1
|
Wang J, Wang J, Cao H, Xing Y, Wang Z, Ma J, Zhao R, Zhang W, Guo J, Chang X. The Relationship Between Ribosome-Associated Quality Control and Neurological Disorders. J Gerontol A Biol Sci Med Sci 2025; 80:glae304. [PMID: 39719885 DOI: 10.1093/gerona/glae304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Indexed: 12/26/2024] Open
Abstract
Ribosome-associated quality control (RQC), a ubiquitous process essential for maintaining protein homeostasis in eukaryotes, acts as a critical surveillance system for protein translation. By identifying and eliminating stalled ribosomes, RQC prevents aberrant translation and the production of potentially toxic misfolded proteins. The review focuses on the role of RQC in mammals, where its complete functionality remains to be elucidated. This study delves into the mechanisms through which dysfunction in RQC plays a role in the development of neurological disorders, focusing on neurodegenerative and neurodevelopmental diseases. We explore the underlying mechanisms by which RQC dysfunction contributes to the pathogenesis of neurological disorders, particularly neurodegenerative and neurodevelopmental diseases. Further research is crucial to unravel the intricate mechanisms governing RQC's influence on neurological function. This knowledge will pave the way for exploring therapeutic avenues targeting RQC factors as potential interventions for these debilitating diseases. By shedding light on RQC's contribution to neurological disorders, this review opens doors for developing targeted therapies and interventions.
Collapse
Affiliation(s)
- Juan Wang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jianhua Wang
- Department of Cardiology, Jincheng People's Hospital, Jincheng, China
| | - Hanshuai Cao
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Yingming Xing
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Zhuoran Wang
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Jing Ma
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Rongjuan Zhao
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Wei Zhang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Junhong Guo
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xueli Chang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
2
|
McGirr T, Onar O, Jafarnejad SM. Dysregulated ribosome quality control in human diseases. FEBS J 2025; 292:936-959. [PMID: 38949989 PMCID: PMC11880988 DOI: 10.1111/febs.17217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/31/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024]
Abstract
Precise regulation of mRNA translation is of fundamental importance for maintaining homeostasis. Conversely, dysregulated general or transcript-specific translation, as well as abnormal translation events, have been linked to a multitude of diseases. However, driven by the misconception that the transient nature of mRNAs renders their abnormalities inconsequential, the importance of mechanisms that monitor the quality and fidelity of the translation process has been largely overlooked. In recent years, there has been a dramatic shift in this paradigm, evidenced by several seminal discoveries on the role of a key mechanism in monitoring the quality of mRNA translation - namely, Ribosome Quality Control (RQC) - in the maintenance of homeostasis and the prevention of diseases. Here, we will review recent advances in the field and emphasize the biological significance of the RQC mechanism, particularly its implications in human diseases.
Collapse
Affiliation(s)
- Tom McGirr
- Patrick G. Johnston Centre for Cancer ResearchQueen's University BelfastUK
| | - Okan Onar
- Patrick G. Johnston Centre for Cancer ResearchQueen's University BelfastUK
- Department of Biology, Faculty of ScienceAnkara UniversityTurkey
| | | |
Collapse
|
3
|
Mansour A, Kipper K, Pulk A. Optimizing Human Cell-Free System for Efficient Protein Production. J Microbiol Biotechnol 2025; 35:e2410026. [PMID: 40016147 PMCID: PMC11896798 DOI: 10.4014/jmb.2410.10026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/13/2024] [Accepted: 01/06/2025] [Indexed: 03/01/2025]
Abstract
We present a highly efficient human HEK293-based cell-free protein synthesis (CFPS) system capable of producing up to 300 μg/ml reporter protein. One of the limitations of the CFPS systems with respect to protein yield has been the decline of the protein-synthesizing activity of the system upon prolonged incubation. Though factors contributing to this decline in activity have been investigated in yeast, little is known about the factors in mammalian systems. We find that a rapid depletion of the components of the energy-regeneration system is a major factor behind the decreasing protein-synthesis activity in the HEK293-derived system. In addition, we demonstrate that a functional CFPS system can be prepared from other mammalian cell lines as evidenced by our use of a human neuroblastoma SH-SY5Y-derived CFPS system. We also find that exogenous creatine kinase (CK) is dispensable for the functionality of the energy-regeneration system in HEK293 due to the presence of a sufficiently high endogenous CK activity in an HEK293 cell-free extract.
Collapse
Affiliation(s)
- Abbas Mansour
- Structural Biology Unit, Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Kalle Kipper
- Structural Biology Unit, Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Arto Pulk
- Structural Biology Unit, Institute of Technology, University of Tartu, Tartu 50411, Estonia
| |
Collapse
|
4
|
Marques AVL, Ruginsk BE, Prado LDO, de Lima DE, Daniel IW, Moure VR, Valdameri G. The association of ABC proteins with multidrug resistance in cancer. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119878. [PMID: 39571941 DOI: 10.1016/j.bbamcr.2024.119878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/07/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024]
Abstract
Multidrug resistance (MDR) poses one of the primary challenges for cancer treatment, especially in cases of metastatic disease. Various mechanisms contribute to MDR, including the overexpression of ATP-binding cassette (ABC) proteins. In this context, we reviewed the literature to establish a correlation between the overexpression of ABC proteins and MDR in cancer, considering both in vitro and clinical studies. Initially, we presented an overview of the seven subfamilies of ABC proteins, along with the subcellular localization of each protein. Subsequently, we identified a panel of 20 ABC proteins (ABCA1-3, ABCA7, ABCB1-2, ABCB4-6, ABCC1-5, ABCC10-11, ABCE1, ABCF2, ABCG1, and ABCG2) associated with MDR. We also emphasize the significance of drug sequestration by certain ABC proteins into intracellular compartments. Among the anticancer drugs linked to MDR, 29 were definitively identified as substrates for at least one of the three most crucial ABC transporters: ABCB1, ABCC1, and ABCG2. We further discussed that the most commonly used drugs in standard regimens for mainly breast cancer, lung cancer, and acute lymphoblastic leukemia could be subject to MDR mediated by ABC transporters. Collectively, these insights will aid in conducting new studies aimed at a deeper understanding of the clinical MDR mediated by ABC proteins and in designing more effective pharmacological treatments to enhance the objective response rate in cancer patients.
Collapse
Affiliation(s)
- Andrezza Viviany Lourenço Marques
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Bruna Estelita Ruginsk
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Larissa de Oliveira Prado
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Diogo Eugênio de Lima
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Isabelle Watanabe Daniel
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Vivian Rotuno Moure
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil.
| | - Glaucio Valdameri
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil.
| |
Collapse
|
5
|
Pawlicka K, Henek T, Uhrik L, Hernychova L, Padariya M, Faktor J, Makowiec S, Vojtesek B, Goodlett D, Hupp T, Kalathiya U. Misincorporations of amino acids in p53 in human cells at artificially constructed termination codons in the presence of the aminoglycoside Gentamicin. Front Genet 2024; 15:1407375. [PMID: 39563734 PMCID: PMC11573534 DOI: 10.3389/fgene.2024.1407375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/09/2024] [Indexed: 11/21/2024] Open
Abstract
Readthrough of a translation termination codon is regulated by ribosomal A site recognition and insertion of near-cognate tRNAs. Small molecules exist that mediate incorporation of amino acids at the stop codon and production of full-length, often functional protein but defining the actual amino acid that is incorporated remains a challenging area. Herein, we report on the development a human cell model that can be used to determine whether rules can be developed using mass spectrometry that define the type of amino acid that is placed at a premature termination codon (PTC) during readthrough mediated by an aminoglycoside. The first PTC we analyzed contained the relatively common cancer-associated termination signal at codon 213 in the p53 gene. Despite of identifying a tryptic peptide with the incorporation of an R at codon 213 in the presence of the aminoglycoside, there were no other tryptic peptides detected across codon 213 that could be recovered; hence we constructed a more robust artificial PTC model. P53 expression plasmids were developed that incorporate a string of single synthetic TGA (opal) stop codons at S127P128A129 within the relatively abundant tryptic p53 peptide 121-SVTCTYSPALNK-132. The treatment of cells stably expressing the p53-TGA129 mutation, treated with Gentamicin, followed by immunoprecipitation and trypsinization of p53, resulted in the identification R, W, or C within the tryptic peptide at codon-TGA129; as expected based on the two-base pairing of the respective anticodons in the tRNA to UGA, with R being the most abundant. By contrast, incorporating the amber or ochre premature stop codons, TAA129 or TAG129 resulted in the incorporation of a Y or Q amino acid, again as expected based on the two base pairings to the anticodons, with Q being the most abundant. A reproducible non-canonical readthrough termination codon-skip event at the extreme C-terminus at codon 436 in the SBP-p53 fusion protein was detected which provided a novel assay for non-canonical readthrough at an extreme C-terminal PTC. The incorporation of amino acids at codons 127, 128, or 129 generally result in a p53 protein that is predicted to be 'unfolded' or inactive as defined by molecular dynamic simulations presumably because the production of mixed wild-type p53 and mutant oligomers are known to be inactive through dominant negative effects of the mutation. The data highlight the need to not only produce novel small molecules that can readthrough PTCs or C-terminal termination codons, but also the need to design methods to insert the required amino acid at the position that could result in a 'wild-type' functional protein.
Collapse
Affiliation(s)
- Kamila Pawlicka
- Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Tomas Henek
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
| | - Lukas Uhrik
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
| | - Lenka Hernychova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
| | - Monikaben Padariya
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, Gdańsk, Poland
| | - Jakub Faktor
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, Gdańsk, Poland
| | - Sławomir Makowiec
- Department of Organic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Borivoj Vojtesek
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences, Olomouc, Czechia
| | - David Goodlett
- Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Ted Hupp
- Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, Gdańsk, Poland
| | - Umesh Kalathiya
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
6
|
Jendruchová K, Gaikwad S, Poncová K, Gunišová S, Valášek LS, Hinnebusch AG. Differential effects of 40S ribosome recycling factors on reinitiation at regulatory uORFs in GCN4 mRNA are not dictated by their roles in bulk 40S recycling. Commun Biol 2024; 7:1083. [PMID: 39232119 PMCID: PMC11375166 DOI: 10.1038/s42003-024-06761-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024] Open
Abstract
Recycling of 40S ribosomal subunits following translation termination, entailing release of deacylated tRNA and dissociation of the empty 40S from mRNA, involves yeast Tma20/Tma22 heterodimer and Tma64, counterparts of mammalian MCTS1/DENR and eIF2D. MCTS1/DENR enhance reinitiation (REI) at short upstream open reading frames (uORFs) harboring penultimate codons that confer heightened dependence on these factors in bulk 40S recycling. Tma factors, by contrast, inhibited REI at particular uORFs in extracts; however, their roles at regulatory uORFs in vivo were unknown. We examined effects of eliminating Tma proteins on REI at regulatory uORFs mediating translational control of GCN4 optimized for either promoting (uORF1) or preventing (uORF4) REI. We found that the Tma proteins generally impede REI at native uORF4 and its variants equipped with various penultimate codons regardless of their Tma-dependence in bulk recycling. The Tma factors have no effect on REI at native uORF1 and equipping it with Tma-hyperdependent penultimate codons generally did not confer Tma-dependent REI; nor did converting the uORFs to AUG-stop elements. Thus, effects of the Tma proteins vary depending on the REI potential of the uORF and penultimate codon, but unlike in mammals, are not principally dictated by the Tma-dependence of the codon in bulk 40S recycling.
Collapse
Affiliation(s)
- Kristína Jendruchová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
- Faculty of Science, Charles University, Albertov 6, 128 00, Prague, Czech Republic
| | - Swati Gaikwad
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kristýna Poncová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Stanislava Gunišová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Leoš Shivaya Valášek
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic.
| | - Alan G Hinnebusch
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
7
|
Shuvalov A, Klishin A, Biziaev N, Shuvalova E, Alkalaeva E. Functional Activity of Isoform 2 of Human eRF1. Int J Mol Sci 2024; 25:7997. [PMID: 39063238 PMCID: PMC11277123 DOI: 10.3390/ijms25147997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/29/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Eukaryotic release factor eRF1, encoded by the ETF1 gene, recognizes stop codons and induces peptide release during translation termination. ETF1 produces several different transcripts as a result of alternative splicing, from which two eRF1 isoforms can be formed. Isoform 1 codes well-studied canonical eRF1, and isoform 2 is 33 amino acid residues shorter than isoform 1 and completely unstudied. Using a reconstituted mammalian in vitro translation system, we showed that the isoform 2 of human eRF1 is also involved in translation. We showed that eRF1iso2 can interact with the ribosomal subunits and pre-termination complex. However, its codon recognition and peptide release activities have decreased. Additionally, eRF1 isoform 2 exhibits unipotency to UGA. We found that eRF1 isoform 2 interacts with eRF3a but stimulated its GTPase activity significantly worse than the main isoform eRF1. Additionally, we studied the eRF1 isoform 2 effect on stop codon readthrough and translation in a cell-free translation system. We observed that eRF1 isoform 2 suppressed stop codon readthrough of the uORFs and decreased the efficiency of translation of long coding sequences. Based on these data, we assumed that human eRF1 isoform 2 can be involved in the regulation of translation termination. Moreover, our data support previously stated hypotheses that the GTS loop is important for the multipotency of eRF1 to all stop codons. Whereas helix α1 of the N-domain eRF1 is proposed to be involved in conformational rearrangements of eRF1 in the A-site of the ribosome that occur after GTP hydrolysis by eRF3, which ensure hydrolysis of peptidyl-tRNA at the P site of the ribosome.
Collapse
Affiliation(s)
- Alexey Shuvalov
- Engelhardt Institute of Molecular Biology, The Russian Academy of Sciences, 119991 Moscow, Russia; (A.S.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, The Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexandr Klishin
- Engelhardt Institute of Molecular Biology, The Russian Academy of Sciences, 119991 Moscow, Russia; (A.S.)
| | - Nikita Biziaev
- Engelhardt Institute of Molecular Biology, The Russian Academy of Sciences, 119991 Moscow, Russia; (A.S.)
| | - Ekaterina Shuvalova
- Engelhardt Institute of Molecular Biology, The Russian Academy of Sciences, 119991 Moscow, Russia; (A.S.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, The Russian Academy of Sciences, 119991 Moscow, Russia
| | - Elena Alkalaeva
- Engelhardt Institute of Molecular Biology, The Russian Academy of Sciences, 119991 Moscow, Russia; (A.S.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, The Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
8
|
Fernandez SG, Ferguson L, Ingolia NT. Ribosome rescue factor PELOTA modulates translation start site choice for C/EBPα protein isoforms. Life Sci Alliance 2024; 7:e202302501. [PMID: 38803235 PMCID: PMC11109482 DOI: 10.26508/lsa.202302501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/29/2024] Open
Abstract
Translation initiation at alternative start sites can dynamically control the synthesis of two or more functionally distinct protein isoforms from a single mRNA. Alternate isoforms of the developmental transcription factor CCAAT/enhancer-binding protein α (C/EBPα) produced from different start sites exert opposing effects during myeloid cell development. This choice between alternative start sites depends on sequence features of the CEBPA transcript, including a regulatory uORF, but the molecular basis is not fully understood. Here, we identify the factors that affect C/EBPα isoform choice using a sensitive and quantitative two-color fluorescent reporter coupled with CRISPRi screening. Our screen uncovered a role of the ribosome rescue factor PELOTA (PELO) in promoting the expression of the longer C/EBPα isoform by directly removing inhibitory unrecycled ribosomes and through indirect effects mediated by the mechanistic target of rapamycin kinase. Our work uncovers further links between ribosome recycling and translation reinitiation that regulate a key transcription factor, with implications for normal hematopoiesis and leukemogenesis.
Collapse
Affiliation(s)
- Samantha G Fernandez
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Lucas Ferguson
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Center for Computational Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
| | - Nicholas T Ingolia
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Center for Computational Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
| |
Collapse
|
9
|
Coelho JPL, Yip MCJ, Oltion K, Taunton J, Shao S. The eRF1 degrader SRI-41315 acts as a molecular glue at the ribosomal decoding center. Nat Chem Biol 2024; 20:877-884. [PMID: 38172604 PMCID: PMC11253071 DOI: 10.1038/s41589-023-01521-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
Translation termination is an essential cellular process, which is also of therapeutic interest for diseases that manifest from premature stop codons. In eukaryotes, translation termination requires eRF1, which recognizes stop codons, catalyzes the release of nascent proteins from ribosomes and facilitates ribosome recycling. The small molecule SRI-41315 triggers eRF1 degradation and enhances translational readthrough of premature stop codons. However, the mechanism of action of SRI-41315 on eRF1 and translation is not known. Here we report cryo-EM structures showing that SRI-41315 acts as a metal-dependent molecular glue between the N domain of eRF1 responsible for stop codon recognition and the ribosomal subunit interface near the decoding center. Retention of eRF1 on ribosomes by SRI-41315 leads to ribosome collisions, eRF1 ubiquitylation and a higher frequency of translation termination at near-cognate stop codons. Our findings reveal a new mechanism of release factor inhibition and additional implications for pharmacologically targeting eRF1.
Collapse
Affiliation(s)
- João P L Coelho
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Matthew C J Yip
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Keely Oltion
- Chemistry and Chemical Biology Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Jack Taunton
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Sichen Shao
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Chang X, Qu F, Li C, Zhang J, Zhang Y, Xie Y, Fan Z, Bian J, Wang J, Li Z, Xu X. Development and therapeutic potential of GSPT1 molecular glue degraders: A medicinal chemistry perspective. Med Res Rev 2024; 44:1727-1767. [PMID: 38314926 DOI: 10.1002/med.22024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/18/2023] [Accepted: 01/21/2024] [Indexed: 02/07/2024]
Abstract
Unprecedented therapeutic targeting of previously undruggable proteins has now been achieved by molecular-glue-mediated proximity-induced degradation. As a small GTPase, G1 to S phase transition 1 (GSPT1) interacts with eRF1, the translation termination factor, to facilitate the process of translation termination. Studied demonstrated that GSPT1 plays a vital role in the acute myeloid leukemia (AML) and MYC-driven lung cancer. Thus, molecular glue (MG) degraders targeting GSPT1 is a novel and promising approach for treating AML and MYC-driven cancers. In this Perspective, we briefly summarize the structural and functional aspects of GSPT1, highlighting the latest advances and challenges in MG degraders, as well as some representative patents. The structure-activity relationships, mechanism of action and pharmacokinetic features of MG degraders are emphasized to provide a comprehensive compendium on the rational design of GSPT1 MG degraders. We hope to provide an updated overview, and design guide for strategies targeting GSPT1 for the treatment of cancer.
Collapse
Affiliation(s)
- Xiujin Chang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Fangui Qu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chunxiao Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jingtian Zhang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yanqing Zhang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yuanyuan Xie
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhongpeng Fan
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jinlei Bian
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jubo Wang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhiyu Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xi Xu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
11
|
Tseng YJ, Krans A, Malik I, Deng X, Yildirim E, Ovunc S, Tank EH, Jansen-West K, Kaufhold R, Gomez N, Sher R, Petrucelli L, Barmada S, Todd P. Ribosomal quality control factors inhibit repeat-associated non-AUG translation from GC-rich repeats. Nucleic Acids Res 2024; 52:5928-5949. [PMID: 38412259 PMCID: PMC11162809 DOI: 10.1093/nar/gkae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 02/05/2024] [Accepted: 02/19/2024] [Indexed: 02/29/2024] Open
Abstract
A GGGGCC (G4C2) hexanucleotide repeat expansion in C9ORF72 causes amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD), while a CGG trinucleotide repeat expansion in FMR1 leads to the neurodegenerative disorder Fragile X-associated tremor/ataxia syndrome (FXTAS). These GC-rich repeats form RNA secondary structures that support repeat-associated non-AUG (RAN) translation of toxic proteins that contribute to disease pathogenesis. Here we assessed whether these same repeats might trigger stalling and interfere with translational elongation. We find that depletion of ribosome-associated quality control (RQC) factors NEMF, LTN1 and ANKZF1 markedly boost RAN translation product accumulation from both G4C2 and CGG repeats while overexpression of these factors reduces RAN production in both reporter assays and C9ALS/FTD patient iPSC-derived neurons. We also detected partially made products from both G4C2 and CGG repeats whose abundance increased with RQC factor depletion. Repeat RNA sequence, rather than amino acid content, is central to the impact of RQC factor depletion on RAN translation-suggesting a role for RNA secondary structure in these processes. Together, these findings suggest that ribosomal stalling and RQC pathway activation during RAN translation inhibits the generation of toxic RAN products. We propose augmenting RQC activity as a therapeutic strategy in GC-rich repeat expansion disorders.
Collapse
Affiliation(s)
- Yi-Ju Tseng
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amy Krans
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Ann Arbor Veterans Administration Healthcare, Ann Arbor, MI 48109, USA
| | - Indranil Malik
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502284 Telangana, India
| | - Xiexiong Deng
- Department of Molecular, Cellular and Developmental Biology, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Evrim Yildirim
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sinem Ovunc
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Elizabeth M H Tank
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Karen Jansen-West
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Ross Kaufhold
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nicolas B Gomez
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Roger Sher
- Department of Neurobiology and Behavior & Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY 11794, USA
| | | | - Sami J Barmada
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter K Todd
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Ann Arbor Veterans Administration Healthcare, Ann Arbor, MI 48109, USA
| |
Collapse
|
12
|
Puig-Segui MS, Decker CJ, Barlit H, Labunskyy VM, Parker R, Puig S. Regulation of translation in response to iron deficiency in human cells. Sci Rep 2024; 14:8451. [PMID: 38605136 PMCID: PMC11009288 DOI: 10.1038/s41598-024-59003-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024] Open
Abstract
Protein synthesis is a highly energy-consuming process that is downregulated in response to many environmental stresses or adverse conditions. Studies in the yeast Saccharomyces cerevisiae have shown that bulk translation is inhibited during adaptation to iron deficiency, which is consistent with its requirement for ribosome biogenesis and recycling. Although iron deficiency anemia is the most common human nutritional disorder, how iron modulates translation in mammals is poorly understood. Studies during erythropoiesis have shown that iron bioavailability is coordinated with globin synthesis via bulk translation regulation. However, little is known about the control of translation during iron limitation in other tissues. Here, we investigated how iron depletion affects protein synthesis in human osteosarcoma U-2 OS cells. By adding an extracellular iron chelator, we observed that iron deficiency limits cell proliferation, induces autophagy, and decreases the global rate of protein synthesis. Analysis of specific molecular markers indicates that the inhibition of bulk translation upon iron limitation occurs through the eukaryotic initiation factor eIF2α and mechanistic target of rapamycin (mTOR) pathways. In contrast to other environmental and nutritional stresses, iron depletion does not trigger the assembly of messenger ribonucleoprotein stress granules, which typically form upon polysome disassembly.
Collapse
Affiliation(s)
- Mireia S Puig-Segui
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
- Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural (ETSIAMN), Universidad Politécnica de Valencia (UPV), Valencia, Spain
| | - Carolyn J Decker
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Hanna Barlit
- Department of Dermatology, Boston University School of Medicine, Boston, MA, 02118, USA
| | | | - Roy Parker
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Sergi Puig
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Calle Catedrático Agustín Escardino 7, 46980, Paterna, Valencia, Spain.
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
13
|
Tong S, Zhu Y, Leng Y, Wu Y, Xiao X, Zhao W, Tan S. Restoration of miR-299-3p promotes macrophage phagocytosis and suppresses malignant phenotypes in breast cancer carcinogenesis via dual-targeting CD47 and ABCE1. Int Immunopharmacol 2024; 130:111708. [PMID: 38394889 DOI: 10.1016/j.intimp.2024.111708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/02/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024]
Abstract
Immunoevasion has been a severe obstacle for the clinical treatment of breast cancer (BC). CD47, known as an anti-phagocytic molecule, plays a key role in governing the evasion of tumor cells from immune surveillance by interacting with signal-regulated protein α (SIRPα) on macrophages. Here, we report for the first time that miR-299-3p is a direct regulator of CD47 with tumor suppressive effects both in vitro and in vivo. miRNA expression profiles and overall survival of BC cohorts from the Cancer Genome Atlas, METABRIC, or GSE19783 datasets showed that miR-299-3p is downregulated in BC tissues and that BC patients with low levels of miR-299-3p have poorer prognoses. Using dual-luciferase reporter, qRT-PCR, Western blot, and phagocytosis assays, we proved that restoration of miR-299-3p can suppress CD47 expression by directly targeting the predicted seed sequence "CCCACAU" in its 3'-UTR, leading to phagocytosis of BC cells by macrophages, whereas miR-299-3p inhibition or deletion reversed this effect. Additionally, Gene Ontology (GO) analysis and a variety of confirmatory experiments revealed that miR-299-3p was inversely correlated with cell proliferation, migration, and the cell cycle process. Mechanistically, miR-299-3p can also directly target ABCE1, an essential ribosome recycling factor, alleviating these malignant phenotypes of BC cells. In vivo BC xenografts based on nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice further proved that restoration of miR-299-3p resulted in a significant suppression of tumorigenesis and a promotion of macrophage activation and infiltration. Overall, our study suggested that miR-299-3p is a potent inhibitor of CD47 and ABCE1 to exhibit bifunctional BC-suppressing effects through immune activation conjugated with malignant behavior inhibition in breast carcinogenesis and thus can potentially serve as a novel therapeutic target for BC.
Collapse
Affiliation(s)
- Shoufang Tong
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druhavggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Yingli Zhu
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druhavggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Yeqing Leng
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druhavggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Yunling Wu
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druhavggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Xingxing Xiao
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druhavggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Wenfeng Zhao
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druhavggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Shuhua Tan
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druhavggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
14
|
Jendruchová K, Gaikwad S, Poncová K, Gunišová S, Valášek LS, Hinnebusch AG. Impacts of yeast Tma20/MCTS1, Tma22/DENR and Tma64/eIF2D on translation reinitiation and ribosome recycling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583729. [PMID: 38903097 PMCID: PMC11188067 DOI: 10.1101/2024.03.06.583729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Recycling of 40S ribosomal subunits following translation termination, entailing release of deacylated tRNA and dissociation of the empty 40S subunit from mRNA, involves yeast Tma20/Tma22 heterodimer and Tma64, counterparts of mammalian MCTS1/DENR and eIF2D. MCTS1/DENR enhance reinitiation at short upstream open reading frames (uORFs) harboring penultimate codons that confer dependence on these factors in bulk 40S recycling. Tma factors, by contrast, inhibited reinitiation at particular uORFs in extracts; however, their roles at regulatory uORFs in vivo were unknown. We examined effects of eliminating Tma proteins on reinitiation at regulatory uORFs mediating translational control of GCN4 optimized for either promoting (uORF1) or preventing (uORF4) reinitiation. We found that the Tma proteins generally impede reinitiation at native uORF4 and uORF4 variants equipped with various penultimate codons regardless of their Tma-dependence in bulk recycling. The Tma factors have no effect on reinitiation at native uORF1, and equipping uORF1 with Tma-dependent penultimate codons generally did not confer Tma-dependent reinitiation; nor did converting the uORFs to AUG-stop elements. Thus, effects of the Tma proteins vary depending on the reinitiation potential of the uORF and the penultimate codon, but unlike in mammals, are not principally dictated by the Tma-dependence of the codon in bulk 40S recycling.
Collapse
Affiliation(s)
- Kristína Jendruchová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, the Czech Republic
- Faculty of Science, Charles University, Albertov 6, 128 00 Prague, Czech Republic
| | - Swati Gaikwad
- Divsion of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kristýna Poncová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, the Czech Republic
| | - Stanislava Gunišová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, the Czech Republic
| | - Leoš Shivaya Valášek
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, the Czech Republic
| | - Alan G Hinnebusch
- Divsion of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
15
|
Pacheco M, D’Orazio KN, Lessen LN, Veltri AJ, Neiman Z, Loll-Krippleber R, Brown GW, Green R. Genetic screens in Saccharomyces cerevisiae identify a role for 40S ribosome recycling factors Tma20 and Tma22 in nonsense-mediated decay. G3 (BETHESDA, MD.) 2024; 14:jkad295. [PMID: 38198768 PMCID: PMC10917514 DOI: 10.1093/g3journal/jkad295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 08/29/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024]
Abstract
The decay of messenger RNA with a premature termination codon by nonsense-mediated decay (NMD) is an important regulatory pathway for eukaryotes and an essential pathway in mammals. NMD is typically triggered by the ribosome terminating at a stop codon that is aberrantly distant from the poly-A tail. Here, we use a fluorescence screen to identify factors involved in NMD in Saccharomyces cerevisiae. In addition to the known NMD factors, including the entire UPF family (UPF1, UPF2, and UPF3), as well as NMD4 and EBS1, we identify factors known to function in posttermination recycling and characterize their contribution to NMD. These observations in S. cerevisiae expand on data in mammals indicating that the 60S recycling factor ABCE1 is important for NMD by showing that perturbations in factors implicated in 40S recycling also correlate with a loss of NMD.
Collapse
Affiliation(s)
- Miguel Pacheco
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Karole N D’Orazio
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Laura N Lessen
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Anthony J Veltri
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zachary Neiman
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Raphael Loll-Krippleber
- Department of Biochemistry and Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Grant W Brown
- Department of Biochemistry and Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Rachel Green
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
16
|
Luha R, Rana V, Vainstein A, Kumar V. Nonsense-mediated mRNA decay pathway in plants under stress: general gene regulatory mechanism and advances. PLANTA 2024; 259:51. [PMID: 38289504 DOI: 10.1007/s00425-023-04317-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 12/23/2023] [Indexed: 02/01/2024]
Abstract
MAIN CONCLUSION Nonsense-mediated mRNA decay in eukaryotes is vital to cellular homeostasis. Further knowledge of its putative role in plant RNA metabolism under stress is pivotal to developing fitness-optimizing strategies. Nonsense-mediated mRNA decay (NMD), part of the mRNA surveillance pathway, is an evolutionarily conserved form of gene regulation in all living organisms. Degradation of mRNA-bearing premature termination codons and regulation of physiological RNA levels highlight NMD's role in shaping the cellular transcriptome. Initially regarded as purely a tool for cellular RNA quality control, NMD is now considered to mediate various aspects of plant developmental processes and responses to environmental changes. Here we offer a basic understanding of NMD in eukaryotes by explaining the concept of premature termination codon recognition and NMD complex formation. We also provide a detailed overview of the NMD mechanism and its role in gene regulation. The potential role of effectors, including ABCE1, in ribosome recycling during the translation process is also explained. Recent reports of alternatively spliced variants of corresponding genes targeted by NMD in Arabidopsis thaliana are provided in tabular format. Detailed figures are also provided to clarify the NMD concept in plants. In particular, accumulating evidence shows that NMD can serve as a novel alternative strategy for genetic manipulation and can help design RNA-based therapies to combat stress in plants. A key point of emphasis is its function as a gene regulatory mechanism as well as its dynamic regulation by environmental and developmental factors. Overall, a detailed molecular understanding of the NMD mechanism can lead to further diverse applications, such as improving cellular homeostasis in living organisms.
Collapse
Affiliation(s)
- Rashmita Luha
- Department of Botany, School for Basic Sciences, Central University of Punjab, Bathinda, India
- Centre for Biosystems Science and Engineering, Indian Institute of Science Bangalore, Bangaluru, India
| | - Varnika Rana
- Department of Botany, School for Basic Sciences, Central University of Punjab, Bathinda, India
| | - Alexander Vainstein
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Vinay Kumar
- Department of Botany, School for Basic Sciences, Central University of Punjab, Bathinda, India.
| |
Collapse
|
17
|
Mo J, Lv R, Qin X, Wu X, Chen H, Yan N, Shi J, Wu Y, Liu W, Kong RYC, Guo J. Mechanistic insights into hormesis induced by erythromycin in the marine alga Thalassiosira weissflogii. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115242. [PMID: 37441949 DOI: 10.1016/j.ecoenv.2023.115242] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/17/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
Abstract
Erythromycin (ERY) is a typical macrolide antibiotic with large production and extensive use on a global scale. Detection of ERY in both freshwaters and coaster seawaters, as well as relatively high ecotoxicity of ERY have been documented. Notably, hormesis has been reported on several freshwater algae under ERY stress, where growth was promoted at relatively lower exposures but inhibited at higher treatment levels. On the contrary, there is limited information of ERY toxicity in marine algae, hampering the risk assessment on ERY in the coaster waters. The presence of hormesis may challenge the current concept of dose-response adopted in chemical risk assessment. Whether and how exposure to ERY can induce dose-dependent toxicity in marine algae remain virtually unknown, especially at environmentally relevant concentrations. The present study used a model marine diatom Thalassiosira weissflogii (T. weissflogii) to reveal its toxicological responses to ERY at different biological levels and decipher the underlying mechanisms. Assessment of multiple apical endpoints shows an evident growth promotion following ERY exposure at an environmentally relevant concentration (1 µg/L), associated with increased contents reactive oxygen species (ROS) and chlorophyll-a (Chl-a), activated signaling pathways related to ribosome biosynthesis and translation, and production of total soluble protein. By contrast, growth inhibition in the 750 and 2500 µg/L treatments was attributed to reduced viability, increased ROS formation, reduced content of total soluble protein, inhibited photosynthesis, and perturbed signaling pathways involved in xenobiotic metabolism, ribosome, metabolism of amino acid, and nitrogen metabolism. Measurements of multiple apical endpoints coupled with de novo transcriptomics analysis applied in the present study, a systems biology approach, can generate detailed mechanistic information of chemical toxicity including dose-response and species sensitivity difference used in environmental risk assessment.
Collapse
Affiliation(s)
- Jiezhang Mo
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region.
| | - Runnan Lv
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region
| | - Xian Qin
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region
| | - Xintong Wu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Haibo Chen
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Neng Yan
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Jingchun Shi
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region
| | - Yinglin Wu
- School of Life Science and Technology, Lingnan Normal University, Zhanjiang, Guangdong 524048, China
| | - Wenhua Liu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Richard Y C Kong
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region
| | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| |
Collapse
|
18
|
Querl L, Krebber H. The DEAD-box RNA helicase Dbp5 is a key protein that couples multiple steps in gene expression. Biol Chem 2023; 404:845-850. [PMID: 37436777 DOI: 10.1515/hsz-2023-0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/03/2023] [Indexed: 07/13/2023]
Abstract
Cell viability largely depends on the surveillance of mRNA export and translation. Upon pre-mRNA processing and nuclear quality control, mature mRNAs are exported into the cytoplasm via Mex67-Mtr2 attachment. At the cytoplasmic site of the nuclear pore complex, the export receptor is displaced by the action of the DEAD-box RNA helicase Dbp5. Subsequent quality control of the open reading frame requires translation. Our studies suggest an involvement of Dbp5 in cytoplasmic no-go-and non-stop decay. Most importantly, we have also identified a key function for Dbp5 in translation termination, which identifies this helicase as a master regulator of mRNA expression.
Collapse
Affiliation(s)
- Luisa Querl
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany
| | - Heike Krebber
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany
| |
Collapse
|
19
|
Sherlock ME, Baquero Galvis L, Vicens Q, Kieft JS, Jagannathan S. Principles, mechanisms, and biological implications of translation termination-reinitiation. RNA (NEW YORK, N.Y.) 2023; 29:865-884. [PMID: 37024263 PMCID: PMC10275272 DOI: 10.1261/rna.079375.122] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 03/28/2023] [Indexed: 06/11/2023]
Abstract
The gene expression pathway from DNA sequence to functional protein is not as straightforward as simple depictions of the central dogma might suggest. Each step is highly regulated, with complex and only partially understood molecular mechanisms at play. Translation is one step where the "one gene-one protein" paradigm breaks down, as often a single mature eukaryotic mRNA leads to more than one protein product. One way this occurs is through translation reinitiation, in which a ribosome starts making protein from one initiation site, translates until it terminates at a stop codon, but then escapes normal recycling steps and subsequently reinitiates at a different downstream site. This process is now recognized as both important and widespread, but we are only beginning to understand the interplay of factors involved in termination, recycling, and initiation that cause reinitiation events. There appear to be several ways to subvert recycling to achieve productive reinitiation, different types of stresses or signals that trigger this process, and the mechanism may depend in part on where the event occurs in the body of an mRNA. This perspective reviews the unique characteristics and mechanisms of reinitiation events, highlights the similarities and differences between three major scenarios of reinitiation, and raises outstanding questions that are promising avenues for future research.
Collapse
Affiliation(s)
- Madeline E Sherlock
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Laura Baquero Galvis
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Quentin Vicens
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Sujatha Jagannathan
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| |
Collapse
|
20
|
Tseng YJ, Malik I, Deng X, Krans A, Jansen-West K, Tank EM, Gomez NB, Sher R, Petrucelli L, Barmada SJ, Todd PK. Ribosomal quality control factors inhibit repeat-associated non-AUG translation from GC-rich repeats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.544135. [PMID: 37333274 PMCID: PMC10274811 DOI: 10.1101/2023.06.07.544135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
A GGGGCC (G4C2) hexanucleotide repeat expansion in C9ORF72 causes amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD), while a CGG trinucleotide repeat expansion in FMR1 leads to the neurodegenerative disorder Fragile X-associated tremor/ataxia syndrome (FXTAS). These GC-rich repeats form RNA secondary structures that support repeat-associated non-AUG (RAN) translation of toxic proteins that contribute to disease pathogenesis. Here we assessed whether these same repeats might trigger stalling and interfere with translational elongation. We find that depletion of ribosome-associated quality control (RQC) factors NEMF, LTN1, and ANKZF1 markedly boost RAN translation product accumulation from both G4C2 and CGG repeats while overexpression of these factors reduces RAN production in both reporter cell lines and C9ALS/FTD patient iPSC-derived neurons. We also detected partially made products from both G4C2 and CGG repeats whose abundance increased with RQC factor depletion. Repeat RNA sequence, rather than amino acid content, is central to the impact of RQC factor depletion on RAN translation - suggesting a role for RNA secondary structure in these processes. Together, these findings suggest that ribosomal stalling and RQC pathway activation during RAN translation elongation inhibits the generation of toxic RAN products. We propose augmenting RQC activity as a therapeutic strategy in GC-rich repeat expansion disorders.
Collapse
Affiliation(s)
- Yi-Ju Tseng
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Indranil Malik
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xiexiong Deng
- Department of Molecular, Cellular and Developmental Biology, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Amy Krans
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
- Ann Arbor Veterans Administration Healthcare, Ann Arbor, MI, 48109, USA
| | - Karen Jansen-West
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | | | - Nicolas B. Gomez
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Roger Sher
- Department of Neurobiology and Behavior & Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY, 11794, USA
| | | | - Sami J. Barmada
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Peter K. Todd
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
- Ann Arbor Veterans Administration Healthcare, Ann Arbor, MI, 48109, USA
| |
Collapse
|
21
|
Reilly CR, Shimamura A. Predisposition to myeloid malignancies in Shwachman-Diamond syndrome: biological insights and clinical advances. Blood 2023; 141:1513-1523. [PMID: 36542827 PMCID: PMC10082379 DOI: 10.1182/blood.2022017739] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Shwachman-Diamond syndrome (SDS) is an inherited multisystem ribosomopathy characterized by exocrine pancreatic deficiency, bone marrow failure, and predisposition to myeloid malignancies. The pathobiology of SDS results from impaired ribosomal maturation due to the deficiency of SBDS and the inability to evict the antiassociation factor eIF6 from the 60S ribosomal subunit. Clinical outcomes for patients with SDS who develop myeloid malignancies are extremely poor because of high treatment-related toxicities and a high rate of refractory disease/relapse even after allogeneic hematopoietic stem cell transplant (HSCT). Registry data indicate that outcomes are improved for patients with SDS who undergo routine bone marrow surveillance and receive an HSCT before developing an overt malignancy. However, the optimal approach to hematologic surveillance and the timing of HSCT for patients with SDS is not clearly established. Recent studies have elucidated distinct patterns of somatic blood mutations in patients with SDS that either alleviate the ribosome defect via somatic rescue (heterozygous EIF6 inactivation) or disrupt cellular checkpoints, resulting in increased leukemogenic potential (heterozygous TP53 inactivation). Genomic analysis revealed that most myeloid malignancies in patients with SDS have biallelic loss-of-function TP53 mutations. Single-cell DNA sequencing of SDS bone marrow samples can detect premalignant biallelic TP53-mutated clones before clinical diagnosis, suggesting that molecular surveillance may enhance the detection of incipient myeloid malignancies when HSCT may be most effective. Here, we review the clinical, genetic, and biologic features of SDS. In addition, we present evidence supporting the hematologic surveillance for patients with SDS that incorporates clinical, pathologic, and molecular data to risk stratify patients and prioritize transplant evaluation for patients with SDS with high-risk features.
Collapse
Affiliation(s)
- Christopher R. Reilly
- Division of Hematological Malignancies, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Akiko Shimamura
- Department of Pediatric Hematology/Oncology, Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, MA
| |
Collapse
|
22
|
Wagner RN, Wießner M, Friedrich A, Zandanell J, Breitenbach-Koller H, Bauer JW. Emerging Personalized Opportunities for Enhancing Translational Readthrough in Rare Genetic Diseases and Beyond. Int J Mol Sci 2023; 24:6101. [PMID: 37047074 PMCID: PMC10093890 DOI: 10.3390/ijms24076101] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Nonsense mutations trigger premature translation termination and often give rise to prevalent and rare genetic diseases. Consequently, the pharmacological suppression of an unscheduled stop codon represents an attractive treatment option and is of high clinical relevance. At the molecular level, the ability of the ribosome to continue translation past a stop codon is designated stop codon readthrough (SCR). SCR of disease-causing premature termination codons (PTCs) is minimal but small molecule interventions, such as treatment with aminoglycoside antibiotics, can enhance its frequency. In this review, we summarize the current understanding of translation termination (both at PTCs and at cognate stop codons) and highlight recently discovered pathways that influence its fidelity. We describe the mechanisms involved in the recognition and readthrough of PTCs and report on SCR-inducing compounds currently explored in preclinical research and clinical trials. We conclude by reviewing the ongoing attempts of personalized nonsense suppression therapy in different disease contexts, including the genetic skin condition epidermolysis bullosa.
Collapse
Affiliation(s)
- Roland N. Wagner
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Michael Wießner
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Andreas Friedrich
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria
| | - Johanna Zandanell
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | | | - Johann W. Bauer
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| |
Collapse
|
23
|
Kobayashi S, Kaji A, Kaji H. A novel function for eukaryotic elongation factor 3: Inhibition of stop codon readthrough in yeast. Arch Biochem Biophys 2023; 740:109580. [PMID: 36948349 DOI: 10.1016/j.abb.2023.109580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 03/24/2023]
Abstract
Eukaryotic elongation factor 3 (eEF3) is one of the essential yeast ribosome-associated ATP-binding cassette type F (ABCF) ATPases. Previously, we found that eEF3 stimulates release of mRNA from puromycin-treated polysomes. In this study, we used a cell-free cricket paralysis virus (CrPV) internal ribosome entry site (IRES)-mediated firefly luciferase bicistronic mRNA translation system with yeast S30 extract. When eEF3 was partially removed from the crude extract, the product from the downstream ORF was increased by the readthrough of a UAA stop codon in the upstream ORF. eEF3 enhanced the release of luciferase from the polysome by eukaryotic release factor (eRF)1 and eRF3. These results suggest that eEF3 is a factor that assists eRFs in performing normal protein synthesis termination in yeast.
Collapse
Affiliation(s)
- Soushi Kobayashi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, 3610 Hamilton Walk, Philadelphia, PA, 19104, USA; Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA.
| | - Akira Kaji
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, 3610 Hamilton Walk, Philadelphia, PA, 19104, USA.
| | - Hideko Kaji
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA
| |
Collapse
|
24
|
Wang YH, Klobasa W, Chu FC, Huot O, Whitfield AE, Lorenzen M. Structural and functional insights into the ATP-binding cassette transporter family in the corn planthopper, Peregrinus maidis. INSECT MOLECULAR BIOLOGY 2023. [PMID: 36912710 DOI: 10.1111/imb.12840] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
The corn planthopper, Peregrinus maidis, is an economically important pest of maize and sorghum. Its feeding behaviour and the viruses it transmits can significantly reduce crop yield. The control of P. maidis and its associated viruses relies heavily on insecticides. However, control has proven difficult due to limited direct exposure of P. maidis to insecticides and rapid development of resistance. As such, alternative control methods are needed. In the absence of a genome assembly for this species, we first developed transcriptomic resources. Then, with the goal of finding targets for RNAi-based control, we identified members of the ATP-binding cassette transporter family and targeted specific members via RNAi. PmABCB_160306_3, PmABCE_118332_5 and PmABCF_24241_1, whose orthologs in other insects have proven important in development, were selected for knockdown. We found that RNAi-mediated silencing of PmABCB_160306_3 impeded ovary development; disruption of PmABCE_118332_5 resulted in localized melanization; and knockdown of PmABCE_118332_5 or PmABCF_24241_1 each led to high mortality within five days. Each phenotype is similar to that found when targeting the orthologous gene in other species and it demonstrates their potential for use in RNAi-based P. maidis control. The transcriptomic data and RNAi results presented here will no doubt assist with the development of new control methods for this pest.
Collapse
Affiliation(s)
- Yu-Hui Wang
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, 27695, USA
| | - William Klobasa
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, 27695, USA
| | - Fu-Chyun Chu
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, 27695, USA
| | - Ordom Huot
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, 27695, USA
| | - Anna E Whitfield
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, 27695, USA
| | - Marcé Lorenzen
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, 27695, USA
| |
Collapse
|
25
|
The biological functions of nonsense-mediated mRNA decay in plants: RNA quality control and beyond. Biochem Soc Trans 2023; 51:31-39. [PMID: 36695509 DOI: 10.1042/bst20211231] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/26/2023]
Abstract
Nonsense-mediated mRNA decay (NMD) is an evolutionarily conserved quality control pathway that inhibits the expression of transcripts containing premature termination codon. Transcriptome and phenotypic studies across a range of organisms indicate roles of NMD beyond RNA quality control and imply its involvement in regulating gene expression in a wide range of physiological processes. Studies in moss Physcomitrella patens and Arabidopsis thaliana have shown that NMD is also important in plants where it contributes to the regulation of pathogen defence, hormonal signalling, circadian clock, reproduction and gene evolution. Here, we provide up to date overview of the biological functions of NMD in plants. In addition, we discuss several biological processes where NMD factors implement their function through NMD-independent mechanisms.
Collapse
|
26
|
Makeeva DS, Riggs CL, Burakov AV, Ivanov PA, Kushchenko AS, Bykov DA, Popenko VI, Prassolov VS, Ivanov PV, Dmitriev SE. Relocalization of Translation Termination and Ribosome Recycling Factors to Stress Granules Coincides with Elevated Stop-Codon Readthrough and Reinitiation Rates upon Oxidative Stress. Cells 2023; 12:259. [PMID: 36672194 PMCID: PMC9856671 DOI: 10.3390/cells12020259] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/27/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Upon oxidative stress, mammalian cells rapidly reprogram their translation. This is accompanied by the formation of stress granules (SGs), cytoplasmic ribonucleoprotein condensates containing untranslated mRNA molecules, RNA-binding proteins, 40S ribosomal subunits, and a set of translation initiation factors. Here we show that arsenite-induced stress causes a dramatic increase in the stop-codon readthrough rate and significantly elevates translation reinitiation levels on uORF-containing and bicistronic mRNAs. We also report the recruitment of translation termination factors eRF1 and eRF3, as well as ribosome recycling and translation reinitiation factors ABCE1, eIF2D, MCT-1, and DENR to SGs upon arsenite treatment. Localization of these factors to SGs may contribute to a rapid resumption of mRNA translation after stress relief and SG disassembly. It may also suggest the presence of post-termination, recycling, or reinitiation complexes in SGs. This new layer of translational control under stress conditions, relying on the altered spatial distribution of translation factors between cellular compartments, is discussed.
Collapse
Affiliation(s)
- Desislava S. Makeeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Claire L. Riggs
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Anton V. Burakov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Pavel A. Ivanov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Artem S. Kushchenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Dmitri A. Bykov
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladimir I. Popenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladimir S. Prassolov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Pavel V. Ivanov
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sergey E. Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
27
|
Yu J, Ma H, He J, Wang M, Yu B, Ge S, Dai Z. A pan-cancer analysis of the oncogenic role of ATP binding cassette subfamily E member 1 (ABCE1) in human tumors: An observational study. Medicine (Baltimore) 2022; 101:e31849. [PMID: 36401432 PMCID: PMC9678580 DOI: 10.1097/md.0000000000031849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
ATP-binding-cassette subfamily E member 1 (ABCE1) has been identified as an essential component of RNA translation and cell proliferation. However, studies on its role in pan-cancer are limited. Here, we aimed to characterize ABCE1 expression and its potential biological functions in cancer. ABCE1 expression was analyzed using RNA-seq data from The Cancer Genome Atlas (TCGA), the Genotype-Tissue Expression (GTEx) database, and the Clinical Proteomic Tumor Analysis Consortium database. The prognostic value of ABCE1 was analyzed using clinical survival data from TCGA. We downloaded the immune cell infiltration score of TCGA samples from published articles and online databases and performed a correlation analysis between immune cell infiltration levels, chemokines/chemokine receptors, and ABCE1 expression. We further assessed the association between ABCE1-correlated genes and their functions in pancreatic adenocarcinoma (PAAD). In general, ABCE1 gene expression was upregulated in most tumors. There were significant strong correlations between ABCE1 expression and tumor-infiltrating cells in cancers. Furthermore, RNA transport and ribosome biogenesis were significantly related to ABCE1 expression in PAAD. Our study revealed that ABCE1 may serve as a potential prognostic and immunological pan-cancer biomarker. Moreover, ABCE1 may be used in the development of a novel target for PAAD.
Collapse
Affiliation(s)
- Jihong Yu
- Beilun People’s Hospital, Beilun Branch of The First Affiliated Hospital, School of Medicine, Zhejiang University, Ningbo, Zhejiang, People’s Republic of China
- *Correspondence: Beilun People’s Hospital, Beilun Branch of The First Affiliated Hospital, School of Medicine, Zhejiang University, Ningbo 315826, Zhejiang, People’s Republic of China (e-mail: )
| | - Haifen Ma
- Beilun People’s Hospital, Beilun Branch of The First Affiliated Hospital, School of Medicine, Zhejiang University, Ningbo, Zhejiang, People’s Republic of China
| | - Ji He
- Beilun People’s Hospital, Beilun Branch of The First Affiliated Hospital, School of Medicine, Zhejiang University, Ningbo, Zhejiang, People’s Republic of China
| | - Min Wang
- Beilun People’s Hospital, Beilun Branch of The First Affiliated Hospital, School of Medicine, Zhejiang University, Ningbo, Zhejiang, People’s Republic of China
| | - Bo Yu
- Beilun People’s Hospital, Beilun Branch of The First Affiliated Hospital, School of Medicine, Zhejiang University, Ningbo, Zhejiang, People’s Republic of China
| | - Shaonan Ge
- Beilun People’s Hospital, Beilun Branch of The First Affiliated Hospital, School of Medicine, Zhejiang University, Ningbo, Zhejiang, People’s Republic of China
| | - Zhibo Dai
- Beilun People’s Hospital, Beilun Branch of The First Affiliated Hospital, School of Medicine, Zhejiang University, Ningbo, Zhejiang, People’s Republic of China
| |
Collapse
|
28
|
Rubio A, Garland GD, Sfakianos A, Harvey RF, Willis AE. Aberrant protein synthesis and cancer development: The role of canonical eukaryotic initiation, elongation and termination factors in tumorigenesis. Semin Cancer Biol 2022; 86:151-165. [PMID: 35487398 DOI: 10.1016/j.semcancer.2022.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 01/27/2023]
Abstract
In tumourigenesis, oncogenes or dysregulated tumour suppressor genes alter the canonical translation machinery leading to a reprogramming of the translatome that, in turn, promotes the translation of selected mRNAs encoding proteins involved in proliferation and metastasis. It is therefore unsurprising that abnormal expression levels and activities of eukaryotic initiation factors (eIFs), elongation factors (eEFs) or termination factors (eRFs) are associated with poor outcome for patients with a wide range of cancers. In this review we discuss how RNA binding proteins (RBPs) within the canonical translation factor machinery are dysregulated in cancers and how targeting such proteins is leading to new therapeutic avenues.
Collapse
Affiliation(s)
- Angela Rubio
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Rd, Cambridge CB2 1QR, UK
| | - Gavin D Garland
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Rd, Cambridge CB2 1QR, UK
| | - Aristeidis Sfakianos
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Rd, Cambridge CB2 1QR, UK
| | - Robert F Harvey
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Rd, Cambridge CB2 1QR, UK
| | - Anne E Willis
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Rd, Cambridge CB2 1QR, UK.
| |
Collapse
|
29
|
Embree CM, Abu-Alhasan R, Singh G. Features and factors that dictate if terminating ribosomes cause or counteract nonsense-mediated mRNA decay. J Biol Chem 2022; 298:102592. [PMID: 36244451 PMCID: PMC9661723 DOI: 10.1016/j.jbc.2022.102592] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a quality control pathway in eukaryotes that continuously monitors mRNA transcripts to ensure truncated polypeptides are not produced. The expression of many normal mRNAs that encode full-length polypeptides is also regulated by this pathway. Such transcript surveillance by NMD is intimately linked to translation termination. When a ribosome terminates translation at a normal termination codon, NMD is not activated, and mRNA can undergo repeated rounds of translation. On the other hand, when translation termination is deemed abnormal, such as that on a premature termination codon, it leads to a series of poorly understood events involving the NMD pathway, which destabilizes the transcript. In this review, we summarize our current understanding of how the NMD machinery interfaces with the translation termination factors to initiate NMD. We also discuss a variety of cis-acting sequence contexts and trans-acting factors that can cause readthrough, ribosome reinitiation, or ribosome frameshifting at stop codons predicted to induce NMD. These alternative outcomes can lead to the ribosome translating downstream of such stop codons and hence the transcript escaping NMD. NMD escape via these mechanisms can have wide-ranging implications on human health, from being exploited by viruses to hijack host cell systems to being harnessed as potential therapeutic possibilities to treat genetic diseases.
Collapse
Affiliation(s)
- Caleb M Embree
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, USA; Center for RNA Biology, The Ohio State University, Columbus, Ohio USA
| | - Rabab Abu-Alhasan
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, USA; Center for RNA Biology, The Ohio State University, Columbus, Ohio USA
| | - Guramrit Singh
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, USA; Center for RNA Biology, The Ohio State University, Columbus, Ohio USA.
| |
Collapse
|
30
|
Yi SH, Petrychenko V, Schliep JE, Goyal A, Linden A, Chari A, Urlaub H, Stark H, Rodnina MV, Adio S, Fischer N. Conformational rearrangements upon start codon recognition in human 48S translation initiation complex. Nucleic Acids Res 2022; 50:5282-5298. [PMID: 35489072 PMCID: PMC9122606 DOI: 10.1093/nar/gkac283] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/08/2022] [Accepted: 04/20/2022] [Indexed: 01/10/2023] Open
Abstract
Selection of the translation start codon is a key step during protein synthesis in human cells. We obtained cryo-EM structures of human 48S initiation complexes and characterized the intermediates of codon recognition by kinetic methods using eIF1A as a reporter. Both approaches capture two distinct ribosome populations formed on an mRNA with a cognate AUG codon in the presence of eIF1, eIF1A, eIF2–GTP–Met-tRNAiMet and eIF3. The ‘open’ 40S subunit conformation differs from the human 48S scanning complex and represents an intermediate preceding the codon recognition step. The ‘closed’ form is similar to reported structures of complexes from yeast and mammals formed upon codon recognition, except for the orientation of eIF1A, which is unique in our structure. Kinetic experiments show how various initiation factors mediate the population distribution of open and closed conformations until 60S subunit docking. Our results provide insights into the timing and structure of human translation initiation intermediates and suggest the differences in the mechanisms of start codon selection between mammals and yeast.
Collapse
Affiliation(s)
- Sung-Hui Yi
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Valentyn Petrychenko
- Department of Structural Dynamics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Jan Erik Schliep
- Department of Structural Dynamics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Akanksha Goyal
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Andreas Linden
- Bioanalytical Mass Spectroscopy Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany.,Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Ashwin Chari
- Research Group Structural Biochemistry and Mechanisms, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectroscopy Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany.,Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Holger Stark
- Department of Structural Dynamics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Sarah Adio
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, Georg-August University of Göttingen, Göttingen 37077, Germany
| | - Niels Fischer
- Department of Structural Dynamics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| |
Collapse
|
31
|
Zhouravleva GA, Bondarev SA, Zemlyanko OM, Moskalenko SE. Role of Proteins Interacting with the eRF1 and eRF3 Release Factors in the Regulation of Translation and Prionization. Mol Biol 2022. [DOI: 10.1134/s0026893322010101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Zhang D, Zhu L, Wang Y, Li P, Gao Y. Translational Control of COVID-19 and Its Therapeutic Implication. Front Immunol 2022; 13:857490. [PMID: 35422818 PMCID: PMC9002053 DOI: 10.3389/fimmu.2022.857490] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/07/2022] [Indexed: 12/19/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of COVID-19, which has broken out worldwide for more than two years. However, due to limited treatment, new cases of infection are still rising. Therefore, there is an urgent need to understand the basic molecular biology of SARS-CoV-2 to control this virus. SARS-CoV-2 replication and spread depend on the recruitment of host ribosomes to translate viral messenger RNA (mRNA). To ensure the translation of their own mRNAs, the SARS-CoV-2 has developed multiple strategies to globally inhibit the translation of host mRNAs and block the cellular innate immune response. This review provides a comprehensive picture of recent advancements in our understanding of the molecular basis and complexity of SARS-CoV-2 protein translation. Specifically, we summarize how this viral infection inhibits host mRNA translation to better utilize translation elements for translation of its own mRNA. Finally, we discuss the potential of translational components as targets for therapeutic interventions.
Collapse
Affiliation(s)
- Dejiu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Lei Zhu
- College of Basic Medical, Qingdao Binhai University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yanyan Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
33
|
Jaako P, Faille A, Tan S, Wong CC, Escudero-Urquijo N, Castro-Hartmann P, Wright P, Hilcenko C, Adams DJ, Warren AJ. eIF6 rebinding dynamically couples ribosome maturation and translation. Nat Commun 2022; 13:1562. [PMID: 35322020 PMCID: PMC8943182 DOI: 10.1038/s41467-022-29214-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/03/2022] [Indexed: 02/05/2023] Open
Abstract
Protein synthesis is a cyclical process consisting of translation initiation, elongation, termination and ribosome recycling. The release factors SBDS and EFL1—both mutated in the leukemia predisposition disorder Shwachman-Diamond syndrome — license entry of nascent 60S ribosomal subunits into active translation by evicting the anti-association factor eIF6 from the 60S intersubunit face. We find that in mammalian cells, eIF6 holds all free cytoplasmic 60S subunits in a translationally inactive state and that SBDS and EFL1 are the minimal components required to recycle these 60S subunits back into additional rounds of translation by evicting eIF6. Increasing the dose of eIF6 in mice in vivo impairs terminal erythropoiesis by sequestering post-termination 60S subunits in the cytoplasm, disrupting subunit joining and attenuating global protein synthesis. These data reveal that ribosome maturation and recycling are dynamically coupled by a mechanism that is disrupted in an inherited leukemia predisposition disorder. Jaako et al. discover a conserved tier of translational control that dynamically couples ribosome assembly and recycling. This mechanism is corrupted in an inherited bone marrow failure disorder associated with an increased risk of blood cancer.
Collapse
Affiliation(s)
- Pekka Jaako
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Keith Peters Building, Hills Rd, Cambridge, CB2 0XY, UK.,Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK.,Department of Haematology, University of Cambridge School of Clinical Medicine, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK.,Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, 413 90, Gothenburg, Sweden
| | - Alexandre Faille
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Keith Peters Building, Hills Rd, Cambridge, CB2 0XY, UK.,Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK.,Department of Haematology, University of Cambridge School of Clinical Medicine, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK
| | - Shengjiang Tan
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Keith Peters Building, Hills Rd, Cambridge, CB2 0XY, UK.,Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK.,Department of Haematology, University of Cambridge School of Clinical Medicine, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK
| | - Chi C Wong
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Keith Peters Building, Hills Rd, Cambridge, CB2 0XY, UK.,Department of Pathology, Cambridge University Hospitals, Hills Road, Cambridge, CB2 0QQ, UK
| | - Norberto Escudero-Urquijo
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Keith Peters Building, Hills Rd, Cambridge, CB2 0XY, UK.,Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK.,Department of Haematology, University of Cambridge School of Clinical Medicine, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK
| | - Pablo Castro-Hartmann
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Keith Peters Building, Hills Rd, Cambridge, CB2 0XY, UK.,Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK.,Department of Haematology, University of Cambridge School of Clinical Medicine, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK
| | - Penny Wright
- Department of Pathology, Cambridge University Hospitals, Hills Road, Cambridge, CB2 0QQ, UK
| | - Christine Hilcenko
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Keith Peters Building, Hills Rd, Cambridge, CB2 0XY, UK.,Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK.,Department of Haematology, University of Cambridge School of Clinical Medicine, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK
| | - David J Adams
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Alan J Warren
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Keith Peters Building, Hills Rd, Cambridge, CB2 0XY, UK. .,Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK. .,Department of Haematology, University of Cambridge School of Clinical Medicine, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK.
| |
Collapse
|
34
|
Abstract
Accurate protein synthesis (translation) relies on translation factors that rectify ribosome fluctuations into a unidirectional process. Understanding this process requires structural characterization of the ribosome and translation-factor dynamics. In the 2000s, crystallographic studies determined high-resolution structures of ribosomes stalled with translation factors, providing a starting point for visualizing translation. Recent progress in single-particle cryogenic electron microscopy (cryo-EM) has enabled near-atomic resolution of numerous structures sampled in heterogeneous complexes (ensembles). Ensemble and time-resolved cryo-EM have now revealed unprecedented views of ribosome transitions in the three principal stages of translation: initiation, elongation, and termination. This review focuses on how translation factors help achieve high accuracy and efficiency of translation by monitoring distinct ribosome conformations and by differentially shifting the equilibria of ribosome rearrangements for cognate and near-cognate substrates. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Andrei A Korostelev
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA;
| |
Collapse
|
35
|
Iron–sulfur clusters as inhibitors and catalysts of viral replication. Nat Chem 2022; 14:253-266. [DOI: 10.1038/s41557-021-00882-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022]
|
36
|
Young DJ, Guydosh NR. Rebirth of the translational machinery: The importance of recycling ribosomes. Bioessays 2022; 44:e2100269. [PMID: 35147231 PMCID: PMC9270684 DOI: 10.1002/bies.202100269] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 11/10/2022]
Abstract
Translation of the genetic code occurs in a cycle where ribosomes engage mRNAs, synthesize protein, and then disengage in order to repeat the process again. The final part of this process-ribosome recycling, where ribosomes dissociate from mRNAs-involves a complex molecular choreography of specific protein factors to remove the large and small subunits of the ribosome in a coordinated fashion. Errors in this process can lead to the accumulation of ribosomes at stop codons or translation of downstream open reading frames (ORFs). Ribosome recycling is also critical when a ribosome stalls during the elongation phase of translation and must be rescued to allow continued translation of the mRNA. Here we discuss the molecular interactions that drive ribosome recycling, and their regulation in the cell. We also examine the consequences of inefficient recycling with regards to disease, and its functional roles in synthesis of novel peptides, regulation of gene expression, and control of mRNA-associated proteins. Alterations in ribosome recycling efficiency have the potential to impact many cellular functions but additional work is needed to understand how this regulatory power is utilized.
Collapse
Affiliation(s)
- David J Young
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Nicholas R Guydosh
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
37
|
Song S, Liu J, Zhang M, Gao X, Sun W, Liu P, Wang Y, Li J. Eukaryotic translation initiation factor 3 subunit B could serve as a potential prognostic predictor for breast cancer. Bioengineered 2022; 13:2762-2776. [PMID: 35040374 PMCID: PMC8974155 DOI: 10.1080/21655979.2021.2017567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The EIF3 gene family is essential in controlling translation initiation during the cell cycle. The significance of the EIF3 subunits as prognostic markers and therapeutic targets in breast cancer is not yet clear. We analyzed the expression of EIF3 subunits in breast cancer on the GEPIA and Oncomine databases and compared their expression in breast cancer and normal tissues using BRCA data downloaded from TCGA. Then we performed clinical survival analysis on the Kaplan–Meier Plotter database and clinicopathologic analysis on the bc-genexMiner v4.1 database. And EIF3B was chosen for mutation analysis via the Cancer SEA online tool. Meanwhile, we performed the immunohistochemical assay, real-time RT-PCR, and Western blotting to analyze EIF3B expression levels in breast cancer. An EIF3B knockdown and a negative control cell line were conducted for MTT assay and cell cycle analysis to assess cell growth. Specifically, the results of TCGA and online databases demonstrated that upregulated EIF3B was associated with poorer overall and advanced tumor progression. We also confirmed that EIF3B was more highly expressed in breast cancer cells and tissues than normal and correlated with a worse outcome. And knockdown of EIF3B expression inhibited the cell cycle and proliferation. Furthermore, EIF3B was highly mutated in breast cancer. Collectively, our results suggested EIF3B as a potential prognostic marker and therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Shaoran Song
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,The Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi China
| | - Jie Liu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,The Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi China
| | - Miao Zhang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,The Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi China
| | - Xiaoqian Gao
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,The Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi China
| | - Wei Sun
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,The Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi China
| | - Peijun Liu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,The Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi China
| | - Yaochun Wang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,The Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi China
| | - Juan Li
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,The Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi China
| |
Collapse
|
38
|
Blanchet S, Ranjan N. In Vitro Assembly of a Fully Reconstituted Yeast Translation System for Studies of Initiation and Elongation Phases of Protein Synthesis. Methods Mol Biol 2022; 2533:259-280. [PMID: 35796994 PMCID: PMC9761531 DOI: 10.1007/978-1-0716-2501-9_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Protein synthesis is an essential and highly regulated cellular process. To facilitate the understanding of eukaryotic translation, we have assembled an in vitro translation system from yeast using purified components to recapitulate the initiation and elongation phases of protein synthesis. Here, we describe methods to express and purify the components of the translation system and the assays for their functional characterization.
Collapse
Affiliation(s)
- Sandra Blanchet
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | - Namit Ranjan
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany.
| |
Collapse
|
39
|
Abstract
Protein synthesis in eukaryotes is carried out by 80S ribosomes with the help of many specific translation factors. Translation comprises four major steps: initiation, elongation, termination, and ribosome recycling. In this review, we provide a comprehensive list of translation factors required for protein synthesis in yeast and higher eukaryotes and summarize the mechanisms of each individual phase of eukaryotic translation.
Collapse
Affiliation(s)
- Sandra Blanchet
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | - Namit Ranjan
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany.
| |
Collapse
|
40
|
Egorova T, Biziaev N, Shuvalov A, Sokolova E, Mukba S, Evmenov K, Zotova M, Kushchenko A, Shuvalova E, Alkalaeva E. eIF3j facilitates loading of release factors into the ribosome. Nucleic Acids Res 2021; 49:11181-11196. [PMID: 34591963 PMCID: PMC8565342 DOI: 10.1093/nar/gkab854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/23/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022] Open
Abstract
eIF3j is one of the eukaryotic translation factors originally reported as the labile subunit of the eukaryotic translation initiation factor eIF3. The yeast homolog of this protein, Hcr1, has been implicated in stringent AUG recognition as well as in controlling translation termination and stop codon readthrough. Using a reconstituted mammalian in vitro translation system, we showed that the human protein eIF3j is also important for translation termination. We showed that eIF3j stimulates peptidyl-tRNA hydrolysis induced by a complex of eukaryotic release factors, eRF1-eRF3. Moreover, in combination with the initiation factor eIF3, which also stimulates peptide release, eIF3j activity in translation termination increases. We found that eIF3j interacts with the pre-termination ribosomal complex, and eRF3 destabilises this interaction. In the solution, these proteins bind to each other and to other participants of translation termination, eRF1 and PABP, in the presence of GTP. Using a toe-printing assay, we determined the stage at which eIF3j functions – binding of release factors to the A-site of the ribosome before GTP hydrolysis. Based on these data, we assumed that human eIF3j is involved in the regulation of translation termination by loading release factors into the ribosome.
Collapse
Affiliation(s)
- Tatiana Egorova
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, 119991 Moscow, Russia
| | - Nikita Biziaev
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexey Shuvalov
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, 119991 Moscow, Russia
| | - Elizaveta Sokolova
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, 119991 Moscow, Russia
| | - Sabina Mukba
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Konstantin Evmenov
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Maria Zotova
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Artem Kushchenko
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Ekaterina Shuvalova
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Elena Alkalaeva
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, 119991 Moscow, Russia
| |
Collapse
|
41
|
Saba JA, Liakath-Ali K, Green R, Watt FM. Translational control of stem cell function. Nat Rev Mol Cell Biol 2021; 22:671-690. [PMID: 34272502 DOI: 10.1038/s41580-021-00386-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2021] [Indexed: 12/22/2022]
Abstract
Stem cells are characterized by their ability to self-renew and differentiate into many different cell types. Research has focused primarily on how these processes are regulated at a transcriptional level. However, recent studies have indicated that stem cell behaviour is strongly coupled to the regulation of protein synthesis by the ribosome. In this Review, we discuss how different translation mechanisms control the function of adult and embryonic stem cells. Stem cells are characterized by low global translation rates despite high levels of ribosome biogenesis. The maintenance of pluripotency, the commitment to a specific cell fate and the switch to cell differentiation depend on the tight regulation of protein synthesis and ribosome biogenesis. Translation regulatory mechanisms that impact on stem cell function include mTOR signalling, ribosome levels, and mRNA and tRNA features and amounts. Understanding these mechanisms important for stem cell self-renewal and differentiation may also guide our understanding of cancer grade and metastasis.
Collapse
Affiliation(s)
- James A Saba
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kifayathullah Liakath-Ali
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Rachel Green
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Fiona M Watt
- King's College London Centre for Stem Cells and Regenerative Medicine, Guy's Hospital, London, UK.
| |
Collapse
|
42
|
Korostelev AA. Diversity and Similarity of Termination and Ribosome Rescue in Bacterial, Mitochondrial, and Cytoplasmic Translation. BIOCHEMISTRY (MOSCOW) 2021; 86:1107-1121. [PMID: 34565314 DOI: 10.1134/s0006297921090066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
When a ribosome encounters the stop codon of an mRNA, it terminates translation, releases the newly made protein, and is recycled to initiate translation on a new mRNA. Termination is a highly dynamic process in which release factors (RF1 and RF2 in bacteria; eRF1•eRF3•GTP in eukaryotes) coordinate peptide release with large-scale molecular rearrangements of the ribosome. Ribosomes stalled on aberrant mRNAs are rescued and recycled by diverse bacterial, mitochondrial, or cytoplasmic quality control mechanisms. These are catalyzed by rescue factors with peptidyl-tRNA hydrolase activity (bacterial ArfA•RF2 and ArfB, mitochondrial ICT1 and mtRF-R, and cytoplasmic Vms1), that are distinct from each other and from release factors. Nevertheless, recent structural studies demonstrate a remarkable similarity between translation termination and ribosome rescue mechanisms. This review describes how these pathways rely on inherent ribosome dynamics, emphasizing the active role of the ribosome in all translation steps.
Collapse
Affiliation(s)
- Andrei A Korostelev
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, MA, USA.
| |
Collapse
|
43
|
Abstract
Translation of the genetic information into proteins, performed by the ribosome, is a key cellular process in all organisms. Translation usually proceeds smoothly, but, unfortunately, undesirable events can lead to stalling of translating ribosomes. To rescue these faulty arrested ribosomes, bacterial cells possess three well-characterized quality control systems, tmRNA, ArfA, and ArfB. Recently, an additional ribosome rescue mechanism has been discovered in Bacillus subtilis. In contrast to the "canonical" systems targeting the 70S bacterial ribosome, this latter mechanism operates by first splitting the ribosome into the small (30S) and large (50S) subunits to then clearing the resultant jammed large subunit from the incomplete nascent polypeptide. Here, I will discuss the recent microbiological, biochemical, and structural data regarding functioning of this novel rescue system.
Collapse
Affiliation(s)
- Maxim S Svetlov
- Center for Biomolecular Sciences, Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
44
|
Padmanabhan PK, Ferreira GR, Zghidi-Abouzid O, Oliveira C, Dumas C, Mariz FC, Papadopoulou B. Genetic depletion of the RNA helicase DDX3 leads to impaired elongation of translating ribosomes triggering co-translational quality control of newly synthesized polypeptides. Nucleic Acids Res 2021; 49:9459-9478. [PMID: 34358325 PMCID: PMC8450092 DOI: 10.1093/nar/gkab667] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 07/15/2021] [Accepted: 07/23/2021] [Indexed: 11/29/2022] Open
Abstract
DDX3 is a multifaceted RNA helicase of the DEAD-box family that plays central roles in all aspects of RNA metabolism including translation initiation. Here, we provide evidence that the Leishmania DDX3 ortholog functions in post-initiation steps of translation. We show that genetic depletion of DDX3 slows down ribosome movement resulting in elongation-stalled ribosomes, impaired translation elongation and decreased de novo protein synthesis. We also demonstrate that the essential ribosome recycling factor Rli1/ABCE1 and termination factors eRF3 and GTPBP1 are less recruited to ribosomes upon DDX3 loss, suggesting that arrested ribosomes may be inefficiently dissociated and recycled. Furthermore, we show that prolonged ribosome stalling triggers co-translational ubiquitination of nascent polypeptide chains and a higher recruitment of E3 ubiquitin ligases and proteasome components to ribosomes of DDX3 knockout cells, which further supports that ribosomes are not elongating optimally. Impaired elongation of translating ribosomes also results in the accumulation of cytoplasmic protein aggregates, which implies that defects in translation overwhelm the normal quality controls. The partial recovery of translation by overexpressing Hsp70 supports this possibility. Collectively, these results suggest an important novel contribution of DDX3 to optimal elongation of translating ribosomes by preventing prolonged translation stalls and stimulating recycling of arrested ribosomes.
Collapse
Affiliation(s)
- Prasad Kottayil Padmanabhan
- Research Center in Infectious Diseases, Division of Infectious Disease and Immunity CHU de Quebec Research Center-University Laval, Quebec, QC G1V 4G2, Canada.,Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, University Laval, Quebec, QC G1V 4G2, Canada
| | - Gabriel Reis Ferreira
- Research Center in Infectious Diseases, Division of Infectious Disease and Immunity CHU de Quebec Research Center-University Laval, Quebec, QC G1V 4G2, Canada.,Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, University Laval, Quebec, QC G1V 4G2, Canada
| | - Ouafa Zghidi-Abouzid
- Research Center in Infectious Diseases, Division of Infectious Disease and Immunity CHU de Quebec Research Center-University Laval, Quebec, QC G1V 4G2, Canada.,Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, University Laval, Quebec, QC G1V 4G2, Canada
| | - Camila Oliveira
- Research Center in Infectious Diseases, Division of Infectious Disease and Immunity CHU de Quebec Research Center-University Laval, Quebec, QC G1V 4G2, Canada.,Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, University Laval, Quebec, QC G1V 4G2, Canada
| | - Carole Dumas
- Research Center in Infectious Diseases, Division of Infectious Disease and Immunity CHU de Quebec Research Center-University Laval, Quebec, QC G1V 4G2, Canada.,Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, University Laval, Quebec, QC G1V 4G2, Canada
| | - Filipe Colaço Mariz
- Research Center in Infectious Diseases, Division of Infectious Disease and Immunity CHU de Quebec Research Center-University Laval, Quebec, QC G1V 4G2, Canada.,Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, University Laval, Quebec, QC G1V 4G2, Canada
| | - Barbara Papadopoulou
- Research Center in Infectious Diseases, Division of Infectious Disease and Immunity CHU de Quebec Research Center-University Laval, Quebec, QC G1V 4G2, Canada.,Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, University Laval, Quebec, QC G1V 4G2, Canada
| |
Collapse
|
45
|
Silva J, Nina P, Romão L. Translation of ABCE1 Is Tightly Regulated by Upstream Open Reading Frames in Human Colorectal Cells. Biomedicines 2021; 9:biomedicines9080911. [PMID: 34440115 PMCID: PMC8389594 DOI: 10.3390/biomedicines9080911] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 07/26/2021] [Indexed: 11/29/2022] Open
Abstract
ATP-binding cassette subfamily E member 1 (ABCE1) belongs to the ABC protein family of transporters; however, it does not behave as a drug transporter. Instead, ABCE1 actively participates in different stages of translation and is also associated with oncogenic functions. Ribosome profiling analysis in colorectal cancer cells has revealed a high ribosome occupancy in the human ABCE1 mRNA 5′-leader sequence, indicating the presence of translatable upstream open reading frames (uORFs). These cis-acting translational regulatory elements usually act as repressors of translation of the main coding sequence. In the present study, we dissect the regulatory function of the five AUG and five non-AUG uORFs identified in the human ABCE1 mRNA 5′-leader sequence. We show that the expression of the main coding sequence is tightly regulated by the ABCE1 AUG uORFs in colorectal cells. Our results are consistent with a model wherein uORF1 is efficiently translated, behaving as a barrier to downstream uORF translation. The few ribosomes that can bypass uORF1 (and/or uORF2) must probably initiate at the inhibitory uORF3 or uORF5 that efficiently repress translation of the main ORF. This inhibitory property is slightly overcome in conditions of endoplasmic reticulum stress. In addition, we observed that these potent translation-inhibitory AUG uORFs function equally in cancer and in non-tumorigenic colorectal cells, which is consistent with a lack of oncogenic function. In conclusion, we establish human ABCE1 as an additional example of uORF-mediated translational regulation and that this tight regulation contributes to control ABCE1 protein levels in different cell environments.
Collapse
Affiliation(s)
- Joana Silva
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal; (J.S.); (P.N.)
- Instituto de Biossistemas e Ciências Integrativas (BioISI), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Pedro Nina
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal; (J.S.); (P.N.)
| | - Luísa Romão
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal; (J.S.); (P.N.)
- Instituto de Biossistemas e Ciências Integrativas (BioISI), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Correspondence: ; Tel.: +351-21-750-8155
| |
Collapse
|
46
|
Karasik A, Jones GD, DePass AV, Guydosh NR. Activation of the antiviral factor RNase L triggers translation of non-coding mRNA sequences. Nucleic Acids Res 2021; 49:6007-6026. [PMID: 33556964 DOI: 10.1093/nar/gkab036] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/06/2021] [Accepted: 02/03/2021] [Indexed: 11/15/2022] Open
Abstract
Ribonuclease L (RNase L) is activated as part of the innate immune response and plays an important role in the clearance of viral infections. When activated, it endonucleolytically cleaves both viral and host RNAs, leading to a global reduction in protein synthesis. However, it remains unknown how widespread RNA decay, and consequent changes in the translatome, promote the elimination of viruses. To study how this altered transcriptome is translated, we assayed the global distribution of ribosomes in RNase L activated human cells with ribosome profiling. We found that RNase L activation leads to a substantial increase in the fraction of translating ribosomes in ORFs internal to coding sequences (iORFs) and ORFs within 5' and 3' UTRs (uORFs and dORFs). Translation of these alternative ORFs was dependent on RNase L's cleavage activity, suggesting that mRNA decay fragments are translated to produce short peptides that may be important for antiviral activity.
Collapse
Affiliation(s)
- Agnes Karasik
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.,Postdoctoral Research Associate Training Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Grant D Jones
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew V DePass
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicholas R Guydosh
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
47
|
Young DJ, Meydan S, Guydosh NR. 40S ribosome profiling reveals distinct roles for Tma20/Tma22 (MCT-1/DENR) and Tma64 (eIF2D) in 40S subunit recycling. Nat Commun 2021; 12:2976. [PMID: 34016977 PMCID: PMC8137927 DOI: 10.1038/s41467-021-23223-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 04/14/2021] [Indexed: 12/21/2022] Open
Abstract
The recycling of ribosomes at stop codons for use in further rounds of translation is critical for efficient protein synthesis. Removal of the 60S subunit is catalyzed by the ATPase Rli1 (ABCE1) while removal of the 40S is thought to require Tma64 (eIF2D), Tma20 (MCT-1), and Tma22 (DENR). However, it remains unclear how these Tma proteins cause 40S removal and control reinitiation of downstream translation. Here we used a 40S ribosome footprinting strategy to directly observe intermediate steps of ribosome recycling in cells. Deletion of the genes encoding these Tma proteins resulted in broad accumulation of unrecycled 40S subunits at stop codons, directly establishing their role in 40S recycling. Furthermore, the Tma20/Tma22 heterodimer was responsible for a majority of 40S recycling events while Tma64 played a minor role. Introduction of an autism-associated mutation into TMA22 resulted in a loss of 40S recycling activity, linking ribosome recycling and neurological disease.
Collapse
Affiliation(s)
- David J Young
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sezen Meydan
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
- Postdoctoral Research Associate Training Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Nicholas R Guydosh
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
48
|
Iron in Translation: From the Beginning to the End. Microorganisms 2021; 9:microorganisms9051058. [PMID: 34068342 PMCID: PMC8153317 DOI: 10.3390/microorganisms9051058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/16/2022] Open
Abstract
Iron is an essential element for all eukaryotes, since it acts as a cofactor for many enzymes involved in basic cellular functions, including translation. While the mammalian iron-regulatory protein/iron-responsive element (IRP/IRE) system arose as one of the first examples of translational regulation in higher eukaryotes, little is known about the contribution of iron itself to the different stages of eukaryotic translation. In the yeast Saccharomyces cerevisiae, iron deficiency provokes a global impairment of translation at the initiation step, which is mediated by the Gcn2-eIF2α pathway, while the post-transcriptional regulator Cth2 specifically represses the translation of a subgroup of iron-related transcripts. In addition, several steps of the translation process depend on iron-containing enzymes, including particular modifications of translation elongation factors and transfer RNAs (tRNAs), and translation termination by the ATP-binding cassette family member Rli1 (ABCE1 in humans) and the prolyl hydroxylase Tpa1. The influence of these modifications and their correlation with codon bias in the dynamic control of protein biosynthesis, mainly in response to stress, is emerging as an interesting focus of research. Taking S. cerevisiae as a model, we hereby discuss the relevance of iron in the control of global and specific translation steps.
Collapse
|
49
|
Alboushi L, Hackett AP, Naeli P, Bakhti M, Jafarnejad SM. Multifaceted control of mRNA translation machinery in cancer. Cell Signal 2021; 84:110037. [PMID: 33975011 DOI: 10.1016/j.cellsig.2021.110037] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/06/2021] [Indexed: 12/15/2022]
Abstract
The mRNA translation machinery is tightly regulated through several, at times overlapping, mechanisms that modulate its efficiency and accuracy. Due to their fast rate of growth and metabolism, cancer cells require an excessive amount of mRNA translation and protein synthesis. However, unfavorable conditions, such as hypoxia, amino acid starvation, and oxidative stress, which are abundant in cancer, as well as many anti-cancer treatments inhibit mRNA translation. Cancer cells adapt to the various internal and environmental stresses by employing specialised transcript-specific translation to survive and gain a proliferative advantage. We will highlight the major signaling pathways and mechanisms of translation that regulate the global or mRNA-specific translation in response to the intra- or extra-cellular signals and stresses that are key components in the process of tumourigenesis.
Collapse
Affiliation(s)
- Lilas Alboushi
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Angela P Hackett
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Parisa Naeli
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Seyed Mehdi Jafarnejad
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK.
| |
Collapse
|
50
|
Martins-Dias P, Romão L. Nonsense suppression therapies in human genetic diseases. Cell Mol Life Sci 2021; 78:4677-4701. [PMID: 33751142 PMCID: PMC11073055 DOI: 10.1007/s00018-021-03809-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/06/2021] [Accepted: 03/05/2021] [Indexed: 02/06/2023]
Abstract
About 11% of all human disease-associated gene lesions are nonsense mutations, resulting in the introduction of an in-frame premature translation-termination codon (PTC) into the protein-coding gene sequence. When translated, PTC-containing mRNAs originate truncated and often dysfunctional proteins that might be non-functional or have gain-of-function or dominant-negative effects. Therapeutic strategies aimed at suppressing PTCs to restore deficient protein function-the so-called nonsense suppression (or PTC readthrough) therapies-have the potential to provide a therapeutic benefit for many patients and in a broad range of genetic disorders, including cancer. These therapeutic approaches comprise the use of translational readthrough-inducing compounds that make the translational machinery recode an in-frame PTC into a sense codon. However, most of the mRNAs carrying a PTC can be rapidly degraded by the surveillance mechanism of nonsense-mediated decay (NMD), thus decreasing the levels of PTC-containing mRNAs in the cell and their availability for PTC readthrough. Accordingly, the use of NMD inhibitors, or readthrough-compound potentiators, may enhance the efficiency of PTC suppression. Here, we review the mechanisms of PTC readthrough and their regulation, as well as the recent advances in the development of novel approaches for PTC suppression, and their role in personalized medicine.
Collapse
Affiliation(s)
- Patrícia Martins-Dias
- Department of Human Genetics, Instituto Nacional de Saúde Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016, Lisbon, Portugal
- Faculty of Sciences, BioISI-Biosystems and Integrative Sciences Institute, University of Lisboa, 1749-016, Lisbon, Portugal
| | - Luísa Romão
- Department of Human Genetics, Instituto Nacional de Saúde Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016, Lisbon, Portugal.
- Faculty of Sciences, BioISI-Biosystems and Integrative Sciences Institute, University of Lisboa, 1749-016, Lisbon, Portugal.
| |
Collapse
|