1
|
Wang H, Concannon P, Ge Y. Roles of TULA-family proteins in T cells and autoimmune diseases. Genes Immun 2025; 26:54-62. [PMID: 39558087 DOI: 10.1038/s41435-024-00300-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 11/20/2024]
Abstract
The T cell Ubiquitin Ligand (TULA) protein family contains two members, UBASH3A and UBASH3B, that display similarities in protein sequence and domain structure. Both TULA proteins act to repress T cell activation via a combination of overlapping and nonredundant functions. UBASH3B acts mainly as a phosphatase that suppresses proximal T cell receptor (TCR) signaling. In contrast, UBASH3A acts primarily as an adaptor protein, interacting with other proteins (including UBASH3B) in T cells upon TCR stimulation and resulting in downregulation of TCR signaling and NF-κB signaling. Human genetic and functional studies have revealed another notable distinction between UBASH3A and UBASH3B: numerous genome-wide association studies have identified statistically significant associations between genetic variants in and around the UBASH3A gene and at least seven different autoimmune diseases, suggesting a key role of UBASH3A in autoimmunity. However, the evidence for an independent role of UBASH3B in autoimmune disease is limited. This review summarizes key findings regarding the roles of TULA proteins in T cell biology and autoimmunity, highlights the commonalities and differences between UBASH3A and UBASH3B, and speculates on the individual and joint effects of TULA proteins on T cell signaling.
Collapse
Affiliation(s)
- Hua Wang
- International Center for Genetic Engineering and Biotechnology, China Regional Research Center, Taizhou, Jiangsu Province, China
| | - Patrick Concannon
- Genetics Institute, University of Florida, Gainesville, FL, USA
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Yan Ge
- International Center for Genetic Engineering and Biotechnology, China Regional Research Center, Taizhou, Jiangsu Province, China.
| |
Collapse
|
2
|
Cardani-Boulton A, Lin F, Bergmann CC. CD6 regulates CD4 T follicular helper cell differentiation and humoral immunity during murine coronavirus infection. J Virol 2025; 99:e0186424. [PMID: 39679790 PMCID: PMC11784103 DOI: 10.1128/jvi.01864-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 11/25/2024] [Indexed: 12/17/2024] Open
Abstract
During activation, the T cell transmembrane receptor CD6 becomes incorporated into the T cell immunological synapse where it can exert both co-stimulatory and co-inhibitory functions. Given the ability of CD6 to carry out opposing functions, this study sought to determine how CD6 regulates early T cell activation in response to viral infection. Infection of CD6-deficient mice with a neurotropic murine coronavirus resulted in greater activation and expansion of CD4 T cells in the draining lymph nodes. Further analysis demonstrated that there was also preferential differentiation of CD4 T cells into T follicular helper cells, resulting in accelerated germinal center responses and emergence of high-affinity virus-specific antibodies. Given that CD6 conversely supports CD4 T cell activation in many autoimmune models, we probed potential mechanisms of CD6-mediated suppression of CD4 T cell activation during viral infection. Analysis of CD6 binding proteins revealed that infection-induced upregulation of Ubash3a, a negative regulator of T cell receptor (TCR) signaling, was hindered in CD6-deficient lymph nodes. Consistent with greater T cell activation and reduced UBASH3a activity, the T cell receptor signal strength was intensified in CD6-deficient CD4 T cells. These results reveal a novel immunoregulatory role for CD6 in limiting CD4 T cell activation and deterring CD4 T follicular helper cell differentiation, thereby attenuating antiviral humoral immunity. IMPORTANCE CD6 monoclonal blocking antibodies are being therapeutically administered to inhibit T cell activation in autoimmune disorders. However, the multifaceted nature of CD6 allows for multiple and even opposing functions under different circumstances of T cell activation. We therefore sought to characterize how CD6 regulates T cell activation in the context of viral infections using an in vivo murine coronavirus model. In contrast to its role in autoimmunity, but consistent with its function in the presence of superantigens, we found that CD6 deficiency enhances CD4 T cell activation and CD4 T cell help to germinal center-dependent antiviral humoral responses. Finally, we provide evidence that CD6 regulates transcription of its intracellular binding partner UBASH3a, which suppresses T cell receptor (TCR) signaling and consequently T cell activation. These findings highlight the context-dependent flexibility of CD6 in regulating in vivo adaptive immune responses, which may be targeted to enhance antiviral immunity.
Collapse
MESH Headings
- Animals
- Mice
- Immunity, Humoral/immunology
- Cell Differentiation/immunology
- T Follicular Helper Cells/immunology
- Lymphocyte Activation/immunology
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, Differentiation, T-Lymphocyte/immunology
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Coronavirus Infections/immunology
- Coronavirus Infections/virology
- Mice, Inbred C57BL
- Germinal Center/immunology
- Mice, Knockout
- CD4-Positive T-Lymphocytes/immunology
- Antigens, CD/immunology
- Antigens, CD/genetics
- T-Lymphocytes, Helper-Inducer/immunology
- Signal Transduction
- Murine hepatitis virus/immunology
- Antibodies, Viral/immunology
Collapse
Affiliation(s)
- Amber Cardani-Boulton
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Feng Lin
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Immunity and Inflammation, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Cornelia C. Bergmann
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
3
|
Yao Z, Zeng Y, Liu C, Jin H, Wang H, Zhang Y, Ding C, Chen G, Wu D. Focusing on CD8 + T-cell phenotypes: improving solid tumor therapy. J Exp Clin Cancer Res 2024; 43:266. [PMID: 39342365 PMCID: PMC11437975 DOI: 10.1186/s13046-024-03195-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
Vigorous CD8+ T cells play a crucial role in recognizing tumor cells and combating solid tumors. How T cells efficiently recognize and target tumor antigens, and how they maintain the activity in the "rejection" of solid tumor microenvironment, are major concerns. Recent advances in understanding of the immunological trajectory and lifespan of CD8+ T cells have provided guidance for the design of more optimal anti-tumor immunotherapy regimens. Here, we review the newly discovered methods to enhance the function of CD8+ T cells against solid tumors, focusing on optimizing T cell receptor (TCR) expression, improving antigen recognition by engineered T cells, enhancing signal transduction of the TCR-CD3 complex, inducing the homing of polyclonal functional T cells to tumors, reversing T cell exhaustion under chronic antigen stimulation, and reprogramming the energy and metabolic pathways of T cells. We also discuss how to participate in the epigenetic changes of CD8+ T cells to regulate two key indicators of anti-tumor responses, namely effectiveness and persistence.
Collapse
Affiliation(s)
- Zhouchi Yao
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yayun Zeng
- Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Cheng Liu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Huimin Jin
- Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Hong Wang
- Department of Scientific Research, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Yue Zhang
- Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Chengming Ding
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Guodong Chen
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Daichao Wu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
- Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
4
|
Chen P, Chen X, Song X, He A, Zheng Y, Li X, Tian R. Dissecting phospho-motif-dependent Shc1 interactome using long synthetic protein fragments. Chem Sci 2024; 15:d4sc02350a. [PMID: 39184293 PMCID: PMC11342145 DOI: 10.1039/d4sc02350a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/10/2024] [Indexed: 08/27/2024] Open
Abstract
Activated receptor tyrosine kinases (RTKs) rely on the assembly of signaling proteins into high-dimensional protein complexes for signal transduction. Shc1, a prototypical scaffold protein, plays a pivotal role in directing phosphotyrosine (pY)-dependent protein complex formation for numerous RTKs typically through its two pY-binding domains. The three conserved pY sites within its CH1 region (Shc1CH1) hold particular significance due to their substantial contribution to its functions. However, how Shc1 differentially utilizes these sites to precisely coordinate protein complex assembly remains unclear. Here, we employed multiple peptide ligation techniques to synthesize an array of long protein fragments (107 amino acids) covering a significant portion of the Shc1CH1 region with varying phosphorylation states at residues Y239, 240, 313, and S335. By combining these phospho-Shc1CH1 fragments with integrated proteomics sample preparation and quantitative proteomic analysis, we were able to comprehensively resolve the site-specific interactomes of Shc1 with single amino acid resolution. By applying this approach to different cancer cell lines, we demonstrated that these phospho-Shc1CH1 fragments can be effectively used as a diagnostic tool to assess cell type-specific RTK signaling networks. Collectively, these biochemical conclusions help to better understand the sophisticated organization of pY-dependent Shc1 adaptor protein complexes and their functional roles in cancer.
Collapse
Affiliation(s)
- Peizhong Chen
- Department of Chemistry, College of Science, Southern University of Science and Technology Shenzhen 518055 China
- Department of Chemistry, State Key Lab of Synthetic Chemistry, University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Xiong Chen
- Department of Chemistry, College of Science, Southern University of Science and Technology Shenzhen 518055 China
- Shenzhen Key Laboratory of Functional Proteomics, Guangming Advanced Research Institute, Southern University of Science and Technology Shenzhen 518055 China
| | - Xiaolei Song
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics Beijing 102206 China
| | - An He
- Department of Chemistry, College of Science, Southern University of Science and Technology Shenzhen 518055 China
| | - Yong Zheng
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics Beijing 102206 China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, School of Basic Medicine, School of Rehabilitation Medicine, Gannan Medical University Ganzhou 341000 China
| | - Xuechen Li
- Department of Chemistry, State Key Lab of Synthetic Chemistry, University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Ruijun Tian
- Department of Chemistry, College of Science, Southern University of Science and Technology Shenzhen 518055 China
- Shenzhen Key Laboratory of Functional Proteomics, Guangming Advanced Research Institute, Southern University of Science and Technology Shenzhen 518055 China
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics Beijing 102206 China
| |
Collapse
|
5
|
Cardani-Boulton A, Lin F, Bergmann CC. CD6 Regulates CD4 T Follicular Helper Cell Differentiation and Humoral Immunity During Murine Coronavirus Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605237. [PMID: 39091786 PMCID: PMC11291160 DOI: 10.1101/2024.07.26.605237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
During activation the T cell transmembrane receptor CD6 becomes incorporated into the T cell immunological synapse where it can exert both co-stimulatory and co-inhibitory functions. Given the ability of CD6 to carry out opposing functions, this study sought to determine how CD6 regulates early T cell activation in response to viral infection. Infection of CD6 deficient mice with a neurotropic murine coronavirus resulted in greater activation and expansion of CD4 T cells in the draining lymph nodes. Further analysis demonstrated that there was also preferential differentiation of CD4 T cells into T follicular helper cells, resulting in accelerated germinal center responses and emergence of high affinity virus specific antibodies. Given that CD6 conversely supports CD4 T cell activation in many autoimmune models, we probed potential mechanisms of CD6 mediated suppression of CD4 T cell activation during viral infection. Analysis of CD6 binding proteins revealed that infection induced upregulation of Ubash3a, a negative regulator of T cell receptor signaling, was hindered in CD6 deficient lymph nodes. Consistent with greater T cell activation and reduced UBASH3a activity, the T cell receptor signal strength was intensified in CD6 deficient CD4 T cells. These results reveal a novel immunoregulatory role for CD6 in limiting CD4 T cell activation and deterring CD4 T follicular helper cell differentiation, thereby attenuating antiviral humoral immunity.
Collapse
Affiliation(s)
- Amber Cardani-Boulton
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Case Western Reserve University, Cleveland Clinic, Lerner College of Medicine, Cleveland, OH
| | - Feng Lin
- Case Western Reserve University, Cleveland Clinic, Lerner College of Medicine, Cleveland, OH
- Department of Immunity and Inflammation, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Cornelia C Bergmann
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Case Western Reserve University, Cleveland Clinic, Lerner College of Medicine, Cleveland, OH
| |
Collapse
|
6
|
Tsygankov AY. Role of Tula-Family Proteins in Cell Signaling and Activation: Advances and Challenges. Int J Mol Sci 2024; 25:4434. [PMID: 38674019 PMCID: PMC11050124 DOI: 10.3390/ijms25084434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
This Special Issue entitled "Role of Tula-Family Proteins in Cell Signaling and Activation: Advances and Challenges" is focused on a relatively novel vertebrate gene/protein family termed alternatively TULA, UBASH3, or STS [...].
Collapse
Affiliation(s)
- Alexander Y Tsygankov
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
7
|
Wang J, Wang C, Hu A, Yu K, Kuang Y, Gajendran B, Zacksenhaus E, Sample KM, Xiao X, Liu W, Ben-David Y. FLI1 induces erythroleukemia through opposing effects on UBASH3A and UBASH3B expression. BMC Cancer 2024; 24:326. [PMID: 38461240 PMCID: PMC10925000 DOI: 10.1186/s12885-024-12075-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 03/01/2024] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND FLI1 is an oncogenic transcription factor that promotes diverse malignancies through mechanisms that are not fully understood. Herein, FLI1 is shown to regulate the expression of Ubiquitin Associated and SH3 Domain Containing A/B (UBASH3A/B) genes. UBASH3B and UBASH3A are found to act as an oncogene and tumor suppressor, respectively, and their combined effect determines erythroleukemia progression downstream of FLI1. METHODS Promoter analysis combined with luciferase assays and chromatin immunoprecipitation (ChIP) analysis were applied on the UBASH3A/B promoters. RNAseq analysis combined with bioinformatic was used to determine the effect of knocking-down UBASH3A and UBASH3B in leukemic cells. Downstream targets of UBASH3A/B were inhibited in leukemic cells either via lentivirus-shRNAs or small molecule inhibitors. Western blotting and RT-qPCR were used to determine transcription levels, MTT assays to assess proliferation rate, and flow cytometry to examine apoptotic index. RESULTS Knockdown of FLI1 in erythroleukemic cells identified the UBASH3A/B genes as potential downstream targets. Herein, we show that FLI1 directly binds to the UBASH3B promoter, leading to its activation and leukemic cell proliferation. In contrast, FLI1 indirectly inhibits UBASH3A transcription via GATA2, thereby antagonizing leukemic growth. These results suggest oncogenic and tumor suppressor roles for UBASH3B and UBASH3A in erythroleukemia, respectively. Mechanistically, we show that UBASH3B indirectly inhibits AP1 (FOS and JUN) expression, and that its loss leads to inhibition of apoptosis and acceleration of proliferation. UBASH3B also positively regulates the SYK gene expression and its inhibition suppresses leukemia progression. High expression of UBASH3B in diverse tumors was associated with worse prognosis. In contrast, UBASH3A knockdown in erythroleukemic cells increased proliferation; and this was associated with a dramatic induction of the HSP70 gene, HSPA1B. Accordingly, knockdown of HSPA1B in erythroleukemia cells significantly accelerated leukemic cell proliferation. Accordingly, overexpression of UBASH3A in different cancers was predominantly associated with good prognosis. These results suggest for the first time that UBASH3A plays a tumor suppressor role in part through activation of HSPA1B. CONCLUSIONS FLI1 promotes erythroleukemia progression in part by modulating expression of the oncogenic UBASH3B and tumor suppressor UBASH3A.
Collapse
MESH Headings
- Humans
- Leukemia, Erythroblastic, Acute/genetics
- Leukemia, Erythroblastic, Acute/pathology
- Proto-Oncogene Protein c-fli-1/genetics
- Proto-Oncogene Protein c-fli-1/metabolism
- RNA, Small Interfering/genetics
- Genes, Tumor Suppressor
- Gene Expression Regulation
- Gene Expression Regulation, Neoplastic
- Cell Line, Tumor
- Oncogene Proteins, Fusion/genetics
- RNA-Binding Protein EWS/genetics
- Adaptor Proteins, Signal Transducing/metabolism
Collapse
Affiliation(s)
- Jie Wang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang-550014, Guizhou, People's Republic of China
- Natural Products Research Center of Guizhou Province, High Tech Zone, Province Science City, Baiyun District, Guiyang, 550014, China
| | - Chunlin Wang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang-550014, Guizhou, People's Republic of China
- Natural Products Research Center of Guizhou Province, High Tech Zone, Province Science City, Baiyun District, Guiyang, 550014, China
| | - Anling Hu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang-550014, Guizhou, People's Republic of China
- Natural Products Research Center of Guizhou Province, High Tech Zone, Province Science City, Baiyun District, Guiyang, 550014, China
| | - Kunlin Yu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang-550014, Guizhou, People's Republic of China
- Natural Products Research Center of Guizhou Province, High Tech Zone, Province Science City, Baiyun District, Guiyang, 550014, China
| | - Yi Kuang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang-550014, Guizhou, People's Republic of China
- Natural Products Research Center of Guizhou Province, High Tech Zone, Province Science City, Baiyun District, Guiyang, 550014, China
| | - Babu Gajendran
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang-550014, Guizhou, People's Republic of China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou Province, Guiyang, 550025, People's Republic of China
| | - Eldad Zacksenhaus
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Advanced Diagnostics, Toronto General Research Institute, University Health Network, Toronto, ON, Canada
| | | | - Xiao Xiao
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang-550014, Guizhou, People's Republic of China
- Natural Products Research Center of Guizhou Province, High Tech Zone, Province Science City, Baiyun District, Guiyang, 550014, China
| | - Wuling Liu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang-550014, Guizhou, People's Republic of China.
- Natural Products Research Center of Guizhou Province, High Tech Zone, Province Science City, Baiyun District, Guiyang, 550014, China.
| | - Yaacov Ben-David
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang-550014, Guizhou, People's Republic of China.
- Natural Products Research Center of Guizhou Province, High Tech Zone, Province Science City, Baiyun District, Guiyang, 550014, China.
| |
Collapse
|
8
|
Aziz F, Reddy K, Vega VF, Dey R, Hicks KA, Rao S, Jordan LO, Smith E, Shumate J, Scampavia L, Carpino N, Spicer TP, French JB. Rebamipide and Derivatives are Potent, Selective Inhibitors of Histidine Phosphatase Activity of the Suppressor of T Cell Receptor Signaling Proteins. J Med Chem 2024; 67:1949-1960. [PMID: 38252624 PMCID: PMC11426313 DOI: 10.1021/acs.jmedchem.3c01763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The suppressor of T cell receptor signaling (Sts) proteins are negative regulators of immune signaling. Genetic inactivation of these proteins leads to significant resistance to infection. From a 590,000 compound high-throughput screen, we identified the 2-(1H)-quinolinone derivative, rebamipide, as a putative inhibitor of Sts phosphatase activity. Rebamipide, and a small library of derivatives, are competitive, selective inhibitors of Sts-1 with IC50 values from low to submicromolar. SAR analysis indicates that the quinolinone, the acid, and the amide moieties are all essential for activity. A crystal structure confirmed the SAR and reveals key interactions between this class of compound and the protein. Although rebamipide has poor cell permeability, we demonstrated that a liposomal preparation can inactivate the phosphatase activity of Sts-1 in cells. These studies demonstrate that Sts-1 enzyme activity can be pharmacologically inactivated and provide foundational tools and insights for the development of immune-enhancing therapies that target the Sts proteins.
Collapse
Affiliation(s)
- Faisal Aziz
- The Hormel Institute, University of Minnesota, Austin, MN 55912
| | - Kanamata Reddy
- The Hormel Institute, University of Minnesota, Austin, MN 55912
| | - Virneliz Fernandez Vega
- The Herbert Wertheim UF Scripps Institute, Department of Molecular Medicine, Jupiter, FL 33458
| | - Raja Dey
- The Hormel Institute, University of Minnesota, Austin, MN 55912
| | - Katherine A. Hicks
- Department of Chemistry, State University of New York at Cortland, Cortland NY 13045
| | - Sumitha Rao
- The Herbert Wertheim UF Scripps Institute, Department of Molecular Medicine, Jupiter, FL 33458
| | - Luis Ortiz Jordan
- The Herbert Wertheim UF Scripps Institute, Department of Molecular Medicine, Jupiter, FL 33458
| | - Emery Smith
- The Herbert Wertheim UF Scripps Institute, Department of Molecular Medicine, Jupiter, FL 33458
| | - Justin Shumate
- The Herbert Wertheim UF Scripps Institute, Department of Molecular Medicine, Jupiter, FL 33458
| | - Louis Scampavia
- The Herbert Wertheim UF Scripps Institute, Department of Molecular Medicine, Jupiter, FL 33458
| | - Nicholas Carpino
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11790
| | - Timothy P. Spicer
- The Herbert Wertheim UF Scripps Institute, Department of Molecular Medicine, Jupiter, FL 33458
| | | |
Collapse
|
9
|
Eggert J, Zinzow-Kramer WM, Hu Y, Kolawole EM, Tsai YL, Weiss A, Evavold BD, Salaita K, Scharer CD, Au-Yeung BB. Cbl-b mitigates the responsiveness of naive CD8 + T cells that experience extensive tonic T cell receptor signaling. Sci Signal 2024; 17:eadh0439. [PMID: 38319998 PMCID: PMC10897907 DOI: 10.1126/scisignal.adh0439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 01/18/2024] [Indexed: 02/08/2024]
Abstract
Naive T cells experience tonic T cell receptor (TCR) signaling in response to self-antigens presented by major histocompatibility complex (MHC) in secondary lymphoid organs. We investigated how relatively weak or strong tonic TCR signals influence naive CD8+ T cell responses to stimulation with foreign antigens. The heterogeneous expression of Nur77-GFP, a transgenic reporter of tonic TCR signaling, in naive CD8+ T cells suggests variable intensities or durations of tonic TCR signaling. Although the expression of genes associated with acutely stimulated T cells was increased in Nur77-GFPHI cells, these cells were hyporesponsive to agonist TCR stimulation compared with Nur77-GFPLO cells. This hyporesponsiveness manifested as diminished activation marker expression and decreased secretion of IFN-γ and IL-2. The protein abundance of the ubiquitin ligase Cbl-b, a negative regulator of TCR signaling, was greater in Nur77-GFPHI cells than in Nur77-GFPLO cells, and Cbl-b deficiency partially restored the responsiveness of Nur77-GFPHI cells. Our data suggest that the cumulative effects of previously experienced tonic TCR signaling recalibrate naive CD8+ T cell responsiveness. These changes include gene expression changes and negative regulation partially dependent on Cbl-b. This cell-intrinsic negative feedback loop may enable the immune system to restrain naive CD8+ T cells with higher self-reactivity.
Collapse
Affiliation(s)
- Joel Eggert
- Division of Immunology, Lowance Center for Human Immunology, Department of Medicine, Emory University; Atlanta, 30322, USA
| | - Wendy M. Zinzow-Kramer
- Division of Immunology, Lowance Center for Human Immunology, Department of Medicine, Emory University; Atlanta, 30322, USA
| | - Yuesong Hu
- Department of Chemistry, Emory University; Atlanta, 30322, USA
| | - Elizabeth M. Kolawole
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, 84112, USA
| | - Yuan-Li Tsai
- Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Departments of Medicine and of Microbiology and Immunology, University of California, San Francisco; San Francisco, 94143, USA
| | - Arthur Weiss
- Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Departments of Medicine and of Microbiology and Immunology, University of California, San Francisco; San Francisco, 94143, USA
| | - Brian D. Evavold
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, 84112, USA
| | - Khalid Salaita
- Department of Chemistry, Emory University; Atlanta, 30322, USA
| | | | - Byron B. Au-Yeung
- Division of Immunology, Lowance Center for Human Immunology, Department of Medicine, Emory University; Atlanta, 30322, USA
| |
Collapse
|
10
|
Abstract
Cancers undergo sequential changes to proton (H+) concentration and sensing that are consequences of the disease and facilitate its further progression. The impact of protonation state on protein activity can arise from alterations to amino acids or their titration. Indeed, many cancer-initiating mutations influence pH balance, regulation or sensing in a manner that enables growth and invasion outside normal constraints as part of oncogenic transformation. These cancer-supporting effects become more prominent when tumours develop an acidic microenvironment owing to metabolic reprogramming and disordered perfusion. The ensuing intracellular and extracellular pH disturbances affect multiple aspects of tumour biology, ranging from proliferation to immune surveillance, and can even facilitate further mutagenesis. As a selection pressure, extracellular acidosis accelerates disease progression by favouring acid-resistant cancer cells, which are typically associated with aggressive phenotypes. Although acid-base disturbances in tumours often occur alongside hypoxia and lactate accumulation, there is now ample evidence for a distinct role of H+-operated responses in key events underpinning cancer. The breadth of these actions presents therapeutic opportunities to change the trajectory of disease.
Collapse
Affiliation(s)
- Pawel Swietach
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| | - Ebbe Boedtkjer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| | - Stine Falsig Pedersen
- Department of Biology, University of Copenhagen, University of Copenhagen, Faculty of Science, København, Denmark.
| |
Collapse
|
11
|
Khantakova JN, Sennikov SV. T-helper cells flexibility: the possibility of reprogramming T cells fate. Front Immunol 2023; 14:1284178. [PMID: 38022605 PMCID: PMC10646684 DOI: 10.3389/fimmu.2023.1284178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Various disciplines cooperate to find novel approaches to cure impaired body functions by repairing, replacing, or regenerating cells, tissues, or organs. The possibility that a stable differentiated cell can reprogram itself opens the door to new therapeutic strategies against a multitude of diseases caused by the loss or dysfunction of essential, irreparable, and specific cells. One approach to cell therapy is to induce reprogramming of adult cells into other functionally active cells. Understanding the factors that cause or contribute to T cell plasticity is not only of clinical importance but also expands the knowledge of the factors that induce cells to differentiate and improves the understanding of normal developmental biology. The present review focuses on the advances in the conversion of peripheral CD4+ T cells, the conditions of their reprogramming, and the methods proposed to control such cell differentiation.
Collapse
Affiliation(s)
- Julia N. Khantakova
- Department of Molecular Immunology, Federal State Budgetary Scientific Institution “Research Institute of Fundamental and Clinical Immunology” (RIFCI), Novosibirsk, Russia
| | | |
Collapse
|
12
|
Zaman A, Diago Navarro E, Fries BC, Kim HK, Carpino N. Inactivation of the Sts enzymes promotes resistance to lethal Staphylococcus aureus infection. Infect Immun 2023; 91:e0026023. [PMID: 37725063 PMCID: PMC10580875 DOI: 10.1128/iai.00260-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 09/21/2023] Open
Abstract
Staphylococcus aureus is a highly infective Gram-positive bacterial pathogen that causes a wide range of diseases in both healthy and immunocompromised individuals. It can evade host immune defenses by expressing numerous virulence factors and toxins. Coupled with the inability of the human host to develop protective immunity against S. aureus, the emergence of antibiotic-resistant strains complicates treatment options. The non-canonical Sts phosphatases negatively regulate signaling pathways in varied immune cell types. To determine the role of the Sts proteins in regulating host responses to a Gram-positive microorganism, we investigated the response of mice lacking Sts expression to S. aureus infection. Herein, we demonstrate that Sts -/- animals are significantly resistant to lethal intravenous doses of S. aureus strain USA300. Resistance is characterized by significantly enhanced survival and accelerated bacterial clearance in multiple peripheral organs. Infected Sts -/- animals do not display increased levels of cytokines TNFα, IFNγ, and IL-6 in the spleen, liver, and kidney during the early stages of the infection, suggesting that a heightened pro-inflammatory response does not underlie the resistance phenotype. In vivo ablation of mononuclear phagocytes compromises the Sts -/- enhanced CFU clearance phenotype. Additionally, Sts -/- bone marrow-derived macrophages demonstrate significantly enhanced restriction of intracellular S. aureus following ex vivo infection. These results reveal the Sts enzymes to be critical regulators of host immunity to a virulent Gram-positive pathogen and identify them as therapeutic targets for optimizing host anti-microbial responses.
Collapse
Affiliation(s)
- Anika Zaman
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Graduate Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, New York, USA
| | - Elizabeth Diago Navarro
- Division of Infectious Diseases, Department of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Bettina C. Fries
- Graduate Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, New York, USA
- Division of Infectious Diseases, Department of Medicine, Stony Brook University, Stony Brook, New York, USA
- Veterans Administration Medical Center, Northport, New York, USA
| | - Hwan Keun Kim
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Diseases, Stony Brook University, Stony Brook, New York, USA
| | - Nick Carpino
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
13
|
Hayes B, van der Geer P. STS-1 and STS-2, Multi-Enzyme Proteins Equipped to Mediate Protein-Protein Interactions. Int J Mol Sci 2023; 24:ijms24119214. [PMID: 37298164 DOI: 10.3390/ijms24119214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 06/12/2023] Open
Abstract
STS-1 and STS-2 form a small family of proteins that are involved in the regulation of signal transduction by protein-tyrosine kinases. Both proteins are composed of a UBA domain, an esterase domain, an SH3 domain, and a PGM domain. They use their UBA and SH3 domains to modify or rearrange protein-protein interactions and their PGM domain to catalyze protein-tyrosine dephosphorylation. In this manuscript, we discuss the various proteins that have been found to interact with STS-1 or STS-2 and describe the experiments used to uncover their interactions.
Collapse
Affiliation(s)
- Barbara Hayes
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Dr., San Diego, CA 92105, USA
| | - Peter van der Geer
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Dr., San Diego, CA 92105, USA
| |
Collapse
|
14
|
Tsygankov AY. TULA Proteins in Men, Mice, Hens, and Lice: Welcome to the Family. Int J Mol Sci 2023; 24:ijms24119126. [PMID: 37298079 DOI: 10.3390/ijms24119126] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
The two members of the UBASH3/STS/TULA protein family have been shown to critically regulate key biological functions, including immunity and hemostasis, in mammalian biological systems. Negative regulation of signaling through immune receptor tyrosine-based activation motif (ITAM)- and hemITAM-bearing receptors mediated by Syk-family protein tyrosine kinases appears to be a major molecular mechanism of the down-regulatory effect of TULA-family proteins, which possess protein tyrosine phosphatase (PTP) activity. However, these proteins are likely to carry out some PTP-independent functions as well. Whereas the effects of TULA-family proteins overlap, their characteristics and their individual contributions to cellular regulation also demonstrate clearly distinct features. Protein structure, enzymatic activity, molecular mechanisms of regulation, and biological functions of TULA-family proteins are discussed in this review. In particular, the usefulness of the comparative analysis of TULA proteins in various metazoan taxa, for identifying potential roles of TULA-family proteins outside of their functions already established in mammalian systems, is examined.
Collapse
Affiliation(s)
- Alexander Y Tsygankov
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
15
|
Zaman A, French JB, Carpino N. The Sts Proteins: Modulators of Host Immunity. Int J Mol Sci 2023; 24:8834. [PMID: 37240179 PMCID: PMC10218301 DOI: 10.3390/ijms24108834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
The suppressor of TCR signaling (Sts) proteins, Sts-1 and Sts-2, are a pair of closely related signaling molecules that belong to the histidine phosphatase (HP) family of enzymes by virtue of an evolutionarily conserved C-terminal phosphatase domain. HPs derive their name from a conserved histidine that is important for catalytic activity and the current evidence indicates that the Sts HP domain plays a critical functional role. Sts-1HP has been shown to possess a readily measurable protein tyrosine phosphatase activity that regulates a number of important tyrosine-kinase-mediated signaling pathways. The in vitro catalytic activity of Sts-2HP is significantly lower than that of Sts-1HP, and its signaling role is less characterized. The highly conserved unique structure of the Sts proteins, in which additional domains, including one that exhibits a novel phosphodiesterase activity, are juxtaposed together with the phosphatase domain, suggesting that Sts-1 and -2 occupy a specialized intracellular signaling niche. To date, the analysis of Sts function has centered predominately around the role of Sts-1 and -2 in regulating host immunity and other responses associated with cells of hematopoietic origin. This includes their negative regulatory role in T cells, platelets, mast cells and other cell types, as well as their less defined roles in regulating host responses to microbial infection. Regarding the latter, the use of a mouse model lacking Sts expression has been used to demonstrate that Sts contributes non-redundantly to the regulation of host immunity toward a fungal pathogen (C. albicans) and a Gram-negative bacterial pathogen (F. tularensis). In particular, Sts-/- animals demonstrate significant resistance to lethal infections of both pathogens, a phenotype that is correlated with some heightened anti-microbial responses of phagocytes derived from mutant mice. Altogether, the past several years have seen steady progress in our understanding of Sts biology.
Collapse
Affiliation(s)
- Anika Zaman
- Graduate Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, NY 11794, USA;
| | - Jarrod B. French
- Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN 55912, USA;
| | - Nick Carpino
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
16
|
STS1 and STS2 Phosphatase Inhibitor Baicalein Enhances the Expansion of Hematopoietic and Progenitor Stem Cells and Alleviates 5-Fluorouracil-Induced Myelosuppression. Int J Mol Sci 2023; 24:ijms24032987. [PMID: 36769312 PMCID: PMC9917816 DOI: 10.3390/ijms24032987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
STS1 and STS2, as the protein phosphatases that dephosphorylate FLT3 and cKIT, negatively regulate the self-renewal and differentiation of hematopoietic stem and progenitor cells (HSPCs). To obtain the small molecule inhibitors of STS1/STS2 phosphatase activity used to expand HSPCs both in vitro and in vivo, we establish an in vitro phosphatase assay using the recombinant proteins of the STS1/STS2 histidine phosphatase (HP) domain, by which we screened out baicalein (BC) as one of the effective inhibitors targeting STS1 and STS2. Then, we further demonstrate the direct binding of BC with STS1/STS2 using molecular docking and capillary electrophoresis and verify that BC can restore the phosphorylation of FLT3 and cKIT from STS1/STS2 inhibition. In a short-term in vitro culture, BC promotes profound expansion and enhances the colony-forming capacity of both human and mouse HSPCs along with the elevation of phospho-FLT3 and phospho-cKIT levels. Likewise, in vivo administration with BC significantly increases the proportions of short-term hematopoietic stem cells (ST-HSCs), multipotent progenitors (MPPs) and especially long-term HSCs (LT-HSCs) in healthy mouse bone marrow and increases the numbers of colony-forming units (CFU) formed by HSPCs as well. More importantly, pre-administration of BC significantly enhances the survival of mice with lethal 5-fluorouracil (5-FU) injection due to the alleviation of 5-FU-induced myelosuppression, as evidenced by the recovery of bone marrow histologic injury, the increased proportions of LT-HSCs, ST-HSCs and MPPs, and enhanced colony-forming capacity. Collectively, our study not only suggests BC as one of the small molecule candidates to stimulate HSPC expansion both in vitro and in vivo when needed in either physiologic or pathologic conditions, but also supports STS1/STS2 as potential therapeutic drug targets for HSPC expansion and hematopoietic injury recovery.
Collapse
|
17
|
Eggert J, Zinzow-Kramer WM, Hu Y, Tsai YL, Weiss A, Salaita K, Scharer CD, Au-Yeung BB. Accumulation of TCR signaling from self-antigens in naive CD8 T cells mitigates early responsiveness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.27.525946. [PMID: 36747815 PMCID: PMC9900884 DOI: 10.1101/2023.01.27.525946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The cumulative effects of T cell receptor (TCR) signal transduction over extended periods of time influences T cell biology, such as the positive selection of immature thymocytes or the proliferative responses of naive T cells. Naive T cells experience recurrent TCR signaling in response to self-antigens in the steady state. However, how these signals influence the responsiveness of naive CD8+ T cells to subsequent agonist TCR stimulation remains incompletely understood. We investigated how naive CD8+ T cells that experienced relatively low or high levels of TCR signaling in response to self-antigens respond to stimulation with foreign antigens. A transcriptional reporter of Nr4a1 (Nur77-GFP) revealed substantial heterogeneity of the amount of TCR signaling naive CD8+ T cells accumulate in the steady state. Nur77-GFPHI cells exhibited diminished T cell activation and secretion of IFNγ and IL-2 relative to Nur77-GFPLO cells in response to agonist TCR stimulation. Differential gene expression analyses revealed upregulation of genes associated with acutely stimulated T cells in Nur77-GFPHI cells but also increased expression of negative regulators such as the phosphatase Sts1. Responsiveness of Nur77-GFPHI cells to TCR stimulation was partially restored at the level of IFNγ secretion by deficiency of Sts1 or the ubiquitin ligase Cbl-b. Our data suggest that extensive accumulation of TCR signaling during steady state conditions induces a recalibration of the responsiveness of naive CD8+ T cells through gene expression changes and negative regulation, at least in part, dependent on Sts1 and Cbl-b. This cell-intrinsic negative feedback loop may allow the immune system to limit the autoreactive potential of highly self-reactive naive CD8+ T cells.
Collapse
Affiliation(s)
- Joel Eggert
- Division of Immunology, Lowance Center for Human Immunology, Department of Medicine, Emory University
| | - Wendy M. Zinzow-Kramer
- Division of Immunology, Lowance Center for Human Immunology, Department of Medicine, Emory University
| | - Yuesong Hu
- Department of Chemistry, Emory University
| | - Yuan-Li Tsai
- Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Departments of Medicine and of Microbiology and Immunology, University of California, San Francisco
| | - Arthur Weiss
- Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Departments of Medicine and of Microbiology and Immunology, University of California, San Francisco
| | | | | | - Byron B. Au-Yeung
- Division of Immunology, Lowance Center for Human Immunology, Department of Medicine, Emory University
| |
Collapse
|
18
|
Kunapuli SP, Tsygankov AY. TULA-Family Regulators of Platelet Activation. Int J Mol Sci 2022; 23:ijms232314910. [PMID: 36499237 PMCID: PMC9736690 DOI: 10.3390/ijms232314910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/30/2022] Open
Abstract
The two members of the UBASH3/TULA/STS-protein family have been shown to critically regulate cellular processes in multiple biological systems. The regulatory function of TULA-2 (also known as UBASH3B or STS-1) in platelets is one of the best examples of the involvement of UBASH3/TULA/STS proteins in cellular regulation. TULA-2 negatively regulates platelet signaling mediated by ITAM- and hemITAM-containing membrane receptors that are dependent on the protein tyrosine kinase Syk, which currently represents the best-known dephosphorylation target of TULA-2. The biological responses of platelets to collagen and other physiological agonists are significantly downregulated as a result. The protein structure, enzymatic activity and regulatory functions of UBASH3/TULA/STS proteins in the context of platelet responses and their regulation are discussed in this review.
Collapse
|
19
|
Monticone G, Huang Z, Csibi F, Leit S, Ciccone D, Champhekar AS, Austin JE, Ucar DA, Hossain F, Ibba SV, Boulares AH, Carpino N, Xu K, Majumder S, Osborne BA, Loh C, Miele L. Targeting the Cbl-b-Notch1 axis as a novel immunotherapeutic strategy to boost CD8+ T-cell responses. Front Immunol 2022; 13:987298. [PMID: 36090975 PMCID: PMC9459147 DOI: 10.3389/fimmu.2022.987298] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/08/2022] [Indexed: 12/03/2022] Open
Abstract
A critical feature of cancer is the ability to induce immunosuppression and evade immune responses. Tumor-induced immunosuppression diminishes the effectiveness of endogenous immune responses and decreases the efficacy of cancer immunotherapy. In this study, we describe a new immunosuppressive pathway in which adenosine promotes Casitas B-lineage lymphoma b (Cbl-b)-mediated Notch1 degradation, causing suppression of CD8+ T-cells effector functions. Genetic knockout and pharmacological inhibition of Cbl-b prevents Notch1 degradation in response to adenosine and reactivates its signaling. Reactivation of Notch1 results in enhanced CD8+ T-cell effector functions, anti-cancer response and resistance to immunosuppression. Our work provides evidence that targeting the Cbl-b-Notch1 axis is a novel promising strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Giulia Monticone
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Zhi Huang
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Fred Csibi
- Nimbus Therapeutics, Cambridge, MA, United States
| | - Silvana Leit
- Nimbus Therapeutics, Cambridge, MA, United States
| | | | - Ameya S. Champhekar
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, United States
| | - Jermaine E. Austin
- Department of Biology, University of Virginia, Charlottesville, VA, United States
| | - Deniz A. Ucar
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Fokhrul Hossain
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Salome V. Ibba
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - A. Hamid Boulares
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Nicholas Carpino
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, United States
| | - Keli Xu
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States
| | - Samarpan Majumder
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Barbara A. Osborne
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States
| | | | - Lucio Miele
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
20
|
Baessler A, Novis CL, Shen Z, Perovanovic J, Wadsworth M, Thiede KA, Sircy LM, Harrison-Chau M, Nguyen NX, Varley KE, Tantin D, Hale JS. Tet2 coordinates with Foxo1 and Runx1 to balance T follicular helper cell and T helper 1 cell differentiation. SCIENCE ADVANCES 2022; 8:eabm4982. [PMID: 35704571 PMCID: PMC9200277 DOI: 10.1126/sciadv.abm4982] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 04/30/2022] [Indexed: 05/22/2023]
Abstract
In response to various types of infection, naïve CD4+ T cells differentiate into diverse helper T cell subsets; however, the epigenetic programs that regulate differentiation in response to viral infection remain poorly understood. Demethylation of CpG dinucleotides by Tet methylcytosine dioxygenases is a key component of epigenetic programing that promotes specific gene expression, cellular differentiation, and function. We report that following viral infection, Tet2-deficient CD4+ T cells preferentially differentiate into highly functional germinal center T follicular helper (TFH) cells that provide enhanced help for B cells. Using genome-wide DNA methylation and transcription factor binding analyses, we find that Tet2 coordinates with multiple transcription factors, including Foxo1 and Runx1, to mediate the demethylation and expression of target genes, including genes encoding repressors of TFH differentiation. Our findings establish Tet2 as an important regulator of TFH cell differentiation and reveal pathways that could be targeted to enhance immune responses against infectious disease.
Collapse
Affiliation(s)
- Andrew Baessler
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Camille L. Novis
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Zuolian Shen
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Jelena Perovanovic
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Mark Wadsworth
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Kendall A. Thiede
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Linda M. Sircy
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Malia Harrison-Chau
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Nguyen X. Nguyen
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Katherine E. Varley
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Dean Tantin
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - J. Scott Hale
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| |
Collapse
|
21
|
Motif-dependent immune co-receptor interactome profiling by photoaffinity chemical proteomics. Cell Chem Biol 2022; 29:1024-1036.e5. [PMID: 35093210 DOI: 10.1016/j.chembiol.2022.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/10/2021] [Accepted: 01/06/2022] [Indexed: 12/17/2022]
Abstract
Identification of the tyrosine phosphorylation (pY)-dependent interactome of immune co-receptors is crucial for understanding signal pathways involved in immunotherapy. However, identifying the motif-specific interactome for each pY commonly found on these multi-phosphorylated membrane proteins remains challenging. Here, we describe a photoaffinity-based chemical proteomic approach to dissect the motif-specific cytoplasmic interactomes of the critical immune co-receptor CD28. Various full-length CD28 cytoplasmic tails (CD28cyto) with defined pY and selectively replaced photo-methionine were synthesized and applied to explore three pY-motif-dependent CD28cyto interactomes. We identified a stand-alone interaction of phospholipase PLCG1 with the Y191 motif with enhanced affinity for the sequence neighboring the transmembrane domain. Importantly, taking advantage of native top-down mass spectrometry with a 193-nm laser, we discovered the direct association of a previously undefined pY218 motif with the kinase PKCθ through its C2 domain. This synthetic CD28cyto-based photoaffinity proteomic approach is generically applicable to the study of other immune co-receptors with multiple pY sites on their linear cytoplasmic tail.
Collapse
|
22
|
Ssu72 phosphatase directly binds to ZAP-70, thereby providing fine-tuning of TCR signaling and preventing spontaneous inflammation. Proc Natl Acad Sci U S A 2021; 118:2102374118. [PMID: 34452999 DOI: 10.1073/pnas.2102374118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ZAP-70 is required for the initiation of T cell receptor (TCR) signaling, and Ssu72 is a phosphatase that regulates RNA polymerase II activity in the nucleus. However, the mechanism by which ZAP-70 regulates the fine-tuning of TCR signaling remains elusive. Here, we found that Ssu72 contributed to the fine-tuning of TCR signaling by acting as tyrosine phosphatase for ZAP-70. Affinity purification-mass spectrometry and an in vitro assay demonstrated specific interaction between Ssu72 and ZAP-70 in T cells. Upon TCR stimulation, Ssu72-deficient T cells increased the phosphorylation of ZAP-70 and downstream molecules and exhibited hyperresponsiveness, which was restored by reducing ZAP-70 phosphorylation. In vitro assay demonstrated that recombinant Ssu72 reduced tyrosine phosphorylation of ZAP-70 via phosphatase activity. Cd4-CreSsu72 fl/fl mice showed a defect in the thymic development of invariant natural killer T cells and reductions in CD4+ and CD8+ T cell numbers in the periphery but more CD44hiCD62Llo memory T cells and fewer CD44loCD62Lhi naïve T cells, compared with wild-type mice. Furthermore, Cd4-CreSsu72 fl/fl mice developed spontaneous inflammation at 6 mo. In conclusion, Ssu72 phosphatase regulates the fine-tuning of TCR signaling by binding to ZAP-70 and regulating its tyrosine phosphorylation, thereby preventing spontaneous inflammation.
Collapse
|
23
|
Su FY, Huang SC, Wei PC, Hsu PH, Li JP, Su LW, Hsieh YL, Hu CM, Hsu JL, Yang CY, Chung CY, Shew JY, Lan JL, Sytwu HK, Lee EYH, Lee WH. Redox sensor NPGPx restrains ZAP70 activity and modulates T cell homeostasis. Free Radic Biol Med 2021; 165:368-384. [PMID: 33460768 DOI: 10.1016/j.freeradbiomed.2021.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/02/2021] [Accepted: 01/07/2021] [Indexed: 10/22/2022]
Abstract
Emerging evidences implicate the contribution of ROS to T cell activation and signaling. The tyrosine kinase, ζ-chain-associated protein of 70 kDa (ZAP70), is essential for T cell development and activation. However, it remains elusive whether a direct redox regulation affects ZAP70 activity upon TCR stimulation. Here, we show that deficiency of non-selenocysteine containing phospholipid hydroperoxide glutathione peroxidase (NPGPx), a redox sensor, results in T cell hyperproliferation and elevated cytokine productions. T cell-specific NPGPx-knockout mice reveal enhanced T-dependent humoral responses and are susceptible to experimental autoimmune encephalomyelitis (EAE). Through proteomic approaches, ZAP70 is identified as the key interacting protein of NPGPx through disulfide bonding. NPGPx is activated by ROS generated from TCR stimulation, and modulates ZAP70 activity through redox switching to reduce ZAP70 recruitment to TCR/CD3 complex in membrane lipid raft, therefore subduing TCR responses. These results reveal a delicate redox mechanism that NPGPx serves as a modulator to curb ZAP70 functions in maintaining T cell homeostasis.
Collapse
Affiliation(s)
- Fang-Yi Su
- Genomics Research Center, Academia Sinica, Taipei, Taiwan; Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | | | - Pei-Chi Wei
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Pang-Hung Hsu
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan; Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Ju-Pi Li
- Division of Rheumatology and Immunology and Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan; School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Li-Wen Su
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yung-Lin Hsieh
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chun-Mei Hu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Jye-Lin Hsu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Drug Development Research Center, China Medical University, Taichung, Taiwan
| | | | - Chen-Yen Chung
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jin-Yuh Shew
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Joung-Liang Lan
- Division of Rheumatology and Immunology and Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Huey-Kang Sytwu
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan; National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Eva Y-Hp Lee
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Wen-Hwa Lee
- Genomics Research Center, Academia Sinica, Taipei, Taiwan; Drug Development Research Center, China Medical University, Taichung, Taiwan; Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
24
|
UBASH3A deficiency accelerates type 1 diabetes development and enhances salivary gland inflammation in NOD mice. Sci Rep 2020; 10:12019. [PMID: 32694640 PMCID: PMC7374577 DOI: 10.1038/s41598-020-68956-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
Recent advances in genetic analyses have significantly refined human type 1 diabetes (T1D) associated loci. The goal of such effort is to identify the causal genes and have a complete understanding of the molecular pathways that independently or interactively influence cellular processes leading to the destruction of insulin producing pancreatic β cells. UBASH3A has been suggested as the underlying gene for a human T1D associated region on chromosome 21. To further evaluate the role of UBASH3A in T1D, we targeted Ubash3a in NOD mice using zinc-finger nuclease mediated mutagenesis. In both 10-week-old females and males, significantly more advanced insulitis was observed in UBASH3A-deficient than in wild-type NOD mice. Consistently, UBASH3A-deficient NOD mice developed accelerated T1D in both sexes, which was associated with increased accumulation of β-cell autoreactive T cells in the spleen and pancreatic lymph node. Adoptive transfer of splenic T cells into NOD.Rag1-/- mice demonstrated that UBASH3A deficiency in T cells was sufficient to promote T1D development. Our results provide strong evidence to further support a role of UBASH3A in T1D. In addition to T1D, UBASH3A deficiency also promoted salivary gland inflammation in females, demonstrating its broad impact on autoimmunity.
Collapse
|
25
|
Recent insights of T cell receptor-mediated signaling pathways for T cell activation and development. Exp Mol Med 2020; 52:750-761. [PMID: 32439954 PMCID: PMC7272404 DOI: 10.1038/s12276-020-0435-8] [Citation(s) in RCA: 262] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/26/2020] [Accepted: 04/08/2020] [Indexed: 12/18/2022] Open
Abstract
T cell activation requires extracellular stimulatory signals that are mainly mediated by T cell receptor (TCR) complexes. The TCR recognizes antigens on major histocompatibility complex molecules with the cooperation of CD4 or CD8 coreceptors. After recognition, TCR-induced signaling cascades that propagate signals via various molecules and second messengers are induced. Consequently, many features of T cell-mediated immune responses are determined by these intracellular signaling cascades. Furthermore, differences in the magnitude of TCR signaling direct T cells toward distinct effector linages. Therefore, stringent regulation of T cell activation is crucial for T cell homeostasis and proper immune responses. Dysregulation of TCR signaling can result in anergy or autoimmunity. In this review, we summarize current knowledge on the pathways that govern how the TCR complex transmits signals into cells and the roles of effector molecules that are involved in these pathways.
Collapse
|
26
|
Yin Y, Frank D, Zhou W, Kaur N, French JB, Carpino N. An unexpected 2-histidine phosphoesterase activity of suppressor of T-cell receptor signaling protein 1 contributes to the suppression of cell signaling. J Biol Chem 2020; 295:8514-8523. [PMID: 32371395 DOI: 10.1074/jbc.ra120.013482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/30/2020] [Indexed: 11/06/2022] Open
Abstract
The suppressor of T-cell receptor (TCR) signaling (Sts) proteins Sts-1 and Sts-2 suppress receptor-mediated signaling pathways in various immune cells, including the TCR pathway in T cells and the Dectin-1 signaling pathway in phagocytes. As multidomain enzymes, they contain an N-terminal ubiquitin-association domain, a central Src homology 3 domain, and a C-terminal histidine phosphatase domain. Recently, a 2-histidine (2H) phosphoesterase motif was identified within the N-terminal portion of Sts. The 2H phosphoesterase motif defines an evolutionarily ancient protein domain present in several enzymes that hydrolyze cyclic phosphate bonds on different substrates, including cyclic nucleotides. It is characterized by two invariant histidine residues that play a critical role in catalytic activity. Consistent with its assignment as a phosphoesterase, we demonstrate here that the Sts-1 2H phosphoesterase domain displays catalytic, saturable phosphodiesterase activity toward the dinucleotide 2',3'-cyclic NADP. The enzyme exhibited a high degree of substrate specificity and selectively generated the 3'-nucleotide as the sole product. Sts-1 also had phosphodiesterase catalytic activity toward a 5-mer RNA oligonucleotide containing a 2',3'-cyclic phosphate group at its 3' terminus. To investigate the functional significance of Sts-1 2H phosphoesterase activity, we generated His-to-Ala variants and examined their ability to negatively regulate cellular signaling pathways. Substitution of either conserved histidine compromised the ability of Sts-1 to suppress signaling pathways downstream of both the TCR and the Dectin-1 receptor. Our results identify a heretofore unknown cellular enzyme activity associated with Sts-1 and indicate that this catalytic activity is linked to specific cell-signaling outcomes.
Collapse
Affiliation(s)
- Yue Yin
- Department of Chemistry, Stony Brook University, Stony Brook, New York, USA
| | - David Frank
- Department of Microbiology and Immunology, Stony Brook University Medical Center, Stony Brook, New York, USA
| | - Weijie Zhou
- Department of Chemistry, Stony Brook University, Stony Brook, New York, USA
| | - Neena Kaur
- Department of Microbiology and Immunology, Stony Brook University Medical Center, Stony Brook, New York, USA
| | - Jarrod B French
- Department of Chemistry, Stony Brook University, Stony Brook, New York, USA .,Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, USA
| | - Nick Carpino
- Department of Microbiology and Immunology, Stony Brook University Medical Center, Stony Brook, New York, USA
| |
Collapse
|
27
|
Held MA, Greenfest-Allen E, Su S, Stoeckert CJ, Stokes MP, Wojchowski DM. Phospho-PTM proteomic discovery of novel EPO- modulated kinases and phosphatases, including PTPN18 as a positive regulator of EPOR/JAK2 Signaling. Cell Signal 2020; 69:109554. [PMID: 32027948 DOI: 10.1016/j.cellsig.2020.109554] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 02/07/2023]
Abstract
The formation of erythroid progenitor cells depends sharply upon erythropoietin (EPO), its cell surface receptor (erythropoietin receptor, EPOR), and Janus kinase 2 (JAK2). Clinically, recombinant human EPO (rhEPO) additionally is an important anti-anemia agent for chronic kidney disease (CKD), myelodysplastic syndrome (MDS) and chemotherapy, but induces hypertension, and can exert certain pro-tumorigenic effects. Cellular signals transduced by EPOR/JAK2 complexes, and the nature of EPO-modulated signal transduction factors, therefore are of significant interest. By employing phospho-tyrosine post-translational modification (p-Y PTM) proteomics and human EPO- dependent UT7epo cells, we have identified 22 novel kinases and phosphatases as novel EPO targets, together with their specific sites of p-Y modification. New kinases modified due to EPO include membrane palmitoylated protein 1 (MPP1) and guanylate kinase 1 (GUK1) guanylate kinases, together with the cytoskeleton remodeling kinases, pseudopodium enriched atypical kinase 1 (PEAK1) and AP2 associated kinase 1 (AAK1). Novel EPO- modified phosphatases include protein tyrosine phosphatase receptor type A (PTPRA), phosphohistidine phosphatase 1 (PHPT1), tensin 2 (TENC1), ubiquitin associated and SH3 domain containing B (UBASH3B) and protein tyrosine phosphatase non-receptor type 18 (PTPN18). Based on PTPN18's high expression in hematopoietic progenitors, its novel connection to JAK kinase signaling, and a unique EPO- regulated PTPN18-pY389 motif which is modulated by JAK2 inhibitors, PTPN18's actions in UT7epo cells were investigated. Upon ectopic expression, wt-PTPN18 promoted EPO dose-dependent cell proliferation, and survival. Mechanistically, PTPN18 sustained the EPO- induced activation of not only mitogen-activated protein kinases 1 and 3 (ERK1/2), AKT serine/threonine kinase 1-3 (AKT), and signal transducer and activator of transcription 5A and 5B (STAT5), but also JAK2. Each effect further proved to depend upon PTPN18's EPO- modulated (p)Y389 site. In analyses of the EPOR and the associated adaptor protein RHEX (regulator of hemoglobinization and erythroid cell expansion), wt-PTPN18 increased high molecular weight EPOR forms, while sharply inhibiting the EPO-induced phosphorylation of RHEX-pY141. Each effect likewise depended upon PTPN18-Y389. PTPN18 thus promotes signals for EPO-dependent hematopoietic cell growth, and may represent a new druggable target for myeloproliferative neoplasms.
Collapse
Affiliation(s)
- Matthew A Held
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, 03824, United States of America
| | - Emily Greenfest-Allen
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, United States of America
| | - Su Su
- Molecular Medicine Department, Maine Medical Center Research Institute, Scarborough, ME, 04074, United States of America
| | - Christian J Stoeckert
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, United States of America
| | - Matthew P Stokes
- Proteomics Division, Cell Signaling Technology, Danvers, MA, 01923., United States of America
| | - Don M Wojchowski
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, 03824, United States of America.
| |
Collapse
|
28
|
Abstract
Histidine phosphorylation of proteins is increasingly recognised as an important regulatory posttranslational modification in eukaryotes as well as prokaryotes. The HP (Histidine Phosphatase) superfamily, named for a key catalytic His residue, harbors two known groups of protein phosphohistidine phosphatases (PPHPs). The bacterial SixA protein acts as a regulator of His-Asp phosphorelays with two substrates characterized in vitro and/or in vivo. The recently characterized eukaryotic PHPP PGAM5 only has one currently known substrate, NDPK-B, through which it helps regulate T-cell signaling. SixA and PGAM5 appear to share no particular sequence or structural features relating to their PPHP activity suggesting that PHPP activity has arisen independently in different lineages of the HP superfamily. Further members of the HP superfamily may thus harbor (additional) unsuspected PHPP activity.
Collapse
|
29
|
Medvedev KE, Kinch LN, Schaeffer RD, Grishin NV. Functional analysis of Rossmann-like domains reveals convergent evolution of topology and reaction pathways. PLoS Comput Biol 2019; 15:e1007569. [PMID: 31869345 PMCID: PMC6957218 DOI: 10.1371/journal.pcbi.1007569] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 01/13/2020] [Accepted: 11/26/2019] [Indexed: 12/18/2022] Open
Abstract
Rossmann folds are ancient, frequently diverged domains found in many biological reaction pathways where they have adapted for different functions. Consequently, discernment and classification of their homologous relations and function can be complicated. We define a minimal Rossmann-like structure motif (RLM) that corresponds for the common core of known Rossmann domains and use this motif to identify all RLM domains in the Protein Data Bank (PDB), thus finding they constitute about 20% of all known 3D structures. The Evolutionary Classification of protein structure Domains (ECOD) classifies RLM domains in a number of groups that lack evidence for homology (X-groups), which suggests that they could have evolved independently multiple times. Closely related, homologous RLM enzyme families can diverge to bind different ligands using similar binding sites and to catalyze different reactions. Conversely, non-homologous RLM domains can converge to catalyze the same reactions or to bind the same ligand with alternate binding modes. We discuss a special case of such convergent evolution that is relevant to the polypharmacology paradigm, wherein the same drug (methotrexate) binds to multiple non-homologous RLM drug targets with different topologies. Finally, assigning proteins with RLM domain to the Enzyme Commission classification suggest that RLM enzymes function mainly in metabolism (and comprise 38% of reference metabolic pathways) and are overrepresented in extant pathways that represent ancient biosynthetic routes such as nucleotide metabolism, energy metabolism, and metabolism of amino acids. In fact, RLM enzymes take part in five out of eight enzymatic reactions of the Wood-Ljungdahl metabolic pathway thought to be used by the last universal common ancestor (LUCA). The prevalence of RLM domains in this ancient metabolism might explain their wide distribution among enzymes.
Collapse
Affiliation(s)
- Kirill E. Medvedev
- Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Lisa N. Kinch
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - R. Dustin Schaeffer
- Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Nick V. Grishin
- Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
30
|
Ge Y, Paisie TK, Chen S, Concannon P. UBASH3A Regulates the Synthesis and Dynamics of TCR-CD3 Complexes. THE JOURNAL OF IMMUNOLOGY 2019; 203:2827-2836. [PMID: 31659016 DOI: 10.4049/jimmunol.1801338] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 09/27/2019] [Indexed: 01/14/2023]
Abstract
The TCR-CD3 complex is a multicomponent membrane receptor, the expression of which is tightly regulated in thymocytes, as well as in mature T cells both at steady state and upon stimulation. In this study, we report novel roles for UBASH3A in TCR-CD3 synthesis and turnover. UBASH3A is a negative regulator of T cell function and plays a broad role in autoimmunity. We show that modulation of UBASH3A levels in unstimulated Jurkat cells leads to altered amounts of total cellular CD3 chains and of cell-surface TCR-CD3 complexes; in contrast, UBASH3A does not affect the level of cell-surface CD28, an important T cell costimulatory receptor. Upon TCR engagement, UBASH3A enhances the downmodulation of cell-surface TCR-CD3. Mass spectrometry and protein-protein interaction studies uncover novel associations between UBASH3A and components of several cellular pathways involved in the regulation of TCR-CD3 turnover and dynamics, including endoplasmic reticulum-associated protein degradation, cell motility, endocytosis, and endocytic recycling of membrane receptors. Finally, we demonstrate that the SH3 domain of UBASH3A mediates its binding to CBL-B, an E3 ubiquitin ligase that negatively regulates CD28-mediated signaling and, hence, T cell activation. In summary, this study provides new mechanistic insights into how UBASH3A regulates T cell activation and contributes to autoimmunity. The interaction between UBASH3A and CBL-B may synergistically inhibit T cell function and affect risk for type 1 diabetes, as both genes have been shown to be associated with this autoimmune disease.
Collapse
Affiliation(s)
- Yan Ge
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610; .,Genetics Institute, University of Florida, Gainesville, FL 32610
| | - Taylor K Paisie
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610.,Genetics Institute, University of Florida, Gainesville, FL 32610.,Genetics and Genomics Graduate Program, University of Florida, Gainesville, FL 32610
| | - Sixue Chen
- Genetics Institute, University of Florida, Gainesville, FL 32610.,Genetics and Genomics Graduate Program, University of Florida, Gainesville, FL 32610.,Department of Biology, University of Florida, Gainesville, FL 32611.,Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611; and.,Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610
| | - Patrick Concannon
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610; .,Genetics Institute, University of Florida, Gainesville, FL 32610
| |
Collapse
|
31
|
Tsygankov AY. TULA proteins as signaling regulators. Cell Signal 2019; 65:109424. [PMID: 31639493 DOI: 10.1016/j.cellsig.2019.109424] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 10/25/2022]
Abstract
Two members of the UBASH3/STS/TULA family exhibit a unique protein domain structure, which includes a histidine phosphatase domain, and play a key role in regulating cellular signaling. UBASH3A/STS-2/TULA is mostly a lymphoid protein, while UBASH3B/STS-1/TULA-2 is expressed ubiquitously. Dephosphorylation of tyrosine-phosphorylated proteins by TULA-2 and, probably to a lesser extent, by TULA critically contribute to the molecular basis of their regulatory effect. The notable differences between the effects of the two family members on cellular signaling and activation are likely to be linked to the difference between their specific enzymatic activities. However, these differences might also be related to the functions of their domains other than the phosphatase domain and independent of their phosphatase activity. The down-regulation of the Syk/Zap-70-mediated signaling, which to-date appears to be the best-studied regulatory effect of TULA family, is discussed in detail in this publication.
Collapse
Affiliation(s)
- Alexander Y Tsygankov
- Sol Sherry Thrombosis Research Center, Fels Institute for Cancer Research and Department of Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, 3400 N. Broad Street, Philadelphia, PA, 19140, United States.
| |
Collapse
|
32
|
The phosphatase UBASH3B/Sts-1 is a negative regulator of Bcr-Abl kinase activity and leukemogenesis. Leukemia 2019; 33:2319-2323. [PMID: 30962580 PMCID: PMC6756289 DOI: 10.1038/s41375-019-0468-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 03/20/2019] [Accepted: 03/22/2019] [Indexed: 01/15/2023]
|
33
|
Zhou W, Yin Y, Smith E, Chou J, Shumate J, Scampavia L, Spicer TP, Carpino N, French JB. Discovery and Characterization of Two Classes of Selective Inhibitors of the Suppressor of the TCR Signaling Family of Proteins. ACS Infect Dis 2019; 5:250-259. [PMID: 30485744 DOI: 10.1021/acsinfecdis.8b00238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The suppressor of T-cell receptor signaling (Sts) proteins, Sts-1, has recently emerged as a potential immunostimulatory target for drug development. Genetic inactivation of the Sts proteins dramatically increases host survival of systemic infection and leads to improved pathogen clearance. The protein tyrosine phosphatase (PTP) activity of these proteins arises from a C-terminal 2-histidine phosphatase (HP) domain. To identify new inhibitors of the HP activity of Sts-1, we miniaturized a phosphatase assay to a 1536-well format and conducted a 20 580 compound screen. Among the hits were two classes of structurally related compounds, tetracycline variants and sulfonated azo dyes. These hits had low micromolar to nanomolar IC50 values. Orthogonal screening confirmed the validity of these inhibitors and demonstrated that both act competitively on Sts-1 phosphatase activity. When tested on other PTPs, PTP1B and SHP1, it was found that the tetracycline PTP1B, SHP1, the tetracycline variant (doxycycline), and the sulfonated azo dye (Congo red) are selective inhibitors of Sts-1HP, with selectivity indices ranging from 19 to as high as 200. The planar polyaromatic moieties present in both classes of compounds suggested a common binding mode. The mutation of either tryptophan 494 or tyrosine 596, located near the active site of the protein, reduced the Ki of the inhibitors from 3- to 18-fold, indicating that these residues may help to promote the binding of substrates with aromatic groups. This work provides new insights into substrate selectivity mechanisms and describes two classes of compounds that can serve as probes of function or as a basis for future drug discovery.
Collapse
Affiliation(s)
| | | | - Emery Smith
- Department of Molecular Medicine, Scripps Research Molecular Screening Center, Scripps Research, 130 Scripps Way, Jupiter, Florida 33458, United States
| | | | - Justin Shumate
- Department of Molecular Medicine, Scripps Research Molecular Screening Center, Scripps Research, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Louis Scampavia
- Department of Molecular Medicine, Scripps Research Molecular Screening Center, Scripps Research, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Timothy P. Spicer
- Department of Molecular Medicine, Scripps Research Molecular Screening Center, Scripps Research, 130 Scripps Way, Jupiter, Florida 33458, United States
| | | | | |
Collapse
|
34
|
Kong MS, Hashimoto-Tane A, Kawashima Y, Sakuma M, Yokosuka T, Kometani K, Onishi R, Carpino N, Ohara O, Kurosaki T, Phua KK, Saito T. Inhibition of T cell activation and function by the adaptor protein CIN85. Sci Signal 2019; 12:12/567/eaav4373. [PMID: 30723173 DOI: 10.1126/scisignal.aav4373] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
T cell activation is initiated by signaling molecules downstream of the T cell receptor (TCR) that are organized by adaptor proteins. CIN85 (Cbl-interacting protein of 85 kDa) is one such adaptor protein. Here, we showed that CIN85 limited T cell responses to TCR stimulation. Compared to activated wild-type (WT) T cells, those that lacked CIN85 produced more IL-2 and exhibited greater proliferation. After stimulation of WT T cells with their cognate antigen, CIN85 was recruited to the TCR signaling complex. Early TCR signaling events, such as phosphorylation of ζ-chain-associated protein kinase 70 (Zap70), Src homology 2 (SH2) domain-containing leukocyte protein of 76 kDa (SLP76), and extracellular signal-regulated kinase (Erk), were enhanced in CIN85-deficient T cells. The inhibitory function of CIN85 required the SH3 and PR regions of the adaptor, which associated with the phosphatase suppressor of TCR signaling-2 (Sts-2) after TCR stimulation. Together, our data suggest that CIN85 is recruited to the TCR signaling complex and mediates inhibition of T cell activation through its association with Sts-2.
Collapse
Affiliation(s)
- Mei Suen Kong
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,Institute for Research in Molecular Medicine, Main Campus, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia
| | - Akiko Hashimoto-Tane
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Yusuke Kawashima
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,Department of Technology Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Machie Sakuma
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Tadashi Yokosuka
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Kohei Kometani
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Reiko Onishi
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Nick Carpino
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794-8434, USA
| | - Osamu Ohara
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,Department of Technology Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Tomohiro Kurosaki
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,Lymphocyte Differentiation, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kia Kien Phua
- Institute for Research in Molecular Medicine, Main Campus, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia
| | - Takashi Saito
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan. .,Cell Signaling, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
35
|
Shahriyari E, Bonyadi M, Jabbarpoor Bonyadi MH, Soheilian M, Yaseri M, Ebrahimiadib N. Ubiquitin Associated and SH3 Domain Containing B (UBASH3B) Gene Association with Behcet’s Disease in Iranian Population. Curr Eye Res 2018; 44:200-205. [DOI: 10.1080/02713683.2018.1524913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Elham Shahriyari
- Center of Excellence for Biodiversity, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mortaza Bonyadi
- Center of Excellence for Biodiversity, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Masoud Soheilian
- Ocular Tissue Engineering Research Center, Ophthalmic Research Center, Shahid Beheshty University of Medical Sciences, Tehran, Iran
| | - Mehdi Yaseri
- Department of Biostatistics and Epidemiology, Tehran University of Medical Sciences, Tehran, Iran
| | - Nazanin Ebrahimiadib
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Science (TUMS), Tehran, Iran
| |
Collapse
|
36
|
Tsygankov AY. TULA-family proteins: Jacks of many trades and then some. J Cell Physiol 2018; 234:274-288. [PMID: 30076707 DOI: 10.1002/jcp.26890] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 06/13/2018] [Indexed: 12/17/2022]
Abstract
UBASH3/STS/TULA is a novel two-member family, which exerts several key regulatory effects in multiple cell types. UBASH3B/STS-1/TULA-2 is a highly active protein tyrosine phosphatase; its major target appears to be a specific regulatory site of protein tyrosine kinases of the Syk family, dephosphorylation of which inhibits Syk and Zap-70 kinases and suppresses receptor signaling mediated by these kinases. UBASH3A/STS-2/TULA exhibits substantial homology to UBASH3B/STS-1/TULA-2, but possesses only a small fraction of phosphatase activity of UBASH3B/STS-1/TULA-2, and thus, its regulatory effect may be based also on the phosphatase-independent mechanisms. Critical physiologic effects of these proteins have been demonstrated in T lymphocytes, platelets, stem cells, and other important cell types. These proteins have also been shown to play a key role in such pathologic conditions as autoimmunity, cancer, and thrombosis. The review focuses on the recent studies of this important family of cellular regulators.
Collapse
Affiliation(s)
- Alexander Y Tsygankov
- Department of Microbiology and Immunology, Fels Institute for Cancer Research and Molecular Biology and Sol Sherry Thrombosis Center, Temple University School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
37
|
Phagocytes from Mice Lacking the Sts Phosphatases Have an Enhanced Antifungal Response to Candida albicans. mBio 2018; 9:mBio.00782-18. [PMID: 30018105 PMCID: PMC6050958 DOI: 10.1128/mbio.00782-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mice lacking expression of the homologous phosphatases Sts-1 and Sts-2 (Sts−/− mice) are resistant to disseminated candidiasis caused by the fungal pathogen Candida albicans. To better understand the immunological mechanisms underlying the enhanced resistance of Sts−/− mice, we examined the kinetics of fungal clearance at early time points. In contrast to the rapid C. albicans growth seen in normal kidneys during the first 24 h postinfection, we observed a reduction in kidney fungal CFU within Sts−/− mice beginning at 12 to 18 h postinfection. This corresponds to the time period when large numbers of innate leukocytes enter the renal environment to counter the infection. Because phagocytes of the innate immune system are important for host protection against pathogenic fungi, we evaluated responses of bone marrow leukocytes. Relative to wild-type cells, Sts−/− marrow monocytes and bone marrow-derived dendritic cells (BMDCs) displayed a heightened ability to inhibit C. albicans growth ex vivo. This correlated with significantly enhanced production of reactive oxygen species (ROS) by Sts−/− BMDCs downstream of Dectin-1, a C-type lectin receptor that plays a critical role in stimulating host responses to fungi. We observed no visible differences in the responses of other antifungal effector pathways, including cytokine production and inflammasome activation, despite enhanced activation of the Syk tyrosine kinase downstream of Dectin-1 in Sts−/− cells. Our results highlight a novel mechanism regulating the immune response to fungal infections. Further understanding of this regulatory pathway could aid the development of therapeutic approaches to enhance protection against invasive candidiasis. Systemic candidiasis caused by fungal Candida species is becoming an increasingly serious medical problem for which current treatment is inadequate. Recently, the Sts phosphatases were established as key regulators of the host antifungal immune response. In particular, genetic inactivation of Sts significantly enhanced survival of mice infected intravenously with Candida albicans. The Sts−/−in vivo resistance phenotype is associated with reduced fungal burden and an absence of inflammatory lesions. To understand the underlying mechanisms, we studied phagocyte responses. Here, we demonstrate that Sts−/− phagocytes have heightened responsiveness to C. albicans challenge relative to wild-type cells. Our data indicate the Sts proteins negatively regulate phagocyte activation via regulating selective elements of the Dectin-1–Syk tyrosine kinase signaling axis. These results suggest that phagocytes lacking Sts respond to fungal challenge more effectively and that this enhanced responsiveness partially underlies the profound resistance of Sts−/− mice to systemic fungal challenge.
Collapse
|
38
|
Association Study and Fine-Mapping Major Histocompatibility Complex Analysis of Pemphigus Vulgaris in a Han Chinese Population. J Invest Dermatol 2018; 138:2307-2314. [PMID: 29857070 DOI: 10.1016/j.jid.2018.05.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 05/08/2018] [Accepted: 05/13/2018] [Indexed: 12/15/2022]
Abstract
To identify possible additional genetic susceptibility loci for pemphigus vulgaris (PV), we performed a genome-wide association study of 240 PV patients and 1,031 control individuals, and we selected the top single nucleotide polymorphisms for replication in independent samples, with 252 patient samples and 1,852 control samples. We identified rs11218708 (P = 3.1 × 10-8, odds ratio = 1.54) at chromosome locus 11q24.1 as significantly associated with PV. A fine-mapping analysis of PV risk in the major histocompatibility complex region showed three independent variants predisposed to PV using stepwise analysis: HLA-DRB1*14:04 (P = 2.47 × 10-38, odds ratio = 6.28), rs7454108 at the TAP2 gene (P = 2.78 × 10-12, odds ratio = 3.25), and rs1051336 at the HLA-DRA gene (P = 3.06 × 10-6, odds ratio = 0.33). A systematic evaluation using gene- and pathway-based analyses showed a high tendency for PV susceptibility genes to be associated with autoimmunity. Our study highlights the involvement of immune-mediated processes in the pathophysiology of PV and illustrates the value of imputation to identify variants in the major histocompatibility complex region.
Collapse
|
39
|
|
40
|
Affiliation(s)
- Byron B. Au-Yeung
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Neel H. Shah
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | - Lin Shen
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, University of California, San Francisco, California 94143, USA;,
| | - Arthur Weiss
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, University of California, San Francisco, California 94143, USA;,
- Howard Hughes Medical Institute, University of California, San Francisco, California 94143, USA
| |
Collapse
|
41
|
Abstract
In higher eukaryotes, the Tyr phosphorylation status of cellular proteins results from the coordinated action of Protein Tyrosine Kinases (PTKs) and Protein Tyrosine Phosphatases (PTPs). PTPs have emerged as highly regulated enzymes with diverse substrate specificity, and proteins with Tyr-dephosphorylation or Tyr-dephosphorylation-like properties can be clustered as the PTPome. This includes proteins from the PTP superfamily, which display a Cys-based catalytic mechanism, as well as enzymes from other gene families (Asp-based phosphatases, His-based phosphatases) that have converged in protein Tyr-dephosphorylation-related functions by using non-Cys-based catalytic mechanisms. Within the Cys-based members of the PTPome, classical PTPs dephosphorylate specific phosphoTyr (pTyr) residues from protein substrates, whereas VH1-like dual-specificity PTPs dephosphorylate pTyr, pSer, and pThr residues, as well as nonproteinaceous substrates, including phosphoinositides and phosphorylated carbohydrates. In addition, several PTPs have impaired catalytic activity as a result of amino acid substitutions at their active sites, but retain regulatory functions related with pTyr signaling. As a result of their relevant biological activity, many PTPs are linked to human disease, including cancer, neurodevelopmental, and metabolic diseases, making these proteins important drug targets and molecular markers in the clinic. Here, a brief overview on the biochemistry and physiology of the different groups of proteins that belong to the mammalian PTPome is presented.
Collapse
|
42
|
Carpino N, Naseem S, Frank DM, Konopka JB. Modulating Host Signaling Pathways to Promote Resistance to Infection by Candida albicans. Front Cell Infect Microbiol 2017; 7:481. [PMID: 29201860 PMCID: PMC5696602 DOI: 10.3389/fcimb.2017.00481] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/06/2017] [Indexed: 12/29/2022] Open
Abstract
Candida albicans is a common human fungal pathogen capable of causing serious systemic infections that can progress to become lethal. Current therapeutic approaches have limited effectiveness, especially once a systemic infection is established, in part due to the lack of an effective immune response. Boosting the immune response to C. albicans has been the goal of immunotherapy, but it has to be done selectively to prevent deleterious hyperinflammation (sepsis). Although an efficient inflammatory response is necessary to fight infection, the typical response to C. albicans results in collateral damage to tissues thereby exacerbating the pathological effects of infection. For this reason, identifying specific ways of modulating the immune system holds promise for development of new improved therapeutic approaches. This review will focus on recent studies that provide insight using mutant strains of mice that are more resistant to bloodstream infection by C. albicans. These mice are deficient in signal transduction proteins including the Jnk1 MAP kinase, the Cbl-b E3 ubiquitin ligase, or the Sts phosphatases. Interestingly, the mutant mice display a different response to C. albicans that results in faster clearance of infection without hyper-inflammation and collateral damage. A common underlying theme between the resistant mouse strains is loss of negative regulatory proteins that are known to restrain activation of cell surface receptor-initiated signaling cascades. Understanding the cellular and molecular mechanisms that promote resistance to C. albicans in mice will help to identify new approaches for improving antifungal therapy.
Collapse
Affiliation(s)
- Nick Carpino
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, United States
| | - Shamoon Naseem
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, United States
| | - David M Frank
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, United States
| | - James B Konopka
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
43
|
Zhou W, Yin Y, Weinheimer AS, Kaur N, Carpino N, French JB. Structural and Functional Characterization of the Histidine Phosphatase Domains of Human Sts-1 and Sts-2. Biochemistry 2017; 56:4637-4645. [PMID: 28759203 DOI: 10.1021/acs.biochem.7b00638] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The suppressor of T cell signaling (Sts) proteins, Sts-1 and Sts-2, are homologous phosphatases that negatively regulate signaling pathways downstream of the T cell receptor. Functional inactivation of Sts-1 and Sts-2 in a murine model leads to resistance to systemic infection by the opportunistic pathogen, Candida albicans. This suggests that modulation of the host immune response by inhibiting Sts function may be a viable strategy for treating these deadly fungal pathogen infections. To better understand the molecular determinants of function and structure, we characterized the structure and steady-state kinetics of the histidine phosphatase domains of human Sts-1 (Sts-1HP) and Sts-2 (Sts-2HP). We determined the X-ray crystal structures of unliganded Sts-1HP and Sts-1HP in complex with sulfate to 2.5 and 1.9 Å, respectively, and the structure of Sts-2HP with sulfate to 2.4 Å. The steady-state kinetic analysis shows, as expected, that Sts-1HP has a phosphatase activity significantly higher than that of Sts-2HP and that the human and mouse proteins behave similarly. In addition, comparison of the phosphatase activity of full-length Sts-1 protein to Sts-1HP reveals similar kinetics, indicating that Sts-1HP is a functional surrogate for the native protein. We also tested known phosphatase inhibitors and determined that the SHP-1 inhibitor, PHPS1, is a potent inhibitor of Sts-1 (Ki = 1.05 ± 0.15 μM). Finally, we demonstrated that human Sts-1 has robust phosphatase activity against the substrate, Zap-70, in a cell-based assay. Collectively, these data suggest that the human Sts proteins are druggable targets and provide a structural basis for future drug development efforts.
Collapse
Affiliation(s)
- Weijie Zhou
- Department of Chemistry, Stony Brook University , Stony Brook, New York 11794, United States
| | - Yue Yin
- Department of Chemistry, Stony Brook University , Stony Brook, New York 11794, United States
| | - Alexandra S Weinheimer
- Department of Biochemistry and Cell Biology, Stony Brook University , Stony Brook, New York 11794, United States
| | - Neena Kaur
- Department of Molecular Genetics and Microbiology, Stony Brook University , Stony Brook, New York 11794, United States
| | - Nick Carpino
- Department of Molecular Genetics and Microbiology, Stony Brook University , Stony Brook, New York 11794, United States
| | - Jarrod B French
- Department of Chemistry, Stony Brook University , Stony Brook, New York 11794, United States.,Department of Biochemistry and Cell Biology, Stony Brook University , Stony Brook, New York 11794, United States
| |
Collapse
|
44
|
van der Meulen T, Swarts S, Fischer W, van der Geer P. Identification of STS-1 as a novel ShcA-binding protein. Biochem Biophys Res Commun 2017; 490:1334-1339. [PMID: 28690151 DOI: 10.1016/j.bbrc.2017.07.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 07/05/2017] [Indexed: 11/19/2022]
Abstract
ShcA is a cytoplasmic signaling protein that supports signal transduction by receptor protein-tyrosine kinases by providing auxiliary tyrosine phosphorylation sites that engage additional signaling proteins. The principal binding partner for tyrosine phosphorylation sites on ShcA is Grb2. In the current study, we have used phosphotyrosine-containing peptides to isolate and identify STS-1 as a novel ShcA-binding protein. Our results further show that the interaction between STS-1 and ShcA is regulated in response to EGF receptor activation.
Collapse
Affiliation(s)
- Talitha van der Meulen
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030, USA
| | - Spencer Swarts
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030, USA
| | - Wolfgang Fischer
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Peter van der Geer
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030, USA.
| |
Collapse
|
45
|
Ge Y, Paisie TK, Newman JRB, McIntyre LM, Concannon P. UBASH3A Mediates Risk for Type 1 Diabetes Through Inhibition of T-Cell Receptor-Induced NF-κB Signaling. Diabetes 2017; 66:2033-2043. [PMID: 28607106 PMCID: PMC5482087 DOI: 10.2337/db16-1023] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 03/20/2017] [Indexed: 01/19/2023]
Abstract
Although over 40 type 1 diabetes (T1D) risk loci have been mapped in humans, the causative genes and variants for T1D are largely unknown. Here, we investigated a candidate gene in the 21q22.3 risk locus-UBASH3A, which is primarily expressed in T cells where it is thought to play a largely redundant role. Genetic variants in UBASH3A have been shown to be associated with several autoimmune diseases in addition to T1D. However, the molecular mechanism underlying these genetic associations is unresolved. Our study reveals a previously unrecognized role of UBASH3A in human T cells: UBASH3A attenuates the NF-κB signal transduction upon T-cell receptor (TCR) stimulation by specifically suppressing the activation of the IκB kinase complex. We identify novel interactions of UBASH3A with nondegradative polyubiquitin chains, TAK1 and NEMO, suggesting that UBASH3A regulates the NF-κB signaling pathway by an ubiquitin-dependent mechanism. Finally, we show that risk alleles at rs11203203 and rs80054410, two T1D-associated variants in UBASH3A, increase UBASH3A expression in human primary CD4+ T cells upon TCR stimulation, inhibiting NF-κB signaling via its effects on the IκB kinase complex and resulting in reduced IL2 gene expression.
Collapse
Affiliation(s)
- Yan Ge
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL
- Genetics Institute, University of Florida, Gainesville, FL
| | - Taylor K Paisie
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL
- Genetics Institute, University of Florida, Gainesville, FL
- Genetics & Genomics Graduate Program, University of Florida, Gainesville, FL
| | - Jeremy R B Newman
- Genetics Institute, University of Florida, Gainesville, FL
- Department of Molecular Genetics & Microbiology, University of Florida, Gainesville, FL
| | - Lauren M McIntyre
- Genetics Institute, University of Florida, Gainesville, FL
- Department of Molecular Genetics & Microbiology, University of Florida, Gainesville, FL
| | - Patrick Concannon
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL
- Genetics Institute, University of Florida, Gainesville, FL
| |
Collapse
|
46
|
Cutler JA, Tahir R, Sreenivasamurthy SK, Mitchell C, Renuse S, Nirujogi RS, Patil AH, Heydarian M, Wong X, Wu X, Huang TC, Kim MS, Reddy KL, Pandey A. Differential signaling through p190 and p210 BCR-ABL fusion proteins revealed by interactome and phosphoproteome analysis. Leukemia 2017; 31:1513-1524. [DOI: 10.1038/leu.2017.61] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/04/2017] [Accepted: 01/11/2017] [Indexed: 12/15/2022]
|
47
|
Reckel S, Hamelin R, Georgeon S, Armand F, Jolliet Q, Chiappe D, Moniatte M, Hantschel O. Differential signaling networks of Bcr-Abl p210 and p190 kinases in leukemia cells defined by functional proteomics. Leukemia 2017; 31:1502-1512. [PMID: 28111465 PMCID: PMC5508078 DOI: 10.1038/leu.2017.36] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/04/2017] [Accepted: 01/10/2017] [Indexed: 12/31/2022]
Abstract
The two major isoforms of the oncogenic Bcr–Abl tyrosine kinase, p210 and p190, are expressed upon the Philadelphia chromosome translocation. p210 is the hallmark of chronic myelogenous leukemia, whereas p190 occurs in the majority of B-cell acute lymphoblastic leukemia. Differences in protein interactions and activated signaling pathways that may be associated with the different diseases driven by p210 and p190 are unknown. We have performed a quantitative comparative proteomics study of p210 and p190. Strong differences in the interactome and tyrosine phosphoproteome were found and validated. Whereas the AP2 adaptor complex that regulates clathrin-mediated endocytosis interacts preferentially with p190, the phosphatase Sts1 is enriched with p210. Stronger activation of the Stat5 transcription factor and the Erk1/2 kinases is observed with p210, whereas Lyn kinase is activated by p190. Our findings provide a more coherent understanding of Bcr–Abl signaling, mechanisms of leukemic transformation, resulting disease pathobiology and responses to kinase inhibitors.
Collapse
Affiliation(s)
- S Reckel
- ISREC Foundation Chair in Translational Oncology, Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - R Hamelin
- Proteomics Core Facility, School of Life Sciences, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - S Georgeon
- ISREC Foundation Chair in Translational Oncology, Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - F Armand
- Proteomics Core Facility, School of Life Sciences, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Q Jolliet
- Proteomics Core Facility, School of Life Sciences, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - D Chiappe
- Proteomics Core Facility, School of Life Sciences, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - M Moniatte
- Proteomics Core Facility, School of Life Sciences, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - O Hantschel
- ISREC Foundation Chair in Translational Oncology, Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
48
|
Reppschläger K, Gosselin J, Dangelmaier CA, Thomas DH, Carpino N, McKenzie SE, Kunapuli SP, Tsygankov AY. TULA-2 Protein Phosphatase Suppresses Activation of Syk through the GPVI Platelet Receptor for Collagen by Dephosphorylating Tyr(P)346, a Regulatory Site of Syk. J Biol Chem 2016; 291:22427-22441. [PMID: 27609517 DOI: 10.1074/jbc.m116.743732] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/30/2016] [Indexed: 12/14/2022] Open
Abstract
Protein-tyrosine phosphatase TULA-2 has been shown to regulate receptor signaling in several cell types, including platelets. Platelets are critical for maintaining vascular integrity; this function is mediated by platelet aggregation in response to recognition of the exposed basement membrane collagen by the GPVI receptor, which is non-covalently associated with the signal-transducing FcRγ polypeptide chain. Our previous studies suggested that TULA-2 plays an important role in negatively regulating signaling through GPVI-FcRγ and indicated that the tyrosine-protein kinase Syk is a key target of the regulatory action of TULA-2 in platelets. However, the molecular basis of the down-regulatory effect of TULA-2 on Syk activation via FcRγ remained unclear. In this study, we demonstrate that suppression of Syk activation by TULA-2 is mediated, to a substantial degree, by dephosphorylation of Tyr(P)346, a regulatory site of Syk, which becomes phosphorylated soon after receptor ligation and plays a critical role in initiating the process that yields fully activated Syk. TULA-2 is capable of dephosphorylating Tyr(P)346 with high efficiency, thus controlling the overall activation of Syk, but is less efficient in dephosphorylating other regulatory sites of this kinase. Therefore, dephosphorylation of Tyr(P)346 may be considered an important "checkpoint" in the regulation of Syk activation process. Putative biological functions of TULA-2-mediated dephosphorylation of Tyr(P)346 may include deactivation of receptor-activated Syk or suppression of Syk activation by suboptimal stimulation.
Collapse
Affiliation(s)
- Kevin Reppschläger
- From the Departments of Microbiology and Immunology and.,Ernst-Moritz-Arndt-University Greifswald, 17489 Greifswald, Germany
| | - Jeanne Gosselin
- From the Departments of Microbiology and Immunology and.,Polytech Clermont-Ferrand, Ingenieur Genie Biologique, Clermont-Ferrand, Auvergne 63178, France, and
| | - Carol A Dangelmaier
- the Sol Sherry Thrombosis Research Center, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania 19140
| | - Dafydd H Thomas
- the Sol Sherry Thrombosis Research Center, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania 19140.,PMV Pharmaceuticals, Cranbury Township, New Jersey 08512
| | - Nick Carpino
- the Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794
| | - Steven E McKenzie
- the Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Satya P Kunapuli
- the Sol Sherry Thrombosis Research Center, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania 19140.,Physiology and
| | - Alexander Y Tsygankov
- From the Departments of Microbiology and Immunology and .,the Sol Sherry Thrombosis Research Center, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania 19140
| |
Collapse
|
49
|
Naik E, Dixit VM. Usp9X Is Required for Lymphocyte Activation and Homeostasis through Its Control of ZAP70 Ubiquitination and PKCβ Kinase Activity. THE JOURNAL OF IMMUNOLOGY 2016; 196:3438-51. [PMID: 26936881 DOI: 10.4049/jimmunol.1403165] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/09/2016] [Indexed: 11/19/2022]
Abstract
To achieve a durable adaptive immune response, lymphocytes must undergo clonal expansion and induce a survival program that enables the persistence of Ag-experienced cells and the development of memory. During the priming phase of this response, CD4(+)T lymphocytes either remain tolerized or undergo clonal expansion. In this article, we show that Usp9X functions as a positive regulatory switch during T lymphocyte priming through removal of inhibitory monoubiquitination from ZAP70. In the absence of Usp9X, an increased amount of ZAP70 localized to early endosomes consistent with the role of monoubiquitin in endocytic sorting. Usp9X becomes competent to deubiquitinate ZAP70 through TCR-dependent phosphorylation and enhancement of its catalytic activity and association with the LAT signalosome. In B lymphocytes, Usp9X is required for the induction of PKCβ kinase activity after BCR-dependent activation. Accordingly, inUsp9Xknockout B cells, there was a significant reduction in phospho-CARMA1 levels that resulted in reduced CARMA1/Bcl-10/MALT-1 complex formation and NF-κB-dependent cell survival. The pleiotropic effect of Usp9X during Ag-receptor signaling highlights its importance for the development of an effective and durable adaptive immune response.
Collapse
Affiliation(s)
- Edwina Naik
- Department of Physiological Chemistry, Genentech, Inc., South San Francisco, CA 94080
| | - Vishva M Dixit
- Department of Physiological Chemistry, Genentech, Inc., South San Francisco, CA 94080
| |
Collapse
|
50
|
Alonso A, Pulido R. The extended human PTPome: a growing tyrosine phosphatase family. FEBS J 2015; 283:1404-29. [PMID: 26573778 DOI: 10.1111/febs.13600] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 10/02/2015] [Accepted: 11/13/2015] [Indexed: 12/13/2022]
Abstract
Tyr phosphatases are, by definition, enzymes that dephosphorylate phospho-Tyr (pTyr) from proteins. This activity is found in several structurally diverse protein families, including the protein Tyr phosphatase (PTP), arsenate reductase, rhodanese, haloacid dehalogenase (HAD) and His phosphatase (HP) families. Most of these families include members with substrate specificity for non-pTyr substrates, such as phospho-Ser/phospho-Thr, phosphoinositides, phosphorylated carbohydrates, mRNAs, or inorganic moieties. A Cys is essential for catalysis in PTPs, rhodanese and arsenate reductase enzymes, whereas this work is performed by an Asp in HAD phosphatases and by a His in HPs, via a catalytic mechanism shared by all of the different families. The category that contains most Tyr phosphatases is the PTP family, which, although it received its name from this activity, includes Ser, Thr, inositide, carbohydrate and RNA phosphatases, as well as some inactive pseudophosphatase proteins. Here, we propose an extended collection of human Tyr phosphatases, which we call the extended human PTPome. The addition of new members (SACs, paladin, INPP4s, TMEM55s, SSU72, and acid phosphatases) to the currently categorized PTP group of enzymes means that the extended human PTPome contains up to 125 proteins, of which ~ 40 are selective for pTyr. We set criteria to ascribe proteins to the extended PTPome, and summarize the more important features of the new PTPome members in the context of their phosphatase activity and their relationship with human disease.
Collapse
Affiliation(s)
- Andrés Alonso
- Instituto de Biología y Genética Molecular (IBGM), CSIC-Universidad de Valladolid, Valladolid, Spain
| | - Rafael Pulido
- Biocruces Health Research Institute, Barakaldo, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|