1
|
Regev C, Jang H, Nussinov R. ERK Allosteric Activation: The Importance of Two Ordered Phosphorylation Events. J Mol Biol 2025:169130. [PMID: 40216017 DOI: 10.1016/j.jmb.2025.169130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/19/2025] [Accepted: 04/01/2025] [Indexed: 04/26/2025]
Abstract
ERK, a coveted proliferation drug target, is a pivotal kinase in the Ras/ERK signaling cascade. Despite this, crucial questions about its activation have not been fully explored on the foundational, conformational level. Such questions include (i) Why ERK's activation demands dual phosphorylation; (ii) What is the role of each phosphorylation site in the activation loop; and (iii) Exactly how the (ordered) phosphorylation steps affect the conformational ensembles of the activation loop, their propensities and restriction to a narrower range favoring ERK's catalytic action. Here we used explicit molecular dynamics simulations to study ERK's stability and the conformational changes in different stages along the activation process. The initial monophosphorylation event elongates the activation loop to enable successive phosphorylations, which reintroduce stability/compactness through newly formed salt bridges. The interactions formed by monophosphorylation are site-dependent, with threonine's phosphorylation presenting stronger electrostatic interactions compared to tyrosine's. Dual phosphorylated ERKs revealed a compact kinase structure which allows the HRD catalytic motif to stabilize the ATP. We further observe that the hinge and the homodimerization binding site responded to a tri-state signaling code based solely on the phosphorylation degree (unphosphorylated, monophosphorylated, dual phosphorylated) of the activation loop, confirming that the activation loop can allosterically influence distant regions. Last, our findings indicate that threonine phosphorylation as the second step is necessary for ERK to become effectively activated and that activation depends on the phosphorylation order. Collectively, we offer ERK's dual allosteric phosphorylation code in activation and explain why the phosphorylation site order is crucial.
Collapse
Affiliation(s)
- Clil Regev
- Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA; Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Ruth Nussinov
- Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA; Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
2
|
de la Fuente‐Vivas D, Cappitelli V, García‐Gómez R, Valero‐Díaz S, Amato C, Rodriguéz J, Duro‐Sánchez S, von Kriegsheim A, Grusch M, Lozano J, Arribas J, Casar B, Crespo P. ERK1/2 mitogen-activated protein kinase dimerization is essential for the regulation of cell motility. Mol Oncol 2025; 19:452-473. [PMID: 39263917 PMCID: PMC11792999 DOI: 10.1002/1878-0261.13732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/12/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024] Open
Abstract
ERK1/2 mitogen-activated protein kinases (ERK) are key regulators of basic cellular processes, including proliferation, survival, and migration. Upon phosphorylation, ERK becomes activated and a portion of it dimerizes. The importance of ERK activation in specific cellular events is generally well documented, but the role played by dimerization is largely unknown. Here, we demonstrate that impeding ERK dimerization precludes cellular movement by interfering with the molecular machinery that executes the rearrangements of the actin cytoskeleton. We also show that a constitutively dimeric ERK mutant can drive cell motility per se, demonstrating that ERK dimerization is both necessary and sufficient for inducing cellular migration. Importantly, we unveil that the scaffold protein kinase suppressor of Ras 1 (KSR1) is a critical element for endowing external agonists, acting through tyrosine kinase receptors, with the capacity to induce ERK dimerization and, subsequently, to unleash cellular motion. In agreement, clinical data disclose that high KSR1 expression levels correlate with greater metastatic potential and adverse evolution of mammary tumors. Overall, our results portray both ERK dimerization and KSR1 as essential factors for the regulation of cell motility and mammary tumor dissemination.
Collapse
Affiliation(s)
- Dalia de la Fuente‐Vivas
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC)Consejo Superior de Investigaciones Científicas (CSIC) – Universidad de CantabriaSantanderSpain
- Present address:
Universidad de BurgosBurgosSpain
| | - Vincenzo Cappitelli
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC)Consejo Superior de Investigaciones Científicas (CSIC) – Universidad de CantabriaSantanderSpain
| | - Rocío García‐Gómez
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC)Consejo Superior de Investigaciones Científicas (CSIC) – Universidad de CantabriaSantanderSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)Instituto de Salud Carlos IIIMadridSpain
| | - Sara Valero‐Díaz
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC)Consejo Superior de Investigaciones Científicas (CSIC) – Universidad de CantabriaSantanderSpain
| | - Camilla Amato
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC)Consejo Superior de Investigaciones Científicas (CSIC) – Universidad de CantabriaSantanderSpain
| | - Javier Rodriguéz
- Cancer Research UK Scotland Centre, Institute of Genetics and CancerUniversity of EdinburghUK
| | - Santiago Duro‐Sánchez
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)Instituto de Salud Carlos IIIMadridSpain
- Cancer Research ProgramHospital del Mar Medical Research Institute (IMIM)BarcelonaSpain
- Department of Biochemistry and Molecular BiologyUniversitat Autónoma de BarcelonaSpain
- Preclinical and Translational Research ProgramVall d'Hebron Institute of Oncology (VHIO)BarcelonaSpain
| | | | - Michael Grusch
- Center for Cancer ResearchMedical University of ViennaAustria
| | - José Lozano
- Universidad de Málaga and Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina – IBIMA, Plataforma BionandSpain
| | - Joaquín Arribas
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)Instituto de Salud Carlos IIIMadridSpain
- Cancer Research ProgramHospital del Mar Medical Research Institute (IMIM)BarcelonaSpain
- Department of Biochemistry and Molecular BiologyUniversitat Autónoma de BarcelonaSpain
- Preclinical and Translational Research ProgramVall d'Hebron Institute of Oncology (VHIO)BarcelonaSpain
| | - Berta Casar
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC)Consejo Superior de Investigaciones Científicas (CSIC) – Universidad de CantabriaSantanderSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)Instituto de Salud Carlos IIIMadridSpain
| | - Piero Crespo
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC)Consejo Superior de Investigaciones Científicas (CSIC) – Universidad de CantabriaSantanderSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)Instituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
3
|
Keshri PK, Singh SP. Unraveling the AKT/ERK cascade and its role in Parkinson disease. Arch Toxicol 2024; 98:3169-3190. [PMID: 39136731 DOI: 10.1007/s00204-024-03829-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/25/2024] [Indexed: 09/17/2024]
Abstract
Parkinson disease represents a significant and growing burden on global healthcare systems, necessitating a deeper understanding of their underlying molecular mechanisms for the development of effective treatments. The AKT and ERK pathways play crucial roles in the disease, influencing multiple cellular pathways that support neuronal survival. Researchers have made notable progress in uncovering how these pathways are controlled by upstream kinases and how their downstream effects contribute to cell signalling. However, as we delve deeper into their intricacies, we encounter increasing complexity, compounded by the convergence of multiple signalling pathways. Many of their targets overlap with those of other kinases, and they not only affect specific substrates but also influence entire signalling networks. This review explores the intricate interplay of the AKT/ERK pathways with several other signalling cascades, including oxidative stress, endoplasmic reticulum stress, calcium homeostasis, inflammation, and autophagy, in the context of Parkinson disease. We discuss how dysregulation of these pathways contributes to disease progression and neuronal dysfunction, highlighting potential therapeutic targets for intervention. By elucidating the complex network of interactions between the AKT/ERK pathways and other signalling cascades, this review aims to provide insights into the pathogenesis of Parkinson disease and describe the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Priyanka Kumari Keshri
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Surya Pratap Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
4
|
Mohammed KAK, Madeddu P, Avolio E. MEK inhibitors: a promising targeted therapy for cardiovascular disease. Front Cardiovasc Med 2024; 11:1404253. [PMID: 39011492 PMCID: PMC11247000 DOI: 10.3389/fcvm.2024.1404253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/13/2024] [Indexed: 07/17/2024] Open
Abstract
Cardiovascular disease (CVD) represents the leading cause of mortality and disability all over the world. Identifying new targeted therapeutic approaches has become a priority of biomedical research to improve patient outcomes and quality of life. The RAS-RAF-MEK (mitogen-activated protein kinase kinase)-ERK (extracellular signal-regulated kinase) pathway is gaining growing interest as a potential signaling cascade implicated in the pathogenesis of CVD. This pathway is pivotal in regulating cellular processes like proliferation, growth, migration, differentiation, and survival, which are vital in maintaining cardiovascular homeostasis. In addition, ERK signaling is involved in controlling angiogenesis, vascular tone, myocardial contractility, and oxidative stress. Dysregulation of this signaling cascade has been linked to cell dysfunction and vascular and cardiac pathological remodeling, which contribute to the onset and progression of CVD. Recent and ongoing research has provided insights into potential therapeutic interventions targeting the RAS-RAF-MEK-ERK pathway to improve cardiovascular pathologies. Preclinical studies have demonstrated the efficacy of targeted therapy with MEK inhibitors (MEKI) in attenuating ERK activation and mitigating CVD progression in animal models. In this article, we first describe how ERK signaling contributes to preserving cardiovascular health. We then summarize current knowledge of the roles played by ERK in the development and progression of cardiac and vascular disorders, including atherosclerosis, myocardial infarction, cardiac hypertrophy, heart failure, and aortic aneurysm. We finally report novel therapeutic strategies for these CVDs encompassing MEKI and discuss advantages, challenges, and future developments for MEKI therapeutics.
Collapse
Affiliation(s)
- Khaled A K Mohammed
- Bristol Heart Institute, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Department of Cardiothoracic Surgery, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Paolo Madeddu
- Bristol Heart Institute, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Elisa Avolio
- Bristol Heart Institute, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
5
|
Grogan L, Shapiro P. Progress in the development of ERK1/2 inhibitors for treating cancer and other diseases. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 100:181-207. [PMID: 39034052 DOI: 10.1016/bs.apha.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
The extracellular signal-regulated kinases-1 and 2 (ERK1/2) are ubiquitous regulators of many cellular functions, including proliferation, differentiation, migration, and cell death. ERK1/2 regulate cell functions by phosphorylating a diverse collection of protein substrates consisting of other kinases, transcription factors, structural proteins, and other regulatory proteins. ERK1/2 regulation of cell functions is tightly regulated through the balance between activating phosphorylation by upstream kinases and inactivating dephosphorylation by phosphatases. Disruption of homeostatic ERK1/2 regulation caused by elevated extracellular signals or mutations in upstream regulatory proteins leads to the constitutive activation of ERK1/2 signaling and uncontrolled cell proliferation observed in many types of cancer. Many inhibitors of upstream kinase regulators of ERK1/2 have been developed and are part of targeted therapeutic options to treat a variety of cancers. However, the efficacy of these drugs in providing sustained patient responses is limited by the development of acquired resistance often involving re-activation of ERK1/2. As such, recent drug discovery efforts have focused on the direct targeting of ERK1/2. Several ATP competitive ERK1/2 inhibitors have been identified and are being tested in cancer clinical trials. One drug, Ulixertinib (BVD-523), has received FDA approval for use in the Expanded Access Program for patients with no other therapeutic options. This review provides an update on ERK1/2 inhibitors in clinical trials, their successes and limitations, and new academic drug discovery efforts to modulate ERK1/2 signaling for treating cancer and other diseases.
Collapse
Affiliation(s)
- Lena Grogan
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States
| | - Paul Shapiro
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States.
| |
Collapse
|
6
|
Parascandolo A, Benincasa G, Corcione F, Laukkanen MO. ERK2 Is a Promoter of Cancer Cell Growth and Migration in Colon Adenocarcinoma. Antioxidants (Basel) 2024; 13:119. [PMID: 38247543 PMCID: PMC10812609 DOI: 10.3390/antiox13010119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
ERK1/2 phosphorylation is frequently downregulated in the early phase of colon tumorigenesis with subsequent activation of ERK5. In the current work, we studied the advantages of ERK1/2 downregulation for tumor growth by dissecting the individual functions of ERK1 and ERK2. The patient sample data demonstrated decreased ERK1/2 phosphorylation in the early phase of tumorigenesis followed by increased phosphorylation in late-stage colon adenocarcinomas with intratumoral invasion or metastasis. In vitro results indicated that SOD3-mediated coordination of small GTPase RAS regulatory genes inhibited RAS-ERK1/2 signaling. In vitro and in vivo studies suggested that ERK2 has a more prominent role in chemotactic invasion, collective migration, and cell proliferation than ERK1. Of note, simultaneous ERK1 and ERK2 expression inhibited collective cell migration and proliferation but tended to promote invasion, suggesting that ERK1 controls ERK2 function. According to the present data, phosphorylated ERK1/2 at the early phase of colon adenocarcinoma limits tumor mass expansion, whereas reactivation of the kinases at the later phase of colon carcinogenesis is associated with the initiation of metastasis. Additionally, our results suggest that ERK1 is a regulatory kinase that coordinates ERK2-promoted chemotactic invasion, collective migration, and cell proliferation. Our findings indicate that ROS, especially H2O2, are associated with the regulation of ERK1/2 phosphorylation in colon cancer by either increasing or decreasing kinase activity. These data suggest that ERK2 has a growth-promoting role and ERK1 has a regulatory role in colon tumorigenesis, which could lead to new avenues in the development of cancer therapy.
Collapse
Affiliation(s)
- Alessia Parascandolo
- Department of Translational Medical Sciences, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy;
| | | | | | - Mikko O. Laukkanen
- Department of Translational Medical Sciences, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy;
- Center for Experimental Endocrinology and Oncology (IEOS), CNR-IEOS, Via Pansini 5, 80131 Naples, Italy
| |
Collapse
|
7
|
Tripathi PK, Mittal KR, Jain N, Sharma N, Jain CK. KRAS Pathways: A Potential Gateway for Cancer Therapeutics and Diagnostics. Recent Pat Anticancer Drug Discov 2024; 19:268-279. [PMID: 37038676 DOI: 10.2174/1574892818666230406085120] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/28/2023] [Accepted: 02/06/2023] [Indexed: 04/12/2023]
Abstract
One of the major disturbing pathways within cancer is "The Kirsten rat sarcoma viral oncogene homolog (KRAS) pathway", and it has recently been demonstrated to be the most crucial in therapies and diagnostics. KRAS pathway includes numerous genes. This multi-component signaling system promotes cell growth, division, survival, and death by transferring signals from outside the cell to its interior. KRAS regulates the activation of a variety of signaling molecules. The KRAS oncogene is a key player in advancing a wide range of malignancies, and the mutation rank of this gene is a key feature of several tumors. For some malignancies, the mutation type of the gene may offer information about prognostic, clinical, and predictive. KRAS belongs to the RAS oncogene family, which consists of a compilation of minor GTP-binding proteins that assimilate environmental inputs and trigger internal signaling pathways that control survival, cell differentiation, and proliferation. This review aims to examine the recent and fascinating breakthroughs in the identification of new therapies that target KRAS, including the ever-expanding experimental approaches for reducing KRAS activity and signaling as well as direct targeting of KRAS. A literature survey was performed. All the relevant articles and patents related to the KRAS pathway, the mutation in the KRAS gene, cancer treatment, and diagnostics were found on PubMed and Google Patents. One of the most prevalent causes of cancer in humans is a mutation in the K-RAS protein. It is extremely difficult to decipher KRAS-mediated signaling. It allows transducing signals to go from the cell's outer surface to its nucleus, having an influence on a variety of crucial cellular functions including cell chemotaxis, division, dissemination, and cell death. Other involved signaling pathways are RAF, and the phosphatidylinositol 3 kinase also known as AKT. The EGFR pathway is incomplete without KRAS. The activation of PI3K significantly contributes to acquiring resistance to a mixture of MEK inhibitors and anti-EGFR in colorectal cancer cell lines which are mutated by KRAS. A series of recent patent studies towards cancer diagnostics and therapeutics reveals the paramount importance of mutated protein KRAS as an extensive driver in human tumors. For the prognosis, diagnosis, and treatment of colorectal cancer, KRAS plays a critical role. This review concludes the latest and vowing developments in the discovery of novel techniques for diagnosis and drugs that target KRAS, the advancements in experimental techniques for signaling and inhibiting KRAS function, and the direct targeting of KRAS for cancer therapeutics.
Collapse
Affiliation(s)
- Pankaj Kumar Tripathi
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62 Noida, 201307, India
| | - Khushi R Mittal
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62 Noida, 201307, India
| | - Nandini Jain
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62 Noida, 201307, India
| | - Naveen Sharma
- Divion of Bioinformatics, Indian Council of Medical Research, New Delhi, 110029, India
| | - Chakresh Kumar Jain
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62 Noida, 201307, India
| |
Collapse
|
8
|
van der Wijngaart H, Beekhof R, Knol JC, Henneman AA, de Goeij-de Haas R, Piersma SR, Pham TV, Jimenez CR, Verheul HMW, Labots M. Candidate biomarkers for treatment benefit from sunitinib in patients with advanced renal cell carcinoma using mass spectrometry-based (phospho)proteomics. Clin Proteomics 2023; 20:49. [PMID: 37940875 PMCID: PMC10631096 DOI: 10.1186/s12014-023-09437-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023] Open
Abstract
The tyrosine kinase inhibitor sunitinib is an effective first-line treatment for patients with advanced renal cell carcinoma (RCC). Hypothesizing that a functional read-out by mass spectrometry-based (phospho, p-)proteomics will identify predictive biomarkers for treatment outcome of sunitinib, tumor tissues of 26 RCC patients were analyzed. Eight patients had primary resistant (RES) and 18 sensitive (SENS) RCC. A 78 phosphosite signature (p < 0.05, fold-change > 2) was identified; 22 p-sites were upregulated in RES (unique in RES: BCAR3, NOP58, EIF4A2, GDI1) and 56 in SENS (35 unique). EIF4A1/EIF4A2 were differentially expressed in RES at the (p-)proteome and, in an independent cohort, transcriptome level. Inferred kinase activity of MAPK3 (p = 0.026) and EGFR (p = 0.045) as determined by INKA was higher in SENS. Posttranslational modifications signature enrichment analysis showed that different p-site-centric signatures were enriched (p < 0.05), of which FGF1 and prolactin pathways in RES and, in SENS, vanadate and thrombin treatment pathways, were most significant. In conclusion, the RCC (phospho)proteome revealed differential p-sites and kinase activities associated with sunitinib resistance and sensitivity. Independent validation is warranted to develop an assay for upfront identification of patients who are intrinsically resistant to sunitinib.
Collapse
Affiliation(s)
- Hanneke van der Wijngaart
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Robin Beekhof
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Jaco C Knol
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Alex A Henneman
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Richard de Goeij-de Haas
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Sander R Piersma
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Thang V Pham
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Connie R Jimenez
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Henk M W Verheul
- Department of Medical Oncology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mariette Labots
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
9
|
Martin-Vega A, Cobb MH. Navigating the ERK1/2 MAPK Cascade. Biomolecules 2023; 13:1555. [PMID: 37892237 PMCID: PMC10605237 DOI: 10.3390/biom13101555] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
The RAS-ERK pathway is a fundamental signaling cascade crucial for many biological processes including proliferation, cell cycle control, growth, and survival; common across all cell types. Notably, ERK1/2 are implicated in specific processes in a context-dependent manner as in stem cells and pancreatic β-cells. Alterations in the different components of this cascade result in dysregulation of the effector kinases ERK1/2 which communicate with hundreds of substrates. Aberrant activation of the pathway contributes to a range of disorders, including cancer. This review provides an overview of the structure, activation, regulation, and mutational frequency of the different tiers of the cascade; with a particular focus on ERK1/2. We highlight the importance of scaffold proteins that contribute to kinase localization and coordinate interaction dynamics of the kinases with substrates, activators, and inhibitors. Additionally, we explore innovative therapeutic approaches emphasizing promising avenues in this field.
Collapse
Affiliation(s)
- Ana Martin-Vega
- Department of Pharmacology, UT Southwestern Medical Center, 6001 Forest Park Rd., Dallas, TX 75390, USA;
| | - Melanie H. Cobb
- Department of Pharmacology, UT Southwestern Medical Center, 6001 Forest Park Rd., Dallas, TX 75390, USA;
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, 6001 Forest Park Rd., Dallas, TX 75390, USA
| |
Collapse
|
10
|
Martín-Vega A, Ruiz-Peinado L, García-Gómez R, Herrero A, de la Fuente-Vivas D, Parvathaneni S, Caloto R, Morante M, von Kriegsheim A, Bustelo XR, Sacks DB, Casar B, Crespo P. Scaffold coupling: ERK activation by trans-phosphorylation across different scaffold protein species. SCIENCE ADVANCES 2023; 9:eadd7969. [PMID: 36791195 PMCID: PMC9931222 DOI: 10.1126/sciadv.add7969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
RAS-ERK (extracellular signal-regulated kinase) pathway signals are modulated by scaffold proteins that assemble the components of different kinase tiers into a sequential phosphorylation cascade. In the prevailing model scaffold proteins function as isolated entities, where the flux of phosphorylation events progresses downstream linearly, to achieve ERK phosphorylation. We show that different types of scaffold proteins, specifically KSR1 (kinase suppressor of Ras 1) and IQGAP1 (IQ motif-containing guanosine triphosphatase activating protein 1), can bind to each other, forming a complex whereby phosphorylation reactions occur across both species. MEK (mitogen-activated protein kinase kinase) bound to IQGAP1 can phosphorylate ERK docked at KSR1, a process that we have named "trans-phosphorylation." We also reveal that ERK trans-phosphorylation participates in KSR1-regulated adipogenesis, and it also underlies the modest cytotoxicity exhibited by KSR-directed inhibitors. Overall, we identify interactions between scaffold proteins and trans-phosphorylation as an additional level of regulation in the ERK cascade, with broad implications in signaling and the design of scaffold protein-aimed therapeutics.
Collapse
Affiliation(s)
- Ana Martín-Vega
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander 39011, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Laura Ruiz-Peinado
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander 39011, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Rocío García-Gómez
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander 39011, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Ana Herrero
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander 39011, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Dalia de la Fuente-Vivas
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander 39011, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Swetha Parvathaneni
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rubén Caloto
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029, Spain
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Salamanca 37007, Spain
| | - Marta Morante
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander 39011, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Alex von Kriegsheim
- Edinburgh Cancer Research UK Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Xosé R. Bustelo
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029, Spain
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Salamanca 37007, Spain
| | - David B. Sacks
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Medicine, Georgetown University, 3700 O St NW, Washington, DC 20057, USA
- Department of Pathology, George Washington University, 2121 I St NW, Washington, DC 20052, USA
- University of Cape Town, UCT Faculty of Health Sciences, Barnard Fuller Building, Anzio Rd, Observatory, Cape Town, 7935 South Africa
| | - Berta Casar
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander 39011, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Piero Crespo
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander 39011, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029, Spain
| |
Collapse
|
11
|
Yang H, Zhou X, Fu D, Le C, Wang J, Zhou Q, Liu X, Yuan Y, Ding K, Xiao Q. Targeting RAS mutants in malignancies: successes, failures, and reasons for hope. Cancer Commun (Lond) 2023; 43:42-74. [PMID: 36316602 PMCID: PMC9859734 DOI: 10.1002/cac2.12377] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/15/2022] [Accepted: 10/13/2022] [Indexed: 01/22/2023] Open
Abstract
RAS genes are the most frequently mutated oncogenes and play critical roles in the development and progression of malignancies. The mutation, isoform (KRAS, HRAS, and NRAS), position, and type of substitution vary depending on the tissue types. Despite decades of developing RAS-targeted therapies, only small subsets of these inhibitors are clinically effective, such as the allele-specific inhibitors against KRASG12C . Targeting the remaining RAS mutants would require further experimental elucidation of RAS signal transduction, RAS-altered metabolism, and the associated immune microenvironment. This study reviews the mechanisms and efficacy of novel targeted therapies for different RAS mutants, including KRAS allele-specific inhibitors, combination therapies, immunotherapies, and metabolism-associated therapies.
Collapse
Affiliation(s)
- Hang Yang
- Department of Colorectal Surgery and OncologyKey Laboratory of Cancer Prevention and InterventionMinistry of EducationThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009P. R. China
| | - Xinyi Zhou
- Department of Colorectal Surgery and OncologyKey Laboratory of Cancer Prevention and InterventionMinistry of EducationThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009P. R. China
| | - Dongliang Fu
- Department of Colorectal Surgery and OncologyKey Laboratory of Cancer Prevention and InterventionMinistry of EducationThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009P. R. China
| | - Chenqin Le
- Department of Colorectal Surgery and OncologyKey Laboratory of Cancer Prevention and InterventionMinistry of EducationThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009P. R. China
| | - Jiafeng Wang
- Department of Pharmacology and Department of Gastroenterology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310058P. R. China
| | - Quan Zhou
- Department of Cell BiologySchool of Basic Medical SciencesZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Xiangrui Liu
- Department of Pharmacology and Department of Gastroenterology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310058P. R. China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Ying Yuan
- Department of Medical Oncologythe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiang310058P. R. China
| | - Kefeng Ding
- Department of Colorectal Surgery and OncologyKey Laboratory of Cancer Prevention and InterventionMinistry of EducationThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009P. R. China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Qian Xiao
- Department of Colorectal Surgery and OncologyKey Laboratory of Cancer Prevention and InterventionMinistry of EducationThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009P. R. China
| |
Collapse
|
12
|
Park J, Park GY, Lee J, Park J, Kim S, Kim E, Park SY, Yoon JH, Lee Y. ERK phosphorylation disrupts the intramolecular interaction of capicua to promote cytoplasmic translocation of capicua and tumor growth. Front Mol Biosci 2022; 9:1030725. [PMID: 36619173 PMCID: PMC9814488 DOI: 10.3389/fmolb.2022.1030725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Activation of receptor tyrosine kinase signaling inactivates capicua (CIC), a transcriptional repressor that functions as a tumor suppressor, via degradation and/or cytoplasmic translocation. Although CIC is known to be inactivated by phosphorylation, the mechanisms underlying the cytoplasmic translocation of CIC remain poorly understood. Therefore, we aimed to evaluate the roles of extracellular signal-regulated kinase (ERK), p90RSK, and c-SRC in the epidermal growth factor receptor (EGFR) activation-induced cytoplasmic translocation of CIC and further investigated the molecular basis for this process. We found that nuclear ERK induced the cytoplasmic translocation of CIC-S. We identified 12 serine and threonine (S/T) residues within CIC, including S173 and S301 residues that are phosphorylated by p90RSK, which contribute to the cytoplasmic translocation of CIC-S when phosphorylated. The amino-terminal (CIC-S-N) and carboxyl-terminal (CIC-S-C) regions of CIC-S were found to interact with each other to promote their nuclear localization. EGF treatment disrupted the interaction between CIC-S-N and CIC-S-C and induced their cytoplasmic translocation. Alanine substitution for the 12 S/T residues blocked the cytoplasmic translocation of CIC-S and consequently enhanced the tumor suppressor activity of CIC-S. Our study demonstrates that ERK-mediated disruption of intramolecular interaction of CIC is critical for the cytoplasmic translocation of CIC, and suggests that the nuclear retention of CIC may represent a strategy for cancer therapy.
Collapse
Affiliation(s)
- Jongmin Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, South Korea
| | - Guk-Yeol Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, South Korea
| | - Jongeun Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, South Korea
| | - Joonyoung Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, South Korea
| | - Soeun Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, South Korea
| | - Eunjeong Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | - Seung-Yeol Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, South Korea
| | - Jong Hyuk Yoon
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Yoontae Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, South Korea,Institute of Convergence Science, Yonsei University, Seoul, South Korea,*Correspondence: Yoontae Lee,
| |
Collapse
|
13
|
Ojea Ramos S, Feld M, Fustiñana MS. Contributions of extracellular-signal regulated kinase 1/2 activity to the memory trace. Front Mol Neurosci 2022; 15:988790. [PMID: 36277495 PMCID: PMC9580372 DOI: 10.3389/fnmol.2022.988790] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/02/2022] [Indexed: 11/15/2022] Open
Abstract
The ability to learn from experience and consequently adapt our behavior is one of the most fundamental capacities enabled by complex and plastic nervous systems. Next to cellular and systems-level changes, learning and memory formation crucially depends on molecular signaling mechanisms. In particular, the extracellular-signal regulated kinase 1/2 (ERK), historically studied in the context of tumor growth and proliferation, has been shown to affect synaptic transmission, regulation of neuronal gene expression and protein synthesis leading to structural synaptic changes. However, to what extent the effects of ERK are specifically related to memory formation and stabilization, or merely the result of general neuronal activation, remains unknown. Here, we review the signals leading to ERK activation in the nervous system, the subcellular ERK targets associated with learning-related plasticity, and how neurons with activated ERK signaling may contribute to the formation of the memory trace.
Collapse
Affiliation(s)
- Santiago Ojea Ramos
- Instituto de Fisiología, Biología Molecular y Neurociencias, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Mariana Feld
- Instituto de Fisiología, Biología Molecular y Neurociencias, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | | |
Collapse
|
14
|
Zaballos MA, Acuña-Ruiz A, Morante M, Riesco-Eizaguirre G, Crespo P, Santisteban P. Inhibiting ERK dimerization ameliorates BRAF-driven anaplastic thyroid cancer. Cell Mol Life Sci 2022; 79:504. [PMID: 36056964 PMCID: PMC9440884 DOI: 10.1007/s00018-022-04530-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/24/2022] [Accepted: 08/15/2022] [Indexed: 11/08/2022]
Abstract
Background RAS-to-ERK signaling is crucial for the onset and progression of advanced thyroid carcinoma, and blocking ERK dimerization provides a therapeutic benefit in several human carcinomas. Here we analyzed the effects of DEL-22379, a relatively specific ERK dimerization inhibitor, on the activation of the RAS-to-ERK signaling cascade and on tumor-related processes in vitro and in vivo. Methods We used a panel of four human anaplastic thyroid carcinoma (ATC) cell lines harboring BRAF or RAS mutations to analyze ERK dynamics and tumor-specific characteristics. We also assessed the impact of DEL-22379 on the transcriptional landscape of ATC cell lines using RNA-sequencing and evaluated its therapeutic efficacy in an orthotopic mouse model of ATC. Results DEL-22379 impaired upstream ERK activation in BRAF- but not RAS-mutant cells. Cell viability and metastasis-related processes were attenuated by DEL-22379 treatment, but mostly in BRAF-mutant cells, whereas in vivo tumor growth and dissemination were strongly reduced for BRAF-mutant cells and mildly reduced for RAS-mutant cells. Transcriptomics analyses indicated that DEL-22379 modulated the transcriptional landscape of BRAF- and RAS-mutant cells in opposite directions. Conclusions Our findings establish that BRAF- and RAS-mutant thyroid cells respond differentially to DEL-22379, which cannot be explained by the previously described mechanism of action of the inhibitor. Nonetheless, DEL-22379 demonstrated significant anti-tumor effects against BRAF-mutant cells in vivo with an apparent lack of toxicity, making it an interesting candidate for the development of combinatorial treatments. Our data underscore the differences elicited by the specific driver mutation for thyroid cancer onset and progression, which should be considered for experimental and clinical approaches. Supplementary Information The online version contains supplementary material available at 10.1007/s00018-022-04530-9.
Collapse
Affiliation(s)
- Miguel A Zaballos
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid (CSIC-UAM), 28029, Madrid, Spain. .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain.
| | - Adrián Acuña-Ruiz
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid (CSIC-UAM), 28029, Madrid, Spain.,Departamento de Endocrinología y Nutrición, Hospital Universitario de Móstoles, 28935, Madrid, Spain
| | - Marta Morante
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain.,Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria. Santander, 39011, Cantabria, Spain
| | - Garcilaso Riesco-Eizaguirre
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid (CSIC-UAM), 28029, Madrid, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain.,Departamento de Endocrinología y Nutrición, Hospital Universitario de Móstoles, 28935, Madrid, Spain.,Grupo de Endocrinología Molecular, Facultad de Medicina, Universidad Francisco de Vitoria, 28223, Madrid, Spain
| | - Piero Crespo
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain.,Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria. Santander, 39011, Cantabria, Spain
| | - Pilar Santisteban
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid (CSIC-UAM), 28029, Madrid, Spain. .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain.
| |
Collapse
|
15
|
Wang H, Chi L, Yu F, Dai H, Si X, Gao C, Wang Z, Liu L, Zheng J, Ke Y, Liu H, Zhang Q. The overview of Mitogen-activated extracellular signal-regulated kinase (MEK)-based dual inhibitor in the treatment of cancers. Bioorg Med Chem 2022; 70:116922. [PMID: 35849914 DOI: 10.1016/j.bmc.2022.116922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 11/02/2022]
Abstract
Mitogen-activated extracellular signal-regulated kinase 1 and 2 (MEK1/2) are the critical components of the mitogen-activated protein kinase/extracellular signal-regulated kinase 1 and 2 (MAPK/ERK1/2) signaling pathway which is one of the well-characterized kinase cascades regulating cell proliferation, differentiation, growth, metabolism, survival and mobility both in normal and cancer cells. The aberrant activation of MAPK/ERK1/2 pathway is a hallmark of numerous human cancers, therefore targeting the components of this pathway to inhibit its dysregulation is a promising strategy for cancer treatment. Enormous efforts have been done in the development of MEK1/2 inhibitors and encouraging advancements have been made, including four inhibitors approved for clinical use. However, due to the multifactorial property of cancer and rapidly arising drug resistance, the clinical efficacy of these MEK1/2 inhibitors as monotherapy are far from ideal. Several alternative strategies have been developed to improve the limited clinical efficacy, including the dual inhibitor which is a single drug molecule able to simultaneously inhibit two targets. In this review, we first introduced the activation and function of the MAPK/ERK1/2 components and discussed the advantages of MEK1/2-based dual inhibitors compared with the single inhibitors and combination therapy in the treatment of cancers. Then, we overviewed the MEK1/2-based dual inhibitors for the treatment of cancers and highlighted the theoretical basis of concurrent inhibition of MEK1/2 and other targets for development of these dual inhibitors. Besides, the status and results of these dual inhibitors in both preclinical and clinical studies were also the focus of this review.
Collapse
Affiliation(s)
- Hao Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Lingling Chi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Fuqiang Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Hongling Dai
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Xiaojie Si
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Chao Gao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Zhengjie Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Limin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Jiaxin Zheng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Yu Ke
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China.
| | - Hongmin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou 450052, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China.
| | - Qiurong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China.
| |
Collapse
|
16
|
Computational investigation of the dynamic control of cAMP signaling by PDE4 isoform types. Biophys J 2022; 121:2693-2711. [PMID: 35717559 DOI: 10.1016/j.bpj.2022.06.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/03/2022] [Accepted: 06/14/2022] [Indexed: 11/24/2022] Open
Abstract
Cyclic adenosine monophosphate (cAMP) is a generic signaling molecule that, through precise control of its signaling dynamics, exerts distinct cellular effects. Consequently, aberrant cAMP signaling can have detrimental effects. Phosphodiesterase 4 (PDE4) enzymes profoundly control cAMP signaling and comprise different isoform types of which the enzymatic activity is modulated by differential feedback mechanisms. Because these feedback dynamics are non-linear and occur coincidentally, their effects are difficult to examine experimentally, but can be well simulated computationally. Through understanding the role of PDE4 isoform types in regulating cAMP signaling, PDE4-targeted therapeutic strategies can be better specified. Here, we established a computational model to study how feedback mechanisms on different PDE4 isoform types lead to dynamic, isoform-specific control of cAMP signaling. Ordinary differential equations describing cAMP dynamics were implemented in the VirtualCell (VCell) environment. Simulations indicated that long PDE4 isoforms exert the most profound control on oscillatory cAMP signaling, as opposed to the PDE4-mediated control of single cAMP input pulses. Moreover, elevating cAMP levels or decreasing PDE4 levels revealed different effects on downstream signaling. Together these results underline that cAMP signaling is distinctly regulated by different PDE4 isoform types and that this isoform-specificity should be considered in both computational and experimental follow-up studies to better define PDE4 enzymes as therapeutic targets in diseases in which cAMP signaling is aberrant.
Collapse
|
17
|
D’Incal C, Broos J, Torfs T, Kooy RF, Vanden Berghe W. Towards Kinase Inhibitor Therapies for Fragile X Syndrome: Tweaking Twists in the Autism Spectrum Kinase Signaling Network. Cells 2022; 11:cells11081325. [PMID: 35456004 PMCID: PMC9029738 DOI: 10.3390/cells11081325] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 12/12/2022] Open
Abstract
Absence of the Fragile X Mental Retardation Protein (FMRP) causes autism spectrum disorders and intellectual disability, commonly referred to as the Fragile X syndrome. FMRP is a negative regulator of protein translation and is essential for neuronal development and synapse formation. FMRP is a target for several post-translational modifications (PTMs) such as phosphorylation and methylation, which tightly regulate its cellular functions. Studies have indicated the involvement of FMRP in a multitude of cellular pathways, and an absence of FMRP was shown to affect several neurotransmitter receptors, for example, the GABA receptor and intracellular signaling molecules such as Akt, ERK, mTOR, and GSK3. Interestingly, many of these molecules function as protein kinases or phosphatases and thus are potentially amendable by pharmacological treatment. Several treatments acting on these kinase-phosphatase systems have been shown to be successful in preclinical models; however, they have failed to convincingly show any improvements in clinical trials. In this review, we highlight the different protein kinase and phosphatase studies that have been performed in the Fragile X syndrome. In our opinion, some of the paradoxical study conclusions are potentially due to the lack of insight into integrative kinase signaling networks in the disease. Quantitative proteome analyses have been performed in several models for the FXS to determine global molecular processes in FXS. However, only one phosphoproteomics study has been carried out in Fmr1 knock-out mouse embryonic fibroblasts, and it showed dysfunctional protein kinase and phosphatase signaling hubs in the brain. This suggests that the further use of phosphoproteomics approaches in Fragile X syndrome holds promise for identifying novel targets for kinase inhibitor therapies.
Collapse
Affiliation(s)
- Claudio D’Incal
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (C.D.); (J.B.); (T.T.)
- Department of Medical Genetics, University of Antwerp, 2000 Antwerp, Belgium;
| | - Jitse Broos
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (C.D.); (J.B.); (T.T.)
| | - Thierry Torfs
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (C.D.); (J.B.); (T.T.)
| | - R. Frank Kooy
- Department of Medical Genetics, University of Antwerp, 2000 Antwerp, Belgium;
| | - Wim Vanden Berghe
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (C.D.); (J.B.); (T.T.)
- Correspondence: ; Tel.: +0032-(0)-32-652-657
| |
Collapse
|
18
|
Substrates of the MAPK Slt2: Shaping Yeast Cell Integrity. J Fungi (Basel) 2022; 8:jof8040368. [PMID: 35448599 PMCID: PMC9031059 DOI: 10.3390/jof8040368] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 02/04/2023] Open
Abstract
The cell wall integrity (CWI) MAPK pathway of budding yeast Saccharomyces cerevisiae is specialized in responding to cell wall damage, but ongoing research shows that it participates in many other stressful conditions, suggesting that it has functional diversity. The output of this pathway is mainly driven by the activity of the MAPK Slt2, which regulates important processes for yeast physiology such as fine-tuning of signaling through the CWI and other pathways, transcriptional activation in response to cell wall damage, cell cycle, or determination of the fate of some organelles. To this end, Slt2 precisely phosphorylates protein substrates, modulating their activity, stability, protein interaction, and subcellular localization. Here, after recapitulating the methods that have been employed in the discovery of proteins phosphorylated by Slt2, we review the bona fide substrates of this MAPK and the growing set of candidates still to be confirmed. In the context of the complexity of MAPK signaling regulation, we discuss how Slt2 determines yeast cell integrity through phosphorylation of these substrates. Increasing data from large-scale analyses and the available methodological approaches pave the road to early identification of new Slt2 substrates and functions.
Collapse
|
19
|
RAS Dimers: The Novice Couple at the RAS-ERK Pathway Ball. Genes (Basel) 2021; 12:genes12101556. [PMID: 34680951 PMCID: PMC8535645 DOI: 10.3390/genes12101556] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 02/07/2023] Open
Abstract
Signals conveyed through the RAS-ERK pathway constitute a pivotal regulatory element in cancer-related cellular processes. Recently, RAS dimerization has been proposed as a key step in the relay of RAS signals, critically contributing to RAF activation. RAS clustering at plasma membrane microdomains and endomembranes facilitates RAS dimerization in response to stimulation, promoting RAF dimerization and subsequent activation. Remarkably, inhibiting RAS dimerization forestalls tumorigenesis in cellular and animal models. Thus, the pharmacological disruption of RAS dimers has emerged as an additional target for cancer researchers in the quest for a means to curtail aberrant RAS activity.
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW Although immune checkpoint inhibitors and small molecule inhibitors targeting the MAPK pathway have revolutionized the management of metastatic melanoma, long-term disease control occurs only for a minority of patients because of multiple resistance mechanisms. One way to tackle resistance is to develop the next-generation of RAF, MEK and ERK inhibitors using our understanding of the molecular mechanisms that fine-tune the MAPK pathway. RECENT FINDINGS Studies on the regulation of the MAPK pathway have revealed a dominant role for homo-dimerization and hetero-dimerization of RAF, MEK and ERK. Allosteric inhibitors that break these dimers are, therefore, undergoing various stages of preclinical and clinical evaluation. Novel MEK inhibitors are less susceptible to differences in MEK's activation state and do not drive the compensatory activation of MEK that could limit efficacy. Innovations in targeting ERK originate from dual inhibitors that block MEK-catalyzed ERK phosphorylation, thereby limiting the extent of ERK reactivation following feedback relief. SUMMARY The primary goal in RAF, MEK and ERK inhibitors' development is to produce molecules with less inhibitor paradox and off-target effects, giving robust and sustained MAPK pathway inhibition.
Collapse
|
21
|
Mlakar V, Morel E, Mlakar SJ, Ansari M, Gumy-Pause F. A review of the biological and clinical implications of RAS-MAPK pathway alterations in neuroblastoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:189. [PMID: 34103089 PMCID: PMC8188681 DOI: 10.1186/s13046-021-01967-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023]
Abstract
Neuroblastoma is the most common extra-cranial solid tumor in children, representing approximately 8% of all malignant childhood tumors and 15% of pediatric cancer-related deaths. Recent sequencing and transcriptomics studies have demonstrated the RAS-MAPK pathway’s contribution to the development and progression of neuroblastoma. This review compiles up-to-date evidence of this pathway’s involvement in neuroblastoma. We discuss the RAS-MAPK pathway’s general functioning, the clinical implications of its deregulation in neuroblastoma, and current promising therapeutics targeting proteins involved in signaling.
Collapse
Affiliation(s)
- Vid Mlakar
- CANSEARCH Research Platform for Pediatric Oncology and Hematology, Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, Avenue de la Roseraie 64, 1205, Geneva, Switzerland
| | - Edouard Morel
- CANSEARCH Research Platform for Pediatric Oncology and Hematology, Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, Avenue de la Roseraie 64, 1205, Geneva, Switzerland
| | - Simona Jurkovic Mlakar
- CANSEARCH Research Platform for Pediatric Oncology and Hematology, Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, Avenue de la Roseraie 64, 1205, Geneva, Switzerland
| | - Marc Ansari
- CANSEARCH Research Platform for Pediatric Oncology and Hematology, Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, Avenue de la Roseraie 64, 1205, Geneva, Switzerland.,Division of Pediatric Oncology and Hematology, Department of Women, Child and Adolescent, University Hospital of Geneva, Rue Willy-Donzé 6, 1205, Geneva, Switzerland
| | - Fabienne Gumy-Pause
- CANSEARCH Research Platform for Pediatric Oncology and Hematology, Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, Avenue de la Roseraie 64, 1205, Geneva, Switzerland. .,Division of Pediatric Oncology and Hematology, Department of Women, Child and Adolescent, University Hospital of Geneva, Rue Willy-Donzé 6, 1205, Geneva, Switzerland.
| |
Collapse
|
22
|
Yang Y, Zhou Y, Tao L, Yang T, Zhao Y, Luo Y. Structure-activity relationship study of DEL-22379: ERK dimerization inhibitors with increased safety. Mol Divers 2021; 25:1051-1075. [PMID: 32377992 DOI: 10.1007/s11030-020-10088-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/09/2020] [Indexed: 02/05/2023]
Abstract
Aberrant activation of ERK signaling pathway usually leads to oncogenesis, and small molecular agents targeting this pathway are impeded by the emergence of drug resistance due to reactivation of ERK signaling. Compound DEL-22379 has been reported to inhibit ERK dimerization which was unaffected by drug-resistant mechanism reactivating the ERK signaling. Here, we discussed a structure-activity relationship study of DEL-22379. Forty-seven analogues were designed and synthesized. Each synthesized compound was biologically evaluated for their inhibitory rates on several tumor cell lines and compounds with high inhibitory rates were further evaluated for IC50 values. The structure-activity relationship of idolin-2-one scaffold and the impact of Z/E configuration on potency were discussed. Potential safety of two synthesized analogues was investigated and in silico docking study of five compounds was performed to understand the structural basis of ERK dimerization inhibition.
Collapse
Affiliation(s)
- Yang Yang
- Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
| | - Yuanzheng Zhou
- Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
| | - Lei Tao
- Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
| | - Tao Yang
- Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yinglan Zhao
- Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China.
| | - Youfu Luo
- Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China.
| |
Collapse
|
23
|
ERK1/2: An Integrator of Signals That Alters Cardiac Homeostasis and Growth. BIOLOGY 2021; 10:biology10040346. [PMID: 33923899 PMCID: PMC8072600 DOI: 10.3390/biology10040346] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/24/2022]
Abstract
Integration of cellular responses to extracellular cues is essential for cell survival and adaptation to stress. Extracellular signal-regulated kinase (ERK) 1 and 2 serve an evolutionarily conserved role for intracellular signal transduction that proved critical for cardiomyocyte homeostasis and cardiac stress responses. Considering the importance of ERK1/2 in the heart, understanding how these kinases operate in both normal and disease states is critical. Here, we review the complexity of upstream and downstream signals that govern ERK1/2-dependent regulation of cardiac structure and function. Particular emphasis is given to cardiomyocyte hypertrophy as an outcome of ERK1/2 activation regulation in the heart.
Collapse
|
24
|
Sayılgan JF, Haliloğlu T, Gönen M. Protein dynamics analysis identifies candidate cancer driver genes and mutations in TCGA data. Proteins 2021; 89:721-730. [PMID: 33550612 DOI: 10.1002/prot.26054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 01/04/2021] [Accepted: 01/31/2021] [Indexed: 11/09/2022]
Abstract
Recently, it has been showed that cancer missense mutations selectively target the neighborhood of hinge residues, which are key sites in protein dynamics. Here, we show that this approach can be extended to find previously unknown candidate mutations and genes. To this aim, we developed a computational pipeline to detect significantly enriched three-dimensional (3D) clustering of missense mutations around hinge residues. The hinge residues were detected by applying a Gaussian network model. By systematically analyzing the PanCancer compendium of somatic mutations in nearly 10 000 tumors from the Cancer Genome Atlas, we identified candidate genes and mutations in addition to well known ones. For instance, we found significantly enriched 3D clustering of missense mutations in known cancer genes including CDK4, CDKN2A, TCL1A, and MAPK1. Beside these known genes, we also identified significantly enriched 3D clustering of missense mutations around hinge residues in PLA2G4A, which may lead to excessive phosphorylation of the extracellular signal-regulated kinases. Furthermore, we demonstrated that hinge-based features improves pathogenicity prediction for missense mutations. Our results show that the consideration of clustering around hinge residues can help us explain the functional role of the mutations in known cancer genes and identify candidate genes.
Collapse
Affiliation(s)
- Jan Fehmi Sayılgan
- Graduate School of Sciences and Engineering, Koç University, İstanbul, Turkey
| | - Türkan Haliloğlu
- Department of Chemical Engineering, School of Engineering, Boğaziçi University, İstanbul, Turkey.,Polymer Research Center, Boğaziçi University, İstanbul, Turkey
| | - Mehmet Gönen
- Department of Industrial Engineering, College of Engineering, Koç University, İstanbul, Turkey.,School of Medicine, Koç University, İstanbul, Turkey
| |
Collapse
|
25
|
Wang L, He T, Zhang X, Wang Y, Qiu K, Jiao N, He L, Yin J. Global transcriptomic analysis reveals Lnc-ADAMTS9 exerting an essential role in myogenesis through modulating the ERK signaling pathway. J Anim Sci Biotechnol 2021; 12:4. [PMID: 33526083 PMCID: PMC7852153 DOI: 10.1186/s40104-020-00524-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 11/16/2020] [Indexed: 12/17/2022] Open
Abstract
Background Long non-coding RNAs (lncRNAs) are emerging key regulators involved in a variety of biological processes such as cell differentiation and development. The balance between myogenesis and adipogenesis is crucial for skeletal muscle homeostasis in humans and meat quality in farm animals. The present study aimed to reveal the global transcriptomic profiles of adipogenic (Adi-) and myogenic (Myo-) precursors derived from porcine skeletal muscle and identify lncRNAs involved in the modulation of myogenesis homeostasis in porcine skeletal muscle. Results In this study, a total of 655 novel individual lncRNAs including differentially expressed 24 lncRNAs, and 755 differentially expressed mRNAs were identified (fold change ≥2 or ≤ 0.5 and adjusted P < 0.05). Integrated results of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis accompanied by the variation of intracellular Ca2+ concentration highlighted Lnc-ADAMTS9 involved in the modulation of myogenesis homeostasis in porcine skeletal muscle. Although Lnc-ADAMTS9 knock-down did not alter the mRNA expression of ADAMTS9, we demonstrated that Lnc-ADAMTS9 can promote myogenic proliferation and myogenic differentiation of myogenic precursors through inhibiting the ERK/MAPK signaling pathway. Conclusion We deciphered a comprehensive catalog of mRNAs and lncRNAs that might be involved in the regulation of myogenesis and adipogenesis homeostasis in the skeletal muscle of pigs. The Lnc-ADAMTS9 exerts an essential role in myogenesis through the ERK signaling pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-020-00524-4.
Collapse
Affiliation(s)
- Liqi Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Ting He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Xin Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Yubo Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Kai Qiu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Ning Jiao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Linjuan He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Jingdong Yin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China.
| |
Collapse
|
26
|
Rocha MC, Minari K, Fabri JHTM, Kerkaert JD, Gava LM, da Cunha AF, Cramer RA, Borges JC, Malavazi I. Aspergillus fumigatus Hsp90 interacts with the main components of the cell wall integrity pathway and cooperates in heat shock and cell wall stress adaptation. Cell Microbiol 2021; 23:e13273. [PMID: 33010083 PMCID: PMC7855945 DOI: 10.1111/cmi.13273] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/12/2020] [Accepted: 09/27/2020] [Indexed: 12/18/2022]
Abstract
The initiation of Aspergillus fumigatus infection occurs via dormant conidia deposition into the airways. Therefore, conidial germination and subsequent hyphal extension and growth occur in a sustained heat shock (HS) environment promoted by the host. The cell wall integrity pathway (CWIP) and the essential eukaryotic chaperone Hsp90 are critical for fungi to survive HS. Although A. fumigatus is a thermophilic fungus, the mechanisms underpinning the HS response are not thoroughly described and important to define its role in pathogenesis, virulence and antifungal drug responses. Here, we investigate the contribution of the CWIP in A. fumigatus thermotolerance. We observed that the CWIP components PkcA, MpkA and RlmA are Hsp90 clients and that a PkcAG579R mutation abolishes this interaction. PkcAG579R also abolishes MpkA activation in the short-term response to HS. Biochemical and biophysical analyses indicated that Hsp90 is a dimeric functional ATPase, which has a higher affinity for ADP than ATP and prevents MpkA aggregation in vitro. Our data suggest that the CWIP is constitutively required for A. fumigatus to cope with the temperature increase found in the mammalian lung environment, emphasising the importance of this pathway in supporting thermotolerance and cell wall integrity.
Collapse
Affiliation(s)
- Marina Campos Rocha
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Karine Minari
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, Brazil
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, Brazil
| | | | - Joshua D Kerkaert
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Lisandra Marques Gava
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Anderson Ferreira da Cunha
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Robert A Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Júlio César Borges
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, Brazil
| | - Iran Malavazi
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, Brazil
| |
Collapse
|
27
|
Dual targeting of JAK2 and ERK interferes with the myeloproliferative neoplasm clone and enhances therapeutic efficacy. Leukemia 2021; 35:2875-2884. [PMID: 34480104 PMCID: PMC8478661 DOI: 10.1038/s41375-021-01391-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023]
Abstract
Myeloproliferative neoplasms (MPN) show dysregulated JAK2 signaling. JAK2 inhibitors provide clinical benefits, but compensatory activation of MAPK pathway signaling impedes efficacy. We hypothesized that dual targeting of JAK2 and ERK1/2 could enhance clone control and therapeutic efficacy. We employed genetic and pharmacologic targeting of ERK1/2 in Jak2V617F MPN mice, cells and patient clinical isolates. Competitive transplantations of Jak2V617F vs. wild-type bone marrow (BM) showed that ERK1/2 deficiency in hematopoiesis mitigated MPN features and reduced the Jak2V617F clone in blood and hematopoietic progenitor compartments. ERK1/2 ablation combined with JAK2 inhibition suppressed MAPK transcriptional programs, normalized cytoses and promoted clone control suggesting dual JAK2/ERK1/2 targeting as enhanced corrective approach. Combined pharmacologic JAK2/ERK1/2 inhibition with ruxolitinib and ERK inhibitors reduced proliferation of Jak2V617F cells and corrected erythrocytosis and splenomegaly of Jak2V617F MPN mice. Longer-term treatment was able to induce clone reductions. BM fibrosis was significantly decreased in MPLW515L-driven MPN to an extent not seen with JAK2 inhibitor monotherapy. Colony formation from JAK2V617F patients' CD34+ blood and BM was dose-dependently inhibited by combined JAK2/ERK1/2 inhibition in PV, ET, and MF subsets. Overall, we observed that dual targeting of JAK2 and ERK1/2 was able to enhance therapeutic efficacy suggesting a novel treatment approach for MPN.
Collapse
|
28
|
Russo R, Mallia S, Zito F, Lampiasi N. Long-Lasting Activity of ERK Kinase Depends on NFATc1 Induction and Is Involved in Cell Migration-Fusion in Murine Macrophages RAW264.7. Int J Mol Sci 2020; 21:ijms21238965. [PMID: 33255852 PMCID: PMC7728313 DOI: 10.3390/ijms21238965] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Macrophages are mononuclear cells that become osteoclasts (OCs) in the presence of two cytokines, macrophage colony-stimulating factor (M-CSF), and receptor activator of NF-κB ligand (RANKL). RANKL binding to its specific receptor RANK leads to OCs differentiation mainly by nuclear factor of activated T-cells cytoplasmic 1 (NFATc1). In our previous study, the analysis of the protein network in NFATc1-knockdown cells, using the Ingenuity Pathway Analysis (IPA), showed a link between NFATc1 and Mitogen-activated protein kinase kinase (MEK)-extracellular receptor kinase (ERK) signaling pathway. Therefore, this study aimed to extend our knowledge of the relationship between NFATc1 and the ERK. Here, we demonstrate that delayed ERK1/2 phosphorylation in pre-OC RANKL-induced depends on NFATc1. Indeed, the knockdown of NFATc1 reduced the phosphorylation of ERK1/2 (60%) and the pharmacological inhibition of the ERK1/2 kinase activity impairs the expression of NFATc1 without preventing its translocation into the nucleus. Furthermore, silencing of NFATc1 significantly reduced RANKL-induced migration (p < 0.01), and most pre-OCs are still mononuclear after 48 h (80 ± 5%), despite the presence of actin rings. On the other hand, the inhibitors FR180204 and PD98059 significantly reduced RANKL-induced cell migration (p < 0.01), leading to a reduction in the number of multinucleated cells. Finally, we suggest that long-lasting ERK activity depends on NFATc1 induction and is likely linked to cell migration, fusion, and OC differentiation.
Collapse
|
29
|
Avoiding or Co-Opting ATP Inhibition: Overview of Type III, IV, V, and VI Kinase Inhibitors. NEXT GENERATION KINASE INHIBITORS 2020. [PMCID: PMC7359047 DOI: 10.1007/978-3-030-48283-1_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
As described in the previous chapter, most kinase inhibitors that have been developed for use in the clinic act by blocking ATP binding; however, there is growing interest in identifying compounds that target kinase activities and functions without interfering with the conserved features of the ATP-binding site. This chapter will highlight alternative approaches that exploit unique kinase structural features that are being targeted to identify more selective and potent inhibitors. The figure below, adapted from (Sammons et al., Molecular Carcinogenesis 58:1551–1570, 2019), provides a graphical description of the various approaches to manipulate kinase activity. In addition to the type I and II inhibitors, type III kinase inhibitors have been identified to target sites adjacent to the ATP-binding site in the catalytic domain. New information on kinase structure and substrate-binding sites has enabled the identification of type IV kinase inhibitor compounds that target regions outside the catalytic domain. The combination of targeting unique allosteric sites outside the catalytic domain with ATP-targeted compounds has yielded a number of novel bivalent type V kinase inhibitors. Finally, emerging interest in the development of irreversible compounds that form selective covalent interactions with key amino acids involved in kinase functions comprise the class of type VI kinase inhibitors.
Collapse
|
30
|
ERK signalling: a master regulator of cell behaviour, life and fate. Nat Rev Mol Cell Biol 2020; 21:607-632. [PMID: 32576977 DOI: 10.1038/s41580-020-0255-7] [Citation(s) in RCA: 643] [Impact Index Per Article: 128.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2020] [Indexed: 12/13/2022]
Abstract
The proteins extracellular signal-regulated kinase 1 (ERK1) and ERK2 are the downstream components of a phosphorelay pathway that conveys growth and mitogenic signals largely channelled by the small RAS GTPases. By phosphorylating widely diverse substrates, ERK proteins govern a variety of evolutionarily conserved cellular processes in metazoans, the dysregulation of which contributes to the cause of distinct human diseases. The mechanisms underlying the regulation of ERK1 and ERK2, their mode of action and their impact on the development and homeostasis of various organisms have been the focus of much attention for nearly three decades. In this Review, we discuss the current understanding of this important class of kinases. We begin with a brief overview of the structure, regulation, substrate recognition and subcellular localization of ERK1 and ERK2. We then systematically discuss how ERK signalling regulates six fundamental cellular processes in response to extracellular cues. These processes are cell proliferation, cell survival, cell growth, cell metabolism, cell migration and cell differentiation.
Collapse
|
31
|
Humphries BA, Cutter AC, Buschhaus JM, Chen YC, Qyli T, Palagama DSW, Eckley S, Robison TH, Bevoor A, Chiang B, Haley HR, Sahoo S, Spinosa PC, Neale DB, Boppisetti J, Sahoo D, Ghosh P, Lahann J, Ross BD, Yoon E, Luker KE, Luker GD. Enhanced mitochondrial fission suppresses signaling and metastasis in triple-negative breast cancer. Breast Cancer Res 2020; 22:60. [PMID: 32503622 PMCID: PMC7275541 DOI: 10.1186/s13058-020-01301-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mitochondrial dynamics underlies malignant transformation, cancer progression, and response to treatment. Current research presents conflicting evidence for functions of mitochondrial fission and fusion in tumor progression. Here, we investigated how mitochondrial fission and fusion states regulate underlying processes of cancer progression and metastasis in triple-negative breast cancer (TNBC). METHODS We enforced mitochondrial fission and fusion states through chemical or genetic approaches and measured migration and invasion of TNBC cells in 2D and 3D in vitro models. We also utilized kinase translocation reporters (KTRs) to identify single cell effects of mitochondrial state on signaling cascades, PI3K/Akt/mTOR and Ras/Raf/MEK/ERK, commonly activated in TNBC. Furthermore, we determined effects of fission and fusion states on metastasis, bone destruction, and signaling in mouse models of breast cancer. RESULTS Enforcing mitochondrial fission through chemical or genetic approaches inhibited migration, invasion, and metastasis in TNBC. Breast cancer cells with predominantly fissioned mitochondria exhibited reduced activation of Akt and ERK both in vitro and in mouse models of breast cancer. Treatment with leflunomide, a potent activator of mitochondrial fusion proteins, overcame inhibitory effects of fission on migration, signaling, and metastasis. Mining existing datasets for breast cancer revealed that increased expression of genes associated with mitochondrial fission correlated with improved survival in human breast cancer. CONCLUSIONS In TNBC, mitochondrial fission inhibits cellular processes and signaling pathways associated with cancer progression and metastasis. These data suggest that therapies driving mitochondrial fission may benefit patients with breast cancer.
Collapse
Affiliation(s)
- Brock A Humphries
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
| | - Alyssa C Cutter
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
| | - Johanna M Buschhaus
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
- Department of Biomedical Engineering, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
| | - Yu-Chih Chen
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Forbes Institute for Cancer Discovery, University of Michigan, Ann Arbor, MI, USA
| | - Tonela Qyli
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
| | - Dilrukshika S W Palagama
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
| | - Samantha Eckley
- Unit for Laboratory Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Tanner H Robison
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
- Department of Biomedical Engineering, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
| | - Avinash Bevoor
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
| | - Benjamin Chiang
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
| | - Henry R Haley
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
| | - Saswat Sahoo
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA
| | - Phillip C Spinosa
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Dylan B Neale
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Jagadish Boppisetti
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
| | - Debashis Sahoo
- Department of Pediatrics, Department of Computer Science and Engineering, Jacob's School of Engineering, Rebecca and John Moore Comprehensive Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Pradipta Ghosh
- Department of Medicine, Department of Cellular and Molecular Medicine, Rebecca and John Moore Comprehensive Cancer Center, Veterans Affairs Medical Center, University of California San Diego, La Jolla, CA, USA
| | - Joerg Lahann
- Biointerfaces Institute, Departments of Chemical Engineering, Materials Science and Engineering, Biomedical Engineering, and Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Brian D Ross
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Eusik Yoon
- Department of Biomedical Engineering, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA
| | - Kathryn E Luker
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
| | - Gary D Luker
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA.
- Department of Biomedical Engineering, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA.
- Department of Microbiology and Immunology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
32
|
Ras assemblies and signaling at the membrane. Curr Opin Struct Biol 2020; 62:140-148. [DOI: 10.1016/j.sbi.2020.01.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/16/2020] [Indexed: 02/07/2023]
|
33
|
Miao L, Tian H. Development of ERK1/2 inhibitors as a therapeutic strategy for tumour with MAPK upstream target mutations. J Drug Target 2019; 28:154-165. [PMID: 31340679 DOI: 10.1080/1061186x.2019.1648477] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Extracellular signal-regulated kinases 1 and 2 (ERK1/2) phosphorylate a variety of substrates that play key roles in promoting cell survival and proliferation. Many inhibitors, acting on upstream of the ERK pathway, exhibit excellent antitumor activity. However, drug-resistant tumour cells invariably emerge after their use due to the reactivation of ERK1/2 signalling. ERK1/2 inhibitors have shown clinical efficacy as a therapeutic strategy for the treatment of tumours with mitogen-activated protein kinase (MAPK) upstream target mutations. These inhibitors may be effective against cancers with altered MAPK upstream pathway and may be used as a possible strategy to overcome acquired resistance to MAPK inhibitors. In this review, we describe the mechanism and types of ERK1/2 inhibitors, summarise the current development status of small-molecule ERK1/2 inhibitors, including the preclinical data and clinical study progress, and discuss the future research directions for the application of ERK1/2 inhibitors.
Collapse
Affiliation(s)
- Longfei Miao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Hongqi Tian
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| |
Collapse
|
34
|
Olea-Flores M, Zuñiga-Eulogio MD, Mendoza-Catalán MA, Rodríguez-Ruiz HA, Castañeda-Saucedo E, Ortuño-Pineda C, Padilla-Benavides T, Navarro-Tito N. Extracellular-Signal Regulated Kinase: A Central Molecule Driving Epithelial-Mesenchymal Transition in Cancer. Int J Mol Sci 2019; 20:E2885. [PMID: 31200510 PMCID: PMC6627365 DOI: 10.3390/ijms20122885] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/09/2019] [Accepted: 06/11/2019] [Indexed: 12/18/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a reversible cellular process, characterized by changes in gene expression and activation of proteins, favoring the trans-differentiation of the epithelial phenotype to a mesenchymal phenotype. This process increases cell migration and invasion of tumor cells, progression of the cell cycle, and resistance to apoptosis and chemotherapy, all of which support tumor progression. One of the signaling pathways involved in tumor progression is the MAPK pathway. Within this family, the ERK subfamily of proteins is known for its contributions to EMT. The ERK subfamily is divided into typical (ERK 1/2/5), and atypical (ERK 3/4/7/8) members. These kinases are overexpressed and hyperactive in various types of cancer. They regulate diverse cellular processes such as proliferation, migration, metastasis, resistance to chemotherapy, and EMT. In this context, in vitro and in vivo assays, as well as studies in human patients, have shown that ERK favors the expression, function, and subcellular relocalization of various proteins that regulate EMT, thus promoting tumor progression. In this review, we discuss the mechanistic roles of the ERK subfamily members in EMT and tumor progression in diverse biological systems.
Collapse
Affiliation(s)
- Monserrat Olea-Flores
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| | - Miriam Daniela Zuñiga-Eulogio
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| | - Miguel Angel Mendoza-Catalán
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| | - Hugo Alberto Rodríguez-Ruiz
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| | - Eduardo Castañeda-Saucedo
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| | - Carlos Ortuño-Pineda
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| | - Teresita Padilla-Benavides
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| | - Napoleón Navarro-Tito
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| |
Collapse
|
35
|
Sammons RM, Ghose R, Tsai KY, Dalby KN. Targeting ERK beyond the boundaries of the kinase active site in melanoma. Mol Carcinog 2019; 58:1551-1570. [PMID: 31190430 DOI: 10.1002/mc.23047] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/30/2019] [Accepted: 05/10/2019] [Indexed: 12/14/2022]
Abstract
Extracellular signal-regulated kinase 1/2 (ERK1/2) constitute a point of convergence for complex signaling events that regulate essential cellular processes, including proliferation and survival. As such, dysregulation of the ERK signaling pathway is prevalent in many cancers. In the case of BRAF-V600E mutant melanoma, ERK inhibition has emerged as a viable clinical approach to abrogate signaling through the ERK pathway, even in cases where MEK and Raf inhibitor treatments fail to induce tumor regression due to resistance mechanisms. Several ERK inhibitors that target the active site of ERK have reached clinical trials, however, many critical ERK interactions occur at other potentially druggable sites on the protein. Here we discuss the role of ERK signaling in cell fate, in driving melanoma, and in resistance mechanisms to current BRAF-V600E melanoma treatments. We explore targeting ERK via a distinct site of protein-protein interaction, known as the D-recruitment site (DRS), as an alternative or supplementary mode of ERK pathway inhibition in BRAF-V600E melanoma. Targeting the DRS with inhibitors in melanoma has the potential to not only disrupt the catalytic apparatus of ERK but also its noncatalytic functions, which have significant impacts on spatiotemporal signaling dynamics and cell fate.
Collapse
Affiliation(s)
- Rachel M Sammons
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas.,Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas
| | - Ranajeet Ghose
- Department of Chemistry and Biochemistry, The City College of New York, New York, New York
| | - Kenneth Y Tsai
- Departments of Anatomic Pathology and Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Kevin N Dalby
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas.,Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
36
|
Popov IK, Hiatt SM, Whalen S, Keren B, Ruivenkamp C, van Haeringen A, Chen MJ, Cooper GM, Korf BR, Chang C. A YWHAZ Variant Associated With Cardiofaciocutaneous Syndrome Activates the RAF-ERK Pathway. Front Physiol 2019; 10:388. [PMID: 31024343 PMCID: PMC6465419 DOI: 10.3389/fphys.2019.00388] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/21/2019] [Indexed: 11/13/2022] Open
Abstract
Cardiofaciocutaneous (CFC) syndrome is a genetic disorder characterized by distinctive facial features, congenital heart defects, and skin abnormalities. Several germline gain-of-function mutations in the RAS/RAF/MEK/ERK pathway are associated with the disease, including KRAS, BRAF, MEK1, and MEK2. CFC syndrome thus belongs to a group of disorders known as RASopathies, which are all caused by pathogenic mutations in various genes encoding components of the RAS pathway. We recently identified novel variants in YWHAZ, a 14-3-3 family member, in individuals with a phenotype consistent with CFC that may potentially be deleterious and disease-causing. In the current study, we take advantage of the vertebrate model Xenopus laevis to analyze the functional consequence of a particular YWHAZ variant, S230W, and investigate the molecular mechanisms underlying its activity. We show that compared with wild type YWHAZ, the S230W variant induces severe embryonic defects when ectopically expressed in early Xenopus embryos. The S230W variant also rescues the defects induced by a dominant negative FGF receptor more efficiently and enhances Raf-stimulated Erk phosphorylation to a higher level than wild type YWHAZ. Although neither YWHAZ nor the variant promotes membrane recruitment of Raf proteins, the variant binds to more Raf and escapes phosphorylation by casein kinase 1a. Our data provide strong support to the hypothesis that the S230W variant of YWHAZ is a gain-of-function mutation in the RAS-ERK pathway and may underlie a CFC phenotype.
Collapse
Affiliation(s)
- Ivan K Popov
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Susan M Hiatt
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Sandra Whalen
- UF de Génétique Clinique, Hôpital Armand Trousseau, Assistance Publique Hôpitaux de Paris, Centre de Référence Maladies Rares des Anomalies du Développement et Syndromes Malformatifs, Paris, France
| | - Boris Keren
- UF de Génétique Clinique, Hôpital Armand Trousseau, Assistance Publique Hôpitaux de Paris, Centre de Référence Maladies Rares des Anomalies du Développement et Syndromes Malformatifs, Paris, France
| | - Claudia Ruivenkamp
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Arie van Haeringen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Mei-Jan Chen
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Gregory M Cooper
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Bruce R Korf
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Chenbei Chang
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
37
|
Flores K, Yadav SS, Katz AA, Seger R. The Nuclear Translocation of Mitogen-Activated Protein Kinases: Molecular Mechanisms and Use as Novel Therapeutic Target. Neuroendocrinology 2019; 108:121-131. [PMID: 30261516 DOI: 10.1159/000494085] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 09/26/2018] [Indexed: 11/19/2022]
Abstract
The mitogen-activated protein kinase (MAPK) cascades are central signaling pathways that play a central role in the regulation of most stimulated cellular processes including proliferation, differentiation, stress response and apoptosis. Currently 4 such cascades are known, each termed by its downstream MAPK components: the extracellular signal-regulated kinase 1/2 (ERK1/2), cJun-N-terminal kinase (JNK), p38 and ERK5. One of the hallmarks of these cascades is the stimulated nuclear translocation of their MAPK components using distinct mechanisms. ERK1/2 are shuttled into the nucleus by importin7, JNK and p38 by a dimer of importin3 with either importin9 or importin7, and ERK5 by importin-α/β. Dysregulation of these cascades often results in diseases, including cancer and inflammation, as well as developmental and neurological disorders. Much effort has been invested over the years in developing inhibitors to the MAPK cascades to combat these diseases. Although some inhibitors are already in clinical use or clinical trials, their effects are hampered by development of resistance or adverse side-effects. Recently, our group developed 2 myristoylated peptides: EPE peptide, which inhibits the interaction of ERK1/2 with importin7, and PERY peptide, which prevents JNK/p38 interaction with either importin7 or importin9. These peptides block the nuclear translocation of their corresponding kinases, resulting in prevention of several cancers, while the PERY peptide also inhibits inflammation-induced diseases. These peptides provide a proof of concept for the use of the nuclear translocation of MAPKs as therapeutic targets for cancer and/or inflammation.
Collapse
Affiliation(s)
- Karen Flores
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Suresh Singh Yadav
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Arieh A Katz
- Department of Integrative Biomedical Sciences and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Rony Seger
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot,
| |
Collapse
|
38
|
García-Gómez R, Bustelo XR, Crespo P. Protein-Protein Interactions: Emerging Oncotargets in the RAS-ERK Pathway. Trends Cancer 2018; 4:616-633. [PMID: 30149880 DOI: 10.1016/j.trecan.2018.07.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/03/2018] [Accepted: 07/08/2018] [Indexed: 12/20/2022]
Abstract
Given the implication of aberrant RAS-extracellular signal-regulated kinase (ERK) signaling in the development of a large number of tumor types, this route is under intense scrutiny to identify new anticancer drugs. Most avenues in that direction have been primarily focused on the inhibition of the catalytic activity of the kinases that participate in this pathway. Although promising, the efficacy of these therapies is short lived due to undesired toxicity and/or drug resistance problems. As an alternative path, new efforts are now being devoted to the targeting of protein-protein interactions (PPIs) involved in the flow of RAS-ERK signals. Many of these efforts have shown promising results in preclinical models. In this review, we summarize recent progress made in this area.
Collapse
Affiliation(s)
- Rocío García-Gómez
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander 39011, Spain
| | - Xosé R Bustelo
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029, Spain; Centro de Investigación del Cáncer, Universidad de Salamanca, Salamanca 37007, Spain; Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Salamanca 37007, Spain
| | - Piero Crespo
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander 39011, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029, Spain.
| |
Collapse
|
39
|
Kidger AM, Sipthorp J, Cook SJ. ERK1/2 inhibitors: New weapons to inhibit the RAS-regulated RAF-MEK1/2-ERK1/2 pathway. Pharmacol Ther 2018; 187:45-60. [PMID: 29454854 DOI: 10.1016/j.pharmthera.2018.02.007] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The RAS-regulated RAF-MEK1/2-ERK1/2 signalling pathway is de-regulated in a variety of cancers due to mutations in receptor tyrosine kinases (RTKs), negative regulators of RAS (such as NF1) and core pathway components themselves (RAS, BRAF, CRAF, MEK1 or MEK2). This has driven the development of a variety of pharmaceutical agents to inhibit RAF-MEK1/2-ERK1/2 signalling in cancer and both RAF and MEK inhibitors are now approved and used in the clinic. There is now much interest in targeting at the level of ERK1/2 for a variety of reasons. First, since the pathway is linear from RAF-to-MEK-to-ERK then ERK1/2 are validated as targets per se. Second, innate resistance to RAF or MEK inhibitors involves relief of negative feedback and pathway re-activation with all signalling going through ERK1/2, validating the use of ERK inhibitors with RAF or MEK inhibitors as an up-front combination. Third, long-term acquired resistance to RAF or MEK inhibitors involves a variety of mechanisms (KRAS or BRAF amplification, MEK mutation, etc.) which re-instate ERK activity, validating the use of ERK inhibitors to forestall acquired resistance to RAF or MEK inhibitors. The first potent highly selective ERK1/2 inhibitors have now been developed and are entering clinical trials. They have one of three discrete mechanisms of action - catalytic, "dual mechanism" or covalent - which could have profound consequences for how cells respond and adapt. In this review we describe the validation of ERK1/2 as anti-cancer drug targets, consider the mechanism of action of new ERK1/2 inhibitors and how this may impact on their efficacy, anticipate factors that will determine how tumour cells respond and adapt to ERK1/2 inhibitors and consider ERK1/2 inhibitor drug combinations.
Collapse
Affiliation(s)
- Andrew M Kidger
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, England, United Kingdom.
| | - James Sipthorp
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, England, United Kingdom
| | - Simon J Cook
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, England, United Kingdom.
| |
Collapse
|
40
|
Yin Y, Zhao Y, Han S, Zhang N, Chen H, Wang X. Autophagy-ERK1/2-Involved Disinhibition of Hippocampal Neurons Contributes to the Pre-Synaptic Toxicity Induced by Aβ42 Exposure. J Alzheimers Dis 2018; 59:851-869. [PMID: 28697568 DOI: 10.3233/jad-170246] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease and the most frequent cause of progressive cognitive decline in the elderly population. To date, there is still no effective treatment for AD, requiring more underlying mechanisms. In the present study, we investigated the effects of Aβ42 on the inhibitory synaptic transmission in the cultured hippocampal neurons, and explored the possible mechanism. The frequency, but not amplitude, of miniature inhibitory post-synaptic currents was significantly suppressed by Aβ42, indicating that Aβ42 played its role in inhibitory transmitter release at the pre-synaptic sites. Aβ42 had no effect on miniature excitatory post-synaptic currents, suggesting GABAergic synapses are more susceptible to Aβ42 exposure. However, the number of GABAergic neurons or synapses was not influenced, suggesting the corresponding stage may be a preclinical one. The effect of Aβ42 can be mimicked by PD98059 (an inhibitor of ERK1/2) and blocked by curcumin (an activator of MEK), which reveals Aβ-involved influence is via the decreased phosphorylation of MAPK-ERK1/2. In addition, synaptophysin is confirmed to be a downstream protein of MAPK-ERK1/2 at the pre-synaptic site. At the same time, suppressed autophagy was observed after Aβ42 exposure, and the activation of autophagy increased pERK1/2 level and salvaged the disinhibition of hippocampal neurons. These data suggest that diminished GABAergic tone likely starts from the preclinical stage of AD, so some GABAergic stress test may be effective for identifying cognitively normal elder adults. Strategies against the dysfunction of autophagy should be adopted in the early stage of AD because of its initial effects.
Collapse
Affiliation(s)
- Yanling Yin
- Department of Neurobiology and Beijing Institute for Brain Disorders, School of Basic Medical Sciences, Capital Medical University, Beijing, PR China
| | - Yuanyuan Zhao
- Core Facility Center, Capital Medical University, Beijing, PR China
| | - Song Han
- Department of Neurobiology and Beijing Institute for Brain Disorders, School of Basic Medical Sciences, Capital Medical University, Beijing, PR China
| | - Nan Zhang
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, PRChina
| | - Hanyu Chen
- Wyoming Seminary College Preparatory School, Kingston, PA, USA
| | - Xiaomin Wang
- Department of Neurobiology and Beijing Institute for Brain Disorders, School of Basic Medical Sciences, Capital Medical University, Beijing, PR China
| |
Collapse
|
41
|
Eblen ST. Extracellular-Regulated Kinases: Signaling From Ras to ERK Substrates to Control Biological Outcomes. Adv Cancer Res 2018; 138:99-142. [PMID: 29551131 DOI: 10.1016/bs.acr.2018.02.004] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The extracellular-regulated kinases ERK1 and ERK2 are evolutionarily conserved, ubiquitous serine-threonine kinases that are involved in regulating cellular signaling in both normal and pathological conditions. Their expression is critical for development and their hyperactivation is a major factor in cancer development and progression. Since their discovery as one of the major signaling mediators activated by mitogens and Ras mutation, we have learned much about their regulation, including their activation, binding partners and substrates. In this review I will discuss some of what has been discovered about the members of the Ras to ERK pathway, including regulation of their activation by growth factors and cell adhesion pathways. Looking downstream of ERK activation I will also highlight some of the many ERK substrates that have been discovered, including those involved in feedback regulation, cell migration and cell cycle progression through the control of transcription, pre-mRNA splicing and protein synthesis.
Collapse
Affiliation(s)
- Scott T Eblen
- Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
42
|
Helfenberger KE, Villalba NM, Buchholz B, Boveris A, Poderoso JJ, Gelpi RJ, Poderoso C. Subcellular distribution of ERK phosphorylation in tyrosine and threonine depends on redox status in murine lung cells. PLoS One 2018; 13:e0193022. [PMID: 29489891 PMCID: PMC5831038 DOI: 10.1371/journal.pone.0193022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 02/02/2018] [Indexed: 11/26/2022] Open
Abstract
Activation of ERK1/2 implies the phosphorylation of tyrosine (pTyr) and threonine (pThr) by MEK1/2; both reactions were thought to be cytoplasmic, promoting ERK to reach the nucleus where it activates several transcription factors. In addition, H2O2 concentrations are known to modulate ERK intracellular translocation, which impacts on cellular proliferation. In this context, the objective of this work was to study the sequence of ERK phosphorylation under two redox conditions and to analyze a putative mitochondrial contribution to this process, in LP07 murine lung cells. A time-course of H2O2 administration was used and ERK phosphorylation was analyzed in cytosol, mitochondria and nuclei. At 1μM H2O2, a proliferative redox stimulus, immunoblot revealed a fast and transient increase in cytosol pTyr and a sustained increase in mitochondrial pTyr content. The detection for pThr/pTyrERK (2pERK) showed in cytosol a marked increase at 5 minutes with a fast dephosphorylation after that time, for both H2O2 concentrations. However, at 50 μM H2O2, an anti-proliferative condition, 2pERK was gradually retained in mitochondria. Interestingly, these results were confirmed by in vivo experiments using mice treated with a highly oxidizing agent [H2O2]. By the use of two ERK2 mutant constructions, where Tyr and Thr were replaced by alanine, we confirmed that 2pERK relied almost completely on pThr183. Confocal microscopy confirmed ERK subcellular distribution dependence on the incidence of cytosolic pTyr and mitochondrial pThr at 1μM H2O2. This work shows for the first time, both in vitro and in vivo, an ERK cycle involving a cross-talk between cytosol and mitochondria phosphorylation events, which may play a significant role in cell cycle progression, proliferation or differentiation under two different redox conditions.
Collapse
Affiliation(s)
- Katia E. Helfenberger
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Nerina M. Villalba
- Universidad de Buenos Aires, Facultad de Medicina, Hospital de Clínicas “José de San Martín”, Laboratorio del Metabolismo del Oxígeno, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Bruno Buchholz
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Patología, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina
| | - Alberto Boveris
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Patología, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina
| | - Juan José Poderoso
- Universidad de Buenos Aires, Facultad de Medicina, Hospital de Clínicas “José de San Martín”, Laboratorio del Metabolismo del Oxígeno, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Ricardo J. Gelpi
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Patología, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina
| | - Cecilia Poderoso
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
43
|
Tomer D, Chippalkatti R, Mitra K, Rikhy R. ERK regulates mitochondrial membrane potential in fission deficient Drosophila follicle cells during differentiation. Dev Biol 2018; 434:48-62. [DOI: 10.1016/j.ydbio.2017.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 11/04/2017] [Accepted: 11/15/2017] [Indexed: 01/10/2023]
|
44
|
Gunawardhana N, Jang S, Choi YH, Hong YA, Jeon YE, Kim A, Su H, Kim JH, Yoo YJ, Merrell DS, Kim J, Cha JH. Helicobacter pylori-Induced HB-EGF Upregulates Gastrin Expression via the EGF Receptor, C-Raf, Mek1, and Erk2 in the MAPK Pathway. Front Cell Infect Microbiol 2018; 7:541. [PMID: 29379775 PMCID: PMC5775237 DOI: 10.3389/fcimb.2017.00541] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 12/26/2017] [Indexed: 12/22/2022] Open
Abstract
Helicobacter pylori is associated with hypergastrinemia, which has been linked to the development of gastric diseases. Although the molecular mechanism is not fully understood, H. pylori is known to modulate the Erk pathway for induction of gastrin expression. Herein we found that an epidermal growth factor (EGF) receptor kinase inhibitor significantly blocked H. pylori-induced gastrin promoter activity, suggesting involvement of EGF receptor ligands. Indeed, H. pylori induced mRNA expression of EGF family members such as amphiregulin, EGF, heparin-binding EGF-like growth factor (HB-EGF), and transforming growth factor-α. Of these, specific siRNA targeting of HB-EGF significantly blocked H. pylori-induced gastrin expression. Moreover, H. pylori induced HB-EGF ectodomain shedding, which we found to be a critical process for H. pylori-induced gastrin expression. Thus, we demonstrate a novel role for human mature HB-EGF in stimulating gastrin promoter activity during H. pylori infection. Further investigation using specific siRNAs targeting each isoform of Raf, Mek, and Erk elucidated that the mechanism underlying H. pylori-induced gastrin expression can be delineated as the sequential activation of HB-EGF, the EGF receptor, C-Raf, Mek1, and the Erk2 molecules in the MAPK pathway. Surprisingly, whereas Erk2 acts as a potent activator of gastrin expression, siRNA knockdown of Erk1 induced gastrin promoter activity, suggesting that Erk1 typically acts as a repressor of gastrin expression. Elucidation of the mechanism of gastrin modulation by HB-EGF-mediated EGF receptor transactivation should facilitate the development of therapeutic strategies against H. pylori-related hypergastrinemia and consequently gastric disease development, including gastric cancers.
Collapse
Affiliation(s)
- Niluka Gunawardhana
- Department of Oral Biology, Oral Science Research Center, Department of Applied Life Science, The Graduate School, BK21 Plus Project, Yonsei University College of Dentistry, Seoul, South Korea.,Department of Basic Sciences, Faculty of Dental Sciences, University of Peradeniya, Peradeniya, Sri Lanka
| | - Sungil Jang
- Department of Oral Biology, Oral Science Research Center, Department of Applied Life Science, The Graduate School, BK21 Plus Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - Yun Hui Choi
- Department of Oral Biology, Oral Science Research Center, Department of Applied Life Science, The Graduate School, BK21 Plus Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - Youngmin A Hong
- Department of Oral Biology, Oral Science Research Center, Department of Applied Life Science, The Graduate School, BK21 Plus Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - Yeong-Eui Jeon
- Department of Oral Biology, Oral Science Research Center, Department of Applied Life Science, The Graduate School, BK21 Plus Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - Aeryun Kim
- Department of Oral Biology, Oral Science Research Center, Department of Applied Life Science, The Graduate School, BK21 Plus Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - Hanfu Su
- Department of Oral Biology, Oral Science Research Center, Department of Applied Life Science, The Graduate School, BK21 Plus Project, Yonsei University College of Dentistry, Seoul, South Korea.,Microbiology and Molecular Biology, Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ji-Hye Kim
- Department of Dental Hygiene, Jeonju Kijeon College, Jeonju, South Korea
| | - Yun-Jung Yoo
- Department of Oral Biology, Oral Science Research Center, Department of Applied Life Science, The Graduate School, BK21 Plus Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - D Scott Merrell
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Jinmoon Kim
- Department of Oral Biology, Oral Science Research Center, Department of Applied Life Science, The Graduate School, BK21 Plus Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - Jeong-Heon Cha
- Department of Oral Biology, Oral Science Research Center, Department of Applied Life Science, The Graduate School, BK21 Plus Project, Yonsei University College of Dentistry, Seoul, South Korea.,Microbiology and Molecular Biology, Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
45
|
Agudo-Ibañez L, Crespo P, Casar B. Analysis of Ras/ERK Compartmentalization by Subcellular Fractionation. Methods Mol Biol 2018; 1487:151-162. [PMID: 27924565 DOI: 10.1007/978-1-4939-6424-6_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
A vast number of stimuli use the Ras/Raf/MEK/ERK signaling cascade to transmit signals from their cognate receptors, in order to regulate multiple cellular functions, including key processes such as proliferation, cell cycle progression, differentiation, and survival. The duration, intensity and specificity of the responses are, in part, controlled by the compartmentalization/subcellular localization of the signaling intermediaries. Ras proteins are found in different plasma membrane microdomains and endomembranes. At these localizations, Ras is subject to site-specific regulatory mechanisms, distinctively engaging effector pathways and switching-on diverse genetic programs to generate a multitude of biological responses. The Ras effector pathway leading to ERKs activation is also subject to space-related regulatory processes. About half of ERK1/2 substrates are found in the nucleus and function mainly as transcription factors. The other half resides in the cytosol and other cellular organelles. Such subcellular distribution enhances the complexity of the Ras/ERK cascade and constitutes an essential mechanism to endow variability to its signals, which enables their participation in the regulation of a broad variety of functions. Thus, analyzing the subcellular compartmentalization of the members of the Ras/ERK cascade constitutes an important factor to be taken into account when studying specific biological responses evoked by Ras/ERK signals. Herein, we describe methods for such purpose.
Collapse
Affiliation(s)
- Lorena Agudo-Ibañez
- Instituto de Biomedicina y Biotecnología de Cantabria, Consejo Superior de Investigaciones Científicas - Universidad de Cantabria, c/Albert Einstein, 22, PCTCAN, Santander, 39011, Cantabria, Spain
| | - Piero Crespo
- Instituto de Biomedicina y Biotecnología de Cantabria, Consejo Superior de Investigaciones Científicas - Universidad de Cantabria, c/Albert Einstein, 22, PCTCAN, Santander, 39011, Cantabria, Spain
| | - Berta Casar
- Instituto de Biomedicina y Biotecnología de Cantabria, Consejo Superior de Investigaciones Científicas - Universidad de Cantabria, c/Albert Einstein, 22, PCTCAN, Santander, 39011, Cantabria, Spain.
| |
Collapse
|
46
|
Bigeard J, Hirt H. Nuclear Signaling of Plant MAPKs. FRONTIERS IN PLANT SCIENCE 2018; 9:469. [PMID: 29696029 PMCID: PMC5905223 DOI: 10.3389/fpls.2018.00469] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/26/2018] [Indexed: 05/18/2023]
Abstract
Mitogen-activated protein kinases (MAPKs) are conserved protein kinases in eukaryotes that establish signaling modules where MAPK kinase kinases (MAPKKKs) activate MAPK kinases (MAPKKs) which in turn activate MAPKs. In plants, they are involved in the signaling of multiple environmental stresses and developmental programs. MAPKs phosphorylate their substrates and this post-translational modification (PTM) contributes to the regulation of proteins. PTMs may indeed modify the activity, subcellular localization, stability or trans-interactions of modified proteins. Plant MAPKs usually localize to the cytosol and/or nucleus, and in some instances they may also translocate from the cytosol to the nucleus. Upon the detection of environmental changes at the cell surface, MAPKs participate in the signal transduction to the nucleus, allowing an adequate transcriptional reprogramming. The identification of plant MAPK substrates largely contributed to a better understanding of the underlying signaling mechanisms. In this review, we highlight the nuclear signaling of plant MAPKs. We discuss the activation, regulation and activity of plant MAPKs, as well as their nuclear re-localization. We also describe and discuss known nuclear substrates of plant MAPKs in the context of biotic stress, abiotic stress and development and consider future research directions in the field of plant MAPKs.
Collapse
Affiliation(s)
- Jean Bigeard
- Institute of Plant Sciences Paris-Saclay IPS2, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Saclay, Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Orsay, France
| | - Heribert Hirt
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- *Correspondence: Heribert Hirt
| |
Collapse
|
47
|
Genetic visualization of protein interactions harnessing liquid phase transitions. Sci Rep 2017; 7:46380. [PMID: 28406179 PMCID: PMC5390312 DOI: 10.1038/srep46380] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 03/14/2017] [Indexed: 01/14/2023] Open
Abstract
Protein-protein interactions (PPIs) are essential components of cellular function. Current fluorescence-based technologies to measure PPIs have limited dynamic range and quantitative reproducibility. Here, we describe a genetically-encoded PPI visualization system that harnesses the dynamics of condensed liquid-phase transitions to analyze protein interactions in living cells. The fluorescent protein Azami-Green and p62-PB1 domain when fused to PPI partners triggered a rapid concatenation/oligomerization process that drove the condensation of liquid-phase droplets for real-time analysis of the interaction with unlimited dynamic range in the fluorescence signal. Proof-of-principle studies revealed novel insights on the live cell dynamics of XIAP-Smac and ERK2-dimer interactions. A photoconvertible variant allowed time-resolved optical highlighting for PPI kinetic analysis. Our system, called Fluoppi, demonstrates the unique signal amplification properties of liquid-phase condensation to detect PPIs. The findings introduce a general method for discovery of novel PPIs and modulators of established PPIs.
Collapse
|
48
|
Neilsen BK, Frodyma DE, Lewis RE, Fisher KW. KSR as a therapeutic target for Ras-dependent cancers. Expert Opin Ther Targets 2017; 21:499-509. [PMID: 28333549 DOI: 10.1080/14728222.2017.1311325] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Targeting downstream effectors required for oncogenic Ras signaling is a potential alternative or complement to the development of more direct approaches targeting Ras in the treatment of Ras-dependent cancers. Areas covered: Here we review literature pertaining to the molecular scaffold Kinase Suppressor of Ras (KSR) and its role in promoting signals critical to tumor maintenance. We summarize the phenotypes in knockout models, describe the role of KSR in cancer, and outline the structure and function of the KSR1 and KSR2 proteins. We then focus on the most recent literature that describes the crystal structure of the kinase domain of KSR2 in complex with MEK1, KSR-RAF dimerization particularly in response to RAF inhibition, and novel attempts to target KSR proteins directly. Expert opinion: KSR is a downstream effector of Ras-mediated tumorigenesis that is dispensable for normal growth and development, making it a desirable target for the development of novel therapeutics with a high therapeutic index. Recent advances have revealed that KSR can be functionally inhibited using a small molecule that stabilizes KSR in an inactive conformation. The efficacy and potential for this novel approach to be used clinically in the treatment of Ras-driven cancers is still being investigated.
Collapse
Affiliation(s)
- Beth K Neilsen
- a Eppley Institute, Fred & Pamela Buffett Cancer Center , University of Nebraska Medical Center , Omaha , NE , USA
| | - Danielle E Frodyma
- a Eppley Institute, Fred & Pamela Buffett Cancer Center , University of Nebraska Medical Center , Omaha , NE , USA
| | - Robert E Lewis
- a Eppley Institute, Fred & Pamela Buffett Cancer Center , University of Nebraska Medical Center , Omaha , NE , USA.,b Department of Pathology and Microbiology , University of Nebraska Medical Center , Omaha , NE , USA
| | - Kurt W Fisher
- b Department of Pathology and Microbiology , University of Nebraska Medical Center , Omaha , NE , USA
| |
Collapse
|
49
|
Levin SG, Godukhin OV. Modulating Effect of Cytokines on Mechanisms of Synaptic Plasticity in the Brain. BIOCHEMISTRY (MOSCOW) 2017; 82:264-274. [PMID: 28320267 DOI: 10.1134/s000629791703004x] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
After accumulation of data showing that resident brain cells (neurons, astrocytes, and microglia) produce mediators of the immune system, such as cytokines and their receptors under normal physiological conditions, a critical need emerged for investigating the role of these mediators in cognitive processes. The major problem for understanding the functional role of cytokines in the mechanisms of synaptic plasticity, de novo neurogenesis, and learning and memory is the small number of investigated cytokines. Existing concepts are based on data from just three proinflammatory cytokines: interleukin-1 beta, interleukin-6, and tumor necrosis factor-alpha. The amount of information in the literature on the functional role of antiinflammatory cytokines in the mechanisms of synaptic plasticity and cognitive functions of mature mammalian brain is dismally low. However, they are of principle importance for understanding the mechanisms of local information processing in the brain, since they modulate the activity of individual cells and local neural networks, being able to reconstruct the processes of synaptic plasticity and intercellular communication, in general, depending on the local ratio of the levels of different cytokines in certain areas of the brain. Understanding the functional role of cytokines in cellular mechanisms of information processing and storage in the brain would allow developing preventive and therapeutic means for the treatment of neuropathologies related to impairment of these mechanisms.
Collapse
Affiliation(s)
- S G Levin
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | |
Collapse
|
50
|
Joo D, Woo JS, Cho KH, Han SH, Min TS, Yang DC, Yun CH. Biphasic activation of extracellular signal-regulated kinase (ERK) 1/2 in epidermal growth factor (EGF)-stimulated SW480 colorectal cancer cells. BMB Rep 2017; 49:220-5. [PMID: 26879318 PMCID: PMC4915241 DOI: 10.5483/bmbrep.2016.49.4.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Indexed: 12/21/2022] Open
Abstract
Cancer cells have different characteristics due to the genetic differences where these unique features may strongly influence the effectiveness of therapeutic interventions. Here, we show that the spontaneous reactivation of extracellular signalregulated kinase (ERK), distinct from conventional ERK activation, represents a potent mechanism for cancer cell survival. We studied ERK1/2 activation in vitro in SW480 colorectal cancer cells. Although ERK signaling tends to be transiently activated, we observed the delayed reactivation of ERK1/2 in epidermal growth factor (EGF)-stimulated SW480 cells. This effect was observed even after EGF withdrawal. While phosphorylated ERK1/2 translocated into the nucleus following its primary activation, it remained in the cytoplasm during late-phase activation. The inhibition of primary ERK1/2 activation or protein trafficking, blocked reactivation and concurrently increased caspase 3 activity. Our results suggest that the biphasic activation of ERK1/2 plays a role in cancer cell survival; thus, regulation of ERK1/2 activation may improve the efficacy of cancer therapies that target ERK signaling. [BMB Reports 2016; 49(4): 220-225]
Collapse
Affiliation(s)
- Donghyun Joo
- Department of Agricultural Biotechnology and Center for Agricultural Biomaterials; Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Jong Soo Woo
- Department of Agricultural Biotechnology and Center for Agricultural Biomaterials; Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Kwang-Hyun Cho
- 2Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, Dental Research Institute, and BK21 Program, School of Dentistry, Seoul National University, Seoul 08826, Korea
| | - Tae Sun Min
- National Research Foundation of Korea, Daejeon 34113, Korea
| | - Deok-Chun Yang
- Korean Ginseng Center and Ginseng Genetic Resource Bank, Kyung Hee University, Yongin 17104, Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Center for Agricultural Biomaterials; Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|