wei
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Yuyu Xiong
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Yang Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Kefu Tang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Yang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Guoyin Feng
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Qinghe Xing
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
- Institute for Nutritional Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
50
|
Peng Z, Shen R, Li YW, Teng KY, Shapiro CL, Lin HJL. Epigenetic repression of RARRES1 is mediated by methylation of a proximal promoter and a loss of CTCF binding. PLoS One 2012; 7:e36891. [PMID: 22615834 PMCID: PMC3355180 DOI: 10.1371/journal.pone.0036891] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 04/14/2012] [Indexed: 12/12/2022] Open
Abstract
Background The cis-acting promoter element responsible for epigenetic silencing of retinoic acid receptor responder 1 (RARRES1) by methylation is unclear. Likewise, how aberrant methylation interplays effectors and thus affects breast neoplastic features remains largely unknown. Methodology/Principal Findings We first compared methylation occurring at the sequences (−664∼+420) flanking the RARRES1 promoter in primary breast carcinomas to that in adjacent benign tissues. Surprisingly, tumor cores displayed significantly elevated methylation occurring solely at the upstream region (−664∼−86), while the downstream element (−85∼+420) proximal to the transcriptional start site (+1) remained largely unchanged. Yet, hypermethylation at the former did not result in appreciable silencing effect. In contrast, the proximal sequence displayed full promoter activity and methylation of which remarkably silenced RARRES1 transcription. This phenomenon was recapitulated in breast cancer cell lines, in which methylation at the proximal region strikingly coincided with downregulation. We also discovered that CTCF occupancy was enriched at the unmethylayed promoter bound with transcription-active histone markings. Furthermore, knocking-down CTCF expression hampered RARRES1 expression, suggesting CTCF positively regulated RARRES1 transcription presumably by binding to unmethylated promoter poised at transcription-ready state. Moreover, RARRES1 restoration not only impeded cell invasion but also promoted death induced by chemotherapeutic agents, denoting its tumor suppressive effect. Its role of attenuating invasion agreed with data generated from clinical specimens revealing that RARRES1 was generally downregulated in metastatic lymph nodes compared to the tumor cores. Conclusion/Significance This report delineated silencing of RARRES1 by hypermethylation is occurring at a proximal promoter element and is associated with a loss of binding to CTCF, an activator for RARRES1 expression. We also revealed the tumor suppressive roles exerted by RARRES1 in part by promoting breast epithelial cell death and by impeding cell invasion that is an important property for metastatic spread.
Collapse
Affiliation(s)
- Zhengang Peng
- Division of Medical Technology, School of Allied Medical Professions, the Ohio State University Medical Center, Columbus, Ohio, United States of America
- Molecular Biology and Cancer Genetics Program, Comprehensive Cancer Center, the Ohio State University Medical Center, Columbus, Ohio, United States of America
| | - Rulong Shen
- Department of Pathology, the Ohio State University Medical Center, Columbus, Ohio, United States of America
| | - Ying-Wei Li
- Division of Medical Technology, School of Allied Medical Professions, the Ohio State University Medical Center, Columbus, Ohio, United States of America
- Molecular Biology and Cancer Genetics Program, Comprehensive Cancer Center, the Ohio State University Medical Center, Columbus, Ohio, United States of America
| | - Kun-Yu Teng
- Division of Medical Technology, School of Allied Medical Professions, the Ohio State University Medical Center, Columbus, Ohio, United States of America
- Molecular Biology and Cancer Genetics Program, Comprehensive Cancer Center, the Ohio State University Medical Center, Columbus, Ohio, United States of America
| | - Charles L. Shapiro
- Department of Medical Oncology, the Ohio State University Medical Center, Columbus, Ohio, United States of America
| | - Huey-Jen L. Lin
- Division of Medical Technology, School of Allied Medical Professions, the Ohio State University Medical Center, Columbus, Ohio, United States of America
- Molecular Biology and Cancer Genetics Program, Comprehensive Cancer Center, the Ohio State University Medical Center, Columbus, Ohio, United States of America
- Department of Medical Technology, University of Delaware, Newark, Delaware, United States of America
- * E-mail:
| |
Collapse
|