1
|
Kumar BH, Kabekkodu SP, Pai KSR. Structural insights of AKT and its activation mechanism for drug development. Mol Divers 2025:10.1007/s11030-025-11132-7. [PMID: 40009150 DOI: 10.1007/s11030-025-11132-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025]
Abstract
AKT1, a serine/threonine kinase, is pivotal in signaling and regulating cell survival, proliferation, and metabolism. This review focuses on the structural insights and the essential features required for its active conformation. AKT belongs to the AGC kinase group and has three isoforms: AKT1, AKT2, and AKT3. AKT has three functional regions: PH domain, kinase domain, and hydrophobic motif. AKT1 activation involves intricate conformational changes, including transitions in the αC-in, DFG-in, G-loop, activation loop, and PH domain out, S-spine and R-spine formation, as well as phosphorylation at Thr 308 and Ser 473, which enable AKT1 to adopt active conformation. The analysis highlights the limitations of the AlphaFold-predicted AKT1 structure, which lacks key elements of the active state, including ATP, magnesium ion coordination, phosphatidylinositol-(1,3,4,5)-tetraphosphate, substrate peptide, and phosphorylation at Thr 308 and Ser 473. This study underscores the necessity of these features for stabilizing the kinase domain and facilitating efficient substrate phosphorylation. By consolidating structural insights and activation mechanisms, this review aims to inform the development of computational models and targeted therapeutics for AKT1 activators in diseases such as hepatic ischemia-reperfusion injury, cerebral ischemia, acute hepatic failure, subarachnoid hemorrhage, and alzheimer's disease.
Collapse
Affiliation(s)
- B Harish Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad, 500007, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - K Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
2
|
Hassan D, Menges CW, Testa JR, Bellacosa A. AKT kinases as therapeutic targets. J Exp Clin Cancer Res 2024; 43:313. [PMID: 39614261 PMCID: PMC11606119 DOI: 10.1186/s13046-024-03207-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/03/2024] [Indexed: 12/01/2024] Open
Abstract
AKT, or protein kinase B, is a central node of the PI3K signaling pathway that is pivotal for a range of normal cellular physiologies that also underlie several pathological conditions, including inflammatory and autoimmune diseases, overgrowth syndromes, and neoplastic transformation. These pathologies, notably cancer, arise if either the activity of AKT or its positive or negative upstream or downstream regulators or effectors goes unchecked, superimposed on by its intersection with a slew of other pathways. Targeting the PI3K/AKT pathway is, therefore, a prudent countermeasure. AKT inhibitors have been tested in many clinical trials, primarily in combination with other drugs. While some have recently garnered attention for their favorable profile, concern over resistance and off-target effects have continued to hinder their widespread adoption in the clinic, mandating a discussion on alternative modes of targeting. In this review, we discuss isoform-centric targeting that may be more effective and less toxic than traditional pan-AKT inhibitors and its significance for disease prevention and treatment, including immunotherapy. We also touch on the emerging mutant- or allele-selective covalent allosteric AKT inhibitors (CAAIs), as well as indirect, novel AKT-targeting approaches, and end with a briefing on the ongoing quest for more reliable biomarkers predicting sensitivity and response to AKT inhibitors, and their current state of affairs.
Collapse
Affiliation(s)
- Dalal Hassan
- Nuclear Dynamics and Cancer Program, Cancer Epigenetics Institute, Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
- Thomas Jefferson University, 901 Walnut St, Philadelphia, PA, 19107, USA
| | - Craig W Menges
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Joseph R Testa
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Alfonso Bellacosa
- Nuclear Dynamics and Cancer Program, Cancer Epigenetics Institute, Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA.
| |
Collapse
|
3
|
Rivas V, González-Muñoz T, Albitre Á, Lafarga V, Delgado-Arévalo C, Mayor F, Penela P. GRK2-mediated AKT activation controls cell cycle progression and G2 checkpoint in a p53-dependent manner. Cell Death Discov 2024; 10:385. [PMID: 39198399 PMCID: PMC11358448 DOI: 10.1038/s41420-024-02143-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/03/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
Cell cycle checkpoints, activated by stressful events, halt the cell cycle progression, and prevent the transmission of damaged DNA. These checkpoints prompt cell repair but also trigger cell death if damage persists. Decision-making between these responses is multifactorial and context-dependent, with the tumor suppressor p53 playing a central role. In many tumor cells, p53 alterations lead to G1/S checkpoint loss and the weakening of the G2 checkpoint, rendering cell viability dependent on the strength of the latter through mechanisms not fully characterized. Cells with a strong pro-survival drive can evade cell death despite substantial DNA lesions. Deciphering the integration of survival pathways with p53-dependent and -independent mechanisms governing the G2/M transition is crucial for understanding G2 arrest functionality and predicting tumor cell response to chemotherapy. The serine/threonine kinase GRK2 emerges as a signaling node in cell cycle modulation. In cycling cells, but not in G2 checkpoint-arrested cells, GRK2 protein levels decline during G2/M transition through a process triggered by CDK2-dependent phosphorylation of GRK2 at the S670 residue and Mdm2 ubiquitination. We report now that this downmodulation in G2 prevents the unscheduled activation of the PI3K/AKT pathway, allowing cells to progress into mitosis. Conversely, higher GRK2 levels lead to tyrosine phosphorylation by the kinase c-Abl, promoting the direct association of GRK2 with the p85 regulatory subunit of PI3K and AKT activation in a GRK2 catalytic-independent manner. Hyperactivation of AKT is conditioned by p53's scaffolding function, triggering FOXO3a phosphorylation, impaired Cyclin B1 accumulation, and CDK1 activation, causing a G2/M transition delay. Upon G2 checkpoint activation, GRK2 potentiates early arrest independently of p53 through AKT activation. However, its ability to overcome the G2 checkpoint in viable conditions depends on p53. Our results suggest that integrating the GRK2/PI3K/AKT axis with non-canonical functions of p53 might confer a survival advantage to tumor cells.
Collapse
Affiliation(s)
- Verónica Rivas
- Departamento de Biología Molecular, IUBM-UAM and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Teresa González-Muñoz
- Departamento de Biología Molecular, IUBM-UAM and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Ángela Albitre
- Departamento de Biología Molecular, IUBM-UAM and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Vanesa Lafarga
- Department of Molecular Oncology, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Cristina Delgado-Arévalo
- Departamento de Biología Molecular, IUBM-UAM and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Federico Mayor
- Departamento de Biología Molecular, IUBM-UAM and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII (CIBERCV), Madrid, Spain
| | - Petronila Penela
- Departamento de Biología Molecular, IUBM-UAM and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain.
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares, ISCIII (CIBERCV), Madrid, Spain.
| |
Collapse
|
4
|
Ren H, Ou Q, Pu Q, Lou Y, Yang X, Han Y, Liu S. Comprehensive Review on Bimolecular Fluorescence Complementation and Its Application in Deciphering Protein-Protein Interactions in Cell Signaling Pathways. Biomolecules 2024; 14:859. [PMID: 39062573 PMCID: PMC11274695 DOI: 10.3390/biom14070859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Signaling pathways are responsible for transmitting information between cells and regulating cell growth, differentiation, and death. Proteins in cells form complexes by interacting with each other through specific structural domains, playing a crucial role in various biological functions and cell signaling pathways. Protein-protein interactions (PPIs) within cell signaling pathways are essential for signal transmission and regulation. The spatiotemporal features of PPIs in signaling pathways are crucial for comprehending the regulatory mechanisms of signal transduction. Bimolecular fluorescence complementation (BiFC) is one kind of imaging tool for the direct visualization of PPIs in living cells and has been widely utilized to uncover novel PPIs in various organisms. BiFC demonstrates significant potential for application in various areas of biological research, drug development, disease diagnosis and treatment, and other related fields. This review systematically summarizes and analyzes the technical advancement of BiFC and its utilization in elucidating PPIs within established cell signaling pathways, including TOR, PI3K/Akt, Wnt/β-catenin, NF-κB, and MAPK. Additionally, it explores the application of this technology in revealing PPIs within the plant hormone signaling pathways of ethylene, auxin, Gibberellin, and abscisic acid. Using BiFC in conjunction with CRISPR-Cas9, live-cell imaging, and ultra-high-resolution microscopy will enhance our comprehension of PPIs in cell signaling pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shiping Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; (H.R.); (Q.O.); (Q.P.); (Y.L.); (X.Y.); (Y.H.)
| |
Collapse
|
5
|
Codenotti S, Sandrini L, Mandracchia D, Lorenzi L, Corsetti G, Poli M, Asperti M, Salvi V, Bosisio D, Monti E, Mitola S, Triggiani L, Guescini M, Pozzo E, Sampaolesi M, Gastaldello S, Cassandri M, Marampon F, Fanzani A. Statin-Sensitive Akt1/Src/Caveolin-1 Signaling Enhances Oxidative Stress Resistance in Rhabdomyosarcoma. Cancers (Basel) 2024; 16:853. [PMID: 38473215 PMCID: PMC11154391 DOI: 10.3390/cancers16050853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 03/14/2024] Open
Abstract
Identifying the molecular mechanisms underlying radioresistance is a priority for the treatment of RMS, a myogenic tumor accounting for approximately 50% of all pediatric soft tissue sarcomas. We found that irradiation (IR) transiently increased phosphorylation of Akt1, Src, and Cav1 in human RD and RH30 lines. Synthetic inhibition of Akt1 and Src phosphorylation increased ROS levels in all RMS lines, promoting cellular radiosensitization. Accordingly, the elevated activation of the Akt1/Src/Cav1 pathway, as detected in two RD lines characterized by overexpression of a myristoylated Akt1 form (myrAkt1) or Cav1 (RDCav1), was correlated with reduced levels of ROS, higher expression of catalase, and increased radioresistance. We found that treatment with cholesterol-lowering drugs such as lovastatin and simvastatin promoted cell apoptosis in all RMS lines by reducing Akt1 and Cav1 levels and increasing intracellular ROS levels. Combining statins with IR significantly increased DNA damage and cell apoptosis as assessed by γ histone 2AX (γH2AX) staining and FACS analysis. Furthermore, in combination with the chemotherapeutic agent actinomycin D, statins were effective in reducing cell survival through increased apoptosis. Taken together, our findings suggest that the molecularly linked signature formed by Akt1, Src, Cav1, and catalase may represent a prognostic determinant for identifying subgroups of RMS patients with higher probability of recurrence after radiotherapy. Furthermore, statin-induced oxidative stress could represent a treatment option to improve the success of radiotherapy.
Collapse
Affiliation(s)
- Silvia Codenotti
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (L.S.); (D.M.); (M.P.); (M.A.); (V.S.); (D.B.); (E.M.); (S.M.)
| | - Leonardo Sandrini
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (L.S.); (D.M.); (M.P.); (M.A.); (V.S.); (D.B.); (E.M.); (S.M.)
| | - Delia Mandracchia
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (L.S.); (D.M.); (M.P.); (M.A.); (V.S.); (D.B.); (E.M.); (S.M.)
| | - Luisa Lorenzi
- Department of Molecular and Translational Medicine, University of Brescia, and ASST Spedali Civili di Brescia, 25123 Brescia, Italy;
| | - Giovanni Corsetti
- Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy;
| | - Maura Poli
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (L.S.); (D.M.); (M.P.); (M.A.); (V.S.); (D.B.); (E.M.); (S.M.)
| | - Michela Asperti
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (L.S.); (D.M.); (M.P.); (M.A.); (V.S.); (D.B.); (E.M.); (S.M.)
| | - Valentina Salvi
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (L.S.); (D.M.); (M.P.); (M.A.); (V.S.); (D.B.); (E.M.); (S.M.)
| | - Daniela Bosisio
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (L.S.); (D.M.); (M.P.); (M.A.); (V.S.); (D.B.); (E.M.); (S.M.)
| | - Eugenio Monti
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (L.S.); (D.M.); (M.P.); (M.A.); (V.S.); (D.B.); (E.M.); (S.M.)
| | - Stefania Mitola
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (L.S.); (D.M.); (M.P.); (M.A.); (V.S.); (D.B.); (E.M.); (S.M.)
| | - Luca Triggiani
- Department of Radiation Oncology, ASST Spedali Civili di Brescia, University of Brescia, 25123 Brescia, Italy;
| | - Michele Guescini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy;
| | - Enrico Pozzo
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (E.P.); (M.S.)
| | - Maurilio Sampaolesi
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (E.P.); (M.S.)
| | - Stefano Gastaldello
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden;
| | - Matteo Cassandri
- Department of Radiological Sciences, Oncology and Anatomic Pathology, “Sapienza” University of Rome, 00161 Rome, Italy; (M.C.); (F.M.)
| | - Francesco Marampon
- Department of Radiological Sciences, Oncology and Anatomic Pathology, “Sapienza” University of Rome, 00161 Rome, Italy; (M.C.); (F.M.)
| | - Alessandro Fanzani
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (L.S.); (D.M.); (M.P.); (M.A.); (V.S.); (D.B.); (E.M.); (S.M.)
| |
Collapse
|
6
|
Ragupathi A, Kim C, Jacinto E. The mTORC2 signaling network: targets and cross-talks. Biochem J 2024; 481:45-91. [PMID: 38270460 PMCID: PMC10903481 DOI: 10.1042/bcj20220325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/29/2023] [Accepted: 12/18/2023] [Indexed: 01/26/2024]
Abstract
The mechanistic target of rapamycin, mTOR, controls cell metabolism in response to growth signals and stress stimuli. The cellular functions of mTOR are mediated by two distinct protein complexes, mTOR complex 1 (mTORC1) and mTORC2. Rapamycin and its analogs are currently used in the clinic to treat a variety of diseases and have been instrumental in delineating the functions of its direct target, mTORC1. Despite the lack of a specific mTORC2 inhibitor, genetic studies that disrupt mTORC2 expression unravel the functions of this more elusive mTOR complex. Like mTORC1 which responds to growth signals, mTORC2 is also activated by anabolic signals but is additionally triggered by stress. mTORC2 mediates signals from growth factor receptors and G-protein coupled receptors. How stress conditions such as nutrient limitation modulate mTORC2 activation to allow metabolic reprogramming and ensure cell survival remains poorly understood. A variety of downstream effectors of mTORC2 have been identified but the most well-characterized mTORC2 substrates include Akt, PKC, and SGK, which are members of the AGC protein kinase family. Here, we review how mTORC2 is regulated by cellular stimuli including how compartmentalization and modulation of complex components affect mTORC2 signaling. We elaborate on how phosphorylation of its substrates, particularly the AGC kinases, mediates its diverse functions in growth, proliferation, survival, and differentiation. We discuss other signaling and metabolic components that cross-talk with mTORC2 and the cellular output of these signals. Lastly, we consider how to more effectively target the mTORC2 pathway to treat diseases that have deregulated mTOR signaling.
Collapse
Affiliation(s)
- Aparna Ragupathi
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, U.S.A
| | - Christian Kim
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, U.S.A
| | - Estela Jacinto
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, U.S.A
| |
Collapse
|
7
|
Palma M, Riffo E, Farias A, Coliboro-Dannich V, Espinoza-Francine L, Escalona E, Amigo R, Gutiérrez JL, Pincheira R, Castro AF. NUAK1 coordinates growth factor-dependent activation of mTORC2 and Akt signaling. Cell Biosci 2023; 13:232. [PMID: 38135881 PMCID: PMC10740258 DOI: 10.1186/s13578-023-01185-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND mTORC2 is a critical regulator of cytoskeleton organization, cell proliferation, and cancer cell survival. Activated mTORC2 induces maximal activation of Akt by phosphorylation of Ser-473, but regulation of Akt activity and signaling crosstalk upon growth factor stimulation are still unclear. RESULTS We identified that NUAK1 regulates growth factor-dependent activation of Akt by two mechanisms. NUAK1 interacts with mTORC2 components and regulates mTORC2-dependent activation of Akt by controlling lysosome positioning and mTOR association with this organelle. A second mechanism involves NUAK1 directly phosphorylating Akt at Ser-473. The effect of NUAK1 correlated with a growth factor-dependent activation of specific Akt substrates. NUAK1 induced the Akt-dependent phosphorylation of FOXO1/3a (Thr-24/Thr-32) but not of TSC2 (Thr-1462). According to a subcellular compartmentalization that could explain NUAK1's differential effect on the Akt substrates, we found that NUAK1 is associated with early endosomes but not with plasma membrane, late endosomes, or lysosomes. NUAK1 was required for the Akt/FOXO1/3a axis, regulating p21CIP1, p27KIP1, and FoxM1 expression and cancer cell survival upon EGFR stimulation. Pharmacological inhibition of NUAK1 potentiated the cell death effect induced by Akt or mTOR pharmacological blockage. Analysis of human tissue data revealed that NUAK1 expression positively correlates with EGFR expression and Akt Ser-473 phosphorylation in several human cancers. CONCLUSIONS Our results showed that NUAK1 kinase controls mTOR subcellular localization and induces Akt phosphorylation, demonstrating that NUAK1 regulates the growth factor-dependent activation of Akt signaling. Therefore, targeting NUAK1, or co-targeting it with Akt or mTOR inhibitors, may be effective in cancers with hyperactivated Akt signaling.
Collapse
Affiliation(s)
- Mario Palma
- Laboratorio de Transducción de Señales y Cáncer, Departamento de Bioquímica y Biología Molecular, Facultad Cs. Biológicas, Universidad de Concepción, Concepción, Chile.
| | - Elizabeth Riffo
- Laboratorio de Transducción de Señales y Cáncer, Departamento de Bioquímica y Biología Molecular, Facultad Cs. Biológicas, Universidad de Concepción, Concepción, Chile
| | - Alejandro Farias
- Laboratorio de Transducción de Señales y Cáncer, Departamento de Bioquímica y Biología Molecular, Facultad Cs. Biológicas, Universidad de Concepción, Concepción, Chile
| | - Viviana Coliboro-Dannich
- Laboratorio de Transducción de Señales y Cáncer, Departamento de Bioquímica y Biología Molecular, Facultad Cs. Biológicas, Universidad de Concepción, Concepción, Chile
| | - Luis Espinoza-Francine
- Laboratorio de Transducción de Señales y Cáncer, Departamento de Bioquímica y Biología Molecular, Facultad Cs. Biológicas, Universidad de Concepción, Concepción, Chile
| | - Emilia Escalona
- Laboratorio de Transducción de Señales y Cáncer, Departamento de Bioquímica y Biología Molecular, Facultad Cs. Biológicas, Universidad de Concepción, Concepción, Chile
| | - Roberto Amigo
- Laboratorio de Regulación Transcripcional, Departamento de Bioquímica y Biología Molecular, Facultad Cs. Biológicas, Universidad de Concepción, Concepción, Chile
| | - José L Gutiérrez
- Laboratorio de Regulación Transcripcional, Departamento de Bioquímica y Biología Molecular, Facultad Cs. Biológicas, Universidad de Concepción, Concepción, Chile
| | - Roxana Pincheira
- Laboratorio de Transducción de Señales y Cáncer, Departamento de Bioquímica y Biología Molecular, Facultad Cs. Biológicas, Universidad de Concepción, Concepción, Chile
| | - Ariel F Castro
- Laboratorio de Transducción de Señales y Cáncer, Departamento de Bioquímica y Biología Molecular, Facultad Cs. Biológicas, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
8
|
Khozooei S, Veerappan S, Bonzheim I, Singer S, Gani C, Toulany M. Fisetin overcomes non-targetability of mutated KRAS induced YB-1 signaling in colorectal cancer cells and improves radiosensitivity by blocking repair of radiation-induced DNA double-strand breaks. Radiother Oncol 2023; 188:109867. [PMID: 37634766 DOI: 10.1016/j.radonc.2023.109867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/20/2023] [Accepted: 08/20/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND AND PURPOSE KRAS is frequently mutated, and the Y-box binding protein 1 (YB-1) is overexpressed in colorectal cancer (CRC). Mutant KRAS (KRASmut) stimulates YB-1 through MAPK/RSK and PI3K/AKT, independent of epidermal growth factor receptor (EGFR). The p21-activated kinase (PAK) family is a switch-site upstream of AKT and RSK. The flavonoid compound fisetin inhibits RSK-mediated YB-1 signaling. We sought the most effective molecular targeting approach that interferes with DNA double strand break (DSB) repair and induces radiosensitivity of CRC cells, independent of KRAS mutation status. MATERIALS AND METHODS KRAS activity and KRAS mutation were analyzed by Ras-GTP assay and NGS. Effect of dual targeting of RSK and AKT (DT), the effect of fisetin as well as targeting PAK by FRAX486 and EGFR by erlotinib on YB-1 activity was tested by Western blotting after irradiation in vitro and ex vivo. Additionally, the effect of DT and FRAX486 on DSB repair pathways was tested in cells expressing reporter constructs for the DSB repair pathways by flow cytometry analysis. Residual DSBs and clonogenicity were examined by γH2AX- and clonogenic assays, respectively. RESULTS Erlotinib neither blocked DSB repair nor inhibited YB-1 phosphorylation under KRAS mutation condition in vitro and ex vivo. DT and FRAX486 effectively inhibited YB-1 phosphorylation independent of KRAS mutation status and diminished homologous recombination (HR) and alternative non-homologous end joining (NHEJ) repair. DT and FRAX486 inhibited DSB repair in CaCo2 but not in isogenic KRASG12V cells. Fisetin inhibited YB-1 phosphorylation, blocked DSB repair and increased radiosensitivity, independent of KRAS mutation status. CONCLUSION Combination of fisetin with radiotherapy may improve CRC radiation response, regardless of KRASmut status.
Collapse
Affiliation(s)
- Shayan Khozooei
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
| | - Soundaram Veerappan
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
| | - Irina Bonzheim
- Department of Pathology and Neuropathology, University Hospital Tuebingen, Tuebingen, Germany
| | - Stephan Singer
- Department of Pathology and Neuropathology, University Hospital Tuebingen, Tuebingen, Germany
| | - Cihan Gani
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
| | - Mahmoud Toulany
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
9
|
Hu Y, Xu Y, Zhang T, Han Q, Li L, Liu M, Li N, Shao G. Cisplatin-activated ERβ/DCAF8 positive feedback loop induces chemoresistance in non-small cell lung cancer via PTEN/Akt axis. Drug Resist Updat 2023; 71:101014. [PMID: 37913652 DOI: 10.1016/j.drup.2023.101014] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 10/20/2023] [Accepted: 10/20/2023] [Indexed: 11/03/2023]
Abstract
High levels of the estrogen receptor β (ERβ) predict poor prognosis following platinum-containing adjuvant chemotherapies in patients with non-small cell lung cancer (NSCLC). However, the precise role of ERβ remains elusive. In this study, we demonstrated that targeting ERβ could significantly increase the cytotoxicity of cisplatin both in vitro and in vivo. Mechanically, cisplatin directly binds to ERβ, which facilitates its homodimerization and nuclear translocation. ERβ activation transcriptionally represses the expression of DCAF8, an adaptor of CRL4 E3 ubiquitin ligase, which in turn attenuates the proteasomal degradation of ERβ, leading to ERβ accumulation; this positive feedback loop results in Akt activation and eventually cisplatin resistance in NSCLC through PTEN inhibition. Moreover, low expression of DCAF8 and high expression of ERβ are associated with treatment resistance in patients receiving cisplatin-containing adjuvant chemotherapy. The present results provide insights into the underlying mechanism of ERβ-induced cisplatin resistance and offer an alternative therapeutic strategy to improve the efficacy of platinum-based chemotherapy in patients with NSCLC.
Collapse
Affiliation(s)
- Yumeng Hu
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yongjie Xu
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ting Zhang
- Department of Gynecology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Qianying Han
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Li Li
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Mingyang Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Ni Li
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Genze Shao
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
10
|
Torres-Montaner A. Interactions between the DNA Damage Response and the Telomere Complex in Carcinogenesis: A Hypothesis. Curr Issues Mol Biol 2023; 45:7582-7616. [PMID: 37754262 PMCID: PMC10527771 DOI: 10.3390/cimb45090478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023] Open
Abstract
Contrary to what was once thought, direct cancer originating from normal stem cells seems to be extremely rare. This is consistent with a preneoplastic period of telomere length reduction/damage in committed cells that becomes stabilized in transformation. Multiple observations suggest that telomere damage is an obligatory step preceding its stabilization. During tissue turnover, the telomeres of cells undergoing differentiation can be damaged as a consequence of defective DNA repair caused by endogenous or exogenous agents. This may result in the emergence of new mechanism of telomere maintenance which is the final outcome of DNA damage and the initial signal that triggers malignant transformation. Instead, transformation of stem cells is directly induced by primary derangement of telomere maintenance mechanisms. The newly modified telomere complex may promote survival of cancer stem cells, independently of telomere maintenance. An inherent resistance of stem cells to transformation may be linked to specific, robust mechanisms that help maintain telomere integrity.
Collapse
Affiliation(s)
- Antonio Torres-Montaner
- Department of Pathology, Queen’s Hospital, Rom Valley Way, Romford, London RM7 OAG, UK;
- Departamento de Bioquímica y Biologia Molecular, Universidad de Cadiz, Puerto Real, 11510 Cadiz, Spain
| |
Collapse
|
11
|
Fu X, Zhang Y, Zhang R. Regulatory role of PI3K/Akt/WNK1 signal pathway in mouse model of bone cancer pain. Sci Rep 2023; 13:14321. [PMID: 37652923 PMCID: PMC10471765 DOI: 10.1038/s41598-023-40182-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 08/06/2023] [Indexed: 09/02/2023] Open
Abstract
In the advanced stage of cancer, the pain caused by bone metastasis is unbearable, but the mechanism of bone cancer pain (BCP) is very complicated and remains unclear. In this study, we used 4T1 mouse breast cancer cells to establish a bone cancer pain model to study the mechanism of BCP. Then the paw withdrawal mechanical threshold (PWMT) and the hematoxylin-eosin staining were used to reflect the erosion of cancer cells on tibia tissue. We also determined the role of proinflammatory factors (TNF-α, IL-17, etc.) in BCP by the enzyme-linked immunosorbent assay in mouse serum. When GSK690693, a new Akt inhibitor, was given and the absence of intermediate signal dominated by Akt is found, pain may be relieved by blocking the transmission of pain signal and raising the PWMT. In addition, we also found that GSK690693 inhibited the phosphorylation of Akt protein, resulting in a significant decrease in with-nolysinekinases 1 (WNK1) expression in the spinal cord tissue. In the BCP model, we confirmed that GSK690693 has a relieving effect on BCP, which may play an analgesic effect through PI3K-WNK1 signal pathway. At the same time, there is a close relationship between inflammatory factors and PI3K-WNK1 signal pathway. The PI3K/Akt pathway in the dorsal horn of the mouse spinal cord activates the downstream WNK1 protein, which promotes the release of inflammatory cytokines, which leads to the formation of BCP in mice. Inhibition of Akt can reduce the levels of IL-17 and TNF-α, cut off the downstream WNK1 protein signal receiving pathway, increase the PWMT and relieve BCP in mice. To clarify the analgesic target of BCP, to provide reference and theoretical support for the clinical effective treatment of BCP and the development of new high-efficiency analgesics.
Collapse
Affiliation(s)
- Xiao Fu
- Department of Anesthesiology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, China
- Inner Mongolia Medical University, Hohhot, 010110, China
| | - Yanhong Zhang
- Department of Anesthesiology, Peking University Cancer Hospital Inner Mongolia Hospital/Cancer Hospital Affiliated to Inner Mongolia Medical University, Hohhot, 010020, China.
| | - Rui Zhang
- Department of Anesthesiology, Peking University Cancer Hospital Inner Mongolia Hospital/Cancer Hospital Affiliated to Inner Mongolia Medical University, Hohhot, 010020, China
| |
Collapse
|
12
|
Sutcu HH, Montagne B, Ricchetti M. DNA-PKcs regulates myogenesis in an Akt-dependent manner independent of induced DNA damage. Cell Death Differ 2023; 30:1900-1915. [PMID: 37400716 PMCID: PMC10406879 DOI: 10.1038/s41418-023-01177-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 07/05/2023] Open
Abstract
Skeletal muscle regeneration relies on muscle stem (satellite) cells. We previously demonstrated that satellite cells efficiently and accurately repair radiation-induced DNA double-strand breaks (DSBs) via the DNA-dependent kinase DNA-PKcs. We show here that DNA-PKcs affects myogenesis independently of its role in DSB repair. Consequently, this process does not require the accumulation of DSBs and it is also independent of caspase-induced DNA damage. We report that in myogenic cells DNA-PKcs is essential for the expression of the differentiation factor Myogenin in an Akt2-dependent manner. DNA-PKcs interacts with the p300-containing complex that activates Myogenin transcription. We show also that SCID mice that are deficient in DNA-PKcs, and are used for transplantation and muscle regeneration studies, display altered myofiber composition and delayed myogenesis upon injury. These defects are exacerbated after repeated injury/regeneration events resulting in reduced muscle size. We thus identify a novel, caspase-independent, regulation of myogenic differentiation, and define a differentiation phase that does not involve the DNA damage/repair process.
Collapse
Affiliation(s)
- Haser Hasan Sutcu
- Institut Pasteur, Team Stability of Nuclear & Mitochondrial DNA, Department of Developmental and Stem Cell Biology, CNRS UMR3738, 75015, Paris, France
- Université Pierre et Marie Curie (Sorbonne Universities, ED515), Paris, France
- Institut de Radioprotection et de Sûrété Nucléaire (IRSN), Radiobiology of Accidental Exposure Laboratory (PSE-SANTE/SERAMED/LRAcc), B.P. 17, 92262 Fontenay-aux-Roses, Cedex, France
| | - Benjamin Montagne
- Institut Pasteur, Team Stability of Nuclear & Mitochondrial DNA, Department of Developmental and Stem Cell Biology, CNRS UMR3738, 75015, Paris, France
- Institut Pasteur, Molecular Mechanisms of Pathological and Physiological Ageing, Department of Developmental and Stem Cell Biology, Paris, France
| | - Miria Ricchetti
- Institut Pasteur, Team Stability of Nuclear & Mitochondrial DNA, Department of Developmental and Stem Cell Biology, CNRS UMR3738, 75015, Paris, France.
- Institut Pasteur, Molecular Mechanisms of Pathological and Physiological Ageing, Department of Developmental and Stem Cell Biology, Paris, France.
| |
Collapse
|
13
|
Gu W, Zheng H, Canessa CM. Phosphatases maintain low catalytic activity of SGK1: DNA damage resets the balance in favor of phosphorylation. J Biol Chem 2023; 299:104941. [PMID: 37343701 PMCID: PMC10372406 DOI: 10.1016/j.jbc.2023.104941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/23/2023] Open
Abstract
The serum- and glucocorticoid-induced kinase 1 (SGK1) promotes cell survival under stress conditions and facilitates the emergence of drug resistance in cancer. The underlying mechanisms of these observations are not fully understood. In this study, we found that SGK1 activity is suppressed by the action of the S/T phosphatases PP5 and PP2A, which constantly dephosphorylate SGK1. Using newly developed anti-phospho SGK1 antibodies and inhibitors of phosphatases, we determined that the high degree of dephosphorylation is caused by two factors: the tendency of SGK1 to unfold, which makes it dependent on Hsp90 chaperone complexes composed of four proteins, Hsp90/CDC37/PP5/SGK1, and where the phosphatase PP5 persistently dephosphorylates SGK1 within the complex. SGK1 binding to PP2A regulatory subunits B55γ and B55δ brings PP2A catalytic subunit close to exposed SGK1 phosphoresidues. A further association of phosphorylated pS37-FAM122A-an endogenous inhibitor of PP2A-to the holoenzyme diminishes dephosphorylation of SGK1 mediated by PP2A. Our study also reveals that genotoxic stress can reverse the dominant impact of phosphatases over kinases by activating the DNA-dependent protein kinase, which enhances mTORC2 activity directed to SGK1. Thus, our results provide insight into a molecular pathway that enables SGK1 to gain phosphorylation and catalytic activity and promote cell survival, potentially diminishing the efficacy of cancer treatments. As the DNA damage response operates in many cancer cells and is further induced by chemotherapies, the findings of this study could have significant implications for the development of novel cancer therapies targeting SGK1.
Collapse
Affiliation(s)
- Wenxue Gu
- School of Medicine, Tsinghua University, Beijing, China
| | - Hongyan Zheng
- School of Medicine, Tsinghua University, Beijing, China
| | - Cecilia M Canessa
- School of Medicine, Tsinghua University, Beijing, China; Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, USA.
| |
Collapse
|
14
|
Ye J, Fu J, Hou H, Wang Y, Deng W, Hao S, Pei Y, Xu J, Zheng M, Xiao Y. Cytoplasmic DNA sensing boosts CD4 + T cell metabolism for inflammatory induction. LIFE MEDICINE 2023; 2:lnad021. [PMID: 39872301 PMCID: PMC11749111 DOI: 10.1093/lifemedi/lnad021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/09/2023] [Indexed: 01/30/2025]
Abstract
DNA accumulation is associated with the development of autoimmune inflammatory diseases. However, the pathological role and underlying mechanism of cytoplasmic DNA accumulation in CD4+ T cells have not been well established. Here, we show that Trex1 deficiency-induced endogenous DNA accumulation in CD4+ T cells greatly promoted their induction of autoimmune inflammation in a lupus-like mouse model. Mechanistically, the accumulated DNA in CD4+ T cells was sensed by the KU complex, then triggered the activation of DNA-PKcs and ZAK and further facilitated the activation of AKT, which exacerbated glycolysis, thereby promoting the inflammatory responses. Accordingly, blocking the DNA sensing pathway in CD4+ T cells by genetic knockout of Zak or using our newly developed ZAK inhibitor iZAK2 attenuated all pathogenic characteristics in a lupus-like inflammation mouse model induced with Trex1-deficient CD4+ T cells. Overall, our study demonstrated a causal link between DNA-sensing and metabolic reprogramming in CD4+ T cells for inflammatory induction and suggested inhibition of the DNA sensing pathway may be a potential therapy for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Jialin Ye
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiemeng Fu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hui Hou
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yan Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wei Deng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shumeng Hao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yifei Pei
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jing Xu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Mingyue Zheng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
15
|
Morsczeck C, Pieles O, Reck A, Reichert TE. DNA protein kinase promotes cellular senescence in dental follicle cells. Arch Oral Biol 2023; 150:105676. [PMID: 36934664 DOI: 10.1016/j.archoralbio.2023.105676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/24/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
OBJECTIVE Short telomeres and genomic DNA damage are causes of cellular senescence in dental follicle cells (DFCs). DESIGN This study examined the role of the DNA damage response (DDR) during cellular senescence of DFCs by β-galactosidase activity and DNA damage by comet assay. Expression of genes/proteins was determined by Western Blots and reverse transcription-quantitative polymerase chain reaction, while glycolysis was enzymatically estimated. Cell cycle stages and reactive oxygen species (ROS) were investigated by flow cytometry. RESULTS During the induction of cellular senescence gene expression of DDR genes were down-regulated, while DNA double-strand breaks occurred at the same time. Furthermore, inhibition of DNA protein kinase (DNA-PK) reduced senescence and ROS, both of which are associated with cellular senescence. In contrast, while these data suggest that inhibition of DDR is associated with the induction of cellular senescence, inhibition of DNA-PK did not result in renewal of DFCs, as inhibition resulted in typical features of depleted cells such as increased cell size and reduced cell proliferation rate. DNA-PK repression inhibited both osteogenic differentiation potential and glycolysis, which are typical features of cellular exhaustion. Moreover, DNA-PK affects cellular senescence via activation of AKT1 (protein kinase B). CONCLUSION Our results suggest that DNA-PK promotes cellular senescence, but DFCs may control the induction of cellular senescence via down-regulation of DDR genes. However, we also showed that inhibition of DNA-PK cannot renew senescent DFCs.
Collapse
Affiliation(s)
- Christian Morsczeck
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| | - Oliver Pieles
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Anja Reck
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Torsten E Reichert
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| |
Collapse
|
16
|
Li B, Ding Z, Calbay O, Li Y, Li T, Jin L, Huang S. FAP is critical for ovarian cancer cell survival by sustaining NF-κB activation through recruitment of PRKDC in lipid rafts. Cancer Gene Ther 2023; 30:608-621. [PMID: 36494579 PMCID: PMC10498436 DOI: 10.1038/s41417-022-00575-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 11/18/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
Fibroblast activation protein (FAP) is tumor-specific and plays an important role in tumorigenecity. However, agents against its enzymatic activity or extracellular presence were unsuccessful in the clinic for undefined reasons. Here we show that FAP expression is higher in advanced ovarian cancer and is only detected in invasive ovarian cancer cells. Silencing FAP induces apoptosis and FAP's enzymatic activity is dispensable for cell survival. To elucidate the cause of apoptosis, we find that NF-κB activity is diminished when FAP is depleted and BIRC5 (survivin) acts downstream of FAP-NF-κB axis to promote cell survival. To uncover the link between FAP and NF-κB activation, we reveal that PRKDC (DNA-PK, DNA-dependent protein kinase) forms complex with FAP and is required for NF-κB activation and cell survival. Remarkably, FAP-PRKDC interaction occurs only in lipid rafts, and depleting FAP prevents lipid raft localization of PRKDC. Given the known ability of PRKDC to direct NF-κB activation, these results suggest that FAP recruits PRKDC in lipid rafts for NF-κB activation. FAP's non-enzymatic role and functioning from lipid rafts for cell survival also offer an explanation on the failure of past FAP-targeted therapies. Finally, we demonstrate that EpCAM aptamer-delivered FAP siRNA impeded intraperitoneal xenograft development of ovary tumors.
Collapse
Affiliation(s)
- Bin Li
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, 32611, USA
| | - Zuo Ding
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, 32611, USA
| | - Ozlem Calbay
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, 32611, USA
| | - Yue Li
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, 32611, USA
| | - Tao Li
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, 32611, USA
| | - Lingtao Jin
- Deparment of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78245, USA
| | - Shuang Huang
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, 32611, USA.
| |
Collapse
|
17
|
DNA-dependent protein kinase catalytic subunit (DNA-PKcs) drives chronic kidney disease progression in male mice. Nat Commun 2023; 14:1334. [PMID: 36906617 PMCID: PMC10008567 DOI: 10.1038/s41467-023-37043-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/28/2023] [Indexed: 03/13/2023] Open
Abstract
Kidney injury initiates epithelial dedifferentiation and myofibroblast activation during the progression of chronic kidney disease. Herein, we find that the expression of DNA-PKcs is significantly increased in the kidney tissues of both chronic kidney disease patients and male mice induced by unilateral ureteral obstruction and unilateral ischemia-reperfusion injury. In vivo, knockout of DNA-PKcs or treatment with its specific inhibitor NU7441 hampers the development of chronic kidney disease in male mice. In vitro, DNA-PKcs deficiency preserves epithelial cell phenotype and inhibits fibroblast activation induced by transforming growth factor-beta 1. Additionally, our results show that TAF7, as a possible substrate of DNA-PKcs, enhances mTORC1 activation by upregulating RAPTOR expression, which subsequently promotes metabolic reprogramming in injured epithelial cells and myofibroblasts. Taken together, DNA-PKcs can be inhibited to correct metabolic reprogramming via the TAF7/mTORC1 signaling in chronic kidney disease, and serve as a potential target for treating chronic kidney disease.
Collapse
|
18
|
Hany D, Zoetemelk M, Bhattacharya K, Nowak-Sliwinska P, Picard D. Network-informed discovery of multidrug combinations for ERα+/HER2-/PI3Kα-mutant breast cancer. Cell Mol Life Sci 2023; 80:80. [PMID: 36869202 PMCID: PMC10032341 DOI: 10.1007/s00018-023-04730-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/20/2023] [Accepted: 02/19/2023] [Indexed: 03/05/2023]
Abstract
Breast cancer is a persistent threat to women worldwide. A large proportion of breast cancers are dependent on the estrogen receptor α (ERα) for tumor progression. Therefore, targeting ERα with antagonists, such as tamoxifen, or estrogen deprivation by aromatase inhibitors remain standard therapies for ERα + breast cancer. The clinical benefits of monotherapy are often counterbalanced by off-target toxicity and development of resistance. Combinations of more than two drugs might be of great therapeutic value to prevent resistance, and to reduce doses, and hence, decrease toxicity. We mined data from the literature and public repositories to construct a network of potential drug targets for synergistic multidrug combinations. With 9 drugs, we performed a phenotypic combinatorial screen with ERα + breast cancer cell lines. We identified two optimized low-dose combinations of 3 and 4 drugs of high therapeutic relevance to the frequent ERα + /HER2-/PI3Kα-mutant subtype of breast cancer. The 3-drug combination targets ERα in combination with PI3Kα and cyclin-dependent kinase inhibitor 1 (p21). In addition, the 4-drug combination contains an inhibitor for poly (ADP-ribose) polymerase 1 (PARP1), which showed benefits in long-term treatments. Moreover, we validated the efficacy of the combinations in tamoxifen-resistant cell lines, patient-derived organoids, and xenograft experiments. Thus, we propose multidrug combinations that have the potential to overcome the standard issues of current monotherapies.
Collapse
Affiliation(s)
- Dina Hany
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Sciences III, Quai Ernest-Ansermet 30, 1211, Genève 4, Switzerland
- On leave from: Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, 21311, Egypt
| | - Marloes Zoetemelk
- Groupe de Pharmacologie Moléculaire, Section des Sciences Pharmaceutiques, Université de Genève, Genève, Switzerland
- Institut des Sciences Pharmaceutiques de Suisse Occidentale, Université de Genève, Genève, Switzerland
- Centre de Recherche Translationnelle en Onco-hématologie, Université de Genève, Genève, Switzerland
| | - Kaushik Bhattacharya
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Sciences III, Quai Ernest-Ansermet 30, 1211, Genève 4, Switzerland
| | - Patrycja Nowak-Sliwinska
- Groupe de Pharmacologie Moléculaire, Section des Sciences Pharmaceutiques, Université de Genève, Genève, Switzerland
- Institut des Sciences Pharmaceutiques de Suisse Occidentale, Université de Genève, Genève, Switzerland
- Centre de Recherche Translationnelle en Onco-hématologie, Université de Genève, Genève, Switzerland
| | - Didier Picard
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Sciences III, Quai Ernest-Ansermet 30, 1211, Genève 4, Switzerland.
| |
Collapse
|
19
|
Lin C, Traets JJH, Vredevoogd DW, Visser NL, Peeper DS. TSC2 regulates tumor susceptibility to TRAIL-mediated T-cell killing by orchestrating mTOR signaling. EMBO J 2023; 42:e111614. [PMID: 36715448 PMCID: PMC9975943 DOI: 10.15252/embj.2022111614] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 01/31/2023] Open
Abstract
Resistance to cancer immunotherapy continues to impair common clinical benefit. Here, we use whole-genome CRISPR-Cas9 knockout data to uncover an important role for Tuberous Sclerosis Complex 2 (TSC2) in determining tumor susceptibility to cytotoxic T lymphocyte (CTL) killing in human melanoma cells. TSC2-depleted tumor cells had disrupted mTOR regulation following CTL attack, which was associated with enhanced cell death. Wild-type tumor cells adapted to CTL attack by shifting their mTOR signaling balance toward increased mTORC2 activity, circumventing apoptosis, and necroptosis. TSC2 ablation strongly augmented tumor cell sensitivity to CTL attack in vitro and in vivo, suggesting one of its functions is to critically protect tumor cells. Mechanistically, TSC2 inactivation caused elevation of TRAIL receptor expression, cooperating with mTORC1-S6 signaling to induce tumor cell death. Clinically, we found a negative correlation between TSC2 expression and TRAIL signaling in TCGA patient cohorts. Moreover, a lower TSC2 immune response signature was observed in melanomas from patients responding to immune checkpoint blockade. Our study uncovers a pivotal role for TSC2 in the cancer immune response by governing crosstalk between TSC2-mTOR and TRAIL signaling, aiding future therapeutic exploration of this pathway in immuno-oncology.
Collapse
Affiliation(s)
- Chun‐Pu Lin
- Division of Molecular Oncology and ImmunologyOncode Institute, The Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Joleen J H Traets
- Division of Molecular Oncology and ImmunologyOncode Institute, The Netherlands Cancer InstituteAmsterdamThe Netherlands
- Division of Tumor Biology and ImmunologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - David W Vredevoogd
- Division of Molecular Oncology and ImmunologyOncode Institute, The Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Nils L Visser
- Division of Molecular Oncology and ImmunologyOncode Institute, The Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Daniel S Peeper
- Division of Molecular Oncology and ImmunologyOncode Institute, The Netherlands Cancer InstituteAmsterdamThe Netherlands
| |
Collapse
|
20
|
Shishido K, Reinders A, Asuthkar S. Epigenetic regulation of radioresistance: insights from preclinical and clinical studies. Expert Opin Investig Drugs 2022; 31:1359-1375. [PMID: 36524403 DOI: 10.1080/13543784.2022.2158810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Oftentimes, radiation therapy (RT) is ineffective due to the development of radioresistance (RR). However, studies have shown that targeting epigenetic modifiers to enhance radiosensitivity represents a promising direction of clinical investigation. AREAS COVERED This review discusses the mechanisms by which epigenetic modifiers alter radiosensitivity through dysregulation of MAPK-ERK and AKT-mTOR signaling. Finally, we discuss the clinical directions for targeting epigenetic modifiers and current radiology techniques used in the clinic. METHODOLOGY We searched PubMed and ScienceDirect databases from April 4th, 2022 to October 18th, 2022. We examined 226 papers related to radioresistance, epigenetics, MAPK, and PI3K/AKT/mTOR signaling. 194 papers were selected for this review. Keywords used for this search include, 'radioresistance,' 'radiosensitivity,' 'radiation,' 'radiotherapy,' 'particle radiation,' 'photon radiation,' 'epigenetic modifiers,' 'MAPK,' 'AKT,' 'mTOR,' 'cancer,' and 'PI3K.' We examined 41 papers related to clinical trials on the aforementioned topics. Outcomes of interest were safety, overall survival (OS), dose-limiting toxicities (DLT), progression-free survival (PFS), and maximum tolerated dose (MTD). EXPERT OPINION Current studies focusing on epigenetic mechanisms of RR strongly support the use of targeting epigenetic modifiers as adjuvants to standard cancer therapies. To further the success of such treatments and their clinical benefit , both preclinical and clinical studies are needed to broaden the scope of known radioresistant mechanisms.
Collapse
Affiliation(s)
- Katherine Shishido
- Department of Cancer Biology and Pharmacology and Department of Pediatrics, University of Illinois College of Medicine Peoria, Peoria, IL, United States of America
| | - Alexis Reinders
- Department of Cancer Biology and Pharmacology and Department of Pediatrics, University of Illinois College of Medicine Peoria, Peoria, IL, United States of America
| | - Swapna Asuthkar
- Department of Cancer Biology and Pharmacology and Department of Pediatrics, University of Illinois College of Medicine Peoria, Peoria, IL, United States of America
| |
Collapse
|
21
|
Vidal S, Bouzaher YH, El Motiam A, Seoane R, Rivas C. Overview of the regulation of the class IA PI3K/AKT pathway by SUMO. Semin Cell Dev Biol 2022; 132:51-61. [PMID: 34753687 DOI: 10.1016/j.semcdb.2021.10.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 12/14/2022]
Abstract
The phosphatidylinositol-3-kinase (PI3K)/AKT pathway is a major regulator of metabolism, migration, survival, proliferation, and antiviral immunity. Both an overactivation and an inhibition of the PI3K/AKT pathway are related to different pathologies. Activation of this signaling pathway is tightly controlled through a multistep process and its deregulation can be associated with aberrant post-translational modifications including SUMOylation. Here, we review the complex modulation of the PI3K/AKT pathway by SUMOylation and we discuss its putative incvolvement in human disease.
Collapse
Affiliation(s)
- Santiago Vidal
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias (IDIS), 15706 Santiago de Compostela, Spain
| | - Yanis Hichem Bouzaher
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias (IDIS), 15706 Santiago de Compostela, Spain
| | - Ahmed El Motiam
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias (IDIS), 15706 Santiago de Compostela, Spain; Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health Systems, Department of Ophthalmology and Vision Science, and Department of Lab Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Rocío Seoane
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias (IDIS), 15706 Santiago de Compostela, Spain
| | - Carmen Rivas
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias (IDIS), 15706 Santiago de Compostela, Spain; Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
22
|
Kawano I, Adamcova M. MicroRNAs in doxorubicin-induced cardiotoxicity: The DNA damage response. Front Pharmacol 2022; 13:1055911. [PMID: 36479202 PMCID: PMC9720152 DOI: 10.3389/fphar.2022.1055911] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/11/2022] [Indexed: 10/17/2023] Open
Abstract
Doxorubicin (DOX) is a chemotherapeutic drug widely used for cancer treatment, but its use is limited by cardiotoxicity. Although free radicals from redox cycling and free cellular iron have been predominant as the suggested primary pathogenic mechanism, novel evidence has pointed to topoisomerase II inhibition and resultant genotoxic stress as the more fundamental mechanism. Recently, a growing list of microRNAs (miRNAs) has been implicated in DOX-induced cardiotoxicity (DIC). This review summarizes miRNAs reported in the recent literature in the context of DIC. A particular focus is given to miRNAs that regulate cellular responses downstream to DOX-induced DNA damage, especially p53 activation, pro-survival signaling pathway inhibition (e.g., AMPK, AKT, GATA-4, and sirtuin pathways), mitochondrial dysfunction, and ferroptosis. Since these pathways are potential targets for cardioprotection against DOX, an understanding of how miRNAs participate is necessary for developing future therapies.
Collapse
Affiliation(s)
| | - Michaela Adamcova
- Department of Physiology, Faculty of Medicine in Hradec Kralove, Charles University in Prague, Hradec Kralove, Czechia
| |
Collapse
|
23
|
Dong L, Li Y, Liu L, Meng X, Li S, Han D, Xiao Z, Xia Q. Smurf1 Suppression Enhances Temozolomide Chemosensitivity in Glioblastoma by Facilitating PTEN Nuclear Translocation. Cells 2022; 11:3302. [PMID: 36291166 PMCID: PMC9600526 DOI: 10.3390/cells11203302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
The tumor suppressor PTEN mainly inhibits the PI3K/Akt pathway in the cytoplasm and maintains DNA stability in the nucleus. The status of PTEN remains therapeutic effectiveness for chemoresistance of the DNA alkylating agent temozolomide (TMZ) in glioblastoma (GB). However, the underlying mechanisms of PTEN's interconnected role in the cytoplasm and nucleus in TMZ resistance are still unclear. In this study, we report that TMZ-induced PTEN nuclear import depends on PTEN ubiquitylation modification by Smurf1. The Smurf1 suppression decreases the TMZ-induced PTEN nuclear translocation and enhances the DNA damage. In addition, Smurf1 degrades cytoplasmic PTEN K289E (the nuclear-import-deficient PTEN mutant) to activate the PI3K/Akt pathway under TMZ treatment. Altogether, Smurf1 interconnectedly promotes PTEN nuclear function (DNA repair) and cytoplasmic function (activation of PI3K/Akt pathway) to resist TMZ. These results provide a proof-of-concept demonstration for a potential strategy to overcome the TMZ resistance in PTEN wild-type GB patients by targeting Smurf1.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qin Xia
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
24
|
Erichsen L, Adjaye J. Crosstalk between age accumulated DNA-damage and the SIRT1-AKT-GSK3ß axis in urine derived renal progenitor cells. Aging (Albany NY) 2022; 14:8179-8204. [PMID: 36170022 PMCID: PMC9648809 DOI: 10.18632/aging.204300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/08/2022] [Indexed: 12/02/2022]
Abstract
The aging process is manifested by a multitude of inter-linked biological processes. These processes contribute to genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, de-regulated nutrient-sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication. The mammalian ortholog of the yeast silent information regulator (Sir2) SIRT1 is a NAD+-dependent class III histone deacetylase and has been recognized to be involved in many of the forementioned processes. Furthermore, the physiological activity of several Sirtuin family members has been connected to the regulation of life span of lower organisms (Caenorhabditis elegans and Drosophila melanogaster) as well as mammals. In the present study, we provide evidence that SIX2-positive urine derived renal progenitor cells-UdRPCs isolated directly from human urine show typical hallmarks of aging. This includes the subsequent transcriptional downregulation of SIRT1 and its downstream targets AKT and GSK3ß with increased donor age. This transcriptional downregulation is accompanied by an increase in DNA damage and transcriptional levels of several cell cycle inhibitors such as P16. We provide evidence that the renal progenitor transcription factor SIX2 binds to the coding sequence of SIRT1. Furthermore, we show that the SIRT1 promoter region is methylation sensitive and becomes methylated during aging, dividing them into SIRT1-high and -low expressing UdRPCs. Our results highlight the importance of SIRT1 in DNA damage repair recognition in UdRPCs and the control of differentiation by regulating the activation of GSK3β through AKT.
Collapse
Affiliation(s)
- Lars Erichsen
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine- University Düsseldorf, Düsseldorf 40225, Germany
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine- University Düsseldorf, Düsseldorf 40225, Germany
| |
Collapse
|
25
|
Codenotti S, Zizioli D, Mignani L, Rezzola S, Tabellini G, Parolini S, Giacomini A, Asperti M, Poli M, Mandracchia D, Vezzoli M, Bernardi S, Russo D, Mitola S, Monti E, Triggiani L, Tomasini D, Gastaldello S, Cassandri M, Rota R, Marampon F, Fanzani A. Hyperactive Akt1 Signaling Increases Tumor Progression and DNA Repair in Embryonal Rhabdomyosarcoma RD Line and Confers Susceptibility to Glycolysis and Mevalonate Pathway Inhibitors. Cells 2022; 11:cells11182859. [PMID: 36139434 PMCID: PMC9497225 DOI: 10.3390/cells11182859] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/18/2022] Open
Abstract
In pediatric rhabdomyosarcoma (RMS), elevated Akt signaling is associated with increased malignancy. Here, we report that expression of a constitutively active, myristoylated form of Akt1 (myrAkt1) in human RMS RD cells led to hyperactivation of the mammalian target of rapamycin (mTOR)/70-kDa ribosomal protein S6 kinase (p70S6K) pathway, resulting in the loss of both MyoD and myogenic capacity, and an increase of Ki67 expression due to high cell mitosis. MyrAkt1 signaling increased migratory and invasive cell traits, as detected by wound healing, zymography, and xenograft zebrafish assays, and promoted repair of DNA damage after radiotherapy and doxorubicin treatments, as revealed by nuclear detection of phosphorylated H2A histone family member X (γH2AX) through activation of DNA-dependent protein kinase (DNA-PK). Treatment with synthetic inhibitors of phosphatidylinositol-3-kinase (PI3K) and Akt was sufficient to completely revert the aggressive cell phenotype, while the mTOR inhibitor rapamycin failed to block cell dissemination. Furthermore, we found that pronounced Akt1 signaling increased the susceptibility to cell apoptosis after treatments with 2-deoxy-D-glucose (2-DG) and lovastatin, enzymatic inhibitors of hexokinase, and 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR), especially in combination with radiotherapy and doxorubicin. In conclusion, these data suggest that restriction of glucose metabolism and the mevalonate pathway, in combination with standard therapy, may increase therapy success in RMS tumors characterized by a dysregulated Akt signaling.
Collapse
Affiliation(s)
- Silvia Codenotti
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Daniela Zizioli
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Luca Mignani
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Giovanna Tabellini
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Silvia Parolini
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Arianna Giacomini
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Michela Asperti
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Maura Poli
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Delia Mandracchia
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Marika Vezzoli
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Simona Bernardi
- Department of Clinical and Experimental Sciences, ASST Spedali Civili di Brescia, University of Brescia, 25123 Brescia, Italy
| | - Domenico Russo
- Department of Clinical and Experimental Sciences, ASST Spedali Civili di Brescia, University of Brescia, 25123 Brescia, Italy
| | - Stefania Mitola
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Eugenio Monti
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Luca Triggiani
- Radiation Oncology Department, ASST Spedali Civili di Brescia, University of Brescia, 25123 Brescia, Italy
| | - Davide Tomasini
- Radiation Oncology Department, ASST Spedali Civili di Brescia, University of Brescia, 25123 Brescia, Italy
| | - Stefano Gastaldello
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden
- Precision Medicine Research Center, School of Pharmacy, Binzhou Medical University, Laishan District, Guanhai Road 346, Yantai 264003, China
| | - Matteo Cassandri
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
- Department of Radiotherapy, Policlinico Umberto I, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Rossella Rota
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Francesco Marampon
- Department of Radiotherapy, Policlinico Umberto I, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Alessandro Fanzani
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
- Correspondence: ; Tel.: +39-030-3717567
| |
Collapse
|
26
|
Toulany M, Iida M, Lettau K, Coan JP, Rebholz S, Khozooei S, Harari PM, Wheeler DL. Targeting HER3-dependent activation of nuclear AKT improves radiotherapy of non-small cell lung cancer. Radiother Oncol 2022; 174:92-100. [PMID: 35839938 PMCID: PMC10083767 DOI: 10.1016/j.radonc.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/10/2022] [Accepted: 07/06/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND AKT1 must be present and activated in the nucleus immediately after irradiation to stimulate AKT1-dependent double-strand breaks (DSB) repair through the fast non-homologous end-joining (NHEJ) repair process. We investigated the subcellular distribution of AKT1 and the role of HER family receptor members on the phosphorylation of nuclear AKT and radiation response. MATERIALS AND METHODS Using genetic approaches and pharmacological inhibitors, we investigated the subcellular distribution of AKT1 and the role of HER family receptor members on the activation of nuclear AKT in non-small cell lung cancer (NSCLC) cells in vitro. ɤH2AX foci assay was applied to investigate the role of AKT activating signaling pathway on DSB repair. A mouse tumor xenograft model was used to study the impact of discovered signaling pathway activating nuclear AKT on the radiation response of tumors in vivo. RESULTS Our data suggests that neither ionizing radiation (IR) nor stimulation with HER family receptor ligands induced rapid nuclear translocation of endogenous AKT1. GFP-tagged exogenous AKT1 translocated to the nucleus under un-irradiated conditions and IR did not stimulate this translocation. Nuclear translocation of GFP-AKT1 was impaired by the AKT inhibitor MK2206 as shown by its accumulation in the cytoplasmic fraction. IR-induced phosphorylation of nuclear AKT was primarily dependent on HER3 expression and tyrosine kinase activation of epidermal growth factor receptor. In line with the role of AKT1 in DSB repair, the HER3 neutralizing antibody patritumab as well as HER3-siRNA diminished DSB repair in vitro. Combination of patritumab with radiotherapy improved the effect of radiotherapy on tumor growth delay in a xenograft model. CONCLUSION IR-induced activation of nuclear AKT occurs inside the nucleus that is mainly dependent on HER3 expression in NSCLC. These findings suggest that targeting HER3 in combination with radiotherapy may provide a logical treatment option for investigation in selected NSCLC patients.
Collapse
Affiliation(s)
- Mahmoud Toulany
- Division of Radiobiology and Molecular Environmental Research, Department of Radation Oncology, University of Tuebingen, Tuebingen, Germany; German Cancer Consortium (DKTK), Partner Site Tuebingen, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Mari Iida
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - Konstanze Lettau
- Division of Radiobiology and Molecular Environmental Research, Department of Radation Oncology, University of Tuebingen, Tuebingen, Germany
| | - John P Coan
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - Simone Rebholz
- Division of Radiobiology and Molecular Environmental Research, Department of Radation Oncology, University of Tuebingen, Tuebingen, Germany
| | - Shayan Khozooei
- Division of Radiobiology and Molecular Environmental Research, Department of Radation Oncology, University of Tuebingen, Tuebingen, Germany
| | - Paul M Harari
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - Deric L Wheeler
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
27
|
NAD/NAMPT and mTOR Pathways in Melanoma: Drivers of Drug Resistance and Prospective Therapeutic Targets. Int J Mol Sci 2022; 23:ijms23179985. [PMID: 36077374 PMCID: PMC9456568 DOI: 10.3390/ijms23179985] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Malignant melanoma represents the most fatal skin cancer due to its aggressive behavior and high metastatic potential. The introduction of BRAF/MEK inhibitors and immune-checkpoint inhibitors (ICIs) in the clinic has dramatically improved patient survival over the last decade. However, many patients either display primary (i.e., innate) or develop secondary (i.e., acquired) resistance to systemic treatments. Therapeutic resistance relies on the rewiring of multiple processes, including cancer metabolism, epigenetics, gene expression, and interactions with the tumor microenvironment that are only partially understood. Therefore, reliable biomarkers of resistance or response, capable of facilitating the choice of the best treatment option for each patient, are currently missing. Recently, activation of nicotinamide adenine dinucleotide (NAD) metabolism and, in particular, of its rate-limiting enzyme nicotinamide phosphoribosyltransferase (NAMPT) have been identified as key drivers of targeted therapy resistance and melanoma progression. Another major player in this context is the mammalian target of rapamycin (mTOR) pathway, which plays key roles in the regulation of melanoma cell anabolic functions and energy metabolism at the switch between sensitivity and resistance to targeted therapy. In this review, we summarize known resistance mechanisms to ICIs and targeted therapy, focusing on metabolic adaptation as one main mechanism of drug resistance. In particular, we highlight the roles of NAD/NAMPT and mTOR signaling axes in this context and overview data in support of their inhibition as a promising strategy to overcome treatment resistance.
Collapse
|
28
|
Erol A. Genotoxicity-Stimulated and CYLD-Driven Malignant Transformation. Cancer Manag Res 2022; 14:2339-2356. [PMID: 35958947 PMCID: PMC9362849 DOI: 10.2147/cmar.s373557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/28/2022] [Indexed: 11/23/2022] Open
Abstract
Oxidative stress, which can cause DNA damage, can both activate TNF-R1 directly in the absence of TNF stimulation and phosphorylate c-Abl, thus promoting its cytoplasmic translocation. Persistent cytoplasmic localization of c-Abl has been associated with cellular transformation. c-Abl phosphorylates OTULIN at tyrosine 56, thereby disrupting its relationship with LUBAC. OTULIN-released LUBAC interacts with SPATA2 and is recruited to the TNF-R1sc, facilitating SPATA2-CYLD interaction. All these interactions are required for the activation of IKKβ to stimulate NF-κB transcriptional activity following genotoxic stress. IKKβ also induces the critical phosphorylation of CYLD at serine 568 to increase its deubiquitinating (DUB) activity required for the termination of signaling cascades. Contrary to the widespread belief that CYLD is an absolute tumor suppressor, CYLD initiates and terminates NF-κB activity by alternately using its oncoprotein and tumor suppressor activities, respectively. If IKKβ fails to achieve the DUB activity-inducing phosphorylation at serine 568, CYLD would operate in a sustained mode of oncogenic activity. The resulting dysregulated NF-κB activation and other accompanying pathologies will disrupt cellular homeostasis in favor of transformation.
Collapse
Affiliation(s)
- Adnan Erol
- Independent Researcher, Istanbul, Turkey
| |
Collapse
|
29
|
Shen Y, Jing D, Zhao Z. The effect of AKT in extracellular matrix stiffness induced osteogenic differentiation of hBMSCs. Cell Signal 2022; 99:110404. [PMID: 35835331 DOI: 10.1016/j.cellsig.2022.110404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/02/2022] [Accepted: 07/08/2022] [Indexed: 02/05/2023]
Abstract
Extracellular matrix (ECM) stiffness is an important biophysical factor in human bone marrow mesenchymal stem cells (hBMSCs) differentiation. Although there is evidence that Yes-associated protein (YAP) plays an important role in ECM elasticity induced osteogenesis, but the regulatory mechanism and signaling pathways have not been distinctly uncovered. In this study, hBMSCs were cultured on collagen-coated polydimethylsiloxane hydrogels with stiffness corresponding to Young's moduli of 0.5 kPa and 32 kPa, and gene chip analyses revealed the phosphoinositide 3-kinase (PI3K)-AKT pathway was highly correlated with ECM stiffness. Following western blots indicated that AKT phosphorylation was evidently affected in 5th-7th days after ECM stiffness stimulation, while PI3K showed little difference. The AKT activator SC79 and inhibitor MK2206 were utilized to modulate AKT phosphorylation. SC79 and MK2206 caused alteration in the mRNA expression and protein level of alkaline phosphatase (ALP), collagen type I alpha 1 (COL1A1) and runt related transcription factor 2 (RUNX2). On 32 kPa substrates, YAP enrichment in nucleus were significantly promoted by SC79 and remarkably decreased by MK2206. Besides, the ratio of YAP/p-YAP is upregulated by SC79 on both 32 kPa and 0.5 kPa substrates. In conclusion, these findings suggest that AKT is involved in the modulation of ECM stiffness induced osteogenesis, and AKT phosphorylation also influences the subcellular localization and activation of YAP.
Collapse
Affiliation(s)
- Yu Shen
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China
| | - Dian Jing
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, China.
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
30
|
Chen M, Choi S, Wen T, Chen C, Thapa N, Lee JH, Cryns VL, Anderson RA. A p53-phosphoinositide signalosome regulates nuclear AKT activation. Nat Cell Biol 2022; 24:1099-1113. [PMID: 35798843 PMCID: PMC9833102 DOI: 10.1038/s41556-022-00949-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 05/26/2022] [Indexed: 01/13/2023]
Abstract
The tumour suppressor p53 and PI3K-AKT pathways have fundamental roles in the regulation of cell growth and apoptosis, and are frequently mutated in cancer. Here, we show that genotoxic stress induces nuclear AKT activation through a p53-dependent mechanism that is distinct from the canonical membrane-localized PI3K-AKT pathway. Following genotoxic stress, a nuclear PI3K binds p53 in the non-membranous nucleoplasm to generate a complex of p53 and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3), which recruits AKT, PDK1 and mTORC2 to activate AKT and phosphorylate FOXO proteins, thereby inhibiting DNA damage-induced apoptosis. Wild-type p53 activates nuclear AKT in an on/off fashion following stress, whereas mutant p53 dose-dependently stimulates high basal AKT activity. The p53-PtdIns(3,4,5)P3 complex is dephosphorylated to p53-phosphatidylinositol 4,5-bisphosphate by PTEN to inhibit AKT activation. The nuclear p53-phosphoinositide signalosome is distinct from the canonical membrane-localized pathway and insensitive to PI3K inhibitors currently in the clinic, which underscores its therapeutic relevance.
Collapse
Affiliation(s)
- Mo Chen
- University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Suyong Choi
- University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Tianmu Wen
- University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Changliang Chen
- University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
- Department of Medicine, University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Narendra Thapa
- University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Jeong Hyo Lee
- University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
- Department of Medicine, University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Vincent L Cryns
- Department of Medicine, University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA.
| | - Richard A Anderson
- University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
31
|
Matsumoto Y. Development and Evolution of DNA-Dependent Protein Kinase Inhibitors toward Cancer Therapy. Int J Mol Sci 2022; 23:ijms23084264. [PMID: 35457081 PMCID: PMC9032228 DOI: 10.3390/ijms23084264] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/07/2022] [Accepted: 04/09/2022] [Indexed: 12/04/2022] Open
Abstract
DNA double-strand break (DSB) is considered the most deleterious type of DNA damage, which is generated by ionizing radiation (IR) and a subset of anticancer drugs. DNA-dependent protein kinase (DNA-PK), which is composed of a DNA-PK catalytic subunit (DNA-PKcs) and Ku80-Ku70 heterodimer, acts as the molecular sensor for DSB and plays a pivotal role in DSB repair through non-homologous end joining (NHEJ). Cells deficient for DNA-PKcs show hypersensitivity to IR and several DNA-damaging agents. Cellular sensitivity to IR and DNA-damaging agents can be augmented by the inhibition of DNA-PK. A number of small molecules that inhibit DNA-PK have been developed. Here, the development and evolution of inhibitors targeting DNA-PK for cancer therapy is reviewed. Significant parts of the inhibitors were developed based on the structural similarity of DNA-PK to phosphatidylinositol 3-kinases (PI3Ks) and PI3K-related kinases (PIKKs), including Ataxia-telangiectasia mutated (ATM). Some of DNA-PK inhibitors, e.g., NU7026 and NU7441, have been used extensively in the studies for cellular function of DNA-PK. Recently developed inhibitors, e.g., M3814 and AZD7648, are in clinical trials and on the way to be utilized in cancer therapy in combination with radiotherapy and chemotherapy.
Collapse
Affiliation(s)
- Yoshihisa Matsumoto
- Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| |
Collapse
|
32
|
eIF3a regulation of mTOR signaling and translational control via HuR in cellular response to DNA damage. Oncogene 2022; 41:2431-2443. [PMID: 35279705 PMCID: PMC9035104 DOI: 10.1038/s41388-022-02262-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/16/2022] [Accepted: 02/23/2022] [Indexed: 01/29/2023]
Abstract
eIF3a (eukaryotic translation initiation factor 3a), a subunit of the eIF3 complex, has been suggested to play a regulatory role in protein synthesis and in cellular response to DNA-damaging treatments. S6K1 is an effector and a mediator of mTOR complex 1 (mTORC1) in regulating protein synthesis and integrating diverse signals into control of cell growth and response to stress. Here, we show that eIF3a regulates S6K1 activity by inhibiting mTORC1 kinase via regulating Raptor synthesis. The regulation of Raptor synthesis is via eIF3a interaction with HuR (human antigen R) and binding of the eIF3a-HuR complex to the 5'-UTR of Raptor mRNA. Furthermore, mTORC1 may mediate eIF3a function in cellular response to cisplatin by regulating synthesis of NER proteins and NER activity. Taken together, we conclude that the mTOR signaling pathway may also be regulated by translational control and mediate eIF3a regulation of cancer cell response to cisplatin by regulating NER protein synthesis.
Collapse
|
33
|
Furusawa Y, Kondo T, Tachibana K, Feril LB. Ultrasound-Induced DNA Damage and Cellular Response: Historical Review, Mechanisms Analysis, and Therapeutic Implications. Radiat Res 2022; 197:662-672. [PMID: 35275998 DOI: 10.1667/rade-21-00140.1.s1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 02/22/2022] [Indexed: 11/03/2022]
Abstract
The biological effects of ultrasound may be classified into thermal and nonthermal mechanisms. The nonthermal effects may be further classified into cavitational and noncavitational mechanisms. DNA damage induced by ultrasound is considered to be related to nonthermal cavitations. For this aspect, many in vitro studies on DNA have been conducted for evaluating the safety of diagnostic ultrasound, particularly in fetal imaging. Technological advancement in detecting DNA damage both in vitro and in vivo have elucidated the mechanism of DNA damage formation and their cellular response. Damage to DNA, and the residual damages after DNA repair are implicated in the biological effects. Here, we discuss the historical evidence of ultrasound on DNA damage and the mechanism of DNA damage formation both in vitro and in vivo, compared with those induced by ionizing radiation. We also offer a commentary on the safety of ultrasound over X-ray-based imaging. Also, understanding the various mechanisms involved in the bioeffects of ultrasound will lead us to alternative strategies for use of ultrasound for therapy.
Collapse
Affiliation(s)
- Yukihiro Furusawa
- Department of Liberal Arts and Sciences, Toyama Prefecture University, Toyama 939-0398, Japan
| | - Takashi Kondo
- Department of Radiological Sciences Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Katsuro Tachibana
- Department of Anatomy. Fukuoka University School of Medicine, Fukuoka 814-0180, Japan
| | - Loreto B Feril
- Department of Anatomy. Fukuoka University School of Medicine, Fukuoka 814-0180, Japan
| |
Collapse
|
34
|
Tariq K, Luikart BW. Striking a balance: PIP 2 and PIP 3 signaling in neuronal health and disease. EXPLORATION OF NEUROPROTECTIVE THERAPY 2022; 1:86-100. [PMID: 35098253 PMCID: PMC8797975 DOI: 10.37349/ent.2021.00008] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Phosphoinositides are membrane phospholipids involved in a variety of cellular processes like growth, development, metabolism, and transport. This review focuses on the maintenance of cellular homeostasis of phosphatidylinositol 4,5-bisphosphate (PIP2), and phosphatidylinositol 3,4,5-trisphosphate (PIP3). The critical balance of these PIPs is crucial for regulation of neuronal form and function. The activity of PIP2 and PIP3 can be regulated through kinases, phosphatases, phospholipases and cholesterol microdomains. PIP2 and PIP3 carry out their functions either indirectly through their effectors activating integral signaling pathways, or through direct regulation of membrane channels, transporters, and cytoskeletal proteins. Any perturbations to the balance between PIP2 and PIP3 signaling result in neurodevelopmental and neurodegenerative disorders. This review will discuss the upstream modulators and downstream effectors of the PIP2 and PIP3 signaling, in the context of neuronal health and disease.
Collapse
Affiliation(s)
- Kamran Tariq
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Bryan W Luikart
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| |
Collapse
|
35
|
Liu L, Dai X, Yin S, Liu P, Hill EG, Wei W, Gan W. DNA-PK promotes activation of the survival kinase AKT in response to DNA damage through an mTORC2-ECT2 pathway. Sci Signal 2022; 15:eabh2290. [PMID: 34982576 DOI: 10.1126/scisignal.abh2290] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Liu Liu
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA.,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Xiaoming Dai
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Shasha Yin
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA.,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Pengda Liu
- Lineberger Comprehensive Cancer Center and Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Elizabeth G Hill
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA.,Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Wenjian Gan
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA.,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
36
|
Coleman N, Moyers JT, Harbery A, Vivanco I, Yap TA. Clinical Development of AKT Inhibitors and Associated Predictive Biomarkers to Guide Patient Treatment in Cancer Medicine. Pharmgenomics Pers Med 2021; 14:1517-1535. [PMID: 34858045 PMCID: PMC8630372 DOI: 10.2147/pgpm.s305068] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/03/2021] [Indexed: 11/29/2022] Open
Abstract
The serine/threonine kinase AKT is a critical effector of the phosphoinositide 3-kinase (PI3K) signaling cascade and has a pivotal role in cell growth, proliferation, survival, and metabolism. AKT is one of the most commonly activated pathways in human cancer and dysregulation of AKT-dependent pathways is associated with the development and maintenance of a range of solid tumors. There are multiple small-molecule inhibitors targeting different components of the PI3K/AKT pathway currently at various stages of clinical development, in addition to new combination strategies aiming to boost the therapeutic efficacy of these drugs. Correlative and translational studies have been undertaken in the context of clinical trials investigating AKT inhibitors, however the identification of predictive biomarkers of response and resistance to AKT inhibition remains an unmet need. In this review, we discuss the biological function and activation of AKT, discuss its contribution to tumor development and progression, and review the efficacy and toxicity data from clinical trials, including both AKT inhibitor monotherapy and combination strategies with other agents. We also discuss the promise and challenges associated with the development of AKT inhibitors and associated predictive biomarkers of response and resistance.
Collapse
Affiliation(s)
- Niamh Coleman
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Justin T Moyers
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Division of Hematology and Oncology, Department of Medicine, University of California, Irvine, Orange, CA, USA
| | - Alice Harbery
- Division of Cancer Therapeutics, Institute of Cancer Research, London, SM2 5NG, UK
| | - Igor Vivanco
- Institute of Pharmaceutical Sciences, School of Cancer and Pharmaceutical Sciences, King’s College London, London, UK
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
37
|
Xu Y, Hu Y, Xu T, Yan K, Zhang T, Li Q, Chang F, Guo X, Peng J, Li M, Zhao M, Zhen H, Xu L, Zheng D, Li L, Shao G. RNF8-mediated regulation of Akt promotes lung cancer cell survival and resistance to DNA damage. Cell Rep 2021; 37:109854. [PMID: 34686341 DOI: 10.1016/j.celrep.2021.109854] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 08/18/2021] [Accepted: 09/28/2021] [Indexed: 01/21/2023] Open
Abstract
Despite the tremendous success of targeted and conventional therapies for lung cancer, therapeutic resistance is a common and major clinical challenge. RNF8 is a ubiquitin E3 ligase that plays essential roles in the DNA damage response; however, its role in the pathogenesis of lung cancer is unclear. Here, we report that RNF8 is overexpressed in lung cancer and positively correlates with the expression of p-Akt and poor survival of patients with non-small-cell lung cancer. In addition, we identify RNF8 as the E3 ligase for regulating the activation of Akt by K63-linked ubiquitination under physiological and genotoxic conditions, which leads to lung cancer cell proliferation and resistance to chemotherapy. Together, our study suggests that RNF8 could be a very promising target in precision medicine for lung cancer.
Collapse
Affiliation(s)
- Yongjie Xu
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yumeng Hu
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Tao Xu
- The Affiliated Hospital of Qingdao University, Qingdao 266021, China
| | - Kaowen Yan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ting Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Qin Li
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Fen Chang
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xueyuan Guo
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jingyu Peng
- State Key Laboratory of Membrane Biology, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Mo Li
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Min Zhao
- Department of Oncology, Hebei Chest Hospital, Research Center of Hebei Lung Cancer Prevention and Treatment, Shijiazhuang, Hebei 050041, China
| | - Hongying Zhen
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Luzheng Xu
- Medical and Health Analysis Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Duo Zheng
- Department of Cell Biology and Genetics, Shenzhen University School of Medicine, Shenzhen 518055, China
| | - Li Li
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| | - Genze Shao
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
38
|
Pungsrinont T, Kallenbach J, Baniahmad A. Role of PI3K-AKT-mTOR Pathway as a Pro-Survival Signaling and Resistance-Mediating Mechanism to Therapy of Prostate Cancer. Int J Mol Sci 2021; 22:11088. [PMID: 34681745 PMCID: PMC8538152 DOI: 10.3390/ijms222011088] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/27/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
Androgen deprivation therapy (ADT) and androgen receptor (AR)-targeted therapy are the gold standard options for treating prostate cancer (PCa). These are initially effective, as localized and the early stage of metastatic disease are androgen- and castration-sensitive. The tumor strongly relies on systemic/circulating androgens for activating AR signaling to stimulate growth and progression. However, after a certain point, the tumor will eventually develop a resistant stage, where ADT and AR antagonists are no longer effective. Mechanistically, it seems that the tumor becomes more aggressive through adaptive responses, relies more on alternative activated pathways, and is less dependent on AR signaling. This includes hyperactivation of PI3K-AKT-mTOR pathway, which is a central signal that regulates cell pro-survival/anti-apoptotic pathways, thus, compensating the blockade of AR signaling. The PI3K-AKT-mTOR pathway is well-documented for its crosstalk between genomic and non-genomic AR signaling, as well as other signaling cascades. Such a reciprocal feedback loop makes it more complicated to target individual factor/signaling for treating PCa. Here, we highlight the role of PI3K-AKT-mTOR signaling as a resistance mechanism for PCa therapy and illustrate the transition of prostate tumor from AR signaling-dependent to PI3K-AKT-mTOR pathway-dependent. Moreover, therapeutic strategies with inhibitors targeting the PI3K-AKT-mTOR signal used in clinic and ongoing clinical trials are discussed.
Collapse
Affiliation(s)
| | | | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, 07747 Jena, Germany; (T.P.); (J.K.)
| |
Collapse
|
39
|
Shen C, He Y, Chen Q, Feng H, Williams TM, Lu Y, He Z. Narrative review of emerging roles for AKT-mTOR signaling in cancer radioimmunotherapy. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1596. [PMID: 34790802 PMCID: PMC8576660 DOI: 10.21037/atm-21-4544] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/27/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To summarize the roles of AKT-mTOR signaling in the regulation of the DNA damage response and PD-L1 expression in cancer cells, and propose a novel strategy of targeting AKT-mTOR signaling in combination with radioimmunotherapy in the era of cancer immunotherapy. BACKGROUND Immunotherapy has greatly improved the clinical outcomes of many cancer patients and has changed the landscape of cancer patient management. However, only a small subgroup of cancer patients (~20-30%) benefit from immune checkpoint blockade-based immunotherapy. The current challenge is to find biomarkers to predict the response of patients to immunotherapy and strategies to sensitize patients to immunotherapy. METHODS Search and review the literature which were published in PUBMED from 2000-2021 with the key words mTOR, AKT, drug resistance, DNA damage response, immunotherapy, PD-L1, DNA repair, radioimmunotherapy. CONCLUSIONS More than 50% of cancer patients receive radiotherapy during their course of treatment. Radiotherapy has been shown to reduce the growth of locally irradiated tumors as well as metastatic non-irradiated tumors (abscopal effects) by affecting systemic immunity. Consistently, immunotherapy has been demonstrated to enhance radiotherapy with more than one hundred clinical trials of radiation in combination with immunotherapy (radioimmunotherapy) across cancer types. Nevertheless, current available data have shown limited efficacy of trials testing radioimmunotherapy. AKT-mTOR signaling is a major tumor growth-promoting pathway and is upregulated in most cancers. AKT-mTOR signaling is activated by growth factors as well as genotoxic stresses including radiotherapy. Importantly, recent advances have shown that AKT-mTOR is one of the main signaling pathways that regulate DNA damage repair as well as PD-L1 levels in cancers. These recent advances clearly suggest a novel cancer therapy strategy by targeting AKT-mTOR signaling in combination with radioimmunotherapy.
Collapse
Affiliation(s)
- Changxian Shen
- Department of Radiation Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Yuqi He
- Monash School of Medicine, Monash University, Clayton, VIC, Australia
| | - Qiang Chen
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Haihua Feng
- Department of Radiation Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Terence M. Williams
- Department of Radiation Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Yuanzhi Lu
- Department of Clinical Pathology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhengfu He
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou, China
| |
Collapse
|
40
|
Compensatory Protection of Thioredoxin-Deficient Cells from Etoposide-Induced Cell Death by Selenoprotein W via Interaction with 14-3-3. Int J Mol Sci 2021; 22:ijms221910338. [PMID: 34638679 PMCID: PMC8508763 DOI: 10.3390/ijms221910338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 12/26/2022] Open
Abstract
Selenoprotein W (SELENOW) is a 9.6 kDa protein containing selenocysteine (Sec, U) in a conserved Cys-X-X-Sec (CXXU) motif. Previously, we reported that SELENOW regulates various cellular processes by interacting with 14-3-3β at the U of the CXXU motif. Thioredoxin (Trx) is a small protein that plays a key role in the cellular redox regulatory system. The CXXC motif of Trx is critical for redox regulation. Recently, an interaction between Trx1 and 14-3-3 has been predicted. However, the binding mechanism and its biological effects remain unknown. In this study, we found that Trx1 interacted with 14-3-3β at the Cys32 residue in the CXXC motif, and SELENOW and Trx1 were bound at Cys191 residue of 14-3-3β. In vitro binding assays showed that SELENOW and Trx1 competed for interaction with 14-3-3β. Compared to control cells, Trx1-deficient cells and SELENOW-deficient cells showed increased levels of both the subG1 population and poly (ADP-ribose) polymerase (PARP) cleavage by etoposide treatment. Moreover, Akt phosphorylation of Ser473 was reduced in Trx1-deficient cells and was recovered by overexpression of SELENOW. These results indicate that SELENOW can protect Trx1-deficient cells from etoposide-induced cell death through its interaction with 14-3-3β.
Collapse
|
41
|
Akt Isoforms: A Family Affair in Breast Cancer. Cancers (Basel) 2021; 13:cancers13143445. [PMID: 34298660 PMCID: PMC8306188 DOI: 10.3390/cancers13143445] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Breast cancer is the second leading cause of cancer-related death in women in the United States. The Akt signaling pathway is deregulated in approximately 70% of patients with breast cancer. While targeting Akt is an effective therapeutic strategy for the treatment of breast cancer, there are several members in the Akt family that play distinct roles in breast cancer. However, the function of Akt isoforms depends on many factors. This review analyzes current progress on the isoform-specific functions of Akt isoforms in breast cancer. Abstract Akt, also known as protein kinase B (PKB), belongs to the AGC family of protein kinases. It acts downstream of the phosphatidylinositol 3-kinase (PI3K) and regulates diverse cellular processes, including cell proliferation, cell survival, metabolism, tumor growth and metastasis. The PI3K/Akt signaling pathway is frequently deregulated in breast cancer and plays an important role in the development and progression of breast cancer. There are three closely related members in the Akt family, namely Akt1(PKBα), Akt2(PKBβ) and Akt3(PKBγ). Although Akt isoforms share similar structures, they exhibit redundant, distinct as well as opposite functions. While the Akt signaling pathway is an important target for cancer therapy, an understanding of the isoform-specific function of Akt is critical to effectively target this pathway. However, our perception regarding how Akt isoforms contribute to the genesis and progression of breast cancer changes as we gain new knowledge. The purpose of this review article is to analyze current literatures on distinct functions of Akt isoforms in breast cancer.
Collapse
|
42
|
Yang X, Wang G, You J, Gu R, Xu X, Xu C, Wang H, Zhao R, Qiu X, Zhu G. High Expression of Cancer-IgG Is Associated With Poor Prognosis and Radioresistance via PI3K/AKT/DNA-PKcs Pathway Regulation in Lung Adenocarcinoma. Front Oncol 2021; 11:675397. [PMID: 34150640 PMCID: PMC8208032 DOI: 10.3389/fonc.2021.675397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/19/2021] [Indexed: 12/28/2022] Open
Abstract
Background Lung adenocarcinoma (LUAD) is the dominant type of lung neoplasms, and radiotherapy is its mainstay treatment, yet poor prognosis caused by radioresistance remains problematic. Cancer-derived immunoglobulin G (cancer-IgG) has been detected in multiple cancers and plays important roles in carcinogenesis. This study aimed to demonstrate that cancer-IgG is associated with poor prognosis of LUAD and to identify its role in radioresistance. Methods Cancer-IgG expression was detected by immunohistochemistry from 56 patients with stage III LUAD and by western blot and immunofluorescence in LUAD cell lines and in a human bronchial epithelial cell line. The effects of cancer-IgG silencing on the proliferation and apoptosis of PC9 and H292 cells were evaluated by plate cloning and apoptosis assay; the effects of cancer-IgG silencing on DNA damage repair ability and radiosensitivity were evaluated by colony-forming assay, γH2AX immunofluorescence, and neutral comet assay. Finally, we used the protein phosphorylation microarray and western blot to explore mechanisms involving cancer-IgG that increased radioresistance. Results Cancer-IgG is widely expressed in stage III LUAD, and the overall survival and disease-free survival of patients with positive expression are notably lower than those of patients with negative expression, indicating the associations between cancer-IgG and poor prognosis as well as radioresistance. The expression of cancer-IgG in the four LUAD cell lines was located mainly on the cell membrane and cytoplasm and not in the normal lung epithelial cell. Knockdown of cancer-IgG in PC9 and H292 cells resulted in increased apoptosis and negatively affected cancer cell proliferation. After irradiation, silencing of cancer-IgG showed a decrease in colonies as well as increases in the Olive tail moment and γH2AX foci in nucleus, indicating that the knockdown of cancer-IgG resulted in a decrease in the damage repair ability of DNA double-strand breaks in LUAD cells and an enhanced radiosensitivity. The expression of p-AKT, p-GSK3β, and p-DNA-PKcs decreased in the knockdown group after radiotherapy, suggesting that cancer-IgG could affect radiotherapy resistance by mediating double-strand breaks damage repair in LUAD cells through the PI3K/AKT/DNA-PKcs pathway. Conclusions This study revealed that cancer-IgG regulates PI3K/AKT/DNA-PKcs signaling pathways to affect radioresistance of LUAD and associated with poor prognosis.
Collapse
Affiliation(s)
- Xiongtao Yang
- Department of Radiation Oncology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Guohui Wang
- Department of Radiotherapy, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jing You
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Runchuan Gu
- Department of Radiation Oncology, China-Japan Friendship Institute of Clinical Medicine, Beijing, China
| | - Xiaohong Xu
- Department of Radiation Oncology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Changdan Xu
- Department of Radiation Oncology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Hao Wang
- Department of Radiation Oncology, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China.,Department of Radiation Oncology, National Clinical Research Center for Respiratory Diseases, Beijing, China.,Department of Radiation Oncology, World Health Organization (WHO) Collaborating Centre for Tobacco Cessation and Respiratory Diseases Prevention, Beijing, China
| | - Ruisong Zhao
- Department of Pathology, China-Japan Friendship Hospital, Beijing, China
| | - Xiaoyan Qiu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China.,Peking University Center for Human Disease Genomics, Beijing, China
| | - Guangying Zhu
- Department of Radiation Oncology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China.,Department of Radiation Oncology, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China.,Department of Radiation Oncology, National Clinical Research Center for Respiratory Diseases, Beijing, China.,Department of Radiation Oncology, World Health Organization (WHO) Collaborating Centre for Tobacco Cessation and Respiratory Diseases Prevention, Beijing, China
| |
Collapse
|
43
|
Hinz N, Jücker M. AKT in Bone Metastasis of Solid Tumors: A Comprehensive Review. Cancers (Basel) 2021; 13:cancers13102287. [PMID: 34064589 PMCID: PMC8151478 DOI: 10.3390/cancers13102287] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Bone metastasis is a frequent complication of solid tumors and leads to a reduced overall survival. Although much progress has been made in the field of tumor therapy in the last years, bone metastasis depicts a stage of the disease with a lack of appropriate therapeutical options. Hence, this review aims to present the role of AKT in bone metastasis of solid tumors to place the spotlight on AKT as a possible therapeutical approach for patients with bone metastases. Furthermore, we intended to discuss postulated underlying molecular mechanisms of the bone metastasis-promoting effect of AKT, especially in highly bone-metastatic breast, prostate, and lung cancer. To conclude, this review identified the AKT kinase as a potential therapeutical target in bone metastasis and revealed remaining questions, which need to be addressed in further research projects. Abstract Solid tumors, such as breast cancer and prostate cancer, often form bone metastases in the course of the disease. Patients with bone metastases frequently develop complications, such as pathological fractures or hypercalcemia and exhibit a reduced life expectancy. Thus, it is of vital importance to improve the treatment of bone metastases. A possible approach is to target signaling pathways, such as the PI3K/AKT pathway, which is frequently dysregulated in solid tumors. Therefore, we sought to review the role of the serine/threonine kinase AKT in bone metastasis. In general, activation of AKT signaling was shown to be associated with the formation of bone metastases from solid tumors. More precisely, AKT gets activated in tumor cells by a plethora of bone-derived growth factors and cytokines. Subsequently, AKT promotes the bone-metastatic capacities of tumor cells through distinct signaling pathways and secretion of bone cell-stimulating factors. Within the crosstalk between tumor and bone cells, also known as the vicious cycle, the stimulation of osteoblasts and osteoclasts also causes activation of AKT in these cells. As a consequence, bone metastasis is reduced after experimental inhibition of AKT. In summary, AKT signaling could be a promising therapeutical approach for patients with bone metastases of solid tumors.
Collapse
|
44
|
Endogenous Cyclin D1 Promotes the Rate of Onset and Magnitude of Mitogenic Signaling via Akt1 Ser473 Phosphorylation. Cell Rep 2021; 32:108151. [PMID: 32937140 PMCID: PMC7707112 DOI: 10.1016/j.celrep.2020.108151] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/21/2020] [Accepted: 08/25/2020] [Indexed: 01/07/2023] Open
Abstract
Cyclin D1 encodes the regulatory subunit of a holoenzyme that phosphorylates RB and functions as a collaborative nuclear oncogene. The serine threonine kinase Akt plays a pivotal role in the control of cellular metabolism, survival, and mitogenic signaling. Herein, Akt1-mediated phosphorylation of downstream substrates in the mammary gland is reduced by cyclin D1 genetic deletion and is induced by mammary-gland-targeted cyclin D1 overexpression. Cyclin D1 is associated with Akt1 and augments the rate of onset and maximal cellular Akt1 activity induced by mitogens. Cyclin D1 is identified in a cytoplasmic-membrane-associated pool, and cytoplasmic-membrane-localized cyclin D1—but not nuclear-localized cyclin D1—recapitulates Akt1 transcriptional function. These studies identify a novel extranuclear function of cyclin D1 to enhance proliferative functions via augmenting Akt1 phosphorylation at Ser473. Chen et al. show that the rate of onset and maximal cellular Akt1 activity induced by mitogens was augmented by cyclin D1. Cyclin D1 bound and phosphorylated Akt1 at Ser473. These studies identify a novel extranuclear function of cyclin D1 to enhance proliferative functions via augmenting Akt1 phosphorylation at Ser473.
Collapse
|
45
|
Xu X, Qu Z, Qian H, Li Z, Sun X, Zhao X, Li H. Ginsenoside Rg1 ameliorates reproductive function injury in C57BL/6J mice induced by di-N-butyl-phthalate. ENVIRONMENTAL TOXICOLOGY 2021; 36:789-799. [PMID: 33331133 DOI: 10.1002/tox.23081] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/21/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
With the aggravation of environmental pollution, the incidence of infertility is increasing. Ginsenoside Rg1 is a monomer component extracted from Panax ginseng. It has been found that Ginsenoside Rg1 is able to prevent premature ovarian failure and delay testicular senescence. Therefore, we speculate Ginsenoside Rg1 may have great potential to prevent and treat infertility. The aim of this work is to explore whether Ginsenoside Rg1 plays a protective role in the dinbutyl phthalate (DBP)-induced reproductive function injury mice, and to elucidate the potential mechanism. C57BL/6J male mice were administered by DBP with or without Ginsenoside Rg1 treatment and serum, testis and epididymis were collected for further analysis. Sperm analysis, hematoxylin and eosin staining, and serum hormone detection indicated that Ginsenoside Rg1 treatment improved the sperm density and sperm motility, reduced the testicular tissue damage, increased the serum testosterone and luteinizing hormone levels, and decreased the serum follicle-stimulating hormone level in DBP-induced mice. Furthermore, Ginsenoside Rg1 treatment upregulated expression levels of spermatogenesis-related protein, Cx43, E-cadherin, p-PI3K, p-Akt, and mTOR in the mice treated by DBP, observed by using a immunohistochemistry assay, a real-time quantitative PCR assay, and a western blot analysis. The present study reveals that Ginsenoside Rg1 may exert anti-DBP-induced reproductive function injury in C57BL/6J mice. In addition, the protect role of Ginsenoside Rg1 in spermatogenesis may be associated with the regulation of reproductive hormones, upregulation of spermatogenic associated proteins expression, restoration of the gap junctions, and the activation of PI3K/Akt/mTOR signaling pathways.
Collapse
Affiliation(s)
- Xiaolei Xu
- School of Public Health, Beihua University, Jilin, China
| | - Zhenting Qu
- Department of Pediatrics, Jilin Combine Traditional Chinese and Western Hospital, Jilin, China
| | - Honghao Qian
- School of Public Health, Beihua University, Jilin, China
| | - Zhongming Li
- School of Public Health, Beihua University, Jilin, China
| | - Xiuling Sun
- School of Public Health, Beihua University, Jilin, China
| | - Xinrui Zhao
- Department of Iodine Deficiency Disorders, The Second Institue for Endemic Disease Control and Prevention of Jilin Province, Jilin, China
| | - Huan Li
- School of Public Health, Beihua University, Jilin, China
| |
Collapse
|
46
|
Degan SE, Gelman IH. Emerging Roles for AKT Isoform Preference in Cancer Progression Pathways. Mol Cancer Res 2021; 19:1251-1257. [PMID: 33931488 DOI: 10.1158/1541-7786.mcr-20-1066] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/01/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022]
Abstract
The phosphoinositol-3 kinase (PI3K)-AKT pathway is one of the most mutated in human cancers, predominantly associated with the loss of the signaling antagonist, PTEN, and to lesser extents, with gain-of-function mutations in PIK3CA (encoding PI3K-p110α) and AKT1. In addition, most oncogenic driver pathways activate PI3K/AKT signaling. Nonetheless, drugs targeting PI3K or AKT have fared poorly against solid tumors in clinical trials as monotherapies, yet some have shown efficacy when combined with inhibitors of other oncogenic drivers, such as receptor tyrosine kinases or nuclear hormone receptors. There is growing evidence that AKT isoforms, AKT1, AKT2, and AKT3, have different, often distinct roles in either promoting or suppressing specific parameters of oncogenic progression, yet few if any isoform-preferred substrates have been characterized. This review will describe recent data showing that the differential activation of AKT isoforms is mediated by complex interplays between PTEN, PI3K isoforms and upstream tyrosine kinases, and that the efficacy of PI3K/AKT inhibitors will likely depend on the successful targeting of specific AKT isoforms and their preferred pathways.
Collapse
Affiliation(s)
- Seamus E Degan
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Irwin H Gelman
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York.
| |
Collapse
|
47
|
Gris-Oliver A, Ibrahim YH, Rivas MA, García-García C, Sánchez-Guixé M, Ruiz-Pace F, Viaplana C, Pérez-García JM, Llombart-Cussac A, Grueso J, Parés M, Guzmán M, Rodríguez O, Anton P, Cozar P, Calvo MT, Bruna A, Arribas J, Caldas C, Dienstmann R, Nuciforo P, Oliveira M, Cortés J, Serra V. PI3K activation promotes resistance to eribulin in HER2-negative breast cancer. Br J Cancer 2021; 124:1581-1591. [PMID: 33723394 PMCID: PMC8076303 DOI: 10.1038/s41416-021-01293-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 01/18/2021] [Accepted: 01/28/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Eribulin is a microtubule-targeting agent approved for the treatment of advanced or metastatic breast cancer (BC) previously treated with anthracycline- and taxane-based regimens. PIK3CA mutation is associated with worse response to chemotherapy in oestrogen receptor-positive (ER+)/human epidermal growth factor receptor 2-negative (HER2-) metastatic BC. We aimed to evaluate the role of phosphoinositide 3-kinase (PI3K)/AKT pathway mutations in eribulin resistance. METHODS Resistance to eribulin was evaluated in HER2- BC cell lines and patient-derived tumour xenografts, and correlated with a mutation in the PI3K/AKT pathway. RESULTS Eleven out of 23 HER2- BC xenografts treated with eribulin exhibited disease progression. No correlation with ER status was detected. Among the resistant models, 64% carried mutations in PIK3CA, PIK3R1 or AKT1, but only 17% among the sensitive xenografts (P = 0.036). We observed that eribulin treatment induced AKT phosphorylation in vitro and in patient tumours. In agreement, the addition of PI3K inhibitors reversed primary and acquired resistance to eribulin in xenograft models, regardless of the genetic alterations in PI3K/AKT pathway or ER status. Mechanistically, PI3K blockade reduced p21 levels likely enabling apoptosis, thus sensitising to eribulin treatment. CONCLUSIONS PI3K pathway activation induces primary resistance or early adaptation to eribulin, supporting the combination of PI3K inhibitors and eribulin for the treatment of HER2- BC patients.
Collapse
Affiliation(s)
- Albert Gris-Oliver
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Yasir H Ibrahim
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Martín A Rivas
- Department of Medicine, Weil Cornell Medicine, New York, NY, USA
| | - Celina García-García
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Mònica Sánchez-Guixé
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Fiorella Ruiz-Pace
- Oncology Data Science (ODysSey Group), Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Cristina Viaplana
- Oncology Data Science (ODysSey Group), Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - José M Pérez-García
- Department of Medical Oncology, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
- Medica Scientia Innovation Research (MedSIR), Barcelona, Spain
- Medica Scientia Innovation Research (MedSIR), Ridgewood, NJ, USA
- Breast Cancer Program, Quironsalud Group, Institute of Oncology (IOB), Barcelona, Spain
- Breast Cancer Program, Quironsalud Group, Institute of Oncology (IOB), Madrid, Spain
| | - Antonio Llombart-Cussac
- Medica Scientia Innovation Research (MedSIR), Barcelona, Spain
- Medica Scientia Innovation Research (MedSIR), Ridgewood, NJ, USA
| | - Judit Grueso
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Mireia Parés
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Marta Guzmán
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Olga Rodríguez
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Pilar Anton
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Patricia Cozar
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Maria Teresa Calvo
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Alejandra Bruna
- Preclinical Modelling of Paediatric Cancer Evolution Team, Institute of Cancer Research, Sutton, UK
| | - Joaquín Arribas
- Growth Factors Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Campus de la UAB, Bellaterra, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Caldas
- Department of Oncology and Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
- Cambridge Breast Unit, NIHR Cambridge Biomedical Research Centre and Cambridge Experimental Cancer Medicine Centre at Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Rodrigo Dienstmann
- Oncology Data Science (ODysSey Group), Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Paolo Nuciforo
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
- Molecular Oncology Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Mafalda Oliveira
- Department of Medical Oncology, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
- Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Javier Cortés
- Medica Scientia Innovation Research (MedSIR), Barcelona, Spain.
- Medica Scientia Innovation Research (MedSIR), Ridgewood, NJ, USA.
- Breast Cancer Program, Quironsalud Group, Institute of Oncology (IOB), Barcelona, Spain.
- Breast Cancer Program, Quironsalud Group, Institute of Oncology (IOB), Madrid, Spain.
- Breast Cancer GroupVall d'Hebron Institute of Oncology, Barcelona, Spain.
| | - Violeta Serra
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain.
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
48
|
Wang Y, Fu Z, Li X, Liang Y, Pei S, Hao S, Zhu Q, Yu T, Pei Y, Yuan J, Ye J, Fu J, Xu J, Hong J, Yang R, Hou H, Huang X, Peng C, Zheng M, Xiao Y. Cytoplasmic DNA sensing by KU complex in aged CD4 + T cell potentiates T cell activation and aging-related autoimmune inflammation. Immunity 2021; 54:632-647.e9. [PMID: 33667382 DOI: 10.1016/j.immuni.2021.02.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/19/2020] [Accepted: 02/08/2021] [Indexed: 02/06/2023]
Abstract
Aging is associated with DNA accumulation and increased homeostatic proliferation of circulating T cells. Although these attributes are associated with aging-related autoimmunity, their direct contributions remain unclear. Conventionally, KU complex, the regulatory subunit of DNA-dependent protein kinase (DNA-PK), together with the catalytic subunit of DNA-PK (DNA-PKcs), mediates DNA damage repair in the nucleus. Here, we found KU complex abundantly expressed in the cytoplasm, where it recognized accumulated cytoplasmic DNA in aged human and mouse CD4+ T cells. This process enhanced T cell activation and pathology of experimental autoimmune encephalomyelitis (EAE) in aged mice. Mechanistically, KU-mediated DNA sensing facilitated DNA-PKcs recruitment and phosphorylation of the kinase ZAK. This activated AKT and mTOR pathways, promoting CD4+ T cell proliferation and activation. We developed a specific ZAK inhibitor, which dampened EAE pathology in aged mice. Overall, these findings demonstrate a KU-mediated cytoplasmic DNA-sensing pathway in CD4+ T cells that potentiates aging-related autoimmunity.
Collapse
Affiliation(s)
- Yan Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zunyun Fu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201203, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xutong Li
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201203, China
| | - Yinming Liang
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China
| | - Siyu Pei
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shumeng Hao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qingchen Zhu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tao Yu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yifei Pei
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jia Yuan
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jialin Ye
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiemeng Fu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jing Xu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jin Hong
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Ruirui Yang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201203, China; Shanghai Institute for Advanced Immunochemical Studies, and School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China
| | - Hui Hou
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201203, China
| | - Xinfang Huang
- Department of Rheumatology, Shanghai East Hospital, Tongji University, School of Medicine, Shanghai 200120, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai 201210, China
| | - Mingyue Zheng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201203, China.
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
49
|
Periyasamy M, Singh AK, Gemma C, Farzan R, Allsopp RC, Shaw JA, Charmsaz S, Young LS, Cunnea P, Coombes RC, Győrffy B, Buluwela L, Ali S. Induction of APOBEC3B expression by chemotherapy drugs is mediated by DNA-PK-directed activation of NF-κB. Oncogene 2021; 40:1077-1090. [PMID: 33323971 PMCID: PMC7116738 DOI: 10.1038/s41388-020-01583-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/06/2020] [Accepted: 11/20/2020] [Indexed: 12/24/2022]
Abstract
The mutagenic APOBEC3B (A3B) cytosine deaminase is frequently over-expressed in cancer and promotes tumour heterogeneity and therapy resistance. Hence, understanding the mechanisms that underlie A3B over-expression is important, especially for developing therapeutic approaches to reducing A3B levels, and consequently limiting cancer mutagenesis. We previously demonstrated that A3B is repressed by p53 and p53 mutation increases A3B expression. Here, we investigate A3B expression upon treatment with chemotherapeutic drugs that activate p53, including 5-fluorouracil, etoposide and cisplatin. Contrary to expectation, these drugs induced A3B expression and concomitant cellular cytosine deaminase activity. A3B induction was p53-independent, as chemotherapy drugs stimulated A3B expression in p53 mutant cells. These drugs commonly activate ATM, ATR and DNA-PKcs. Using specific inhibitors and gene knockdowns, we show that activation of DNA-PKcs and ATM by chemotherapeutic drugs promotes NF-κB activity, with consequent recruitment of NF-κB to the A3B gene promoter to drive A3B expression. Further, we find that A3B knockdown re-sensitises resistant cells to cisplatin, and A3B knockout enhances sensitivity to chemotherapy drugs. Our data highlight a role for A3B in resistance to chemotherapy and indicate that stimulation of A3B expression by activation of DNA repair and NF-κB pathways could promote cancer mutations and expedite chemoresistance.
Collapse
Affiliation(s)
| | - Anup K Singh
- Department of Surgery & Cancer, Imperial College London, London, W12 0NN, UK
| | - Carolina Gemma
- Department of Surgery & Cancer, Imperial College London, London, W12 0NN, UK
| | - Raed Farzan
- Department of Surgery & Cancer, Imperial College London, London, W12 0NN, UK
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Rebecca C Allsopp
- Department of Cancer Studies and Cancer Research UK, Leicester Centre, University of Leicester, Leicester, UK
| | - Jacqueline A Shaw
- Department of Cancer Studies and Cancer Research UK, Leicester Centre, University of Leicester, Leicester, UK
| | - Sara Charmsaz
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Leonie S Young
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Paula Cunnea
- Department of Surgery & Cancer, Imperial College London, London, W12 0NN, UK
| | - R Charles Coombes
- Department of Surgery & Cancer, Imperial College London, London, W12 0NN, UK
| | - Balázs Győrffy
- Department of Bioinformatics and 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
- MTA TTK Lendület Cancer Biomarker Research Group, Institute of Enzymology, Budapest, Hungary
| | - Lakjaya Buluwela
- Department of Surgery & Cancer, Imperial College London, London, W12 0NN, UK
| | - Simak Ali
- Department of Surgery & Cancer, Imperial College London, London, W12 0NN, UK.
| |
Collapse
|
50
|
Khatpe AS, Adebayo AK, Herodotou CA, Kumar B, Nakshatri H. Nexus between PI3K/AKT and Estrogen Receptor Signaling in Breast Cancer. Cancers (Basel) 2021; 13:369. [PMID: 33498407 PMCID: PMC7864210 DOI: 10.3390/cancers13030369] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
Signaling from estrogen receptor alpha (ERα) and its ligand estradiol (E2) is critical for growth of ≈70% of breast cancers. Therefore, several drugs that inhibit ERα functions have been in clinical use for decades and new classes of anti-estrogens are continuously being developed. Although a significant number of ERα+ breast cancers respond to anti-estrogen therapy, ≈30% of these breast cancers recur, sometimes even after 20 years of initial diagnosis. Mechanism of resistance to anti-estrogens is one of the intensely studied disciplines in breast cancer. Several mechanisms have been proposed including mutations in ESR1, crosstalk between growth factor and ERα signaling, and interplay between cell cycle machinery and ERα signaling. ESR1 mutations as well as crosstalk with other signaling networks lead to ligand independent activation of ERα thus rendering anti-estrogens ineffective, particularly when treatment involved anti-estrogens that do not degrade ERα. As a result of these studies, several therapies that combine anti-estrogens that degrade ERα with PI3K/AKT/mTOR inhibitors targeting growth factor signaling or CDK4/6 inhibitors targeting cell cycle machinery are used clinically to treat recurrent ERα+ breast cancers. In this review, we discuss the nexus between ERα-PI3K/AKT/mTOR pathways and how understanding of this nexus has helped to develop combination therapies.
Collapse
Affiliation(s)
- Aditi S. Khatpe
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.S.K.); (A.K.A.); (C.A.H.); (B.K.)
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Adedeji K. Adebayo
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.S.K.); (A.K.A.); (C.A.H.); (B.K.)
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Christopher A. Herodotou
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.S.K.); (A.K.A.); (C.A.H.); (B.K.)
| | - Brijesh Kumar
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.S.K.); (A.K.A.); (C.A.H.); (B.K.)
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.S.K.); (A.K.A.); (C.A.H.); (B.K.)
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- VA Roudebush Medical Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|