1
|
Mistry B, Alaiya A, Abu-Dawud R, Alyacoub N, Colak D, Rajab M, Alanazi M, Shinwari Z, Ahmed H, Alharbi T, Kashir J, Almohanna F, Assiri A. Investigation of testis proteome alterations associated with male infertility in Dcaf17-deficient mice. Syst Biol Reprod Med 2025; 71:206-228. [PMID: 40449516 DOI: 10.1080/19396368.2025.2504459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 05/02/2025] [Accepted: 05/06/2025] [Indexed: 06/03/2025]
Abstract
Disruption of Dcaf17 in mice resulted in male infertility with severe spermatogenesis defects. To investigate the molecular basis of infertility phenotype, we examined testicular proteomes of wild-type (WT) and Dcaf17-/- mice using a mass spectrometry-based approach. We identified 727 and 525 differentially expressed proteins (DEPs) in 3- and 8-week old testes of Dcaf17-/- mice, respectively, with an adjusted p-value cut-off of ≤ 0.05. Among these, 299 and 298 DEPs had fold change of ≥ 1.5 between WT and Dcaf17-/- testes at -3- and 8-week old, respectively. In the 3-week old Dcaf17-/- testes, 59.5% of the DEPs were up-regulated, while 40.5% were down-regulated. Similarly, in the 8-week old Dcaf17-/- testes, 83.9% and 16.1% DEPs were up-regulated and down-regulated, respectively. Functional annotation and network analyses highlighted that many DEPs were associated with key biological processes, including ubiquitination, RNA processing, translation, protein folding, protein stabilization, metabolic processes, oxidation-reduction processes and sper-matogenesis. Subsequent immunohistochemistry and immunoblotting analyses showed higher ubiquitin levels in Dcaf17-/- testes compared to WT, suggesting potential impairment in ubiquitin proteasome system (UPS) due to DCAF17 loss of function. Our data provide a basis for further work to elucidate the molecular function(s) of DCAF17 in spermatogenesis and male fertility.
Collapse
Affiliation(s)
- Bhavesh Mistry
- Comparative Medicine Department, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Ayodele Alaiya
- Cell Therapy and Immunobiology Department, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Raed Abu-Dawud
- Comparative Medicine Department, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
- Department of Dermatology, HELIOS Hospital Schwerin, University Campus of Medical School Hamburg, Schwerin, Germany
| | - Nadya Alyacoub
- Comparative Medicine Department, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Dilek Colak
- Molecular Oncology Department, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Mohamed Rajab
- Comparative Medicine Department, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Maha Alanazi
- Comparative Medicine Department, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Zakia Shinwari
- Cell Therapy and Immunobiology Department, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Hala Ahmed
- Comparative Medicine Department, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Thuraya Alharbi
- Comparative Medicine Department, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Junaid Kashir
- Comparative Medicine Department, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, UAE
- Center for Biotechnology, Khalifa University, Abu Dhabi, UAE
| | - Falah Almohanna
- Comparative Medicine Department, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Abdullah Assiri
- Comparative Medicine Department, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
2
|
Parashar S, Kaushik A, Ambasta RK, Kumar P. E2 conjugating enzymes: A silent but crucial player in ubiquitin biology. Ageing Res Rev 2025; 108:102740. [PMID: 40194666 DOI: 10.1016/j.arr.2025.102740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/14/2025] [Accepted: 03/19/2025] [Indexed: 04/09/2025]
Abstract
E2 conjugating enzymes serve as the linchpin of the Ubiquitin-Proteasome System (UPS), facilitating ubiquitin (Ub) transfer to substrate proteins and regulating diverse processes critical to cellular homeostasis. The interaction of E2s with E1 activating enzymes and E3 ligases singularly positions them as middlemen of the ubiquitin machinery that guides protein turnover. Structural determinants of E2 enzymes play a pivotal role in these interactions, enabling precise ubiquitin transfer and substrate specificity. Regulation of E2 enzymes is tightly controlled through mechanisms such as post-translational modifications (PTMs), allosteric control, and gene expression modulation. Specific residues that undergo PTMs highlight their impact on E2 function and their role in ubiquitin dynamics. E2 enzymes also cooperate with deubiquitinases (DUBs) to maintain proteostasis. Design of small molecule inhibitors to modulate E2 activity is emerging as promising avenue to restrict ubiquitination as a potential therapeutic intervention. Additionally, E2 enzymes have been implicated in the pathogenesis and progression of neurodegenerative disorders (NDDs), where their dysfunction contributes to disease mechanisms. In summary, examining E2 enzymes from structural and functional perspectives offers potential to advance our understanding of cellular processes and assist in discovery of new therapeutic targets.
Collapse
Affiliation(s)
- Somya Parashar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India
| | - Aastha Kaushik
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India
| | - Rashmi K Ambasta
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India.
| |
Collapse
|
3
|
Pan X, Sun Y, Liu J, Chen R, Zhang Z, Li C, Yao H, Ma J. A bacterial RING ubiquitin ligase triggering stepwise degradation of BRISC via TOLLIP-mediated selective autophagy manipulates host inflammatory response. Autophagy 2025; 21:1353-1372. [PMID: 40013521 DOI: 10.1080/15548627.2025.2468140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/06/2025] [Accepted: 02/13/2025] [Indexed: 02/28/2025] Open
Abstract
Numerous bacterial pathogens have evolved tactics to interfere with the host ubiquitination network to evade clearance by the innate immune system. Nevertheless, the subtle antagonism between a bacterial ubiquitinase and a host deubiquitinase, through which they modify their respective targets within a multifaceted network, has yet to be characterized. BRCC3 isopeptidase complex (BRISC) is a newly identified K63-specific deubiquitinase complex that plays a crucial role in cellular signaling pathways such as inflammation. NleG, a type III secretion system (T3SS) effector, contains a conserved RING E3 ubiquitin ligase domain that interacts with host ubiquitination machinery, along with a distinct substrate-recognition domain that targets host proteins. Here, one particular variant, NleG6, was identified as mediating K27- and K29-linked polyubiquitination at residues K89 and K114 of ABRAXAS2/FAM175B, a scaffolding protein within the BRISC complex, leading to its degradation through TOLLIP (toll interacting protein)-mediated selective autophagy. Further investigations elucidated that ABRAXAS2 degradation triggered the subsequent degradation of adjacent BRCC3, which in turn, hindered TNIP1/ABIN1 degradation, ultimately inhibiting NFKB/NF-κB (nuclear factor kappa B)-mediated inflammatory responses. This chain of events offers valuable insights into the NFKB activation by the K63-specific deubiquitinating role of BRISC, unveiling how bacteria manipulate ubiquitin regulation and selective autophagy within the BRISC network to inhibit the host's inflammatory response and thus dominate a pathogen-host tug-of-war.Abbreviations: 3-MA: 3-methyladenine; A/E: attaching and effacing; ATG7: autophagy related 7; BafA1: bafilomycin A1; BNIP3L/Nix: BCL2 interacting protein 3 like; BRISC: BRCC3 isopeptidase complex; Cas9: CRISPR-associated system 9; co-IP: co-immunoprecipitation; CQ: chloroquine; CRISPR: clustered regulatory interspaced short palindromic repeat; DAPI: 4',6-diamidino2-phenylindole; DMSO: dimethyl sulfoxide; DUB: deubiquitinating enzyme; E. coli: Escherichia coli; EHEC: enterohemorrhagic Escherichia coli; EPEC: enteropathogenic Escherichia coli; GFP: green fluorescent protein; LEE: locus of enterocyte effacement; MAP1LC3B/LC3: microtubule associated protein 1 light chain 3 beta; MG132: cbz-leu-leu-leucinal; MOI: multiplicity of infection; NBR1: NBR1 autophagy cargo receptor; NC: negative control; NFKB/NF-κB: nuclear factor kappa B; NH4Cl: ammonium chloride; OPTN: optineurin; SQSTM1/p62: sequestosome 1; sgRNAs: small guide RNAs; T3SS: type III secretion system; TNF: tumor necrosis factor; TOLLIP: toll interacting protein; TRAF: TNF receptor associated factor; TUBB: tubulin beta class I; WCL: whole cell lysate; WT: wide type.
Collapse
Affiliation(s)
- Xinming Pan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
- WOAH Reference Lab for Swine Streptococcosis, Bacterial Pathogenesis Research Group, Nanjing, China
| | - Yangyang Sun
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| | - Jianan Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
- WOAH Reference Lab for Swine Streptococcosis, Bacterial Pathogenesis Research Group, Nanjing, China
| | - Rong Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
- WOAH Reference Lab for Swine Streptococcosis, Bacterial Pathogenesis Research Group, Nanjing, China
| | - Zhen Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
- WOAH Reference Lab for Swine Streptococcosis, Bacterial Pathogenesis Research Group, Nanjing, China
| | - Caiying Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
- WOAH Reference Lab for Swine Streptococcosis, Bacterial Pathogenesis Research Group, Nanjing, China
| | - Huochun Yao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
- WOAH Reference Lab for Swine Streptococcosis, Bacterial Pathogenesis Research Group, Nanjing, China
| | - Jiale Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
- WOAH Reference Lab for Swine Streptococcosis, Bacterial Pathogenesis Research Group, Nanjing, China
| |
Collapse
|
4
|
Koch J, Elbæk CR, Priesmann D, Damgaard RB. The Molecular Toolbox for Linkage Type-Specific Analysis of Ubiquitin Signaling. Chembiochem 2025; 26:e202500114. [PMID: 40192223 PMCID: PMC12118340 DOI: 10.1002/cbic.202500114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/04/2025] [Indexed: 04/22/2025]
Abstract
Modification of proteins and other biomolecules with ubiquitin regulates virtually all aspects of eukaryotic cell biology. Ubiquitin can be attached to substrates as a monomer or as an array of polyubiquitin chains with defined linkages between the ubiquitin moieties. Each ubiquitin linkage type adopts a distinct structure, enabling the individual linkage types to mediate specific functions or outcomes in the cell. The dynamics, heterogeneity, and in some cases low abundance, make analysis of linkage type-specific ubiquitin signaling a challenging and complex task. Herein, the strategies and molecular tools available for enrichment, detection, and characterization of linkage type-specific ubiquitin signaling, are reviewed. The molecular "toolbox" consists of a range of molecularly different affinity reagents, including antibodies and antibody-like molecules, affimers, engineered ubiquitin-binding domains, catalytically inactive deubiquitinases, and macrocyclic peptides, each with their unique characteristics and binding modes. The molecular engineering of these ubiquitin-binding molecules makes them useful tools and reagents that can be coupled to a range of analytical methods, such as immunoblotting, fluorescence microscopy, mass spectrometry-based proteomics, or enzymatic analyses to aid in deciphering the ever-expanding complexity of ubiquitin modifications.
Collapse
Affiliation(s)
- Julian Koch
- Department of Biotechnology and BiomedicineTechnical University of DenmarkSøltofts PladsDK‐2800Kongens LyngbyDenmark
| | - Camilla Reiter Elbæk
- Department of Biotechnology and BiomedicineTechnical University of DenmarkSøltofts PladsDK‐2800Kongens LyngbyDenmark
| | - Dominik Priesmann
- Department of Biotechnology and BiomedicineTechnical University of DenmarkSøltofts PladsDK‐2800Kongens LyngbyDenmark
| | - Rune Busk Damgaard
- Department of Biotechnology and BiomedicineTechnical University of DenmarkSøltofts PladsDK‐2800Kongens LyngbyDenmark
| |
Collapse
|
5
|
Hu Y, Xu W, Chen L. Post-translational modifications and the reprogramming of tumor metabolism. Discov Oncol 2025; 16:929. [PMID: 40418495 DOI: 10.1007/s12672-025-02674-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 05/12/2025] [Indexed: 05/27/2025] Open
Abstract
Metabolic reprogramming occurs alongside tumor development. As cancers advance from precancerous lesions to locally invasive tumors and then to metastatic tumors, metabolic patterns exhibit distinct changes, including mutations in metabolic enzymes and modifications in the activity of metabolic regulatory proteins. Alterations in metabolic patterns can influence tumor evolution, either establishing or alleviating metabolic burdens and facilitating cancer growth. To fully understand how metabolic reprogramming helps tumors grow and find the metabolic activities that are most useful for treating tumors, we need to have a deeper understanding of how metabolic patterns are controlled as tumors grow. Post-translational modifications (PTMs), a critical mechanism in the regulation of protein function, can influence protein activity, stability, and interactions in several ways. In tumor cells, PTMs-mediated metabolic reprogramming is a crucial mechanism for adapting to the challenging microenvironment and sustaining fast growth. This article will deeply explore the intricate regulatory mechanism of PTMs on metabolic reprogramming and its role in tumor progression, with the expectation of providing new theoretical basis and potential targets for tumor treatment.
Collapse
Affiliation(s)
- Yuqing Hu
- Central Laboratory and Precision Medicine Center, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, Zhejiang Province, China
- Jinhua Key Laboratory of Cancer Nutrition and Metabolism Research, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, Zhejiang Province, China
| | - Wenxia Xu
- Central Laboratory and Precision Medicine Center, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, Zhejiang Province, China.
- Jinhua Key Laboratory of Cancer Nutrition and Metabolism Research, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, Zhejiang Province, China.
| | - Lin Chen
- Central Laboratory and Precision Medicine Center, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, Zhejiang Province, China.
- Jinhua Key Laboratory of Cancer Nutrition and Metabolism Research, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, Zhejiang Province, China.
| |
Collapse
|
6
|
Luo Y, Li WX, Zheng QS, Yan JQ, Yang YD, Shen SR, Zhang QH, Liang G, Wang Y, Chen DD, Hu X, Luo W. OTUD1 deficiency attenuates myocardial ischemia/reperfusion induced cardiomyocyte apoptosis by regulating RACK1 phosphorylation. Acta Pharmacol Sin 2025:10.1038/s41401-025-01567-x. [PMID: 40394237 DOI: 10.1038/s41401-025-01567-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 04/14/2025] [Indexed: 05/22/2025]
Abstract
Myocardial infarction (MI) is an important risk factor of cardiovascular disease (CVD) and its incidence has been on the rise globally. Myocardial ischemia/reperfusion (I/R) injury is frequently detected in the ischemic myocardium. Recent studies have shown that ubiquitination plays an important role in the cardiac pathophysiological processes. Herein, we investigated the role and molecular mechanism of Ovarian tumor deubiquitinase 1 (OTUD1) in I/R induced myocardial injury. It was observed that the myocardial OTUD1 was upregulated in I/R-induced heart tissues and global deletion of OTUD1 significantly ameliorated I/R induced myocardial injury and dysfunction. Similarly, silencing or overexpression OTUD1 affected the hypoxia/reoxygenation (H/R) induced cell apoptosis in cultured cardiomyocytes. Mechanistically, immunoprecipitation-mass spectrometry revealed that OTUD1 directly bound to receptor for activated C-kinase 1 (RACK1) which has been identified as a scaffold protein for multiple kinases including mitogen-activated protein kinase (MAPKs) and Inhibitor of nuclear factor kappa B kinase (IKK). OTUD1 could cleave K63-linked polyubiquitin chains to enhance RACK1 phosphorylation, thus modulating MAPKs and nuclear factor kappa B (NF-κB) signaling. Finally, silencing of RACK1 reverses OTUD1-promoted H/R induced myocardial apoptosis. In conclusion, our findings suggest that OTUD1 promotes I/R-induced heart injury by deubiquitinating RACK1, suggesting that OTUD1 is a potential therapeutic target for myocardial I/R.
Collapse
Affiliation(s)
- Yue Luo
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou, 325800, China
| | - Wei-Xin Li
- Medical Research Center, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Qing-Song Zheng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jue-Qian Yan
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yu-Die Yang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Si-Rui Shen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Qian-Hui Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310053, China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Ding-Dao Chen
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou, 325800, China.
| | - Xiang Hu
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China.
| | - Wu Luo
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou, 325800, China.
- Medical Research Center, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China.
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
7
|
Sun L, Liu J, Lu M, Zhou Y, Guo S, Qin Z, Wang Z, Sun X. Inactivation of SIAH-1 E3 ligase attenuates Aβ toxicity by suppressing ubiquitin-dependent DVE-1 degradation in C. elegans models of Alzheimer's disease. J Biol Chem 2025:110226. [PMID: 40349774 DOI: 10.1016/j.jbc.2025.110226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 04/30/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025] Open
Abstract
The mitochondrial unfolded protein response (UPRmt), an evolutionarily conserved proteostasis pathway, plays a critical role in the pathogenesis of Alzheimer's disease (AD), characterized by amyloid-β peptide (Aβ) aggregation. Although the transcription factor DVE-1 regulates UPRmt activation in C. elegans and has been implicated in Aβ pathology, its regulatory mechanisms under AD-like conditions remain unclear. Here, using the classical C. elegans muscle-specific AD model (CL2006 strain), we observed UPRmt induction in young adults despite paradoxical depletion of DVE-1 protein concurrent with elevated dve-1 transcript levels. Through integrated genetic and biochemical analyses, we identified SIAH-1, a conserved E3 ubiquitin ligase that partners with the E2 enzyme UBC-25 to interact with DVE-1 and mediate its K48-linked polyubiquitination, as targeting DVE-1 for proteasomal degradation. Disruption of SIAH-1 E3 ubiquitin ligase function or overexpression of DVE-1 significantly reduced Aβ toxicity in both the muscle-expressed Aβ (CL2006) and neuronal Aβ models (gnaIs2). These interventions concurrently suppressed Aβ aggregation in the heat shock-inducible Aβ aggregation model (xchIs15). Mechanistically, this protective effect was associated with restored mitochondrial homeostasis, as evidenced by MitoTracker Red staining and TOMM-20::mCherry fluorescence imaging in muscle-expressed Aβ animals. These assays demonstrated that Aβ accumulation compromises mitochondrial integrity, a phenotype markedly rescued in siah-1 deletion mutants and DVE-1-overexpressing strains. Collectively, these findings establish the SIAH-1/DVE-1 axis as a conserved proteostasis regulator and highlight ubiquitin-dependent mitochondrial quality control as a potential therapeutic target for AD and related proteopathies.
Collapse
Affiliation(s)
- Lihua Sun
- The Zhongzhou Laboratory for Integrative Biology, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 450004, PR China; Joint National Laboratory for Antibody Drug Engineering, School of Medicine, Henan University, Kaifeng, 475004, PR China
| | - Jiahui Liu
- The Zhongzhou Laboratory for Integrative Biology, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 450004, PR China
| | - Menghan Lu
- The Zhongzhou Laboratory for Integrative Biology, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 450004, PR China
| | - Yingying Zhou
- Joint National Laboratory for Antibody Drug Engineering, School of Medicine, Henan University, Kaifeng, 475004, PR China
| | - Shuqi Guo
- The Zhongzhou Laboratory for Integrative Biology, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 450004, PR China
| | - Zhipeng Qin
- Joint National Laboratory for Antibody Drug Engineering, School of Medicine, Henan University, Kaifeng, 475004, PR China
| | - Zekun Wang
- Joint National Laboratory for Antibody Drug Engineering, School of Medicine, Henan University, Kaifeng, 475004, PR China.
| | - Xiaojuan Sun
- The Zhongzhou Laboratory for Integrative Biology, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 450004, PR China; Joint National Laboratory for Antibody Drug Engineering, School of Medicine, Henan University, Kaifeng, 475004, PR China.
| |
Collapse
|
8
|
Pan M, Fu Z, Hou H, Yang C, Li J. Proteolysis-Targeting Chimera (PROTAC): A Revolutionary Tool for Chemical Biology Research. SMALL METHODS 2025:e2500402. [PMID: 40342226 DOI: 10.1002/smtd.202500402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/24/2025] [Indexed: 05/11/2025]
Abstract
Proteolysis-targeting chimera (PROTAC) technology is a revolutionary tool for drug discovery that simultaneously recruits E3 ligase and the protein of interest to induce ubiquitination and subsequent proteasomal degradation. Since the inaugural PROTAC prototype emerged in 2001, this modality has garnered significant interest across academia and industry, catalyzing transformative applications in drug discovery and chemical biology. The field has evolved from foundational investigations into molecular design, structural optimization, and protein target extension to address more sophisticated challenges, such as structural analysis of ternary complexes, expansion of diversified therapeutic indications, and clinical translation studies. Recent progress across chemical, pharmaceutical, and biochemical sciences has reshaped PROTAC design paradigms, which in turn expanded the chemical biology toolkit. In this review, pivotal milestones are systematically chronicled in PROTAC development, evaluate emerging strategies for diversifying E3 ligase utilization and expanding the scope of degradable targets, and summarize a series of instrumental and biochemical methodologies that propelled sequential breakthroughs. Additionally, forward-looking trajectories are proposed to address current limitations and accelerate the clinical maturation of PROTAC-based therapeutics.
Collapse
Affiliation(s)
- Meichen Pan
- Beijing Life Science Academy, Beijing, 102209, China
- School of Biomedical Sciences, Hunan University, Changsha, Hunan, 410082, China
| | - Zhongliang Fu
- Beijing Life Science Academy, Beijing, 102209, China
- School of Biomedical Sciences, Hunan University, Changsha, Hunan, 410082, China
| | - Hongwei Hou
- Beijing Life Science Academy, Beijing, 102209, China
| | - Chunrong Yang
- New Cornerstone Science Laboratory, Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
- Beijing Life Science Academy, Beijing, 102209, China
| | - Jinghong Li
- New Cornerstone Science Laboratory, Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
- Beijing Life Science Academy, Beijing, 102209, China
- Center for Bioanalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
9
|
Ferrero G, Cardamone MD, Luca F, Bourk E, Ricci L, Liu W, Gao Y, Burrone G, Muhammad A, Chan S, Smith E, Fan TYC, Cutrupi S, Garcia-Bassets I, De Bortoli M, Rosenfeld MG, Perissi V. Nonproteolytic ubiquitination regulates chromatin occupancy by the NCoR/SMRT/HDAC3 corepressor complex in MCF-7 breast cancer cells. Proc Natl Acad Sci U S A 2025; 122:e2502805122. [PMID: 40305047 PMCID: PMC12067245 DOI: 10.1073/pnas.2502805122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
Tight regulation of gene expression is achieved through the coordinated action of transcription factors and cofactors that often can act as both repressors and activators in response to regulatory signals, with their activity modulated by context-specific signal transduction pathways that also impinge on their transient and cyclical recruitment to chromatin. However, the mechanisms underlying the intricate interplay between the regulatory strategies controlling cofactors' activity and localization across subcellar domains remain poorly understood. Here, we investigated the role of G-Protein Pathway Suppressor 2 (GPS2), a transcriptional cofactor critical for maintaining cellular homeostasis via regulation of mitochondrial biogenesis, stress response, lipid metabolism, insulin signaling, and inflammation, in MCF-7 breast cancer cells. By integration of biochemical assays with genome-wide RNA sequencing and Chromatin immunoprecipitation-Seq analyses, we show that nuclear GPS2 is required for licensing histone deacetylase 3 recruitment to chromatin via restricted ubiquitination by tumor necrosis factor receptor-associated factor 6 (TRAF6), an E3 ubiquitin ligase previously shown to regulate the switch from repressive to activating functions of the nuclear receptor corepressor (NCoR)/silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) complex and here unexpectedly found to translocate to the nucleus in response to IL-1β stimulation. Nuclear TRAF6 is recruited to chromatin via direct interaction with the corepressors NCoR/SMRT, and TRAF6-mediated ubiquitination of TGF-beta activated kinase 1 (MAP3K7) binding protein 2 (TAB2), a facultative component of the NCoR/SMRT complex, contributes to corepressor clearance from target regulatory regions. Together, these results reveal an exquisite mechanism for coordinating the local regulation of cofactor activity with proinflammatory signaling pathways.
Collapse
Affiliation(s)
- Giulio Ferrero
- Department of Clinical and Biological Science, University of Torino, Orbassano (Torino)10043, Italy
| | - Maria Dafne Cardamone
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA02118
| | - Francesca Luca
- Department of Clinical and Biological Science, University of Torino, Orbassano (Torino)10043, Italy
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA02118
| | - Eliot Bourk
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA92037
| | - Laura Ricci
- Department of Clinical and Biological Science, University of Torino, Orbassano (Torino)10043, Italy
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA92037
| | - Wen Liu
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA92037
| | - Yuan Gao
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA02118
| | - Giulia Burrone
- Department of Clinical and Biological Science, University of Torino, Orbassano (Torino)10043, Italy
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA02118
- Department of Computer Science, University of Torino, Torino10149, Italy
| | - Akhirah Muhammad
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA02118
| | - Stefanie Chan
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA02118
| | - Emma Smith
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA02118
| | - Ting-Yu Claire Fan
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA02118
| | - Santina Cutrupi
- Department of Clinical and Biological Science, University of Torino, Orbassano (Torino)10043, Italy
| | - Ivan Garcia-Bassets
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA92037
| | - Michele De Bortoli
- Department of Clinical and Biological Science, University of Torino, Orbassano (Torino)10043, Italy
| | - Michael G. Rosenfeld
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA92037
| | - Valentina Perissi
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA02118
| |
Collapse
|
10
|
Chen S, Deng Y, Huang C, Xie X, Long Z, Lao S, Gao X, Wang K, Wang S, Li X, Liu Y, Xu C, Chen X, Huang W, Zhang J, Peng T, Li L, Chen Y, Lv X, Cai M, Li M. BSRF1 modulates IFN-β-mediated antiviral responses by inhibiting NF-κB activity via an IKK-dependent mechanism in Epstein-Barr virus infection. Int J Biol Macromol 2025; 306:141600. [PMID: 40024405 DOI: 10.1016/j.ijbiomac.2025.141600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/18/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
The Epstein-Barr virus (EBV) encoded tegument protein BSRF1 plays a significant role in the processes of viral maturation and release, however, it's not clear whether BSRF1 is involved in the modulation of host innate immunity. In this study, we demonstrated that BSRF1 can inhibit interferon β (IFN-β) production by downregulating nuclear factor kappa B (NF-κB) activity and subsequently reducing the yield of inflammatory cytokines, thereby facilitating viral replication. Dual luciferase reporter assays indicated that BSRF1 may inhibit NF-κB signaling at the level of IKK or between IKK and p65, while co-immunoprecipitation experiments revealed its association with multiple critical host adaptor proteins. Mechanistically, BSRF1 hinders the phosphorylation of IκBα at Ser32/36 and K48-linked polyubiquitination, thereby preventing proteasome-mediated degradation of IκBα by disrupting the assembly of the regulatory subunits within the IKK complex. Although BSRF1 interacts with p65 and its N-terminal domain, it does not alter the formation of the p65/p50 heterodimer. Instead, it prevents the nuclear translocation of p65 by inhibiting the dissociation of IκBα from the NF-κB dimer. Collectively, these findings suggested that BSRF1 assists EBV's evasion of host innate immune system by inhibiting the antiviral response to IFN-β through the NF-κB signaling pathway, potentially contributing to the virus's ability to establish persistent infection and its association with tumorigenesis.
Collapse
Affiliation(s)
- Shengwen Chen
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University; Department of Laboratory Medicine, The Fourth Affiliated Hospital of Guangzhou Medical University; State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, 511518, Qingyuan, Guangdong, China; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Yangxi Deng
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China; Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, Guangdong, China
| | - Chen Huang
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Xiaolei Xie
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University; Department of Laboratory Medicine, The Fourth Affiliated Hospital of Guangzhou Medical University; State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, 511518, Qingyuan, Guangdong, China
| | - Zhiwei Long
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Shuxian Lao
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Xinghong Gao
- Key Laboratory of Infectious Disease and Bio-Safety, Provincial Department of Education, Zunyi Medical University, Zunyi 563006, Guizhou, China
| | - Kezhen Wang
- School of Life Sciences, Anhui Medical University, Hefei 230032, Anhui, China
| | - Shuai Wang
- Children's Hospital of Soochow University, Suzhou 215025, Jiangsu, China
| | - Xiaoqing Li
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Yintao Liu
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Chunyan Xu
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Xinru Chen
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Wenzhuo Huang
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Jian Zhang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Tao Peng
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China; Guangdong South China Vaccine, Guangzhou 510663, Guangdong, China
| | - Linhai Li
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University; Department of Laboratory Medicine, The Fourth Affiliated Hospital of Guangzhou Medical University; State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, 511518, Qingyuan, Guangdong, China
| | - Yonger Chen
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China.
| | - Xi Lv
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China.
| | - Mingsheng Cai
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University; Department of Laboratory Medicine, The Fourth Affiliated Hospital of Guangzhou Medical University; State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, 511518, Qingyuan, Guangdong, China; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China.
| | - Meili Li
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University; Department of Laboratory Medicine, The Fourth Affiliated Hospital of Guangzhou Medical University; State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, 511518, Qingyuan, Guangdong, China; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China.
| |
Collapse
|
11
|
Park SA, Lee JM. Deubiquitinase dynamics: methodologies for understanding substrate interactions. BMB Rep 2025; 58:191-202. [PMID: 40058876 PMCID: PMC12123204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/17/2025] [Accepted: 02/17/2025] [Indexed: 05/29/2025] Open
Abstract
Deubiquitinases (DUBs) are essential regulators of protein homeostasis that influence cellular signaling, protein stability, and degradation by removing ubiquitin chains from substrate proteins. Understanding DUB-substrate interactions is critical to elucidate their functional roles and therapeutic potential. This review highlights key methodologies to investigate DUB activity and substrate interactions, including biochemical assays, fluorescence-based approaches, and in vitro deubiquitination assays. Biochemical methods, such as those measuring protein degradation rates, ubiquitination dynamics, and protein-protein interactions, provide valuable insights into DUB function and specificity. Fluorescence-based techniques that include photoconvertible reporters, fluorescent timers, and FRET enable the realtime monitoring of DUB dynamics and substrate turnover in live cells. Furthermore, in vitro deubiquitination assays provide direct mechanistic insights into DUB activity on target substrates. While each method provides unique insights, they also present challenges, like limited specificity or sensitivity, technical difficulties, or insufficient physiological relevance. Integrating complementary approaches can enhance accuracy and provide deeper insights into DUB-substrate interactions, facilitating the development of DUB-targeted therapeutic strategies. [BMB Reports 2025; 58(5): 191-202].
Collapse
Affiliation(s)
- Sang-ah Park
- Graduate School of Medical Science & Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Ji Min Lee
- Graduate School of Medical Science & Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| |
Collapse
|
12
|
Maspero E, Polo S. Deconstructing destruction: A rapid route to proteasomal fate. Mol Cell 2025; 85:1255-1257. [PMID: 40185076 DOI: 10.1016/j.molcel.2025.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/10/2025] [Accepted: 03/10/2025] [Indexed: 04/07/2025]
Abstract
In this issue of Molecular Cell, Kiss et al.1 introduce UbiREAD, a technology that deciphers ubiquitin chain-mediated degradation in living cells, revealing a hierarchy where K48 chains of at least three ubiquitins drive rapid proteasomal degradation and branched K48/K63 chains follow substrate-anchored rules.
Collapse
Affiliation(s)
- Elena Maspero
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Simona Polo
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy; Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy.
| |
Collapse
|
13
|
Kiss L, James LC, Schulman BA. UbiREAD deciphers proteasomal degradation code of homotypic and branched K48 and K63 ubiquitin chains. Mol Cell 2025; 85:1467-1476.e6. [PMID: 40132582 DOI: 10.1016/j.molcel.2025.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/13/2024] [Accepted: 02/25/2025] [Indexed: 03/27/2025]
Abstract
Ubiquitin chains define the fates of their modified proteins, often mediating proteasomal degradation in eukaryotes. Yet heterogeneity of intracellular ubiquitination has precluded systematically comparing the degradation capacities of different ubiquitin chains. We developed ubiquitinated reporter evaluation after intracellular delivery (UbiREAD), a technology that monitors cellular degradation and deubiquitination at high temporal resolution after bespoke ubiquitinated proteins are delivered into human cells. Comparing the degradation of a model substrate modified with various K48, K63, or K48/K63-branched ubiquitin chains revealed fundamental differences in their intracellular degradation capacities. K48 chains with three or more ubiquitins triggered degradation within minutes. K63-ubiquitinated substrate was rapidly deubiquitinated rather than degraded. Surprisingly, in K48/K63-branched chains, substrate-anchored chain identity determined the degradation and deubiquitination behavior, establishing that branched chains are not the sum of their parts. UbiREAD reveals a degradation code for ubiquitin chains varying by linkage, length, and topology and a functional hierarchy within branched ubiquitin chains.
Collapse
Affiliation(s)
- Leo Kiss
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried 82152, Germany.
| | - Leo C James
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| |
Collapse
|
14
|
Ashitomi H, Nakagawa T, Nakagawa M, Hosoi T. Cullin-RING Ubiquitin Ligases in Neurodevelopment and Neurodevelopmental Disorders. Biomedicines 2025; 13:810. [PMID: 40299365 PMCID: PMC12024872 DOI: 10.3390/biomedicines13040810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/30/2025] Open
Abstract
Ubiquitination is a dynamic and tightly regulated post-translational modification essential for modulating protein stability, trafficking, and function to preserve cellular homeostasis. This process is orchestrated through a hierarchical enzymatic cascade involving three key enzymes: the E1 ubiquitin-activating enzyme, the E2 ubiquitin-conjugating enzyme, and the E3 ubiquitin ligase. The final step of ubiquitination is catalyzed by the E3 ubiquitin ligase, which facilitates the transfer of ubiquitin from the E2 enzyme to the substrate, thereby dictating which proteins undergo ubiquitination. Emerging evidence underscores the critical roles of ubiquitin ligases in neurodevelopment, regulating fundamental processes such as neuronal polarization, axonal outgrowth, synaptogenesis, and synaptic function. Mutations in genes encoding ubiquitin ligases and the consequent dysregulation of these pathways have been increasingly implicated in a spectrum of neurodevelopmental disorders, including autism spectrum disorder, intellectual disability, and attention-deficit/hyperactivity disorder. This review synthesizes current knowledge on the molecular mechanisms underlying neurodevelopment regulated by Cullin-RING ubiquitin ligases-the largest subclass of ubiquitin ligases-and their involvement in the pathophysiology of neurodevelopmental disorders. A deeper understanding of these mechanisms holds significant promise for informing novel therapeutic strategies, ultimately advancing clinical outcomes for individuals affected by neurodevelopmental disorders.
Collapse
Affiliation(s)
- Honoka Ashitomi
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda 756-0084, Japan; (H.A.)
| | - Tadashi Nakagawa
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda 756-0084, Japan; (H.A.)
- Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Makiko Nakagawa
- Institute of Gene Research, Yamaguchi University Science Research Center, Ube 755-8505, Japan
- Advanced Technology Institute, Life Science Division, Yamaguchi University, Ube 755-8611, Japan
| | - Toru Hosoi
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda 756-0084, Japan; (H.A.)
| |
Collapse
|
15
|
Zhang Y, Yang J, Min J, Huang S, Li Y, Liu S. The emerging role of E3 ubiquitin ligases and deubiquitinases in metabolic dysfunction-associated steatotic liver disease. J Transl Med 2025; 23:368. [PMID: 40133964 PMCID: PMC11938720 DOI: 10.1186/s12967-025-06255-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/17/2025] [Indexed: 03/27/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease worldwide, with a prevalence as high as 32.4%. MASLD encompasses a spectrum of liver pathologies, ranging from steatosis to metabolic dysfunction-associated steatohepatitis (MASH), fibrosis, and, in some cases, progression to end-stage liver disease (cirrhosis and hepatocellular carcinoma). A comprehensive understanding of the pathogenesis of this highly prevalent liver disease may facilitate the identification of novel targets for the development of improved therapies. E3 ubiquitin ligases and deubiquitinases (DUBs) are key regulatory components of the ubiquitin‒proteasome system (UPS), which plays a pivotal role in maintaining intracellular protein homeostasis. Emerging evidence implicates that aberrant expression of E3 ligases and DUBs is involved in the progression of MASLD. Here, we review abnormalities in E3 ligases and DUBs by (1) discussing their targets, mechanisms, and functions in MASLD; (2) summarizing pharmacological interventions targeting these enzymes in preclinical and clinical studies; and (3) addressing challenges and future therapeutic strategies. This review synthesizes current evidence to highlight the development of novel therapeutic strategies based on the UPS for MASLD and progressive liver disease.
Collapse
Affiliation(s)
- Yu Zhang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, CSU-Sinocare Research Center for Nutrition and Metabolic Health, Furong Laboratory, Changsha, Hunan, 410011, China
| | - Jiahui Yang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, CSU-Sinocare Research Center for Nutrition and Metabolic Health, Furong Laboratory, Changsha, Hunan, 410011, China
| | - Jiali Min
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, CSU-Sinocare Research Center for Nutrition and Metabolic Health, Furong Laboratory, Changsha, Hunan, 410011, China
| | - Shan Huang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, CSU-Sinocare Research Center for Nutrition and Metabolic Health, Furong Laboratory, Changsha, Hunan, 410011, China
| | - Yuchen Li
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, CSU-Sinocare Research Center for Nutrition and Metabolic Health, Furong Laboratory, Changsha, Hunan, 410011, China
| | - Shanshan Liu
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, CSU-Sinocare Research Center for Nutrition and Metabolic Health, Furong Laboratory, Changsha, Hunan, 410011, China.
| |
Collapse
|
16
|
Belmonte-Fernández A, Herrero-Ruíz J, Limón-Mortés MC, Sáez C, Japón MÁ, Mora-Santos M, Romero F. Overexpression of βTrCP1 elicits cell death in cisplatin-induced senescent cells. Cell Death Dis 2025; 16:203. [PMID: 40133262 PMCID: PMC11937513 DOI: 10.1038/s41419-025-07556-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/22/2025] [Accepted: 03/17/2025] [Indexed: 03/27/2025]
Abstract
Senescence is a non-proliferative cellular state derived from aging or in response to exogenous insults, such as those that cause DNA damage. As a result of cancer treatments like cisplatin, certain tumor cells may undergo senescence. However, rather than being beneficial for patients, this is detrimental because these cells might proliferate again under specific conditions and, more importantly, because they synthesize and secrete molecules that promote the proliferation of nearby cells. Therefore, to achieve complete tumor remission, it is necessary to develop senolytic compounds to eliminate senescent cells. Here, we studied the role of βTrCP1 in cell proliferation and senescence and found that lentiviral overexpression of βTrCP1 induces the death of senescent cells obtained after cisplatin treatment in both two-dimensional cell cultures and tumorspheres. Mechanistically, we demonstrated that overexpression of βTrCP1 triggers proteasome-dependent degradation of p21 CIP1, allowing damaged cells to progress through the cell cycle and consequently die. Furthermore, we identified nucleophosmin 1 (NPM1) as the intermediary molecule involved in the effect of βTrCP1 on p21 CIP1. We determined that increased amounts of βTrCP1 partially retains NPM1 in the nucleoli, preventing it from associating with p21 CIP1, thus leaving it unprotected from degradation by the proteasome. These results have allowed us to discover a potential new target for senolytic drugs, as retaining NPM1 in the nucleoli under senescent conditions induces cell death.
Collapse
Affiliation(s)
| | - Joaquín Herrero-Ruíz
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | | | - Carmen Sáez
- Instituto de Biomedicina de Sevilla (IBiS) and Departamento de Anatomía Patológica, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Miguel Á Japón
- Instituto de Biomedicina de Sevilla (IBiS) and Departamento de Anatomía Patológica, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Mar Mora-Santos
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Francisco Romero
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain.
| |
Collapse
|
17
|
Li M, Xu Z, Liang S, Lv Q, You X, Yuan T, He J, Tu Q. Progress in ubiquitination and hepatocellular carcinoma: a bibliometric analysis. Discov Oncol 2025; 16:371. [PMID: 40117016 PMCID: PMC11928703 DOI: 10.1007/s12672-025-02155-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 03/17/2025] [Indexed: 03/23/2025] Open
Abstract
BACKGROUND AND PURPOSE Ubiquitination modifications can affect hepatocellular carcinoma (HCC) progression through various signaling pathways. However, no significant results have been observed regarding protein ubiquitination in HCC's therapeutic transformation. This study aimed to explore the research areas related to ubiquitination and HCC from a bibliometric perspective. METHODS Articles and reviews on HCC and ubiquitination published between 2000 and 2023 were obtained from the Web of Science Core Collection (WOSCC). CiteSpace, VOSviewer, and R-bibliometrix were used for the bibliometric and visualization analyses. RESULTS Altogether, 358 papers on ubiquitination and HCC were extracted from the WOSCC. Over 24 years, the number of publications has increased. Since the beginning of 2019, studies related to this topic have increased significantly, indicating that the role of ubiquitination modification in HCC is currently popular. China is the leading country in this field with the largest number of publications. The Chinese Academy of Sciences is one of the most influential institutions. Qiao, Yongxia, and Zhang Jie are highly productive authors with major achievements. The journal Cell Death & Disease had the highest number of publications, and the most highly cited journal was Oncogene. The highest citation burst intensity was Sung (2021). In the keyword strategy map, "cancer antigens" are popular keywords in HCC and ubiquitination research. CONCLUSION A comprehensive visual analysis of ubiquitination and HCC research was conducted using bibliometric methods, showing the publications and popular topics in this field over the past two decades, thus providing references for the future direction of ubiquitination and HCC research.
Collapse
Affiliation(s)
- Ming Li
- Department of Hepatobiliary Tumor Surgery, Department of Interventional Therapy, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, 330029, Jiangxi, People's Republic of China
- Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital of Nanchang University, Nanchang, 330029, Jiangxi, People's Republic of China
| | - Zhiliang Xu
- Department of Hepatobiliary Tumor Surgery, Department of Interventional Therapy, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, 330029, Jiangxi, People's Republic of China
- Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital of Nanchang University, Nanchang, 330029, Jiangxi, People's Republic of China
- Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Siqin Liang
- Department of Hepatobiliary Tumor Surgery, Department of Interventional Therapy, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, 330029, Jiangxi, People's Republic of China
- Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital of Nanchang University, Nanchang, 330029, Jiangxi, People's Republic of China
- Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Qiaoli Lv
- Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital of Nanchang University, Nanchang, 330029, Jiangxi, People's Republic of China
| | - Xiaoxiang You
- Department of Hepatobiliary Tumor Surgery, Department of Interventional Therapy, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, 330029, Jiangxi, People's Republic of China
- Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital of Nanchang University, Nanchang, 330029, Jiangxi, People's Republic of China
| | - Tinghao Yuan
- Department of Hepatobiliary Tumor Surgery, Department of Interventional Therapy, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, 330029, Jiangxi, People's Republic of China
- Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital of Nanchang University, Nanchang, 330029, Jiangxi, People's Republic of China
| | - Jun He
- Department of Hepatobiliary Tumor Surgery, Department of Interventional Therapy, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, 330029, Jiangxi, People's Republic of China
- Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital of Nanchang University, Nanchang, 330029, Jiangxi, People's Republic of China
| | - Qiang Tu
- Department of Hepatobiliary Tumor Surgery, Department of Interventional Therapy, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, 330029, Jiangxi, People's Republic of China.
- Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital of Nanchang University, Nanchang, 330029, Jiangxi, People's Republic of China.
| |
Collapse
|
18
|
Zhang J, Liu B, Ren R, Song S, Bao X, Huan X, Li H, Xu J, Yu T, Wang R, Miao ZH, Xiong B, He J, Liu T. Discovery and Optimization of a Series of Novel Morpholine-Containing USP1 Inhibitors. J Med Chem 2025; 68:3673-3699. [PMID: 39902599 DOI: 10.1021/acs.jmedchem.4c02792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Ubiquitin-specific protease 1 (USP1), a well-known member of the deubiquitinating enzymes, serves as a key regulator in DNA damage repair (DDR) processes. Herein, we utilized ring-opening and cyclization strategies based on KSQ-4279 to design a novel series of USP1 inhibitors featuring a morpholine scaffold. Notably, compound 38-P2 exhibited a more potent enzymatic and cellular inhibition activity compared to KSQ-4279. Mechanistically, 38-P2 was characterized as a selective, reversible, and noncompetitive USP1 inhibitor. 38-P2 efficiently activated the DDR pathway, induced cell cycle arrest and cell apoptosis, and inhibited cell survival. Importantly, it enhanced the sensitivity of olaparib-resistant cells to olaparib and showed a synergetic effect with andrographolide in BRCA-proficient cancer cells. Furthermore, 38-P2 had favorable pharmacokinetic profiles and good safety properties in vitro and in vivo. In the MDA-MB-436 xenograft model, 38-P2 displayed significant, dose-dependent antitumor efficacy. Overall, these findings indicate that 38-P2 is a promising lead compound for further drug development.
Collapse
Affiliation(s)
- Junjie Zhang
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| | - Benjin Liu
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Ruyue Ren
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Shanshan Song
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xubin Bao
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiajuan Huan
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hongrui Li
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
| | - Jiahao Xu
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
| | - Ting Yu
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
| | - Ruifeng Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Ze-Hong Miao
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| | - Bing Xiong
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| | - Jinxue He
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| | - Tongchao Liu
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
| |
Collapse
|
19
|
Hwang S, Park J, Koo SY, Lee SY, Jo Y, Ryu D, Go H, Lee CW. The ubiquitin ligase Pellino1 targets STAT3 to regulate macrophage-mediated inflammation and tumor development. Nat Commun 2025; 16:1256. [PMID: 39893188 PMCID: PMC11787384 DOI: 10.1038/s41467-025-56440-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 01/19/2025] [Indexed: 02/04/2025] Open
Abstract
Receptor-mediated signaling could be modulated by ubiquitination of pathway intermediates, but the role of such modification in the pathogenesis of inflammation and inflammation-related cancer is lesser known. The ubiquitin ligase Pellino1 has been shown to modulate immune signals by enabling various immune cells to respond to their receptor signals effectively. Here, we show that Pellino1 levels are elevated in patients with colitis, patients with colitis-associated colon cancer (CAC), and murine models of these conditions. In a monocyte-specific Pellino1 knock-out mouse model, we find reduced macrophage migration and activation, leading to attenuated development of colitis and CAC in male mice. Mechanistically, Pellino1 targets STAT3 for lysine 63-mediated ubiquitination, resulting in pathogenic activation of STAT3 signaling. Taken together, our findings reveal a macrophage-specific ubiquitination signaling axis in colitis and CAC development and suggest that Pellino1 is a potential candidate for treating chronic inflammation and inflammation-related cancer.
Collapse
Affiliation(s)
- Soeun Hwang
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea
| | - Junhee Park
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea
| | - Seo-Young Koo
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea
| | - Si-Yeon Lee
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea
| | - Yunju Jo
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, South Korea
| | - Dongryeol Ryu
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, South Korea
| | - Heounjeong Go
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea
| | - Chang-Woo Lee
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea.
- Research Institute, Curogen Technology, Suwon, 16419, South Korea.
| |
Collapse
|
20
|
Rodrigues T, Guardiola FA, Almeida D, Antunes A. Aquatic Invertebrate Antimicrobial Peptides in the Fight Against Aquaculture Pathogens. Microorganisms 2025; 13:156. [PMID: 39858924 PMCID: PMC11767717 DOI: 10.3390/microorganisms13010156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/07/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
The intensification of aquaculture has escalated disease outbreaks and overuse of antibiotics, driving the global antimicrobial resistance (AMR) crisis. Antimicrobial peptides (AMPs) provide a promising alternative due to their rapid, broad-spectrum activity, low AMR risk, and additional bioactivities, including immunomodulatory, anticancer, and antifouling properties. AMPs derived from aquatic invertebrates, particularly marine-derived, are well-suited for aquaculture, offering enhanced stability in high-salinity environments. This study compiles and analyzes data from AMP databases and over 200 scientific sources, identifying approximately 350 AMPs derived from aquatic invertebrates, mostly cationic and α-helical, across 65 protein families. While in vitro assays highlight their potential, limited in vivo studies hinder practical application. These AMPs could serve as feed additives, therapeutic agents, or in genetic engineering approaches like CRISPR/Cas9-mediated transgenesis to enhance resilience of farmed species. Despite challenges such as stability, ecological impacts, and regulatory hurdles, advancements in peptidomimetics and genetic engineering hold significant promise. Future research should emphasize refining AMP enhancement techniques, expanding their diversity and bioactivity profiles, and prioritizing comprehensive in vivo evaluations. Harnessing the potential of AMPs represents a significant step forward on the path to aquaculture sustainability, reducing antibiotic dependency, and combating AMR, ultimately safeguarding public health and ecosystem resilience.
Collapse
Affiliation(s)
- Tomás Rodrigues
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal;
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | - Francisco Antonio Guardiola
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain;
| | - Daniela Almeida
- Department of Zoology and Physical Anthropology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain;
| | - Agostinho Antunes
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal;
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| |
Collapse
|
21
|
Torghabe SY, Alavi P, Rostami S, Davies NM, Kesharwani P, Karav S, Sahebkar A. Modulation of the ubiquitin-proteasome system by curcumin: Therapeutic implications in cancer. Pathol Res Pract 2025; 265:155741. [PMID: 39612810 DOI: 10.1016/j.prp.2024.155741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/07/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
By the ubiquitin-proteasomes, cellular proteins are structurally degraded and turnover. Many essential functions and regulations of cells are regulated and controlled by these proteins. Recent studies indicated that many cancer types have been associated with aberrations in the ubiquitination pathway, which involves three enzymatic steps. Dietary phytochemicals have been identified as having the potential to inhibit carcinogenesis recently. As part of this group of phytochemicals, curcumin can play a crucial role in suppressing carcinogenesis by changing many reactions affected by the ubiquitin-proteasome pathway. Due to its ability to change some biological processes such as NF-κB, inhibit some cyclins, and induce apoptosis, it can be used as a drug in cancer treatment.
Collapse
Affiliation(s)
- Shima Yahoo Torghabe
- Department of Basic Sciences, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Parisa Alavi
- Department of Biology, Faculty of Basic Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Sara Rostami
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Science and Culture University, Tehran, Iran
| | - Neal M Davies
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
22
|
Liao Y, Zhang W, Zhou M, Zhu C, Zou Z. Ubiquitination in pyroptosis pathway: A potential therapeutic target for sepsis. Cytokine Growth Factor Rev 2024; 80:72-86. [PMID: 39294049 DOI: 10.1016/j.cytogfr.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024]
Abstract
Sepsis remains a significant clinical challenge, causing numerous deaths annually and representing a major global health burden. Pyroptosis, a unique form of programmed cell death characterized by cell lysis and the release of inflammatory mediators, is a crucial factor in the pathogenesis and progression of sepsis, septic shock, and organ dysfunction. Ubiquitination, a key post-translational modification influencing protein fate, has emerged as a promising target for managing various inflammatory conditions, including sepsis. This review integrates the current knowledge on sepsis, pyroptosis, and the ubiquitin system, focusing on the molecular mechanisms of ubiquitination within pyroptotic pathways activated during sepsis. By exploring how modulating ubiquitination can regulate pyroptosis and its associated inflammatory signaling pathways, this review provides insights into potential therapeutic strategies for sepsis, highlighting the need for further research into these complex molecular networks.
Collapse
Affiliation(s)
- Yan Liao
- School of Anesthesiology, Naval Medical University, Shanghai 200433, China
| | - Wangzheqi Zhang
- School of Anesthesiology, Naval Medical University, Shanghai 200433, China
| | - Miao Zhou
- Department of Anesthesiology, the Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University, Nanjing, Jiangsu 210009, China
| | - Chenglong Zhu
- School of Anesthesiology, Naval Medical University, Shanghai 200433, China.
| | - Zui Zou
- School of Anesthesiology, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
23
|
Ho HH, Wing SS. α-Synuclein ubiquitination - functions in proteostasis and development of Lewy bodies. Front Mol Neurosci 2024; 17:1498459. [PMID: 39600913 PMCID: PMC11588729 DOI: 10.3389/fnmol.2024.1498459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024] Open
Abstract
Synucleinopathies are neurodegenerative disorders characterized by the accumulation of α-synuclein containing Lewy bodies. Ubiquitination, a key post-translational modification, has been recognized as a pivotal regulator of α-synuclein's cellular dynamics, influencing its degradation, aggregation, and associated neurotoxicity. This review examines comprehensively the current understanding of α-synuclein ubiquitination and its role in the pathogenesis of synucleinopathies, particularly in the context of Parkinson's disease. We explore the molecular mechanisms responsible for α-synuclein ubiquitination, with a focus on the roles of E3 ligases and deubiquitinases implicated in the degradation process which occurs primarily through the endosomal lysosomal pathway. The review further discusses how the dysregulation of these mechanisms contributes to α-synuclein aggregation and LB formation and offers suggestions for future investigations into the role of α-synuclein ubiquitination. Understanding these processes may shed light on potential therapeutic avenues that can modulate α-synuclein ubiquitination to alleviate its pathological impact in synucleinopathies.
Collapse
Affiliation(s)
- Hung-Hsiang Ho
- Department of Medicine, McGill University and Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Simon S. Wing
- Department of Medicine, McGill University and Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| |
Collapse
|
24
|
Anang V, Antonescu L, Nho R, Soni S, Mebratu YA. Targeting the Ubiquitin Proteasome System to Combat Influenza A Virus: Hijacking the Cleanup Crew. Rev Med Virol 2024; 34:e70005. [PMID: 39516190 DOI: 10.1002/rmv.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/17/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Influenza A virus (IAV) remains a significant global public health threat, causing substantial illness and economic burden. Despite existing antiviral drugs, the emergence of resistant strains necessitates alternative therapeutic strategies. This review explores the complex interplay between the ubiquitin proteasome system (UPS) and IAV pathogenesis. We discuss how IAV manipulates the UPS to promote its lifecycle, while also highlighting how host cells utilise the UPS to counteract viral infection. Recent research on deubiquitinases as potential regulators of IAV infection is also addressed. By elucidating the multifaceted role of the UPS in IAV pathogenesis, this review aims to identify potential targets for novel therapeutic interventions.
Collapse
Affiliation(s)
- Vandana Anang
- Pulmonary, Critical Care Medicine, and Sleep Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Laura Antonescu
- Pulmonary, Critical Care Medicine, and Sleep Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Richard Nho
- Pulmonary, Critical Care Medicine, and Sleep Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Sourabh Soni
- Pulmonary, Critical Care Medicine, and Sleep Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Yohannes A Mebratu
- Pulmonary, Critical Care Medicine, and Sleep Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
25
|
Nguyen VN, Tran TX, Nguyen TT, Le NQK. Enhancing Arabidopsis thaliana ubiquitination site prediction through knowledge distillation and natural language processing. Methods 2024; 232:65-71. [PMID: 39447942 DOI: 10.1016/j.ymeth.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/30/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Protein ubiquitination is a critical post-translational modification (PTM) involved in diverse biological processes and plays a pivotal role in regulating physiological mechanisms and disease states. Despite various efforts to develop ubiquitination site prediction tools across species, these tools mainly rely on predefined sequence features and machine learning algorithms, with species-specific variations in ubiquitination patterns remaining poorly understood. This study introduces a novel approach for predicting Arabidopsis thaliana ubiquitination sites using a neural network model based on knowledge distillation and natural language processing (NLP) of protein sequences. Our framework employs a multi-species "Teacher model" to guide a more compact, species-specific "Student model", with the "Teacher" generating pseudo-labels that enhance the "Student" learning and prediction robustness. Cross-validation results demonstrate that our model achieves superior performance, with an accuracy of 86.3 % and an area under the curve (AUC) of 0.926, while independent testing confirmed these results with an accuracy of 86.3 % and an AUC of 0.923. Comparative analysis with established predictors further highlights the model's superiority, emphasizing the effectiveness of integrating knowledge distillation and NLP in ubiquitination prediction tasks. This study presents a promising and efficient approach for ubiquitination site prediction, offering valuable insights for researchers in related fields. The code and resources are available on GitHub: https://github.com/nuinvtnu/KD_ArapUbi.
Collapse
Affiliation(s)
- Van-Nui Nguyen
- University of Information and Communication Technology, Thai Nguyen University, Thai Nguyen, Viet Nam
| | - Thi-Xuan Tran
- University of Economics and Business Administration, Thai Nguyen University, Thai Nguyen, Viet Nam.
| | - Thi-Tuyen Nguyen
- University of Information and Communication Technology, Thai Nguyen University, Thai Nguyen, Viet Nam
| | - Nguyen Quoc Khanh Le
- In-Service Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; AIBioMed Research Group, Taipei Medical University, Taipei 110, Taiwan; Translational Imaging Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan.
| |
Collapse
|
26
|
Furuhata T, Choi B, Uno T, Shinohara R, Sato Y, Okatsu K, Fukai S, Okamoto A. Chemical Diversification of Enzymatically Assembled Polyubiquitin Chains to Decipher the Ubiquitin Codes Programmed on the Branch Structure. J Am Chem Soc 2024. [PMID: 39361957 DOI: 10.1021/jacs.4c11279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The multimerization of ubiquitins at different positions of lysine residues to form heterotypic polyubiquitin chains is a post-translational modification that is essential for the precise regulation of protein functions and degradative fates in living cells. The understanding of structure-activity relationships underlying their diverse properties has been seriously impeded by difficulties in the preparation of a series of folded heterotypic chains appropriately functionalized with different chemical tags for the systematic evaluation of their multifaceted functions. Here, we report a chemical diversification of enzymatically assembled polyubiquitin chains that enables the facile preparation of folded heterotypic chains with different functionalities. By introducing an acyl hydrazide at the C terminus of the proximal ubiquitin, polyubiquitin chains were readily diversified from the same starting materials with a variety of molecules, ranging from small molecules to biopolymers, under nondenaturing conditions. This chemical diversification allowed the systematic study of the functional differences of K63/K48 heterotypic chains based on the position of the branch point during enzymatic deubiquitination and proteasomal proteolysis, thus demonstrating critical roles of the branch position in both the positive and negative control of ubiquitin-mediated reactions. The chemical diversification of the heterotypic chains provides a robust chemical platform to reframe the understanding of how the ubiquitin codes are regulated from the viewpoint of the branch structure for the precise control of cell functions, which has not been deciphered solely on the basis of the linkage types.
Collapse
Affiliation(s)
- Takafumi Furuhata
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Bumkyu Choi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Taiki Uno
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ryota Shinohara
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yusuke Sato
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101, Koyama-cho Minami, Tottori 680-8552, Japan
- Center for Research on Green Sustainable Chemistry, Tottori University, 4-101, Koyama-cho Minami, Tottori 680-8552, Japan
| | - Kei Okatsu
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Shuya Fukai
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Akimitsu Okamoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
27
|
Liao Y, Zhang W, Liu Y, Zhu C, Zou Z. The role of ubiquitination in health and disease. MedComm (Beijing) 2024; 5:e736. [PMID: 39329019 PMCID: PMC11424685 DOI: 10.1002/mco2.736] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Ubiquitination is an enzymatic process characterized by the covalent attachment of ubiquitin to target proteins, thereby modulating their degradation, transportation, and signal transduction. By precisely regulating protein quality and quantity, ubiquitination is essential for maintaining protein homeostasis, DNA repair, cell cycle regulation, and immune responses. Nevertheless, the diversity of ubiquitin enzymes and their extensive involvement in numerous biological processes contribute to the complexity and variety of diseases resulting from their dysregulation. The ubiquitination process relies on a sophisticated enzymatic system, ubiquitin domains, and ubiquitin receptors, which collectively impart versatility to the ubiquitination pathway. The widespread presence of ubiquitin highlights its potential to induce pathological conditions. Ubiquitinated proteins are predominantly degraded through the proteasomal system, which also plays a key role in regulating protein localization and transport, as well as involvement in inflammatory pathways. This review systematically delineates the roles of ubiquitination in maintaining protein homeostasis, DNA repair, genomic stability, cell cycle regulation, cellular proliferation, and immune and inflammatory responses. Furthermore, the mechanisms by which ubiquitination is implicated in various pathologies, alongside current modulators of ubiquitination are discussed. Enhancing our comprehension of ubiquitination aims to provide novel insights into diseases involving ubiquitination and to propose innovative therapeutic strategies for clinical conditions.
Collapse
Affiliation(s)
- Yan Liao
- Faculty of Anesthesiology Changhai Hospital Naval Medical University Shanghai China
- School of Anesthesiology Naval Medical University Shanghai China
| | - Wangzheqi Zhang
- Faculty of Anesthesiology Changhai Hospital Naval Medical University Shanghai China
- School of Anesthesiology Naval Medical University Shanghai China
| | - Yang Liu
- Faculty of Anesthesiology Changhai Hospital Naval Medical University Shanghai China
- School of Anesthesiology Naval Medical University Shanghai China
| | - Chenglong Zhu
- Faculty of Anesthesiology Changhai Hospital Naval Medical University Shanghai China
- School of Anesthesiology Naval Medical University Shanghai China
| | - Zui Zou
- Faculty of Anesthesiology Changhai Hospital Naval Medical University Shanghai China
- School of Anesthesiology Naval Medical University Shanghai China
| |
Collapse
|
28
|
Jann C, Giofré S, Bhattacharjee R, Lemke EA. Cracking the Code: Reprogramming the Genetic Script in Prokaryotes and Eukaryotes to Harness the Power of Noncanonical Amino Acids. Chem Rev 2024; 124:10281-10362. [PMID: 39120726 PMCID: PMC11441406 DOI: 10.1021/acs.chemrev.3c00878] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/10/2024] [Accepted: 06/27/2024] [Indexed: 08/10/2024]
Abstract
Over 500 natural and synthetic amino acids have been genetically encoded in the last two decades. Incorporating these noncanonical amino acids into proteins enables many powerful applications, ranging from basic research to biotechnology, materials science, and medicine. However, major challenges remain to unleash the full potential of genetic code expansion across disciplines. Here, we provide an overview of diverse genetic code expansion methodologies and systems and their final applications in prokaryotes and eukaryotes, represented by Escherichia coli and mammalian cells as the main workhorse model systems. We highlight the power of how new technologies can be first established in simple and then transferred to more complex systems. For example, whole-genome engineering provides an excellent platform in bacteria for enabling transcript-specific genetic code expansion without off-targets in the transcriptome. In contrast, the complexity of a eukaryotic cell poses challenges that require entirely new approaches, such as striving toward establishing novel base pairs or generating orthogonally translating organelles within living cells. We connect the milestones in expanding the genetic code of living cells for encoding novel chemical functionalities to the most recent scientific discoveries, from optimizing the physicochemical properties of noncanonical amino acids to the technological advancements for their in vivo incorporation. This journey offers a glimpse into the promising developments in the years to come.
Collapse
Affiliation(s)
- Cosimo Jann
- Biocenter, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- IMB
Postdoc Programme (IPPro), 55128 Mainz, Germany
| | - Sabrina Giofré
- Biocenter, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- IMB
Postdoc Programme (IPPro), 55128 Mainz, Germany
| | - Rajanya Bhattacharjee
- Biocenter, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- IMB
International PhD Programme (IPP), 55128 Mainz, Germany
| | - Edward A. Lemke
- Biocenter, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- Institute
of Molecular Biology (IMB), 55128 Mainz, Germany
| |
Collapse
|
29
|
Chen Y, Dai R, Cheng M, Wang W, Liu C, Cao Z, Ge Y, Wang Y, Zhang L. Status and role of the ubiquitin-proteasome system in renal fibrosis. Biomed Pharmacother 2024; 178:117210. [PMID: 39059348 DOI: 10.1016/j.biopha.2024.117210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024] Open
Abstract
The ubiquitin-proteasome system (UPS) is a basic regulatory mechanism in cells that is essential for maintaining cell homeostasis, stimulating signal transduction, and determining cell fate. These biological processes require coordinated signaling cascades across members of the UPS to achieve substrate ubiquitination and deubiquitination. The role of the UPS in fibrotic diseases has attracted widespread attention, and the aberrant expression of UPS members affects the fibrosis process. In this review, we provide an overview of the UPS and its relevance for fibrotic diseases. Moreover, for the first time, we explore in detail how the UPS promotes or inhibits renal fibrosis by regulating biological processes such as signaling pathways, inflammation, oxidative stress, and the cell cycle, emphasizing the status and role of the UPS in renal fibrosis. Further research on this system may reveal new strategies for preventing renal fibrosis.
Collapse
Affiliation(s)
- Yizhen Chen
- First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, China
| | - Rong Dai
- Department of Nephrology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Meng Cheng
- Department of Nephrology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Weili Wang
- First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, China
| | - Chuanjiao Liu
- First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, China
| | - Zeping Cao
- First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, China
| | - Yong Ge
- First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, China
| | - Yiping Wang
- Department of Nephrology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China.
| | - Lei Zhang
- Department of Nephrology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China.
| |
Collapse
|
30
|
Gao Y, Kwan J, Orofino J, Burrone G, Mitra S, Fan TY, English J, Hekman R, Emili A, Lyons SM, Cardamone MD, Perissi V. Inhibition of K63 ubiquitination by G-Protein pathway suppressor 2 (GPS2) regulates mitochondria-associated translation. Pharmacol Res 2024; 207:107336. [PMID: 39094987 PMCID: PMC11905147 DOI: 10.1016/j.phrs.2024.107336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
G-Protein Pathway Suppressor 2 (GPS2) is an inhibitor of non-proteolytic K63 ubiquitination mediated by the E2 ubiquitin-conjugating enzyme Ubc13. Previous studies have associated GPS2-mediated restriction of ubiquitination with the regulation of insulin signaling, inflammatory responses and mitochondria-nuclear communication across different tissues and cell types. However, a detailed understanding of the targets of GPS2/Ubc13 activity is lacking. Here, we have dissected the GPS2-regulated K63 ubiquitome in mouse embryonic fibroblasts and human breast cancer cells, unexpectedly finding an enrichment for proteins involved in RNA binding and translation on the outer mitochondrial membrane. Validation of selected targets of GPS2-mediated regulation, including the RNA-binding protein PABPC1 and translation factors RPS1, RACK1 and eIF3M, revealed a mitochondrial-specific strategy for regulating the translation of nuclear-encoded mitochondrial proteins via non-proteolytic ubiquitination. Removal of GPS2-mediated inhibition, either via genetic deletion or stress-induced nuclear translocation, promotes the import-coupled translation of selected mRNAs leading to the increased expression of an adaptive antioxidant program. In light of GPS2 role in nuclear-mitochondria communication, these findings reveal an exquisite regulatory network for modulating mitochondrial gene expression through spatially coordinated transcription and translation.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Biochemistry and Cell Biology, Chobanian&Avedisian School of Medicine, Boston University, Boston, MA 02115, United States
| | - Julian Kwan
- Department of Biochemistry and Cell Biology, Chobanian&Avedisian School of Medicine, Boston University, Boston, MA 02115, United States; Center for Network and Systems Biology, Boston University, Boston, MA 02115, United States
| | - Joseph Orofino
- Department of Biochemistry and Cell Biology, Chobanian&Avedisian School of Medicine, Boston University, Boston, MA 02115, United States
| | - Giulia Burrone
- Department of Biochemistry and Cell Biology, Chobanian&Avedisian School of Medicine, Boston University, Boston, MA 02115, United States; Department of Computer Science, University of Torino, Torino, Italy; Department of Clinical and Biological Science, University of Torino, Torino, Italy; Graduate Program in Complex Systems for Quantitative Biomedicine, University of Torino, Torino, Italy
| | - Sahana Mitra
- Department of Biochemistry and Cell Biology, Chobanian&Avedisian School of Medicine, Boston University, Boston, MA 02115, United States
| | - Ting-Yu Fan
- Department of Biochemistry and Cell Biology, Chobanian&Avedisian School of Medicine, Boston University, Boston, MA 02115, United States
| | - Justin English
- Department of Biochemistry and Cell Biology, Chobanian&Avedisian School of Medicine, Boston University, Boston, MA 02115, United States; Graduate Program in Pharmacology and Experimental Therapeutics, Chobanian&Avedisian School of Medicine, Boston University, Boston, MA 02115, United States
| | - Ryan Hekman
- Department of Biochemistry and Cell Biology, Chobanian&Avedisian School of Medicine, Boston University, Boston, MA 02115, United States; Center for Network and Systems Biology, Boston University, Boston, MA 02115, United States
| | - Andrew Emili
- Department of Biochemistry and Cell Biology, Chobanian&Avedisian School of Medicine, Boston University, Boston, MA 02115, United States; Center for Network and Systems Biology, Boston University, Boston, MA 02115, United States; Biology Department, Boston University, Boston, MA 02115, United States
| | - Shawn M Lyons
- Department of Biochemistry and Cell Biology, Chobanian&Avedisian School of Medicine, Boston University, Boston, MA 02115, United States
| | - Maria Dafne Cardamone
- Department of Biochemistry and Cell Biology, Chobanian&Avedisian School of Medicine, Boston University, Boston, MA 02115, United States
| | - Valentina Perissi
- Department of Biochemistry and Cell Biology, Chobanian&Avedisian School of Medicine, Boston University, Boston, MA 02115, United States.
| |
Collapse
|
31
|
Wan M, Minelli ME, Zhao Q, Marshall S, Yu H, Smolka M, Mao Y. Phosphoribosyl modification of poly-ubiquitin chains at the Legionella-containing vacuole prohibiting autophagy adaptor recognition. Nat Commun 2024; 15:7481. [PMID: 39214972 PMCID: PMC11364841 DOI: 10.1038/s41467-024-51273-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 06/04/2024] [Indexed: 09/04/2024] Open
Abstract
Ubiquitination is a posttranslational modification in eukaryotes that plays a significant role in the infection of intracellular microbial pathogens, such as Legionella pneumophila. While the Legionella-containing vacuole (LCV) is coated with ubiquitin (Ub), it avoids recognition by autophagy adaptors. Here, we report that the Sdc and Sde families of effectors work together to build ubiquitinated species around the LCV. The Sdc effectors catalyze canonical polyubiquitination directly on host targets or on phosphoribosyl-Ub conjugated to host targets by Sde. Remarkably, Ub moieties within poly-Ub chains are either modified with a phosphoribosyl group by PDE domain-containing effectors or covalently attached to other host substrates via Sde-mediated phosphoribosyl-ubiquitination. Furthermore, these modifications prevent the recognition by Ub adaptors and therefore exclude host autophagy adaptors from the LCV. In this work, we shed light on the nature of the poly-ubiquitinated species present at the surface of the LCV and provide a molecular mechanism for the avoidance of autophagy adaptors by the Ub-decorated LCV.
Collapse
Affiliation(s)
- Min Wan
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Marena E Minelli
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Qiuye Zhao
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Shannon Marshall
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Haiyuan Yu
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Marcus Smolka
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Yuxin Mao
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA.
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
32
|
Wang D, Zhao J, Yang X, Ji Y, Yu J, Li Z, Shi Y, Guo J, Zhou J, Hou L, Liu J. E3 ligase RNF2 inhibits porcine circovirus type 3 replication by targeting its capsid protein for ubiquitination-dependent degradation. J Virol 2024; 98:e0022324. [PMID: 39046246 PMCID: PMC11334428 DOI: 10.1128/jvi.00223-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/21/2024] [Indexed: 07/25/2024] Open
Abstract
Porcine circovirus type 3 (PCV3) is closely associated with various diseases, such as the porcine dermatitis, nephropathy syndrome, and multisystemic clinicopathological diseases. PCV3-associated diseases are increasingly recognized as severe diseases in the global swine industry. Ring finger protein 2 (RNF2), an E3 ubiquitin ligase exclusively located in the nucleus, contributes to various biological processes. This ligase interacts with the PCV3 Cap. However, its role in PCV3 replication remains unclear. This study confirmed that the nuclear localization signal domain of the Cap and the RNF2 N-terminal RING domain facilitate the interaction between the Cap and RNF2. Furthermore, RNF2 promoted the binding of K48-linked polyubiquitination chains to lysine at positions 139 and 140 (K139 and K140) of the PCV3 Cap, thereby degrading the Cap. RNF2 knockdown and overexpression increased or decreased PCV3 replication, respectively. Moreover, the RING domain-deleted RNF2 mutant eliminated the RNF2-induced degradation of the PCV3 Cap and RNF2-mediated inhibition of viral replication. This indicates that both processes were associated with its E3 ligase activity. Our findings demonstrate that RNF2 can interact with and degrade the PCV3 Cap via its N-terminal RING domain in a ubiquitination-dependent manner, thereby inhibiting PCV3 replication.IMPORTANCEPorcine circovirus type 3 is a recently described pathogen that is prevalent worldwide, causing substantial economic losses to the swine industry. However, the mechanisms through which host proteins regulate its replication remain unclear. Here, we demonstrate that ring finger protein 2 inhibits porcine circovirus type 3 replication by interacting with and degrading the Cap of this pathogen in a ubiquitination-dependent manner, requiring its N-terminal RING domain. Ring finger protein 2-mediated degradation of the Cap relies on its E3 ligase activity and the simultaneous existence of K139 and K140 within the Cap. These findings reveal the mechanism by which this protein interacts with and degrades the Cap to inhibit porcine circovirus type 3 replication. This consequently provides novel insights into porcine circovirus type 3 pathogenesis and facilitates the development of preventative measures against this pathogen.
Collapse
Affiliation(s)
- Dedong Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jie Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xiaoyu Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Ying Ji
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Ju Yu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zhaoyang Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yongyan Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jinshuo Guo
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jianwei Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Lei Hou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jue Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
33
|
Zhan W, Zhang H, Su Y, Yin L. TRIM47 promotes HDM-induced bronchial epithelial pyroptosis by regulating NEMO ubiquitination to activate NF-κB/NLRP3 signaling. Cell Biol Int 2024; 48:1138-1147. [PMID: 38769645 DOI: 10.1002/cbin.12186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 03/26/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024]
Abstract
Asthma is an inflammatory disease. Airway epithelial cell pyroptosis and cytokine secretion promote asthma progression. Tripartite motif 47 (TRIM47) belongs to the E3 ubiquitin ligase family and is associated with apoptosis and inflammation in a range of diseases. However, the role of TRIM47 in asthma has not been explored. In this study, the human bronchial epithelial cell line BEAS-2B was treated with house dust mite (HDM) and TRIM47 expression was detected by RT-qPCR and Western blot. After transfection with TRIM47 interfering and overexpressing plasmids, the synthesis and secretion of cytokines, as well as pyroptosis-related indicators, were examined. Nuclear factor kappa-B (NF-κB) pathway proteins and nod-like receptor protein 3 (NLRP3) inflammasome were measured to explore the mechanism of TRIM47 action. In addition, the effect of TRIM47 on the level of NF-κB essential modulator (NEMO) ubiquitination was detected by an immunoprecipitation assay. The results showed that TRIM47 was upregulated in HDM-induced BEAS-2B cells and that TRIM47 mediated HDM-induced BEAS-2B cell pyroptosis and cytokine secretion. Mechanistically, TRIM47 promoted the K63-linked ubiquitination of NEMO and facilitated NF-κB/NLRP3 pathway activation. In conclusion, TRIM47 may promote cytokine secretion mediating inflammation and pyroptosis in bronchial epithelial cells by activating the NF-κB/NLRP3 pathway. Therefore, TRIM47 may be a potential therapeutic target for HDM-induced asthma.
Collapse
Affiliation(s)
- Wenjuan Zhan
- Department of Emergency, Xi'an Children's Hospital, Xi'an, Shaanxi, China
| | - Huifang Zhang
- Department of Emergency, Xi'an Children's Hospital, Xi'an, Shaanxi, China
| | - Yufei Su
- Department of Emergency, Xi'an Children's Hospital, Xi'an, Shaanxi, China
| | - Li Yin
- Department of Emergency, Xi'an Children's Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
34
|
Almalki NAR, Sabir JSM, Ibrahim A, Alhosin M, Asseri AH, Albiheyri RS, Zari AT, Bahieldin A, Javed A, Mély Y, Hamiche A, Mousli M, Bronner C. UHRF1 poly-auto-ubiquitination induced by the anti-cancer drug, thymoquinone, is involved in the DNA repair machinery recruitment. Int J Biochem Cell Biol 2024; 171:106582. [PMID: 38649007 DOI: 10.1016/j.biocel.2024.106582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/20/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
DNA methylation is one of the most important epigenetic mark involved in many physiologic cellular processes and pathologies. During mitosis, the transmission of DNA methylation patterns from a mother to the daughter cells is ensured through the action of the Ubiquitin-like, containing PHD and RING domains, 1/DNA methyltransferase 1 (UHRF1/DNMT1) tandem. UHRF1 is involved in the silencing of many tumor suppressor genes (TSGs) via mechanisms that remain largely to be deciphered. The present study investigated the role and the regulation of UHRF1 poly-ubiquitination induced by thymoquinone, a natural anti-cancer drug, known to enhance or re-activate the expression of TSGs. We found that the auto-ubiquitination of UHRF1, induced by TQ, is mediated by reactive oxygen species, and occurs following DNA damage. We demonstrated that the poly-ubiquitinated form of UHRF1 is K63-linked and can still silence the tumor suppressor gene p16INK4A/CDKN2A. We further showed that TQ-induced auto-ubiquitination is mediated via the activity of Tip60. Since this latter is known as a nuclear receptor co-factor, we investigated if the glucocorticoid receptor (GR) might be involved in the regulation of UHRF1 ubiquitination. Activation of the GR, with dexamethasone, did not influence auto-ubiquitination of UHRF1. However, we could observe that TQ induced a K48-linked poly-ubiquitination of GR, probably involved in the proteosomal degradation pathway. Mass-spectrometry analysis of FLAG-HA-tagged UHRF1 identified UHRF1 partners involved in DNA repair and showed that TQ increased their association with UHRF1, suggesting that poly-ubiquitination of UHRF1 is involved in the DNA repair process. We propose that poly-ubiquitination of UHRF1 serves as a scaffold to recruit the DNA repair machinery at DNA damage sites.
Collapse
Affiliation(s)
- Naif A R Almalki
- Department of Functional Genomics, Institute of Genetics and Molecular and Cellular Biology (IGBMC), INSERM U1258, CNRS UMR 7104, University of Strasbourg, "équipe labellisée" Ligue contre le Cancer, Illkirch-Graffenstaden 67404, France; Experimental Biochemistry unit, King Fahad medical research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jamal S M Sabir
- Department of Biological Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Centre of Excellence in Bionanoscience, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulkhaleg Ibrahim
- Department of Functional Genomics, Institute of Genetics and Molecular and Cellular Biology (IGBMC), INSERM U1258, CNRS UMR 7104, University of Strasbourg, "équipe labellisée" Ligue contre le Cancer, Illkirch-Graffenstaden 67404, France; National Research Centre for Tropical and Transboundary Diseases (NRCTTD), Alzentan 99316, Libya
| | - Mahmoud Alhosin
- Department of Biochemistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Amer H Asseri
- Department of Biochemistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Centre for Artificial Intelligence in Precision Medicines, King Abdul-Aziz University, Jeddah 21589, Saudi Arabia
| | - Raed S Albiheyri
- Department of Biological Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Centre of Excellence in Bionanoscience, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ali T Zari
- Department of Biological Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Centre of Excellence in Bionanoscience, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed Bahieldin
- Department of Biological Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Centre of Excellence in Bionanoscience, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aqib Javed
- Laboratory of Bioimaging and Pathologies, UMR 7021 CNRS, University of Strasbourg, Faculty of Pharmacy, Illkirch-Graffenstaden 67401, France
| | - Yves Mély
- Laboratory of Bioimaging and Pathologies, UMR 7021 CNRS, University of Strasbourg, Faculty of Pharmacy, Illkirch-Graffenstaden 67401, France
| | - Ali Hamiche
- Department of Functional Genomics, Institute of Genetics and Molecular and Cellular Biology (IGBMC), INSERM U1258, CNRS UMR 7104, University of Strasbourg, "équipe labellisée" Ligue contre le Cancer, Illkirch-Graffenstaden 67404, France; Centre of Excellence in Bionanoscience, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Marc Mousli
- Laboratory of Bioimaging and Pathologies, UMR 7021 CNRS, University of Strasbourg, Faculty of Pharmacy, Illkirch-Graffenstaden 67401, France
| | - Christian Bronner
- Department of Functional Genomics, Institute of Genetics and Molecular and Cellular Biology (IGBMC), INSERM U1258, CNRS UMR 7104, University of Strasbourg, "équipe labellisée" Ligue contre le Cancer, Illkirch-Graffenstaden 67404, France.
| |
Collapse
|
35
|
Dos Santos K, Bartocci A, Gillet N, Denis-Quanquin S, Roux A, Lin E, Xu Z, Finizola R, Chedozeau P, Chen X, Caradeuc C, Baudin M, Bertho G, Riobé F, Maury O, Dumont E, Giraud N. One touch is all it takes: the supramolecular interaction between ubiquitin and lanthanide complexes revisited by paramagnetic NMR and molecular dynamics. Phys Chem Chem Phys 2024; 26:14573-14581. [PMID: 38722087 DOI: 10.1039/d4cp00463a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
The supramolecular interaction between lanthanide complexes and proteins is at the heart of numerous chemical and biological studies. Some of these complexes have demonstrated remarkable interaction properties with proteins or peptides in solution and in the crystalline state. Here we have used the paramagnetism of lanthanide ions to characterize the affinity of two lanthanide complexes for ubiquitin. As the interaction process is dynamic, the acquired NMR data only reflect the time average of the different steps. We have used molecular dynamics (MD) simulations to get a deeper insight into the detailed interaction scenario at the microsecond scale. This NMR/MD approach enabled us to establish that the tris-dipicolinate complex interacts specifically with arginines and lysines, while the crystallophore explores the protein surface through weak interactions with carboxylates. These observations shed new light on the dynamic interaction properties of these complexes, which will ultimately enable us to propose a crystallization mechanism.
Collapse
Affiliation(s)
- Karen Dos Santos
- Université Paris Cité, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR CNRS 8601, Paris, France.
| | - Alessio Bartocci
- Department of Physics, University of Trento, Via Sommarive 14, I-38123 Trento, Italy
- INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Via Sommarive 14, I-38123 Trento, Italy
- Institut de Chimie de Strasbourg, UMR 7177, CNRS, Université de Strasbourg, Strasbourg Cedex 67083, France
| | - Natacha Gillet
- Univ. Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F69342, Lyon, France
| | - Sandrine Denis-Quanquin
- Univ. Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F69342, Lyon, France
| | - Amandine Roux
- Univ. Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F69342, Lyon, France
- Polyvalan SAS, Lyon, France
| | - Eugene Lin
- Université Paris Cité, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR CNRS 8601, Paris, France.
| | - Zeren Xu
- Université Paris Cité, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR CNRS 8601, Paris, France.
| | - Raphael Finizola
- Univ. Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F69342, Lyon, France
| | - Pauline Chedozeau
- Université Paris Cité, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR CNRS 8601, Paris, France.
| | - Xi Chen
- Université Paris Cité, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR CNRS 8601, Paris, France.
| | - Cédric Caradeuc
- Université Paris Cité, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR CNRS 8601, Paris, France.
| | - Mathieu Baudin
- Université Paris Cité, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR CNRS 8601, Paris, France.
- Laboratoire des Biomolécules, LBM, Département de chimie, École Normale Supérieure, PSL Université, Sorbonne Université 45 Rue d'Ulm, 75005 Paris, France
| | - Gildas Bertho
- Université Paris Cité, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR CNRS 8601, Paris, France.
| | - François Riobé
- Univ. Bordeaux CNRS, Bordeaux INP, ICMCB UMR 5026, F-33600 Pessac, France
| | - Olivier Maury
- INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Via Sommarive 14, I-38123 Trento, Italy
| | - Elise Dumont
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR 7272, 06108 Nice, France.
- Institut Universitaire de France, 5 rue Descartes, 75005 Paris, France
| | - Nicolas Giraud
- Université Paris Cité, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR CNRS 8601, Paris, France.
| |
Collapse
|
36
|
Sun Y, Tian Z, Zuo D, Wang Q, Song G. GhUBC10-2 mediates GhGSTU17 degradation to regulate salt tolerance in cotton (Gossypium hirsutum). PLANT, CELL & ENVIRONMENT 2024; 47:1606-1624. [PMID: 38282268 DOI: 10.1111/pce.14839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 01/30/2024]
Abstract
Ubiquitin-conjugating enzyme (UBC) is a crucial component of the ubiquitin-proteasome system, which contributes to plant growth and development. While some UBCs have been identified as potential regulators of abiotic stress responses, the underlying mechanisms of this regulation remain poorly understood. Here, we report a cotton (Gossypium hirsutum) UBC gene, GhUBC10-2, which negatively regulates the salt stress response. We found that the gain of function of GhUBC10-2 in both Arabidopsis (Arabidopsis thaliana) and cotton leads to reduced salinity tolerance. Additionally, GhUBC10-2 interacts with glutathione S-transferase (GST) U17 (GhGSTU17), forming a heterodimeric complex that promotes GhGSTU17 degradation. Intriguingly, GhUBC10-2 can be self-polyubiquitinated, suggesting that it possesses E3-independent activity. Our findings provide new insights into the PTM of plant GST-mediated salt response pathways. Furthermore, we found that the WRKY transcription factor GhWRKY13 binds to the GhUBC10-2 promoter and suppresses its expression under salt conditions. Collectively, our study unveils a regulatory module encompassing GhWRKY13-GhUBC10-2-GhGSTU17, which orchestrates the modulation of reactive oxygen species homeostasis to enhance salt tolerance.
Collapse
Affiliation(s)
- Yaru Sun
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zailong Tian
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
| | - Dongyun Zuo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Qiaolian Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Guoli Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
37
|
Li Z, Li J, Li Z, Song Y, Wang Y, Wang C, Yuan L, Xiao W, Wang J. Zebrafish mylipb attenuates antiviral innate immunity through two synergistic mechanisms targeting transcription factor irf3. PLoS Pathog 2024; 20:e1012227. [PMID: 38739631 PMCID: PMC11115282 DOI: 10.1371/journal.ppat.1012227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 05/23/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
IFN regulatory factor 3 (IRF3) is the transcription factor crucial for the production of type I IFN in viral defence and inflammatory responses. The activity of IRF3 is strictly modulated by post-translational modifications (PTMs) to effectively protect the host from infection while avoiding excessive immunopathology. Here, we report that zebrafish myosin-regulated light chain interacting protein b (mylipb) inhibits virus-induced type I IFN production via two synergistic mechanisms: induction of autophagic degradation of irf3 and reduction of irf3 phosphorylation. In vivo, mylipb-null zebrafish exhibit reduced lethality and viral mRNA levels compared to controls. At the cellular level, overexpression of mylipb significantly reduces cellular antiviral capacity, and promotes viral proliferation. Mechanistically, mylipb associates with irf3 and targets Lys 352 to increase K6-linked polyubiquitination, dependent on its E3 ubiquitin ligase activity, leading to autophagic degradation of irf3. Meanwhile, mylipb acts as a decoy substrate for the phosphokinase tbk1 to attenuate irf3 phosphorylation and cellular antiviral responses independent of its enzymatic activity. These findings support a critical role for zebrafish mylipb in the limitation of antiviral innate immunity through two synergistic mechanisms targeting irf3.
Collapse
Affiliation(s)
- Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Jun Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ziyi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanan Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanyi Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chunling Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Le Yuan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wuhan Xiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Hubei Hongshan Laboratory, Wuhan, China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Jing Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
38
|
Cai H, Wu X, Mao J, Tong Z, Yan D, Weng Y, Zheng Q. Sequential release of interacting proteins and Ub-modifying enzymes by disulfide heterotypic ubiquitin reagents. Bioorg Chem 2024; 145:107186. [PMID: 38387394 DOI: 10.1016/j.bioorg.2024.107186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024]
Abstract
Heterotypic ubiquitin (Ub) chains have emerged as fundamental components in a wide range of cellular processes. The integrative identification of Ub-interacting proteins (readers) and Ub-modifying enzymes (writers and erasers) that selectively recognize and regulate heterotypic ubiquitination may provide crucial insights into these processes. In this study, we employed the bifunctional molecule-assisted (CAET) strategy to develop a type of disulfide bond-activated heterotypic Ub reagents, which allowed to enrich heterotypic Ub-interacting proteins and modifying enzymes simultaneously. The sequential release of readers which are non-covalently bound and writers or erasers which are covalently conjugated by using urea and reductant, respectively, combined with label-free quantitative (LFQ) MS indicated that these heterotypic Ub reagents would facilitate future investigations into functional roles played by heterotypic Ub chains.
Collapse
Affiliation(s)
- Hongyi Cai
- Institute of Translational Medicine, National Center for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai 200240, China; Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xiangwei Wu
- Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Junxiong Mao
- Institute of Translational Medicine, National Center for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai 200240, China; Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zebin Tong
- Institute of Translational Medicine, National Center for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dingfei Yan
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Yicheng Weng
- Institute of Translational Medicine, National Center for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Qingyun Zheng
- Institute of Translational Medicine, National Center for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
39
|
Guo NJ, Wang B, Zhang Y, Kang HQ, Nie HQ, Feng MK, Zhang XY, Zhao LJ, Wang N, Liu HM, Zheng YC, Li W, Gao Y. USP7 as an emerging therapeutic target: A key regulator of protein homeostasis. Int J Biol Macromol 2024; 263:130309. [PMID: 38382779 DOI: 10.1016/j.ijbiomac.2024.130309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/19/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
Maintaining protein balance within a cell is essential for proper cellular function, and disruptions in the ubiquitin-proteasome pathway, which is responsible for degrading and recycling unnecessary or damaged proteins, can lead to various diseases. Deubiquitinating enzymes play a vital role in regulating protein homeostasis by removing ubiquitin chains from substrate proteins, thereby controlling important cellular processes, such as apoptosis and DNA repair. Among these enzymes, ubiquitin-specific protease 7 (USP7) is of particular interest. USP7 is a cysteine protease consisting of a TRAF region, catalytic region, and C-terminal ubiquitin-like (UBL) region, and it interacts with tumor suppressors, transcription factors, and other key proteins involved in cell cycle regulation and epigenetic control. Moreover, USP7 has been implicated in the pathogenesis and progression of various diseases, including cancer, inflammation, neurodegenerative conditions, and viral infections. Overall, characterizing the functions of USP7 is crucial for understanding the pathophysiology of diverse diseases and devising innovative therapeutic strategies. This article reviews the structure and function of USP7 and its complexes, its association with diseases, and its known inhibitors and thus represents a valuable resource for advancing USP7 inhibitor development and promoting potential future treatment options for a wide range of diseases.
Collapse
Affiliation(s)
- Ning-Jie Guo
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Bo Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Yu Zhang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Hui-Qin Kang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Hai-Qian Nie
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Meng-Kai Feng
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Xi-Ya Zhang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Li-Juan Zhao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Ning Wang
- The School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Hong-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Yi-Chao Zheng
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| | - Wen Li
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| | - Ya Gao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| |
Collapse
|
40
|
Kandel R, Jung J, Neal S. Proteotoxic stress and the ubiquitin proteasome system. Semin Cell Dev Biol 2024; 156:107-120. [PMID: 37734998 PMCID: PMC10807858 DOI: 10.1016/j.semcdb.2023.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/01/2023] [Accepted: 08/20/2023] [Indexed: 09/23/2023]
Abstract
The ubiquitin proteasome system maintains protein homeostasis by regulating the breakdown of misfolded proteins, thereby preventing misfolded protein aggregates. The efficient elimination is vital for preventing damage to the cell by misfolded proteins, known as proteotoxic stress. Proteotoxic stress can lead to the collapse of protein homeostasis and can alter the function of the ubiquitin proteasome system. Conversely, impairment of the ubiquitin proteasome system can also cause proteotoxic stress and disrupt protein homeostasis. This review examines two impacts of proteotoxic stress, 1) disruptions to ubiquitin homeostasis (ubiquitin stress) and 2) disruptions to proteasome homeostasis (proteasome stress). Here, we provide a mechanistic description of the relationship between proteotoxic stress and the ubiquitin proteasome system. This relationship is illustrated by findings from several protein misfolding diseases, mainly neurodegenerative diseases, as well as from basic biology discoveries from yeast to mammals. In addition, we explore the importance of the ubiquitin proteasome system in endoplasmic reticulum quality control, and how proteotoxic stress at this organelle is alleviated. Finally, we highlight how cells utilize the ubiquitin proteasome system to adapt to proteotoxic stress and how the ubiquitin proteasome system can be genetically and pharmacologically manipulated to maintain protein homeostasis.
Collapse
Affiliation(s)
- Rachel Kandel
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, United States
| | - Jasmine Jung
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, United States
| | - Sonya Neal
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, United States; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
41
|
Champion C, Lehner M, Smith AA, Ferrage F, Bolik-Coulon N, Riniker S. Unraveling motion in proteins by combining NMR relaxometry and molecular dynamics simulations: A case study on ubiquitin. J Chem Phys 2024; 160:104105. [PMID: 38465679 DOI: 10.1063/5.0188416] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/20/2024] [Indexed: 03/12/2024] Open
Abstract
Nuclear magnetic resonance (NMR) relaxation experiments shine light onto the dynamics of molecular systems in the picosecond to millisecond timescales. As these methods cannot provide an atomically resolved view of the motion of atoms, functional groups, or domains giving rise to such signals, relaxation techniques have been combined with molecular dynamics (MD) simulations to obtain mechanistic descriptions and gain insights into the functional role of side chain or domain motion. In this work, we present a comparison of five computational methods that permit the joint analysis of MD simulations and NMR relaxation experiments. We discuss their relative strengths and areas of applicability and demonstrate how they may be utilized to interpret the dynamics in MD simulations with the small protein ubiquitin as a test system. We focus on the aliphatic side chains given the rigidity of the backbone of this protein. We find encouraging agreement between experiment, Markov state models built in the χ1/χ2 rotamer space of isoleucine residues, explicit rotamer jump models, and a decomposition of the motion using ROMANCE. These methods allow us to ascribe the dynamics to specific rotamer jumps. Simulations with eight different combinations of force field and water model highlight how the different metrics may be employed to pinpoint force field deficiencies. Furthermore, the presented comparison offers a perspective on the utility of NMR relaxation to serve as validation data for the prediction of kinetics by state-of-the-art biomolecular force fields.
Collapse
Affiliation(s)
- Candide Champion
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Marc Lehner
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Albert A Smith
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstrasse 16-18, 04107 Leipzig, Germany
| | - Fabien Ferrage
- Laboratoire des Biomolécules, LBM, Département de Chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Nicolas Bolik-Coulon
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Sereina Riniker
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
42
|
Dhawka L, Palfini V, Hambright E, Blanco I, Poon C, Kahl A, Resch U, Bhawal R, Benakis C, Balachandran V, Holder A, Zhang S, Iadecola C, Hochrainer K. Post-ischemic ubiquitination at the postsynaptic density reversibly influences the activity of ischemia-relevant kinases. Commun Biol 2024; 7:321. [PMID: 38480905 PMCID: PMC10937959 DOI: 10.1038/s42003-024-06009-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 03/04/2024] [Indexed: 03/17/2024] Open
Abstract
Ubiquitin modifications alter protein function and stability, thereby regulating cell homeostasis and viability, particularly under stress. Ischemic stroke induces protein ubiquitination at the ischemic periphery, wherein cells remain viable, however the identity of ubiquitinated proteins is unknown. Here, we employed a proteomics approach to identify these proteins in mice undergoing ischemic stroke. The data are available in a searchable web interface ( https://hochrainerlab.shinyapps.io/StrokeUbiOmics/ ). We detected increased ubiquitination of 198 proteins, many of which localize to the postsynaptic density (PSD) of glutamatergic neurons. Among these were proteins essential for maintaining PSD architecture, such as PSD95, as well as NMDA and AMPA receptor subunits. The largest enzymatic group at the PSD with elevated post-ischemic ubiquitination were kinases, such as CaMKII, PKC, Cdk5, and Pyk2, whose aberrant activities are well-known to contribute to post-ischemic neuronal death. Concurrent phospho-proteomics revealed altered PSD-associated phosphorylation patterns, indicative of modified kinase activities following stroke. PSD-located CaMKII, PKC, and Cdk5 activities were decreased while Pyk2 activity was increased after stroke. Removal of ubiquitin restored kinase activities to pre-stroke levels, identifying ubiquitination as the responsible molecular mechanism for post-ischemic kinase regulation. These findings unveil a previously unrecognized role of ubiquitination in the regulation of essential kinases involved in ischemic injury.
Collapse
Affiliation(s)
- Luvna Dhawka
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Victoria Palfini
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Emma Hambright
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Ismary Blanco
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Carrie Poon
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Anja Kahl
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Ulrike Resch
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Ruchika Bhawal
- Institute of Biotechnology, Cornell University, Ithaca, NY, USA
| | - Corinne Benakis
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Institute for Stroke and Dementia Research, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Vaishali Balachandran
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Alana Holder
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Sheng Zhang
- Institute of Biotechnology, Cornell University, Ithaca, NY, USA
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Karin Hochrainer
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
43
|
Zheng LL, Wang LT, Pang YW, Sun LP, Shi L. Recent advances in the development of deubiquitinases inhibitors as antitumor agents. Eur J Med Chem 2024; 266:116161. [PMID: 38262120 DOI: 10.1016/j.ejmech.2024.116161] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/25/2024]
Abstract
Ubiquitination is a type of post-translational modification that covalently links ubiquitin to a target protein, which plays a critical role in modulating protein activity, stability, and localization. In contrast, this process is reversed by deubiquitinases (DUBs), which remove ubiquitin from ubiquitinated substrates. Dysregulation of DUBs is associated with several human diseases, such as cancer, inflammation, neurodegenerative disorders, and autoimmune diseases. Thus, DUBs have become promising targets for drug development. Although the physiological and pathological effects of DUBs are increasingly well understood, the clinical drug discovery of selective DUB inhibitors has been challenging. Herein, we summarize the structures and functions of main classes of DUBs and discuss the recent progress in developing selective small-molecule DUB inhibitors as antitumor agents.
Collapse
Affiliation(s)
- Li-Li Zheng
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Li-Ting Wang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Ye-Wei Pang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Li-Ping Sun
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Lei Shi
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
44
|
Wu X, Du Y, Liang LJ, Ding R, Zhang T, Cai H, Tian X, Pan M, Liu L. Structure-guided engineering enables E3 ligase-free and versatile protein ubiquitination via UBE2E1. Nat Commun 2024; 15:1266. [PMID: 38341401 PMCID: PMC10858943 DOI: 10.1038/s41467-024-45635-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Ubiquitination, catalyzed usually by a three-enzyme cascade (E1, E2, E3), regulates various eukaryotic cellular processes. E3 ligases are the most critical components of this catalytic cascade, determining both substrate specificity and polyubiquitination linkage specificity. Here, we reveal the mechanism of a naturally occurring E3-independent ubiquitination reaction of a unique human E2 enzyme UBE2E1 by solving the structure of UBE2E1 in complex with substrate SETDB1-derived peptide. Guided by this peptide sequence-dependent ubiquitination mechanism, we developed an E3-free enzymatic strategy SUE1 (sequence-dependent ubiquitination using UBE2E1) to efficiently generate ubiquitinated proteins with customized ubiquitinated sites, ubiquitin chain linkages and lengths. Notably, this strategy can also be used to generate site-specific branched ubiquitin chains or even NEDD8-modified proteins. Our work not only deepens the understanding of how an E3-free substrate ubiquitination reaction occurs in human cells, but also provides a practical approach for obtaining ubiquitinated proteins to dissect the biochemical functions of ubiquitination.
Collapse
Affiliation(s)
- Xiangwei Wu
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Institute of Translational Medicine, School of Chemistry and Chemical Engineering, School of Pharmacy, National Center for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yunxiang Du
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Lu-Jun Liang
- Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei, 230026, China.
| | - Ruichao Ding
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Tianyi Zhang
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hongyi Cai
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xiaolin Tian
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Man Pan
- Institute of Translational Medicine, School of Chemistry and Chemical Engineering, School of Pharmacy, National Center for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Lei Liu
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
45
|
Du Y, Zhang H, Hu H. Ubiquitination of Immune System and Cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1466:35-45. [PMID: 39546134 DOI: 10.1007/978-981-97-7288-9_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Ubiquitination is a post-translational modification mechanism which regulates a variety of signaling pathways and crucial biological processes. It has long been known that ubiquitination regulates the fundamental cellular processes through the induction of proteasomal degradation of target proteins. Meanwhile, the nondegradative types of polyubiquitination modification have been appreciated as important regulatory machinery by modulating the activity or subcellular localization of key signaling proteins. The function of ubiquitination plays an important role in immune responses, which helps to maintain the stability of the internal environment and to control over protein stability and function and are thus critical for the regulation of both innate and adaptive immunity. Furthermore, ubiquitination also regulates both tumor-suppressing and tumor-promoting pathways in cancer. In this review, we will discuss recent progress regarding how ubiquitination regulates immune responses, focusing on Toll-like receptors signaling in innate immunity, T cell activation, TCR signaling, and tumor immunotherapy.
Collapse
Affiliation(s)
- Yizhou Du
- Center for Immunology and Hematology, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Huiyuan Zhang
- Center for Immunology and Hematology, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hongbo Hu
- Center for Immunology and Hematology, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
- Chongqing International Institute for Immunology, Chongqing, China.
| |
Collapse
|
46
|
Jie Z. Role of Ubiquitin Signaling in Modulating Dendritic Cell Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1466:101-111. [PMID: 39546138 DOI: 10.1007/978-981-97-7288-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
As a professional antigen-presenting cell, dendritic cell (DC) plays an essential role in the connection of innate and adaptive immune responses. Ubiquitination is a post-translational mechanism of protein modification that plays a pivotal role in regulating DC maturation and function. To date, considerable progress has been made in understanding the underlying mechanisms of ubiquitination in modulating the function of DC in various diseases. Recent studies have emphasized that ubiquitin signaling in DCs plays crucial roles in regulating immune tolerance and functions, which can be promising targets for DC-based immunotherapy. In this chapter, we will focus on discussing the recent progress regarding the molecular mechanisms and functions of ubiquitination in DC-mediated immune homeostasis and responses.
Collapse
Affiliation(s)
- Zuliang Jie
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
47
|
Chen Y, Jiang Z, Yang Y, Zhang C, Liu H, Wan J. The functions and mechanisms of post-translational modification in protein regulators of RNA methylation: Current status and future perspectives. Int J Biol Macromol 2023; 253:126773. [PMID: 37690652 DOI: 10.1016/j.ijbiomac.2023.126773] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023]
Abstract
RNA methylation, an epigenetic modification that does not alter gene sequence, may be important to diverse biological processes. Protein regulators of RNA methylation include "writers," "erasers," and "readers," which respectively deposit, remove, and recognize methylated RNA. RNA methylation, particularly N6-methyladenosine (m6A), 5-methylcytosine (m5C), N3-methylcytosine (m3C), N1-methyladenosine (m1A) and N7-methylguanosine (m7G), has been suggested as disease therapeutic targets. Despite advances in the structure and pharmacology of RNA methylation regulators that have improved drug discovery, regulating these proteins by various post-translational modifications (PTMs) has received little attention. PTM modifies protein structure and function, affecting all aspects of normal biology and pathogenesis, including immunology, cell differentiation, DNA damage repair, and tumors. It is becoming evident that RNA methylation regulators are also regulated by diverse PTMs. PTM of RNA methylation regulators induces their covalent linkage to new functional groups, hence modifying their activity and function. Mass spectrometry has identified many PTMs on protein regulators of RNA methylation. In this review, we describe the functions and PTM of protein regulators of RNA methylation and summarize the recent advances in the regulatory mode of human disease and its underlying mechanisms.
Collapse
Affiliation(s)
- Youming Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zuli Jiang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ying Yang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chenxing Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongyang Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Junhu Wan
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
48
|
Wang D, Hou L, Ji Y, Xie J, Zhao J, Zhu N, Yang X, Zhou J, Cui Y, Guo J, Feng X, Liu J. Ubiquitination-dependent degradation of nucleolin mediated by porcine circovirus type 3 capsid protein. J Virol 2023; 97:e0089423. [PMID: 38032196 PMCID: PMC10734473 DOI: 10.1128/jvi.00894-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/27/2023] [Indexed: 12/01/2023] Open
Abstract
IMPORTANCE Porcine circovirus type 3 (PCV3) is an emerging pathogen that causes multisystem disease in pigs and poses a severe threat to the swine industry. However, the mechanisms of how PCV3 uses host proteins to regulate its own life cycle are not well understood. In this study, we found that PCV3 capsid protein interacts with nucleolin and degrades it. Degradation of nucleolin by the PCV3 capsid protein requires recruitment of the enzyme RNF34, which is transported to the nucleolus from the cytoplasm in the presence of the PCV3 capsid protein. Nucleolin also decreases PCV3 replication by promoting the release of interferon β. These findings clarify the mechanism by which nucleolin modulates PCV3 replication in cells, thereby facilitating to provide an important strategy for preventing and controlling PCV3 infection.
Collapse
Affiliation(s)
- Dedong Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Lei Hou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Ying Ji
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jiali Xie
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jie Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Ning Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xiaoyu Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jianwei Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yongqiu Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jinshuo Guo
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xufei Feng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jue Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
49
|
Kudriaeva AA, Yakubova LA, Saratov GA, Vladimirov VI, Lipkin VM, Belogurov AA. Topology of Ubiquitin Chains in the Chromatosomal Environment of the E3 Ubiquitin Ligase RNF168. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:2063-2072. [PMID: 38462450 DOI: 10.1134/s000629792312009x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/19/2023] [Accepted: 09/20/2023] [Indexed: 03/12/2024]
Abstract
Genome stability is critical for normal functioning of cells, it depends on accuracy of DNA replication, chromosome segregation, and DNA repair. Cellular defense mechanisms against DNA damage are important for preventing cancer development and aging. The E3 ubiquitin ligase RNF168 of the RING superfamily is an essential component of the complex responsible for ubiquitination of the H2A/H2A.X histones near DNA double-strand breaks, which is a key step in attracting repair factors to the damage site. In this study, we unequivocally showed that RNF168 does not have the ability to directly distinguish architecture of polyubiquitin chains, except for the tropism of its two ubiquitin-binding domains UDM1/2 to K63 ubiquitin chains. Analysis of intracellular chromatosomal environment of the full-length RNF168 and its domains using the ligand-induced bioluminescence resonance energy transfer (BRET) revealed that the C-terminal part of UDM1 is associated with the K63 ubiquitin chains; RING and the N-terminal part of UDM2 are sterically close to the K63- and K48-ubiquitin chains, while the C-terminal part of UDM1 is co-localized with all possible ubiquitin variants. Our observations together with the available structural data suggest that the C-terminal part of UDM1 binds the K63 polyubiquitin chains on the linker histone H1; RING and the N-terminal part of UDM2 are located in the central part of nucleosome and sterically close to H1 and K48-ubiquitinated alternative substrates of RNF168, such as JMJD2A/B demethylases, while the C-terminal part of UDM1 is in the region of activated ubiquitin residue associated with E2 ubiquitin ligase, engaged by RNF168.
Collapse
Affiliation(s)
- Anna A Kudriaeva
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | - Lyudmila A Yakubova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - George A Saratov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Vasiliy I Vladimirov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Valeriy M Lipkin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Alexey A Belogurov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| |
Collapse
|
50
|
Zhou Z, Zheng K, Zhou S, Yang Y, Chen J, Jin X. E3 ubiquitin ligases in nasopharyngeal carcinoma and implications for therapies. J Mol Med (Berl) 2023; 101:1543-1565. [PMID: 37796337 DOI: 10.1007/s00109-023-02376-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 09/05/2023] [Accepted: 09/14/2023] [Indexed: 10/06/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is one of the most common squamous cell carcinomas of the head and neck, and Epstein-Barr virus (EBV) infection is one of the pathogenic factors involved in the oncogenetic development and progression of NPC. E3 ligases, which are key members of the ubiquitin proteasome system (UPS), specifically recognize various oncogenic factors and tumor suppressors and contribute to determining their fate through ubiquitination. Several studies have demonstrated that E3 ligases are aberrantly expressed and mutated in NPC and that these changes are closely associated with the occurrence and progression of NPC. Herein, we aim to thoroughly review the specific action mechanisms by which E3 ligases participate in NPC signaling pathways and discuss their functional relationship with EBV. Moreover, we describe the current progress in and limitations for targeted therapies against E3 ligases in NPC. KEY MESSAGES: • E3 ubiquitin ligases, as members of the UPS system, determine the fate of their substrates and may act either as oncogenic or anti-tumorigenic factors in NPC. • Mutations or dysregulated expression of E3 ubiquitin ligases is closely related to the occurrence, development, and therapeutic sensitivity of NPC, as they play important roles in several signaling pathways affected by EBV infection. • As promising therapeutic targets, E3 ligases may open new avenues for treatment and for improving the prognosis of NPC patients.
Collapse
Affiliation(s)
- Zijian Zhou
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, 315040, China
| | - Kaifeng Zheng
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, 315040, China
| | - Shao Zhou
- Department of Otolaryngology-Head and Neck Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, 315040, China
| | - Youxiong Yang
- Department of Otolaryngology-Head and Neck Surgery, Ningbo Yinzhou Second Hospital, Ningbo, 315199, China.
| | - Jun Chen
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, 315040, China.
| | - Xiaofeng Jin
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, 315040, China.
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center of Ningbo University, Ningbo, 315211, China.
| |
Collapse
|