1
|
Zhang W, Lu X, Ren J. Study on drug-mediated protein-protein interaction in single living cells by fluorescence cross-correlation spectroscopy. Analyst 2025; 150:2029-2038. [PMID: 40195613 DOI: 10.1039/d5an00021a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Drug-mediated protein-protein interaction and drug-protein interaction form the basis of drug development and pharmacological research. How to obtain the information of drug-protein or protein-protein interaction in living cells is still a big challenge. In this work, we reported a new method for studying drug-mediated protein-protein interaction in living cells by using fluorescence cross-correlation spectroscopy (FCCS). We used the mammalian target of rapamycin (mTOR) as a model and studied drug-mediated FRB protein-FKBP12 protein interaction in living cells. The FRB protein covers amino acid residues of mTOR from 2015 to 2114 and FKBP12 is a receptor-binding protein. First, FRB was fused with the green fluorescent protein EGFP (FRB-EGFP), and FKBP12 was fused with the red fluorescent protein mCherry (FKBP12-mCherry) using genetic engineering technology. Then, FCCS was used to obtain information on drug-mediated FRB protein-FKBP12 protein interaction in living cells. According to the autocorrelation curves and cross-correlation curves, we can obtain cross-correlation (CC) values of the interaction between two proteins. The CC value was positively correlated with the interaction between two proteins. Furthermore, we developed a method for measuring IC50 for evaluating drug efficacy in living cells based on CC values. Compared with the current methods, our method can be used to study drug-mediated protein-protein interaction and evaluate effects of drugs on protein-protein interaction in living cells, and may become a useful tool for drug development and pharmacological research.
Collapse
Affiliation(s)
- Wei Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China.
| | - Xinwei Lu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China.
| | - Jicun Ren
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China.
| |
Collapse
|
2
|
Bankolé A, Srivastava A, Shihavuddin A, Tighanimine K, Faucourt M, Koka V, Weill S, Nemazanyy I, Nelson AJ, Stokes MP, Delgehyr N, Genovesio A, Meunier A, Fumagalli S, Pende M, Spassky N. mTOR controls ependymal cell differentiation by targeting the alternative cell cycle and centrosomal proteins. EMBO Rep 2025:10.1038/s44319-025-00460-2. [PMID: 40307619 DOI: 10.1038/s44319-025-00460-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 03/18/2025] [Accepted: 04/04/2025] [Indexed: 05/02/2025] Open
Abstract
Ependymal cells are multiciliated glial cells lining the ventricles of the mammalian brain. Their differentiation from progenitor cells involves cell enlargement and progresses through centriole amplification phases and ciliogenesis. These phases are accompanied by the sharp up-regulation of mTOR Complex 1 activity (mTORC1), a master regulator of macromolecule biosynthesis and cell growth, whose function in ependymal cell differentiation is unknown. We demonstrate that mTORC1 inhibition by rapamycin preserves the progenitor pool by reinforcing quiescence and preventing alternative cell cycle progression for centriole amplification. Overexpressing E2F4 and MCIDAS circumvents mTORC1-regulated processes, enabling centriole amplification despite rapamycin, and enhancing mTORC1 activity through positive feedback. Acute rapamycin treatment in multicentriolar cells during the late phases of differentiation causes centriole regrouping, indicating a direct role of mTORC1 in centriole dynamics. By phosphoproteomic and phosphomutant analysis, we reveal that the mTORC1-mediated phosphorylation of GAS2L1, a centrosomal protein that links actin and microtubule cytoskeletons, participates in centriole disengagement. This multilayered and sequential control of ependymal development by mTORC1, from the progenitor pool to centriolar function, has implications for pathophysiological conditions like aging and hydrocephalus-prone genetic diseases.
Collapse
Affiliation(s)
- Alexia Bankolé
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, F-75015, Paris, France
| | - Ayush Srivastava
- Institut de Biologie de l'Ecole Normale Superieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Team Cilia Biology and neurogenesis, 75005, Paris, France
| | - Asm Shihavuddin
- Institut de Biologie de l'Ecole Normale Superieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Team Computational bioimaging and bioinformatics, 75005, Paris, France
- Department of EEE, Presidency University, Dhaka, Bangladesh
| | - Khaled Tighanimine
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, F-75015, Paris, France
| | - Marion Faucourt
- Institut de Biologie de l'Ecole Normale Superieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Team Cilia Biology and neurogenesis, 75005, Paris, France
| | - Vonda Koka
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, F-75015, Paris, France
| | - Solene Weill
- Institut de Biologie de l'Ecole Normale Superieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Team Cilia Biology and neurogenesis, 75005, Paris, France
| | - Ivan Nemazanyy
- Platform for Metabolic Analyses, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR 3633, Paris, France
| | - Alissa J Nelson
- Cell Signaling Technology INC, 3 Trask Lane, Danvers, MA, 01923, USA
| | - Matthew P Stokes
- Cell Signaling Technology INC, 3 Trask Lane, Danvers, MA, 01923, USA
| | - Nathalie Delgehyr
- Institut de Biologie de l'Ecole Normale Superieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Team Cilia Biology and neurogenesis, 75005, Paris, France
| | - Auguste Genovesio
- Institut de Biologie de l'Ecole Normale Superieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Team Computational bioimaging and bioinformatics, 75005, Paris, France
| | - Alice Meunier
- Institut de Biologie de l'Ecole Normale Superieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Team Cilia Biology and neurogenesis, 75005, Paris, France
| | - Stefano Fumagalli
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, F-75015, Paris, France
| | - Mario Pende
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, F-75015, Paris, France.
| | - Nathalie Spassky
- Institut de Biologie de l'Ecole Normale Superieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Team Cilia Biology and neurogenesis, 75005, Paris, France.
| |
Collapse
|
3
|
Feliciano DM, Bordey A. TSC-mTORC1 Pathway in Postnatal V-SVZ Neurodevelopment. Biomolecules 2025; 15:573. [PMID: 40305300 PMCID: PMC12024678 DOI: 10.3390/biom15040573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 03/31/2025] [Accepted: 04/09/2025] [Indexed: 05/02/2025] Open
Abstract
In restricted regions of the rodent brain, neurogenesis persists throughout life, hinting that perhaps similar phenomena may exist in humans. Neural stem cells (NSCs) that reside within the ventricular-subventricular zone (V-SVZ) continually produce functional cells, including neurons that integrate into the olfactory bulb circuitry. The ability to achieve this feat is based on genetically encoded transcriptional programs that are controlled by environmentally regulated post-transcriptional signaling pathways. One such pathway that molds V-SVZ neurogenesis is the mTOR pathway. This pathway integrates nutrient sufficiency with growth factor signaling to control distinct steps of neurogenesis. Alterations in mTOR pathway signaling occur in numerous neurodevelopmental disorders. Here, we provide a narrative review for the role of the mTOR pathway in this process and discuss the use of this region to study the mTOR pathway in both health and disease.
Collapse
Affiliation(s)
- David M. Feliciano
- Department of Biological Sciences, Clemson University, Clemson, SC 29634-0314, USA
- Center for Human Genetics, Clemson University, Greenwood, SC 29646, USA
| | - Angelique Bordey
- Departments of Neurosurgery, and Cellular & Molecular Physiology, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06520-8082, USA;
| |
Collapse
|
4
|
Wu Y, Li T, Jiang X, Ling J, Zhao Z, Zhu J, Chen C, Liu Q, Yang X, Shen X, Ma R, Li G, Liu G. (-)-Epicatechin Rescues Memory Deficits by Activation of Autophagy in a Mouse Model of Tauopathies. MedComm (Beijing) 2025; 6:e70144. [PMID: 40135197 PMCID: PMC11933444 DOI: 10.1002/mco2.70144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 01/23/2025] [Accepted: 02/13/2025] [Indexed: 03/27/2025] Open
Abstract
In tauopathies, defects in autophagy-lysosomal protein degradation are thought to contribute to the abnormal accumulation of aggregated tau. Recent studies have shown that (-)-Epicatechin (Epi), a dietary flavonoid belonging to the flavan-3-ol subgroup, improves blood flow, modulates metabolic profiles, and prevents oxidative damage. However, less research has explored the effects of Epi on tauopathies. Here, we found that Epi rescued cognitive deficits in P301S tau transgenic mice, a model exhibiting characteristics of tauopathies like frontotemporal dementia and Alzheimer's disease, and attenuated tau pathology through autophagy activation. Proteomic and biochemical analyses revealed that P301S mice exhibit deficits in autophagosome formation via modulating mTOR, consequently inhibiting autophagy. Epi inhibited the mTOR signaling pathway to promote autophagosome formation, which is essential for the clearance of tau aggregation. By using chloroquine (CQ) to inhibit autophagy in vivo, we further confirmed that Epi induced tau degradation via the autophagy pathway. Lastly, Epi administration was also found to improve cognition by reversing spine decrease and neuron loss, as well as attenuating neuroinflammation. Our findings suggest that Epi promoted tau clearance by activating autophagy, indicating its potential as a promising therapeutic candidate for tauopathies.
Collapse
Affiliation(s)
- Yanqing Wu
- Department of NeurologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Health Management CenterRenmin Hospital of Wuhan UniversityWuhanChina
| | - Ting Li
- Department of PathophysiologySchool of Basic MedicineKey Laboratory of Ministry of Education of China and Hubei Province for Neurological DisordersTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of PathologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Xingjun Jiang
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Jianmin Ling
- Department of Emergency MedicineTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Critical Care MedicineTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Zaihua Zhao
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational EnvironmentSchool of Public HealthAir Force Medical UniversityXi'anChina
| | - Jiahui Zhu
- Department of NeurologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Chongyang Chen
- Key Laboratory of Nuclear MedicineMinistry of HealthJiangsu Key Laboratory of Molecular Nuclear MedicineJiangsu Institute of Nuclear MedicineWuxiChina
| | - Qian Liu
- Department of PathophysiologySchool of Basic MedicineKey Laboratory of Ministry of Education of China and Hubei Province for Neurological DisordersTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of ShenzhenShenzhen Center for Disease Control and PreventionShenzhenChina
| | - Xuefeng Shen
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational EnvironmentSchool of Public HealthAir Force Medical UniversityXi'anChina
| | - Rong Ma
- Department of PharmacologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Gang Li
- Department of NeurologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Gongping Liu
- Department of PathophysiologySchool of Basic MedicineKey Laboratory of Ministry of Education of China and Hubei Province for Neurological DisordersTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Modern Toxicology of ShenzhenShenzhen Center for Disease Control and PreventionShenzhenChina
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| |
Collapse
|
5
|
Huang Y, Xi X, Ye Z, Zhang C, Jiang Y, Yu F, Huang G. MYBL2 promotes proliferation of clear cell renal cell carcinoma by regulating TOP2A and activating AKT/mTOR signaling pathway. FASEB J 2025; 39:e70330. [PMID: 39831843 DOI: 10.1096/fj.202401910r] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/28/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
Renal cell carcinoma (RCC) is one of the most common malignancies in the urinary system, and clear cell renal cell carcinoma (ccRCC) is the most common subtype. MYBL2 has been reported to be overexpressed in various tumors and associated with poor prognosis in patients, but its biological role in ccRCC remains unclear. In this study, we investigated the mRNA and protein expression levels of MYBL2 in ccRCC samples and evaluated the prognostic value of MYBL2 using TCGA dataset. In vitro functional assays were performed using CCK-8, EdU, colony formation, cell scratch, and transwell assays, as well as in vivo tumorigenesis assays to investigate the biological functions of MYBL2 in ccRCC. Additionally, gene set enrichment analysis (GSEA) was used to explore the downstream pathways of MYBL2, which were further validated. Finally, we predicted the target genes of MYBL2 using bioinformatics and validated them using ChIP and dual-luciferase reporter gene assays. MYBL2 expression was significantly higher in ccRCC than in adjacent normal tissues and was associated with poor prognosis. MYBL2 expression was positively correlated with the pathological tumor grade and clinical TNM stage of ccRCC patients. Knockdown of MYBL2 significantly inhibited the proliferation of renal cancer cells in vitro and in vivo, and knockdown of MYBL2 could inhibit cell invasion and migration, while overexpression of MYBL2 had the opposite effect. GSEA revealed that MYBL2 was associated with the mTOR signaling pathway and cell cycle pathway, which was confirmed by our study. Finally, we found that TOP2A was a target gene of MYBL2, and MYBL2 could bind to the TOP2A promoter to regulate its transcriptional activity, promoting the proliferation of clear cell renal cell carcinoma cells. MYBL2 emerges as a highly expressed factor that significantly correlates with adverse patient prognosis in ccRCC. Mechanistically, MYBL2 transcriptionally upregulates TOP2A, thereby modulating the proliferation of ccRCC cells. Furthermore, MYBL2 activates the mTOR signaling pathway, a critical node in the progression of ccRCC. Collectively, these findings position MYBL2 as a promising candidate for both a biological marker and a therapeutic target in the management of ccRCC.
Collapse
Affiliation(s)
- Yawei Huang
- Department of Urology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaoqing Xi
- Department of Urology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhenfeng Ye
- Department of Urology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chiyu Zhang
- Department of Urology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yi Jiang
- Department of Urology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fanfan Yu
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Gaomin Huang
- Department of Urology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
6
|
Biffi R, Benoit SW, Sariyer IK, Safak M. JC virus small tumor antigen promotes S phase entry and cell cycle progression. Tumour Virus Res 2024; 18:200298. [PMID: 39586476 DOI: 10.1016/j.tvr.2024.200298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/28/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024] Open
Abstract
The early coding region of JC virus (JCV) encodes several regulatory proteins including large T antigen (LT-Ag), small t antigen (Sm t-Ag) and T' proteins because of the alternative splicing of the pre-mRNA. LT-Ag plays a critical role in cell transformation by targeting the key cell cycle regulatory proteins including p53 and pRb, however, the role of Sm t-Ag in this process remains elusive. Here, we investigated the effect of Sm t-Ag on the cell cycle progression and demonstrated that it facilitates S phase entry and exit when cells are released from G0/G1 growth arrest. Examination of the cell cycle stage specific expression profiles of the selected cyclins and cyclin-dependent kinases, including those active at the G1/S and G2/M transition state, demonstrated a higher level of early expression of these regulators such as cyclin B, cycling E, and Cdk2. In addition, analysis of the effect of Sm t-Ag on the growth promoting pathways including those active in the PI3K/Akt/mTOR axis showed substantially higher levels of the phosphorylated-Akt, -Gsk3-β and -S6K1 in Sm t-Ag-positive cells. Collectively, our results demonstrate that Sm t-Ag promotes cell cycle progression by activating the growth promoting pathways through which it may contribute to LT-Ag-mediated cell transformation.
Collapse
Affiliation(s)
- Renato Biffi
- Eurofins Biolabs S.R.L, Via Brubno Buozzi 2, Vimodrone, MI, 20055, Italy
| | - Stefanie W Benoit
- University of Cincinnati, Cincinnati Children's Hospital Medical Center, Burnet Campus, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Ilker K Sariyer
- Lewis Katz School of Medicine at Temple University, Department of Microbiology, Immunology and Inflammation, Center for Neurovirology and Gene Editing, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Mahmut Safak
- Lewis Katz School of Medicine at Temple University, Department of Microbiology, Immunology and Inflammation, Center for Neurovirology and Gene Editing, 3500 N. Broad Street, Philadelphia, PA, 19140, USA.
| |
Collapse
|
7
|
Liu YN, Chen YL, Zhang ZJ, Wu FY, Wang HJ, Wang XL, Liu GQ. Phosphatidic acid directly activates mTOR and then regulates SREBP to promote ganoderic acid biosynthesis under heat stress in Ganoderma lingzhi. Commun Biol 2024; 7:1503. [PMID: 39537975 PMCID: PMC11560937 DOI: 10.1038/s42003-024-07225-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
Ganoderic acids (GAs), a class of secondary metabolites produced by the traditional medicinal mushroom Ganoderma, are a group of triterpenoids with superior biological activities. Heat stress (HS) is one of the most important environmental abiotic stresses. Understanding how organisms sense temperature and integrate this information into their metabolism is important for determining how organisms adapt to climate change and for applying this knowledge to breeding. We previously reported that HS induced GA biosynthesis, and phospholipase D (PLD)-mediated phosphatidic acid (PA) was involved in HS-induced GA biosynthesis. We screened a proteome to identify the PA-binding proteins in G. lingzhi. We reported that PA directly interacted with mTOR and positively correlated with the ability of mTOR to promote GA biosynthesis under HS. The PA-activated mTOR pathway promoted the processing of the transcription factor sterol regulatory element-binding protein (SREBP) under HS, which directly activated GA biosynthesis. Our results suggest that SREBP is an intermediate of the PLD-mediated PA-interacting protein mTOR in HS-induced GA biosynthesis. Our report established the link between PLD-mediated PA production and the activation of mTOR and SREBP in the HS response and HS-induced secondary metabolism in filamentous fungi.
Collapse
Affiliation(s)
- Yong-Nan Liu
- Hunan Provincial Key Laboratory of Forestry Biotechnology and International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China.
- Laboratory of Yuelushan Seed Industry, Changsha, China.
| | - Yu-Lin Chen
- Hunan Provincial Key Laboratory of Forestry Biotechnology and International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China
- Laboratory of Yuelushan Seed Industry, Changsha, China
| | - Zi-Juan Zhang
- Hunan Provincial Key Laboratory of Forestry Biotechnology and International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China
- Laboratory of Yuelushan Seed Industry, Changsha, China
| | - Feng-Yuan Wu
- Hunan Provincial Key Laboratory of Forestry Biotechnology and International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China
- Laboratory of Yuelushan Seed Industry, Changsha, China
| | - Hao-Jin Wang
- Hunan Provincial Key Laboratory of Forestry Biotechnology and International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China
- Laboratory of Yuelushan Seed Industry, Changsha, China
| | - Xiao-Ling Wang
- Hunan Provincial Key Laboratory of Forestry Biotechnology and International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China
- Laboratory of Yuelushan Seed Industry, Changsha, China
| | - Gao-Qiang Liu
- Hunan Provincial Key Laboratory of Forestry Biotechnology and International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China.
- Laboratory of Yuelushan Seed Industry, Changsha, China.
| |
Collapse
|
8
|
Oyovwi MO, Ugwuishi EW, Udi OA, Uchechukwu GJ. Mitophagy Unveiled: Exploring the Nexus of Mitochondrial Health and Neuroendocrinopathy. J Mol Neurosci 2024; 74:107. [PMID: 39514132 DOI: 10.1007/s12031-024-02280-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Mitochondria play a pivotal role in cellular metabolism, energy production, and apoptotic signaling, making mitophagy, the selective degradation of damaged mitochondria, crucial for mitochondrial health. Dysregulation of mitophagy has been implicated in various neuroendocrinopathies, yet the mechanisms linking these processes remain poorly understood. This review aims to explore the intersection between mitophagy and neuroendocrinopathy, addressing the critical gaps in knowledge regarding how mitochondrial dysfunction may contribute to the pathophysiology of neuroendocrine disorders. We conducted a comprehensive literature review of studies published on mitophagy and neuroendocrinopathies, focusing on data that elucidate the pathways involved and the clinical implications of mitochondrial health in neuroendocrine contexts. Our findings indicate that altered mitophagy may lead to the accumulation of dysfunctional mitochondria, contributing to neuroendocrine dysregulation. We present evidence linking impaired mitochondrial clearance to disease models of conditions such as metabolic syndrome, depression, and stress-related disorders, highlighting the potential for therapeutic interventions targeting mitophagy. While significant advances have been made in understanding mitochondrial biology, the direct interplay between mitophagy and neuroendocrinopathies remains underexplored. This review underscores the necessity for further research to elucidate these connections, which may offer novel insights into disease mechanisms and therapeutic strategies for treating maladaptive neuroendocrine responses.
Collapse
Affiliation(s)
- Mega Obukohwo Oyovwi
- Department of Physiology, Faculty of Basic Medical Sciences, Adeleke University, Ede, Osun State, Nigeria.
| | | | - Onoriode Andrew Udi
- Department of Human Anatomy, Federal University Otuoke, Otuoke, Bayelsa State, Nigeria
| | - Gregory Joseph Uchechukwu
- Department of Medical Laboratory Science, Faculty of Basic Medical Sciences, Adeleke University, Ede, Osun State, Nigeria
| |
Collapse
|
9
|
Liu Y, Liu Q, Shang H, Li J, Chai H, Wang K, Guo Z, Luo T, Liu S, Liu Y, Wang X, Zhang H, Wu C, Song SJ, Yang J. Potential application of natural compounds in ischaemic stroke: Focusing on the mechanisms underlying "lysosomocentric" dysfunction of the autophagy-lysosomal pathway. Pharmacol Ther 2024; 263:108721. [PMID: 39284368 DOI: 10.1016/j.pharmthera.2024.108721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/06/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Ischaemic stroke (IS) is the second leading cause of death and a major cause of disability worldwide. Currently, the clinical management of IS still depends on restoring blood flow via pharmacological thrombolysis or mechanical thrombectomy, with accompanying disadvantages of narrow therapeutic time window and risk of haemorrhagic transformation. Thus, novel pathophysiological mechanisms and targeted therapeutic candidates are urgently needed. The autophagy-lysosomal pathway (ALP), as a dynamic cellular lysosome-based degradative process, has been comprehensively studied in recent decades, including its upstream regulatory mechanisms and its role in mediating neuronal fate after IS. Importantly, increasing evidence has shown that IS can lead to lysosomal dysfunction, such as lysosomal membrane permeabilization, impaired lysosomal acidity, lysosomal storage disorder, and dysfunctional lysosomal ion homeostasis, which are involved in the IS-mediated defects in ALP function. There is tightly regulated crosstalk between transcription factor EB (TFEB), mammalian target of rapamycin (mTOR) and lysosomal function, but their relationship remains to be systematically summarized. Notably, a growing body of evidence emphasizes the benefits of naturally derived compounds in the treatment of IS via modulation of ALP function. However, little is known about the roles of natural compounds as modulators of lysosomes in the treatment of IS. Therefore, in this context, we provide an overview of the current understanding of the mechanisms underlying IS-mediated ALP dysfunction, from a lysosomal perspective. We also provide an update on the effect of natural compounds on IS, according to their chemical structural types, in different experimental stroke models, cerebral regions and cell types, with a primary focus on lysosomes and autophagy initiation. This review aims to highlight the therapeutic potential of natural compounds that target lysosomal and ALP function for IS treatment.
Collapse
Affiliation(s)
- Yueyang Liu
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Qingbo Liu
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Hanxiao Shang
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Jichong Li
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - He Chai
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Kaixuan Wang
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Zhenkun Guo
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Tianyu Luo
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Shiqi Liu
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Yan Liu
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xuemei Wang
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Hangyi Zhang
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Chunfu Wu
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| | - Jingyu Yang
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| |
Collapse
|
10
|
Swaroop V, Ozkan E, Herrmann L, Thurman A, Kopasz-Gemmen O, Kunamneni A, Inoki K. mTORC1 signaling and diabetic kidney disease. Diabetol Int 2024; 15:707-718. [PMID: 39469564 PMCID: PMC11512951 DOI: 10.1007/s13340-024-00738-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/26/2024] [Indexed: 10/30/2024]
Abstract
Diabetic kidney disease (DKD) represents the most lethal complication in both type 1 and type 2 diabetes. The disease progresses without obvious symptoms and is often refractory when apparent symptoms have emerged. Although the molecular mechanisms underlying the onset/progression of DKD have been extensively studied, only a few effective therapies are currently available. Pathogenesis of DKD involves multifaced events caused by diabetes, which include alterations of metabolisms, signals, and hemodynamics. While the considerable efficacy of sodium/glucose cotransporter-2 (SGLT2) inhibitors or angiotensin II receptor blockers (ARBs) for DKD has been recognized, the ever-increasing number of patients with diabetes and DKD warrants additional practical therapeutic approaches that prevent DKD from diabetes. One plausible but promising target is the mechanistic target of the rapamycin complex 1 (mTORC1) signaling pathway, which senses cellular nutrients to control various anabolic and catabolic processes. This review introduces the current understanding of the mTOR signaling pathway and its roles in the development of DKD and other chronic kidney diseases (CKDs), and discusses potential therapeutic approaches targeting this pathway for the future treatment of DKD.
Collapse
Affiliation(s)
- Vinamra Swaroop
- Life Sciences Institute, University of Michigan, Ann Arbor, USA
| | - Eden Ozkan
- Life Sciences Institute, University of Michigan, Ann Arbor, USA
| | - Lydia Herrmann
- Life Sciences Institute, University of Michigan, Ann Arbor, USA
| | - Aaron Thurman
- Life Sciences Institute, University of Michigan, Ann Arbor, USA
| | | | | | - Ken Inoki
- Life Sciences Institute, University of Michigan, Ann Arbor, USA
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, USA
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, USA
| |
Collapse
|
11
|
Hablase R, Kyrou I, Randeva H, Karteris E, Chatterjee J. The "Road" to Malignant Transformation from Endometriosis to Endometriosis-Associated Ovarian Cancers (EAOCs): An mTOR-Centred Review. Cancers (Basel) 2024; 16:2160. [PMID: 38893278 PMCID: PMC11172073 DOI: 10.3390/cancers16112160] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/29/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024] Open
Abstract
Ovarian cancer is an umbrella term covering a number of distinct subtypes. Endometrioid and clear-cell ovarian carcinoma are endometriosis-associated ovarian cancers (EAOCs) frequently arising from ectopic endometrium in the ovary. The mechanistic target of rapamycin (mTOR) is a crucial regulator of cellular homeostasis and is dysregulated in both endometriosis and endometriosis-associated ovarian cancer, potentially favouring carcinogenesis across a spectrum from benign disease with cancer-like characteristics, through an atypical phase, to frank malignancy. In this review, we focus on mTOR dysregulation in endometriosis and EAOCs, investigating cancer driver gene mutations and their potential interaction with the mTOR pathway. Additionally, we explore the complex pathogenesis of transformation, considering environmental, hormonal, and epigenetic factors. We then discuss postmenopausal endometriosis pathogenesis and propensity for malignant transformation. Finally, we summarize the current advancements in mTOR-targeted therapeutics for endometriosis and EAOCs.
Collapse
Affiliation(s)
- Radwa Hablase
- College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB83PH, UK; (R.H.); (E.K.)
- Academic Department of Gynaecological Oncology, Royal Surrey NHS Foundation Trust Hospital, Guildford GU2 7XX, UK
| | - Ioannis Kyrou
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK (H.R.)
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Institute for Cardiometabolic Medicine, University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Centre for Sport, Exercise and Life Sciences, Research Institute for Health & Wellbeing, Coventry University, Coventry CV1 5FB, UK
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
- College of Health, Psychology and Social Care, University of Derby, Derby DE22 1GB, UK
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece
| | - Harpal Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK (H.R.)
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Institute for Cardiometabolic Medicine, University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Centre for Sport, Exercise and Life Sciences, Research Institute for Health & Wellbeing, Coventry University, Coventry CV1 5FB, UK
| | - Emmanouil Karteris
- College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB83PH, UK; (R.H.); (E.K.)
| | - Jayanta Chatterjee
- College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB83PH, UK; (R.H.); (E.K.)
- Academic Department of Gynaecological Oncology, Royal Surrey NHS Foundation Trust Hospital, Guildford GU2 7XX, UK
| |
Collapse
|
12
|
Chen Y, Guan W, Wang ML, Lin XY. PI3K-AKT/mTOR Signaling in Psychiatric Disorders: A Valuable Target to Stimulate or Suppress? Int J Neuropsychopharmacol 2024; 27:pyae010. [PMID: 38365306 PMCID: PMC10888523 DOI: 10.1093/ijnp/pyae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/08/2024] [Indexed: 02/18/2024] Open
Abstract
Economic development and increased stress have considerably increased the prevalence of psychiatric disorders in recent years, which rank as some of the most prevalent diseases globally. Several factors, including chronic social stress, genetic inheritance, and autogenous diseases, lead to the development and progression of psychiatric disorders. Clinical treatments for psychiatric disorders include psychotherapy, chemotherapy, and electric shock therapy. Although various achievements have been made researching psychiatric disorders, the pathogenesis of these diseases has not been fully understood yet, and serious adverse effects and resistance to antipsychotics are major obstacles to treating patients with psychiatric disorders. Recent studies have shown that the mammalian target of rapamycin (mTOR) is a central signaling hub that functions in nerve growth, synapse formation, and plasticity. The PI3K-AKT/mTOR pathway is a critical target for mediating the rapid antidepressant effects of these pharmacological agents in clinical and preclinical research. Abnormal PI3K-AKT/mTOR signaling is closely associated with the pathogenesis of several neurodevelopmental disorders. In this review, we focused on the role of mTOR signaling and the related aberrant neurogenesis in psychiatric disorders. Elucidating the neurobiology of the PI3K-AKT/mTOR signaling pathway in psychiatric disorders and its actions in response to antidepressants will help us better understand brain development and quickly identify new therapeutic targets for the treatment of these mental illnesses.
Collapse
Affiliation(s)
- Yan Chen
- Department of Neurology, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Wei Guan
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong, Jiangsu, China
| | - Mei-Lan Wang
- Department of Neurology, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Xiao-Yun Lin
- Department of Neurology, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
13
|
Liu Y, Zhang M, Jang H, Nussinov R. The allosteric mechanism of mTOR activation can inform bitopic inhibitor optimization. Chem Sci 2024; 15:1003-1017. [PMID: 38239681 PMCID: PMC10793652 DOI: 10.1039/d3sc04690g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/06/2023] [Indexed: 01/22/2024] Open
Abstract
mTOR serine/threonine kinase is a cornerstone in the PI3K/AKT/mTOR pathway. Yet, the detailed mechanism of activation of its catalytic core is still unresolved, likely due to mTOR complexes' complexity. Its dysregulation was implicated in cancer and neurodevelopmental disorders. Using extensive molecular dynamics (MD) simulations and compiled published experimental data, we determine exactly how mTOR's inherent motifs can control the conformational changes in the kinase domain, thus kinase activity. We also chronicle the critical regulation by the unstructured negative regulator domain (NRD). When positioned inside the catalytic cleft (NRD IN state), mTOR tends to adopt a deep and closed catalytic cleft. This is primarily due to the direct interaction with the FKBP-rapamycin binding (FRB) domain which restricts it, preventing substrate access. Conversely, when outside the catalytic cleft (NRD OUT state), mTOR favors an open conformation, exposing the substrate-binding site on the FRB domain. We further show how an oncogenic mutation (L2427R) promotes shifting the mTOR ensemble toward the catalysis-favored state. Collectively, we extend mTOR's "active-site restriction" mechanism and clarify mutation action. In particular, our mechanism suggests that RMC-5552 (RMC-6272) bitopic inhibitors may benefit from adjustment of the (PEG8) linker length when targeting certain mTOR variants. In the cryo-EM mTOR/RMC-5552 structure, the distance between the allosteric and orthosteric inhibitors is ∼22.7 Å. With a closed catalytic cleft, this linker bridges the sites. However, in our activation mechanism, in the open cleft it expands to ∼24.7 Å, offering what we believe to be the first direct example of how discovering an activation mechanism can potentially increase the affinity of inhibitors targeting mutants.
Collapse
Affiliation(s)
- Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute Frederick MD 21702 USA
| | - Mingzhen Zhang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research Frederick MD 21702 USA +1-301-846-5579
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research Frederick MD 21702 USA +1-301-846-5579
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research Frederick MD 21702 USA +1-301-846-5579
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University Tel Aviv 69978 Israel
| |
Collapse
|
14
|
Lashgari NA, Roudsari NM, Shayan M, Eshraghi S, Momtaz S, Jamialahmadi T, Abdolghaffari AH, Sahebkar A. Spinal Muscular Atrophy Treatment: The MTOR Regulatory Intervention. Curr Med Chem 2024; 31:1512-1522. [PMID: 36788689 DOI: 10.2174/0929867330666230213114909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/29/2022] [Accepted: 12/29/2022] [Indexed: 02/16/2023]
Abstract
Spinal muscular atrophy (SMA) is a hereditary disorder affecting neurons and muscles, resulting in muscle weakness and atrophy. Most SMA cases are diagnosed during infancy or early childhood, the most common inherited cause of infant mortality without treatment. Still, SMA might appear at older ages with milder symptoms. SMA patients demonstrate progressive muscle waste, movement problems, tremors, dysphagia, bone and joint deformations, and breathing difficulties. The mammalian target of rapamycin (mTOR), the mechanistic target of rapamycin, is a member of the phosphatidylinositol 3-kinase-related kinase family of protein kinases encoded by the mTOR gene in humans. The mTOR phosphorylation, deregulation, and autophagy have shown dissimilarity amongst SMA cell types. Therefore, exploring the underlying molecular process in SMA therapy could provide novel insights and pave the way for finding new treatment options. This paper provides new insight into the possible modulatory effect of mTOR/ autophagy in SMA management.
Collapse
Affiliation(s)
- Naser-Aldin Lashgari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nazanin Momeni Roudsari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Maryam Shayan
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sadaf Eshraghi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saeideh Momtaz
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Tannaz Jamialahmadi
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Medicine, The University of Western Australia, Perth, Australia
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
15
|
Khalil MI, Ali MM, Holail J, Houssein M. Growth or death? Control of cell destiny by mTOR and autophagy pathways. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 185:39-55. [PMID: 37944568 DOI: 10.1016/j.pbiomolbio.2023.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/08/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
One of the central regulators of cell growth, proliferation, and metabolism is the mammalian target of rapamycin, mTOR, which exists in two structurally and functionally different complexes: mTORC1 and mTORC2; unlike m TORC2, mTORC1 is activated in response to the sufficiency of nutrients and is inhibited by rapamycin. mTOR complexes have critical roles not only in protein synthesis, gene transcription regulation, proliferation, tumor metabolism, but also in the regulation of the programmed cell death mechanisms such as autophagy and apoptosis. Autophagy is a conserved catabolic mechanism in which damaged molecules are recycled in response to nutrient starvation. Emerging evidence indicates that the mTOR signaling pathway is frequently activated in tumors. In addition, dysregulation of autophagy was associated with the development of a variety of human diseases, such as cancer and aging. Since mTOR can inhibit the induction of the autophagic process from the early stages of autophagosome formation to the late stage of lysosome degradation, the use of mTOR inhibitors to regulate autophagy could be considered a potential therapeutic option. The present review sheds light on the mTOR and autophagy signaling pathways and the mechanisms of regulation of mTOR-autophagy.
Collapse
Affiliation(s)
- Mahmoud I Khalil
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut, 11072809, Lebanon; Molecular Biology Unit, Department of Zoology, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt.
| | - Mohamad M Ali
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-751 23, Uppsala, Sweden.
| | - Jasmine Holail
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom.
| | - Marwa Houssein
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut, 11072809, Lebanon.
| |
Collapse
|
16
|
Pan SW, Hu LS, Wang H, Li RT, He YJ, Shang Y, Dai ZL, Chen LX, Xiong W. Resolvin D1 Induces mTOR-independent and ATG5-dependent Autophagy in BV-2 Microglial Cells. Curr Med Sci 2023; 43:1096-1106. [PMID: 37924386 DOI: 10.1007/s11596-023-2787-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 08/03/2023] [Indexed: 11/06/2023]
Abstract
OBJECTIVE The activation state of microglia is known to occupy a central position in the pathophysiological process of cerebral inflammation. Autophagy is a catabolic process responsible for maintaining cellular homeostasis. In recent years, autophagy has been demonstrated to play an important role in neuroinflammation. Resolvin D1 (RvD1) is a promising therapeutic mediator that has been shown to exert substantial anti-inflammatory and proresolving activities. However, whether RvD1-mediated resolution of inflammation in microglia is related to autophagy regulation needs further investigation. The present study aimed to explore the effect of RvD1 on microglial autophagy and its corresponding pathways. METHODS Mouse microglial cells (BV-2) were cultured, treated with RvD1, and examined by Western blotting, confocal immunofluorescence microscopy, transmission electron microscopy, and flow cytometry. RESULTS RvD1 promoted autophagy in both BV-2 cells and mouse primary microglia by favoring the maturation of autophagosomes and their fusion with lysosomes. Importantly, RvD1 had no significant effect on the activation of mammalian target of rapamycin (mTOR) signaling. Furthermore, RvD1-induced mTOR-independent autophagy was confirmed by observing reduced cytoplasmic calcium levels and suppressed calcium/calmodulin-dependent protein kinase II (CaMK II) activation. Moreover, by downregulating ATG5, the increased phagocytic activity induced by RvD1 was demonstrated to be tightly controlled by ATG5-dependent autophagy. CONCLUSION The present work identified a previously unreported mechanism responsible for the role of RvD1 in microglial autophagy, highlighting its therapeutic potential against neuroinflammation.
Collapse
Affiliation(s)
- Shang-Wen Pan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Li-Sha Hu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Han Wang
- Department of Anesthesiology, Qingdao Women and Children's Hospital, Qingdao University, Qingdao, 266034, China
| | - Rui-Ting Li
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ya-Jun He
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhong-Liang Dai
- Department of Anesthesiology, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, 518020, China
| | - Li-Xin Chen
- Department of Pharmacology, Medical College, Jinan University, Guangzhou, 510632, China
| | - Wei Xiong
- Department of Anesthesiology, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, 518020, China.
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
17
|
Foltman M, Sanchez-Diaz A. TOR Complex 1: Orchestrating Nutrient Signaling and Cell Cycle Progression. Int J Mol Sci 2023; 24:15745. [PMID: 37958727 PMCID: PMC10647266 DOI: 10.3390/ijms242115745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
The highly conserved TOR signaling pathway is crucial for coordinating cellular growth with the cell cycle machinery in eukaryotes. One of the two TOR complexes in budding yeast, TORC1, integrates environmental cues and promotes cell growth. While cells grow, they need to copy their chromosomes, segregate them in mitosis, divide all their components during cytokinesis, and finally physically separate mother and daughter cells to start a new cell cycle apart from each other. To maintain cell size homeostasis and chromosome stability, it is crucial that mechanisms that control growth are connected and coordinated with the cell cycle. Successive periods of high and low TORC1 activity would participate in the adequate cell cycle progression. Here, we review the known molecular mechanisms through which TORC1 regulates the cell cycle in the budding yeast Saccharomyces cerevisiae that have been extensively used as a model organism to understand the role of its mammalian ortholog, mTORC1.
Collapse
Affiliation(s)
- Magdalena Foltman
- Mechanisms and Regulation of Cell Division Research Unit, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, 39011 Santander, Spain
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria, 39011 Santander, Spain
| | - Alberto Sanchez-Diaz
- Mechanisms and Regulation of Cell Division Research Unit, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, 39011 Santander, Spain
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria, 39011 Santander, Spain
| |
Collapse
|
18
|
Rivas VN, Kaplan JL, Kennedy SA, Fitzgerald S, Crofton AE, Farrell A, Grubb L, Jauregui CE, Grigorean G, Choi E, Harris SP, Stern JA. Multi-Omic, Histopathologic, and Clinicopathologic Effects of Once-Weekly Oral Rapamycin in a Naturally Occurring Feline Model of Hypertrophic Cardiomyopathy: A Pilot Study. Animals (Basel) 2023; 13:3184. [PMID: 37893908 PMCID: PMC10603660 DOI: 10.3390/ani13203184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) remains the single most common cardiomyopathy in cats, with a staggering prevalence as high as 15%. To date, little to no direct therapeutical intervention for HCM exists for veterinary patients. A previous study aimed to evaluate the effects of delayed-release (DR) rapamycin dosing in a client-owned population of subclinical, non-obstructive, HCM-affected cats and reported that the drug was well tolerated and resulted in beneficial LV remodeling. However, the precise effects of rapamycin in the hypertrophied myocardium remain unknown. Using a feline research colony with naturally occurring hereditary HCM (n = 9), we embarked on the first-ever pilot study to examine the tissue-, urine-, and plasma-level proteomic and tissue-level transcriptomic effects of an intermittent low dose (0.15 mg/kg) and high dose (0.30 mg/kg) of DR oral rapamycin once weekly. Rapamycin remained safe and well tolerated in cats receiving both doses for eight weeks. Following repeated weekly dosing, transcriptomic differences between the low- and high-dose groups support dose-responsive suppressive effects on myocardial hypertrophy and stimulatory effects on autophagy. Differences in the myocardial proteome between treated and control cats suggest potential anti-coagulant/-thrombotic, cellular remodeling, and metabolic effects of the drug. The results of this study closely recapitulate what is observed in the human literature, and the use of rapamycin in the clinical setting as the first therapeutic agent with disease-modifying effects on HCM remains promising. The results of this study establish the need for future validation efforts that investigate the fine-scale relationship between rapamycin treatment and the most compelling gene expression and protein abundance differences reported here.
Collapse
Affiliation(s)
- Victor N. Rivas
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Joanna L. Kaplan
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA
| | | | | | - Amanda E. Crofton
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA
| | | | | | - Carina E. Jauregui
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Gabriela Grigorean
- Proteomics Core Facility, University of California-Davis, Davis, CA 95616, USA
| | - Eunju Choi
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA;
| | - Samantha P. Harris
- Department of Physiology, College of Medicine-Tucson, University of Arizona, Tucson, AZ 85724, USA
| | - Joshua A. Stern
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| |
Collapse
|
19
|
Panwar V, Singh A, Bhatt M, Tonk RK, Azizov S, Raza AS, Sengupta S, Kumar D, Garg M. Multifaceted role of mTOR (mammalian target of rapamycin) signaling pathway in human health and disease. Signal Transduct Target Ther 2023; 8:375. [PMID: 37779156 PMCID: PMC10543444 DOI: 10.1038/s41392-023-01608-z] [Citation(s) in RCA: 296] [Impact Index Per Article: 148.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/25/2023] [Accepted: 08/14/2023] [Indexed: 10/03/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) is a protein kinase that controls cellular metabolism, catabolism, immune responses, autophagy, survival, proliferation, and migration, to maintain cellular homeostasis. The mTOR signaling cascade consists of two distinct multi-subunit complexes named mTOR complex 1/2 (mTORC1/2). mTOR catalyzes the phosphorylation of several critical proteins like AKT, protein kinase C, insulin growth factor receptor (IGF-1R), 4E binding protein 1 (4E-BP1), ribosomal protein S6 kinase (S6K), transcription factor EB (TFEB), sterol-responsive element-binding proteins (SREBPs), Lipin-1, and Unc-51-like autophagy-activating kinases. mTOR signaling plays a central role in regulating translation, lipid synthesis, nucleotide synthesis, biogenesis of lysosomes, nutrient sensing, and growth factor signaling. The emerging pieces of evidence have revealed that the constitutive activation of the mTOR pathway due to mutations/amplification/deletion in either mTOR and its complexes (mTORC1 and mTORC2) or upstream targets is responsible for aging, neurological diseases, and human malignancies. Here, we provide the detailed structure of mTOR, its complexes, and the comprehensive role of upstream regulators, as well as downstream effectors of mTOR signaling cascades in the metabolism, biogenesis of biomolecules, immune responses, and autophagy. Additionally, we summarize the potential of long noncoding RNAs (lncRNAs) as an important modulator of mTOR signaling. Importantly, we have highlighted the potential of mTOR signaling in aging, neurological disorders, human cancers, cancer stem cells, and drug resistance. Here, we discuss the developments for the therapeutic targeting of mTOR signaling with improved anticancer efficacy for the benefit of cancer patients in clinics.
Collapse
Affiliation(s)
- Vivek Panwar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Aishwarya Singh
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh, 201313, India
| | - Manini Bhatt
- Department of Biomedical Engineering, Indian Institute of Technology, Ropar, Punjab, 140001, India
| | - Rajiv K Tonk
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, 110017, India
| | - Shavkatjon Azizov
- Laboratory of Biological Active Macromolecular Systems, Institute of Bioorganic Chemistry, Academy of Sciences Uzbekistan, Tashkent, 100125, Uzbekistan
- Faculty of Life Sciences, Pharmaceutical Technical University, 100084, Tashkent, Uzbekistan
| | - Agha Saquib Raza
- Rajive Gandhi Super Speciality Hospital, Tahirpur, New Delhi, 110093, India
| | - Shinjinee Sengupta
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh, 201313, India.
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh, 201313, India.
| |
Collapse
|
20
|
Zhang F, Cheng T, Zhang SX. Mechanistic target of rapamycin (mTOR): a potential new therapeutic target for rheumatoid arthritis. Arthritis Res Ther 2023; 25:187. [PMID: 37784141 PMCID: PMC10544394 DOI: 10.1186/s13075-023-03181-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by systemic synovitis and bone destruction. Proinflammatory cytokines activate pathways of immune-mediated inflammation, which aggravates RA. The mechanistic target of rapamycin (mTOR) signaling pathway associated with RA connects immune and metabolic signals, which regulates immune cell proliferation and differentiation, macrophage polarization and migration, antigen presentation, and synovial cell activation. Therefore, therapy strategies targeting mTOR have become an important direction of current RA treatment research. In the current review, we summarize the biological functions of mTOR, its regulatory effects on inflammation, and the curative effects of mTOR inhibitors in RA, thus providing references for the development of RA therapeutic targets and new drugs.
Collapse
Affiliation(s)
- Fen Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Xinghualing District, Taiyuan, 030001, Shanxi Province, China
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Ting Cheng
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Xinghualing District, Taiyuan, 030001, Shanxi Province, China
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Sheng-Xiao Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Xinghualing District, Taiyuan, 030001, Shanxi Province, China.
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China.
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China.
| |
Collapse
|
21
|
Konopka AR, Lamming DW. Blazing a trail for the clinical use of rapamycin as a geroprotecTOR. GeroScience 2023; 45:2769-2783. [PMID: 37801202 PMCID: PMC10643772 DOI: 10.1007/s11357-023-00935-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/04/2023] [Indexed: 10/07/2023] Open
Abstract
Treatment with rapamycin, an inhibitor of the mechanistic Target Of Rapamycin Complex One (mTORC1) protein kinase, has been repeatedly demonstrated to extend lifespan and prevent or delay age-related diseases in diverse model systems. Concerns over the risk of potentially serious side effects in humans, including immunosuppression and metabolic disruptions, have cautiously limited the translation of rapamycin and its analogs as a treatment for aging associated conditions. During the last decade, we and others have developed a working model that suggests that while inhibition of mTORC1 promotes healthy aging, many of the negative side effects of rapamycin are associated with "off-target" inhibition of a second mTOR complex, mTORC2. Differences in the kinetics and molecular mechanisms by which rapamycin inhibits mTORC1 and mTORC2 suggest that a therapeutic window for rapamycin could be exploited using intermittent dosing schedules or alternative rapalogs that may enable more selective inhibition of mTORC1. However, the optimal dosing schedules and the long-term efficacy of such interventions in humans are unknown. Here, we highlight ongoing or upcoming clinical trials that will address outstanding questions regarding the safety, pharmacokinetics, pharmacodynamics, and efficacy of rapamycin and rapalogs on several clinically oriented outcomes. Results from these early phase studies will help guide the design of phase 3 clinical trials to determine whether rapamycin can be used safely to inhibit mTORC1 for the treatment and prevention of age-related diseases in humans.
Collapse
Affiliation(s)
- Adam R Konopka
- Division of Geriatrics, Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA.
- Division of Geriatrics and Gerontology, Department of Medicine, Geriatric Research Education and Clinical Center (GRECC), William S. Middleton Memorial Veterans Hospital, University of Wisconsin-Madison, 2500 Overlook Terrace, Madison, WI, 53705, USA.
| | - Dudley W Lamming
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
- Division of Endocrinology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| |
Collapse
|
22
|
Bang J, Jun M, Lee S, Moon H, Ro SW. Targeting EGFR/PI3K/AKT/mTOR Signaling in Hepatocellular Carcinoma. Pharmaceutics 2023; 15:2130. [PMID: 37631344 PMCID: PMC10458925 DOI: 10.3390/pharmaceutics15082130] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) poses a significant global health concern, with its incidence steadily increasing. The development of HCC is a multifaceted, multi-step process involving alterations in various signaling cascades. In recent years, significant progress has been made in understanding the molecular signaling pathways that play central roles in hepatocarcinogenesis. In particular, the EGFR/PI3K/AKT/mTOR signaling pathway in HCC has garnered renewed attention from both basic and clinical researchers. Preclinical studies in vitro and in vivo have shown the effectiveness of targeting the key components of this signaling pathway in human HCC cells. Thus, targeting these signaling pathways with small molecule inhibitors holds promise as a potential therapeutic option for patients with HCC. In this review, we explore recent advancements in understanding the role of the EGFR/PI3K/AKT/mTOR signaling pathway in HCC and assess the effectiveness of targeting this signaling cascade as a potential strategy for HCC therapy based on preclinical studies.
Collapse
Affiliation(s)
| | | | | | | | - Simon Weonsang Ro
- Department of Genetics and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Republic of Korea; (J.B.); (M.J.); (S.L.); (H.M.)
| |
Collapse
|
23
|
Melanis K, Stefanou MI, Themistoklis KM, Papasilekas T. mTOR pathway - a potential therapeutic target in stroke. Ther Adv Neurol Disord 2023; 16:17562864231187770. [PMID: 37576547 PMCID: PMC10413897 DOI: 10.1177/17562864231187770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 06/27/2023] [Indexed: 08/15/2023] Open
Abstract
Stroke is ranked as the second leading cause of death worldwide and a major cause of long-term disability. A potential therapeutic target that could offer favorable outcomes in stroke is the mammalian target of rapamycin (mTOR) pathway. mTOR is a serine/threonine kinase that composes two protein complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2), and is regulated by other proteins such as the tuberous sclerosis complex. Through a significant number of signaling pathways, the mTOR pathway can modulate the processes of post-ischemic inflammation and autophagy, both of which play an integral part in the pathophysiological cascade of stroke. Promoting or inhibiting such processes under ischemic conditions can lead to apoptosis or instead sustained viability of neurons. The purpose of this review is to examine the pathophysiological role of mTOR in acute ischemic stroke, while highlighting promising neuroprotective agents such as hamartin for therapeutic modulation of this pathway. The therapeutic potential of mTOR is also discussed, with emphasis on implicated molecules and pathway steps that warrant further elucidation in order for their neuroprotective properties to be efficiently tested in future clinical trials.
Collapse
Affiliation(s)
- Konstantinos Melanis
- Second Department of Neurology, School of Medicine and ‘Attikon’ University Hospital, National and Kapodistrian University of Athens, Rimini 1 Chaidari, Athens 12462, Greece
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Maria-Ioanna Stefanou
- Second Department of Neurology, School of Medicine and ‘Attikon’ University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos M. Themistoklis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Department of Neurosurgery, ‘Korgialenio, Benakio, H.R.C’. General Hospital of Athens, Athens, Greece
| | - Themistoklis Papasilekas
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Department of Neurosurgery, ‘Korgialenio, Benakio, H.R.C’. General Hospital of Athens, Athens, Greece
| |
Collapse
|
24
|
Mir SA, Dar A, Alshehri SA, Wahab S, Hamid L, Almoyad MAA, Ali T, Bader GN. Exploring the mTOR Signalling Pathway and Its Inhibitory Scope in Cancer. Pharmaceuticals (Basel) 2023; 16:1004. [PMID: 37513916 PMCID: PMC10384750 DOI: 10.3390/ph16071004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Mechanistic target of rapamycin (mTOR) is a protein kinase that regulates cellular growth, development, survival, and metabolism through integration of diverse extracellular and intracellular stimuli. Additionally, mTOR is involved in interplay of signalling pathways that regulate apoptosis and autophagy. In cells, mTOR is assembled into two complexes, mTORC1 and mTORC2. While mTORC1 is regulated by energy consumption, protein intake, mechanical stimuli, and growth factors, mTORC2 is regulated by insulin-like growth factor-1 receptor (IGF-1R), and epidermal growth factor receptor (EGFR). mTOR signalling pathways are considered the hallmark in cancer due to their dysregulation in approximately 70% of cancers. Through downstream regulators, ribosomal protein S6 kinase β-1 (S6K1) and eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1), mTORC1 influences various anabolic and catabolic processes in the cell. In recent years, several mTOR inhibitors have been developed with the aim of treating different cancers. In this review, we will explore the current developments in the mTOR signalling pathway and its importance for being targeted by various inhibitors in anti-cancer therapeutics.
Collapse
Affiliation(s)
- Suhail Ahmad Mir
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Ashraf Dar
- Department of Biochemistry, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Saad Ali Alshehri
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Laraibah Hamid
- Department of Zoology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Mohammad Ali Abdullah Almoyad
- Department of Basic Medical Sciences, College of Applied Medical Sciences in Khamis Mushyt, King Khalid University, Abha 61412, Saudi Arabia
| | - Tabasum Ali
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Ghulam Nabi Bader
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| |
Collapse
|
25
|
Nikolka F, Karagöz MS, Nassef MZ, Hiller K, Steinert M, Cordes T. The Virulence Factor Macrophage Infectivity Potentiator (Mip) Influences Branched-Chain Amino Acid Metabolism and Pathogenicity of Legionella pneumophila. Metabolites 2023; 13:834. [PMID: 37512541 PMCID: PMC10386555 DOI: 10.3390/metabo13070834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/15/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Legionella pneumophila (Lp) is a common etiological agent of bacterial pneumonia that causes Legionnaires' disease (LD). The bacterial membrane-associated virulence factor macrophage infectivity potentiator (Mip) exhibits peptidyl-prolyl-cis/trans-isomerase (PPIase) activity and contributes to the intra- and extracellular pathogenicity of Lp. Though Mip influences disease outcome, little is known about the metabolic consequences of altered Mip activity during infections. Here, we established a metabolic workflow and applied mass spectrometry approaches to decipher how Mip activity influences metabolism and pathogenicity. Impaired Mip activity in genetically engineered Lp strains decreases intracellular replication in cellular infection assays, confirming the contribution of Mip for Lp pathogenicity. We observed that genetic and chemical alteration of Mip using the PPIase inhibitors rapamycin and FK506 induces metabolic reprogramming in Lp, specifically branched-chain amino acid (BCAA) metabolism. Rapamycin also inhibits PPIase activity of mammalian FK506 binding proteins, and we observed that rapamycin induces a distinct metabolic signature in human macrophages compared to bacteria, suggesting potential involvement of Mip in normal bacteria and in infection. Our metabolic studies link Mip to alterations in BCAA metabolism and may help to decipher novel disease mechanisms associated with LD.
Collapse
Affiliation(s)
- Fabian Nikolka
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Mustafa Safa Karagöz
- Institut für Mikrobiologie, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Mohamed Zakaria Nassef
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Karsten Hiller
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Michael Steinert
- Institut für Mikrobiologie, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Thekla Cordes
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, 38106 Braunschweig, Germany
- Research Group Cellular Metabolism in Infection, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| |
Collapse
|
26
|
Mannick JB, Lamming DW. Targeting the biology of aging with mTOR inhibitors. NATURE AGING 2023; 3:642-660. [PMID: 37142830 PMCID: PMC10330278 DOI: 10.1038/s43587-023-00416-y] [Citation(s) in RCA: 139] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/07/2023] [Indexed: 05/06/2023]
Abstract
Inhibition of the protein kinase mechanistic target of rapamycin (mTOR) with the Food and Drug Administration (FDA)-approved therapeutic rapamycin promotes health and longevity in diverse model organisms. More recently, specific inhibition of mTORC1 to treat aging-related conditions has become the goal of basic and translational scientists, clinicians and biotechnology companies. Here, we review the effects of rapamycin on the longevity and survival of both wild-type mice and mouse models of human diseases. We discuss recent clinical trials that have explored whether existing mTOR inhibitors can safely prevent, delay or treat multiple diseases of aging. Finally, we discuss how new molecules may provide routes to the safer and more selective inhibition of mTOR complex 1 (mTORC1) in the decade ahead. We conclude by discussing what work remains to be done and the questions that will need to be addressed to make mTOR inhibitors part of the standard of care for diseases of aging.
Collapse
Affiliation(s)
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
27
|
Chen W, Zhang J, Zhang Y, Zhang J, Li W, Sha L, Xia Y, Chen L. Pharmacological modulation of autophagy for epilepsy therapy: opportunities and obstacles. Drug Discov Today 2023; 28:103600. [PMID: 37119963 DOI: 10.1016/j.drudis.2023.103600] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/04/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
Epilepsy (EP) is a long-term neurological disorder characterized by neuroinflammatory responses, neuronal apoptosis, imbalance between excitatory and inhibitory neurotransmitters, and oxidative stress in the brain. Autophagy is a process of cellular self-regulation to maintain normal physiological functions. Emerging evidence suggests that dysfunctional autophagy pathways in neurons are a potential mechanism underlying EP pathogenesis. In this review, we discuss current evidence and molecular mechanisms of autophagy dysregulation in EP and the probable function of autophagy in epileptogenesis. Moreover, we review the autophagy modulators reported for the treatment of EP models, and discuss the obstacles to, and opportunities for, the potential therapeutic applications of novel autophagy modulators as EP therapies. Teaser: Defective autophagy affects the onset and progression of epilepsy, and many anti-epileptic drugs have autophagy-modulating effects.
Collapse
Affiliation(s)
- Wenqing Chen
- Department of Neurology, Joint Research Institution of Altitude Health and State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jifa Zhang
- Department of Neurology, Joint Research Institution of Altitude Health and State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yiwen Zhang
- Department of Neurology, Joint Research Institution of Altitude Health and State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxian Zhang
- Department of Neurology, Joint Research Institution of Altitude Health and State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wanling Li
- Department of Neurology, Joint Research Institution of Altitude Health and State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Leihao Sha
- Department of Neurology, Joint Research Institution of Altitude Health and State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yilin Xia
- Department of Neurology, Joint Research Institution of Altitude Health and State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lei Chen
- Department of Neurology, Joint Research Institution of Altitude Health and State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
28
|
Mishra E, Thakur MK. Mitophagy: A promising therapeutic target for neuroprotection during ageing and age-related diseases. Br J Pharmacol 2023; 180:1542-1561. [PMID: 36792062 DOI: 10.1111/bph.16062] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/17/2022] [Accepted: 02/04/2023] [Indexed: 02/17/2023] Open
Abstract
Mitochondria and mitochondria-mediated signalling pathways are known to control synaptic signalling, as well as long-lasting changes in neuronal structure and function. Mitochondrial impairment is linked to synaptic dysfunction in normal ageing and age-associated neurodegenerative ailments, including Parkinson's disease (PD) and Alzheimer's disease (AD). Both proteolysis and mitophagy perform a major role in neuroprotection, by maintaining a healthy mitochondrial population during ageing. Mitophagy, a highly evolutionarily conserved cellular process, helps in the clearance of damaged mitochondria and thereby maintains the mitochondrial and metabolic balance, energy supply, neuronal survival and neuronal health. Besides the maintenance of brain homeostasis, hippocampal mitophagy also helps in synapse formation, axonal development, dopamine release and long-term depression. In contrast, defective mitophagy contributes to ageing and age-related neurodegeneration by promoting the accumulation of damaged mitochondria leading to cellular dysfunction. Exercise, stress management, maintaining healthy mitochondrial dynamics and administering natural or synthetic pharmacological compounds are some of the strategies used for neuroprotection during ageing and age-related neurological diseases. The current review discusses the impact of defective mitophagy in ageing and age-associated neurodegenerative conditions, the underlying molecular pathways and potential therapies based on recently elucidated mitophagy-inducing strategies.
Collapse
Affiliation(s)
- Ela Mishra
- Biochemistry and Molecular Biology Laboratory, Centre of Advanced Study, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Mahendra Kumar Thakur
- Biochemistry and Molecular Biology Laboratory, Centre of Advanced Study, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
29
|
Huynh C, Ryu J, Lee J, Inoki A, Inoki K. Nutrient-sensing mTORC1 and AMPK pathways in chronic kidney diseases. Nat Rev Nephrol 2023; 19:102-122. [PMID: 36434160 DOI: 10.1038/s41581-022-00648-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2022] [Indexed: 11/27/2022]
Abstract
Nutrients such as glucose, amino acids and lipids are fundamental sources for the maintenance of essential cellular processes and homeostasis in all organisms. The nutrient-sensing kinases mechanistic target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK) are expressed in many cell types and have key roles in the control of cell growth, proliferation, differentiation, metabolism and survival, ultimately contributing to the physiological development and functions of various organs, including the kidney. Dysregulation of these kinases leads to many human health problems, including cancer, neurodegenerative diseases, metabolic disorders and kidney diseases. In the kidney, physiological levels of mTOR and AMPK activity are required to support kidney cell growth and differentiation and to maintain kidney cell integrity and normal nephron function, including transport of electrolytes, water and glucose. mTOR forms two functional multi-protein kinase complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). Hyperactivation of mTORC1 leads to podocyte and tubular cell dysfunction and vulnerability to injury, thereby contributing to the development of chronic kidney diseases, including diabetic kidney disease, obesity-related kidney disease and polycystic kidney disease. Emerging evidence suggests that targeting mTOR and/or AMPK could be an effective therapeutic approach to controlling or preventing these diseases.
Collapse
Affiliation(s)
- Christopher Huynh
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jaewhee Ryu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Jooho Lee
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Ayaka Inoki
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ken Inoki
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
30
|
Alcohol, Resistance Exercise, and mTOR Pathway Signaling: An Evidence-Based Narrative Review. Biomolecules 2022; 13:biom13010002. [PMID: 36671386 PMCID: PMC9855961 DOI: 10.3390/biom13010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Skeletal muscle mass is determined by the balance between muscle protein synthesis (MPS) and degradation. Several intracellular signaling pathways control this balance, including mammalian/mechanistic target of rapamycin (mTOR) complex 1 (C1). Activation of this pathway in skeletal muscle is controlled, in part, by nutrition (e.g., amino acids and alcohol) and exercise (e.g., resistance exercise (RE)). Acute and chronic alcohol use can result in myopathy, and evidence points to altered mTORC1 signaling as a contributing factor. Moreover, individuals who regularly perform RE or vigorous aerobic exercise are more likely to use alcohol frequently and in larger quantities. Therefore, alcohol may antagonize beneficial exercise-induced increases in mTORC1 pathway signaling. The purpose of this review is to synthesize up-to-date evidence regarding mTORC1 pathway signaling and the independent and combined effects of acute alcohol and RE on activation of the mTORC1 pathway. Overall, acute alcohol impairs and RE activates mTORC1 pathway signaling; however, effects vary by model, sex, feeding, training status, quantity, etc., such that anabolic stimuli may partially rescue the alcohol-mediated pathway inhibition. Likewise, the impact of alcohol on RE-induced mTORC1 pathway signaling appears dependent on several factors including nutrition and sex, although many questions remain unanswered. Accordingly, we identify gaps in the literature that remain to be elucidated to fully understand the independent and combined impacts of alcohol and RE on mTORC1 pathway signaling.
Collapse
|
31
|
Chrienova Z, Rysanek D, Oleksak P, Stary D, Bajda M, Reinis M, Mikyskova R, Novotny O, Andrys R, Skarka A, Vasicova P, Novak J, Valis M, Kuca K, Hodny Z, Nepovimova E. Discovery of small molecule mechanistic target of rapamycin inhibitors as anti-aging and anti-cancer therapeutics. Front Aging Neurosci 2022; 14:1048260. [PMID: 36561137 PMCID: PMC9767416 DOI: 10.3389/fnagi.2022.1048260] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022] Open
Abstract
To date, the most studied drug in anti-aging research is the mTOR inhibitor - rapamycin. Despite its almost perfect anti-aging profile, rapamycin exerts one significant limitation - inappropriate physicochemical properties. Therefore, we have decided to utilize virtual high-throughput screening and fragment-based design in search of novel mTOR inhibiting scaffolds with suitable physicochemical parameters. Seven lead compounds were selected from the list of obtained hits that were commercially available (4, 5, and 7) or their synthesis was feasible (1, 2, 3, and 6) and evaluated in vitro and subsequently in vivo. Of all these substances, only compound 3 demonstrated a significant cytotoxic, senolytic, and senomorphic effect on normal and cancerous cells. Further, it has been confirmed that compound 3 is a direct mTORC1 inhibitor. Last but not least, compound 3 was found to exhibit anti-SASP activity concurrently being relatively safe within the test of in vivo tolerability. All these outstanding results highlight compound 3 as a scaffold worthy of further investigation.
Collapse
Affiliation(s)
- Zofia Chrienova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - David Rysanek
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Patrik Oleksak
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Dorota Stary
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland,Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, Kraków, Poland
| | - Marek Bajda
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Milan Reinis
- Laboratory of Immunological and Tumor Models, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Romana Mikyskova
- Laboratory of Immunological and Tumor Models, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Ondrej Novotny
- Laboratory of Immunological and Tumor Models, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Rudolf Andrys
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Adam Skarka
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Pavla Vasicova
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Josef Novak
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Martin Valis
- Department of Neurology, University Hospital Hradec Kralove, Hradec Králové, Czechia,Faculty of Medicine in Hradec Králové, Charles University in Prague, Hradec Králové, Czechia
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Zdenek Hodny
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia,Zdenek Hodny,
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia,*Correspondence: Eugenie Nepovimova,
| |
Collapse
|
32
|
Manni W, Min W. Signaling pathways in the regulation of cancer stem cells and associated targeted therapy. MedComm (Beijing) 2022; 3:e176. [PMID: 36226253 PMCID: PMC9534377 DOI: 10.1002/mco2.176] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/07/2022] Open
Abstract
Cancer stem cells (CSCs) are defined as a subpopulation of malignant tumor cells with selective capacities for tumor initiation, self-renewal, metastasis, and unlimited growth into bulks, which are believed as a major cause of progressive tumor phenotypes, including recurrence, metastasis, and treatment failure. A number of signaling pathways are involved in the maintenance of stem cell properties and survival of CSCs, including well-established intrinsic pathways, such as the Notch, Wnt, and Hedgehog signaling, and extrinsic pathways, such as the vascular microenvironment and tumor-associated immune cells. There is also intricate crosstalk between these signal cascades and other oncogenic pathways. Thus, targeting pathway molecules that regulate CSCs provides a new option for the treatment of therapy-resistant or -refractory tumors. These treatments include small molecule inhibitors, monoclonal antibodies that target key signaling in CSCs, as well as CSC-directed immunotherapies that harness the immune systems to target CSCs. This review aims to provide an overview of the regulating networks and their immune interactions involved in CSC development. We also address the update on the development of CSC-directed therapeutics, with a special focus on those with application approval or under clinical evaluation.
Collapse
Affiliation(s)
- Wang Manni
- Department of Biotherapy, Cancer Center, West China HospitalSichuan UniversityChengduP. R. China
| | - Wu Min
- Department of Biomedical Sciences, School of Medicine and Health SciencesUniversity of North DakotaGrand ForksNorth DakotaUSA
| |
Collapse
|
33
|
Morawe MP, Liao F, Amberg W, van Bergeijk J, Chang R, Gulino M, Hamilton C, Hoft C, Lumpkin C, Mastis B, McGlame E, Nuber J, Plaas C, Ravikumar B, Roy K, Schanzenbächer M, Tierno J, Lakics V, Dellovade T, Townsend M. Pharmacological mTOR-inhibition facilitates clearance of AD-related tau aggregates in the mouse brain. Eur J Pharmacol 2022; 934:175301. [DOI: 10.1016/j.ejphar.2022.175301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/03/2022]
|
34
|
mTOR: A Potential New Target in Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2022; 23:ijms23169196. [PMID: 36012464 PMCID: PMC9409235 DOI: 10.3390/ijms23169196] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
The global prevalence of nonalcoholic fatty liver disease (NAFLD) continues to rise, yet effective treatments are lacking due to the complex pathogenesis of this disease. Although recent research has provided evidence for the “multiple strikes” theory, the classic “two strikes” theory has not been overturned. Therefore, there is a crucial need to identify multiple targets in NAFLD pathogenesis for the development of diagnostic markers and targeted therapeutics. Since its discovery, the mechanistic target of rapamycin (mTOR) has been recognized as the central node of a network that regulates cell growth and development and is closely related to liver lipid metabolism and other processes. This paper will explore the mechanisms by which mTOR regulates lipid metabolism (SREBPs), insulin resistance (Foxo1, Lipin1), oxidative stress (PIG3, p53, JNK), intestinal microbiota (TLRs), autophagy, inflammation, genetic polymorphisms, and epigenetics in NAFLD. The specific influence of mTOR on NAFLD was hypothesized to be divided into micro regulation (the mechanism of mTOR’s influence on NAFLD factors) and macro mediation (the relationship between various influencing factors) to summarize the influence of mTOR on the developmental process of NAFLD, and prove the importance of mTOR as an influencing factor of NAFLD regarding multiple aspects. The effects of crosstalk between mTOR and its upstream regulators, Notch, Hedgehog, and Hippo, on the occurrence and development of NAFLD-associated hepatocellular carcinoma are also summarized. This analysis will hopefully support the development of diagnostic markers and new therapeutic targets in NAFLD.
Collapse
|
35
|
Stress- and metabolic responses of Candida albicans require Tor1 kinase N-terminal HEAT repeats. PLoS Pathog 2022; 18:e1010089. [PMID: 35687592 PMCID: PMC9223334 DOI: 10.1371/journal.ppat.1010089] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 06/23/2022] [Accepted: 05/12/2022] [Indexed: 11/19/2022] Open
Abstract
Whether to commit limited cellular resources toward growth and proliferation, or toward survival and stress responses, is an essential determination made by Target of Rapamycin Complex 1 (TORC1) for a eukaryotic cell in response to favorable or adverse conditions. Loss of TORC1 function is lethal. The TORC1 inhibitor rapamycin that targets the highly conserved Tor kinase domain kills fungal pathogens like Candida albicans, but is also severely toxic to human cells. The least conserved region of fungal and human Tor kinases are the N-terminal HEAT domains. We examined the role of the 8 most N-terminal HEAT repeats of C. albicans Tor1. We compared nutritional- and stress responses of cells that express a message for N-terminally truncated Tor1 from repressible tetO, with cells expressing wild type TOR1 from tetO or from the native promoter. Some but not all stress responses were significantly impaired by loss of Tor1 N-terminal HEAT repeats, including those to oxidative-, cell wall-, and heat stress; in contrast, plasma membrane stress and antifungal agents that disrupt plasma membrane function were tolerated by cells lacking this Tor1 region. Translation was inappropriately upregulated during oxidative stress in cells lacking N-terminal Tor1 HEAT repeats despite simultaneously elevated Gcn2 activity, while activation of the oxidative stress response MAP kinase Hog1 was weak. Conversely, these cells were unable to take advantage of favorable nutritional conditions by accelerating their growth. Consuming oxygen more slowly than cells containing wild type TOR1 alleles during growth in glucose, cells lacking N-terminal Tor1 HEAT repeats additionally were incapable of utilizing non-fermentable carbon sources. They were also hypersensitive to inhibitors of specific complexes within the respiratory electron transport chain, suggesting that inefficient ATP generation and a resulting dearth of nucleotide sugar building blocks for cell wall polysaccharides causes cell wall integrity defects in these mutants. Genome-wide expression analysis of cells lacking N-terminal HEAT repeats showed dysregulation of carbon metabolism, cell wall biosynthetic enzymes, translational machinery biosynthesis, oxidative stress responses, and hyphal- as well as white-opaque cell type-associated genes. Targeting fungal-specific Tor1 N-terminal HEAT repeats with small molecules might selectively abrogate fungal viability, especially when during infection multiple stresses are imposed by the host immune system. Whether growing harmlessly on our mucous membranes in competition with bacterial multitudes, or invading our tissues and bloodstream, the fungus Candida albicans must be capable of rapid growth when it finds abundant nutrients and favorable conditions. It must also be able to switch to stress- and survival mode when encountering host immune cells and when starving for nutrients. Tor1 kinase is the central regulator at the heart of these cellular decisions. As an essential protein, it is an attractive drug target. But the Tor1 kinase domain is very similar to its human counterpart, rendering its inhibitors like rapamycin toxic for humans. We identified a region of helical protein-protein interaction domains, the N-terminal HEAT repeats, as the least conserved part of C. albicans Tor1. Using genetic- and genome-wide expression analysis, we found that 8 N-terminal HEAT repeats are required for growth acceleration in nutrient-rich environments and for decreased translation in starvation- and stress conditions. This Tor1 region contributes to oxidative-, cell wall- and heat stress reponses, to hyphal growth and to respiration, but apparently not to plasma membrane stress endurance or fermentation. Small molecules that disrupt the protein-protein interactions mediated by this region could become fungal-selective inhibitors of Tor kinase.
Collapse
|
36
|
Pathak B, Maurya C, Faria MC, Alizada Z, Nandy S, Zhao S, Jamsheer K M, Srivastava V. Targeting TOR and SnRK1 Genes in Rice with CRISPR/Cas9. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11111453. [PMID: 35684226 PMCID: PMC9183148 DOI: 10.3390/plants11111453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 05/29/2023]
Abstract
Genome targeting with CRISPR/Cas9 is a popular method for introducing mutations and creating knock-out effects. However, limited information is currently available on the mutagenesis of essential genes. This study investigated the efficiency of CRISPR/Cas9 in targeting rice essential genes: the singleton TARGET OF RAPAMYCIN (OsTOR) and the three paralogs of the Sucrose non-fermenting-1 (SNF1)-related kinase 1 (OsSnRK1α), OsSnRK1αA, OsSnRK1αB and OsSnRK1αC. Strong activity of constitutively expressed CRISPR/Cas9 was effective in creating mutations in OsTOR and OsSnRK1α genes, but inducible CRISPR/Cas9 failed to generate detectable mutations. The rate of OsTOR mutagenesis was relatively lower and only the kinase domain of OsTOR could be targeted, while mutations in the HEAT region were unrecoverable. OsSnRK1α paralogs could be targeted at higher rates; however, sterility or early senescence was observed in >50% of the primary mutants. Additionally, OsSnRK1αB and OsSnRK1αC, which bear high sequence homologies, could be targeted simultaneously to generate double-mutants. Further, although limited types of mutations were found in the surviving mutants, the recovered lines displayed loss-of-function or knockdown tor or snrk1 phenotypes. Overall, our data show that mutations in these essential genes can be created by CRISPR/Cas9 to facilitate investigations on their roles in plant development and environmental response in rice.
Collapse
Affiliation(s)
- Bhuvan Pathak
- Department of Crop, Soil & Environmental Sciences, University of Arkansas System Division of Agriculture, Fayetteville, AR 72701, USA; (B.P.); (C.M.); (M.C.F.); (S.N.); (S.Z.)
| | - Chandan Maurya
- Department of Crop, Soil & Environmental Sciences, University of Arkansas System Division of Agriculture, Fayetteville, AR 72701, USA; (B.P.); (C.M.); (M.C.F.); (S.N.); (S.Z.)
| | - Maria C. Faria
- Department of Crop, Soil & Environmental Sciences, University of Arkansas System Division of Agriculture, Fayetteville, AR 72701, USA; (B.P.); (C.M.); (M.C.F.); (S.N.); (S.Z.)
| | - Zahra Alizada
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Soumen Nandy
- Department of Crop, Soil & Environmental Sciences, University of Arkansas System Division of Agriculture, Fayetteville, AR 72701, USA; (B.P.); (C.M.); (M.C.F.); (S.N.); (S.Z.)
| | - Shan Zhao
- Department of Crop, Soil & Environmental Sciences, University of Arkansas System Division of Agriculture, Fayetteville, AR 72701, USA; (B.P.); (C.M.); (M.C.F.); (S.N.); (S.Z.)
| | - Muhammed Jamsheer K
- Amity Institute of Genome Engineering, Amity University Uttar Pradesh, Noida 201313, India;
| | - Vibha Srivastava
- Department of Crop, Soil & Environmental Sciences, University of Arkansas System Division of Agriculture, Fayetteville, AR 72701, USA; (B.P.); (C.M.); (M.C.F.); (S.N.); (S.Z.)
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA;
| |
Collapse
|
37
|
Simcox J, Lamming DW. The central moTOR of metabolism. Dev Cell 2022; 57:691-706. [PMID: 35316619 PMCID: PMC9004513 DOI: 10.1016/j.devcel.2022.02.024] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/20/2022] [Accepted: 02/24/2022] [Indexed: 12/21/2022]
Abstract
The protein kinase mechanistic target of rapamycin (mTOR) functions as a central regulator of metabolism, integrating diverse nutritional and hormonal cues to control anabolic processes, organismal physiology, and even aging. This review discusses the current state of knowledge regarding the regulation of mTOR signaling and the metabolic regulation of the four macromolecular building blocks of the cell: carbohydrate, nucleic acid, lipid, and protein by mTOR. We review the role of mTOR in the control of organismal physiology and aging through its action in key tissues and discuss the potential for clinical translation of mTOR inhibition for the treatment and prevention of diseases of aging.
Collapse
Affiliation(s)
- Judith Simcox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
| | - Dudley W Lamming
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
38
|
Nowosad A, Besson A. Lysosomes at the Crossroads of Cell Metabolism, Cell Cycle, and Stemness. Int J Mol Sci 2022; 23:ijms23042290. [PMID: 35216401 PMCID: PMC8879101 DOI: 10.3390/ijms23042290] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 02/07/2023] Open
Abstract
Initially described as lytic bodies due to their degradative and recycling functions, lysosomes play a critical role in metabolic adaptation to nutrient availability. More recently, the contribution of lysosomal proteins to cell signaling has been established, and lysosomes have emerged as signaling hubs that regulate diverse cellular processes, including cell proliferation and cell fate. Deciphering these signaling pathways has revealed an extensive crosstalk between the lysosomal and cell cycle machineries that is only beginning to be understood. Recent studies also indicate that a number of lysosomal proteins are involved in the regulation of embryonic and adult stem cell fate and identity. In this review, we will focus on the role of the lysosome as a signaling platform with an emphasis on its function in integrating nutrient sensing with proliferation and cell cycle progression, as well as in stemness-related features, such as self-renewal and quiescence.
Collapse
Affiliation(s)
- Ada Nowosad
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France;
- Department of Oncology, KULeuven, Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, 3000 Leuven, Belgium
| | - Arnaud Besson
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France;
- Correspondence: ; Tel.: +33-561558486
| |
Collapse
|
39
|
Fidalgo da Silva E, Fong J, Roye-Azar A, Nadi A, Drouillard C, Pillon A, Porter LA. Beyond Protein Synthesis; The Multifaceted Roles of Tuberin in Cell Cycle Regulation. Front Cell Dev Biol 2022; 9:806521. [PMID: 35096832 PMCID: PMC8795880 DOI: 10.3389/fcell.2021.806521] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/16/2021] [Indexed: 12/13/2022] Open
Abstract
The ability of cells to sense diverse environmental signals, including nutrient availability and conditions of stress, is critical for both prokaryotes and eukaryotes to mount an appropriate physiological response. While there is a great deal known about the different biochemical pathways that can detect and relay information from the environment, how these signals are integrated to control progression through the cell cycle is still an expanding area of research. Over the past three decades the proteins Tuberin, Hamartin and TBC1D7 have emerged as a large protein complex called the Tuberous Sclerosis Complex. This complex can integrate a wide variety of environmental signals to control a host of cell biology events including protein synthesis, cell cycle, protein transport, cell adhesion, autophagy, and cell growth. Worldwide efforts have revealed many molecular pathways which alter Tuberin post-translationally to convey messages to these important pathways, with most of the focus being on the regulation over protein synthesis. Herein we review the literature supporting that the Tuberous Sclerosis Complex plays a critical role in integrating environmental signals with the core cell cycle machinery.
Collapse
Affiliation(s)
| | | | | | | | | | | | - L. A. Porter
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, Canada
| |
Collapse
|
40
|
Deng Z, Dong Y, Zhou X, Lu JH, Yue Z. Pharmacological modulation of autophagy for Alzheimer’s disease therapy: Opportunities and obstacles. Acta Pharm Sin B 2021; 12:1688-1706. [PMID: 35847516 PMCID: PMC9279633 DOI: 10.1016/j.apsb.2021.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/04/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is a prevalent and deleterious neurodegenerative disorder characterized by an irreversible and progressive impairment of cognitive abilities as well as the formation of amyloid β (Aβ) plaques and neurofibrillary tangles (NFTs) in the brain. By far, the precise mechanisms of AD are not fully understood and no interventions are available to effectively slow down progression of the disease. Autophagy is a conserved degradation pathway that is crucial to maintain cellular homeostasis by targeting damaged organelles, pathogens, and disease-prone protein aggregates to lysosome for degradation. Emerging evidence suggests dysfunctional autophagy clearance pathway as a potential cellular mechanism underlying the pathogenesis of AD in affected neurons. Here we summarize the current evidence for autophagy dysfunction in the pathophysiology of AD and discuss the role of autophagy in the regulation of AD-related protein degradation and neuroinflammation in neurons and glial cells. Finally, we review the autophagy modulators reported in the treatment of AD models and discuss the obstacles and opportunities for potential clinical application of the novel autophagy activators for AD therapy.
Collapse
Affiliation(s)
- Zhiqiang Deng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China
| | - Yu Dong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China
| | - Xiaoting Zhou
- Department of Neurology, the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China
- Corresponding authors.
| | - Zhenyu Yue
- Department of Neurology, the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Corresponding authors.
| |
Collapse
|
41
|
Granatiero V, Sayles NM, Savino AM, Konrad C, Kharas MG, Kawamata H, Manfredi G. Modulation of the IGF1R-MTOR pathway attenuates motor neuron toxicity of human ALS SOD1 G93A astrocytes. Autophagy 2021; 17:4029-4042. [PMID: 33749521 PMCID: PMC8726657 DOI: 10.1080/15548627.2021.1899682] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
ALS (amyotrophic lateral sclerosis), the most common motor neuron disease, causes muscle denervation and rapidly fatal paralysis. While motor neurons are the most affected cells in ALS, studies on the pathophysiology of the disease have highlighted the importance of non-cell autonomous mechanisms, which implicate astrocytes and other glial cells. In ALS, subsets of reactive astrocytes lose their physiological functions and become toxic for motor neurons, thereby contributing to disease pathogenesis. Evidence of astrocyte contribution to disease pathogenesis are well established in cellular and animal models of familial ALS linked to mutant SOD1, where astrocytes promote motor neuron cell death. The mechanism underlying astrocytes reactivity in conditions of CNS injury have been shown to involve the MTOR pathway. However, the role of this conserved metabolic signaling pathway, and the potential therapeutic effects of its modulation, have not been investigated in ALS astrocytes. Here, we show elevated activation of the MTOR pathway in human-derived astrocytes harboring mutant SOD1, which results in inhibition of macroautophagy/autophagy, increased cell proliferation, and enhanced astrocyte reactivity. We demonstrate that MTOR pathway activation in mutant SOD1 astrocytes is due to post-transcriptional upregulation of the IGF1R (insulin like growth factor 1 receptor), an upstream positive modulator of the MTOR pathway. Importantly, inhibition of the IGF1R-MTOR pathway decreases cell proliferation and reactivity of mutant SOD1 astrocytes, and attenuates their toxicity to motor neurons. These results suggest that modulation of astrocytic IGF1R-MTOR pathway could be a viable therapeutic strategy in SOD1 ALS and potentially other neurological diseases.Abbreviations: ACM: astrocyte conditioned medium; AKT: AKT serine/threonine kinase; ALS: amyotrophic lateral sclerosis; BrdU: thymidine analog 5-bromo-2'-deoxyuridine; CNS: central nervous system; EIF4EBP1/4EBP1: eukaryotic translation initiation factor 4E binding protein 1; GFAP: glial fibrillary acidic protein; IGF1R: insulin like growth factor 1 receptor; INSR: insulin receptor; iPSA: iPSC-derived astrocytes; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta;MTOR: mechanistic target of rapamycin kinase; NES: nestin; PPK1: 3-phosphoinositide dependent protein kinase 1; PI: propidium iodide; PPP: picropodophyllotoxin; PTEN: phosphatase and tensin homolog; S100B/S100β: S100 calcium binding protein B; SLC1A3/ EAAT1: solute carrier family 1 member 3; SMI-32: antibody to nonphosphorylated NEFH; SOD1: superoxide dismutase 1; TUBB3: tubulin beta 3 class III; ULK1: unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Veronica Granatiero
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA
| | - Nicole M. Sayles
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA
| | - Angela M. Savino
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Csaba Konrad
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA
| | - Michael G. Kharas
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Hibiki Kawamata
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA
| | - Giovanni Manfredi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
42
|
Golgi requires a new casting in the screenplay of mucopolysaccharidosis II cytopathology. Biol Futur 2021; 73:31-42. [PMID: 34837645 DOI: 10.1007/s42977-021-00107-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/12/2021] [Indexed: 10/19/2022]
Abstract
Lysosome (L), a hydrolytic compartment of the endo-lysosomal system (ELS), plays a central role in the metabolic regulation of eukaryotic cells. Furthermore, it has a central role in the cytopathology of several diseases, primarily in lysosomal storage diseases (LSDs). Mucopolysaccharidosis II (MPS II, Hunter disease) is a rare LSD caused by idunorate-2-sulphatase (IDS) enzyme deficiency. To provide a new platform for drug development and clarifying the background of the clinically observed cytopathology, we established a human in vitro model, which recapitulates all cellular hallmarks of the disease. Some of our results query the traditional concept by which the storage vacuoles originate from the endosomal system and suggest a new concept, in which endoplasmic reticulum-Golgi intermediate compartment (ERGIC) and RAB2/LAMP positive Golgi (G) vesicles play an initiative role in the vesicle formation. In this hypothesis, Golgi is not only an indirectly affected organelle but enforced to be the main support of vacuole formation. The purposes of this minireview are to give a simple guide for understanding the main relationships in ELS, to present the storage vacuoles and their relation to ELS compartments, to recommend an alternative model for vacuole formation, and to place the Golgi in spotlight of MPS II cytopathology.
Collapse
|
43
|
Baraldo M, Nogara L, Dumitras GA, Tchampda Dondjang AH, Geremia A, Scalabrin M, Türk C, Telkamp F, Zentilin L, Giacca M, Krüger M, Blaauw B. Raptor is critical for increasing the mitochondrial proteome and skeletal muscle force during hypertrophy. FASEB J 2021; 35:e22031. [PMID: 34767636 DOI: 10.1096/fj.202101054rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/11/2021] [Accepted: 10/22/2021] [Indexed: 12/16/2022]
Abstract
Loss of skeletal muscle mass and force is of critical importance in numerous pathologies, like age-related sarcopenia or cancer. It has been shown that the Akt-mTORC1 pathway is critical for stimulating adult muscle mass and function, however, it is unknown if mTORC1 is the only mediator downstream of Akt and which intracellular processes are required for functional muscle growth. Here, we show that loss of Raptor reduces muscle hypertrophy after Akt activation and completely prevents increases in muscle force. Interestingly, the residual hypertrophy after Raptor deletion can be completely prevented by administration of the mTORC1 inhibitor rapamycin. Using a quantitative proteomics approach we find that loss of Raptor affects the increases in mitochondrial proteins, while rapamycin mainly affects ribosomal proteins. Taken together, these results suggest that mTORC1 is the key mediator of Akt-dependent muscle growth and its regulation of the mitochondrial proteome is critical for increasing muscle force.
Collapse
Affiliation(s)
- Martina Baraldo
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Leonardo Nogara
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | | | - Alessia Geremia
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Marco Scalabrin
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Clara Türk
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Frederik Telkamp
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Lorena Zentilin
- AAV Vector Unit, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Mauro Giacca
- School of Cardiovascular Medicine & Sciences, King's College London, British Heart Foundation Centre of Research Excellence, London, UK
| | - Marcus Krüger
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Bert Blaauw
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
44
|
Chao CC, Shen PW, Tzeng TY, Kung HJ, Tsai TF, Wong YH. Human iPSC-Derived Neurons as A Platform for Deciphering the Mechanisms behind Brain Aging. Biomedicines 2021; 9:1635. [PMID: 34829864 PMCID: PMC8615703 DOI: 10.3390/biomedicines9111635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/21/2022] Open
Abstract
With an increased life expectancy among humans, aging has recently emerged as a major focus in biomedical research. The lack of in vitro aging models-especially for neurological disorders, where access to human brain tissues is limited-has hampered the progress in studies on human brain aging and various age-associated neurodegenerative diseases at the cellular and molecular level. In this review, we provide an overview of age-related changes in the transcriptome, in signaling pathways, and in relation to epigenetic factors that occur in senescent neurons. Moreover, we explore the current cell models used to study neuronal aging in vitro, including immortalized cell lines, primary neuronal culture, neurons directly converted from fibroblasts (Fib-iNs), and iPSC-derived neurons (iPSC-iNs); we also discuss the advantages and limitations of these models. In addition, the key phenotypes associated with cellular senescence that have been observed by these models are compared. Finally, we focus on the potential of combining human iPSC-iNs with genome editing technology in order to further our understanding of brain aging and neurodegenerative diseases, and discuss the future directions and challenges in the field.
Collapse
Affiliation(s)
- Chuan-Chuan Chao
- Aging and Health Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-C.C.); (T.-F.T.)
- Department of Neurology, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Po-Wen Shen
- Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei 112, Taiwan;
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Tsai-Yu Tzeng
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Hsing-Jien Kung
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli 350, Taiwan;
- Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Biochemistry and Molecular Medicine, Comprehensive Cancer Center, University of California at Davis, Sacramento, CA 95817, USA
| | - Ting-Fen Tsai
- Aging and Health Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-C.C.); (T.-F.T.)
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli 350, Taiwan;
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yu-Hui Wong
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| |
Collapse
|
45
|
Rehbein U, Prentzell MT, Cadena Sandoval M, Heberle AM, Henske EP, Opitz CA, Thedieck K. The TSC Complex-mTORC1 Axis: From Lysosomes to Stress Granules and Back. Front Cell Dev Biol 2021; 9:751892. [PMID: 34778262 PMCID: PMC8586448 DOI: 10.3389/fcell.2021.751892] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022] Open
Abstract
The tuberous sclerosis protein complex (TSC complex) is a key integrator of metabolic signals and cellular stress. In response to nutrient shortage and stresses, the TSC complex inhibits the mechanistic target of rapamycin complex 1 (mTORC1) at the lysosomes. mTORC1 is also inhibited by stress granules (SGs), RNA-protein assemblies that dissociate mTORC1. The mechanisms of lysosome and SG recruitment of mTORC1 are well studied. In contrast, molecular details on lysosomal recruitment of the TSC complex have emerged only recently. The TSC complex subunit 1 (TSC1) binds lysosomes via phosphatidylinositol-3,5-bisphosphate [PI(3,5)P2]. The SG assembly factors 1 and 2 (G3BP1/2) have an unexpected lysosomal function in recruiting TSC2 when SGs are absent. In addition, high density lipoprotein binding protein (HDLBP, also named Vigilin) recruits TSC2 to SGs under stress. In this mini-review, we integrate the molecular mechanisms of lysosome and SG recruitment of the TSC complex. We discuss their interplay in the context of cell proliferation and migration in cancer and in the clinical manifestations of tuberous sclerosis complex disease (TSC) and lymphangioleiomyomatosis (LAM).
Collapse
Affiliation(s)
- Ulrike Rehbein
- Laboratory for Metabolic Signaling, Institute of Biochemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Mirja Tamara Prentzell
- Brain Cancer Metabolism Group, German Consortium of Translational Cancer Research (DKTK) & German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Bioscience, Heidelberg University, Heidelberg, Germany
| | - Marti Cadena Sandoval
- Laboratory for Metabolic Signaling, Institute of Biochemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
- Section Systems Medicine of Metabolism and Signaling, Department of Pediatrics, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Alexander Martin Heberle
- Laboratory for Metabolic Signaling, Institute of Biochemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
- Section Systems Medicine of Metabolism and Signaling, Department of Pediatrics, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Elizabeth P. Henske
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Christiane A. Opitz
- Brain Cancer Metabolism Group, German Consortium of Translational Cancer Research (DKTK) & German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Kathrin Thedieck
- Laboratory for Metabolic Signaling, Institute of Biochemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
- Section Systems Medicine of Metabolism and Signaling, Department of Pediatrics, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
- Department for Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|
46
|
Pungsrinont T, Kallenbach J, Baniahmad A. Role of PI3K-AKT-mTOR Pathway as a Pro-Survival Signaling and Resistance-Mediating Mechanism to Therapy of Prostate Cancer. Int J Mol Sci 2021; 22:11088. [PMID: 34681745 PMCID: PMC8538152 DOI: 10.3390/ijms222011088] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/27/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
Androgen deprivation therapy (ADT) and androgen receptor (AR)-targeted therapy are the gold standard options for treating prostate cancer (PCa). These are initially effective, as localized and the early stage of metastatic disease are androgen- and castration-sensitive. The tumor strongly relies on systemic/circulating androgens for activating AR signaling to stimulate growth and progression. However, after a certain point, the tumor will eventually develop a resistant stage, where ADT and AR antagonists are no longer effective. Mechanistically, it seems that the tumor becomes more aggressive through adaptive responses, relies more on alternative activated pathways, and is less dependent on AR signaling. This includes hyperactivation of PI3K-AKT-mTOR pathway, which is a central signal that regulates cell pro-survival/anti-apoptotic pathways, thus, compensating the blockade of AR signaling. The PI3K-AKT-mTOR pathway is well-documented for its crosstalk between genomic and non-genomic AR signaling, as well as other signaling cascades. Such a reciprocal feedback loop makes it more complicated to target individual factor/signaling for treating PCa. Here, we highlight the role of PI3K-AKT-mTOR signaling as a resistance mechanism for PCa therapy and illustrate the transition of prostate tumor from AR signaling-dependent to PI3K-AKT-mTOR pathway-dependent. Moreover, therapeutic strategies with inhibitors targeting the PI3K-AKT-mTOR signal used in clinic and ongoing clinical trials are discussed.
Collapse
Affiliation(s)
| | | | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, 07747 Jena, Germany; (T.P.); (J.K.)
| |
Collapse
|
47
|
Moustafa-Kamal M, Kucharski TJ, El-Assaad W, Abbas YM, Gandin V, Nagar B, Pelletier J, Topisirovic I, Teodoro JG. The mTORC1/S6K/PDCD4/eIF4A Axis Determines Outcome of Mitotic Arrest. Cell Rep 2021; 33:108230. [PMID: 33027666 DOI: 10.1016/j.celrep.2020.108230] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/29/2020] [Accepted: 09/14/2020] [Indexed: 12/26/2022] Open
Abstract
mTOR is a serine/threonine kinase and a master regulator of cell growth and proliferation. Raptor, a scaffolding protein that recruits substrates to mTOR complex 1 (mTORC1), is known to be phosphorylated during mitosis, but the significance of this phosphorylation remains largely unknown. Here we show that raptor expression and mTORC1 activity are dramatically reduced in cells arrested in mitosis. Expression of a non-phosphorylatable raptor mutant reactivates mTORC1 and significantly reduces cytotoxicity of the mitotic poison Taxol. This effect is mediated via degradation of PDCD4, a tumor suppressor protein that inhibits eIF4A activity and is negatively regulated by the mTORC1/S6K pathway. Moreover, pharmacological inhibition of eIF4A is able to enhance the effects of Taxol and restore sensitivity in Taxol-resistant cancer cells. These findings indicate that the mTORC1/S6K/PDCD4/eIF4A axis has a pivotal role in the death versus slippage decision during mitotic arrest and may be exploited clinically to treat tumors resistant to anti-mitotic agents.
Collapse
Affiliation(s)
- Mohamed Moustafa-Kamal
- Goodman Cancer Research Center, McGill University, Montréal, QC, Canada; Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - Thomas J Kucharski
- Goodman Cancer Research Center, McGill University, Montréal, QC, Canada; Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - Wissal El-Assaad
- Goodman Cancer Research Center, McGill University, Montréal, QC, Canada
| | - Yazan M Abbas
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - Valentina Gandin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Bhushan Nagar
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - Jerry Pelletier
- Goodman Cancer Research Center, McGill University, Montréal, QC, Canada; Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - Ivan Topisirovic
- Department of Biochemistry, McGill University, Montréal, QC, Canada; Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, and Department of Oncology, McGill University, Montréal, QC, Canada.
| | - Jose G Teodoro
- Goodman Cancer Research Center, McGill University, Montréal, QC, Canada; Department of Biochemistry, McGill University, Montréal, QC, Canada.
| |
Collapse
|
48
|
Sechi S, Karimpour-Ghahnavieh A, Frappaolo A, Di Francesco L, Piergentili R, Schininà E, D’Avino PP, Giansanti MG. Identification of GOLPH3 Partners in Drosophila Unveils Potential Novel Roles in Tumorigenesis and Neural Disorders. Cells 2021; 10:cells10092336. [PMID: 34571985 PMCID: PMC8468827 DOI: 10.3390/cells10092336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 12/28/2022] Open
Abstract
Golgi phosphoprotein 3 (GOLPH3) is a highly conserved peripheral membrane protein localized to the Golgi apparatus and the cytosol. GOLPH3 binding to Golgi membranes depends on phosphatidylinositol 4-phosphate [PI(4)P] and regulates Golgi architecture and vesicle trafficking. GOLPH3 overexpression has been correlated with poor prognosis in several cancers, but the molecular mechanisms that link GOLPH3 to malignant transformation are poorly understood. We recently showed that PI(4)P-GOLPH3 couples membrane trafficking with contractile ring assembly during cytokinesis in dividing Drosophila spermatocytes. Here, we use affinity purification coupled with mass spectrometry (AP-MS) to identify the protein-protein interaction network (interactome) of Drosophila GOLPH3 in testes. Analysis of the GOLPH3 interactome revealed enrichment for proteins involved in vesicle-mediated trafficking, cell proliferation and cytoskeleton dynamics. In particular, we found that dGOLPH3 interacts with the Drosophila orthologs of Fragile X mental retardation protein and Ataxin-2, suggesting a potential role in the pathophysiology of disorders of the nervous system. Our findings suggest novel molecular targets associated with GOLPH3 that might be relevant for therapeutic intervention in cancers and other human diseases.
Collapse
Affiliation(s)
- Stefano Sechi
- Istituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (S.S.); (A.K.-G.); (A.F.); (R.P.)
| | - Angela Karimpour-Ghahnavieh
- Istituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (S.S.); (A.K.-G.); (A.F.); (R.P.)
| | - Anna Frappaolo
- Istituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (S.S.); (A.K.-G.); (A.F.); (R.P.)
| | - Laura Di Francesco
- Dipartimento di Scienze Biochimiche A. Rossi Fanelli, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (L.D.F.); (E.S.)
| | - Roberto Piergentili
- Istituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (S.S.); (A.K.-G.); (A.F.); (R.P.)
| | - Eugenia Schininà
- Dipartimento di Scienze Biochimiche A. Rossi Fanelli, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (L.D.F.); (E.S.)
| | - Pier Paolo D’Avino
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK;
| | - Maria Grazia Giansanti
- Istituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (S.S.); (A.K.-G.); (A.F.); (R.P.)
- Correspondence: ; Tel.: +39-064-991-2555
| |
Collapse
|
49
|
Crucitta S, Cucchiara F, Sciandra F, Cerbioni A, Diodati L, Rafaniello C, Capuano A, Fontana A, Fogli S, Danesi R, Re MD. Pharmacological Basis of Breast Cancer Resistance to Therapies - An Overview. Anticancer Agents Med Chem 2021; 22:760-774. [PMID: 34348634 DOI: 10.2174/1871520621666210804100547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/13/2021] [Accepted: 07/05/2021] [Indexed: 12/24/2022]
Abstract
Breast cancer (BC) is a molecular heterogeneous disease and often patients with similar clinico-pathological characteristics may display different response to treatment. Cellular processes, including uncontrolled cell-cycle, constitutive activation of signalling pathways parallel to or downstream of HER2 and alterations in DNA-repair mechanisms are the main features altered in the tumor. These cellular processes play significant roles in the emergence of therapy resistance. The introduction of target therapies as well as immunotherapies has improved the management of breast cancer. Furthermore, several therapeutic options are available to overcome resistance and physicians could overcome the challenge of resistant BC using combinatorial drug strategies and incorporating novel biomarkers. Molecular profiling promises to help in refine personalized treatment decisions and catalyse the development of further strategies when resistances inevitably occur. The search for biological explanations for treatment failure helps to clarify the phenomenon and allows to incorporate new biomarkers into clinical practice that can lead to adequate solutions to overcome it. This review provides a summary of genetic and molecular aspects of resistance mechanisms to available treatments for BC patients, and its clinical implications.
Collapse
Affiliation(s)
- Stefania Crucitta
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa. Italy
| | - Federico Cucchiara
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa. Italy
| | - Francesca Sciandra
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa. Italy
| | - Annalisa Cerbioni
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa. Italy
| | - Lucrezia Diodati
- Unit of Medical Oncology, Department of Translational Research and New Technologies in Medicine, University of Pisa. Italy
| | - Concetta Rafaniello
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples. Italy
| | - Annalisa Capuano
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples. Italy
| | - Andrea Fontana
- Unit of Medical Oncology, Department of Translational Research and New Technologies in Medicine, University of Pisa. Italy
| | - Stefano Fogli
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa. Italy
| | - Romano Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa. Italy
| | - Marzia Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa. Italy
| |
Collapse
|
50
|
Cayo A, Segovia R, Venturini W, Moore-Carrasco R, Valenzuela C, Brown N. mTOR Activity and Autophagy in Senescent Cells, a Complex Partnership. Int J Mol Sci 2021; 22:ijms22158149. [PMID: 34360912 PMCID: PMC8347619 DOI: 10.3390/ijms22158149] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022] Open
Abstract
Cellular senescence is a form of proliferative arrest triggered in response to a wide variety of stimuli and characterized by unique changes in cell morphology and function. Although unable to divide, senescent cells remain metabolically active and acquire the ability to produce and secrete bioactive molecules, some of which have recognized pro-inflammatory and/or pro-tumorigenic actions. As expected, this “senescence-associated secretory phenotype (SASP)” accounts for most of the non-cell-autonomous effects of senescent cells, which can be beneficial or detrimental for tissue homeostasis, depending on the context. It is now evident that many features linked to cellular senescence, including the SASP, reflect complex changes in the activities of mTOR and other metabolic pathways. Indeed, the available evidence indicates that mTOR-dependent signaling is required for the maintenance or implementation of different aspects of cellular senescence. Thus, depending on the cell type and biological context, inhibiting mTOR in cells undergoing senescence can reverse senescence, induce quiescence or cell death, or exacerbate some features of senescent cells while inhibiting others. Interestingly, autophagy—a highly regulated catabolic process—is also commonly upregulated in senescent cells. As mTOR activation leads to repression of autophagy in non-senescent cells (mTOR as an upstream regulator of autophagy), the upregulation of autophagy observed in senescent cells must take place in an mTOR-independent manner. Notably, there is evidence that autophagy provides free amino acids that feed the mTOR complex 1 (mTORC1), which in turn is required to initiate the synthesis of SASP components. Therefore, mTOR activation can follow the induction of autophagy in senescent cells (mTOR as a downstream effector of autophagy). These functional connections suggest the existence of autophagy regulatory pathways in senescent cells that differ from those activated in non-senescence contexts. We envision that untangling these functional connections will be key for the generation of combinatorial anti-cancer therapies involving pro-senescence drugs, mTOR inhibitors, and/or autophagy inhibitors.
Collapse
Affiliation(s)
- Angel Cayo
- Center for Medical Research, University of Talca School of Medicine, Talca 346000, Chile; (A.C.); (R.S.); (W.V.); (C.V.)
| | - Raúl Segovia
- Center for Medical Research, University of Talca School of Medicine, Talca 346000, Chile; (A.C.); (R.S.); (W.V.); (C.V.)
| | - Whitney Venturini
- Center for Medical Research, University of Talca School of Medicine, Talca 346000, Chile; (A.C.); (R.S.); (W.V.); (C.V.)
- Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, University of Talca, Talca 346000, Chile;
| | - Rodrigo Moore-Carrasco
- Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, University of Talca, Talca 346000, Chile;
| | - Claudio Valenzuela
- Center for Medical Research, University of Talca School of Medicine, Talca 346000, Chile; (A.C.); (R.S.); (W.V.); (C.V.)
| | - Nelson Brown
- Center for Medical Research, University of Talca School of Medicine, Talca 346000, Chile; (A.C.); (R.S.); (W.V.); (C.V.)
- Correspondence:
| |
Collapse
|