1
|
Mendoza H, Jash E, Davis MB, Haines RA, VanDiepenbos S, Csankovszki G. Distinct regulatory mechanisms by the nuclear Argonautes HRDE-1 and NRDE-3 in the soma of Caenorhabditis elegans. G3 (BETHESDA, MD.) 2025; 15:jkaf057. [PMID: 40087923 PMCID: PMC12060244 DOI: 10.1093/g3journal/jkaf057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 03/06/2025] [Indexed: 03/17/2025]
Abstract
RNA interference (RNAi) is a conserved silencing mechanism that depends on the generation of small RNA molecules that leads to the degradation of the targeted messenger RNAs (mRNAs). Nuclear RNAi is a unique process that triggers regulation through epigenetic alterations to the genome. This pathway has been extensively characterized in Caenorhabditis elegans and involves the nuclear recruitment of H3K9 histone methyltransferases by the Argonautes HRDE-1 and NRDE-3. The coordinate regulation of genetic targets by H3K9 methylation and the nuclear Argonautes is highly complex and has been mainly described based on the small RNA populations that are involved. Recent studies have also linked the nuclear RNAi pathway to the compaction of the hermaphrodite X chromosomes during dosage compensation (DC), a mechanism that balances genetic differences between the biological sexes by repressing X chromosomes in hermaphrodites. This chromosome-wide process provides an excellent opportunity to further investigate the relationship between H3K9 methylation and the nuclear Argonautes. Our work suggests that the nuclear RNAi and the H3K9 methylation pathways each contribute to the condensation of the X chromosomes during DC but the consequences on the transcriptional output of X-linked genes are minimal. Instead, nuclear RNAi mutants exhibit global transcriptional differences, in which HRDE-1 and NRDE-3 affect expression of their mRNA targets through different relationships to H3K9 methylation.
Collapse
Affiliation(s)
- Hector Mendoza
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eshna Jash
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michael B Davis
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rebecca A Haines
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sarah VanDiepenbos
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Györgyi Csankovszki
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
2
|
Webb J, Zhao M, Campbell AH, Paul NA, Cummins SF, Eamens AL. The microRNA Pathway of Macroalgae: Its Similarities and Differences to the Plant and Animal microRNA Pathways. Genes (Basel) 2025; 16:442. [PMID: 40282402 PMCID: PMC12026948 DOI: 10.3390/genes16040442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 03/31/2025] [Accepted: 04/05/2025] [Indexed: 04/29/2025] Open
Abstract
In plants and animals, the microRNA (miRNA) class of small regulatory RNA plays an essential role in controlling gene expression in all aspects of development, to respond to environmental stress, or to defend against pathogen attack. This well-established master regulatory role for miRNAs has led to each protein-mediated step of both the plant and animal miRNA pathways being thoroughly characterized. Furthermore, this degree of characterization has led to the development of a suite of miRNA-based technologies for gene expression manipulation for fundamental research or for use in industrial or medical applications. In direct contrast, molecular research on the miRNA pathway of macroalgae, specifically seaweeds (marine macroalgae), remains in its infancy. However, the molecular research conducted to date on the seaweed miRNA pathway has shown that it shares functional features specific to either the plant or animal miRNA pathway. In addition, of the small number of seaweed species where miRNA data is available, little sequence conservation of individual miRNAs exists. These preliminary findings show the pressing need for substantive research into the seaweed miRNA pathway to advance our current understanding of this essential gene expression regulatory process. Such research will also generate the knowledge required to develop novel miRNA-based technologies for use in seaweeds. In this review, we compare and contrast the seaweed miRNA pathway to those well-characterized pathways of plants and animals and outline the low degree of miRNA sequence conservation across the polyphyletic group known as the seaweeds.
Collapse
Affiliation(s)
- Jessica Webb
- Seaweed Research Group, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia (M.Z.); (A.H.C.); (N.A.P.); (S.F.C.)
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
| | - Min Zhao
- Seaweed Research Group, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia (M.Z.); (A.H.C.); (N.A.P.); (S.F.C.)
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
| | - Alexandra H. Campbell
- Seaweed Research Group, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia (M.Z.); (A.H.C.); (N.A.P.); (S.F.C.)
- School of Health, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
| | - Nicholas A. Paul
- Seaweed Research Group, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia (M.Z.); (A.H.C.); (N.A.P.); (S.F.C.)
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
| | - Scott F. Cummins
- Seaweed Research Group, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia (M.Z.); (A.H.C.); (N.A.P.); (S.F.C.)
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
| | - Andrew L. Eamens
- Seaweed Research Group, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia (M.Z.); (A.H.C.); (N.A.P.); (S.F.C.)
- School of Health, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
| |
Collapse
|
3
|
Khan A, Smagghe G, Li S, Shakeel M, Yang G, Ahmed N. Insect metamorphosis and chitin metabolism under miRNA regulation: a review with current advances. PEST MANAGEMENT SCIENCE 2025. [PMID: 40079237 DOI: 10.1002/ps.8758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 02/15/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025]
Abstract
Insect metamorphosis is a complex developmental process regulated by microRNAs (miRNAs) and hormonal signaling pathways. Key genes driving insect ontogenic changes are precisely modulated by miRNAs, which interact with 20-hydroxyecdysone (20E) and juvenile hormone (JH) to coordinate developmental transitions. Over the past decade, significant progress has been made in understanding miRNA biogenesis, their regulatory roles in gene expression, and their involvement in critical biological processes, including metamorphosis and chitin metabolism. miRNAs are now recognized as essential regulators of chitin metabolism and hormonal signaling, ensuring precise control of insect development. Disrupting the expression of participating genes in hormone signaling pathways through miRNAs leads to aberrant metamorphosis and consequent lethal outcomes, highlighting their potential as targets for pest control. This review summarizes current advances in miRNA-mediated regulation of insect metamorphosis and chitin metabolism, with a focus on their interactions with 20E and JH signaling pathways. By integrating recent findings, we provide insights into the molecular mechanisms underlying miRNA function in developmental transitions and their potential applications in insect pest management strategies. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ashraf Khan
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang, China
- Institute of Plant and Environmental Protection, National Agricultural Research Center, Pakistan Agricultural Research Council, Islamabad, Pakistan
| | - Guy Smagghe
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang, China
- Molecular and Cellular Life Sciences, Department of Biology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Shangwei Li
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang, China
| | - Muhammad Shakeel
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang, China
| | - Guangming Yang
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang, China
- Guizhou Institute of Biology, Guiyang, China
| | - Nazeer Ahmed
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| |
Collapse
|
4
|
Kashkush A, Furth‐Lavi J, Hodon J, Benhamou RI. PROTAC and Molecular Glue Degraders of the Oncogenic RNA Binding Protein Lin28. Macromol Biosci 2025; 25:e2400427. [PMID: 39575661 PMCID: PMC11904392 DOI: 10.1002/mabi.202400427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/06/2024] [Indexed: 03/14/2025]
Abstract
The interaction between proteins and RNA is crucial for regulating gene expression, with dysregulation often linked to diseases such as cancer. The RNA-binding protein (RBP) Lin28 inhibits the tumor suppressor microRNA (miRNA) let-7, making it a significant oncogenic factor in tumor progression and metastasis. In this study, a small molecule is used that binds Lin28 and blocks its inhibition of let-7. To enhance its efficay, the inhibitor is transformed into degraders via two degradation approaches: Proteolysis Targeting Chimera (PROTAC) and molecular glue. A series of PROTAC bifunctional molecules and molecular glues capable of degrading Lin28 in cells.is developed Both strategies significantly reduce overexpressed Lin28 and alleviate cancer cellular phenotypes. Notably, the molecular glue approach demonstrates exceptional potency, surpassing PROTAC in several aspects. This outcome underscores the superior efficiency of the molecular glue approach for targeted Lin28 degradation and highlights its potential for addressing associated diseases with small molecules. Innovative small molecule strategies such as molecular glue and PROTAC technology for targeted RBP degradation, hold promise for opening new avenues in RNA modulation and addressing related diseases.
Collapse
Affiliation(s)
- Aseel Kashkush
- The Institute for Drug Research of the School of Pharmacy, Faculty of MedicineThe Hebrew University of JerusalemHadassah‐Ein KeremJerusalem91120Israel
| | - Judith Furth‐Lavi
- The Institute for Drug Research of the School of Pharmacy, Faculty of MedicineThe Hebrew University of JerusalemHadassah‐Ein KeremJerusalem91120Israel
| | - Jiri Hodon
- The Institute for Drug Research of the School of Pharmacy, Faculty of MedicineThe Hebrew University of JerusalemHadassah‐Ein KeremJerusalem91120Israel
| | - Raphael I. Benhamou
- The Institute for Drug Research of the School of Pharmacy, Faculty of MedicineThe Hebrew University of JerusalemHadassah‐Ein KeremJerusalem91120Israel
| |
Collapse
|
5
|
Gao Y, Takenaka K, Xu SM, Cheng Y, Janitz M. Recent advances in investigation of circRNA/lncRNA-miRNA-mRNA networks through RNA sequencing data analysis. Brief Funct Genomics 2025; 24:elaf005. [PMID: 40251826 PMCID: PMC12008121 DOI: 10.1093/bfgp/elaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 03/10/2025] [Accepted: 03/18/2025] [Indexed: 04/21/2025] Open
Abstract
Non-coding RNAs (ncRNAs) are RNA molecules that are transcribed from DNA but are not translated into proteins. Studies over the past decades have revealed that ncRNAs can be classified into small RNAs, long non-coding RNAs and circular RNAs by genomic size and structure. Accumulated evidences have eludicated the critical roles of these non-coding transcripts in regulating gene expression through transcription and translation, thereby shaping cellular function and disease pathogenesis. Notably, recent studies have investigated the function of ncRNAs as competitive endogenous RNAs (ceRNAs) that sequester miRNAs and modulate mRNAs expression. The ceRNAs network emerges as a pivotal regulatory function, with significant implications in various diseases such as cancer and neurodegenerative disease. Therefore, we highlighted multiple bioinformatics tools and databases that aim to predict ceRNAs interaction. Furthermore, we discussed limitations of using current technologies and potential improvement for ceRNAs network detection. Understanding of the dynamic interplay within ceRNAs may advance the biological comprehension, as well as providing potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Yulan Gao
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Gate 11 via Botany St, Sydney, NSW 2052, Australia
| | - Konii Takenaka
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Gate 11 via Botany St, Sydney, NSW 2052, Australia
| | - Si-Mei Xu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Gate 11 via Botany St, Sydney, NSW 2052, Australia
| | - Yuning Cheng
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Gate 11 via Botany St, Sydney, NSW 2052, Australia
| | - Michael Janitz
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Gate 11 via Botany St, Sydney, NSW 2052, Australia
| |
Collapse
|
6
|
Kim CJ, Jang D, Lim DH. Drosophila miR-263b-5p controls wing developmental growth by targeting Akt. Anim Cells Syst (Seoul) 2024; 29:35-45. [PMID: 39777023 PMCID: PMC11703049 DOI: 10.1080/19768354.2024.2444366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/16/2024] [Accepted: 12/01/2024] [Indexed: 01/11/2025] Open
Abstract
Tissue growth is controlled by various signaling pathways, such as the insulin/IGF-signaling (IIS) pathway. Although IIS activation is regulated by a complex regulatory network, the mechanism underlying miRNA-based regulation of the IIS pathway in Drosophila wing development remains unclear. In this study, we found that the wing size of adult flies was negatively affected by miR-263b expression. The miR-263b-mediated alteration in wing size was linked to a reduction in wing cell number. Additionally, miR-263b overexpression in Drosophila S2 cells decreased cell proliferation and increased cell death. Consequently, we identified Akt as a direct target of miR-263b-5p and found that miR-263b-mediated wing growth regulation was due to changes in Akt expression. Co-expression of Akt in miR-263b-overexpressing wings rescued the miR-263b overexpression-mediated reduction in wing growth. These results enhance our understanding of the crucial role of miRNAs in growth regulation during Drosophila wing development.
Collapse
Affiliation(s)
- Chae Jeong Kim
- School of Systems Biomedical Science, Soongsil University, Seoul, Republic of Korea
| | - Daegyu Jang
- School of Systems Biomedical Science, Soongsil University, Seoul, Republic of Korea
| | - Do-Hwan Lim
- School of Systems Biomedical Science, Soongsil University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Sumaira S, Vijayarathna S, Hemagirri M, Adnan M, Hassan MI, Patel M, Gupta R, Shanmugapriya, Chen Y, Gopinath SC, Kanwar JR, Sasidharan S. Plant bioactive compounds driven microRNAs (miRNAs): A potential source and novel strategy targeting gene and cancer therapeutics. Noncoding RNA Res 2024; 9:1140-1158. [PMID: 39022680 PMCID: PMC11250886 DOI: 10.1016/j.ncrna.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 07/20/2024] Open
Abstract
Irrespective of medical technology improvements, cancer ranks among the leading causes of mortality worldwide. Although numerous cures and treatments exist, creating alternative cancer therapies with fewer adverse side effects is vital. Since ancient times, plant bioactive compounds have already been used as a remedy to heal cancer. These plant bioactive compounds and their anticancer activity can also deregulate the microRNAs (miRNAs) in the cancerous cells. Therefore, the deregulation of miRNAs in cancer cells by plant bioactive compounds and the usage of the related miRNA could be a promising approach for cancer cure, mainly to prevent cancer and overcome chemotherapeutic side effect problems. Hence, this review highlights the function of plant bioactive compounds as an anticancer agent through the underlying mechanism that alters the miRNA expression in cancer cells, ultimately leading to apoptosis. Moreover, this review provides insight into using plant bioactive compounds -driven miRNAs as an anticancer agent to develop miRNA-based cancer gene therapy. They can be the potential resource for gene therapy and novel strategies targeting cancer therapeutics.
Collapse
Affiliation(s)
- Sahreen Sumaira
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Soundararajan Vijayarathna
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Manisekaran Hemagirri
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, P.O. Box 2440, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mitesh Patel
- Research and Development Cell and Department of Biotechnology, Parul Institute of Applied Sciences, Parul University, Vadodara, 391760, Gujarat, India
| | - Reena Gupta
- Institute of Pharmaceutical Research, Department. Pharmaceutical Research, GLA University, Mathura, India
| | - Shanmugapriya
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Yeng Chen
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Subash C.B. Gopinath
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, Perlis, Malaysia
| | - Jagat R. Kanwar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), 174001, Bilaspur, Himachal Pradesh, India
| | - Sreenivasan Sasidharan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| |
Collapse
|
8
|
Ceci M, Bonvissuto D, Papetti F, Silvestri F, Sette C, Catalani E, Cervia D, Gornati R, Romano N. RACK1 contributes to the upregulation of embryonic genes in a model of cardiac hypertrophy. Sci Rep 2024; 14:25698. [PMID: 39465301 PMCID: PMC11514175 DOI: 10.1038/s41598-024-76138-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024] Open
Abstract
Receptors for activated C kinases (RACKs) have been shown to coordinate PKC-mediated hypertrophic signalling in mice. However, little information is available on its participation in embryonic gene expression. This study investigated the involvement of RACK1 in the expression of embryonic genes in a zebrafish (ZF) ex vivo heart culture model by using phenylephrine (PE) or a growth factors cocktail (GFs) as a prohypertrophic/regeneration stimulus. Blebbistatin (BL) inhibition has also been studied for its ability to block the signal transduction actions of some PEs. qRT‒PCR and immunoblot analyses confirmed the upregulation of RACK1 in the PE- and GFs-treated groups. BL administration counteracted PE-induced hypertrophy and downregulated RACK1 expression. Immunohistochemical analyses of the heart revealed the colocalization of RACK1 and embryonic genes, namely, Gata4, Wt1, and Nfat2, under stimulation, whereas these genes were expressed at lower levels in the BL treatment group. Culturing ZF heart cells activated via GFs treatment increased the expression of RACK1. The overexpression of RACK1 induced by the transfection of recombinant RACK1 cDNA in ZF heart cells increased the expression of embryonic genes, especially after one week of GFs treatment. In summary, these results support the involvement of RACK1 in the induction of embryonic genes during cardiac hypertrophy/GFs stimulation in a fish heart model, which can be used as an alternative study model for mammals.
Collapse
Affiliation(s)
| | | | | | | | - Claudio Sette
- DNHA, Catholic University of Sacred Heart, Rome, Italy
- IRCCS, Policlinico A. Gemelli Foundation, Rome, Italy
| | | | | | | | | |
Collapse
|
9
|
Mendoza H, Jash E, Davis MB, Haines RA, Van Diepenbos S, Csankovszki G. Distinct regulatory mechanisms by the nuclear Argonautes HRDE-1 and NRDE-3 in the soma of Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.615038. [PMID: 39386440 PMCID: PMC11463658 DOI: 10.1101/2024.09.25.615038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
RNA interference is a conserved silencing mechanism that depends on the generation of small RNA molecules that disrupt synthesis of their corresponding transcripts. Nuclear RNA interference is a unique process that triggers regulation through epigenetic alterations to the genome. This pathway has been extensively characterized in Caenorhabditis elegans and involves the nuclear recruitment of H3K9 histone methyltransferases by the Argonautes HRDE-1 and NRDE-3. The coordinate regulation of genetic targets by H3K9 methylation and the nuclear Argonautes is highly complex and has been mainly described based on the small RNA populations that are involved. Recent studies have also linked the nuclear RNAi pathway to the compaction of the hermaphrodite X chromosomes during dosage compensation, a mechanism that balances genetic differences between the biological sexes by repressing X chromosomes in hermaphrodites. This chromosome-wide process provides an excellent opportunity to further investigate the relationship between H3K9 methylation and the nuclear Argonautes from the perspective of the transcriptome. Our work suggests that the nuclear RNAi and the H3K9 methylation pathways each contribute to the condensation of the X chromosomes during dosage compensation but the consequences on their transcriptional output are minimal. Instead, nuclear RNAi mutants exhibit global transcriptional differences, in which HRDE-1 and NRDE-3 affect expression of their native targets through different modes of regulation and different relationships to H3K9 methylation. ARTICLE SUMMARY This study examines the transcriptional consequences during the disruption of the nuclear RNAi silencing mechanism in C. elegans . Through microscopy and bioinformatic work, we demonstrate that although nuclear RNAi mutants exhibit significantly decondensed X chromosomes, chromosome-wide transcriptional de-repression is not detectable. Downstream analyses further explore the global influence of the nuclear RNAi pathway, indicating that the nuclear Argonautes HRDE-1 and NRDE-3 function through two distinct mechanisms.
Collapse
|
10
|
Chang JJS, Lin T, Jhang XY, Chan SP. hnRNP Q/SYNCRIP interacts with LIN28B and modulates the LIN28B/let-7 axis in human hepatoma cells. PLoS One 2024; 19:e0304947. [PMID: 38976670 PMCID: PMC11230530 DOI: 10.1371/journal.pone.0304947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/21/2024] [Indexed: 07/10/2024] Open
Abstract
The RNA-binding protein LIN28B represses the biogenesis of the tumor suppressor let-7. The LIN28B/let-7 axis regulates cell differentiation and is associated with various cancers. The RNA-binding protein Q (hnRNP Q) or SYNCRIP (Synaptotagmin Binding Cytoplasmic RNA Interacting Protein) has been implicated in mRNA splicing, mRNA transport, translation, and miRNAs biogenesis as well as metabolism in cancer. To determine whether hnRNP Q plays a role in the LIN28B/let-7 axis, we tested for interactions between hnRNP Q and LIN28B. We demonstrated that hnRNP Q interacts with LIN28B in an RNA-dependent manner. Knockdown of hnRNP Q caused reduced expression of a well-known let-7 target TRIM71, an E3 ubiquitin ligase that belongs to the RBCC/TRIM family, and also LIN28B, whose mRNA itself is down-regulated by let-7. In addition, hnRNP Q knockdown increased let-7 family miRNA levels and reduced the activity of luciferase reporters fused with the TRIM71 3'UTR or a synthetic 3'UTR carrying 8X let-7 complementary sites. Finally, depletion of hnRNP Q inhibited the proliferation of a hepatocellular carcinoma cell line, Huh7. This observation is consistent with the survival curve for liver cancer patients from the TCGA database, which indicates that high expression of hnRNP Q is a prognostic marker for a poor outcome in individuals afflicted with hepatocellular carcinoma. Together, our findings suggest that hnRNP Q interacts with LIN28B and modulates the LIN28B/let-7 axis in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Jason Jei-Sheng Chang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ti Lin
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Xin-Yue Jhang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shih-Peng Chan
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Genome and Systems Biology Degree Program, College of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
11
|
Salman Hameed M, Ren Y, Tuda M, Basit A, Urooj N. Role of Argonaute proteins in RNAi pathway in Plutella xylostella: A review. Gene 2024; 903:148195. [PMID: 38295911 DOI: 10.1016/j.gene.2024.148195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/18/2024] [Indexed: 02/04/2024]
Abstract
Argonaute (Ago) proteins act as key elements in RNA interference (RNAi) pathway, orchestrating the intricate machinery of gene regulation within eukaryotic cells. Within the RNAi pathway, small RNA molecules, including microRNA (miRNA), small interfering RNA (siRNA), and PIWI-interacting RNA (piRNA), collaborate with Ago family member proteins such as Ago1, Ago2, and Ago3 to form the RNA-induced silencing complex (RISC). This RISC complex, in turn, either cleaves the target mRNA or inhibits the process of protein translation. The precise contributions of Ago proteins have been well-established in numerous animals and plants, although they still remain unclear in some insect species. This review aims to shed light on the specific roles played by Ago proteins within the RNAi mechanism in a destructive lepidopteran pest, the diamondback moth (Plutella xylostella). Furthermore, we explore the potential of double-stranded RNA (dsRNA)-mediated RNAi as a robust genetic tool in pest management strategies. Through an in-depth examination of Ago proteins and dsRNA-mediated RNAi, this review seeks to contribute to our understanding of innovative approaches for controlling this pest and potentially other insect species of agricultural significance.
Collapse
Affiliation(s)
- Muhammad Salman Hameed
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China.
| | - Yanliang Ren
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China.
| | - Midori Tuda
- Institute of Biological Control, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Abdul Basit
- Institute of Entomology, Guizhou University Guiyang 550025, Guizhou China
| | - Nida Urooj
- Department of Business Administrative, Bahaudin Zakriya University, Multan, Pakistan
| |
Collapse
|
12
|
Lim DH, Choi MS, Jeon JW, Lee YS. MicroRNA miR-252-5p regulates the Notch signaling pathway by targeting Rab6 in Drosophila wing development. INSECT SCIENCE 2023; 30:1431-1444. [PMID: 36847222 DOI: 10.1111/1744-7917.13188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
The Notch signaling pathway plays a central role in the development of various organisms. However, dysregulation of microRNAs (miRNAs), which are crucial regulators of gene expression, can disrupt signaling pathways at all stages of development. Although Notch signaling is involved in wing development in Drosophila, the mechanism underlying miRNA-based regulation of the Notch signaling pathway is unclear. Here, we report that loss of Drosophila miR-252 increases the size of adult wings, whereas the overexpression of miR-252 in specific compartments of larval wing discs leads to patterning defects in the adult wings. The miR-252 overexpression-induced wing phenotypes were caused by aberrant Notch signaling with intracellular accumulation of the full-length Notch receptor during development, which could be due to defects in intracellular Notch trafficking associated with its recycling to the plasma membrane and autophagy-mediated degradation. Moreover, we identified Rab6 as a direct target of miR-252-5p; Rab6 encodes a small Ras-like GTPase that regulates endosomal trafficking pathways. Consistent with this finding, RNAi-mediated downregulation of Rab6 led to similar defects in both wing patterning and Notch signaling. Notably, co-overexpression of Rab6 completely rescued the wing phenotype associated with miR-252 overexpression, further supporting that Rab6 is a biologically relevant target of miR-252-5p in the context of wing development. Thus, our data indicate that the miR-252-5p-Rab6 regulatory axis is involved in Drosophila wing development by controlling the Notch signaling pathway.
Collapse
Affiliation(s)
- Do-Hwan Lim
- School of Systems Biomedical Science, Soongsil University, Seoul, Republic of Korea
| | - Min-Seok Choi
- College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea
| | - Ji Won Jeon
- School of Systems Biomedical Science, Soongsil University, Seoul, Republic of Korea
| | - Young Sik Lee
- College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
13
|
Kim CJ, Kim HH, Kim HK, Lee S, Jang D, Kim C, Lim DH. MicroRNA miR-263b-5p Regulates Developmental Growth and Cell Association by Suppressing Laminin A in Drosophila. BIOLOGY 2023; 12:1096. [PMID: 37626982 PMCID: PMC10451713 DOI: 10.3390/biology12081096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/04/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023]
Abstract
Basement membranes (BMs) play important roles under various physiological conditions in animals, including ecdysozoans. During development, BMs undergo alterations through diverse intrinsic and extrinsic regulatory mechanisms; however, the full complement of pathways controlling these changes remain unclear. Here, we found that fat body-overexpression of Drosophila miR-263b, which is highly expressed during the larval-to-pupal transition, resulted in a decrease in the overall size of the larval fat body, and ultimately, in a severe growth defect accompanied by a reduction in cell proliferation and cell size. Interestingly, we further observed that a large proportion of the larval fat body cells were prematurely disassociated from each other. Moreover, we present evidence that miR-263b-5p suppresses the main component of BMs, Laminin A (LanA). Through experiments using RNA interference (RNAi) of LanA, we found that its depletion phenocopied the effects in miR-263b-overexpressing flies. Overall, our findings suggest a potential role for miR-263b in developmental growth and cell association by suppressing LanA expression in the Drosophila fat body.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Do-Hwan Lim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea; (C.J.K.); (H.H.K.); (H.K.K.); (S.L.); (D.J.); (C.K.)
| |
Collapse
|
14
|
Pekovic F, Rammelt C, Kubíková J, Metz J, Jeske M, Wahle E. RNA binding proteins Smaug and Cup induce CCR4-NOT-dependent deadenylation of the nanos mRNA in a reconstituted system. Nucleic Acids Res 2023; 51:3950-3970. [PMID: 36951092 PMCID: PMC10164591 DOI: 10.1093/nar/gkad159] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 01/22/2023] [Accepted: 02/22/2023] [Indexed: 03/24/2023] Open
Abstract
Posttranscriptional regulation of the maternal nanos mRNA is essential for the development of the anterior - posterior axis of the Drosophila embryo. The nanos RNA is regulated by the protein Smaug, which binds to Smaug recognition elements (SREs) in the nanos 3'-UTR and nucleates the assembly of a larger repressor complex including the eIF4E-T paralog Cup and five additional proteins. The Smaug-dependent complex represses translation of nanos and induces its deadenylation by the CCR4-NOT deadenylase. Here we report an in vitro reconstitution of the Drosophila CCR4-NOT complex and Smaug-dependent deadenylation. We find that Smaug by itself is sufficient to cause deadenylation by the Drosophila or human CCR4-NOT complexes in an SRE-dependent manner. CCR4-NOT subunits NOT10 and NOT11 are dispensable, but the NOT module, consisting of NOT2, NOT3 and the C-terminal part of NOT1, is required. Smaug interacts with the C-terminal domain of NOT3. Both catalytic subunits of CCR4-NOT contribute to Smaug-dependent deadenylation. Whereas the CCR4-NOT complex itself acts distributively, Smaug induces a processive behavior. The cytoplasmic poly(A) binding protein (PABPC) has a minor inhibitory effect on Smaug-dependent deadenylation. Among the additional constituents of the Smaug-dependent repressor complex, Cup also facilitates CCR4-NOT-dependent deadenylation, both independently and in cooperation with Smaug.
Collapse
Affiliation(s)
- Filip Pekovic
- Institute of Biochemistry and Biotechnology and Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 3a, 06120 Halle, Germany
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, 1050 Boyles Street, Frederick, MD 21702, USA
| | - Christiane Rammelt
- Institute of Biochemistry and Biotechnology and Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 3a, 06120 Halle, Germany
| | - Jana Kubíková
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Jutta Metz
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Mandy Jeske
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Elmar Wahle
- Institute of Biochemistry and Biotechnology and Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 3a, 06120 Halle, Germany
| |
Collapse
|
15
|
Kirstein N, Dokaneheifard S, Cingaram PR, Valencia MG, Beckedorff F, Gomes Dos Santos H, Blumenthal E, Tayari MM, Gaidosh GS, Shiekhattar R. The Integrator complex regulates microRNA abundance through RISC loading. SCIENCE ADVANCES 2023; 9:eadf0597. [PMID: 36763664 PMCID: PMC9916992 DOI: 10.1126/sciadv.adf0597] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
MicroRNA (miRNA) homeostasis is crucial for the posttranscriptional regulation of their target genes during development and in disease states. miRNAs are derived from primary transcripts and are processed from a hairpin precursor intermediary to a mature 22-nucleotide duplex RNA. Loading of the duplex into the Argonaute (AGO) protein family is pivotal to miRNA abundance and its posttranscriptional function. The Integrator complex plays a key role in protein coding and noncoding RNA maturation, RNA polymerase II pause-release, and premature transcriptional termination. Here, we report that loss of Integrator results in global destabilization of mature miRNAs. Enhanced ultraviolet cross-linking and immunoprecipitation of Integrator uncovered an association with duplex miRNAs before their loading onto AGOs. Tracing miRNA fate from biogenesis to stabilization by incorporating 4-thiouridine in nascent transcripts pinpointed a critical role for Integrator in miRNA assembly into AGOs.
Collapse
Affiliation(s)
- Nina Kirstein
- Department of Human Genetics, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Sadat Dokaneheifard
- Department of Human Genetics, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Pradeep Reddy Cingaram
- Department of Human Genetics, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Monica Guiselle Valencia
- Department of Human Genetics, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Felipe Beckedorff
- Department of Human Genetics, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Helena Gomes Dos Santos
- Department of Human Genetics, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Ezra Blumenthal
- Department of Human Genetics, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, 1501 NW 10th Avenue, Miami, FL 33136, USA
- Medical Scientist Training Program and Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Mina Masoumeh Tayari
- Department of Human Genetics, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Gabriel Stephen Gaidosh
- Department of Human Genetics, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Ramin Shiekhattar
- Department of Human Genetics, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, 1501 NW 10th Avenue, Miami, FL 33136, USA
| |
Collapse
|
16
|
Noncoding RNA Regulation of Hormonal and Metabolic Systems in the Fruit Fly Drosophila. Metabolites 2023; 13:metabo13020152. [PMID: 36837772 PMCID: PMC9967906 DOI: 10.3390/metabo13020152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
The importance of RNAs is commonly recognised thanks to protein-coding RNAs, whereas non-coding RNAs (ncRNAs) were conventionally regarded as 'junk'. In the last decade, ncRNAs' significance and roles are becoming noticeable in various biological activities, including those in hormonal and metabolic regulation. Among the ncRNAs: microRNA (miRNA) is a small RNA transcript with ~20 nucleotides in length; long non-coding RNA (lncRNA) is an RNA transcript with >200 nucleotides; and circular RNA (circRNA) is derived from back-splicing of pre-mRNA. These ncRNAs can regulate gene expression levels at epigenetic, transcriptional, and post-transcriptional levels through various mechanisms in insects. A better understanding of these crucial regulators is essential to both basic and applied entomology. In this review, we intend to summarise and discuss the current understanding and knowledge of miRNA, lncRNA, and circRNA in the best-studied insect model, the fruit fly Drosophila.
Collapse
|
17
|
Anbazhagan AN, Priyamvada S, Kumar A, Jayawardena D, Borthakur A, Gill RK, Alrefai WA, Dudeja PK, Saksena S. Downregulation of NHE-3 (SLC9A3) expression by MicroRNAs in intestinal epithelial cells. Am J Physiol Cell Physiol 2022; 323:C1720-C1727. [PMID: 36189974 PMCID: PMC9722255 DOI: 10.1152/ajpcell.00294.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/22/2022]
Abstract
Na+/H+ exchanger-3 (NHE-3) is the major apical membrane transporter involved in vectorial Na+ absorption in the intestine. Dysregulation of NHE-3 expression and/or function has been implicated in pathophysiology of diarrhea associated with gut inflammation and infections. Therefore, it is critical to understand the mechanisms involved in the regulation of NHE-3 expression. MicroRNAs (miRNAs) are highly conserved small RNAs that can regulate gene expression at the posttranscriptional level. To date, however, very little is known about the regulation of NHE-3 expression by microRNAs. Therefore, current studies were undertaken to examine the potential miRNA candidates that can regulate the expression of NHE-3 in intestinal epithelial cells. In silico analysis, using different algorithms, predicted several miRNAs that target NHE-3. MicroRNAs with highest context and target score, miR-326, miR-744-5p, and miR-330-5p, were selected for the current study. Human NHE-3 gene 3' untranslated region [3'UTR; 160 base pair (bp)] was cloned into pmirGLO vector upstream of luciferase reporter and transiently transfected with mimics of miR-326, miR-744-5p, and miR-330-5p into Caco-2, HT-29, and SK-CO15 cells. Cotransfection of NHE-3 3' UTR with miR-326 and -miR-330-5p mimics resulted in a significant decrease in relative luciferase activity. Transfection of miR-326 and -330-5p mimics into SK-CO15 cells significantly decreased the NHE-3 protein expression, with no change in NHE-3 messenger ribonucleic acid (mRNA) levels. Our findings demonstrate a novel mechanism for posttranscriptional regulation of NHE-3 by miR-326 and -330-5p by translational repression. We speculate that miR-326 and -330-5p dependent pathways may be involved in modulating NHE-3 expression under physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Arivarasu N Anbazhagan
- Division of Gastroenterology & Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Shubha Priyamvada
- Division of Gastroenterology & Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Anoop Kumar
- Division of Gastroenterology & Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
- Jesse Brown VA Medical Center, Chicago, Illinois
| | - Dulari Jayawardena
- Division of Gastroenterology & Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Alip Borthakur
- Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Ravinder K Gill
- Division of Gastroenterology & Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Waddah A Alrefai
- Division of Gastroenterology & Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
- Jesse Brown VA Medical Center, Chicago, Illinois
| | - Pradeep K Dudeja
- Division of Gastroenterology & Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
- Jesse Brown VA Medical Center, Chicago, Illinois
| | - Seema Saksena
- Division of Gastroenterology & Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
- Jesse Brown VA Medical Center, Chicago, Illinois
| |
Collapse
|
18
|
Binda O, Juillard F, Ducassou JN, Kleijwegt C, Paris G, Didillon A, Baklouti F, Corpet A, Couté Y, Côté J, Lomonte P. SMA-linked SMN mutants prevent phase separation properties and SMN interactions with FMRP family members. Life Sci Alliance 2022; 6:6/1/e202201429. [PMID: 36375840 PMCID: PMC9684302 DOI: 10.26508/lsa.202201429] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
Although recent advances in gene therapy provide hope for spinal muscular atrophy (SMA) patients, the pathology remains the leading genetic cause of infant mortality. SMA is a monogenic pathology that originates from the loss of the SMN1 gene in most cases or mutations in rare cases. Interestingly, several SMN1 mutations occur within the TUDOR methylarginine reader domain of SMN. We hypothesized that in SMN1 mutant cases, SMA may emerge from aberrant protein-protein interactions between SMN and key neuronal factors. Using a BioID proteomic approach, we have identified and validated a number of SMN-interacting proteins, including fragile X mental retardation protein (FMRP) family members (FMRFM). Importantly, SMA-linked SMNTUDOR mutant forms (SMNST) failed to interact with FMRFM In agreement with the recent work, we define biochemically that SMN forms droplets in vitro and these droplets are stabilized by RNA, suggesting that SMN could be involved in the formation of membraneless organelles, such as Cajal nuclear bodies. Finally, we found that SMN and FMRP co-fractionate with polysomes, in an RNA-dependent manner, suggesting a potential role in localized translation in motor neurons.
Collapse
Affiliation(s)
- Olivier Binda
- Université Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U1315, LabEx DEV2CAN, Institut NeuroMyoGène-Pathophysiology and Genetics of Neuron and Muscle, Team Chromatin Dynamics, Nuclear Domains, Virus, Lyon, France .,University of Ottawa, Faculty of Medicine, Department of Cellular and Molecular Medicine, Ottawa, Canada
| | - Franceline Juillard
- Université Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U1315, LabEx DEV2CAN, Institut NeuroMyoGène-Pathophysiology and Genetics of Neuron and Muscle, Team Chromatin Dynamics, Nuclear Domains, Virus, Lyon, France
| | - Julia Novion Ducassou
- Université Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, Grenoble, France
| | - Constance Kleijwegt
- Université Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U1315, LabEx DEV2CAN, Institut NeuroMyoGène-Pathophysiology and Genetics of Neuron and Muscle, Team Chromatin Dynamics, Nuclear Domains, Virus, Lyon, France,Université de Montpellier, CNRS UMR 9002, Institut de Génétique Humaine, Montpellier, France
| | - Geneviève Paris
- University of Ottawa, Faculty of Medicine, Department of Cellular and Molecular Medicine, Ottawa, Canada
| | - Andréanne Didillon
- University of Ottawa, Faculty of Medicine, Department of Cellular and Molecular Medicine, Ottawa, Canada
| | - Faouzi Baklouti
- Université Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U1315, LabEx DEV2CAN, Institut NeuroMyoGène-Pathophysiology and Genetics of Neuron and Muscle, Team Chromatin Dynamics, Nuclear Domains, Virus, Lyon, France
| | - Armelle Corpet
- Université Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U1315, LabEx DEV2CAN, Institut NeuroMyoGène-Pathophysiology and Genetics of Neuron and Muscle, Team Chromatin Dynamics, Nuclear Domains, Virus, Lyon, France
| | - Yohann Couté
- Université Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, Grenoble, France
| | - Jocelyn Côté
- University of Ottawa, Faculty of Medicine, Department of Cellular and Molecular Medicine, Ottawa, Canada
| | - Patrick Lomonte
- Université Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U1315, LabEx DEV2CAN, Institut NeuroMyoGène-Pathophysiology and Genetics of Neuron and Muscle, Team Chromatin Dynamics, Nuclear Domains, Virus, Lyon, France
| |
Collapse
|
19
|
Naeli P, Winter T, Hackett AP, Alboushi L, Jafarnejad SM. The intricate balance between microRNA-induced mRNA decay and translational repression. FEBS J 2022; 290:2508-2524. [PMID: 35247033 DOI: 10.1111/febs.16422] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/08/2022] [Accepted: 03/03/2022] [Indexed: 12/23/2022]
Abstract
Post-transcriptional regulation of messenger RNAs (mRNAs) (i.e., mechanisms that control translation, stability and localization) is a critical focal point in spatiotemporal regulation of gene expression in response to changes in environmental conditions. The human genome encodes ~ 2000 microRNAs (miRNAs), each of which could control the expression of hundreds of protein-coding mRNAs by inducing translational repression and/or promoting mRNA decay. While mRNA degradation is a terminal event, translational repression is reversible and can be employed for rapid response to internal or external cues. Recent years have seen significant progress in our understanding of how miRNAs induce degradation or translational repression of the target mRNAs. Here, we review the recent findings that illustrate the cellular machinery that contributes to miRNA-induced silencing, with a focus on the factors that could influence translational repression vs. decay.
Collapse
Affiliation(s)
- Parisa Naeli
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, UK
| | - Timothy Winter
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, UK
| | - Angela P Hackett
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, UK
| | - Lilas Alboushi
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, UK
| | | |
Collapse
|
20
|
Hui RWH, Mak LY, Seto WK, Yuen MF. RNA interference as a novel treatment strategy for chronic hepatitis B infection. Clin Mol Hepatol 2022; 28:408-424. [PMID: 35172540 PMCID: PMC9293617 DOI: 10.3350/cmh.2022.0012] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 11/26/2022] Open
Abstract
Chronic hepatitis B (CHB) is a major cause of liver-related morbidity and mortality. Functional cure of CHB, defined as sustainable hepatitis B surface antigen (HBsAg) seroclearance, is associated with improved clinical outcomes. However, functional cure is rarely attainable by current treatment modalities. RNA interference (RNAi) by small-interfering RNA (siRNA) and anti-sense oligonucleotide (ASO) has been studied as a novel treatment strategy for CHB. RNAi targets post-transcriptional messenger RNAs and pregenomic RNAs to reduce hepatitis B virus (HBV) antigen production and viral replication. By reducing viral antigens, host immune reconstitution against HBV may also be attained. Phase I/II trials on siRNAs have demonstrated them to be safe and well-tolerated. siRNA is effective when given in monthly doses with different total number of doses according to different trial design, and can lead to sustainable dose-dependent mean HBsAg reduction by 2–2.5 log. Incidences of HBsAg seroclearance after siRNA therapy have also been reported. ASOs have also been studied in early phase trials, and a phase Ib study using frequent dosing regimen within 4 weeks could achieve similar HBsAg reduction of 2 log from baseline. Given the established efficacy and safety of nucleos(t) ide analogues (NAs), future RNAi regimens will likely include NA backbone. While the current evidence on RNAi appears promising, it remains undetermined whether the potent HBsAg reduction by RNAi can result in a high rate of HBsAg seroclearance with durability. Data on RNAi from phase IIb/III trials are keenly anticipated.
Collapse
Affiliation(s)
- Rex Wan-Hin Hui
- Department of Medicine, The University of Hong Kong, Hong Kong
| | - Lung-Yi Mak
- Department of Medicine, The University of Hong Kong, Hong Kong.,State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Wai-Kay Seto
- Department of Medicine, The University of Hong Kong, Hong Kong.,State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Man-Fung Yuen
- Department of Medicine, The University of Hong Kong, Hong Kong.,State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| |
Collapse
|
21
|
Yang RL, Zhang Q, Fan JY, Yue Y, Chen EH, Yuan GR, Dou W, Wang JJ. RNA interference of Argonaute-1 delays ovarian development in the oriental fruit fly, Bactrocera dorsalis (Hendel). PEST MANAGEMENT SCIENCE 2021; 77:3921-3933. [PMID: 33884743 DOI: 10.1002/ps.6419] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/03/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND With the development of rapid resistance, new modes of action for pesticides are needed for insect control, such as RNAi-based biopesticides targeting essential genes. To explore the function of Argonaute-1 (Ago-1) and potential miRNAs in ovarian development of Bactrocera dorsalis, an important agricultural pest, and to develop a novel control strategy for the pest, BdAgo-1 was first identified in B. dorsalis. RESULTS Spatiotemporal expression analysis indicated that BdAgo-1 had a relatively high transcriptional level in the ovarian tissues of adult female B. dorsalis during the sexual maturation period. RNA interference (RNAi) experiment showed that BdAgo-1 knockdown significantly decreased the expression levels of ovarian development-related genes and delayed ovarian development. Although RNAi-mediated silencing of Ago-1 led to a reduced ovary surface area, a subsequent oviposition assay revealed that the influence was minimal over a longer time period. Small RNA libraries were constructed and sequenced from different ovarian developmental stages of B. dorsalis adults. Among 161 identified miRNAs, 84 miRNAs were differentially expressed during the three developmental stages of the B. dorsalis ovary. BdAgo-1 silencing caused significant down-regulation of seven differentially expressed miRNAs (DEMs) showing relatively high expression levels (>1000 TPM (Transcripts per kilobase of exon model per million mapped reads)). The expression patterns of these seven core DEMs and their putative target genes were analyzed in the ovaries of B. dorsalis. CONCLUSION The results indicate that Ago-1 and Ago-1-dependent miRNAs are indispensable for normal ovarian development in B. dorsalis and help identify miRNA targets useful for control of this pest.
Collapse
Affiliation(s)
- Rui-Lin Yang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Qiang Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jia-Yao Fan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Yong Yue
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Er-Hu Chen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Guo-Rui Yuan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
22
|
Torres Fernández LA, Mitschka S, Ulas T, Weise S, Dahm K, Becker M, Händler K, Beyer M, Windhausen J, Schultze JL, Kolanus W. The stem cell-specific protein TRIM71 inhibits maturation and activity of the pro-differentiation miRNA let-7 via two independent molecular mechanisms. RNA (NEW YORK, N.Y.) 2021; 27:rna.078696.121. [PMID: 33975917 PMCID: PMC8208056 DOI: 10.1261/rna.078696.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/29/2021] [Indexed: 05/05/2023]
Abstract
The stem cell-specific RNA-binding protein TRIM71/LIN-41 was the first identified target of the pro-differentiation and tumor suppressor miRNA let-7. TRIM71 has essential functions in embryonic development and a proposed oncogenic role in several cancer types, such as hepatocellular carcinoma. Here, we show that TRIM71 regulates let-7 expression and activity via two independent mechanisms. On the one hand, TRIM71 enhances pre-let-7 degradation through its direct interaction with LIN28 and TUT4, thereby inhibiting let-7 maturation and indirectly promoting the stabilization of let-7 targets. On the other hand, TRIM71 represses the activity of mature let-7 via its RNA-dependent interaction with the RNA-Induced Silencing Complex (RISC) effector protein AGO2. We found that TRIM71 directly binds and stabilizes let-7 targets, suggesting that let-7 activity inhibition occurs on active RISCs. MiRNA enrichment analysis of several transcriptomic datasets from mouse embryonic stem cells and human hepatocellular carcinoma cells suggests that these let-7 regulatory mechanisms shape transcriptomic changes during developmental and oncogenic processes. Altogether, our work reveals a novel role for TRIM71 as a miRNA repressor and sheds light on a dual mechanism of let-7 regulation.
Collapse
Affiliation(s)
| | | | - Thomas Ulas
- German Center for Neurodegenerative Diseases (DZNE) & Life and Medical Sciences Institute (LIMES), University of Bonn
| | - Stefan Weise
- Life and Medical Sciences Institute (LIMES), University of Bonn
| | - Kilian Dahm
- Life and Medical Sciences Institute (LIMES), University of Bonn
| | - Matthias Becker
- German Center for Neurodegenerative Diseases (DZNE), University of Bonn
| | - Kristian Händler
- German Center for Neurodegenerative Diseases (DZNE), University of Bonn
| | - Marc Beyer
- Life and Medical Sciences Institute (LIMES)
| | | | - Joachim L Schultze
- German Center for Neurodegenerative Diseases (DZNE) & Life and Medical Sciences Institute (LIMES), University of Bonn
| | | |
Collapse
|
23
|
Brosnan CA, Palmer AJ, Zuryn S. Cell-type-specific profiling of loaded miRNAs from Caenorhabditis elegans reveals spatial and temporal flexibility in Argonaute loading. Nat Commun 2021; 12:2194. [PMID: 33850152 PMCID: PMC8044110 DOI: 10.1038/s41467-021-22503-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 03/18/2021] [Indexed: 12/13/2022] Open
Abstract
Multicellularity has coincided with the evolution of microRNAs (miRNAs), small regulatory RNAs that are integrated into cellular differentiation and homeostatic gene-regulatory networks. However, the regulatory mechanisms underpinning miRNA activity have remained largely obscured because of the precise, and thus difficult to access, cellular contexts under which they operate. To resolve these, we have generated a genome-wide map of active miRNAs in Caenorhabditis elegans by revealing cell-type-specific patterns of miRNAs loaded into Argonaute (AGO) silencing complexes. Epitope-labelled AGO proteins were selectively expressed and immunoprecipitated from three distinct tissue types and associated miRNAs sequenced. In addition to providing information on biological function, we define adaptable miRNA:AGO interactions with single-cell-type and AGO-specific resolution. We demonstrate spatial and temporal dynamicism, flexibility of miRNA loading, and suggest miRNA regulatory mechanisms via AGO selectivity in different tissues and during ageing. Additionally, we resolve widespread changes in AGO-regulated gene expression by analysing translatomes specifically in neurons.
Collapse
Affiliation(s)
- Christopher A Brosnan
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia.
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Australia.
| | - Alexander J Palmer
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Steven Zuryn
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
24
|
Chen B, Liao Z, Qi Y, Zhang H, Su C, Liang H, Zhang B, Chen X. miR-631 Inhibits Intrahepatic Metastasis of Hepatocellular Carcinoma by Targeting PTPRE. Front Oncol 2020; 10:565266. [PMID: 33344226 PMCID: PMC7746836 DOI: 10.3389/fonc.2020.565266] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/03/2020] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) have been reported to play critical roles in the pathological development of hepatocellular carcinoma (HCC), one of the most common cancers in the world. Our study aims to explore the expression, function and mechanism of miR-631 in HCC. Our findings are that expression of miR-631 is significantly down-regulated in HCC tissue compared with that in adjacent non-cancerous tissue, and low expression of miR-631 in HCC tissue is associated with cirrhosis, multiple tumors, incomplete tumor encapsulation, poor tumor differentiation, and high TNM stage. Our test results showed that miR-631 could inhibit migration, invasion, epithelial–mesenchymal transition (EMT) and intrahepatic metastasis of HCC. Receptor-type protein tyrosine phosphatase epsilon (PTPRE) as a downstream target of miR-631 could promote migration, invasion and EMT of HCC cells. Besides, the expression of PTPRE had a negative correlation with the expression of miR-631 both in vivo and in vitro, and increasing expression of PTPRE could reverse inhibitory effects of miR-631 in HCC cells. In sum, our study first demonstrated that miR-631 targeted PTPRE to inhibit intrahepatic metastasis in HCC. We gain insights from these findings into the mechanism of miRNAs regulation in HCC metastasis and further introduce a novel therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Bingqing Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Science and Technology Department of Hubei Province, Wuhan, China
| | - Zhibin Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Science and Technology Department of Hubei Province, Wuhan, China
| | - Yongqiang Qi
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Science and Technology Department of Hubei Province, Wuhan, China
| | - Hongwei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Science and Technology Department of Hubei Province, Wuhan, China
| | - Chen Su
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Science and Technology Department of Hubei Province, Wuhan, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Science and Technology Department of Hubei Province, Wuhan, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Science and Technology Department of Hubei Province, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Science and Technology Department of Hubei Province, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
25
|
Galagali H, Kim JK. The multifaceted roles of microRNAs in differentiation. Curr Opin Cell Biol 2020; 67:118-140. [PMID: 33152557 DOI: 10.1016/j.ceb.2020.08.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNAs) are major drivers of cell fate specification and differentiation. The post-transcriptional regulation of key molecular factors by microRNAs contributes to the progression of embryonic and postembryonic development in several organisms. Following the discovery of lin-4 and let-7 in Caenorhabditis elegans and bantam microRNAs in Drosophila melanogaster, microRNAs have emerged as orchestrators of cellular differentiation and developmental timing. Spatiotemporal control of microRNAs and associated protein machinery can modulate microRNA activity. Additionally, adaptive modulation of microRNA expression and function in response to changing environmental conditions ensures that robust cell fate specification during development is maintained. Herein, we review the role of microRNAs in the regulation of differentiation during development.
Collapse
Affiliation(s)
- Himani Galagali
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - John K Kim
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
26
|
Medley JC, Panzade G, Zinovyeva AY. microRNA strand selection: Unwinding the rules. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1627. [PMID: 32954644 PMCID: PMC8047885 DOI: 10.1002/wrna.1627] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/18/2020] [Accepted: 08/27/2020] [Indexed: 12/17/2022]
Abstract
microRNAs (miRNAs) play a central role in the regulation of gene expression by targeting specific mRNAs for degradation or translational repression. Each miRNA is post‐transcriptionally processed into a duplex comprising two strands. One of the two miRNA strands is selectively loaded into an Argonaute protein to form the miRNA‐Induced Silencing Complex (miRISC) in a process referred to as miRNA strand selection. The other strand is ejected from the complex and is subject to degradation. The target gene specificity of miRISC is determined by sequence complementarity between the Argonaute‐loaded miRNA strand and target mRNA. Each strand of the miRNA duplex has the capacity to be loaded into miRISC and possesses a unique seed sequence. Therefore, miRNA strand selection plays a defining role in dictating the specificity of miRISC toward its targets and provides a mechanism to alter gene expression in a switch‐like fashion. Aberrant strand selection can lead to altered gene regulation by miRISC and is observed in several human diseases including cancer. Previous and emerging data shape the rules governing miRNA strand selection and shed light on how these rules can be circumvented in various physiological and pathological contexts. This article is categorized under:RNA Processing > Processing of Small RNAs Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs Regulatory RNAs/RNAi/Riboswitches > Biogenesis of Effector Small RNAs
Collapse
Affiliation(s)
- Jeffrey C Medley
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Ganesh Panzade
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Anna Y Zinovyeva
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
27
|
Zhang X, Bai J, Yin H, Long L, Zheng Z, Wang Q, Chen F, Yu X, Zhou Y. Exosomal miR-1255b-5p targets human telomerase reverse transcriptase in colorectal cancer cells to suppress epithelial-to-mesenchymal transition. Mol Oncol 2020; 14:2589-2608. [PMID: 32679610 PMCID: PMC7530775 DOI: 10.1002/1878-0261.12765] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 06/04/2020] [Accepted: 06/14/2020] [Indexed: 12/27/2022] Open
Abstract
Cancer cells undergo epithelial‐to‐mesenchymal transition (EMT) in response to hypoxia. Exosomes produced in tumor microenvironments carry microRNAs (miRNAs) that affect proliferation, metastasis, and EMT. Hypoxic regulation of EMT is associated with telomerase content and stability, but the underlying mechanisms remain unclear. We identified a targeting relationship between tumor‐suppressing miR‐1255b‐5p and human telomerase reverse transcriptase (hTERT) via clinical screening of serum samples in colorectal cancer (CRC) patients. EMT suppression via exosomal miR‐1255b‐5p delivery was investigated by assessing hTERT expression, Wnt/β‐catenin signaling, and telomerase activity. We revealed that hypoxia directly affected exosomal miR‐1255b‐5p content, the delivery of which between CRC cells significantly impacted cell invasion, EMT‐related protein expression, and telomerase stability. Specifically, miR‐1255b‐5p suppressed EMT by inhibiting Wnt/β‐catenin activation via hTERT inhibition. Hypoxia reduced exosomal miR‐1255b‐5p secretion by CRC cells, thereby increasing hTERT expression to enhance EMT and telomerase activity. In a mouse CRC model, hypoxic exosomes containing overexpressed miR‐1255b‐5p attenuated EMT, tumor progression, and liver metastasis. Our results suggest the antitumor role of miR‐1255b‐5p and its involvement in the regulation of hTERT‐mediated EMT. We propose that miRNA‐targeted regulation of telomerase is a promising therapeutic strategy for future CRC treatment.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Radiation Oncology and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China
| | - Jian Bai
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China.,Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hang Yin
- Department of Radiation Oncology and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China
| | - Long Long
- Department of Radiation Oncology and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China
| | - Zhewen Zheng
- Department of Radiation Oncology and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China
| | - Qingqing Wang
- Department of Radiation Oncology and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China
| | - Fengxia Chen
- Department of Radiation Oncology and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China
| | - Xiaoyan Yu
- Department of Radiation Oncology and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China
| | - Yunfeng Zhou
- Department of Radiation Oncology and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China
| |
Collapse
|
28
|
Dexheimer PJ, Cochella L. MicroRNAs: From Mechanism to Organism. Front Cell Dev Biol 2020; 8:409. [PMID: 32582699 PMCID: PMC7283388 DOI: 10.3389/fcell.2020.00409] [Citation(s) in RCA: 234] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are short, regulatory RNAs that act as post-transcriptional repressors of gene expression in diverse biological contexts. The emergence of small RNA-mediated gene silencing preceded the onset of multicellularity and was followed by a drastic expansion of the miRNA repertoire in conjunction with the evolution of complexity in the plant and animal kingdoms. Along this process, miRNAs became an essential feature of animal development, as no higher metazoan lineage tolerated loss of miRNAs or their associated protein machinery. In fact, ablation of the miRNA biogenesis machinery or the effector silencing factors results in severe embryogenesis defects in every animal studied. In this review, we summarize recent mechanistic insight into miRNA biogenesis and function, while emphasizing features that have enabled multicellular organisms to harness the potential of this broad class of repressors. We first discuss how different mechanisms of regulation of miRNA biogenesis are used, not only to generate spatio-temporal specificity of miRNA production within an animal, but also to achieve the necessary levels and dynamics of expression. We then explore how evolution of the mechanism for small RNA-mediated repression resulted in a diversity of silencing complexes that cause different molecular effects on their targets. Multicellular organisms have taken advantage of this variability in the outcome of miRNA-mediated repression, with differential use in particular cell types or even distinct subcellular compartments. Finally, we present an overview of how the animal miRNA repertoire has evolved and diversified, emphasizing the emergence of miRNA families and the biological implications of miRNA sequence diversification. Overall, focusing on selected animal models and through the lens of evolution, we highlight canonical mechanisms in miRNA biology and their variations, providing updated insight that will ultimately help us understand the contribution of miRNAs to the development and physiology of multicellular organisms.
Collapse
Affiliation(s)
| | - Luisa Cochella
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| |
Collapse
|
29
|
Cao T, Jiang Y, Li D, Sun X, Zhang Y, Qin L, Tellides G, Taylor HS, Huang Y. H19/TET1 axis promotes TGF-β signaling linked to endothelial-to-mesenchymal transition. FASEB J 2020; 34:8625-8640. [PMID: 32374060 PMCID: PMC7364839 DOI: 10.1096/fj.202000073rrrrr] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/21/2022]
Abstract
While emerging evidence suggests the link between endothelial activation of TGF-β signaling, induction of endothelial-to-mesenchymal transition (EndMT), and cardiovascular disease (CVD), the molecular underpinning of this connection remains enigmatic. Here, we report aberrant expression of H19 lncRNA and TET1 in endothelial cells (ECs) of human atherosclerotic coronary arteries. Using primary human umbilical vein endothelial cells (HUVECs) and aortic endothelial cells (HAoECs) we show that TNF-α, a known risk factor for endothelial dysfunction and CVD, induces H19 expression which in turn activates TGF-β signaling and EndMT via a TET1-dependent epigenetic mechanism. We also show that H19 regulates TET1 expression at the posttranscriptional level. Further, we provide evidence that this H19/TET1-mediated regulation of TGF-β signaling and EndMT occurs in mouse pulmonary microvascular ECs in vivo under hyperglycemic conditions. We propose that endothelial activation of the H19/TET1 axis may play an important role in EndMT and perhaps CVD.
Collapse
Affiliation(s)
- Tiefeng Cao
- Department of Obstetrics, Gynecology, & Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA.,Department of Gynecology and Obstetrics, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ying Jiang
- Department of Obstetrics, Gynecology, & Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA.,Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Da Li
- Department of Obstetrics, Gynecology, & Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA.,Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaoli Sun
- Department of Obstetrics, Gynecology, & Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA.,Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Yuanyuan Zhang
- Department of Obstetrics, Gynecology, & Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA.,Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lingfeng Qin
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - George Tellides
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology, & Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - Yingqun Huang
- Department of Obstetrics, Gynecology, & Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
30
|
Kirfel P, Vilcinskas A, Skaljac M. Lysine Acetyltransferase p300/CBP Plays an Important Role in Reproduction, Embryogenesis and Longevity of the Pea Aphid Acyrthosiphon pisum. INSECTS 2020; 11:E265. [PMID: 32357443 PMCID: PMC7290403 DOI: 10.3390/insects11050265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/16/2020] [Accepted: 04/22/2020] [Indexed: 12/20/2022]
Abstract
CREB-binding protein (p300/CBP) is a universal transcriptional co-regulator with lysine acetyltransferase activity. Drosophila melanogaster p300/CBP is a well-known regulator of embryogenesis, and recent studies in beetles and cockroaches have revealed the importance of this protein during post-embryonic development and endocrine signaling. In pest insects, p300/CBP may therefore offer a useful target for control methods based on RNA interference (RNAi). We investigated the role of p300/CBP in the pea aphid (Acyrthosiphon pisum), a notorious pest insect used as a laboratory model for the analysis of complex life-history traits. The RNAi-based attenuation of A. pisum p300/CBP significantly reduced the aphid lifespan and number of offspring, as well as shortening the reproductive phase, suggesting the manipulation of this gene contributes to accelerated senescence. Furthermore, injection of p300/CBP dsRNA also reduced the number of viable offspring and increased the number of premature nymphs, which developed in abnormally structured ovaries. Our data confirm the evolutionarily conserved function of p300/CBP during insect embryogenesis and show that the protein has a critical effect on longevity, reproduction and development in A. pisum. The potent effect of p300/CBP silencing indicates that this regulatory protein is an ideal target for RNAi-based aphid control.
Collapse
Affiliation(s)
- Phillipp Kirfel
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, Ohlebergsweg 12, 35392 Giessen, Germany; (P.K.); (A.V.)
| | - Andreas Vilcinskas
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, Ohlebergsweg 12, 35392 Giessen, Germany; (P.K.); (A.V.)
- Institute for Insect Biotechnology, Justus-Liebig University of Giessen, Heinrich-Buff-Ring 26–32, 35392 Giessen, Germany
| | - Marisa Skaljac
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, Ohlebergsweg 12, 35392 Giessen, Germany; (P.K.); (A.V.)
| |
Collapse
|
31
|
Galley JD, Besner GE. The Therapeutic Potential of Breast Milk-Derived Extracellular Vesicles. Nutrients 2020; 12:nu12030745. [PMID: 32168961 PMCID: PMC7146576 DOI: 10.3390/nu12030745] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/04/2020] [Accepted: 03/08/2020] [Indexed: 12/21/2022] Open
Abstract
In the past few decades, interest in the therapeutic benefits of exosomes and extracellular vesicles (EVs) has grown exponentially. Exosomes/EVs are small particles which are produced and exocytosed by cells throughout the body. They are loaded with active regulatory and stimulatory molecules from the parent cell including miRNAs and enzymes, making them prime targets in therapeutics and diagnostics. Breast milk, known for years to have beneficial health effects, contains a population of EVs which may mediate its therapeutic effects. This review offers an update on the therapeutic potential of exosomes/EVs in disease, with a focus on EVs present in human breast milk and their remedial effect in the gastrointestinal disease necrotizing enterocolitis. Additionally, the relationship between EV miRNAs, health, and disease will be examined, along with the potential for EVs and their miRNAs to be engineered for targeted treatments.
Collapse
|
32
|
Hoshino I, Yokota H, Ishige F, Iwatate Y, Takeshita N, Nagase H, Uno T, Matsubara H. Radiogenomics predicts the expression of microRNA-1246 in the serum of esophageal cancer patients. Sci Rep 2020; 10:2532. [PMID: 32054931 PMCID: PMC7018689 DOI: 10.1038/s41598-020-59500-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 01/30/2020] [Indexed: 12/15/2022] Open
Abstract
Radiogenomics is a new field that provides clinically useful prognostic predictions by linking molecular characteristics such as the genetic aberrations of malignant tumors with medical images. The abnormal expression of serum microRNA-1246 (miR-1246) has been reported as a prognostic factor of esophageal squamous cell carcinoma (ESCC). To evaluate the power of the miR-1246 level predicted with radiogenomics techniques as a predictor of the prognosis of ESCC patients. The real miR-1246 expression (miR-1246real) was measured in 92 ESCC patients. Forty-five image features (IFs) were extracted from tumor regions on contrast-enhanced computed tomography. A prediction model for miR-1246real was constructed using linear regression with selected features identified in a correlation analysis of miR-1246real and each IF. A threshold to divide the patients into two groups was defined according to a receiver operating characteristic analysis for miR-1246real. Survival analyses were performed between two groups. Six IFs were correlated with miR-1246real and were included in the prediction model. The survival curves of high and low groups of miR-1246real and miR-1246pred showed significant differences (p = 0.001 and 0.016). Both miR-1246real and miR-1246pred were independent predictors of overall survival (p = 0.030 and 0.035). miR-1246pred produced by radiogenomics had similar power to miR-1246real for predicting the prognosis of ESCC.
Collapse
Affiliation(s)
- Isamu Hoshino
- Division of Gastroenterological Surgery, Chiba Cancer Center, Chiba, Japan.
| | - Hajime Yokota
- Department of Diagnostic Radiology and Radiation Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Fumitaka Ishige
- Department of Hepatobiliary and Pancreatic Surgery, Chiba Cancer Center, Chiba, Japan
| | - Yosuke Iwatate
- Department of Hepatobiliary and Pancreatic Surgery, Chiba Cancer Center, Chiba, Japan
| | - Nobuyoshi Takeshita
- Division of Surgical Technology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Hiroki Nagase
- Laboratory of Cancer Genetics, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Takashi Uno
- Department of Diagnostic Radiology and Radiation Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
33
|
Reynolds JA. Noncoding RNA Regulation of Dormant States in Evolutionarily Diverse Animals. THE BIOLOGICAL BULLETIN 2019; 237:192-209. [PMID: 31714856 DOI: 10.1086/705484] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Dormancy is evolutionarily widespread and can take many forms, including diapause, dauer formation, estivation, and hibernation. Each type of dormancy is characterized by distinct features; but accumulating evidence suggests that each is regulated by some common processes, often referred to as a common "toolkit" of regulatory mechanisms, that likely include noncoding RNAs that regulate gene expression. Noncoding RNAs, especially microRNAs, are well-known regulators of biological processes associated with numerous dormancy-related processes, including cell cycle progression, cell growth and proliferation, developmental timing, metabolism, and environmental stress tolerance. This review provides a summary of our current understanding of noncoding RNAs and their involvement in regulating dormancy.
Collapse
|
34
|
Luo S, He F, Luo J, Dou S, Wang Y, Guo A, Lu J. Drosophila tsRNAs preferentially suppress general translation machinery via antisense pairing and participate in cellular starvation response. Nucleic Acids Res 2019; 46:5250-5268. [PMID: 29548011 PMCID: PMC6007262 DOI: 10.1093/nar/gky189] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 03/03/2018] [Indexed: 12/11/2022] Open
Abstract
Transfer RNA-derived small RNAs (tsRNAs) are an emerging class of small RNAs, yet their regulatory roles have not been well understood. Here we studied the molecular mechanisms and consequences of tsRNA-mediated regulation in Drosophila. By analyzing 495 public small RNA libraries, we demonstrate that most tsRNAs are conserved, prevalent and abundant in Drosophila. By carrying out mRNA sequencing and ribosome profiling of S2 cells transfected with single-stranded tsRNA mimics and mocks, we show that tsRNAs recognize target mRNAs through conserved complementary sequence matching and suppress target genes by translational inhibition. The target prediction suggests that tsRNAs preferentially suppress translation of the key components of the general translation machinery, which explains how tsRNAs inhibit the global mRNA translation. Serum starvation experiments confirm tsRNAs participate in cellular starvation responses by preferential targeting the ribosomal proteins and translational initiation or elongation factors. Knock-down of AGO2 in S2 cells under normal and starved conditions reveals a dependence of the tsRNA-mediated regulation on AGO2. We also validated the repressive effects of representative tsRNAs on cellular global translation and specific targets with luciferase reporter assays. Our study suggests the tsRNA-mediated regulation might be crucial for the energy homeostasis and the metabolic adaptation in the cellular systems.
Collapse
Affiliation(s)
- Shiqi Luo
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Feng He
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Junjie Luo
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Shengqian Dou
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yirong Wang
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Annan Guo
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jian Lu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
35
|
Anbazhagan AN, Priyamvada S, Borthakur A, Saksena S, Gill RK, Alrefai WA, Dudeja PK. miR-125a-5p: a novel regulator of SLC26A6 expression in intestinal epithelial cells. Am J Physiol Cell Physiol 2019; 317:C200-C208. [PMID: 31042422 PMCID: PMC6732422 DOI: 10.1152/ajpcell.00068.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/15/2019] [Accepted: 04/25/2019] [Indexed: 12/24/2022]
Abstract
Putative anion transporter 1 (PAT1, SLC26A6), an intestinal epithelial Cl-/ HCO 3 - exchanger, also plays a key role in oxalate homeostasis via mediating intestinal oxalate secretion. Indeed, Slc26a6-null mice showed defect in intestinal oxalate secretion and high incidence of kidney stones. Recent emergence of PAT-1 as a novel therapeutic target for nephrolithiasis warrants detailed understanding of the mechanisms of PAT-1 regulation in health and disease. Therefore, we investigated the regulation of PAT-1 expression by microRNAs (miRNA), as they have been shown to play key role in modulating expression of other ion transporters. In silico analysis of PAT-1 3'-untranslated region (UTR) revealed potential binding sites for several miRNAs, suggesting the role of miRNAs in modulating PAT1 expression. miRNAs showing highest context scores (125a-5p, 339-5p, 423-5p, 485-5p, and 501-3p) were selected as candidates for their effects on the activity of a 263-bp PAT-1 3'-untranslated region (UTR) fragment cloned into pmirGLO vector upstream of luciferase. The 3'-UTR activity was measured by dual luciferase reporter assay in Caco-2, T-84, HT-29, and SK-CO15 cells. Transient transfection of PAT-1 3'-UTR significantly decreased the relative luciferase activity compared with the empty vector suggesting binding of potential miRNA(s) to the PAT-1 3'-UTR. Among all the selected candidates, cotransfection with miRNA mimics 125a-5p and 423-5p further decreased PAT-1 3'-UTR activity. Furthermore, increasing miR-125a-5p abundance via mimic transfection in Caco-2 cells decreased both mRNA and protein levels of PAT-1. Our results demonstrate a novel regulatory mechanism of intestinal PAT-1 expression via miR-125a-5p that could be of therapeutic importance in disorders associated with decreased PAT-1 expression and function.
Collapse
Affiliation(s)
- Arivarasu N Anbazhagan
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
| | - Shubha Priyamvada
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
| | - Alip Borthakur
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
| | - Seema Saksena
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
- Jesse Brown VA Medical Center , Chicago, Illinois
| | - Ravinder K Gill
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
| | - Waddah A Alrefai
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
- Jesse Brown VA Medical Center , Chicago, Illinois
| | - Pradeep K Dudeja
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
- Jesse Brown VA Medical Center , Chicago, Illinois
| |
Collapse
|
36
|
Abstract
Small RNAs govern almost every biological process in eukaryotes associating with the Argonaute (AGO) proteins to form the RNA-induced silencing complex (mRISC). AGO proteins constitute the core of RISCs with different members having variety of protein-binding partners and biochemical properties. This review focuses on the AGO subfamily of the AGOs that are ubiquitously expressed and are associated with small RNAs. The structure, function and role of the AGO proteins in the cell is discussed in detail.
Collapse
Affiliation(s)
- Saife Niaz
- Department of Biotechnology, University of Kashmir, Srinagar 190006, Jammu and Kashmir, India
| |
Collapse
|
37
|
Mura M, Jaksik R, Lalik A, Biernacki K, Kimmel M, Rzeszowska-Wolny J, Fujarewicz K. A mathematical model as a tool to identify microRNAs with highest impact on transcriptome changes. BMC Genomics 2019; 20:114. [PMID: 30727966 PMCID: PMC6366035 DOI: 10.1186/s12864-019-5464-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 01/21/2019] [Indexed: 01/06/2023] Open
Abstract
Background Rapid changes in the expression of many messenger RNA (mRNA) species follow exposure of cells to ionizing radiation. One of the hypothetical mechanisms of this response may include microRNA (miRNA) regulation, since the amounts of miRNAs in cells also vary upon irradiation. To address this possibility, we designed experiments using cancer-derived cell lines transfected with luciferase reporter gene containing sequences targeted by different miRNA species in its 3′- untranslated region. We focus on the early time-course response (1 h past irradiation) to eliminate secondary mRNA expression waves. Results Experiments revealed that the irradiation-induced changes in the mRNA expression depend on the miRNAs which interact with mRNA. To identify the strongest interactions, we propose a mathematical model which predicts the mRNA fold expression changes, caused by perturbation of microRNA-mRNA interactions. Model was applied to experimental data including various cell lines, irradiation doses and observation times, both ours and literature-based. Comparison of modelled and experimental mRNA expression levels given miRNA level changes allows estimating how many and which miRNAs play a significant role in transcriptome response to stress conditions in different cell types. As an example, in the human melanoma cell line the comparison suggests that, globally, a major part of the irradiation-induced changes of mRNA expression can be explained by perturbed miRNA-mRNA interactions. A subset of about 30 out of a few hundred miRNAs expressed in these cells appears to account for the changes. These miRNAs play crucial roles in regulatory mechanisms observed after irradiation. In addition, these miRNAs have a higher average content of GC and a higher number of targeted transcripts, and many have been reported to play a role in the development of cancer. Conclusions Our proposed mathematical modeling approach may be used to identify miRNAs which participate in responses of cells to ionizing radiation, and other stress factors such as extremes of temperature, exposure to toxins, and drugs. Electronic supplementary material The online version of this article (10.1186/s12864-019-5464-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marzena Mura
- Department of Systems Engineering, Institute of Automatic Control, Silesian University of Technology, ul. Akademicka 16, 44-100, Gliwice, Poland. .,, Ardigen S.A., ul. Bobrzyńskiego 14, 30-348, Cracow, Poland.
| | - Roman Jaksik
- Department of Systems Engineering, Institute of Automatic Control, Silesian University of Technology, ul. Akademicka 16, 44-100, Gliwice, Poland.,Centre of Biotechnology, Silesian University of Technology, ul. Bolesława Krzywoustego 8, 44-100, Gliwice, Poland
| | - Anna Lalik
- Department of Systems Engineering, Institute of Automatic Control, Silesian University of Technology, ul. Akademicka 16, 44-100, Gliwice, Poland.,Centre of Biotechnology, Silesian University of Technology, ul. Bolesława Krzywoustego 8, 44-100, Gliwice, Poland
| | - Krzysztof Biernacki
- Department of Medical and Molecular Biology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, Katowice, USA
| | - Marek Kimmel
- Department of Systems Engineering, Institute of Automatic Control, Silesian University of Technology, ul. Akademicka 16, 44-100, Gliwice, Poland.,Departments of Statistics and Bioengineering, Rice University, MS 138, 6100 Main, Houston, TX, 77005, USA
| | - Joanna Rzeszowska-Wolny
- Department of Systems Engineering, Institute of Automatic Control, Silesian University of Technology, ul. Akademicka 16, 44-100, Gliwice, Poland. .,Centre of Biotechnology, Silesian University of Technology, ul. Bolesława Krzywoustego 8, 44-100, Gliwice, Poland.
| | - Krzysztof Fujarewicz
- Department of Systems Engineering, Institute of Automatic Control, Silesian University of Technology, ul. Akademicka 16, 44-100, Gliwice, Poland
| |
Collapse
|
38
|
Chen Y, Xie C, Zheng X, Nie X, Wang Z, Liu H, Zhao Y. LIN28/ let-7/PD-L1 Pathway as a Target for Cancer Immunotherapy. Cancer Immunol Res 2019; 7:487-497. [PMID: 30651289 DOI: 10.1158/2326-6066.cir-18-0331] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 10/15/2018] [Accepted: 01/10/2019] [Indexed: 11/16/2022]
Abstract
The immunocheckpoint protein PD-1/PD-L1 is considered a promising target for cancer immunotherapeutics. However, the objective response rate using antibodies that block the interaction between PD-1 and PD-L1 was less than 40%, and the mechanism underlying regulation of PD-1/PD-L1 expression is poorly understood. In this study, we identified the miRNA let-7 that posttranscriptionally suppresses PD-L1 expression. LIN28, an RNA binding protein upregulated in most cancer cells, inhibits the biogenesis of let-7, thus promoting PD-L1 expression. Therefore, inhibition of LIN28 may be a strategy to prevent immune evasion of cancer cells. We found that treatment with a LIN28 inhibitor, the small compound C1632, increases let-7 and suppresses PD-L1 expression, leading to reactivation of antitumor immunity in vitro and in vivo In addition, C1632 also displayed the capacity to inhibit cancer cell proliferation and tumor growth in mice. Altogether, these findings identified LIN28/let-7 as a target for PD-L1-mediated immunotherapeutics and reveal the potential of C1632 and its derivatives as promising oncotherapeutic agents.
Collapse
Affiliation(s)
- Yanlian Chen
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, P.R. China
| | - Chen Xie
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Xiaohui Zheng
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, P.R. China
| | - Xin Nie
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Zining Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, P.R. China
| | - Haiying Liu
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Yong Zhao
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China. .,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
39
|
Sanchez-Parra C, Jacovetti C, Dumortier O, Lee K, Peyot ML, Guay C, Prentki M, Laybutt DR, Van Obberghen E, Regazzi R. Contribution of the Long Noncoding RNA H19 to β-Cell Mass Expansion in Neonatal and Adult Rodents. Diabetes 2018; 67:2254-2267. [PMID: 30115652 DOI: 10.2337/db18-0201] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 08/03/2018] [Indexed: 11/13/2022]
Abstract
Pancreatic β-cell expansion throughout the neonatal period is essential to generate the appropriate mass of insulin-secreting cells required to maintain blood glucose homeostasis later in life. Hence, defects in this process can predispose to diabetes development during adulthood. Global profiling of transcripts in pancreatic islets of newborn and adult rats revealed that the transcription factor E2F1 controls expression of the long noncoding RNA H19, which is profoundly downregulated during the postnatal period. H19 silencing decreased β-cell expansion in newborns, whereas its re-expression promoted proliferation of β-cells in adults via a mechanism involving the microRNA let-7 and the activation of Akt. The offspring of rats fed a low-protein diet during gestation and lactation display a small β-cell mass and an increased risk of developing diabetes during adulthood. We found that the islets of newborn rats born to dams fed a low-protein diet express lower levels of H19 than those born to dams that did not eat a low-protein diet. Moreover, we observed that H19 expression increases in islets of obese mice under conditions of increased insulin demand. Our data suggest that the long noncoding RNA H19 plays an important role in postnatal β-cell mass expansion in rats and contributes to the mechanisms compensating for insulin resistance in obesity.
Collapse
Affiliation(s)
- Clara Sanchez-Parra
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Cécile Jacovetti
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Olivier Dumortier
- University Côte d'Azur, INSERM, CNRS, Institute for Research on Cancer and Aging, Nice, France
| | - Kailun Lee
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Marie-Line Peyot
- Montreal Diabetes Research Center and Centre de Recherche du Centre Hospitalier Universitaire de Montréal, Montréal, Québec, Canada
| | - Claudiane Guay
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Marc Prentki
- Montreal Diabetes Research Center and Centre de Recherche du Centre Hospitalier Universitaire de Montréal, Montréal, Québec, Canada
| | - D Ross Laybutt
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Emmanuel Van Obberghen
- University Côte d'Azur, Centre Hospitalier Universitaire, INSERM, CNRS, Institute for Research on Cancer and Aging, Nice, France
| | - Romano Regazzi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
40
|
Towler BP, Newbury SF. Regulation of cytoplasmic RNA stability: Lessons from Drosophila. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1499. [PMID: 30109918 DOI: 10.1002/wrna.1499] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/06/2018] [Accepted: 07/01/2018] [Indexed: 12/19/2022]
Abstract
The process of RNA degradation is a critical level of regulation contributing to the control of gene expression. In the last two decades a number of studies have shown the specific and targeted nature of RNA decay and its importance in maintaining homeostasis. The key players within the pathways of RNA decay are well conserved with their mutation or disruption resulting in distinct phenotypes as well as human disease. Model organisms including Drosophila melanogaster have played a substantial role in elucidating the mechanisms conferring control over RNA stability. A particular advantage of this model organism is that the functions of ribonucleases can be assessed in the context of natural cells within tissues in addition to individual immortalized cells in culture. Drosophila RNA stability research has demonstrated how the cytoplasmic decay machines, such as the exosome, Dis3L2 and Xrn1, are responsible for regulating specific processes including apoptosis, proliferation, wound healing and fertility. The work discussed here has begun to identify specific mRNA transcripts that appear sensitive to specific decay pathways representing mechanisms through which the ribonucleases control mRNA stability. Drosophila research has also contributed to our knowledge of how specific RNAs are targeted to the ribonucleases including AU rich elements, miRNA targeting and 3' tailing. Increased understanding of these mechanisms is critical to elucidating the control elicited by the cytoplasmic ribonucleases which is relevant to human disease. This article is categorized under: RNA in Disease and Development > RNA in Development RNA Turnover and Surveillance > Regulation of RNA Stability RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms.
Collapse
Affiliation(s)
- Benjamin P Towler
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Sarah F Newbury
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| |
Collapse
|
41
|
Kou N, Liu S, Li X, Li W, Zhong W, Gui L, Chai S, Ren X, Na R, Zeng T, Liu H. H19 Facilitates Tongue Squamous Cell Carcinoma Migration and Invasion via Sponging miR-let-7. Oncol Res 2018. [PMID: 29523225 PMCID: PMC7848458 DOI: 10.3727/096504018x15202945197589] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The long noncoding RNA (lncRNA) H19 has been described to participate in the metastasis of various tumors. Nevertheless, whether H19 promotes or impedes tongue squamous cell carcinoma (TSCC) cell migration and invasion remains controversial. Here we found that the expression of H19 was elevated in TSCC tissues compared with adjacent normal tissues. Moreover, we demonstrated that the expression of H19 was higher in metastasized tumors compared with unmetastasized tumors. Consistently, TSCC cells express higher levels of H19 than human squamous cells. Subsequently, depletion of H19 impaired the migration and invasion abilities of TSCC cells. Mechanistically, we demonstrated that H19 functions as a competing endogenous RNA (ceRNA) to sponge miRNA let-7a, leading to an increase in a let-7a target, the key regulator of tumor metastasis HMGA2, which is enriched in TSCC tissues and cell lines. Intriguingly, inhibition of let-7a significantly rescued the short hairpin H19 (shH19)-induced decrease in TSCC migration and invasion. These findings revealed that the H19/let-7a/HMGA2/EMT axis plays a critical role in the regulation of TSCC migration and invasion, which may provide a new therapeutic target for TSCC.
Collapse
Affiliation(s)
- Ni Kou
- College of Stomatology, Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Sha Liu
- College of Stomatology, Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Xiaojie Li
- College of Stomatology, Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Wuwei Li
- College of Stomatology, Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Weijian Zhong
- College of Stomatology, Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Lin Gui
- College of Stomatology, Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Songling Chai
- College of Stomatology, Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Xiang Ren
- College of Stomatology, Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Risu Na
- College of Stomatology, Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Tao Zeng
- Department of Stomatology, Dalian Stomatological Hospital, Dalian, Liaoning, P.R. China
| | - Huiying Liu
- College of Stomatology, Dalian Medical University, Dalian, Liaoning, P.R. China
| |
Collapse
|
42
|
Yamashita A, Takeuchi O. Translational control of mRNAs by 3'-Untranslated region binding proteins. BMB Rep 2018; 50:194-200. [PMID: 28287067 PMCID: PMC5437963 DOI: 10.5483/bmbrep.2017.50.4.040] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Indexed: 12/31/2022] Open
Abstract
Eukaryotic gene expression is precisely regulated at all points between transcription and translation. In this review, we focus on translational control mediated by the 3′-untranslated regions (UTRs) of mRNAs. mRNA 3′-UTRs contain cis-acting elements that function in the regulation of protein translation or mRNA decay. Each RNA binding protein that binds to these cis-acting elements regulates mRNA translation via various mechanisms targeting the mRNA cap structure, the eukaryotic initiation factor 4E (eIF4E)-eIF4G complex, ribosomes, and the poly (A) tail. We also discuss translation-mediated regulation of mRNA fate.
Collapse
Affiliation(s)
- Akio Yamashita
- Department of Molecular Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Osamu Takeuchi
- Laboratory of Infection and Prevention, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
43
|
Yamashiro H, Siomi MC. PIWI-Interacting RNA in Drosophila: Biogenesis, Transposon Regulation, and Beyond. Chem Rev 2017; 118:4404-4421. [PMID: 29281264 DOI: 10.1021/acs.chemrev.7b00393] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
PIWI-interacting RNAs (piRNAs) are germline-enriched small RNAs that control transposons to maintain genome integrity. To achieve this, upon being processed from piRNA precursors, most of which are transcripts of intergenic piRNA clusters, piRNAs bind PIWI proteins, germline-specific Argonaute proteins, to form effector complexes. The mechanism of this piRNA-mediated transposon silencing pathway is fundamentally similar to that of siRNA/miRNA-dependent gene silencing in that a small RNA guides its partner Argonaute protein to target gene transcripts for repression via RNA-RNA base pairing. However, the uniqueness of this piRNA pathway has emerged through intensive genetic, biochemical, bioinformatic, and structural investigations. Here, we review the studies that elucidated the piRNA pathway, mainly in Drosophila, by describing both historical and recent progress. Studies in other species that have made important contributions to the field are also described.
Collapse
Affiliation(s)
- Haruna Yamashiro
- Department of Biological Sciences, Graduate School of Science , The University of Tokyo , Tokyo 113-0032 , Japan
| | - Mikiko C Siomi
- Department of Biological Sciences, Graduate School of Science , The University of Tokyo , Tokyo 113-0032 , Japan
| |
Collapse
|
44
|
Mengardi C, Limousin T, Ricci EP, Soto-Rifo R, Decimo D, Ohlmann T. microRNAs stimulate translation initiation mediated by HCV-like IRESes. Nucleic Acids Res 2017; 45:4810-4824. [PMID: 28077561 PMCID: PMC5416841 DOI: 10.1093/nar/gkw1345] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 12/22/2016] [Indexed: 01/04/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that control gene expression by recognizing and hybridizing to a specific sequence generally located in the 3΄ untranslated region (UTR) of targeted mRNAs. miRNA-induced inhibition of translation occurs during the initiation step, most probably at the level of ribosome scanning. In this process, the RNA-induced silencing complex interacts both with PABP and the 43S pre-initiation complex to disrupt scanning of the 40S ribosome. However, in some specific cases, miRNAs can stimulate translation. Although the mechanism of miRNA-mediated upregulation is unknown, it appears that the poly(A) tail and the lack of availability of the TNRC6 proteins are amongst major determinants. The genomic RNA of the Hepatitis C Virus is uncapped, non-polyadenylated and harbors a peculiar internal ribosome entry site (IRES) that binds the ribosome directly to the AUG codon. Thus, we have exploited the unique properties of the HCV IRES and other related IRESes (HCV-like) to study how translation initiation can be modulated by miRNAs on these elements. Here, we report that miRNA binding to the 3΄ UTR can stimulate translation of a reporter gene given that its expression is driven by an HCV-like IRES and that it lacks a poly(A) tail at its 3΄ extremity.
Collapse
Affiliation(s)
- Chloé Mengardi
- CIRI, International Center for Infectiology Research, Université de Lyon, 69364 Lyon, France.,INSERM, U1111, Lyon, France.,Ecole Normale Supérieure de Lyon, Lyon, France.,Université Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France.,CNRS, UMR5308, Lyon, France
| | - Taran Limousin
- CIRI, International Center for Infectiology Research, Université de Lyon, 69364 Lyon, France.,INSERM, U1111, Lyon, France.,Ecole Normale Supérieure de Lyon, Lyon, France.,Université Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France.,CNRS, UMR5308, Lyon, France
| | - Emiliano P Ricci
- CIRI, International Center for Infectiology Research, Université de Lyon, 69364 Lyon, France.,INSERM, U1111, Lyon, France.,Ecole Normale Supérieure de Lyon, Lyon, France.,Université Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France.,CNRS, UMR5308, Lyon, France
| | - Ricardo Soto-Rifo
- CIRI, International Center for Infectiology Research, Université de Lyon, 69364 Lyon, France.,INSERM, U1111, Lyon, France.,Ecole Normale Supérieure de Lyon, Lyon, France.,Université Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France.,CNRS, UMR5308, Lyon, France
| | - Didier Decimo
- CIRI, International Center for Infectiology Research, Université de Lyon, 69364 Lyon, France.,INSERM, U1111, Lyon, France.,Ecole Normale Supérieure de Lyon, Lyon, France.,Université Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France.,CNRS, UMR5308, Lyon, France
| | - Théophile Ohlmann
- CIRI, International Center for Infectiology Research, Université de Lyon, 69364 Lyon, France.,INSERM, U1111, Lyon, France.,Ecole Normale Supérieure de Lyon, Lyon, France.,Université Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France.,CNRS, UMR5308, Lyon, France
| |
Collapse
|
45
|
Paces J, Nic M, Novotny T, Svoboda P. Literature review of baseline information to support the risk assessment of RNAi‐based GM plants. ACTA ACUST UNITED AC 2017. [PMCID: PMC7163844 DOI: 10.2903/sp.efsa.2017.en-1246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jan Paces
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| | | | | | - Petr Svoboda
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| |
Collapse
|
46
|
Niinuma S, Tomari Y. ATP is dispensable for both miRNA- and Smaug-mediated deadenylation reactions. RNA (NEW YORK, N.Y.) 2017; 23:866-871. [PMID: 28250202 PMCID: PMC5435859 DOI: 10.1261/rna.060764.117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 02/24/2017] [Indexed: 05/25/2023]
Abstract
MicroRNAs (miRNAs), as well as the RNA-binding protein Smaug, recruit the CCR4-NOT deadenylase complex for shortening of the poly(A) tail. It has been believed that ATP is required for deadenylation induced by miRNAs or Smaug, based on the fact that the deadenylation reaction is blocked by ATP depletion. However, when isolated, neither of the two deadenylases in the CCR4-NOT complex requires ATP by itself. Thus, it remains unknown why ATP is required for deadenylation by ribonucleoprotein complexes like miRNAs and Smaug. Herein we found that, in the absence of the ATP-regenerating system, ATP is rapidly consumed into AMP, a strong deadenylase inhibitor, in Drosophila cell lysate. Importantly, hydrolysis of AMP was sufficient to reactivate deadenylation by miRNAs or Smaug, suggesting that AMP accumulation, rather than ATP depletion, caused the inhibition of the deadenylation reaction. Our results indicate that ATP is dispensable for deadenylation induced by miRNAs or Smaug and emphasize caution in the use of ATP depletion methods.
Collapse
Affiliation(s)
- Sho Niinuma
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
- Department of Computational Biology and Medical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Yukihide Tomari
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
- Department of Computational Biology and Medical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| |
Collapse
|
47
|
Men Y, Fan Y, Shen Y, Lu, L, Kallen AN. The Steroidogenic Acute Regulatory Protein (StAR) Is Regulated by the H19/let-7 Axis. Endocrinology 2017; 158:402-409. [PMID: 27813675 PMCID: PMC5413078 DOI: 10.1210/en.2016-1340] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 10/31/2016] [Indexed: 02/05/2023]
Abstract
The steroidogenic acute regulatory protein (StAR) governs the rate-limiting step in steroidogenesis, and its expression varies depending on the needs of the specific tissue. Tight control of steroid production is essential for multiple processes involved in reproduction, including follicular development, ovulation, and endometrial synchronization. Recently, there has been a growing interest in the role of noncoding RNAs in the regulation of reproduction. Here we demonstrate that StAR is a novel target of the microRNA let-7, which itself is regulated by the long noncoding RNA (lncRNA) H19. Using human and murine cell lines, we show that overexpression of H19 stimulates StAR expression by antagonizing let-7, which inhibits StAR at the post-transcriptional level. Our results uncover a novel mechanism underlying the regulation of StAR expression and represent the first example of lncRNA-mediated control of the rate-limiting step of steroidogenesis. This work thus adds to the body of literature describing the multiple roles in oncogenesis, cellular growth, glucose metabolism, and now regulation of steroidogenesis, of this complex lncRNA.
Collapse
Affiliation(s)
- Yi Men
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut 06510
- Department of Head and Neck Surgery, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yanhong Fan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut 06510
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, P. R. China; and
| | - Yuanyuan Shen
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut 06510
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Lingeng Lu,
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, Connecticut 06510
| | - Amanda N. Kallen
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut 06510
| |
Collapse
|
48
|
Peng F, Li TT, Wang KL, Xiao GQ, Wang JH, Zhao HD, Kang ZJ, Fan WJ, Zhu LL, Li M, Cui B, Zheng FM, Wang HJ, Lam EWF, Wang B, Xu J, Liu Q. H19/let-7/LIN28 reciprocal negative regulatory circuit promotes breast cancer stem cell maintenance. Cell Death Dis 2017; 8:e2569. [PMID: 28102845 PMCID: PMC5386357 DOI: 10.1038/cddis.2016.438] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 11/14/2016] [Accepted: 11/25/2016] [Indexed: 12/12/2022]
Abstract
Long noncoding RNA-H19 (H19), an imprinted oncofetal gene, has a central role in carcinogenesis. Hitherto, the mechanism by which H19 regulates cancer stem cells, remains elusive. Here we show that breast cancer stem cells (BCSCs) express high levels of H19, and ectopic overexpression of H19 significantly promotes breast cancer cell clonogenicity, migration and mammosphere-forming ability. Conversely, silencing of H19 represses these BCSC properties. In concordance, knockdown of H19 markedly inhibits tumor growth and suppresses tumorigenesis in nude mice. Mechanistically, we found that H19 functions as a competing endogenous RNA to sponge miRNA let-7, leading to an increase in expression of a let-7 target, the core pluripotency factor LIN28, which is enriched in BCSC populations and breast patient samples. Intriguingly, this gain of LIN28 expression can also feedback to reverse the H19 loss-mediated suppression of BCSC properties. Our data also reveal that LIN28 blocks mature let-7 production and, thereby, de-represses H19 expression in breast cancer cells. Appropriately, H19 and LIN28 expression exhibits strong correlations in primary breast carcinomas. Collectively, these findings reveal that lncRNA H19, miRNA let-7 and transcriptional factor LIN28 form a double-negative feedback loop, which has a critical role in the maintenance of BCSCs. Consequently, disrupting this pathway provides a novel therapeutic strategy for breast cancer.
Collapse
Affiliation(s)
- Fei Peng
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian; State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Ting-Ting Li
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian; State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Kai-Li Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian; State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Guo-Qing Xiao
- Department of Breast Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Ju-Hong Wang
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Hai-Dong Zhao
- Department of Breast Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Zhi-Jie Kang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian; State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Wen-Jun Fan
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian; State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Li-Li Zhu
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Mei Li
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Bai Cui
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian; State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Fei-Meng Zheng
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian; State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
- Department of Medical Oncology, The Eastern Hospital of The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510700, China
| | - Hong-Jiang Wang
- Department of Breast Surgery, The First Affiliated Hospital, Dalian Medical University, Dalian 116011, China
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - Bo Wang
- Department of Medical Oncology, The Eastern Hospital of The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510700, China
| | - Jie Xu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian; State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Quentin Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian; State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| |
Collapse
|
49
|
Jannot G, Michaud P, Quévillon Huberdeau M, Morel-Berryman L, Brackbill JA, Piquet S, McJunkin K, Nakanishi K, Simard MJ. GW182-Free microRNA Silencing Complex Controls Post-transcriptional Gene Expression during Caenorhabditis elegans Embryogenesis. PLoS Genet 2016; 12:e1006484. [PMID: 27935964 PMCID: PMC5147811 DOI: 10.1371/journal.pgen.1006484] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 11/15/2016] [Indexed: 02/01/2023] Open
Abstract
MicroRNAs and Argonaute form the microRNA induced silencing complex or miRISC that recruits GW182, causing mRNA degradation and/or translational repression. Despite the clear conservation and molecular significance, it is unknown if miRISC-GW182 interaction is essential for gene silencing during animal development. Using Caenorhabditis elegans to explore this question, we examined the relationship and effect on gene silencing between the GW182 orthologs, AIN-1 and AIN-2, and the microRNA-specific Argonaute, ALG-1. Homology modeling based on human Argonaute structures indicated that ALG-1 possesses conserved Tryptophan-binding Pockets required for GW182 binding. We show in vitro and in vivo that their mutations severely altered the association with AIN-1 and AIN-2. ALG-1 tryptophan-binding pockets mutant animals retained microRNA-binding and processing ability, but were deficient in reporter silencing activity. Interestingly, the ALG-1 tryptophan-binding pockets mutant phenocopied the loss of alg-1 in worms during larval stages, yet was sufficient to rescue embryonic lethality, indicating the dispensability of AINs association with the miRISC at this developmental stage. The dispensability of AINs in miRNA regulation is further demonstrated by the capacity of ALG-1 tryptophan-binding pockets mutant to regulate a target of the embryonic mir-35 microRNA family. Thus, our results demonstrate that the microRNA pathway can act independently of GW182 proteins during C. elegans embryogenesis.
Collapse
Affiliation(s)
- Guillaume Jannot
- St-Patrick Research Group in Basic Oncology, CHU de Québec-Université Laval Research Centre (Hôtel-Dieu de Québec), Quebec City, Québec, Canada
- Laval University Cancer Research Centre, Quebec City, Québec, Canada
| | - Pascale Michaud
- St-Patrick Research Group in Basic Oncology, CHU de Québec-Université Laval Research Centre (Hôtel-Dieu de Québec), Quebec City, Québec, Canada
- Laval University Cancer Research Centre, Quebec City, Québec, Canada
| | - Miguel Quévillon Huberdeau
- St-Patrick Research Group in Basic Oncology, CHU de Québec-Université Laval Research Centre (Hôtel-Dieu de Québec), Quebec City, Québec, Canada
- Laval University Cancer Research Centre, Quebec City, Québec, Canada
| | - Louis Morel-Berryman
- St-Patrick Research Group in Basic Oncology, CHU de Québec-Université Laval Research Centre (Hôtel-Dieu de Québec), Quebec City, Québec, Canada
- Laval University Cancer Research Centre, Quebec City, Québec, Canada
| | - James A. Brackbill
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Sandra Piquet
- St-Patrick Research Group in Basic Oncology, CHU de Québec-Université Laval Research Centre (Hôtel-Dieu de Québec), Quebec City, Québec, Canada
- Laval University Cancer Research Centre, Quebec City, Québec, Canada
| | - Katherine McJunkin
- Program in Molecular Medicine, RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Kotaro Nakanishi
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Martin J. Simard
- St-Patrick Research Group in Basic Oncology, CHU de Québec-Université Laval Research Centre (Hôtel-Dieu de Québec), Quebec City, Québec, Canada
- Laval University Cancer Research Centre, Quebec City, Québec, Canada
- * E-mail:
| |
Collapse
|
50
|
Connerty P, Bajan S, Remenyi J, Fuller-Pace FV, Hutvagner G. The miRNA biogenesis factors, p72/DDX17 and KHSRP regulate the protein level of Ago2 in human cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1299-305. [DOI: 10.1016/j.bbagrm.2016.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 07/15/2016] [Accepted: 07/26/2016] [Indexed: 12/21/2022]
|