1
|
Bakleh MZ, Al Haj Zen A. The Distinct Role of HIF-1α and HIF-2α in Hypoxia and Angiogenesis. Cells 2025; 14:673. [PMID: 40358197 PMCID: PMC12071368 DOI: 10.3390/cells14090673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 04/29/2025] [Accepted: 05/02/2025] [Indexed: 05/15/2025] Open
Abstract
Hypoxia results in a wide range of adaptive physiological responses, including metabolic reprogramming, erythropoiesis, and angiogenesis. The response to hypoxia at the cellular level is mainly regulated by hypoxia-inducible factors (HIFs): HIF1α and HIF2α isoforms. Although structurally similar and overlapping gene targets, both isoforms can exhibit distinct expression patterns and functions in some conditions of hypoxia. The interaction between these isoforms, known as the "HIF switch", determines their coordinated function under varying oxygen levels and exposure time. In angiogenesis, HIF-1α is rapidly stabilized under acute hypoxia, prompting a metabolic shift from oxidative phosphorylation to glycolysis and initiating angiogenesis by activating endothelial cells and extracellular matrix remodeling. Conversely, HIF-2α regulates cell responses to chronic hypoxia by sustaining genes critical for vascular remodeling and maturation. The current review highlights the different roles and regulatory mechanisms of HIF-1α and HIF-2α isoforms, focusing on their involvement in cell metabolism and the multi-step process of angiogenesis. Tuning the specific targeting of HIF isoforms and finding the right therapeutic window is essential to obtaining the best therapeutic effect in diseases such as cancer and vascular ischemic diseases.
Collapse
Affiliation(s)
| | - Ayman Al Haj Zen
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar
| |
Collapse
|
2
|
Broszkiewicz W, Beda J, Domińska K. Effect of dexamethasone on biological properties and metabolic adaptations of normal prostate epithelial cells under mild serum conditions. Steroids 2025; 219:109625. [PMID: 40316041 DOI: 10.1016/j.steroids.2025.109625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/23/2025] [Accepted: 04/29/2025] [Indexed: 05/04/2025]
Abstract
Limiting serum concentration in culture medium constitutes an environmental stress that disrupts cellular homeostasis and activates adaptive metabolism. This study aims to examine the impact of dexamethasone (DEX) on biological properties (e.g. viability, adhesion, migration) and glucose and lipid metabolism of prostate epithelial cells under stress conditions. The study used a non-tumorigenic human prostate cell line, PNT1A. In mild serum deprivation conditions, DEX, commonly used in the treatment of castration-resistant prostate cancer, also arrests normal prostate cells in the G0/G1 phase. Observed reduction in metabolic activity and limiting apoptosis of PNT1A cells as related to decreased expression of the NF-κB family and FOXO3 genes. Moreover, DEX modulated PNT1A migration by regulating cell plasticity thought capacity of adhesion to ECM proteins such as fibronectin and collagen I and IV. This was associated with changes in mRNA levels for the genes VIM, ZEB1 and ZEB2. Finally, it seems that dexamethasone helps PNT1A cells adapt to stress and enhance antioxidant defense, possibly by reprogramming lipid metabolism (e.g., LDLR, CPT1, MGLL), but not necessarily glucose metabolism.
Collapse
Affiliation(s)
- Weronika Broszkiewicz
- Medical University of Lodz, Department of Comparative Endocrinology, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Jakub Beda
- Medical University of Lodz, Department of Comparative Endocrinology, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Kamila Domińska
- Medical University of Lodz, Department of Comparative Endocrinology, Zeligowskiego 7/9, 90-752 Lodz, Poland.
| |
Collapse
|
3
|
Patel SS, Cook RS, Lo JH, Cherry FK, Hoogenboezem EN, Yu F, Francini N, Cassidy NT, McCune JT, Gbur EF, Messier L, Dean TA, Wilson KL, Brantley-Sieders DM, Duvall CL. Induction of Triple-Negative Breast Cancer Cell Death and Chemosensitivity Using mTORC2-Directed RNAi Nanomedicine. CANCER RESEARCH COMMUNICATIONS 2025; 5:458-476. [PMID: 40019775 PMCID: PMC11921867 DOI: 10.1158/2767-9764.crc-24-0261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 11/13/2024] [Accepted: 02/26/2025] [Indexed: 03/01/2025]
Abstract
SIGNIFICANCE We identified an mTORC2/Rictor-directed RNAi nanomedicine that cooperates with chemotherapy to enhance in vivo tumor cell killing in PI3K-active TNBCs.
Collapse
Affiliation(s)
- Shrusti S. Patel
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Rebecca S. Cook
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Justin H. Lo
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Fiona K. Cherry
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Ella N. Hoogenboezem
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Fang Yu
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Nora Francini
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Nina T. Cassidy
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Joshua T. McCune
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Eva F. Gbur
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Lisa Messier
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Thomas A. Dean
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Kalin L. Wilson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - Craig L. Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
4
|
Tao J, Liu Y, Tang X, Nie D, Wu K, Wang K, Tang N. Hypoxia reduces SLC27A5 to promote hepatocellular carcinoma proliferation by repressing HNF4A. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119916. [PMID: 39938688 DOI: 10.1016/j.bbamcr.2025.119916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/10/2025] [Accepted: 02/02/2025] [Indexed: 02/14/2025]
Abstract
Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related mortality globally, with hypoxia recognized as a key factor in its progression. Solute carrier family 27 member 5 (SLC27A5/FATP5), a pivotal enzyme in hepatic fatty acid transport and bile acid metabolism, is frequently downregulated in hepatocellular carcinoma, resulting in poor prognosis. However, the link between hypoxia and the suppression of SLC27A5 in HCC remains to be elucidated. Here, we investigated the hypoxia-induced downregulation of SLC27A5 and its impact on HCC proliferation via the repression of hepatocyte nuclear factor 4 alpha (HNF4A). Utilizing in vitro and in vivo hepatocellular carcinoma models, we have demonstrated that hypoxic conditions significantly reduce SLC27A5 transcription, which is mediated by the suppression of HNF4A. This reduction leads to the activation of the AKT pathway and an increase in cyclin-dependent kinase 2 (CDK2) and Cyclin E1 (CCNE1) expression, promoting the transition from the G1 to S phase of the cell cycle and driving HCC proliferation. Furthermore, we show that the pharmacological activation of HNF4A using Benfluorex, in combination with the AKT inhibitor MK2206, significantly inhibits tumor growth in a subcutaneous MHCC-97H xenograft model, suggesting a synergistic therapeutic potential. Together, our study provides novel insights into the hypoxia-mediated regulatory mechanisms in HCC and highlights the HNF4A/SLC27A5/AKT axis as a promising target for combination therapy.
Collapse
Affiliation(s)
- Junji Tao
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Yuanyuan Liu
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Xin Tang
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Dan Nie
- Department of Gastroenterology, The Chongqing Hospital of Traditional Chinese Medicine, Chongqing College of Traditional Chinese Medicine, Chongqing 400011, China
| | - Kang Wu
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Kai Wang
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China.
| | - Ni Tang
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
5
|
Nisar A, Khan S, Pan Y, Hu L, Yang P, Gold NM, Zhou Z, Yuan S, Zi M, Mehmood SA, He Y. The Role of Hypoxia in Longevity. Aging Dis 2025:AD.2024.1630. [PMID: 39965249 DOI: 10.14336/ad.2024.1630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 02/15/2025] [Indexed: 02/20/2025] Open
Abstract
Aging is marked by a progressive decrease in physiological function and reserve capacity, which results in increased susceptibility to diseases. Understanding the mechanisms of driving aging is crucial for extending health span and promoting human longevity. Hypoxia, marked by reduced oxygen availability, has emerged as a promising area of study within aging research. This review explores recent findings on the potential of oxygen restriction to promote healthy aging and extend lifespan. While the role of hypoxia-inducible factor 1 (HIF-1) in cellular responses to hypoxia is well-established, its impact on lifespan remains complex and context-dependent. Investigations in invertebrate models suggest a role for HIF-1 in longevity, while evidence in mammalian models is limited. Hypoxia extends the lifespan independent of dietary restriction (DR), a known intervention underlying longevity. However, both hypoxia and DR converge on common downstream effectors, such as forkhead box O (FOXO) and flavin-containing monooxygenase (FMOs) to modulate the lifespan. Further work is required to elucidate the molecular mechanisms underlying hypoxia-induced longevity and optimize clinical applications. Understanding the crosstalk between HIF-1 and other longevity-associated pathways is crucial for developing interventions to enhance lifespan and healthspan. Future studies may uncover novel therapeutic strategies to promote healthy aging and longevity in human populations.
Collapse
Affiliation(s)
- Ayesha Nisar
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Sawar Khan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan 410083, China
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan
| | - Yongzhang Pan
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Li Hu
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Pengyun Yang
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Naheemat Modupeola Gold
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Zhen Zhou
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Shengjie Yuan
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Meiting Zi
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | | | - Yonghan He
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| |
Collapse
|
6
|
Seymour L, Nuru N, Johnson KR, Gutierrez JMV, Njoku VT, Darie CC, Neagu AN. Roles of Post-Translational Modifications of Transcription Factors Involved in Breast Cancer Hypoxia. Molecules 2025; 30:645. [PMID: 39942749 PMCID: PMC11820228 DOI: 10.3390/molecules30030645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/17/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
BC is the most commonly diagnosed cancer and the second leading cause of cancer death among women worldwide. Cellular stress is a condition that leads to disrupted homeostasis by extrinsic and intrinsic factors. Among other stressors, hypoxia is a driving force for breast cancer (BC) progression and a general hallmark of solid tumors. Thus, intratumoral hypoxia is an important determinant of invasion, metastasis, treatment failure, prognosis, and patient mortality. Acquisition of the epithelial-mesenchymal transition (EMT) phenotype is also a consequence of tumor hypoxia. The cellular response to hypoxia is mainly regulated by the hypoxia signaling pathway, governed by hypoxia-inducible factors (HIFs), mainly HIF1α. HIFs are a family of transcription factors (TFs), which induce the expression of target genes involved in cell survival and proliferation, metabolic reprogramming, angiogenesis, resisting apoptosis, invasion, and metastasis. HIF1α cooperates with a large number of other TFs. In this review, we focused on the crosstalk and cooperation between HIF1α and other TFs involved in the cellular response to hypoxia in BC. We identified a cluster of TFs, proposed as the HIF1α-TF interactome, that orchestrates the transcription of target genes involved in hypoxia, due to their post-translational modifications (PTMs), including phosphorylation/dephosphorylation, ubiquitination/deubiquitination, SUMOylation, hydroxylation, acetylation, S-nitrosylation, and palmitoylation. PTMs of these HIF1α-related TFs drive their stability and activity, degradation and turnover, and the bidirectional translocation between the cytoplasm or plasma membrane and nucleus of BC cells, as well as the transcription/activation of proteins encoded by oncogenes or inactivation of tumor suppressor target genes. Consequently, PTMs of TFs in the HIF1α interactome are crucial regulatory mechanisms that drive the cellular response to oxygen deprivation in BC cells.
Collapse
Affiliation(s)
- Logan Seymour
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (L.S.); (N.N.); (K.R.J.); (J.M.V.G.); (V.T.N.)
| | - Niyogushima Nuru
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (L.S.); (N.N.); (K.R.J.); (J.M.V.G.); (V.T.N.)
| | - Kaya R. Johnson
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (L.S.); (N.N.); (K.R.J.); (J.M.V.G.); (V.T.N.)
| | - Jennifer Michel Villalpando Gutierrez
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (L.S.); (N.N.); (K.R.J.); (J.M.V.G.); (V.T.N.)
| | - Victor Tochukwu Njoku
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (L.S.); (N.N.); (K.R.J.); (J.M.V.G.); (V.T.N.)
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (L.S.); (N.N.); (K.R.J.); (J.M.V.G.); (V.T.N.)
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania
| |
Collapse
|
7
|
Rui M, Mao J, Wu H, Hui Y, Shen H, Yang Y, Ma T, Ren K, Wang J, Cui W, Shi Q, Yang H. Implantable Multifunctional Micro-Oxygen Reservoir System for Promoting Vascular-Osteogenesis via Remodeling Regenerative Microenvironment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409636. [PMID: 39588553 PMCID: PMC11744641 DOI: 10.1002/advs.202409636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/09/2024] [Indexed: 11/27/2024]
Abstract
Hypoxia and reactive oxygen species (ROS) overaccumulation cause persistent oxidative stress and impair intrinsic regenerative potential upon tissue injury. For local tissue injury with hypoxia, such as bone fracture and defects, a localized-sufficient oxygen supply is highly desirable but remains challenging. Therefore, to explore a strategy and its intrinsic mechanism for supplying oxygen locally and remodeling the regenerative microenvironment, an innovative oxygenating hydrogel microsphere system with sustained oxygenation and antioxidant properties is introduced by loading CaO2@SiO2@PDA (CSP) nanoparticles. Specifically, the CSP nanoparticles exhibited broad-spectrum free radicals scavenging ability, along with prolonged controlled-release of oxygen once integrated into the gelatin methacrylate anhydride (GelMA) microspheres (CSP-GM). The CSP-GM with extra cellular matrix (ECM)-mimicking structures reconstructed living niches, promoting the adhesion and proliferation of bone marrow stromal cells (BMSCs). As a multifaceted microenvironment regulator, CSP-GM remodeled the regenerative microenvironment by synergistically producing oxygen and scavenging ROS, recovering mitochondrial homeostasis and antioxidant defenses of BMSCs, promoting angiogenesis and osteogenesis under hypoxia conditions via precisely modulating the Nrf2/HO-1 signaling pathway. The multiple pro-regenerative effects of the implantable functionalized micro-oxygen reservoir on bone repair are further corroborated by the enhanced vascularized bone formation in rat femoral defects, presenting a comprehensive and promising strategy for tissue repair.
Collapse
Affiliation(s)
- Min Rui
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopaedic Institute of Soochow University899 Pinghai RoadSuzhouJiangsu215031P. R. China
- Department of OrthopaedicsWuxi Key Laboratory of Biomaterials for Clinical ApplicationDepartment of Central LaboratoryJiangyin Clinical College of Xuzhou Medical UniversityNo.163 Shoushan RoadJiangyinJiangsu214400P. R. China
| | - Jiannan Mao
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopaedic Institute of Soochow University899 Pinghai RoadSuzhouJiangsu215031P. R. China
- Department of OrthopaedicsWuxi Key Laboratory of Biomaterials for Clinical ApplicationDepartment of Central LaboratoryJiangyin Clinical College of Xuzhou Medical UniversityNo.163 Shoushan RoadJiangyinJiangsu214400P. R. China
| | - Hongshuai Wu
- Department of OrthopaedicsWuxi Key Laboratory of Biomaterials for Clinical ApplicationDepartment of Central LaboratoryJiangyin Clinical College of Xuzhou Medical UniversityNo.163 Shoushan RoadJiangyinJiangsu214400P. R. China
| | - Yujian Hui
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopaedic Institute of Soochow University899 Pinghai RoadSuzhouJiangsu215031P. R. China
- Department of OrthopaedicsWuxi Key Laboratory of Biomaterials for Clinical ApplicationDepartment of Central LaboratoryJiangyin Clinical College of Xuzhou Medical UniversityNo.163 Shoushan RoadJiangyinJiangsu214400P. R. China
| | - Hao Shen
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopaedic Institute of Soochow University899 Pinghai RoadSuzhouJiangsu215031P. R. China
| | - Yilin Yang
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopaedic Institute of Soochow University899 Pinghai RoadSuzhouJiangsu215031P. R. China
| | - Tao Ma
- Department of OrthopedicsThe First Affiliated Hospital of Wannan Medical CollegeYijishan Hospital, No. 2, Zhe Shan Xi RoadWuhuAnhui241001P. R. China
| | - Kewei Ren
- Department of OrthopaedicsWuxi Key Laboratory of Biomaterials for Clinical ApplicationDepartment of Central LaboratoryJiangyin Clinical College of Xuzhou Medical UniversityNo.163 Shoushan RoadJiangyinJiangsu214400P. R. China
| | - Juan Wang
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Wenguo Cui
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Qin Shi
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopaedic Institute of Soochow University899 Pinghai RoadSuzhouJiangsu215031P. R. China
| | - Huilin Yang
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopaedic Institute of Soochow University899 Pinghai RoadSuzhouJiangsu215031P. R. China
| |
Collapse
|
8
|
Shen L, Tian Q, Ran Q, Gan Q, Hu Y, Du D, Qin Z, Duan X, Zhu X, Huang W. Z-Ligustilide: A Potential Therapeutic Agent for Atherosclerosis Complicating Cerebrovascular Disease. Biomolecules 2024; 14:1623. [PMID: 39766330 PMCID: PMC11726876 DOI: 10.3390/biom14121623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Atherosclerosis (AS) is one of the major catalysts of ischemic cerebrovascular disease, and the death and disease burden from AS and its cerebrovascular complications are increasing. Z-ligustilide (Z-LIG) is a key active ingredient in Angelica sinensis (Oliv.) Diels and Ligusticum chuanxiong Hort. In this paper, we first introduced LIG's physicochemical properties and pharmacokinetics. Then, we reviewed Z-LIG's intervention and therapeutic mechanisms on AS and its cerebrovascular complications. The mechanisms of Z-LIG intervention in AS include improving lipid metabolism, antioxidant and anti-inflammatory effects, protecting vascular endothelium, and inhibiting vascular endothelial fibrosis, pathological thickening, and plaque calcification. In ischemic cerebrovascular diseases complicated by AS, Z-LIG exerts practical neuroprotective effects in ischemic stroke (IS), transient ischemic attack (TIA), and vascular dementia (VaD) through anti-neuroinflammatory, anti-oxidation, anti-neuronal apoptosis, protection of the blood-brain barrier, promotion of mitochondrial division and angiogenesis, improvement of cholinergic activity, inhibition of astrocyte proliferation, and endoplasmic reticulum stress. This paper aims to provide a basis for subsequent studies of Z-LIG in the prevention and treatment of AS and its cerebrovascular complications and, thus, to promote the development of interventional drugs for AS.
Collapse
Affiliation(s)
- Longyu Shen
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Qianqian Tian
- Faculty of Social Sciences, The University of Hong Kong, Hong Kong 999077, China
| | - Qiqi Ran
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Qianrong Gan
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Yu Hu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Donglian Du
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Zehua Qin
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Xinyi Duan
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Xinyun Zhu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
| | - Wei Huang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| |
Collapse
|
9
|
Herrera J, Bensussen A, García-Gómez ML, Garay-Arroyo A, Álvarez-Buylla ER. A system-level model reveals that transcriptional stochasticity is required for hematopoietic stem cell differentiation. NPJ Syst Biol Appl 2024; 10:145. [PMID: 39639033 PMCID: PMC11621455 DOI: 10.1038/s41540-024-00469-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 11/06/2024] [Indexed: 12/07/2024] Open
Abstract
HSCs differentiation has been difficult to study experimentally due to the high number of components and interactions involved, as well as the impact of diverse physiological conditions. From a 200-node network, that was grounded on experimental data, we derived a 21-node regulatory network by collapsing linear pathways and retaining the functional feedback loops. This regulatory network core integrates key nodes and interactions underlying HSCs differentiation, including transcription factors, metabolic, and redox signaling pathways. We used Boolean, continuous, and stochastic dynamic models to simulate the hypoxic conditions of the HSCs niche, as well as the patterns and temporal sequences of HSCs transitions and differentiation. Our findings indicate that HSCs differentiation is a plastic process in which cell fates can transdifferentiate among themselves. Additionally, we found that cell heterogeneity is fundamental for HSCs differentiation. Lastly, we found that oxygen activates ROS production, inhibiting quiescence and promoting growth and differentiation pathways of HSCs.
Collapse
Affiliation(s)
- Joel Herrera
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Antonio Bensussen
- Departamento de Control Automático, Cinvestav-IPN, Ciudad de México, México
| | - Mónica L García-Gómez
- Theoretical Biology, Institute of Biodynamics and Biocomplexity; Experimental and Computational Plant Development, Institute of Environmental Biology, Department of Biology, Utrecht University, Utrecht, Netherlands
| | - Adriana Garay-Arroyo
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Elena R Álvarez-Buylla
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México.
| |
Collapse
|
10
|
Wang P, Zou K, Cao J, Zhang Z, Yuan W, Chen J, Xu J, Zou Z, Chen D, Ruan H, Feng J, Lin X, Jin H. Protein phosphatase SCP4 regulates cartilage development and endochondral osteogenesis via FoxO3a dephosphorylation. Cell Prolif 2024; 57:e13691. [PMID: 38886174 PMCID: PMC11503251 DOI: 10.1111/cpr.13691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 05/02/2024] [Accepted: 05/31/2024] [Indexed: 06/20/2024] Open
Abstract
The regulatory mechanisms involved in embryonic development are complex and yet remain unclear. SCP4 represents a novel nucleus-resident phosphatase identified in our previous study. The primary aim of this study was to elucidate the function of SCP4 in the progress of cartilage development and endochondral osteogenesis. SCP4-/- and SCP4Col2ER mice were constructed to assess differences in bone formation using whole skeleton staining. ABH/OG staining was used to compare chondrocyte differentiation and cartilage development. Relevant biological functions were analysed using RNA-sequencing and GO enrichment, further validated by immunohistochemical staining, Co-IP and Western Blot. Global SCP4 knockout led to abnormal embryonic development in SCP4-/- mice, along with delayed endochondral osteogenesis. In parallel, chondrocyte-specific removal of SCP4 yielded more severe embryonic deformities in SCP4Col2ER mice, including limb shortening, reduced chondrocyte number in the growth plate, disorganisation and cell enlargement. Moreover, RNA-sequencing analysis showed an association between SCP4 and chondrocyte apoptosis. Notably, Tunnel-positive cells were indeed increased in the growth plates of SCP4Col2ER mice. The deficiency of SCP4 up-regulated the expression levels of pro-apoptotic proteins both in vivo and in vitro. Additionally, phosphorylation of FoxO3a (pFoxO3a), a substrate of SCP4, was heightened in chondrocytes of SCP4Col2ER mice growth plate, and the direct interaction between SCP4 and pFoxO3a was further validated in chondrocytes. Our findings underscore the critical role of SCP4 in regulating cartilage development and endochondral osteogenesis during embryonic development partially via inhibition of chondrocytes apoptosis regulated by FoxO3a dephosphorylation.
Collapse
Affiliation(s)
- Pinger Wang
- Institute of Orthopedics and TraumatologyThe First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese MedicineHangzhouZhejiangChina
- The First College of Clinical MedicineZhejiang Chinese Medical UniversityHangzhouZhejiangChina
| | - Kaiao Zou
- Institute of Orthopedics and TraumatologyThe First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese MedicineHangzhouZhejiangChina
- The First College of Clinical MedicineZhejiang Chinese Medical UniversityHangzhouZhejiangChina
| | - Jin Cao
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Zhengmao Zhang
- Department of Pathology and Laboratory MedicineWeill Cornell MedicineNew York CityNew YorkUSA
| | - Wenhua Yuan
- Institute of Orthopedics and TraumatologyThe First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese MedicineHangzhouZhejiangChina
- The First College of Clinical MedicineZhejiang Chinese Medical UniversityHangzhouZhejiangChina
| | - Jiali Chen
- Institute of Orthopedics and TraumatologyThe First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese MedicineHangzhouZhejiangChina
- The First College of Clinical MedicineZhejiang Chinese Medical UniversityHangzhouZhejiangChina
| | - Jianbo Xu
- Institute of Orthopedics and TraumatologyThe First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese MedicineHangzhouZhejiangChina
- The First College of Clinical MedicineZhejiang Chinese Medical UniversityHangzhouZhejiangChina
| | - Zhen Zou
- Institute of Orthopedics and TraumatologyThe First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese MedicineHangzhouZhejiangChina
- The First College of Clinical MedicineZhejiang Chinese Medical UniversityHangzhouZhejiangChina
| | - Di Chen
- Research Center for Computer‐aided Drug DiscoveryChinese Academy of Sciences, Shenzhen Institute of Advanced TechnologyShenzhenGuangdongChina
- Faculty of Pharmaceutical SciencesChinese Academy of Sciences, Shenzhen Institute of Advanced TechnologyShenzhenGuangdongChina
| | - Hongfeng Ruan
- Institute of Orthopedics and TraumatologyThe First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese MedicineHangzhouZhejiangChina
- The First College of Clinical MedicineZhejiang Chinese Medical UniversityHangzhouZhejiangChina
| | - Jianying Feng
- School of StomatologyZhejiang Chinese Medical UniversityHangzhouZhejiangChina
| | - Xia Lin
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Hongting Jin
- Institute of Orthopedics and TraumatologyThe First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese MedicineHangzhouZhejiangChina
- The First College of Clinical MedicineZhejiang Chinese Medical UniversityHangzhouZhejiangChina
| |
Collapse
|
11
|
Chu X, Sun J, Dai S, Liang Y, Qian X, Xu J, Zhang J. AURKA Activates FOXO3a to Form a Positive Feedback Loop in the Proliferation and Migration of Keloid Fibroblasts. Adv Wound Care (New Rochelle) 2024. [PMID: 39078320 DOI: 10.1089/wound.2024.0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024] Open
Abstract
Objective: Keloids are benign fibroproliferative disorders with invasive growth exceeding the wound boundary. Aurora kinase A (AURKA) is a serine/threonine kinase highly expressed in various tumors, facilitating tumor growth and invasion. Currently, the role of AURKA in keloid remains unclear. Approach: Fibroblasts were isolated from keloid and normal skin samples. AURKA was evaluated by qPCR, Western blot, and immunohistochemistry. Transcriptome sequencing and dual-luciferase reporter assays were applied to figure out targets of AURKA. Following expression alteration and MLN8237 (an AURKA kinase inhibitor, AKI) treatment, phenotypical experiments were conducted to clarify biological functions of AURKA along with its target, and to probe into the clinical potential of AURKA inhibition. Results: AURKA was upregulated in keloid tissues and fibroblasts. Forkhead box O 3a (FOXO3a) was verified as a downstream of AURKA. Further experiments demonstrated that AURKA transactivated FOXO3a by binding to FOXO3a, while FOXO3a directly transactivated AURKA. Functionally, AURKA and FOXO3a cooperated in enhancing the proliferation and migration of keloid fibroblasts via protein kinase B (AKT) phosphorylation. Although MLN8237 weakened the proliferation and migration in keloid fibroblasts, the transactivation of AURKA on FOXO3a was independent of kinase activity. Innovation: This study reveals that AURKA and FOXO3a compose a transactivation loop in enhancing the proliferative and migrative properties of keloid fibroblasts, and proposes AURKA as a promising target. Conclusion: AURKA/FOXO3a loop promotes the proliferation and migration of keloid fibroblasts via AKT signaling. Despite the anti-keloid effects of AKIs, AURKA acts as a transcription factor independently of kinase activity, deepening our understanding on AKI insensitivity.
Collapse
Affiliation(s)
- Xi Chu
- Department of Plastic and Cosmetic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Jiaqi Sun
- Department of Plastic Surgery, The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Siya Dai
- Department of Plastic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yehua Liang
- Department of Plastic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xifei Qian
- School of Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jinghong Xu
- Department of Plastic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jufang Zhang
- Department of Plastic and Cosmetic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| |
Collapse
|
12
|
de Almeida TG, Ricci AR, Dos Anjos LG, Soares Junior JM, Maciel GAR, Baracat EC, Carvalho KC. FOXO3a deregulation in uterine smooth muscle tumors. Clinics (Sao Paulo) 2024; 79:100350. [PMID: 38636197 PMCID: PMC11031728 DOI: 10.1016/j.clinsp.2024.100350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/20/2024] [Accepted: 03/12/2024] [Indexed: 04/20/2024] Open
Abstract
OBJECTIVE The present study aimed to investigate FOXO3a deregulation in Uterine Smooth Muscle Tumors (USMT) and its potential association with cancer development and prognosis. METHODS The authors analyzed gene and protein expression profiles of FOXO3a in 56 uterine Leiomyosarcomas (LMS), 119 leiomyomas (comprising conventional and unusual leiomyomas), and 20 Myometrium (MM) samples. The authors used techniques such as Immunohistochemistry (IHC), FISH/CISH, and qRT-PCR for the present analyses. Additionally, the authors conducted an in-silico analysis to understand the interaction network involving FOXO3a and its correlated genes. RESULTS This investigation revealed distinct expression patterns of the FOXO3a gene and protein, including both normal and phosphorylated forms. Expression levels were notably elevated in LMS, and Unusual Leiomyomas (ULM) compared to conventional Leiomyomas (LM) and Myometrium (MM) samples. This upregulation was significantly associated with metastasis and Overall Survival (OS) in LMS patients. Intriguingly, FOXO3a deregulation did not seem to be influenced by EGF/HER-2 signaling, as there were minimal levels of EGF and VEGF expression detected, and HER-2 and EGFR were negative in the analyzed samples. In the examination of miRNAs, the authors observed upregulation of miR-96-5p and miR-155-5p, which are known negative regulators of FOXO3a, in LMS samples. Conversely, the tumor suppressor miR-let7c-5p was downregulated. CONCLUSIONS In summary, the outcomes of the present study suggest that the imbalance in FOXO3a within Uterine Smooth Muscle Tumors might arise from both protein phosphorylation and miRNA activity. FOXO3a could emerge as a promising therapeutic target for individuals with Unusual Leiomyomas and Leiomyosarcomas (ULM and LMS), offering novel directions for treatment strategies.
Collapse
Affiliation(s)
- Thais Gomes de Almeida
- Laboratório de Ginecologia Estrutural e Molecular (LIM 58), Disciplina de Ginecologia, Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil; Instituto Brasileiro de Controle do Cancer, Mooca, São Paulo, SP, Brazil; Departamento de Ginecologia Oncológica, Hospital Santa Marcelina, São Paulo, SP, Brazil
| | - Anamaria Ritti Ricci
- Laboratório de Ginecologia Estrutural e Molecular (LIM 58), Disciplina de Ginecologia, Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Laura Gonzalez Dos Anjos
- Laboratório de Ginecologia Estrutural e Molecular (LIM 58), Disciplina de Ginecologia, Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Jose Maria Soares Junior
- Laboratório de Ginecologia Estrutural e Molecular (LIM 58), Disciplina de Ginecologia, Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Gustavo Arantes Rosa Maciel
- Laboratório de Ginecologia Estrutural e Molecular (LIM 58), Disciplina de Ginecologia, Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Edmund Chada Baracat
- Laboratório de Ginecologia Estrutural e Molecular (LIM 58), Disciplina de Ginecologia, Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Katia Candido Carvalho
- Laboratório de Ginecologia Estrutural e Molecular (LIM 58), Disciplina de Ginecologia, Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil.
| |
Collapse
|
13
|
Manoharan S, Prajapati K, Perumal E. Natural bioactive compounds and FOXO3a in cancer therapeutics: An update. Fitoterapia 2024; 173:105807. [PMID: 38168566 DOI: 10.1016/j.fitote.2023.105807] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/14/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024]
Abstract
Forkhead box protein 3a (FOXO3a) is a transcription factor that regulates various downstream targets upon its activation, leading to the upregulation of tumor suppressor and apoptotic pathways. Hence, targeting FOXO3a is an emerging strategy for cancer prevention and treatment. Recently, Natural Bioactive Compounds (NBCs) have been used in drug discovery for treating various disorders including cancer. Notably, several NBCs have been shown as potent FOXO3a activators. NBCs upregulate FOXO3a expressions through PI3K/Akt, MEK/ERK, AMPK, and IκB signaling pathways. FOXO3a promotes its anticancer effects by upregulating the levels of its downstream targets, including Bim, FasL, and Bax, leading to apoptosis. This review focuses on the dysregulation of FOXO3a in carcinogenesis and explores the potent FOXO3a activating NBCs for cancer prevention and treatment. Additionally, the review evaluates the safety and efficacy of NBCs. Looking ahead, NBCs are anticipated to become a cost-effective, potent, and safer therapeutic option for cancer, making them a focal point of research in the field of cancer prevention and treatment.
Collapse
Affiliation(s)
- Suryaa Manoharan
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Kunjkumar Prajapati
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India.
| |
Collapse
|
14
|
Lu JJ, Wu PF, He JG, Li YK, Long LH, Yao XP, Yang JH, Chen HS, Zhang XN, Hu ZL, Chen Z, Wang F, Chen JG. BNIP3L/NIX-mediated mitophagy alleviates passive stress-coping behaviors induced by tumor necrosis factor-α. Mol Psychiatry 2023; 28:5062-5076. [PMID: 36914810 DOI: 10.1038/s41380-023-02008-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 03/16/2023]
Abstract
Recent studies based on animal models of various neurological disorders have indicated that mitophagy, a selective autophagy that eliminates damaged and superfluous mitochondria through autophagic degradation, may be involved in various neurological diseases. As an important mechanism of cellular stress response, much less is known about the role of mitophagy in stress-related mood disorders. Here, we found that tumor necrosis factor-α (TNF-α), an inflammation cytokine that plays a particular role in stress responses, impaired the mitophagy in the medial prefrontal cortex (mPFC) via triggering degradation of an outer mitochondrial membrane protein, NIP3-like protein X (NIX). The deficits in the NIX-mediated mitophagy by TNF-α led to the accumulation of damaged mitochondria, which triggered synaptic defects and behavioral abnormalities. Genetic ablation of NIX in the excitatory neurons of mPFC caused passive coping behaviors to stress, and overexpression of NIX in the mPFC improved TNF-α-induced synaptic and behavioral abnormalities. Notably, ketamine, a rapid on-set and long-lasting antidepressant, reversed the TNF-α-induced behavioral abnormalities through activation of NIX-mediated mitophagy. Furthermore, the downregulation of NIX level was also observed in the blood of major depressive disorder patients and the mPFC tissue of animal models. Infliximab, a clinically used TNF-α antagonist, alleviated both chronic stress- and inflammation-induced behavioral abnormalities via restoring NIX level. Taken together, these results suggest that NIX-mediated mitophagy links inflammation signaling to passive coping behaviors to stress, which underlies the pathophysiology of stress-related emotional disorders.
Collapse
Affiliation(s)
- Jia-Jing Lu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Peng-Fei Wu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, 430030, China
- The Research Center for Depression, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, 430030, China
| | - Jin-Gang He
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu-Ke Li
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Li-Hong Long
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, 430030, China
- The Research Center for Depression, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, 430030, China
| | - Xia-Ping Yao
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jia-Hao Yang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hong-Sheng Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiang-Nan Zhang
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhuang-Li Hu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, 430030, China
- The Research Center for Depression, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, 430030, China
| | - Zhong Chen
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Fang Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, 430030, China.
- The Research Center for Depression, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, 430030, China.
| | - Jian-Guo Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, 430030, China.
- The Research Center for Depression, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, 430030, China.
| |
Collapse
|
15
|
Liang R, Lin M, Menon V, Qiu J, Menon A, Breda L, Arif T, Rivella S, Ghaffari S. Elevated CDKN1A (P21) mediates β-thalassemia erythroid apoptosis, but its loss does not improve β-thalassemic erythropoiesis. Blood Adv 2023; 7:6873-6885. [PMID: 37672319 PMCID: PMC10685172 DOI: 10.1182/bloodadvances.2022007655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/01/2023] [Accepted: 08/24/2023] [Indexed: 09/07/2023] Open
Abstract
β-thalassemias are common hemoglobinopathies due to mutations in the β-globin gene that lead to hemolytic anemias. Premature death of β-thalassemic erythroid precursors results in ineffective erythroid maturation, increased production of erythropoietin (EPO), expansion of erythroid progenitor compartment, extramedullary erythropoiesis, and splenomegaly. However, the molecular mechanism of erythroid apoptosis in β-thalassemia is not well understood. Using a mouse model of β-thalassemia (Hbbth3/+), we show that dysregulated expression of the FOXO3 transcription factor is implicated in β-thalassemia erythroid apoptosis. In Foxo3-/-/Hbbth3/+ mice, erythroid apoptosis is significantly reduced, whereas erythroid cell maturation, and red blood cell and hemoglobin production are substantially improved even with elevated reactive oxygen species in double-mutant erythroblasts. However, persistence of elevated reticulocytes and splenomegaly suggests that ineffective erythropoiesis is not resolved in Foxo3-/-/Hbbth3/+. We found the cell cycle inhibitor Cdkn1a (cyclin-dependent kinase inhibitor p21), a FOXO3 target gene, is markedly upregulated in both mouse and patient-derived β-thalassemic erythroid precursors. Double-mutant p21/Hbbth3/+ mice exhibited embryonic lethality with only a fraction of mice surviving to weaning. Notably, studies in adult mice displayed greatly reduced apoptosis and circulating Epo in erythroid compartments of surviving p21-/-/Hbbth3/+ mice relative to Hbbth3/+ mice, whereas ineffective erythroid cell maturation, extramedullary erythropoiesis, and splenomegaly were not modified. These combined results suggest that mechanisms that control β-thalassemic erythroid cell survival and differentiation are uncoupled from ineffective erythropoiesis and involve a molecular network including FOXO3 and P21. Overall, these studies provide a new framework for investigating ineffective erythropoiesis in β-thalassemia.
Collapse
Affiliation(s)
- Raymond Liang
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY
- Developmental and Stem Cell Biology Multidisciplinary Training, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Miao Lin
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Vijay Menon
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jiajing Qiu
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Anagha Menon
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY
- Developmental and Stem Cell Biology Multidisciplinary Training, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Laura Breda
- Division of Hematology, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - Tasleem Arif
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Stefano Rivella
- Division of Hematology, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - Saghi Ghaffari
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY
- Developmental and Stem Cell Biology Multidisciplinary Training, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
16
|
Albogami S. Genome-Wide Identification of lncRNA and mRNA for Diagnosing Type 2 Diabetes in Saudi Arabia. Pharmgenomics Pers Med 2023; 16:859-882. [PMID: 37731406 PMCID: PMC10508282 DOI: 10.2147/pgpm.s427977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/06/2023] [Indexed: 09/22/2023] Open
Abstract
Purpose According to the World Health Organization, Saudi Arabia ranks seventh worldwide in the number of patients with diabetes mellitus. To our knowledge, no research has addressed the potential of noncoding RNA as a diagnostic and/or management biomarker for patients with type 2 diabetes mellitus (T2DM) living in high-altitude areas. This study aimed to identify molecular biomarkers influencing patients with T2DM living in high-altitude areas by analyzing lncRNA and mRNA. Patients and Methods RNA sequencing and bioinformatics analyses were used to identify significantly expressed lncRNAs and mRNAs in T2DM and healthy control groups. Coding potential was analyzed using coding-noncoding indices, the coding potential calculator, and PFAM, and the lncRNA function was predicted using Pearson's correlation. Differentially expressed transcripts between the groups were identified, and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed to identify the biological functions of both lncRNAs and mRNAs. Results We assembled 1766 lncRNAs in the T2DM group, of which 582 were novel. This study identified three lncRNA target genes (KLF2, CREBBP, and REL) and seven mRNAs (PIK3CD, PIK3R5, IL6R, TYK2, ZAP70, LAMTOR4, and SSH2) significantly enriched in important pathways, playing a role in the progression of T2DM. Conclusion To the best of our knowledge, this comprehensive study is the first to explore the applicability of certain lncRNAs as diagnostic or management biomarkers for T2DM in females in Taif City, Saudi Arabia through the genome-wide identification of lncRNA and mRNA profiling using RNA seq and bioinformatics analysis. Our findings could help in the early diagnosis of T2DM and in designing effective therapeutic targets.
Collapse
Affiliation(s)
- Sarah Albogami
- Department of Biotechnology, College of Science, Taif University, Taif, 21944, Saudi Arabia
| |
Collapse
|
17
|
González-Arzola K, Díaz-Quintana A. Mitochondrial Factors in the Cell Nucleus. Int J Mol Sci 2023; 24:13656. [PMID: 37686461 PMCID: PMC10563088 DOI: 10.3390/ijms241713656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
The origin of eukaryotic organisms involved the integration of mitochondria into the ancestor cell, with a massive gene transfer from the original proteobacterium to the host nucleus. Thus, mitochondrial performance relies on a mosaic of nuclear gene products from a variety of genomes. The concerted regulation of their synthesis is necessary for metabolic housekeeping and stress response. This governance involves crosstalk between mitochondrial, cytoplasmic, and nuclear factors. While anterograde and retrograde regulation preserve mitochondrial homeostasis, the mitochondria can modulate a wide set of nuclear genes in response to an extensive variety of conditions, whose response mechanisms often merge. In this review, we summarise how mitochondrial metabolites and proteins-encoded either in the nucleus or in the organelle-target the cell nucleus and exert different actions modulating gene expression and the chromatin state, or even causing DNA fragmentation in response to common stress conditions, such as hypoxia, oxidative stress, unfolded protein stress, and DNA damage.
Collapse
Affiliation(s)
- Katiuska González-Arzola
- Centro Andaluz de Biología Molecular y Medicina Regenerativa—CABIMER, Consejo Superior de Investigaciones Científicas—Universidad de Sevilla—Universidad Pablo de Olavide, 41092 Seville, Spain
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, 41012 Seville, Spain
| | - Antonio Díaz-Quintana
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, 41012 Seville, Spain
- Instituto de Investigaciones Químicas—cicCartuja, Universidad de Sevilla—C.S.I.C, 41092 Seville, Spain
| |
Collapse
|
18
|
Gao Y, Tian T. mTOR Signaling Pathway and Gut Microbiota in Various Disorders: Mechanisms and Potential Drugs in Pharmacotherapy. Int J Mol Sci 2023; 24:11811. [PMID: 37511569 PMCID: PMC10380532 DOI: 10.3390/ijms241411811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The mammalian or mechanistic target of rapamycin (mTOR) integrates multiple intracellular and extracellular upstream signals involved in the regulation of anabolic and catabolic processes in cells and plays a key regulatory role in cell growth and metabolism. The activation of the mTOR signaling pathway has been reported to be associated with a wide range of human diseases. A growing number of in vivo and in vitro studies have demonstrated that gut microbes and their complex metabolites can regulate host metabolic and immune responses through the mTOR pathway and result in disorders of host physiological functions. In this review, we summarize the regulatory mechanisms of gut microbes and mTOR in different diseases and discuss the crosstalk between gut microbes and their metabolites and mTOR in disorders in the gastrointestinal tract, liver, heart, and other organs. We also discuss the promising application of multiple potential drugs that can adjust the gut microbiota and mTOR signaling pathways. Despite the limited findings between gut microbes and mTOR, elucidating their relationship may provide new clues for the prevention and treatment of various diseases.
Collapse
Affiliation(s)
- Yuan Gao
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Tian Tian
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
19
|
Desachy M, Alexandre F, Varray A, Molinier V, Four E, Charbonnel L, Héraud N. High Prevalence of Non-Responders Based on Quadriceps Force after Pulmonary Rehabilitation in COPD. J Clin Med 2023; 12:4353. [PMID: 37445388 DOI: 10.3390/jcm12134353] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Pulmonary rehabilitation (PR) in patients with COPD improves quality of life, dyspnea, and exercise tolerance. However, 30 to 50% of patients are "non-responders" (NRs) according to considered variables. Surprisingly, peripheral muscle force is never taken into account to attest the efficacy of PR, despite its major importance. Thus, we aimed to estimate the prevalence of force in NRs, their characteristics, and predictors of non-response. In total, 62 COPD patients were included in this retrospective study (May 2019 to December 2020). They underwent inpatient PR, and their quadriceps isometric maximal force (QMVC) was assessed. The PR program followed international guidelines. Patients with a QMVC increase <7.5 N·m were classified as an NR. COPD patients showed a mean improvement in QMVC after PR (10.08 ± 12.97 N·m; p < 0.001). However, 50% of patients were NRs. NRs had lower pre-PR values for body mass, height, body mass index, PaO2, and QMVC. Non-response can be predicted by low QMVC, high PaCO2, and gender (when male). This model has a sensitivity of 74% and specificity of 81%. The study highlights the considerable number of NRs and potential risk factors for non-response. To systematize the effects, it may be interesting to implement blood gas correction and/or optimize the programs to enhance peripheral and central effects.
Collapse
Affiliation(s)
- Marion Desachy
- EuroMov Digital Health in Motion, University Montpellier, IMT Mines Ales, Montpellier, France
- Direction de la Recherche et de l'Innovation en Santé (Research and Health Innovation Department), Clariane, France
| | - François Alexandre
- Direction de la Recherche et de l'Innovation en Santé (Research and Health Innovation Department), Clariane, France
| | - Alain Varray
- EuroMov Digital Health in Motion, University Montpellier, IMT Mines Ales, Montpellier, France
| | - Virginie Molinier
- Direction de la Recherche et de l'Innovation en Santé (Research and Health Innovation Department), Clariane, France
| | - Elodie Four
- Clinique du Souffle Les Clarines, Inicea, France
| | | | - Nelly Héraud
- Direction de la Recherche et de l'Innovation en Santé (Research and Health Innovation Department), Clariane, France
| |
Collapse
|
20
|
Okuda C, Ueda Y, Muroi M, Sanada E, Osada H, Shiono Y, Kimura KI, Takeda K, Kawaguchi K, Kataoka T. Allantopyrone A interferes with the degradation of hypoxia-inducible factor 1α protein by reducing proteasome activity in human fibrosarcoma HT-1080 cells. J Antibiot (Tokyo) 2023; 76:324-334. [PMID: 36997727 DOI: 10.1038/s41429-023-00610-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/08/2023] [Accepted: 02/24/2023] [Indexed: 04/01/2023]
Abstract
Allantopyrone A is an α-pyrone metabolite that was originally isolated from the endophytic fungus Allantophomopsis lycopodina KS-97. We previously demonstrated that allantopyrone A exhibits anti-cancer, anti-inflammatory, and neuroprotective activities. In the present study, we showed that allantopyrone A up-regulated the protein expression of hypoxia-inducible factor (HIF)-1α in human fibrosarcoma HT-1080 cells. It also up-regulated the mRNA expression of BNIP3 and ENO1, but not other HIF target genes or HIF1A. Allantopyrone A did not inhibit the prolyl hydroxylation of HIF-1α, but enhanced the ubiquitination of cellular proteins. Consistent with this result, chymotrypsin-like and trypsin-like proteasome activities were reduced, but not completely inactivated by allantopyrone A. Allantopyrone A decreased the amount of proteasome catalytic subunits. Therefore, the present results showed that allantopyrone A interfered with the degradation of HIF-1α protein by reducing proteasome activity in human fibrosarcoma HT-1080 cells.
Collapse
|
21
|
Hao W, Dian M, Zhou Y, Zhong Q, Pang W, Li Z, Zhao Y, Ma J, Lin X, Luo R, Li Y, Jia J, Shen H, Huang S, Dai G, Wang J, Sun Y, Xiao D. Autophagy induction promoted by m 6A reader YTHDF3 through translation upregulation of FOXO3 mRNA. Nat Commun 2022; 13:5845. [PMID: 36195598 PMCID: PMC9532426 DOI: 10.1038/s41467-022-32963-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/24/2022] [Indexed: 12/08/2022] Open
Abstract
Autophagy is crucial for maintaining cellular energy homeostasis and for cells to adapt to nutrient deficiency, and nutrient sensors regulating autophagy have been reported previously. However, the role of eiptranscriptomic modifications such as m6A in the regulation of starvation-induced autophagy is unclear. Here, we show that the m6A reader YTHDF3 is essential for autophagy induction. m6A modification is up-regulated to promote autophagosome formation and lysosomal degradation upon nutrient deficiency. METTL3 depletion leads to a loss of functional m6A modification and inhibits YTHDF3-mediated autophagy flux. YTHDF3 promotes autophagy by recognizing m6A modification sites around the stop codon of FOXO3 mRNA. YTHDF3 also recruits eIF3a and eIF4B to facilitate FOXO3 translation, subsequently initiating autophagy. Overall, our study demonstrates that the epitranscriptome regulator YTHDF3 functions as a nutrient responder, providing a glimpse into the post-transcriptional RNA modifications that regulate metabolic homeostasis.
Collapse
Affiliation(s)
- WeiChao Hao
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, 510080, Guangzhou, China
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - MeiJuan Dian
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, 510515, Guangzhou, China
| | - Ying Zhou
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, 510515, Guangzhou, China
| | - QiuLing Zhong
- Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - WenQian Pang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - ZiJian Li
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - YaYan Zhao
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, 510080, Guangzhou, China
| | - JiaCheng Ma
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, 10084, Beijing, China
| | - XiaoLin Lin
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315, Guangzhou, China
| | - RenRu Luo
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, 518107, Guangdong, China
| | - YongLong Li
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, 510515, Guangzhou, China
| | - JunShuang Jia
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - HongFen Shen
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - ShiHao Huang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, 510515, Guangzhou, China
| | - GuanQi Dai
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, 510515, Guangzhou, China
| | - JiaHong Wang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China.
| | - Yan Sun
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 510080, Guangzhou, China.
| | - Dong Xiao
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China.
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, 510515, Guangzhou, China.
- National Demonstration Center for Experimental Education of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China.
| |
Collapse
|
22
|
Loers JU, Vermeirssen V. SUBATOMIC: a SUbgraph BAsed mulTi-OMIcs clustering framework to analyze integrated multi-edge networks. BMC Bioinformatics 2022; 23:363. [PMID: 36064320 PMCID: PMC9442970 DOI: 10.1186/s12859-022-04908-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/24/2022] [Indexed: 11/02/2022] Open
Abstract
BACKGROUND Representing the complex interplay between different types of biomolecules across different omics layers in multi-omics networks bears great potential to gain a deep mechanistic understanding of gene regulation and disease. However, multi-omics networks easily grow into giant hairball structures that hamper biological interpretation. Module detection methods can decompose these networks into smaller interpretable modules. However, these methods are not adapted to deal with multi-omics data nor consider topological features. When deriving very large modules or ignoring the broader network context, interpretability remains limited. To address these issues, we developed a SUbgraph BAsed mulTi-OMIcs Clustering framework (SUBATOMIC), which infers small and interpretable modules with a specific topology while keeping track of connections to other modules and regulators. RESULTS SUBATOMIC groups specific molecular interactions in composite network subgraphs of two and three nodes and clusters them into topological modules. These are functionally annotated, visualized and overlaid with expression profiles to go from static to dynamic modules. To preserve the larger network context, SUBATOMIC investigates statistically the connections in between modules as well as between modules and regulators such as miRNAs and transcription factors. We applied SUBATOMIC to analyze a composite Homo sapiens network containing transcription factor-target gene, miRNA-target gene, protein-protein, homologous and co-functional interactions from different databases. We derived and annotated 5586 modules with diverse topological, functional and regulatory properties. We created novel functional hypotheses for unannotated genes. Furthermore, we integrated modules with condition specific expression data to study the influence of hypoxia in three cancer cell lines. We developed two prioritization strategies to identify the most relevant modules in specific biological contexts: one considering GO term enrichments and one calculating an activity score reflecting the degree of differential expression. Both strategies yielded modules specifically reacting to low oxygen levels. CONCLUSIONS We developed the SUBATOMIC framework that generates interpretable modules from integrated multi-omics networks and applied it to hypoxia in cancer. SUBATOMIC can infer and contextualize modules, explore condition or disease specific modules, identify regulators and functionally related modules, and derive novel gene functions for uncharacterized genes. The software is available at https://github.com/CBIGR/SUBATOMIC .
Collapse
Affiliation(s)
- Jens Uwe Loers
- Lab for Computational Biology, Integromics and Gene Regulation (CBIGR), Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Vanessa Vermeirssen
- Lab for Computational Biology, Integromics and Gene Regulation (CBIGR), Cancer Research Institute Ghent (CRIG), Ghent, Belgium. .,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium. .,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
| |
Collapse
|
23
|
Dzhalilova DS, Makarova OV. The Role of Hypoxia-Inducible Factor in the Mechanisms of Aging. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:995-1014. [PMID: 36180993 DOI: 10.1134/s0006297922090115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 06/16/2023]
Abstract
Aging is accompanied by a reduction in the oxygen delivery to all organs and tissues and decrease in the oxygen partial pressure in them, resulting in the development of hypoxia. The lack of oxygen activates cell signaling pathway mediated by the hypoxia-inducible transcription factor (HIF), which exists in three isoforms - HIF-1, HIF-2, and HIF-3. HIF regulates expression of several thousand genes and is a potential target for the development of new drugs for the treatment of many diseases, including those associated with age. Human organism and organisms of laboratory animals differ in their tolerance to hypoxia and expression of HIF and HIF-dependent genes, which may contribute to the development of inflammatory, tumor, and cardiovascular diseases. Currently, the data on changes in the HIF expression with age are contradictory, which is mostly due to the fact that such studies are conducted in different age groups, cell types, and model organisms, as well as under different hypoxic conditions and mainly in vitro. Furthermore, the observed discrepancies can be due to the individual tolerance of the studied organisms to hypoxia, which is typically not taken into account. Therefore, the purpose of this review was to analyze the published data on the connection between the mechanisms of aging, basal tolerance to hypoxia, and changes in the level of HIF expression with age. Here, we summarized the data on the age-related changes in the hypoxia tolerance, HIF expression and the role of HIF in aging, which is associated with its involvement in the molecular pathways mediated by insulin and IGF-1 (IIS), sirtuins (SIRTs), and mTOR. HIF-1 interacts with many components of the IIS pathway, in particular with FOXO, the activation of which reduces production of reactive oxygen species (ROS) and increases hypoxia tolerance. Under hypoxic conditions, FOXO is activated via both HIF-dependent and HIF-independent pathways, which contributes to a decrease in the ROS levels. The activity of HIF-1 is regulated by all members of the sirtuin family, except SIRT5, while the mechanisms of SIRT interaction with HIF-2 and HIF-3 are poorly understood. The connection between HIF and mTOR and its inhibitor, AMPK, has been identified, but its exact mechanism has yet to be studied. Understanding the role of HIF and hypoxia in aging and pathogenesis of age-associated diseases is essential for the development of new approaches to the personalized therapy of these diseases, and requires further research.
Collapse
Affiliation(s)
- Dzhuliia Sh Dzhalilova
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, 117418, Russia.
| | - Olga V Makarova
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, 117418, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
24
|
Jerome MS, Kuthethur R, Kabekkodu SP, Chakrabarty S. Regulation of mitochondrial function by forkhead transcription factors. Biochimie 2022; 198:96-108. [PMID: 35367579 DOI: 10.1016/j.biochi.2022.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/09/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023]
Abstract
Mitochondria play a central role in several important cellular processes such as energy production, apoptosis, fatty acid catabolism, calcium regulation, and cellular stress response. Multiple nuclear transcription factors have been reported for their role in the regulation of mitochondrial gene expression. More recently, the role of the forkhead family of transcription factors in various mitochondrial pathways has been reported. Among them, FOXO1, FOXO3a, FOXG1, and FOXM1 have been reported to localize to the mitochondria, of which the first two have been observed to bind to the mitochondrial D-loop. This suggests an important role for forkhead transcription factors in the direct regulation of the mitochondrial genome and function. Forkheads such as FOXO3a, FOXO1, and FOXM1 are involved in the cellular response to oxidative stress, hypoxia, and nutrient limitation. Several members of the forkhead family of transcription factors are also involved in the regulation of nuclear-encoded genes associated with the mitochondrial pathway of apoptosis, respiration, mitochondrial dynamics, and homeostasis.
Collapse
Affiliation(s)
- Maria Sona Jerome
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Raviprasad Kuthethur
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
25
|
Liu Y, Wang Y, Li X, Jia Y, Wang J, Ao X. FOXO3a in cancer drug resistance. Cancer Lett 2022; 540:215724. [DOI: 10.1016/j.canlet.2022.215724] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 02/07/2023]
|
26
|
Mafi S, Mansoori B, Taeb S, Sadeghi H, Abbasi R, Cho WC, Rostamzadeh D. mTOR-Mediated Regulation of Immune Responses in Cancer and Tumor Microenvironment. Front Immunol 2022; 12:774103. [PMID: 35250965 PMCID: PMC8894239 DOI: 10.3389/fimmu.2021.774103] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 12/14/2021] [Indexed: 12/17/2022] Open
Abstract
The mechanistic/mammalian target of rapamycin (mTOR) is a downstream mediator in the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathways, which plays a pivotal role in regulating numerous cellular functions including cell growth, proliferation, survival, and metabolism by integrating a variety of extracellular and intracellular signals in the tumor microenvironment (TME). Dysregulation of the mTOR pathway is frequently reported in many types of human tumors, and targeting the PI3K/Akt/mTOR signaling pathway has been considered an attractive potential therapeutic target in cancer. The PI3K/Akt/mTOR signaling transduction pathway is important not only in the development and progression of cancers but also for its critical regulatory role in the tumor microenvironment. Immunologically, mTOR is emerging as a key regulator of immune responses. The mTOR signaling pathway plays an essential regulatory role in the differentiation and function of both innate and adaptive immune cells. Considering the central role of mTOR in metabolic and translational reprogramming, it can affect tumor-associated immune cells to undergo phenotypic and functional reprogramming in TME. The mTOR-mediated inflammatory response can also promote the recruitment of immune cells to TME, resulting in exerting the anti-tumor functions or promoting cancer cell growth, progression, and metastasis. Thus, deregulated mTOR signaling in cancer can modulate the TME, thereby affecting the tumor immune microenvironment. Here, we review the current knowledge regarding the crucial role of the PI3K/Akt/mTOR pathway in controlling and shaping the immune responses in TME.
Collapse
Affiliation(s)
- Sahar Mafi
- Department of Clinical Biochemistry, Yasuj University of Medical Sciences, Yasuj, Iran
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Behzad Mansoori
- The Wistar Institute, Molecular & Cellular Oncogenesis Program, Philadelphia, PA, United States
| | - Shahram Taeb
- Department of Radiology, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran
- Medical Biotechnology Research Center, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran
| | - Hossein Sadeghi
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Reza Abbasi
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, Hong Kong SAR, China
| | - Davoud Rostamzadeh
- Department of Clinical Biochemistry, Yasuj University of Medical Sciences, Yasuj, Iran
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| |
Collapse
|
27
|
Das T, Kamle A, Kumar A, Chakravarty S. Hypoxia Induced Sex-Difference in Zebrafish Brain Proteome Profile Reveals the Crucial Role of H3K9me3 in Recovery From Acute Hypoxia. Front Genet 2022; 12:635904. [PMID: 35173759 PMCID: PMC8841817 DOI: 10.3389/fgene.2021.635904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 09/29/2021] [Indexed: 11/13/2022] Open
Abstract
Understanding the molecular basis of sex differences in neural response to acute hypoxic insult has profound implications for the effective prevention and treatment of ischemic stroke. Global hypoxic-ischemic induced neural damage has been studied recently under well-controlled, non-invasive, reproducible conditions using a zebrafish model. Our earlier report on sex difference in global acute hypoxia-induced neural damage and recovery in zebrafish prompted us to conduct a comprehensive study on the mechanisms underlying the recovery. An omics approach for studying quantitative changes in brain proteome upon hypoxia insult following recovery was undertaken using iTRAQ-based LC-MS/MS approach. The results shed light on the altered expression of many regulatory proteins in the zebrafish brain upon acute hypoxia following recovery. The sex difference in differentially expressed proteins along with the proteins expressed in a uniform direction in both the sexes was studied. Core expression analysis by Ingenuity Pathway Analysis (IPA) showed a distinct sex difference in the disease function heatmap. Most of the upstream regulators obtained through IPA were validated at the transcriptional level. Translational upregulation of H3K9me3 in males led us to elucidate the mechanism of recovery by confirming transcriptional targets through ChIP-qPCR. The upregulation of H3K9me3 level in males at 4 h post-hypoxia appears to affect the early neurogenic markers nestin, klf4, and sox2, which might explain the late recovery in males, compared to females. Acute hypoxia-induced sex-specific comparison of brain proteome led us to reveal many differentially expressed proteins, which can be further studied for the development of novel targets for better therapeutic strategy.
Collapse
Affiliation(s)
- Tapatee Das
- Applied Biology, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Avijeet Kamle
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India
| | - Arvind Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India
| | - Sumana Chakravarty
- Applied Biology, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- *Correspondence: Sumana Chakravarty,
| |
Collapse
|
28
|
Liu Y, Chen Y, Wang Y, Jiang S, Lin W, Wu Y, Li Q, Guo Y, Liu W, Yuan Q. DNA demethylase ALKBH1 promotes adipogenic differentiation via regulation of HIF-1 signaling. J Biol Chem 2021; 298:101499. [PMID: 34922943 PMCID: PMC8760519 DOI: 10.1016/j.jbc.2021.101499] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/04/2021] [Accepted: 12/08/2021] [Indexed: 02/05/2023] Open
Abstract
DNA 6-adenine methylation (6mA), as a novel adenine modification existing in eukaryotes, shows essential functions in embryogenesis and mitochondrial transcriptions. ALKBH1 is a demethylase of 6mA and plays critical roles in osteogenesis, tumorigenesis, and adaptation to stress. However, the integrated biological functions of ALKBH1 still require further exploration. Here, we demonstrate that knockdown of ALKBH1 inhibits adipogenic differentiation in both human mesenchymal stem cells (hMSCs) and 3T3-L1 preadipocytes, while overexpression of ALKBH1 leads to increased adipogenesis. Using a combination of RNA-seq and N6-mA-DNA-IP-seq analyses, we identify hypoxia-inducible factor-1 (HIF-1) signaling as a crucial downstream target of ALKBH1 activity. Depletion of ALKBH1 leads to hypermethylation of both HIF-1α and its downstream target GYS1. Simultaneous overexpression of HIF-1α and GYS1 restores the adipogenic commitment of ALKBH1-deficient cells. Taken together, our data indicate that ALKBH1 is indispensable for adipogenic differentiation, revealing a novel epigenetic mechanism that regulates adipogenesis.
Collapse
Affiliation(s)
- Yuting Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, #14 Third Section, Renmin Road South, Chengdu 610041, China
| | - Yaqian Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, #14 Third Section, Renmin Road South, Chengdu 610041, China
| | - Yuan Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, #14 Third Section, Renmin Road South, Chengdu 610041, China
| | - Shuang Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, #14 Third Section, Renmin Road South, Chengdu 610041, China
| | - Weimin Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, #14 Third Section, Renmin Road South, Chengdu 610041, China
| | - Yunshu Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, #14 Third Section, Renmin Road South, Chengdu 610041, China
| | - Qiwen Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, #14 Third Section, Renmin Road South, Chengdu 610041, China
| | - Yuchen Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, #14 Third Section, Renmin Road South, Chengdu 610041, China
| | - Weiqing Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, #14 Third Section, Renmin Road South, Chengdu 610041, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, #14 Third Section, Renmin Road South, Chengdu 610041, China.
| |
Collapse
|
29
|
Kwantwi LB, Wang S, Sheng Y, Wu Q. Multifaceted roles of CCL20 (C-C motif chemokine ligand 20): mechanisms and communication networks in breast cancer progression. Bioengineered 2021; 12:6923-6934. [PMID: 34569432 PMCID: PMC8806797 DOI: 10.1080/21655979.2021.1974765] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
Emerging studies have demonstrated notable roles of CCL20 in breast cancer progression. Based on these findings, CCL20 has become a potential therapeutic target for cancer immunotherapy. Accordingly, studies utilizing monoclonal antibodies to target CCL20 are currently being experimented. However, the existence of cytokine network in the tumor microenvironment collectively regulates tumor progression. Hence, a deeper understanding of the role of CCL20 and the underlying signaling pathways regulating the functions of CCL20 may provide a novel strategy for therapeutic interventions. This review provides the current knowledge on how CCL20 interacts with breast cancer cells to influence tumor progression via immunosuppression, angiogenesis, epithelial to mesenchymal transition, migration/invasion and chemoresistance. As a possible candidate biomarker, we also reviewed signal pathways and other factors in the tumor microenvironment regulating the tumor-promoting functions of CCL20.These new insights may be useful to design new potent and selective CCL20 inhibitors against breast cancer in the future.
Collapse
Affiliation(s)
- Louis Boafo Kwantwi
- Department of Pathology, School of Basic Medical Science, Anhui Medical University, Hefei, PR China
| | - Shujing Wang
- Department of Pathology, School of Basic Medical Science, Anhui Medical University, Hefei, PR China
- Department of Immunology, School of Basic Medical Science, Anhui Medical University, Hefei, PR China
| | - Youjing Sheng
- Department of Pathology, School of Basic Medical Science, Anhui Medical University, Hefei, PR China
| | - Qiang Wu
- Department of Pathology, School of Basic Medical Science, Anhui Medical University, Hefei, PR China
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China
| |
Collapse
|
30
|
Mota A, Waxman HK, Hong R, Lagani GD, Niu SY, Bertherat FL, Wolfe L, Malicdan CM, Markello TC, Adams DR, Gahl WA, Cheng CS, Beffert U, Ho A. FOXR1 regulates stress response pathways and is necessary for proper brain development. PLoS Genet 2021; 17:e1009854. [PMID: 34723967 PMCID: PMC8559929 DOI: 10.1371/journal.pgen.1009854] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/01/2021] [Indexed: 11/20/2022] Open
Abstract
The forkhead box (Fox) family of transcription factors are highly conserved and play essential roles in a wide range of cellular and developmental processes. We report an individual with severe neurological symptoms including postnatal microcephaly, progressive brain atrophy and global developmental delay associated with a de novo missense variant (M280L) in the FOXR1 gene. At the protein level, M280L impaired FOXR1 expression and induced a nuclear aggregate phenotype due to protein misfolding and proteolysis. RNAseq and pathway analysis showed that FOXR1 acts as a transcriptional activator and repressor with central roles in heat shock response, chaperone cofactor-dependent protein refolding and cellular response to stress pathways. Indeed, FOXR1 expression is increased in response to cellular stress, a process in which it directly controls HSPA6, HSPA1A and DHRS2 transcripts. The M280L mutant compromises FOXR1's ability to respond to stress, in part due to impaired regulation of downstream target genes that are involved in the stress response pathway. Quantitative PCR of mouse embryo tissues show Foxr1 expression in the embryonic brain. Using CRISPR/Cas9 gene editing, we found that deletion of mouse Foxr1 leads to a severe survival deficit while surviving newborn Foxr1 knockout mice have reduced body weight. Further examination of newborn Foxr1 knockout brains revealed a decrease in cortical thickness and enlarged ventricles compared to littermate wild-type mice, suggesting that loss of Foxr1 leads to atypical brain development. Combined, these results suggest FOXR1 plays a role in cellular stress response pathways and is necessary for normal brain development.
Collapse
Affiliation(s)
- Andressa Mota
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Hannah K. Waxman
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Rui Hong
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
- Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
| | - Gavin D. Lagani
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Sheng-Yong Niu
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Féodora L. Bertherat
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Lynne Wolfe
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, and National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Christine May Malicdan
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, and National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Thomas C. Markello
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, and National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - David R. Adams
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, and National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - William A. Gahl
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, and National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Christine S. Cheng
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
- Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
| | - Uwe Beffert
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Angela Ho
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|
31
|
Garza-Treviño EN, Martínez-Rodríguez HG, Delgado-González P, Solís-Coronado O, Ortíz-Lopez R, Soto-Domínguez A, Treviño VM, Padilla-Rivas GR, Islas-Cisneros JF, Quiroz-Reyes AG, Said-Fernández SL. Chemosensitivity analysis and study of gene resistance on tumors and cancer stem cell isolates from patients with colorectal cancer. Mol Med Rep 2021; 24:721. [PMID: 34396431 PMCID: PMC8383037 DOI: 10.3892/mmr.2021.12360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/29/2021] [Indexed: 11/09/2022] Open
Abstract
Colorectal cancer (CRC) is one of the main causes of mortality. Recent studies suggest that cancer stem cells (CSCs) can survive after chemotherapy and promote tumor invasiveness and aggression. According to a higher hierarchy complexity of CSC, different protocols for isolation, expansion, and characterization have been used; however, there are no available resistance biomarkers that allow predicting the clinical response of treatment 5‑fluorouracil (5FU) and oxaliplatin. Therefore, the primary aim of the present study was to analyze the expression of gene resistance on tumors and CSC‑derived isolates from patients CRC. In the present study, adenocarcinomas of the colon and rectum (CRAC) were classified based on an in vitro adenosine triphosphate‑based chemotherapy response assay, as sensitive and resistant and the percentage of CD24 and CD44 markers are evaluated by immunohistochemistry. To isolate resistant colon‑CSC, adenocarcinoma tissues resistant to 5FU and oxaliplatin were evaluated. Finally, all samples were sequenced using a custom assay with chemoresistance‑associated genes to find a candidate gene on resistance colon‑CSC. Results showed that 59% of the CRC tissue analyzed was resistant and had a higher percentage of CD44 and CD24 markers. An association was found in the expression of some genes between the tumor‑resistant tissue and CSC. Overall, isolates of the CSC population CD44+ resistant to 5FU and oxaliplatin demonstrated different expression profiles; however, the present study was able to identify overexpression of the KRT‑18 gene, in most of the isolates. In conclusion, the results of the present study showed overexpression of KRT‑18 in CD44+ cells is associated with chemoresistance to 5FU and oxaliplatin in CRAC.
Collapse
Affiliation(s)
- Elsa N. Garza-Treviño
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Autonomous University of Nuevo Leon, University Hospital ‘Dr. Jose Eleuterio Gonzalez’, Monterrey, Nuevo Leon 64460, Mexico
| | - Herminia G. Martínez-Rodríguez
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Autonomous University of Nuevo Leon, University Hospital ‘Dr. Jose Eleuterio Gonzalez’, Monterrey, Nuevo Leon 64460, Mexico
| | - Paulina Delgado-González
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Autonomous University of Nuevo Leon, University Hospital ‘Dr. Jose Eleuterio Gonzalez’, Monterrey, Nuevo Leon 64460, Mexico
| | - Orlando Solís-Coronado
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Autonomous University of Nuevo Leon, University Hospital ‘Dr. Jose Eleuterio Gonzalez’, Monterrey, Nuevo Leon 64460, Mexico
| | - Rocio Ortíz-Lopez
- Monterrey Institute of Technology and Higher Education, School of Medicine and Health Sciences, Monterrey, Nuevo Leon 64710, Mexico
| | - Adolfo Soto-Domínguez
- Department of Histology, Faculty of Medicine, Autonomous University of Nuevo Leon, University Hospital ‘Dr. Jose Eleuterio Gonzalez’, Monterrey, Nuevo Leon 64460, Mexico
| | - Víctor M. Treviño
- Monterrey Institute of Technology and Higher Education, School of Medicine and Health Sciences, Monterrey, Nuevo Leon 64710, Mexico
| | - Gerardo R. Padilla-Rivas
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Autonomous University of Nuevo Leon, University Hospital ‘Dr. Jose Eleuterio Gonzalez’, Monterrey, Nuevo Leon 64460, Mexico
| | - Jose F. Islas-Cisneros
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Autonomous University of Nuevo Leon, University Hospital ‘Dr. Jose Eleuterio Gonzalez’, Monterrey, Nuevo Leon 64460, Mexico
| | - Adriana G. Quiroz-Reyes
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Autonomous University of Nuevo Leon, University Hospital ‘Dr. Jose Eleuterio Gonzalez’, Monterrey, Nuevo Leon 64460, Mexico
| | - Salvador L. Said-Fernández
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Autonomous University of Nuevo Leon, University Hospital ‘Dr. Jose Eleuterio Gonzalez’, Monterrey, Nuevo Leon 64460, Mexico
| |
Collapse
|
32
|
Choi J, Kim W, Yoon H, Lee J, Jun JH. Dynamic Oxygen Conditions Promote the Translocation of HIF-1 α to the Nucleus in Mouse Blastocysts. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5050527. [PMID: 34608438 PMCID: PMC8487385 DOI: 10.1155/2021/5050527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 11/17/2022]
Abstract
Oxygen tension is one of the most critical factors for mammalian embryo development and its survival. The HIF protein is an essential transcription factor that activated under hypoxic conditions. In this study, we evaluated the effect of dynamic oxygen conditions on the expression of embryonic genes and translocation of hypoxia-inducible factor-1α (HIF-1α) in cultured mouse blastocysts. Two-pronuclear (2PN) zygotes harvested from ICR mice were subjected to either high oxygen (HO; 20%), low oxygen (LO; 5%), or dynamic oxygen (DO; 5% to 2%) conditions. In the DO group, PN zygotes were cultured in 5% O2 from days 1 to 3 and then in 2% O2 till day 5 after hCG injection. On day 5, the percentage of blastocysts in the cultured embryos from each group was estimated, and the embryos were also subjected to immunocytochemical and gene expression analysis. We found that the percentage of blastocysts was similar among the experimental groups; however, the percentage of hatching blastocysts in the DO and LO groups was significantly higher than that in the HO group. The total cell number of blastocysts in the DO group was significantly higher than that of both the HO and LO groups. Further, gene expression analysis revealed that the expression of genes related to the embryonic development was significantly higher in the DO group than that in the HO and LO groups. Interestingly, HIF-1α mRNA expression did not significantly differ; however, HIF-1α protein translocation from the cytoplasm to the nucleus was significantly higher in the DO group than in the HO and LO groups. Our study suggests that dynamic oxygen concentrations increase the developmental capacity in mouse preimplantation embryos through activation of the potent transcription factor HIF-1α.
Collapse
Affiliation(s)
- Jungwon Choi
- Department of Senior Healthcare BK21 Plus Program, Graduate School, Eulji University, Seongnam, Republic of Korea
- Department of Biomedical Laboratory Science, Eulji University, Seongnam, Republic of Korea
| | - Wontae Kim
- Department of Biomedical Laboratory Science, Eulji University, Seongnam, Republic of Korea
- Department of Biomedical Laboratory Science, Graduate School, Eulji University, Seongnam, Republic of Korea
| | - Hyejin Yoon
- Department of Senior Healthcare BK21 Plus Program, Graduate School, Eulji University, Seongnam, Republic of Korea
- Department of Biomedical Laboratory Science, Eulji University, Seongnam, Republic of Korea
| | - Jaewang Lee
- Department of Biomedical Laboratory Science, Eulji University, Seongnam, Republic of Korea
- Department of Biomedical Laboratory Science, Graduate School, Eulji University, Seongnam, Republic of Korea
| | - Jin Hyun Jun
- Department of Senior Healthcare BK21 Plus Program, Graduate School, Eulji University, Seongnam, Republic of Korea
- Department of Biomedical Laboratory Science, Eulji University, Seongnam, Republic of Korea
- Department of Biomedical Laboratory Science, Graduate School, Eulji University, Seongnam, Republic of Korea
| |
Collapse
|
33
|
Wen-Jin C, Xiu-Wu P, Jian C, Da X, Jia-Xin C, Wei-Jie C, Lin-Hui W, Xin-Gang C. Study of cellular heterogeneity and differential dynamics of autophagy in human embryonic kidney development by single-cell RNA sequencing. Cancer Cell Int 2021; 21:460. [PMID: 34461918 PMCID: PMC8404318 DOI: 10.1186/s12935-021-02154-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/16/2021] [Indexed: 11/17/2022] Open
Abstract
Background Autophagy is believed to participate in embryonic development, but whether the expression of autophagy-associated genes undergoes changes during the development of human embryonic kidneys remains unknown. Methods In this work, we identified 36,151 human renal cells from embryonic kidneys of 9–18 gestational weeks in 16 major clusters by single-cell RNA sequencing (scRNA-seq), and detected 1350 autophagy-related genes in all fetal renal cells. The abundance of each cell cluster in Wilms tumor samples from scRNA-seq and GDC TARGET WT datasets was detected by CIBERSORTx. R package Monocle 3 was used to determine differentiation trajectories. Cyclone tool of R package scran was applied to calculate the cell cycle scores. R package SCENIC was used to investigate the transcriptional regulons. The FindMarkers tool from Seurat was used to calculate DEGs. GSVA was used to perform gene set enrichment analyses. CellphoneDB was utilized to analyze intercellular communication. Results It was found that cells in the 13th gestational week showed the lowest transcriptional level in each cluster in all stages. Nephron progenitors could be divided into four subgroups with diverse levels of autophagy corresponding to different SIX2 expressions. SSBpod (podocyte precursors) could differentiate into four types of podocytes (Pod), and autophagy-related regulation was involved in this process. Pseudotime analysis showed that interstitial progenitor cells (IPCs) potentially possessed two primitive directions of differentiation to interstitial cells with different expressions of autophagy. It was found that NPCs, pretubular aggregates and interstitial cell clusters had high abundance in Wilms tumor as compared with para-tumor samples with active intercellular communication. Conclusions All these findings suggest that autophagy may be involved in the development and cellular heterogeneity of early human fetal kidneys. In addition, part of Wilms tumor cancer cells possess the characteristics of some fetal renal cell clusters. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02154-w.
Collapse
Affiliation(s)
- Chen Wen-Jin
- Department of Urology, The Third Affiliated Hospital of Second Military Medical University, 700 North Moyu Road, Shanghai, 201805, China
| | - Pan Xiu-Wu
- Department of Urology, The Third Affiliated Hospital of Second Military Medical University, 700 North Moyu Road, Shanghai, 201805, China.,Department of Urology, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Chu Jian
- Department of Urology, The Third Affiliated Hospital of Second Military Medical University, 700 North Moyu Road, Shanghai, 201805, China.,Department of Urology, Gongli Hospital of Second Military Medical University, 219 Miaopu Road, Shanghai, 200135, China
| | - Xu Da
- Department of Urology, The Third Affiliated Hospital of Second Military Medical University, 700 North Moyu Road, Shanghai, 201805, China
| | - Chen Jia-Xin
- Department of Urology, The Third Affiliated Hospital of Second Military Medical University, 700 North Moyu Road, Shanghai, 201805, China
| | - Chen Wei-Jie
- Department of Urology, The Third Affiliated Hospital of Second Military Medical University, 700 North Moyu Road, Shanghai, 201805, China
| | - Wang Lin-Hui
- Department of Urology, Changzheng Hospital of Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China.
| | - Cui Xin-Gang
- Department of Urology, The Third Affiliated Hospital of Second Military Medical University, 700 North Moyu Road, Shanghai, 201805, China. .,Department of Urology, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.
| |
Collapse
|
34
|
Zhou F, Wang YK, Zhang CG, Wu BY. miR-19a/b-3p promotes inflammation during cerebral ischemia/reperfusion injury via SIRT1/FoxO3/SPHK1 pathway. J Neuroinflammation 2021; 18:122. [PMID: 34051800 PMCID: PMC8164774 DOI: 10.1186/s12974-021-02172-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/11/2021] [Indexed: 02/07/2023] Open
Abstract
Background Stroke affects 3–4% of adults and kills numerous people each year. Recovering blood flow with minimal reperfusion-induced injury is crucial. However, the mechanisms underlying reperfusion-induced injury, particularly inflammation, are not well understood. Here, we investigated the function of miR-19a/b-3p/SIRT1/FoxO3/SPHK1 axis in ischemia/reperfusion (I/R). Methods MCAO (middle cerebral artery occlusion) reperfusion rat model was used as the in vivo model of I/R. Cultured neuronal cells subjected to OGD/R (oxygen glucose deprivation/reperfusion) were used as the in vitro model of I/R. MTT assay was used to assess cell viability and TUNEL staining was used to measure cell apoptosis. H&E staining was employed to examine cell morphology. qRT-PCR and western blot were performed to determine levels of miR-19a/b-3p, SIRT1, FoxO3, SPHK1, NF-κB p65, and cytokines like TNF-α, IL-6, and IL-1β. EMSA and ChIP were performed to validate the interaction of FoxO3 with SPHK1 promoter. Dual luciferase assay and RIP were used to verify the binding of miR-19a/b-3p with SIRT1 mRNA. Results miR-19a/b-3p, FoxO3, SPHK1, NF-κB p65, and cytokines were elevated while SIRT1 was reduced in brain tissues following MCAO/reperfusion or in cells upon OGD/R. Knockdown of SPHK1 or FoxO3 suppressed I/R-induced inflammation and cell death. Furthermore, knockdown of FoxO3 reversed the effects of SIRT1 knockdown. Inhibition of the miR-19a/b-3p suppressed inflammation and this suppression was blocked by SIRT1 knockdown. FoxO3 bound SPHK1 promoter and activated its transcription. miR-19a/b-3p directly targeted SIRT1 mRNA. Conclusion miR-19a/b-3p promotes inflammatory responses during I/R via targeting SIRT1/FoxO3/SPHK1 axis.
Collapse
Affiliation(s)
- Feng Zhou
- Research Center of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.,Department of Neurology, First People's Hospital of Foshan, Foshan, 528000, Guangdong Province, People's Republic of China
| | - Yu-Kai Wang
- Department of Neurology, First People's Hospital of Foshan, Foshan, 528000, Guangdong Province, People's Republic of China
| | - Cheng-Guo Zhang
- Department of Neurology, First People's Hospital of Foshan, Foshan, 528000, Guangdong Province, People's Republic of China.
| | - Bing-Yi Wu
- Research Center of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.
| |
Collapse
|
35
|
AKT signaling restrains tumor suppressive functions of FOXO transcription factors and GSK3 kinase in multiple myeloma. Blood Adv 2021; 4:4151-4164. [PMID: 32898245 DOI: 10.1182/bloodadvances.2019001393] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
The phosphatidylinositide-3 kinases and the downstream mediator AKT drive survival and proliferation of multiple myeloma (MM) cells. AKT signaling is active in MM and has pleiotropic effects; however, the key molecular aspects of AKT dependency in MM are not fully clear. Among the various downstream AKT targets are the Forkhead box O (FOXO) transcription factors (TFs) and glycogen synthase kinase 3 (GSK3), which are negatively regulated by AKT signaling. Here we show that abrogation of AKT signaling in MM cells provokes cell death and cell cycle arrest, which crucially depends on both FOXO TFs and GSK3. Based on gene expression profiling, we defined a FOXO-repressed gene set that has prognostic significance in a large cohort of patients with MM, indicating that AKT-mediated gene activation is associated with inferior overall survival. We further show that AKT signaling stabilizes the antiapoptotic myeloid cell leukemia 1 (MCL1) protein by inhibiting FOXO- and GSK3-mediated MCL1 turnover. In concordance, abrogation of AKT signaling greatly sensitized MM cells for an MCL1-targeting BH3-mimetic, which is currently in clinical development. Taken together, our results indicate that AKT activity is required to restrain the tumor-suppressive functions of FOXO and GSK3, thereby stabilizing the antiapoptotic protein MCL1 in MM. These novel insights into the role of AKT in MM pathogenesis and MCL1 regulation provide opportunities to improve targeted therapy for patients with MM.
Collapse
|
36
|
van Vliet T, Casciaro F, Demaria M. To breathe or not to breathe: Understanding how oxygen sensing contributes to age-related phenotypes. Ageing Res Rev 2021; 67:101267. [PMID: 33556549 DOI: 10.1016/j.arr.2021.101267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/21/2021] [Accepted: 02/02/2021] [Indexed: 02/08/2023]
Abstract
Aging is characterized by a progressive loss of tissue integrity and functionality due to disrupted homeostasis. Molecular oxygen is pivotal to maintain tissue functions, and aerobic species have evolved a sophisticated sensing system to ensure proper oxygen supply and demand. It is not surprising that aberrations in oxygen and oxygen-associated pathways subvert health and promote different aspects of aging. In this review, we discuss emerging findings on how oxygen-sensing mechanisms regulate different cellular and molecular processes during normal physiology, and how dysregulation of oxygen availability lead to disease and aging. We describe various clinical manifestations associated with deregulation of oxygen balance, and how oxygen-modulating therapies and natural oxygen oscillations influence longevity. We conclude by discussing how a better understanding of oxygen-related mechanisms that orchestrate aging processes may lead to the development of new therapeutic strategies to extend healthy aging.
Collapse
|
37
|
Abstract
In female reproduction, the oocyte number is limited after birth. To achieve a continuous ovulatory cycle, oocytes are stored in primordial follicles.
Therefore, the regulation of primordial follicle dormancy and activation is important for reproductive sustainability, and its collapse leads to premature
ovarian insufficiency. In this review, we summarize primordial follicle development and the molecular mechanisms underlying primordial follicle maintenance and
activation in mice. We also overview the mechanisms discovered through in vitro culture of functional oocytes, including the establishment of
primordial follicle induction by environmental factors, which revealed the importance of hypoxia and compression by the extra cellular matrix (ECM) for
primordial follicle maintenance in vivo.
Collapse
Affiliation(s)
- Go Nagamatsu
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
38
|
Nakashima M, Watanabe M, Nakano K, Uchimaru K, Horie R. Differentiation of Hodgkin lymphoma cells by reactive oxygen species and regulation by heme oxygenase-1 through HIF-1α. Cancer Sci 2021; 112:2542-2555. [PMID: 33738869 PMCID: PMC8177765 DOI: 10.1111/cas.14890] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/07/2021] [Accepted: 03/15/2021] [Indexed: 12/31/2022] Open
Abstract
We previously indicated that Hodgkin lymphoma (HL) cells contain a small side population (SP) that differentiate into a large major population (MP) with giant Hodgkin and Reed‐Sternberg (H and RS)‐like cells. However, its molecular mechanisms are not fully understood. In this study, we found that intracellular reactive oxygen species (ROS) are low in the SP compared to the MP. Hydrogen peroxide induces large H‐ and RS‐like cells in HL cell lines, but induces cell death in unrelated lymphoid cell lines. Microarray analyses revealed the enrichment of upregulated genes under hypoxic conditions in the SP compared to the MP, and we verified that the SP cells are hypoxic. Hypoxia inducible factor (HIF)‐1α was preferentially expressed in the SP. CoCl2, a HIF‐1α stabilizer, blunted the effect of hydrogen peroxide. Heme oxygenase‐1 (HO‐1), a scavenger of ROS, was triggered by HIF‐1α. The effect of hydrogen peroxide was inhibited by HO‐1 induction, whereas it was promoted by HO‐1 knockdown. HO‐1 inhibition by zinc protoporphyrin promoted the differentiation and increased ROS. These results stress the unique roles of ROS in the differentiation of HL cells. Immature HL cells are inhibited from differentiation by a reduction of ROS through the induction of HO‐1 via HIF‐1α. The breakdown of this might cause the accumulation of intracellular ROS, resulting in the promotion of HL cell differentiation.
Collapse
Affiliation(s)
- Makoto Nakashima
- Laboratory of Tumor Cell Biology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Mariko Watanabe
- Divison of Hematology, Department of Laboratory Sciences, School of Allied Health Sciences, Kitasato University, Sagamihara, Japan
| | - Kazumi Nakano
- Laboratory of Tumor Cell Biology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Kaoru Uchimaru
- Laboratory of Tumor Cell Biology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryouichi Horie
- Divison of Hematology, Department of Laboratory Sciences, School of Allied Health Sciences, Kitasato University, Sagamihara, Japan
| |
Collapse
|
39
|
Crtc modulates fasting programs associated with 1-C metabolism and inhibition of insulin signaling. Proc Natl Acad Sci U S A 2021; 118:2024865118. [PMID: 33723074 DOI: 10.1073/pnas.2024865118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fasting in mammals promotes increases in circulating glucagon and decreases in circulating insulin that stimulate catabolic programs and facilitate a transition from glucose to lipid burning. The second messenger cAMP mediates effects of glucagon on fasting metabolism, in part by promoting the phosphorylation of CREB and the dephosphorylation of the cAMP-regulated transcriptional coactivators (CRTCs) in hepatocytes. In Drosophila, fasting also triggers activation of the single Crtc homolog in neurons, via the PKA-mediated phosphorylation and inhibition of salt-inducible kinases. Crtc mutant flies are more sensitive to starvation and oxidative stress, although the underlying mechanism remains unclear. Here we use RNA sequencing to identify Crtc target genes that are up-regulated in response to starvation. We found that Crtc stimulates a subset of fasting-inducible genes that have conserved CREB binding sites. In keeping with its role in the starvation response, Crtc was found to induce the expression of genes that inhibit insulin secretion (Lst) and insulin signaling (Impl2). In parallel, Crtc also promoted the expression of genes involved in one-carbon (1-C) metabolism. Within the 1-C pathway, Crtc stimulated the expression of enzymes that encode modulators of S-adenosyl-methionine metabolism (Gnmt and Sardh) and purine synthesis (ade2 and AdSl) Collectively, our results point to an important role for the CREB/CRTC pathway in promoting energy balance in the context of nutrient stress.
Collapse
|
40
|
Deng Y, Ma G, Gao F, Sun X, Liu L, Mo D, Ma N, Song L, Huo X, He H, Miao Z. SOX9 Knockdown-Mediated FOXO3 Downregulation Confers Neuroprotection Against Ischemic Brain Injury. Front Cell Dev Biol 2021; 8:555175. [PMID: 33791290 PMCID: PMC8006459 DOI: 10.3389/fcell.2020.555175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022] Open
Abstract
Background Evidence exists uncovering that SRY-box transcription factor 9 (SOX9) plays a role in ischemic brain injury (IBI). Thus, the current study was conducted to elucidate the specific role of SOX9 and the mechanism by which SOX9 influenced IBI. Methods The IBI-associated regulatory factors were searched by bioinformatics analysis. The rat model of IBI was generated using middle cerebral artery occlusion (MCAO) treatment. Neuronal cells were exposed to oxygen-glucose deprivation (OGD). The expressions of SOX9, forkhead box O3 (FOXO3), transcription of Cbp/p300-interacting transactivator with Glu/Asp-rich carboxy-terminal domain 2 (CITED2), and IκB kinase α (IKKα) in OGD-treated neuronal cells were characterized using reverse transcription quantitative polymerase chain reaction (RT-qPCR) assay. The interaction among CITED2, IKKα, and FOXO3 was identified by chromatin immunoprecipitation (ChIP) and dual luciferase reporter gene assays. Gain- and loss-of-function experiments were performed to verify the relationship among SOX9, FOXO3, CITED2, and IKKα and to investigate their functional effects on apoptosis and the inflammatory response of OGD-treated neuronal cells as well as neurological deficit and infarct area of the rat brain. Results SOX9, FOXO3, CITED2, and IKKα were highly expressed in OGD-treated neuronal cells. Silencing of SOX9 inhibited OGD-induced neuronal apoptosis and inflammatory response and reduced the neurological deficit and infarct area of the brain in the rats, which were caused by MCAO but were reversed by overexpressing FOXO3, CITED2, or IKKα. Conclusion Taken together, our study suggested that upregulation of SOX9 promoted IBI though upregulation of the FOXO3/CITED2/IKKα axis, highlighting a basic therapeutic consideration for IBI treatment.
Collapse
Affiliation(s)
- Yiming Deng
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Gaoting Ma
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Feng Gao
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Xuan Sun
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Lian Liu
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Dapeng Mo
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Ning Ma
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Ligang Song
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Xiaochuan Huo
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Hongwei He
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Zhongrong Miao
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
41
|
Shou Y, Yang L, Yang Y, Zhu X, Li F, Xu J. Determination of hypoxia signature to predict prognosis and the tumor immune microenvironment in melanoma. Mol Omics 2021; 17:307-316. [PMID: 33624645 DOI: 10.1039/d0mo00159g] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Melanoma is one of the highly malignant skin tumors, the incidence and death of which continue to increase. The hypoxic microenvironment drives tumor growth, progression, and heterogeneity; it also triggers a cascade of immunosuppressive responses and affects the levels of T cells, macrophages, and natural killer cells. Here, we aim to develop a hypoxia-based gene signature for prognosis evaluation and help evaluate the status of hypoxia and the immune microenvironment in melanoma. Based on the data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database, we performed integrated bioinformatics to analyze the hypoxia-related genes. Using Lasso Cox regression, a hypoxia model was constructed. The receiver operating characteristic and the Kaplan-Meier curve were used to evaluate the predictive capacity of the model. With the CIBERSORT algorithm, the abundance of 22 immune cells in the melanoma microenvironment was analyzed. A total of 20 hypoxia-related genes were significantly related to prognosis in the log-rank test. Lasso regression showed that FBP1, SDC3, FOXO3, IGFBP1, S100A4, EGFR, ISG20, CP, PPARGC1A, KIF5A, and DPYSL4 displayed the best features. Based on these genes, a hypoxia model was established, and the area under the curve for the model was 0.734. Furthermore, the hypoxia score was identified as an independent prognostic factor. Besides, the hypoxia score could also predict the immune microenvironment in melanoma. Down-regulated activated CD4 memory T cells, CD8 T cells, and M1-like macrophages, and up-regulated Tregs were observed in patients with a high hypoxia score. The hypoxia-related genes were identified, and the hypoxia score was found to be a prognostic factor for overall survival and a predictor for the immune microenvironment. Our findings provide new ideas for evaluation and require further validation in clinical practice.
Collapse
Affiliation(s)
- Yanhong Shou
- Department of Dermatology, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, P. R. China.
| | | | | | | | | | | |
Collapse
|
42
|
Li Y, Liu S, Pan D, Xu B, Xing X, Zhou H, Zhang B, Zhou S, Ning G, Feng S. The potential role and trend of HIF‑1α in intervertebral disc degeneration: Friend or foe? (Review). Mol Med Rep 2021; 23:239. [PMID: 33537810 PMCID: PMC7893690 DOI: 10.3892/mmr.2021.11878] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 11/08/2019] [Indexed: 12/11/2022] Open
Abstract
Lower back pain (LBP) is one of the most common reasons for seeking medical advice in orthopedic clinics. Increasingly, research has shown that symptomatic intervertebral disc degeneration (IDD) is mostly related to LBP. This review first outlines the research and findings of studies into IDD, from the physiological structure of the intervertebral disc (IVD) to various pathological cascades. The vicious cycles of IDD are re-described in relation to the analysis of the relationship among the pathological mechanisms involved in IDD. Interestingly, a ‘chief molecule’ was found, hypoxia-inducible factor-1α (HIF-1α), that may regulate all other mechanisms involved in IDD. When the vicious cycle is established, the low oxygen tension activates the expression of HIF-1α, which subsequently enters into the hypoxia-induced HIF pathways. The HIF pathways are dichotomized as friend and foe pathways according to the oxygen tension of the IVD microenvironment. Combined with clinical outcomes and previous research, the trend of IDD development has been predicted in this paper. Lastly, an early precautionary diagnosis and treatment method is proposed whereby nucleus pulposus tissue for biopsy can be obtained through IVD puncture guided by B-ultrasound when the patient is showing symptoms but MRI imaging shows negative results. The assessment criteria for biopsy and the feasibility, superiority and challenges of this approach have been discussed. Overall, it is clear that HIF-1α is an indispensable reference indicator for the accurate diagnosis and treatment of IDD.
Collapse
Affiliation(s)
- Yongjin Li
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Shen Liu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Dayu Pan
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Baoshan Xu
- Department of Spine Surgery, Tianjin Hospital, Tianjin 300000, P.R. China
| | - Xuewu Xing
- Department of Orthopedic Surgery, First Central Clinical of Tianjin Medical University, Tianjin 300052, P.R. China
| | - Hengxing Zhou
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Bin Zhang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Suzhe Zhou
- Department of Orthopedics, The Affiliated Zhongshan Hospital of Fudan University, Shanghai 200034, P.R. China
| | - Guangzhi Ning
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Shiqing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
43
|
Cheah FC, Lai CH, Tan GC, Swaminathan A, Wong KK, Wong YP, Tan TL. Intrauterine Gardnerella vaginalis Infection Results in Fetal Growth Restriction and Alveolar Septal Hypertrophy in a Rabbit Model. Front Pediatr 2021; 8:593802. [PMID: 33553066 PMCID: PMC7862757 DOI: 10.3389/fped.2020.593802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/16/2020] [Indexed: 11/15/2022] Open
Abstract
Background: Gardnerella vaginalis (GV) is most frequently associated with bacterial vaginosis and is the second most common etiology causing intrauterine infection after Ureaplasma urealyticum. Intrauterine GV infection adversely affects pregnancy outcomes, resulting in preterm birth, fetal growth restriction, and neonatal pneumonia. The knowledge of how GV exerts its effects is limited. We developed an in vivo animal model to study its effects on fetal development. Materials and Methods: A survival mini-laparotomy was conducted on New Zealand rabbits on gestational day 21 (28 weeks of human pregnancy). In each dam, fetuses in the right uterine horn received intra-amniotic 0.5 × 102 colony-forming units of GV injections each, while their littermate controls in the left horn received sterile saline injections. A second laparotomy was performed seven days later. Assessment of the fetal pups, histopathology of the placenta and histomorphometric examination of the fetal lung tissues was done. Results: Three dams with a combined total of 12 fetuses were exposed to intra-amniotic GV, and 9 fetuses were unexposed. The weights of fetuses, placenta, and fetal lung were significantly lower in the GV group than the saline-inoculated control group [mean gross weight, GV (19.8 ± 3.8 g) vs. control (27.9 ± 1.7 g), p < 0.001; mean placenta weight, GV (5.5 ± 1.0 g) vs. control (6.5 ± 0.7 g), p = 0.027; mean fetal lung weight, GV (0.59 ± 0.11 g) vs. control (0.91 ± 0.08 g), p = 0.002. There was a two-fold increase in the multinucleated syncytiotrophoblasts in the placenta of the GV group than their littermate controls (82.9 ± 14.9 vs. 41.6 ± 13.4, p < 0.001). The mean alveolar septae of GV fetuses was significantly thicker than the control (14.8 ± 2.8 μm vs. 12.4 ± 3.8 μm, p = 0.007). Correspondingly, the proliferative index in the interalveolar septum was 1.8-fold higher in the GV group than controls (24.9 ± 6.6% vs. 14.2 ± 2.9%, p = 0.011). The number of alveoli and alveolar surface area did not vary between groups. Discussion: Low-dose intra-amniotic GV injection induces fetal growth restriction, increased placental multinucleated syncytiotrophoblasts and fetal lung re-modeling characterized by alveolar septal hypertrophy with cellular proliferative changes. Conclusion: This intra-amniotic model could be utilized in future studies to elucidate the acute and chronic effects of GV intrauterine infections.
Collapse
Affiliation(s)
- Fook-Choe Cheah
- Department of Pediatrics, Universiti Kebangsaan Malaysia Medical Center, Kuala Lumpur, Malaysia
| | - Chee Hoe Lai
- Department of Pediatrics, Universiti Kebangsaan Malaysia Medical Center, Kuala Lumpur, Malaysia
| | - Geok Chin Tan
- Department of Pathology, Universiti Kebangsaan Malaysia Medical Center, Kuala Lumpur, Malaysia
| | - Anushia Swaminathan
- Department of Pediatrics, Universiti Kebangsaan Malaysia Medical Center, Kuala Lumpur, Malaysia
| | - Kon Ken Wong
- Department of Microbiology, Universiti Kebangsaan Malaysia Medical Center, Kuala Lumpur, Malaysia
| | - Yin Ping Wong
- Department of Pathology, Universiti Kebangsaan Malaysia Medical Center, Kuala Lumpur, Malaysia
| | - Tian-Lee Tan
- Department of Pediatrics, Universiti Kebangsaan Malaysia Medical Center, Kuala Lumpur, Malaysia
| |
Collapse
|
44
|
McAleese CE, Choudhury C, Butcher NJ, Minchin RF. Hypoxia-mediated drug resistance in breast cancers. Cancer Lett 2020; 502:189-199. [PMID: 33278499 DOI: 10.1016/j.canlet.2020.11.045] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023]
Abstract
Tissue hypoxia in solid tumors is caused by several pathological changes associated with tumor growth, including altered microvasculature structure, increased diffusional distances, and tumor-associated anemia. As the oxygen tension decreases, tumor cells adapt to the limited oxygen supply. Previous studies have shown that such adaptation leads to an aggressive phenotype that is resistant to many anti-cancer therapies. Induction of hypoxia inducible factors (HIFs) mediates many proteomic and genomic changes associated with tumor hypoxia. In breast cancers, HIFs not only predict poor prognosis, but also promote metastasis and drug resistance. Several studies have proposed HIF-1α as a druggable target in drug-resistant breast cancers, leading to the synthesis and development of small molecule inhibitors. Disappointingly, however, none of these small molecule inhibitors have progressed to clinical use. In this review, we briefly discuss the role of HIF-1α in breast cancer drug resistance and summarize the current and future approaches to targeting this transcription factor in breast cancer treatment.
Collapse
Affiliation(s)
- Courtney E McAleese
- School of Biomedical Sciences, University of Queensland, Brisbane, 4072, Australia
| | - Chandra Choudhury
- School of Biomedical Sciences, University of Queensland, Brisbane, 4072, Australia
| | - Neville J Butcher
- School of Biomedical Sciences, University of Queensland, Brisbane, 4072, Australia
| | - Rodney F Minchin
- School of Biomedical Sciences, University of Queensland, Brisbane, 4072, Australia.
| |
Collapse
|
45
|
Liang C, Dong Z, Cai X, Shen J, Xu Y, Zhang M, Li H, Yu W, Chen W. Hypoxia induces sorafenib resistance mediated by autophagy via activating FOXO3a in hepatocellular carcinoma. Cell Death Dis 2020; 11:1017. [PMID: 33250518 PMCID: PMC7701149 DOI: 10.1038/s41419-020-03233-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 11/04/2020] [Accepted: 11/10/2020] [Indexed: 12/14/2022]
Abstract
Sorafenib, a multikinase inhibitor, is considered as the only approved drug to cure the advanced hepatocellular carcinoma (HCC); however, the acquired chemoresistance caused by intratumoral hypoxia through sorafenib long term therapy induces sorafenib inefficacy. We demonstrated here that hypoxia significantly attenuated sensitivity of HCC cells to sorafenib treatment and reduced its proliferation. Autophagy was observed in sorafenib-treated HCC cells in hypoxia, and inhibition of autophagy by 3-MA eliminated hypoxia-induced sorafenib resistance. Further study revealed hypoxia-activated FOXO3a, an important cellular stress transcriptional factor, via inducing its dephosphorylation and nuclear location; and FOXO3a-dependent transcriptive activation of beclin-1 was responsible for hypoxia-induced autophagy in HCC cells. Knockout of FOXO3a inhibited the autophagy induced by sorafenib itself in normoxia and significantly enhanced the cytotoxicity of sorafenib in HCC cells; and it also inhibited the hypoxia-induced autophagy and achieved the same effect in sorafenib sensitivity-enhancement in HCC cells as it in normoxia. Finally, knockout of intratumoral FOXO3a significantly enhanced curative efficacy of sorafenib via inhibition of autophagy in xenograft tumors in nude mice. Collectively, our study suggests that FOXO3a plays a key role in regulating hypoxia-induced autophagy in sorafenib-treated HCC, and FOXO3-targeted therapy may serve as a promising approach to improve clinical prognosis of patients suffering from HCC.
Collapse
Affiliation(s)
- Chao Liang
- Department of General Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, 315040, PR China.
| | - Zhebin Dong
- Department of General Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, 315040, PR China
| | - Xianlei Cai
- Department of General Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, 315040, PR China
| | - Jie Shen
- Department of General Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, 315040, PR China
| | - Yuan Xu
- Department of General Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, 315040, PR China
| | - Miaozun Zhang
- Department of General Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, 315040, PR China
| | - Hong Li
- Department of General Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, 315040, PR China
| | - Weiming Yu
- Department of General Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, 315040, PR China.
| | - Wei Chen
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, PR China.
| |
Collapse
|
46
|
Li Y, Sun XX, Qian DZ, Dai MS. Molecular Crosstalk Between MYC and HIF in Cancer. Front Cell Dev Biol 2020; 8:590576. [PMID: 33251216 PMCID: PMC7676913 DOI: 10.3389/fcell.2020.590576] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 10/21/2020] [Indexed: 12/26/2022] Open
Abstract
The transcription factor c-MYC (MYC thereafter) is a global regulator of gene expression. It is overexpressed or deregulated in human cancers of diverse origins and plays a key role in the development of cancers. Hypoxia-inducible factors (HIFs), a central regulator for cells to adapt to low cellular oxygen levels, is also often overexpressed and activated in many human cancers. HIF mediates the primary transcriptional response of a wide range of genes in response to hypoxia. Earlier studies focused on the inhibition of MYC by HIF during hypoxia, when MYC is expressed at physiological level, to help cells survive under low oxygen conditions. Emerging evidence suggests that MYC and HIF also cooperate to promote cancer cell growth and progression. This review will summarize the current understanding of the complex molecular interplay between MYC and HIF.
Collapse
Affiliation(s)
- Yanping Li
- Department of Molecular and Medical Genetics, School of Medicine, Portland, OR, United States
| | - Xiao-Xin Sun
- Department of Molecular and Medical Genetics, School of Medicine, Portland, OR, United States
| | - David Z Qian
- The OHSU Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States
| | - Mu-Shui Dai
- Department of Molecular and Medical Genetics, School of Medicine, Portland, OR, United States.,The OHSU Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
47
|
Wang Q, Wei S, Li L, Qiu J, Zhou S, Shi C, Shi Y, Zhou H, Lu L. TGR5 deficiency aggravates hepatic ischemic/reperfusion injury via inhibiting SIRT3/FOXO3/HIF-1ɑ pathway. Cell Death Discov 2020; 6:116. [PMID: 33298860 PMCID: PMC7604280 DOI: 10.1038/s41420-020-00347-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/22/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
Ischemia/reperfusion (I/R) injury is responsible for liver injury during hepatic resection and liver transplantation. The plasma membrane-bound G protein-coupled bile acid receptor (TGR5) could regulate immune response in multiple liver diseases. Nevertheless, the underlying role of TGR5 in hepatic I/R injury remains largely unknown. This study aimed to investigate the potential mechanism of TGR5 in hepatic I/R injury. Wild-type (WT) and TGR5 knockout (TGR5KO) mice were used to perform hepatic I/R, and macrophages were isolated from mice for in vitro experiments. The results demonstrated that knockout of TGR5 in mice significantly exacerbated liver injury and inflammatory response. TGR5KO mice infused with WT macrophages showed relieved liver injury. Further study revealed that TGR5 knockout inhibited sirtuin 3 (SIRT3) and forkhead box O3 (FOXO3) expression. In vitro experiments indicated that SIRT3 inhibited acetylation, ubiquitination and degradation of FOXO3. FOXO3 inhibited HIF-1α transcription by binding to its promoter. TGR5 knockout inhibited SIRT3 expression, thus promoted the acetylation, ubiquitination, and degradation of FOXO3, which resulted in increased HIF-1α transcription and macrophages proinflammatory response. Collectively, TGR5 plays a critical protective role in hepatic I/R injury. FOXO3 deacetylation mediated by SIRT3 can attenuate hepatic I/R injury. TGR5 deficiency aggravates hepatic I/R injury via inhibiting SIRT3/FOXO3/HIF-1α pathway.
Collapse
Affiliation(s)
- Qi Wang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China
| | - Song Wei
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China
| | - Lei Li
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Jiannan Qiu
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Shun Zhou
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Chengyu Shi
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Yong Shi
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Haoming Zhou
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China. .,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China.
| | - Ling Lu
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China. .,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China. .,School of Medicine, Southeast University, Nanjing, China. .,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, China. .,State Key Laboratory of Reproductive Medicine, Nanjing, China.
| |
Collapse
|
48
|
Abstract
Cbp/P300 interacting transactivator with Glu/Asp-rich carboxy-terminal domain 2 (CITED2) is a transcription co-factor that interacts with several other transcription factors and co-factors, and serves critical roles in fundamental cell processes, including proliferation, apoptosis, differentiation, migration and autophagy. The interacting transcription factors or co-factors of CITED2 include LIM homeobox 2, transcription factor AP-2, SMAD2/3, peroxisome proliferator-activated receptor γ, oestrogen receptor, MYC, Nucleolin and p300/CBP, which regulate downstream gene expression, and serve important roles in the aforementioned fundamental cell processes. Emerging evidence has demonstrated that CITED2 serves an essential role in embryonic and adult tissue stem cells, including hematopoietic stem cells and tendon-derived stem/progenitor cells. Additionally, CITED2 has been reported to function in different types of cancer. Although the functions of CITED2 in different tissues vary depending on the interaction partner, altered CITED2 expression or altered interactions with transcription factors or co-factors result in alterations of fundamental cell processes, and may affect stem cell maintenance or cancer cell survival. The aim of this review is to summarize the molecular mechanisms of CITED2 function and how it serves a role in stem cells and different types of cancer based on the currently available literature.
Collapse
|
49
|
Tolerance to Hypoxia Is Promoted by FOXO Regulation of the Innate Immunity Transcription Factor NF-κB/Relish in Drosophila. Genetics 2020; 215:1013-1025. [PMID: 32513813 DOI: 10.1534/genetics.120.303219] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/21/2020] [Indexed: 12/14/2022] Open
Abstract
Exposure of tissues and organs to low oxygen (hypoxia) occurs in both physiological and pathological conditions in animals. Under these conditions, organisms have to adapt their physiology to ensure proper functioning and survival. Here, we define a role for the transcription factor Forkhead Box-O (FOXO) as a mediator of hypoxia tolerance in Drosophila We find that upon hypoxia exposure, FOXO transcriptional activity is rapidly induced in both larvae and adults. Moreover, we see that foxo mutant animals show misregulated glucose metabolism in low oxygen and subsequently exhibit reduced hypoxia survival. We identify the innate immune transcription factor, NF-κB/Relish, as a key FOXO target in the control of hypoxia tolerance. We find that expression of Relish and its target genes is increased in a FOXO-dependent manner in hypoxia, and that relish mutant animals show reduced survival in hypoxia. Together, these data indicate that FOXO is a hypoxia-inducible factor that mediates tolerance to low oxygen by inducing immune-like responses.
Collapse
|
50
|
Fernandes MT, Calado SM, Mendes-Silva L, Bragança J. CITED2 and the modulation of the hypoxic response in cancer. World J Clin Oncol 2020; 11:260-274. [PMID: 32728529 PMCID: PMC7360518 DOI: 10.5306/wjco.v11.i5.260] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/13/2020] [Accepted: 05/12/2020] [Indexed: 02/06/2023] Open
Abstract
CITED2 (CBP/p300-interacting transactivator with Glu/Asp-rich C-terminal domain, 2) is a ubiquitously expressed protein exhibiting a high affinity for the CH1 domain of the transcriptional co-activators CBP/p300, for which it competes with hypoxia-inducible factors (HIFs). CITED2 is particularly efficient in the inhibition of HIF-1α-dependent transcription in different contexts, ranging from organ development and metabolic homeostasis to tissue regeneration and immunity, being also potentially involved in various other physiological processes. In addition, CITED2 plays an important role in inhibiting HIF in some diseases, including kidney and heart diseases and type 2-diabetes. In the particular case of cancer, CITED2 either functions by promoting or suppressing cancer development depending on the context and type of tumors. For instance, CITED2 overexpression promotes breast and prostate cancers, as well as acute myeloid leukemia, while its expression is downregulated to sustain colorectal cancer and hepatocellular carcinoma. In addition, the role of CITED2 in the maintenance of cancer stem cells reveals its potential as a target in non-small cell lung carcinoma and acute myeloid leukemia, for example. But besides the wide body of evidence linking both CITED2 and HIF signaling to carcinogenesis, little data is available regarding CITED2 role as a negative regulator of HIF-1α specifically in cancer. Therefore, comprehensive studies exploring further the interactions of these two important mediators in cancer-specific models are sorely needed and this can potentially lead to the development of novel targeted therapies.
Collapse
Affiliation(s)
- Mónica T Fernandes
- School of Health, Universidade do Algarve, Campus of Gambelas, Faro 8005-139, Portugal
- Centre for Biomedical Research, Universidade do Algarve, Campus of Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Centre, Faro 8005-139, Portugal
| | - Sofia M Calado
- Centre for Biomedical Research, Universidade do Algarve, Campus of Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Centre, Faro 8005-139, Portugal
| | - Leonardo Mendes-Silva
- Centre for Biomedical Research, Universidade do Algarve, Campus of Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Centre, Faro 8005-139, Portugal
- Department of Biomedical Sciences and Medicine, Universidade do Algarve, Campus of Gambelas, Faro 8005-139, Portugal
| | - José Bragança
- Centre for Biomedical Research, Universidade do Algarve, Campus of Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Centre, Faro 8005-139, Portugal
- Department of Biomedical Sciences and Medicine, Universidade do Algarve, Campus of Gambelas, Faro 8005-139, Portugal
| |
Collapse
|