1
|
Yuan W, Huang YC, LeBlanc C, Poulet A, De Luna Vitorino FN, Valsakumar D, Dean R, Garcia BA, van Wolfswinkel JC, Voigt P, Jacob Y. H3.1K27M-induced misregulation of the TONSOKU-H3.1 pathway causes genomic instability. Nat Commun 2025; 16:3547. [PMID: 40229276 PMCID: PMC11997104 DOI: 10.1038/s41467-025-58892-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 04/03/2025] [Indexed: 04/16/2025] Open
Abstract
The oncomutation lysine 27-to-methionine in histone H3 (H3K27M) is frequently identified in tumors of patients with diffuse midline glioma-H3K27 altered (DMG-H3K27a). H3K27M inhibits the deposition of the histone mark H3K27me3, which affects the maintenance of transcriptional programs and cell identity. Cells expressing H3K27M are also characterized by defects in genome integrity, but the mechanisms linking expression of the oncohistone to DNA damage remain mostly unknown. In this study, we demonstrate that expression of H3.1K27M in the model plant Arabidopsis thaliana interferes with post-replicative chromatin maturation mediated by the H3.1K27 methyltransferases ATXR5 and ATXR6. As a result, H3.1 variants on nascent chromatin remain unmethylated at K27 (H3.1K27me0), leading to ectopic activity of TONSOKU (TSK/TONSL), which induces DNA damage and genomic alterations. Elimination of TSK activity suppresses the genome stability defects associated with H3.1K27M expression, while inactivation of specific DNA repair pathways prevents survival of H3.1K27M-expressing plants. Overall, our results suggest that H3.1K27M disrupts the chromatin-based mechanisms regulating TSK activity, which causes genomic instability and may contribute to the etiology of DMG-H3K27a.
Collapse
Affiliation(s)
- Wenxin Yuan
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, New Haven, CT, USA
| | - Yi-Chun Huang
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, New Haven, CT, USA
| | - Chantal LeBlanc
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, New Haven, CT, USA
| | - Axel Poulet
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, New Haven, CT, USA
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA
- Center for RNA Science and Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Francisca N De Luna Vitorino
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA
| | - Devisree Valsakumar
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Epigenetics Programme, Babraham Institute, Cambridge, UK
| | - Renee Dean
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA
| | - Josien C van Wolfswinkel
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, New Haven, CT, USA
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA
- Center for RNA Science and Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Philipp Voigt
- Epigenetics Programme, Babraham Institute, Cambridge, UK
| | - Yannick Jacob
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, New Haven, CT, USA.
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
2
|
Schmid EW, Walter JC. Predictomes, a classifier-curated database of AlphaFold-modeled protein-protein interactions. Mol Cell 2025; 85:1216-1232.e5. [PMID: 40015271 PMCID: PMC11931459 DOI: 10.1016/j.molcel.2025.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 12/17/2024] [Accepted: 01/31/2025] [Indexed: 03/01/2025]
Abstract
Protein-protein interactions (PPIs) are ubiquitous in biology, yet a comprehensive structural characterization of the PPIs underlying cellular processes is lacking. AlphaFold-Multimer (AF-M) has the potential to fill this knowledge gap, but standard AF-M confidence metrics do not reliably separate relevant PPIs from an abundance of false positive predictions. To address this limitation, we used machine learning on curated datasets to train a structure prediction and omics-informed classifier (SPOC) that effectively separates true and false AF-M predictions of PPIs, including in proteome-wide screens. We applied SPOC to an all-by-all matrix of nearly 300 human genome maintenance proteins, generating ∼40,000 predictions that can be viewed at predictomes.org, where users can also score their own predictions with SPOC. High-confidence PPIs discovered using our approach enable hypothesis generation in genome maintenance. Our results provide a framework for interpreting large-scale AF-M screens and help lay the foundation for a proteome-wide structural interactome.
Collapse
Affiliation(s)
- Ernst W Schmid
- Department of Biological Chemistry & Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Johannes C Walter
- Department of Biological Chemistry & Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Dong S, Li A, Pan R, Hong J, Wang Z, Shen K. Carboplatin-resistance-related DNA damage repair prognostic gene signature and its association with immune infiltration in breast cancer. Front Immunol 2025; 16:1522149. [PMID: 39944694 PMCID: PMC11813922 DOI: 10.3389/fimmu.2025.1522149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/13/2025] [Indexed: 05/09/2025] Open
Abstract
Introduction Breast cancer is among the most prevalent malignant tumors globally, with carboplatin serving as a standard treatment option. However, resistance often compromises its efficacy. DNA damage repair (DDR) pathways are crucial in determining responses to treatment and are also associated with immune infiltration. This study aimed to identify the DDR genes involved in carboplatin resistance and to elucidate their effects on prognosis, immune infiltration, and drug sensitivity in breast cancer patients. Methods A 3D-culture model resistant to carboplatin was constructed and sequenced. Co-expressed DDR genes were analyzed to develop a predictive model. Immune infiltration analysis tools were employed to assess the immune microenvironment of patients with varying expression levels of these risk genes. Additionally, drug sensitivity predictions were made to evaluate the efficacy of other DNA damage-related drugs across different risk groups. Molecular assays were performed to investigate the role of the key gene TONSL in breast cancer. Results By integrating data from public database, we established a prognostic signature comprising thirteen DDR genes. Our analysis indicated that this model is associated with immune infiltration patterns in breast cancer patients, particularly concerning CD8+ T cells and NK cells. Additionally, it demonstrated a significant correlation with sensitivity to other DDR-related drugs, suggesting its potential as a biomarker for treatment efficacy. Compared to the control group, TONSL-knockdown cell lines exhibited a diminished response to DNA-damaging agents, marked by a notable increase in DNA damage levels and enhanced drug sensitivity. Furthermore, single-cell analysis revealed elevated TONSL expression in dendritic and epithelial cells, particularly in triple-negative breast cancers. Conclusions Carboplatin resistance-related DDR genes are associated with prognosis, immune infiltration, and drug sensitivity in breast cancer patients. TONSL may serve as a potential therapeutic target for breast cancer, particularly in triple-negative breast cancer, indicating new treatment strategies for these patients.
Collapse
Affiliation(s)
- Shuwen Dong
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Anqi Li
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruixin Pan
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin Hong
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng Wang
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kunwei Shen
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Seale C, Barazas M, van Schendel R, Tijsterman M, Gonçalves JP. MUSICiAn: Genome-wide Identification of Genes Involved in DNA Repair via Control-Free Mutational Spectra Analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.27.635038. [PMID: 39975194 PMCID: PMC11838396 DOI: 10.1101/2025.01.27.635038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Motivation Understanding the factors involved in DNA double-strand break (DSB) repair is crucial for the development of targeted anti-cancer therapies, yet the roles of many genes remain unclear. Recent studies show that perturbations of certain genes can alter the distribution of sequence-specific mutations left behind after DSB repair. This suggests that genome-wide screening could reveal novel DSB repair factors by identifying genes whose perturbation causes the mutational distribution spectra observed at a given DSB site to deviate significantly from the wild-type. However, designing proper controls for a genome-wide perturbation screen could be challenging. We explore the idea that a genome-wide screen might allow us to forgo the use of traditional non-targeting controls by reframing the analysis as an outlier detection problem, assuming that most genes have minimal influence on DSB repair. Results We propose MUSICiAn (Mutational Signature Catalogue Analysis), a compositional data analysis method that ranks gene perturbation-specific mutational spectra without controls by measuring deviations from the central tendency in the distributions of all spectra. We show that MUSICiAn can effectively estimate pseudo-controls for the existing Repair-seq dataset, screening 476 genes and 60 non-targeting controls. We further apply MUSICiAn to a genome-wide dataset profiling mutational outcomes induced by CRISPR-Cas9 at three target sites across cells with individual perturbations of 18,406 genes. MUSICiAn successfully recovers known genes, highlights the spliceosome as a lesser-appreciated player in DSB repair, and reveals candidates for further investigation. Availability github.com/joanagoncalveslab/MUSICiAn.
Collapse
Affiliation(s)
- Colm Seale
- Pattern Recognition & Bioinformatics, Department of Intelligent Systems, EEMCS Faculty, Delft University of Technology, Delft, The Netherlands
- Holland Proton Therapy Center, Delft, The Netherlands
| | - Marco Barazas
- Human Genetics Department, EEMCS Faculty, Leiden University Medical Centre, Leiden, The Netherlands
| | - Robin van Schendel
- Human Genetics Department, EEMCS Faculty, Leiden University Medical Centre, Leiden, The Netherlands
| | - Marcel Tijsterman
- Human Genetics Department, EEMCS Faculty, Leiden University Medical Centre, Leiden, The Netherlands
| | - Joana P. Gonçalves
- Pattern Recognition & Bioinformatics, Department of Intelligent Systems, EEMCS Faculty, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
5
|
Kimble MT, Sane A, Reid RJD, Johnson MJ, Rothstein R, Symington LS. Repair of replication-dependent double-strand breaks differs between the leading and lagging strands. Mol Cell 2025; 85:61-77.e6. [PMID: 39631395 PMCID: PMC11698654 DOI: 10.1016/j.molcel.2024.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/23/2024] [Accepted: 10/24/2024] [Indexed: 12/07/2024]
Abstract
Single-strand breaks (SSBs) are one of the most commonly occurring endogenous lesions with the potential to give rise to cytotoxic double-strand breaks (DSBs) during DNA replication. To investigate how replication-dependent DSBs are repaired, we employed Cas9 nickase (nCas9) to generate site- and strand-specific nicks in the budding yeast genome. We found that nCas9-induced nicks are converted to mostly double-ended DSBs during S phase. Repair of replication-associated DSBs requires homologous recombination (HR) and is independent of classical non-homologous end joining. Consistent with a strong bias to repair these lesions using a sister-chromatid template, we observed minimal induction of inter-chromosomal HR by nCas9. In a genome-wide screen to identify factors necessary for the repair of replication-dependent DSBs, we recovered components of the replication-coupled nucleosome assembly (RCNA) pathway. Our findings suggest that the RCNA pathway is especially important to repair DSBs arising from nicks in the leading-strand template through acetylation of histone H3K56.
Collapse
Affiliation(s)
- Michael T Kimble
- Program in Biological Sciences, Columbia University, New York, NY 10027, USA; Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Aakanksha Sane
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Robert J D Reid
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Matthew J Johnson
- Program in Biological Sciences, Columbia University, New York, NY 10027, USA; Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rodney Rothstein
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Lorraine S Symington
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
6
|
Yuan W, Huang YC, LeBlanc C, Poulet A, Valsakumar D, van Wolfswinkel JC, Voigt P, Jacob Y. H3.1K27M-induced misregulation of the TSK/TONSL-H3.1 pathway causes genomic instability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.09.627617. [PMID: 39713323 PMCID: PMC11661185 DOI: 10.1101/2024.12.09.627617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The oncomutation lysine 27-to-methionine in histone H3 (H3K27M) is frequently identified in tumors of patients with diffuse midline glioma-H3K27 altered (DMG-H3K27a). H3K27M inhibits the deposition of the histone mark H3K27me3, which affects the maintenance of transcriptional programs and cell identity. Cells expressing H3K27M are also characterized by defects in genome integrity, but the mechanisms linking expression of the oncohistone to DNA damage remain mostly unknown. In this study, we demonstrate that expression of H3.1K27M in the model plant Arabidopsis thaliana interferes with post-replicative chromatin maturation mediated by the H3.1K27 methyltransferases ATXR5 and ATXR6. As a result, H3.1 variants on nascent chromatin remain unmethylated at K27 (H3.1K27me0), leading to ectopic activity of TONSOKU (TSK), which induces DNA damage and genomic alterations. Elimination of TSK activity suppresses the genome stability defects associated with H3.1K27M expression, while inactivation of specific DNA repair pathways prevents survival of H3.1K27M-expressing plants. Overall, our results suggest that H3.1K27M disrupts the chromatin-based mechanisms regulating TSK/TONSL activity, which causes genomic instability and may contribute to the etiology of DMG-H3K27a.
Collapse
Affiliation(s)
- Wenxin Yuan
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences; 260 Whitney Avenue, New Haven, Connecticut 06511, USA
| | - Yi-Chun Huang
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences; 260 Whitney Avenue, New Haven, Connecticut 06511, USA
| | - Chantal LeBlanc
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences; 260 Whitney Avenue, New Haven, Connecticut 06511, USA
| | - Axel Poulet
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences; 260 Whitney Avenue, New Haven, Connecticut 06511, USA
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06511, USA
- Center for RNA science and medicine, Yale School of Medicine, New Haven. CT 06511, USA
| | - Devisree Valsakumar
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | - Josien C. van Wolfswinkel
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences; 260 Whitney Avenue, New Haven, Connecticut 06511, USA
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06511, USA
- Center for RNA science and medicine, Yale School of Medicine, New Haven. CT 06511, USA
| | - Philipp Voigt
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | - Yannick Jacob
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences; 260 Whitney Avenue, New Haven, Connecticut 06511, USA
- Yale Cancer Center, Yale School of Medicine; New Haven, Connecticut 06511, USA
| |
Collapse
|
7
|
Urbancokova A, Hornofova T, Novak J, Salajkova SA, Stemberkova Hubackova S, Uvizl A, Buchtova T, Mistrik M, McStay B, Hodny Z, Bartek J, Vasicova P. Topological stress triggers persistent DNA lesions in ribosomal DNA with ensuing formation of PML-nucleolar compartment. eLife 2024; 12:RP91304. [PMID: 39388244 PMCID: PMC11466457 DOI: 10.7554/elife.91304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024] Open
Abstract
PML, a multifunctional protein, is crucial for forming PML-nuclear bodies involved in stress responses. Under specific conditions, PML associates with nucleolar caps formed after RNA polymerase I (RNAPI) inhibition, leading to PML-nucleolar associations (PNAs). This study investigates PNAs-inducing stimuli by exposing cells to various genotoxic stresses. We found that the most potent inducers of PNAs introduced topological stress and inhibited RNAPI. Doxorubicin, the most effective compound, induced double-strand breaks (DSBs) in the rDNA locus. PNAs co-localized with damaged rDNA, segregating it from active nucleoli. Cleaving the rDNA locus with I-PpoI confirmed rDNA damage as a genuine stimulus for PNAs. Inhibition of ATM, ATR kinases, and RAD51 reduced I-PpoI-induced PNAs, highlighting the importance of ATM/ATR-dependent nucleolar cap formation and homologous recombination (HR) in their triggering. I-PpoI-induced PNAs co-localized with rDNA DSBs positive for RPA32-pS33 but deficient in RAD51, indicating resected DNA unable to complete HR repair. Our findings suggest that PNAs form in response to persistent rDNA damage within the nucleolar cap, highlighting the interplay between PML/PNAs and rDNA alterations due to topological stress, RNAPI inhibition, and rDNA DSBs destined for HR. Cells with persistent PNAs undergo senescence, suggesting PNAs help avoid rDNA instability, with implications for tumorigenesis and aging.
Collapse
Affiliation(s)
- Alexandra Urbancokova
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Terezie Hornofova
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Josef Novak
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Sarka Andrs Salajkova
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Sona Stemberkova Hubackova
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Alena Uvizl
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Tereza Buchtova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University OlomoucOlomoucCzech Republic
| | - Martin Mistrik
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University OlomoucOlomoucCzech Republic
| | - Brian McStay
- Centre for Chromosome Biology, College of Science and Engineering, University of GalwayGalwayIreland
| | - Zdenek Hodny
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Jiri Bartek
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
- Genome Integrity Unit, Danish Cancer Society Research CenterCopenhagenDenmark
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska InstitutetStockholmSweden
| | - Pavla Vasicova
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| |
Collapse
|
8
|
Kimble MT, Sane A, Reid RJ, Johnson MJ, Rothstein R, Symington LS. Strand asymmetry in the repair of replication dependent double-strand breaks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.598707. [PMID: 38948862 PMCID: PMC11212877 DOI: 10.1101/2024.06.17.598707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Single-strand breaks (SSBs) are one of the most common endogenous lesions and have the potential to give rise to cytotoxic double-strand breaks (DSBs) during DNA replication. To investigate the mechanism of replication fork collapse at SSBs and subsequent repair, we employed Cas9 nickase (nCas9) to generate site and strand-specific nicks in the budding yeast genome. We show that nCas9-induced nicks are converted to mostly double-ended DSBs during S-phase. We find that repair of replication-dependent DSBs requires homologous recombination (HR) and is independent of canonical non-homologous end joining. Consistent with a strong bias to repair these lesions using a sister chromatid template, we observe minimal induction of inter-chromosomal HR by nCas9. Using nCas9 and a gRNA to nick either the leading or lagging strand template, we carried out a genome-wide screen to identify factors necessary for the repair of replication-dependent DSBs. All the core HR genes were recovered in the screen with both gRNAs, but we recovered components of the replication-coupled nucleosome assembly (RCNA) pathway with only the gRNA targeting the leading strand template. By use of additional gRNAs, we find that the RCNA pathway is especially important to repair a leading strand fork collapse.
Collapse
|
9
|
Schmid EW, Walter JC. Predictomes: A classifier-curated database of AlphaFold-modeled protein-protein interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.09.588596. [PMID: 38645019 PMCID: PMC11030396 DOI: 10.1101/2024.04.09.588596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Protein-protein interactions (PPIs) are ubiquitous in biology, yet a comprehensive structural characterization of the PPIs underlying biochemical processes is lacking. Although AlphaFold-Multimer (AF-M) has the potential to fill this knowledge gap, standard AF-M confidence metrics do not reliably separate relevant PPIs from an abundance of false positive predictions. To address this limitation, we used machine learning on well curated datasets to train a Structure Prediction and Omics informed Classifier called SPOC that shows excellent performance in separating true and false PPIs, including in proteome-wide screens. We applied SPOC to an all-by-all matrix of nearly 300 human genome maintenance proteins, generating ~40,000 predictions that can be viewed at predictomes.org, where users can also score their own predictions with SPOC. High confidence PPIs discovered using our approach suggest novel hypotheses in genome maintenance. Our results provide a framework for interpreting large scale AF-M screens and help lay the foundation for a proteome-wide structural interactome.
Collapse
Affiliation(s)
- Ernst W. Schmid
- Department of Biological Chemistry & Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Johannes C. Walter
- Department of Biological Chemistry & Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
| |
Collapse
|
10
|
Chen J, Wu M, Yang Y, Ruan C, Luo Y, Song L, Wu T, Huang J, Yang B, Liu T. TFIP11 promotes replication fork reversal to preserve genome stability. Nat Commun 2024; 15:1262. [PMID: 38341452 PMCID: PMC10858868 DOI: 10.1038/s41467-024-45684-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Replication fork reversal, a critical protective mechanism against replication stress in higher eukaryotic cells, is orchestrated via a series of coordinated enzymatic reactions. The Bloom syndrome gene product, BLM, a member of the highly conserved RecQ helicase family, is implicated in this process, yet its precise regulation and role remain poorly understood. In this study, we demonstrate that the GCFC domain-containing protein TFIP11 forms a complex with the BLM helicase. TFIP11 exhibits a preference for binding to DNA substrates that mimic the structure generated at stalled replication forks. Loss of either TFIP11 or BLM leads to the accumulation of the other protein at stalled forks. This abnormal accumulation, in turn, impairs RAD51-mediated fork reversal and slowing, sensitizes cells to replication stress-inducing agents, and enhances chromosomal instability. These findings reveal a previously unidentified regulatory mechanism that modulates the activities of BLM and RAD51 at stalled forks, thereby impacting genome integrity.
Collapse
Affiliation(s)
- Junliang Chen
- Zhejiang Provincial Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, 321000, Shaoxing, China
| | - Mingjie Wu
- The Trauma Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Yulan Yang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Chunyan Ruan
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Yi Luo
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Lizhi Song
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Ting Wu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Jun Huang
- Zhejiang Provincial Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Bing Yang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Ting Liu
- Zhejiang Provincial Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.
- Department of Cell Biology, Zhejiang University School of Medicine, 310058, Hangzhou, China.
| |
Collapse
|
11
|
Davarinejad H, Arvanitis-Vigneault A, Nygard D, Lavallée-Adam M, Couture JF. Modus operandi: Chromatin recognition by α-helical histone readers. Structure 2024; 32:8-17. [PMID: 37922903 DOI: 10.1016/j.str.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/25/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023]
Abstract
Histone reader domains provide a mechanism for sensing states of coordinated nuclear processes marked by histone proteins' post-translational modifications (PTMs). Among a growing number of discovered histone readers, the 14-3-3s, ankyrin repeat domains (ARDs), tetratricopeptide repeats (TPRs), bromodomains (BRDs), and HEAT domains are a group of domains using various mechanisms to recognize unmodified or modified histones, yet they all are composed of an α-helical fold. In this review, we compare how these readers fold to create protein domains that are very diverse in their tertiary structures, giving rise to intriguing peptide binding mechanisms resulting in vastly different footprints of their targets.
Collapse
Affiliation(s)
- Hossein Davarinejad
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Alexis Arvanitis-Vigneault
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Dallas Nygard
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Mathieu Lavallée-Adam
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Jean-François Couture
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
12
|
Stracker TH, Osagie OI, Escorcia FE, Citrin DE. Exploiting the DNA Damage Response for Prostate Cancer Therapy. Cancers (Basel) 2023; 16:83. [PMID: 38201511 PMCID: PMC10777950 DOI: 10.3390/cancers16010083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Prostate cancers that progress despite androgen deprivation develop into castration-resistant prostate cancer, a fatal disease with few treatment options. In this review, we discuss the current understanding of prostate cancer subtypes and alterations in the DNA damage response (DDR) that can predispose to the development of prostate cancer and affect its progression. We identify barriers to conventional treatments, such as radiotherapy, and discuss the development of new therapies, many of which target the DDR or take advantage of recurring genetic alterations in the DDR. We place this in the context of advances in understanding the genetic variation and immune landscape of CRPC that could help guide their use in future treatment strategies. Finally, we discuss several new and emerging agents that may advance the treatment of lethal disease, highlighting selected clinical trials.
Collapse
Affiliation(s)
- Travis H. Stracker
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (O.I.O.); (F.E.E.); (D.E.C.)
| | - Oloruntoba I. Osagie
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (O.I.O.); (F.E.E.); (D.E.C.)
| | - Freddy E. Escorcia
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (O.I.O.); (F.E.E.); (D.E.C.)
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Deborah E. Citrin
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (O.I.O.); (F.E.E.); (D.E.C.)
| |
Collapse
|
13
|
Stossi F, Singh PK, Safari K, Marini M, Labate D, Mancini MA. High throughput microscopy and single cell phenotypic image-based analysis in toxicology and drug discovery. Biochem Pharmacol 2023; 216:115770. [PMID: 37660829 DOI: 10.1016/j.bcp.2023.115770] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/05/2023]
Abstract
Measuring single cell responses to the universe of chemicals (drugs, natural products, environmental toxicants etc.) is of paramount importance to human health as phenotypic variability in sensing stimuli is a hallmark of biology that is considered during high throughput screening. One of the ways to approach this problem is via high throughput, microscopy-based assays coupled with multi-dimensional single cell analysis methods. Here, we will summarize some of the efforts in this vast and growing field, focusing on phenotypic screens (e.g., Cell Painting), single cell analytics and quality control, with particular attention to environmental toxicology and drug screening. We will discuss advantages and limitations of high throughput assays with various end points and levels of complexity.
Collapse
Affiliation(s)
- Fabio Stossi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, USA.
| | - Pankaj K Singh
- GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, USA; Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Kazem Safari
- GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, USA; Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Michela Marini
- GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, USA; Department of Mathematics, University of Houston, Houston, TX, USA
| | - Demetrio Labate
- GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, USA; Department of Mathematics, University of Houston, Houston, TX, USA
| | - Michael A Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, USA; Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| |
Collapse
|
14
|
Joly V, Jacob Y. Mitotic inheritance of genetic and epigenetic information via the histone H3.1 variant. CURRENT OPINION IN PLANT BIOLOGY 2023; 75:102401. [PMID: 37302254 PMCID: PMC11168788 DOI: 10.1016/j.pbi.2023.102401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 06/13/2023]
Abstract
The replication-dependent histone H3.1 variant, ubiquitous in multicellular eukaryotes, has been proposed to play key roles during chromatin replication due to its unique expression pattern restricted to the S phase of the cell cycle. Here, we describe recent discoveries in plants regarding molecular mechanisms and cellular pathways involving H3.1 that contribute to the maintenance of genomic and epigenomic information. First, we highlight new advances concerning the contribution of the histone chaperone CAF-1 and the TSK-H3.1 DNA repair pathway in preventing genomic instability during replication. We then summarize the evidence connecting H3.1 to specific roles required for the mitotic inheritance of epigenetic states. Finally, we discuss the recent identification of a specific interaction between H3.1 and DNA polymerase epsilon and its functional implications.
Collapse
Affiliation(s)
- Valentin Joly
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, 260 Whitney Avenue, New Haven, CT 06511, USA
| | - Yannick Jacob
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, 260 Whitney Avenue, New Haven, CT 06511, USA; Yale Cancer Center, Yale School of Medicine, New Haven, CT 06511, USA.
| |
Collapse
|
15
|
Jiang D, Berger F. Variation is important: Warranting chromatin function and dynamics by histone variants. CURRENT OPINION IN PLANT BIOLOGY 2023; 75:102408. [PMID: 37399781 DOI: 10.1016/j.pbi.2023.102408] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 07/05/2023]
Abstract
The chromatin of flowering plants exhibits a wide range of sequence variants of the core and linker histones. Recent studies have demonstrated that specific histone variant enrichment, combined with post-translational modifications (PTMs) of histones, defines distinct chromatin states that impact specific chromatin functions. Chromatin remodelers are emerging as key regulators of histone variant dynamics, contributing to shaping chromatin states and regulating gene transcription in response to environment. Recognizing the histone variants by their specific readers, controlled by histone PTMs, is crucial for maintaining genome and chromatin integrity. In addition, various histone variants have been shown to play essential roles in remodeling chromatin domains to facilitate important programmed transitions throughout the plant life cycle. In this review, we discuss recent findings in this exciting field of research, which holds immense promise for many surprising discoveries related to the evolution of complexity in plant organization through a seemingly simple protein family.
Collapse
Affiliation(s)
- Danhua Jiang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria.
| |
Collapse
|
16
|
Xiao Y, Dong J. Coming of Age: Targeting Cyclin K in Cancers. Cells 2023; 12:2044. [PMID: 37626854 PMCID: PMC10453554 DOI: 10.3390/cells12162044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Cyclins and cyclin-dependent kinases (CDKs) play versatile roles in promoting the hallmarks of cancer. Therefore, cyclins and CDKs have been widely studied and targeted in cancer treatment, with four CDK4/6 inhibitors being approved by the FDA and many other inhibitors being examined in clinical trials. The specific purpose of this review is to delineate the role and therapeutic potential of Cyclin K in cancers. Studies have shown that Cyclin K regulates many essential biological processes, including the DNA damage response, mitosis, and pre-replicative complex assembly, and is critical in both cancer cell growth and therapeutic resistance. Importantly, the druggability of Cyclin K has been demonstrated in an increasing number of studies that identify novel opportunities for its use in cancer treatment. This review first introduces the basic features and translational value of human cyclins and CDKs. Next, the discovery, phosphorylation targets, and related functional significance of Cyclin K-CDK12/13 complexes in cancer are detailed. This review then provides a summary of current Cyclin K-associated cancer studies, with an emphasis on the available Cyclin K-targeting drugs. Finally, the current knowledge gaps regarding the potential of Cyclin K in cancers are discussed, along with interesting directions for future investigation.
Collapse
Affiliation(s)
| | - Jixin Dong
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| |
Collapse
|
17
|
Awwad SW, Serrano-Benitez A, Thomas JC, Gupta V, Jackson SP. Revolutionizing DNA repair research and cancer therapy with CRISPR-Cas screens. Nat Rev Mol Cell Biol 2023; 24:477-494. [PMID: 36781955 DOI: 10.1038/s41580-022-00571-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2022] [Indexed: 02/15/2023]
Abstract
All organisms possess molecular mechanisms that govern DNA repair and associated DNA damage response (DDR) processes. Owing to their relevance to human disease, most notably cancer, these mechanisms have been studied extensively, yet new DNA repair and/or DDR factors and functional interactions between them are still being uncovered. The emergence of CRISPR technologies and CRISPR-based genetic screens has enabled genome-scale analyses of gene-gene and gene-drug interactions, thereby providing new insights into cellular processes in distinct DDR-deficiency genetic backgrounds and conditions. In this Review, we discuss the mechanistic basis of CRISPR-Cas genetic screening approaches and describe how they have contributed to our understanding of DNA repair and DDR pathways. We discuss how DNA repair pathways are regulated, and identify and characterize crosstalk between them. We also highlight the impacts of CRISPR-based studies in identifying novel strategies for cancer therapy, and in understanding, overcoming and even exploiting cancer-drug resistance, for example in the contexts of PARP inhibition, homologous recombination deficiencies and/or replication stress. Lastly, we present the DDR CRISPR screen (DDRcs) portal , in which we have collected and reanalysed data from CRISPR screen studies and provide a tool for systematically exploring them.
Collapse
Affiliation(s)
- Samah W Awwad
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Almudena Serrano-Benitez
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK.
| | - John C Thomas
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK.
| | - Vipul Gupta
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Stephen P Jackson
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
18
|
Wang L, Xue M, Zhang H, Ma L, Jiang D. TONSOKU is required for the maintenance of repressive chromatin modifications in Arabidopsis. Cell Rep 2023; 42:112738. [PMID: 37393621 DOI: 10.1016/j.celrep.2023.112738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/17/2023] [Accepted: 06/17/2023] [Indexed: 07/04/2023] Open
Abstract
The stability of eukaryotic genomes relies on the faithful transmission of DNA sequences and the maintenance of chromatin states through DNA replication. Plant TONSOKU (TSK) and its animal ortholog TONSOKU-like (TONSL) act as readers for newly synthesized histones and preserve DNA integrity via facilitating DNA repair at post-replicative chromatin. However, whether TSK/TONSL regulate the maintenance of chromatin states remains elusive. Here, we show that TSK is dispensable for global histone and nucleosome accumulation but necessary for maintaining repressive chromatin modifications, including H3K9me2, H2A.W, H3K27me3, and DNA methylation. TSK physically interacts with H3K9 methyltransferases and Polycomb proteins. Moreover, TSK mutation strongly enhances defects in Polycomb pathway mutants. TSK is intended to only associate with nascent chromatin until it starts to mature. We propose that TSK ensures the preservation of chromatin states by supporting the recruitment of chromatin modifiers to post-replicative chromatin in a critical short window of time following DNA replication.
Collapse
Affiliation(s)
- Lin Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mande Xue
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huairen Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Lijun Ma
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Danhua Jiang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
19
|
Kratz A, Kim M, Kelly MR, Zheng F, Koczor CA, Li J, Ono K, Qin Y, Churas C, Chen J, Pillich RT, Park J, Modak M, Collier R, Licon K, Pratt D, Sobol RW, Krogan NJ, Ideker T. A multi-scale map of protein assemblies in the DNA damage response. Cell Syst 2023; 14:447-463.e8. [PMID: 37220749 PMCID: PMC10330685 DOI: 10.1016/j.cels.2023.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/30/2023] [Accepted: 04/25/2023] [Indexed: 05/25/2023]
Abstract
The DNA damage response (DDR) ensures error-free DNA replication and transcription and is disrupted in numerous diseases. An ongoing challenge is to determine the proteins orchestrating DDR and their organization into complexes, including constitutive interactions and those responding to genomic insult. Here, we use multi-conditional network analysis to systematically map DDR assemblies at multiple scales. Affinity purifications of 21 DDR proteins, with/without genotoxin exposure, are combined with multi-omics data to reveal a hierarchical organization of 605 proteins into 109 assemblies. The map captures canonical repair mechanisms and proposes new DDR-associated proteins extending to stress, transport, and chromatin functions. We find that protein assemblies closely align with genetic dependencies in processing specific genotoxins and that proteins in multiple assemblies typically act in multiple genotoxin responses. Follow-up by DDR functional readouts newly implicates 12 assembly members in double-strand-break repair. The DNA damage response assemblies map is available for interactive visualization and query (ccmi.org/ddram/).
Collapse
Affiliation(s)
- Anton Kratz
- University of California San Diego, Department of Medicine, San Diego, CA 92093, USA; The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| | - Minkyu Kim
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA 94158, USA; The J. David Gladstone Institute of Data Science and Biotechnology, San Francisco, CA 94158, USA; Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA 94158, USA; The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA; University of Texas Health Science Center San Antonio, Department of Biochemistry and Structural Biology, San Antonio, TX 78229, USA
| | - Marcus R Kelly
- University of California San Diego, Department of Medicine, San Diego, CA 92093, USA
| | - Fan Zheng
- University of California San Diego, Department of Medicine, San Diego, CA 92093, USA; The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| | - Christopher A Koczor
- University of South Alabama, Department of Pharmacology and Mitchell Cancer Institute, Mobile, AL 36604, USA
| | - Jianfeng Li
- University of South Alabama, Department of Pharmacology and Mitchell Cancer Institute, Mobile, AL 36604, USA
| | - Keiichiro Ono
- University of California San Diego, Department of Medicine, San Diego, CA 92093, USA
| | - Yue Qin
- University of California San Diego, Department of Medicine, San Diego, CA 92093, USA
| | - Christopher Churas
- University of California San Diego, Department of Medicine, San Diego, CA 92093, USA
| | - Jing Chen
- University of California San Diego, Department of Medicine, San Diego, CA 92093, USA
| | - Rudolf T Pillich
- University of California San Diego, Department of Medicine, San Diego, CA 92093, USA
| | - Jisoo Park
- University of California San Diego, Department of Medicine, San Diego, CA 92093, USA; The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| | - Maya Modak
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA 94158, USA; The J. David Gladstone Institute of Data Science and Biotechnology, San Francisco, CA 94158, USA; Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA 94158, USA; The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| | - Rachel Collier
- University of California San Diego, Department of Medicine, San Diego, CA 92093, USA
| | - Kate Licon
- University of California San Diego, Department of Medicine, San Diego, CA 92093, USA
| | - Dexter Pratt
- University of California San Diego, Department of Medicine, San Diego, CA 92093, USA
| | - Robert W Sobol
- University of South Alabama, Department of Pharmacology and Mitchell Cancer Institute, Mobile, AL 36604, USA; Brown University, Department of Pathology and Laboratory Medicine and Legorreta Cancer Center, Providence, RI 02903, USA.
| | - Nevan J Krogan
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA 94158, USA; The J. David Gladstone Institute of Data Science and Biotechnology, San Francisco, CA 94158, USA; Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA 94158, USA; The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA.
| | - Trey Ideker
- University of California San Diego, Department of Medicine, San Diego, CA 92093, USA; The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA.
| |
Collapse
|
20
|
Khatpe AS, Dirks R, Bhat-Nakshatri P, Mang H, Batic K, Swiezy S, Olson J, Rao X, Wang Y, Tanaka H, Liu S, Wan J, Chen D, Liu Y, Fang F, Althouse S, Hulsey E, Granatir MM, Addison R, Temm CJ, Sandusky G, Lee-Gosselin A, Nephew K, Miller KD, Nakshatri H. TONSL Is an Immortalizing Oncogene and a Therapeutic Target in Breast Cancer. Cancer Res 2023; 83:1345-1360. [PMID: 37057595 PMCID: PMC10107402 DOI: 10.1158/0008-5472.can-22-3667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/13/2023] [Accepted: 02/03/2023] [Indexed: 04/15/2023]
Abstract
Study of genomic aberrations leading to immortalization of epithelial cells has been technically challenging due to the lack of isogenic models. To address this, we used healthy primary breast luminal epithelial cells of different genetic ancestry and their hTERT-immortalized counterparts to identify transcriptomic changes associated with immortalization. Elevated expression of TONSL (Tonsoku-like, DNA repair protein) was identified as one of the earliest events during immortalization. TONSL, which is located on chromosome 8q24.3, was found to be amplified in approximately 20% of breast cancers. TONSL alone immortalized primary breast epithelial cells and increased telomerase activity, but overexpression was insufficient for neoplastic transformation. However, TONSL-immortalized primary cells overexpressing defined oncogenes generated estrogen receptor-positive adenocarcinomas in mice. Analysis of a breast tumor microarray with approximately 600 tumors revealed poor overall and progression-free survival of patients with TONSL-overexpressing tumors. TONSL increased chromatin accessibility to pro-oncogenic transcription factors, including NF-κB and limited access to the tumor-suppressor p53. TONSL overexpression resulted in significant changes in the expression of genes associated with DNA repair hubs, including upregulation of several genes in the homologous recombination (HR) and Fanconi anemia pathways. Consistent with these results, TONSL-overexpressing primary cells exhibited upregulated DNA repair via HR. Moreover, TONSL was essential for growth of TONSL-amplified breast cancer cell lines in vivo, and these cells were sensitive to TONSL-FACT complex inhibitor CBL0137. Together, these findings identify TONSL as a regulator of epithelial cell immortalization to facilitate cancer initiation and as a target for breast cancer therapy. SIGNIFICANCE The chr.8q24.3 amplicon-resident gene TONSL is upregulated during the initial steps of tumorigenesis to support neoplastic transformation by increasing DNA repair and represents a potential therapeutic target for treating breast cancer.
Collapse
Affiliation(s)
- Aditi S Khatpe
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Rebecca Dirks
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | - Henry Mang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Katie Batic
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sarah Swiezy
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jacob Olson
- Decatur Central High School, Indianapolis, IN 46221, USA
| | - Xi Rao
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, IN 46202, USA
| | - Yue Wang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, IN 46202, USA
| | - Hiromi Tanaka
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, IN 46202, USA
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, IN 46202, USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, IN 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, IN 46202, USA
| | - Duojiao Chen
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, IN 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, IN 46202, USA
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, IN 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, IN 46202, USA
| | - Fang Fang
- Medical Science Program, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | - Sandra Althouse
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, IN 46202, USA
| | - Emily Hulsey
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, IN 46202, USA
| | - Maggie M Granatir
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, IN 46202, USA
| | - Rebekah Addison
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, IN 46202, USA
| | - Constance J. Temm
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, IN 46202, USA
| | - George Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, IN 46202, USA
| | - Audrey Lee-Gosselin
- Stark Neurosciences Research Institute, Indiana University School of Medicine, IN 46202, USA
| | - Kenneth Nephew
- Medical Science Program, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | - Kathy D. Miller
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, IN 46202, USA
- VA Roudebush Medical Center, Indianapolis, IN 46202, USA
| |
Collapse
|
21
|
van Schie JJ, de Lint K, Pai GM, Rooimans MA, Wolthuis RM, de Lange J. MMS22L-TONSL functions in sister chromatid cohesion in a pathway parallel to DSCC1-RFC. Life Sci Alliance 2023; 6:e202201596. [PMID: 36622344 PMCID: PMC9733570 DOI: 10.26508/lsa.202201596] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
The leading strand-oriented alternative PCNA clamp loader DSCC1-RFC functions in DNA replication, repair, and sister chromatid cohesion (SCC), but how it facilitates these processes is incompletely understood. Here, we confirm that loss of human DSCC1 results in reduced fork speed, increased DNA damage, and defective SCC. Genome-wide CRISPR screens in DSCC1-KO cells reveal multiple synthetically lethal interactions, enriched for DNA replication and cell cycle regulation. We show that DSCC1-KO cells require POLE3 for survival. Co-depletion of DSCC1 and POLE3, which both interact with the catalytic polymerase ε subunit, additively impair DNA replication, suggesting that these factors contribute to leading-strand DNA replication in parallel ways. An additional hit is MMS22L, which in humans forms a heterodimer with TONSL. Synthetic lethality of DSCC1 and MMS22L-TONSL likely results from detrimental SCC loss. We show that MMS22L-TONSL, like DDX11, functions in a SCC establishment pathway parallel to DSCC1-RFC. Because both DSCC1-RFC and MMS22L facilitate ESCO2 recruitment to replication forks, we suggest that distinct ESCO2 recruitment pathways promote SCC establishment following either cohesin conversion or de novo cohesin loading.
Collapse
Affiliation(s)
- Janne Jm van Schie
- Department of Human Genetics, Section Oncogenetics, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, Netherlands
| | - Klaas de Lint
- Department of Human Genetics, Section Oncogenetics, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, Netherlands
| | - Govind M Pai
- Department of Human Genetics, Section Oncogenetics, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, Netherlands
| | - Martin A Rooimans
- Department of Human Genetics, Section Oncogenetics, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, Netherlands
| | - Rob Mf Wolthuis
- Department of Human Genetics, Section Oncogenetics, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, Netherlands
| | - Job de Lange
- Department of Human Genetics, Section Oncogenetics, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, Netherlands
| |
Collapse
|
22
|
Huang YC, Yuan W, Jacob Y. The Role of the TSK/TONSL-H3.1 Pathway in Maintaining Genome Stability in Multicellular Eukaryotes. Int J Mol Sci 2022; 23:9029. [PMID: 36012288 PMCID: PMC9409234 DOI: 10.3390/ijms23169029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/22/2022] Open
Abstract
Replication-dependent histone H3.1 and replication-independent histone H3.3 are nearly identical proteins in most multicellular eukaryotes. The N-terminal tails of these H3 variants, where the majority of histone post-translational modifications are made, typically differ by only one amino acid. Despite extensive sequence similarity with H3.3, the H3.1 variant has been hypothesized to play unique roles in cells, as it is specifically expressed and inserted into chromatin during DNA replication. However, identifying a function that is unique to H3.1 during replication has remained elusive. In this review, we discuss recent findings regarding the involvement of the H3.1 variant in regulating the TSK/TONSL-mediated resolution of stalled or broken replication forks. Uncovering this new function for the H3.1 variant has been made possible by the identification of the first proteins containing domains that can selectively bind or modify the H3.1 variant. The functional characterization of H3-variant-specific readers and writers reveals another layer of chromatin-based information regulating transcription, DNA replication, and DNA repair.
Collapse
Affiliation(s)
| | | | - Yannick Jacob
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, 260 Whitney Avenue, New Haven, CT 06511, USA
| |
Collapse
|
23
|
Liu R, Huang Y. CDC7 as a novel biomarker and druggable target in cancer. Clin Transl Oncol 2022; 24:1856-1864. [PMID: 35657477 DOI: 10.1007/s12094-022-02853-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/05/2022] [Indexed: 11/25/2022]
Abstract
Due to the bottlenecks encountered in traditional treatment for tumor, more effective drug targets need to be developed. Cell division cycle 7 kinase plays an important role in DNA replication, DNA repair and recombination signaling pathways. In this review, we first describe recent studies on the role of CDC7 in DNA replication in normal human tissues, and then we integrate new evidence focusing on the important role of CDC7 in replication stress tolerance of tumor cells and its impact on the prognosis of clinical oncology patients. Finally, we comb through the CDC7 inhibitors identified in recent studies as a reference for further research in clinical practice.
Collapse
Affiliation(s)
- Runze Liu
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yong Huang
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
24
|
Failure of DNA double-strand break repair by tau mediates Alzheimer's disease pathology in vitro. Commun Biol 2022; 5:358. [PMID: 35418705 PMCID: PMC9008043 DOI: 10.1038/s42003-022-03312-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 03/24/2022] [Indexed: 12/26/2022] Open
Abstract
DNA double-strand break (DSB) is the most severe form of DNA damage and accumulates with age, in which cytoskeletal proteins are polymerized to repair DSB in dividing cells. Since tau is a microtubule-associated protein, we investigate whether DSB is involved in tau pathologies in Alzheimer's disease (AD). First, immunohistochemistry reveals the frequent coexistence of DSB and phosphorylated tau in the cortex of AD patients. In vitro studies using primary mouse cortical neurons show that non-p-tau accumulates perinuclearly together with the tubulin after DSB induction with etoposide, followed by the accumulation of phosphorylated tau. Moreover, the knockdown of endogenous tau exacerbates DSB in neurons, suggesting the protective role of tau on DNA repair. Interestingly, synergistic exposure of neurons to microtubule disassembly and the DSB strikingly augments aberrant p-tau aggregation and apoptosis. These data suggest that DSB plays a pivotal role in AD-tau pathology and that the failure of DSB repair leads to tauopathy.
Collapse
|
25
|
Davarinejad H, Huang YC, Mermaz B, LeBlanc C, Poulet A, Thomson G, Joly V, Muñoz M, Arvanitis-Vigneault A, Valsakumar D, Villarino G, Ross A, Rotstein BH, Alarcon EI, Brunzelle JS, Voigt P, Dong J, Couture JF, Jacob Y. The histone H3.1 variant regulates TONSOKU-mediated DNA repair during replication. Science 2022; 375:1281-1286. [PMID: 35298257 PMCID: PMC9153895 DOI: 10.1126/science.abm5320] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The tail of replication-dependent histone H3.1 varies from that of replication-independent H3.3 at the amino acid located at position 31 in plants and animals, but no function has been assigned to this residue to demonstrate a unique and conserved role for H3.1 during replication. We found that TONSOKU (TSK/TONSL), which rescues broken replication forks, specifically interacts with H3.1 via recognition of alanine 31 by its tetratricopeptide repeat domain. Our results indicate that genomic instability in the absence of ATXR5/ATXR6-catalyzed histone H3 lysine 27 monomethylation in plants depends on H3.1, TSK, and DNA polymerase theta (Pol θ). This work reveals an H3.1-specific function during replication and a common strategy used in multicellular eukaryotes for regulating post-replicative chromatin maturation and TSK, which relies on histone monomethyltransferases and reading of the H3.1 variant.
Collapse
Affiliation(s)
- Hossein Davarinejad
- Ottawa Institute of Systems Biology; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa; Ottawa, Ontario K1H 8M5, Canada
| | - Yi-Chun Huang
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences; 260 Whitney Avenue, New Haven, Connecticut 06511, USA
| | - Benoit Mermaz
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences; 260 Whitney Avenue, New Haven, Connecticut 06511, USA
| | - Chantal LeBlanc
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences; 260 Whitney Avenue, New Haven, Connecticut 06511, USA
| | - Axel Poulet
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences; 260 Whitney Avenue, New Haven, Connecticut 06511, USA
| | - Geoffrey Thomson
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences; 260 Whitney Avenue, New Haven, Connecticut 06511, USA
| | - Valentin Joly
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences; 260 Whitney Avenue, New Haven, Connecticut 06511, USA
| | - Marcelo Muñoz
- Ottawa Institute of Systems Biology; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa; Ottawa, Ontario K1H 8M5, Canada
| | - Alexis Arvanitis-Vigneault
- Ottawa Institute of Systems Biology; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa; Ottawa, Ontario K1H 8M5, Canada
| | - Devisree Valsakumar
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh; Edinburgh, EH9 3BF, United Kingdom
- Epigenetics Programme, Babraham Institute; Cambridge, CB22 3AT, United Kingdom
| | - Gonzalo Villarino
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences; 260 Whitney Avenue, New Haven, Connecticut 06511, USA
| | - Alex Ross
- BEaTS Research Laboratory, Division of Cardiac Surgery, University of Ottawa Heart Institute; Ottawa, ON K1Y4W7, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa; Ottawa, ON K1H 8M5, Canada
| | - Benjamin H. Rotstein
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa; Ottawa, ON K1H 8M5, Canada
- University of Ottawa Heart Institute; Ottawa, ON K1Y4W7, Canada
| | - Emilio I. Alarcon
- BEaTS Research Laboratory, Division of Cardiac Surgery, University of Ottawa Heart Institute; Ottawa, ON K1Y4W7, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa; Ottawa, ON K1H 8M5, Canada
| | - Joseph S. Brunzelle
- Feinberg School of Medicine, Department of Molecular Pharmacology and Biological Chemistry, Northwestern University; Chicago, Illinois 60611, USA
| | - Philipp Voigt
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh; Edinburgh, EH9 3BF, United Kingdom
- Epigenetics Programme, Babraham Institute; Cambridge, CB22 3AT, United Kingdom
| | - Jie Dong
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences; 260 Whitney Avenue, New Haven, Connecticut 06511, USA
- Institute of Crop Science, Zhejiang University; Hangzhou 310058, China
| | - Jean-François Couture
- Ottawa Institute of Systems Biology; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa; Ottawa, Ontario K1H 8M5, Canada
| | - Yannick Jacob
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences; 260 Whitney Avenue, New Haven, Connecticut 06511, USA
| |
Collapse
|
26
|
Kikuchi N, Moreland E, Homma H, Semenova EA, Saito M, Larin AK, Kobatake N, Yusupov RA, Okamoto T, Nakazato K, Williams AG, Generozov EV, Ahmetov II. Genes and Weightlifting Performance. Genes (Basel) 2021; 13:25. [PMID: 35052366 PMCID: PMC8775245 DOI: 10.3390/genes13010025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/16/2021] [Accepted: 12/22/2021] [Indexed: 11/17/2022] Open
Abstract
A recent case-control study identified 28 DNA polymorphisms associated with strength athlete status. However, studies of genotype-phenotype design are required to support those findings. The aim of the present study was to investigate both individually and in combination the association of 28 genetic markers with weightlifting performance in Russian athletes and to replicate the most significant findings in an independent cohort of Japanese athletes. Genomic DNA was collected from 53 elite Russian (31 men and 22 women, 23.3 ± 4.1 years) and 100 sub-elite Japanese (53 men and 47 women, 21.4 ± 4.2 years) weightlifters, and then genotyped using PCR or micro-array analysis. Out of 28 DNA polymorphisms, LRPPRC rs10186876 A, MMS22L rs9320823 T, MTHFR rs1801131 C, and PHACTR1 rs6905419 C alleles positively correlated (p < 0.05) with weightlifting performance (i.e., total lifts in snatch and clean and jerk in official competitions adjusted for sex and body mass) in Russian athletes. Next, using a polygenic approach, we found that carriers of a high (6-8) number of strength-related alleles had better competition results than carriers of a low (0-5) number of strength-related alleles (264.2 (14.7) vs. 239.1 (21.9) points; p = 0.009). These findings were replicated in the study of Japanese athletes. More specifically, Japanese carriers of a high number of strength-related alleles were stronger than carriers of a low number of strength-related alleles (212.9 (22.6) vs. 199.1 (17.2) points; p = 0.0016). In conclusion, we identified four common gene polymorphisms individually or in combination associated with weightlifting performance in athletes from East European and East Asian geographic ancestries.
Collapse
Affiliation(s)
- Naoki Kikuchi
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo 158-8508, Japan; (N.K.); (H.H.); (M.S.); (T.O.); (K.N.)
- Faculty of Sport Science, Nippon Sport Science University, Tokyo 158-8508, Japan;
| | - Ethan Moreland
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 5AF, UK;
| | - Hiroki Homma
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo 158-8508, Japan; (N.K.); (H.H.); (M.S.); (T.O.); (K.N.)
| | - Ekaterina A. Semenova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (E.A.S.); (A.K.L.); (E.V.G.)
- Research Institute of Physical Culture and Sport, Volga Region State University of Physical Culture, Sport and Tourism, 420010 Kazan, Russia
| | - Mika Saito
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo 158-8508, Japan; (N.K.); (H.H.); (M.S.); (T.O.); (K.N.)
| | - Andrey K. Larin
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (E.A.S.); (A.K.L.); (E.V.G.)
| | - Naoyuki Kobatake
- Faculty of Sport Science, Nippon Sport Science University, Tokyo 158-8508, Japan;
| | - Rinat A. Yusupov
- Department of Physical Culture and Sport, Kazan National Research Technical University Named after A.N. Tupolev-KAI, 420111 Kazan, Russia;
| | - Takanobu Okamoto
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo 158-8508, Japan; (N.K.); (H.H.); (M.S.); (T.O.); (K.N.)
- Faculty of Sport Science, Nippon Sport Science University, Tokyo 158-8508, Japan;
| | - Koichi Nakazato
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo 158-8508, Japan; (N.K.); (H.H.); (M.S.); (T.O.); (K.N.)
- Faculty of Medical Science, Nippon Sport Science University, Tokyo 158-8508, Japan
| | - Alun G. Williams
- Sports Genomics Laboratory, Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester M15 6BH, UK;
- Institute of Sport, Exercise and Health, University College London, London W1T 7HA, UK
| | - Edward V. Generozov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (E.A.S.); (A.K.L.); (E.V.G.)
| | - Ildus I. Ahmetov
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 5AF, UK;
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (E.A.S.); (A.K.L.); (E.V.G.)
- Department of Physical Education, Plekhanov Russian University of Economics, 115093 Moscow, Russia
- Laboratory of Molecular Genetics, Kazan State Medical University, 420012 Kazan, Russia
| |
Collapse
|
27
|
Hussmann JA, Ling J, Ravisankar P, Yan J, Cirincione A, Xu A, Simpson D, Yang D, Bothmer A, Cotta-Ramusino C, Weissman JS, Adamson B. Mapping the genetic landscape of DNA double-strand break repair. Cell 2021; 184:5653-5669.e25. [PMID: 34672952 PMCID: PMC9074467 DOI: 10.1016/j.cell.2021.10.002] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/31/2021] [Accepted: 09/29/2021] [Indexed: 12/20/2022]
Abstract
Cells repair DNA double-strand breaks (DSBs) through a complex set of pathways critical for maintaining genomic integrity. To systematically map these pathways, we developed a high-throughput screening approach called Repair-seq that measures the effects of thousands of genetic perturbations on mutations introduced at targeted DNA lesions. Using Repair-seq, we profiled DSB repair products induced by two programmable nucleases (Cas9 and Cas12a) in the presence or absence of oligonucleotides for homology-directed repair (HDR) after knockdown of 476 genes involved in DSB repair or associated processes. The resulting data enabled principled, data-driven inference of DSB end joining and HDR pathways. Systematic interrogation of this data uncovered unexpected relationships among DSB repair genes and demonstrated that repair outcomes with superficially similar sequence architectures can have markedly different genetic dependencies. This work provides a foundation for mapping DNA repair pathways and for optimizing genome editing across diverse modalities.
Collapse
Affiliation(s)
- Jeffrey A Hussmann
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Jia Ling
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Purnima Ravisankar
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Jun Yan
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Ann Cirincione
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Albert Xu
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Danny Simpson
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Dian Yang
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | | | | | - Jonathan S Weissman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Britt Adamson
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
28
|
Luo Q, He W, Mao T, Leng X, Wu H, Li W, Deng X, Zhao T, Shi M, Xu C, Han Y. MMS22L Expression as a Predictive Biomarker for the Efficacy of Neoadjuvant Chemoradiotherapy in Oesophageal Squamous Cell Carcinoma. Front Oncol 2021; 11:711642. [PMID: 34660277 PMCID: PMC8514954 DOI: 10.3389/fonc.2021.711642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/31/2021] [Indexed: 02/05/2023] Open
Abstract
Long-term survival in oesophageal squamous cell carcinoma (ESCC) is related with pathological response after neoadjuvant chemoradiotherapy (NCRT) followed by surgery. However, effective biomarkers to predict the pathologic response are still lacking. Therefore, a systematic analysis focusing on genes associated with the efficacy of chemoradiotherapy in ESCC will provide valuable insights into the regulation of molecular processes. By screening publications deposited in PubMed, we collected genes associated with the efficacy of chemoradiotherapy. A specific subnetwork was constructed using the Steiner minimum tree algorithm. Survival analysis in Kaplan-Meier Plotter online resources was performed to explore the relationship between gene mRNA expression and the prognosis of patients with ESCC. Quantitative real-time polymerase chain reaction (qRT-PCR), Western blotting, and immunohistochemical staining (IHC) were used to evaluate the expression of key genes in cell lines and human samples. The areas under the receiver operating characteristic (ROC) curves (AUCs) were used to describe performance and accuracy. Transwell assays assessed cell migration, and cell viability was detected using the Cytotoxicity Assay. Finally, we identified 101 genes associated with efficacy of chemoradiotherapy. Additionally, specific molecular networks included some potential related genes, such as CUL3, MUC13, MMS22L, MME, UBC, VAPA, CYP1B1, and UGDH. The MMS22L mRNA expression level showed the most significant association with the ESCC patient outcome (p < 0.01). Furthermore, MMS22L was downregulated at both the mRNA (p < 0.001) and protein levels in tumour tissues compared with that in normal tissues. Lymph node metastasis was significantly associated with low MMS22L expression (p < 0.01). MMS22L levels were inversely correlated with the NCRT response in ESCC (p < 0.01). The resulting area under the ROC curve was 0.847 (95% CI: 0.7232 to 0.9703; p < 0.01). In conclusion, low expression of MMS22L is associated with poor response to NCRT, worse survival, lymph node metastasis, and enhanced migration of tumour cells in ESCC.
Collapse
Affiliation(s)
- Qiyu Luo
- School of Medicine, University of Electronic Science and Technology of China (UESTC), Chengdu, China.,Department of Thoracic Surgery, Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, China
| | - Wenwu He
- Department of Thoracic Surgery, Sichuan Cancer Hospital & Research Institute, School of Medicine, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Tianqin Mao
- School of Medicine, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Xuefeng Leng
- Department of Thoracic Surgery, Sichuan Cancer Hospital & Research Institute, School of Medicine, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Hong Wu
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wen Li
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xuyang Deng
- Department of Thoracic Surgery, Sichuan Cancer Hospital & Research Institute, School of Medicine, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Tingci Zhao
- Department of International Medical Center/Ward of General Practice, West China Hospital, Sichuan University, Chengdu, China
| | - Ming Shi
- Department of Pathology, Sichuan Cancer Hospital & Research Institute, School of Medicine, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Chuan Xu
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yongtao Han
- Department of Thoracic Surgery, Sichuan Cancer Hospital & Research Institute, School of Medicine, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| |
Collapse
|
29
|
Liu Y, Wu H, Luo T, Luo Q, Meng Z, Shi Y, Li F, Liu M, Peng X, Liu J, Xu C, Tang W. The SOX9-MMS22L Axis Promotes Oxaliplatin Resistance in Colorectal Cancer. Front Mol Biosci 2021; 8:646542. [PMID: 34124145 PMCID: PMC8191464 DOI: 10.3389/fmolb.2021.646542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 04/20/2021] [Indexed: 12/12/2022] Open
Abstract
Background Colorectal cancer (CRC) is estimated to be one of the most common cancers and the leading cause of cancer-related death worldwide. SOX9 is commonly overexpressed in CRC and participates in drug resistance. In addition, DNA damage repair confers resistance to anticancer drugs. However, the correlation between DNA damage repair and high SOX9 expression is still unclear. In this study, we aimed to investigate the function and the specific underlying mechanism of the SOX9-dependent DNA damage repair pathway in CRC. Methods The expression levels of SOX9 and MMS22L in CRC were examined by immunohistochemistry (IHC) and TCGA analysis. RNA sequencing was conducted in RKO SOX9-deficient cells and RKO shControl cells. Mechanistic studies were performed in CRC cells by modulating SOX9 and MMS22L expression, and we evaluated drug sensitivity and DNA damage repair signaling events. In addition, we investigated the effect of oxaliplatin in tumors with SOX9 overexpression and low expression of MMS22L in vivo. Results Our study showed that SOX9 has a higher expression level in CRC tissues than in normal tissues and predicts poor prognosis in CRC patients. Overexpression and knockdown of SOX9 were associated with the efficacy of oxaliplatin. In addition, SOX9 activity was enriched in the DNA damage repair pathway via regulation of MMS22L expression and participation in DNA double-strand break repair. SOX9 was upregulated and formed a complex with MMS22L, which promoted the nuclear translocation of MMS22L upon oxaliplatin treatment. Moreover, the xenograft assay results showed that oxaliplatin abrogated tumor growth from cells with MMS22L downregulation in mice. Conclusions In CRC, activation of the SOX9-MMS22L-dependent DNA damage pathway is a core pathway regulating oxaliplatin sensitivity. Targeting this pathway in oxaliplatin-resistant CRC cells is a promising therapeutic option.
Collapse
Affiliation(s)
- Yiqiang Liu
- Department of Experimental Research, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China.,Integrative Cancer Center and Cancer Clinical Research Center, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hong Wu
- Integrative Cancer Center and Cancer Clinical Research Center, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Tao Luo
- Department of Experimental Research, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Qiyu Luo
- Integrative Cancer Center and Cancer Clinical Research Center, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ziyu Meng
- Integrative Cancer Center and Cancer Clinical Research Center, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ying Shi
- Integrative Cancer Center and Cancer Clinical Research Center, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Feifei Li
- Department of Experimental Research, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China.,Integrative Cancer Center and Cancer Clinical Research Center, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Mingxin Liu
- Integrative Cancer Center and Cancer Clinical Research Center, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xinhao Peng
- Integrative Cancer Center and Cancer Clinical Research Center, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Junjie Liu
- Department of Experimental Research, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Chuan Xu
- Integrative Cancer Center and Cancer Clinical Research Center, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Weizhong Tang
- Department of Experimental Research, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
30
|
Hammond-Martel I, Verreault A, Wurtele H. Chromatin dynamics and DNA replication roadblocks. DNA Repair (Amst) 2021; 104:103140. [PMID: 34087728 DOI: 10.1016/j.dnarep.2021.103140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 11/27/2022]
Abstract
A broad spectrum of spontaneous and genotoxin-induced DNA lesions impede replication fork progression. The DNA damage response that acts to promote completion of DNA replication is associated with dynamic changes in chromatin structure that include two distinct processes which operate genome-wide during S-phase. The first, often referred to as histone recycling or parental histone segregation, is characterized by the transfer of parental histones located ahead of replication forks onto nascent DNA. The second, known as de novo chromatin assembly, consists of the deposition of new histone molecules onto nascent DNA. Because these two processes occur at all replication forks, their potential to influence a multitude of DNA repair and DNA damage tolerance mechanisms is considerable. The purpose of this review is to provide a description of parental histone segregation and de novo chromatin assembly, and to illustrate how these processes influence cellular responses to DNA replication roadblocks.
Collapse
Affiliation(s)
- Ian Hammond-Martel
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 boulevard de l'Assomption, Montreal, H1T 2M4, Canada
| | - Alain Verreault
- Institute for Research in Immunology and Cancer, Université de Montréal, P.O. Box 6128, Succursale Centre-Ville, Montreal, H3C 3J7, Canada; Département de Pathologie et Biologie Cellulaire, Université de Montréal, 2900 Edouard Montpetit Blvd, Montreal, H3T 1J4, Canada
| | - Hugo Wurtele
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 boulevard de l'Assomption, Montreal, H1T 2M4, Canada; Département de Médecine, Université de Montréal, Université de Montréal, 2900 Edouard Montpetit Blvd, Montreal, H3T 1J4, Canada.
| |
Collapse
|
31
|
DNAJC9 integrates heat shock molecular chaperones into the histone chaperone network. Mol Cell 2021; 81:2533-2548.e9. [PMID: 33857403 PMCID: PMC8221569 DOI: 10.1016/j.molcel.2021.03.041] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/17/2021] [Accepted: 03/25/2021] [Indexed: 12/31/2022]
Abstract
From biosynthesis to assembly into nucleosomes, histones are handed through a cascade of histone chaperones, which shield histones from non-specific interactions. Whether mechanisms exist to safeguard the histone fold during histone chaperone handover events or to release trapped intermediates is unclear. Using structure-guided and functional proteomics, we identify and characterize a histone chaperone function of DNAJC9, a heat shock co-chaperone that promotes HSP70-mediated catalysis. We elucidate the structure of DNAJC9, in a histone H3-H4 co-chaperone complex with MCM2, revealing how this dual histone and heat shock co-chaperone binds histone substrates. We show that DNAJC9 recruits HSP70-type enzymes via its J domain to fold histone H3-H4 substrates: upstream in the histone supply chain, during replication- and transcription-coupled nucleosome assembly, and to clean up spurious interactions. With its dual functionality, DNAJC9 integrates ATP-resourced protein folding into the histone supply pathway to resolve aberrant intermediates throughout the dynamic lives of histones.
Collapse
|
32
|
Chang HR, Jung E, Cho S, Jeon YJ, Kim Y. Targeting Non-Oncogene Addiction for Cancer Therapy. Biomolecules 2021; 11:129. [PMID: 33498235 PMCID: PMC7909239 DOI: 10.3390/biom11020129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/18/2021] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
While Next-Generation Sequencing (NGS) and technological advances have been useful in identifying genetic profiles of tumorigenesis, novel target proteins and various clinical biomarkers, cancer continues to be a major global health threat. DNA replication, DNA damage response (DDR) and repair, and cell cycle regulation continue to be essential systems in targeted cancer therapies. Although many genes involved in DDR are known to be tumor suppressor genes, cancer cells are often dependent and addicted to these genes, making them excellent therapeutic targets. In this review, genes implicated in DNA replication, DDR, DNA repair, cell cycle regulation are discussed with reference to peptide or small molecule inhibitors which may prove therapeutic in cancer patients. Additionally, the potential of utilizing novel synthetic lethal genes in these pathways is examined, providing possible new targets for future therapeutics. Specifically, we evaluate the potential of TONSL as a novel gene for targeted therapy. Although it is a scaffold protein with no known enzymatic activity, the strategy used for developing PCNA inhibitors can also be utilized to target TONSL. This review summarizes current knowledge on non-oncogene addiction, and the utilization of synthetic lethality for developing novel inhibitors targeting non-oncogenic addiction for cancer therapy.
Collapse
Affiliation(s)
- Hae Ryung Chang
- Department of Biological Sciences and Research Institute of Women’s Health, Sookmyung Women’s University, Seoul 04310, Korea; (E.J.); (S.C.)
| | - Eunyoung Jung
- Department of Biological Sciences and Research Institute of Women’s Health, Sookmyung Women’s University, Seoul 04310, Korea; (E.J.); (S.C.)
| | - Soobin Cho
- Department of Biological Sciences and Research Institute of Women’s Health, Sookmyung Women’s University, Seoul 04310, Korea; (E.J.); (S.C.)
| | - Young-Jun Jeon
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea;
| | - Yonghwan Kim
- Department of Biological Sciences and Research Institute of Women’s Health, Sookmyung Women’s University, Seoul 04310, Korea; (E.J.); (S.C.)
| |
Collapse
|
33
|
Schlam‐Babayov S, Bensimon A, Harel M, Geiger T, Aebersold R, Ziv Y, Shiloh Y. Phosphoproteomics reveals novel modes of function and inter-relationships among PIKKs in response to genotoxic stress. EMBO J 2021; 40:e104400. [PMID: 33215756 PMCID: PMC7809795 DOI: 10.15252/embj.2020104400] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 08/13/2020] [Accepted: 10/12/2020] [Indexed: 01/10/2023] Open
Abstract
The DNA damage response (DDR) is a complex signaling network that relies on cascades of protein phosphorylation, which are initiated by three protein kinases of the family of PI3-kinase-related protein kinases (PIKKs): ATM, ATR, and DNA-PK. ATM is missing or inactivated in the genome instability syndrome, ataxia-telangiectasia (A-T). The relative shares of these PIKKs in the response to genotoxic stress and the functional relationships among them are central questions in the genome stability field. We conducted a comprehensive phosphoproteomic analysis in human wild-type and A-T cells treated with the double-strand break-inducing chemical, neocarzinostatin, and validated the results with the targeted proteomic technique, selected reaction monitoring. We also matched our results with 34 published screens for DDR factors, creating a valuable resource for identifying strong candidates for novel DDR players. We uncovered fine-tuned dynamics between the PIKKs following genotoxic stress, such as DNA-PK-dependent attenuation of ATM. In A-T cells, partial compensation for ATM absence was provided by ATR and DNA-PK, with distinct roles and kinetics. The results highlight intricate relationships between these PIKKs in the DDR.
Collapse
Affiliation(s)
- Sapir Schlam‐Babayov
- The David and Inez Myers Laboratory of Cancer GeneticsDepartment of Human Molecular Genetics and BiochemistryTel Aviv University School of MedicineTel AvivIsrael
| | - Ariel Bensimon
- Department of BiologyInstitute of Molecular Systems BiologyETH ZurichZurichSwitzerland
- Present address:
CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Michal Harel
- Department of Human Molecular Genetics and BiochemistryTel Aviv University School of MedicineTel AvivIsrael
| | - Tamar Geiger
- Department of Human Molecular Genetics and BiochemistryTel Aviv University School of MedicineTel AvivIsrael
| | - Ruedi Aebersold
- Department of BiologyInstitute of Molecular Systems BiologyETH ZurichZurichSwitzerland
- Faculty of ScienceUniversity of ZurichZurichSwitzerland
| | - Yael Ziv
- The David and Inez Myers Laboratory of Cancer GeneticsDepartment of Human Molecular Genetics and BiochemistryTel Aviv University School of MedicineTel AvivIsrael
| | - Yosef Shiloh
- The David and Inez Myers Laboratory of Cancer GeneticsDepartment of Human Molecular Genetics and BiochemistryTel Aviv University School of MedicineTel AvivIsrael
| |
Collapse
|
34
|
Fan G, Sun L, Meng L, Hu C, Wang X, Shi Z, Hu C, Han Y, Yang Q, Cao L, Zhang X, Zhang Y, Song X, Xia S, He B, Zhang S, Wang C. The ATM and ATR kinases regulate centrosome clustering and tumor recurrence by targeting KIFC1 phosphorylation. Nat Commun 2021; 12:20. [PMID: 33397932 PMCID: PMC7782532 DOI: 10.1038/s41467-020-20208-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 11/18/2020] [Indexed: 12/31/2022] Open
Abstract
Drug resistance and tumor recurrence are major challenges in cancer treatment. Cancer cells often display centrosome amplification. To maintain survival, cancer cells achieve bipolar division by clustering supernumerary centrosomes. Targeting centrosome clustering is therefore considered a promising therapeutic strategy. However, the regulatory mechanisms of centrosome clustering remain unclear. Here we report that KIFC1, a centrosome clustering regulator, is positively associated with tumor recurrence. Under DNA damaging treatments, the ATM and ATR kinases phosphorylate KIFC1 at Ser26 to selectively maintain the survival of cancer cells with amplified centrosomes via centrosome clustering, leading to drug resistance and tumor recurrence. Inhibition of KIFC1 phosphorylation represses centrosome clustering and tumor recurrence. This study identified KIFC1 as a prognostic tumor recurrence marker, and revealed that tumors can acquire therapeutic resistance and recurrence via triggering centrosome clustering under DNA damage stresses, suggesting that blocking KIFC1 phosphorylation may open a new vista for cancer therapy.
Collapse
Affiliation(s)
- Guangjian Fan
- Translational Medicine Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 201620, Shanghai, China
| | - Lianhui Sun
- Translational Medicine Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 201620, Shanghai, China
| | - Ling Meng
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Shandong First Medical University, 271000, Shandong, China
| | - Chen Hu
- Translational Medicine Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 201620, Shanghai, China
| | - Xing Wang
- Translational Medicine Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 201620, Shanghai, China
| | - Zhan Shi
- Translational Medicine Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 201620, Shanghai, China
| | - Congli Hu
- Translational Medicine Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 201620, Shanghai, China
| | - Yang Han
- Translational Medicine Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 201620, Shanghai, China
| | - Qingqing Yang
- Translational Medicine Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 201620, Shanghai, China
| | - Liu Cao
- Key Laboratory of Medical Cell Biology, College of Translational Medicine, China Medical University, 110000, Shenyang, China
| | - Xiaohong Zhang
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R., Detroit, MI, 48201, USA
| | - Yan Zhang
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 201620, Shanghai, China
| | - Xianmin Song
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 201620, Shanghai, China
| | - Shujie Xia
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine; Institute of Urology, Shanghai Jiao Tong University, 200080, Shanghai, China
| | - Baokun He
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 201620, Shanghai, China
| | - Shengping Zhang
- Translational Medicine Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 201620, Shanghai, China.
| | - Chuangui Wang
- Translational Medicine Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 201620, Shanghai, China.
| |
Collapse
|
35
|
Srivastava R, Duan R, Ahn SH. Multiple roles of CTDK-I throughout the cell. Cell Mol Life Sci 2019; 76:2789-2797. [PMID: 31037337 PMCID: PMC11105739 DOI: 10.1007/s00018-019-03118-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/08/2019] [Accepted: 04/24/2019] [Indexed: 11/27/2022]
Abstract
The heterotrimeric carboxy-terminal domain kinase I (CTDK-I) in yeast is a cyclin-dependent kinase complex that is evolutionally conserved throughout eukaryotes and phosphorylates the C-terminal domain of the largest subunit of RNA polymerase II (RNApII) on the second-position serine (Ser2) residue of YSPTSPS heptapeptide repeats. CTDK-I plays indispensable roles in transcription elongation and transcription-coupled processing, such as the 3'-end processing of nascent mRNA transcripts. However, recent studies have revealed additional roles of CTDK-I beyond its primary effect on transcription by RNApII. Here, we describe recent advances in the regulation of genomic stability and rDNA integrity by CTDK-I and highlight the previously underappreciated cellular roles of CTDK-I in rRNA synthesis by RNA polymerase I and translational initiation and elongation. These multiple roles of CTDK-I throughout the cell expand our understanding of how this complex functions to coordinate diverse cellular processes through gene expression and how the human orthologue exerts its roles in diseased states such as tumorigenesis.
Collapse
Affiliation(s)
- Rakesh Srivastava
- Plant Molecular Biology and Genetic Engineering Division, CSIR-National Botanical Research Institute, Lucknow, U.P., 226001, India
| | - Ruxin Duan
- Department of Molecular and Life Science, College of Science and Convergence Technology, Hanyang University ERICA Campus, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Seong Hoon Ahn
- Department of Molecular and Life Science, College of Science and Convergence Technology, Hanyang University ERICA Campus, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Republic of Korea.
| |
Collapse
|
36
|
Chang HR, Cho SY, Lee JH, Lee E, Seo J, Lee HR, Cavalcanti DP, Mäkitie O, Valta H, Girisha KM, Lee C, Neethukrishna K, Bhavani GS, Shukla A, Nampoothiri S, Phadke SR, Park MJ, Ikegawa S, Wang Z, Higgs MR, Stewart GS, Jung E, Lee MS, Park JH, Lee EA, Kim H, Myung K, Jeon W, Lee K, Kim D, Kim OH, Choi M, Lee HW, Kim Y, Cho TJ. Hypomorphic Mutations in TONSL Cause SPONASTRIME Dysplasia. Am J Hum Genet 2019; 104:439-453. [PMID: 30773278 DOI: 10.1016/j.ajhg.2019.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 01/17/2019] [Indexed: 02/07/2023] Open
Abstract
SPONASTRIME dysplasia is a rare, recessive skeletal dysplasia characterized by short stature, facial dysmorphism, and aberrant radiographic findings of the spine and long bone metaphysis. No causative genetic alterations for SPONASTRIME dysplasia have yet been determined. Using whole-exome sequencing (WES), we identified bi-allelic TONSL mutations in 10 of 13 individuals with SPONASTRIME dysplasia. TONSL is a multi-domain scaffold protein that interacts with DNA replication and repair factors and which plays critical roles in resistance to replication stress and the maintenance of genome integrity. We show here that cellular defects in dermal fibroblasts from affected individuals are complemented by the expression of wild-type TONSL. In addition, in vitro cell-based assays and in silico analyses of TONSL structure support the pathogenicity of those TONSL variants. Intriguingly, a knock-in (KI) Tonsl mouse model leads to embryonic lethality, implying the physiological importance of TONSL. Overall, these findings indicate that genetic variants resulting in reduced function of TONSL cause SPONASTRIME dysplasia and highlight the importance of TONSL in embryonic development and postnatal growth.
Collapse
|
37
|
Burrage LC, Reynolds JJ, Baratang NV, Phillips JB, Wegner J, McFarquhar A, Higgs MR, Christiansen AE, Lanza DG, Seavitt JR, Jain M, Li X, Parry DA, Raman V, Chitayat D, Chinn IK, Bertuch AA, Karaviti L, Schlesinger AE, Earl D, Bamshad M, Savarirayan R, Doddapaneni H, Muzny D, Jhangiani SN, Eng CM, Gibbs RA, Bi W, Emrick L, Rosenfeld JA, Postlethwait J, Westerfield M, Dickinson ME, Beaudet AL, Ranza E, Huber C, Cormier-Daire V, Shen W, Mao R, Heaney JD, Orange JS, Bertola D, Yamamoto GL, Baratela WAR, Butler MG, Ali A, Adeli M, Cohn DH, Krakow D, Jackson AP, Lees M, Offiah AC, Carlston CM, Carey JC, Stewart GS, Bacino CA, Campeau PM, Lee B. Bi-allelic Variants in TONSL Cause SPONASTRIME Dysplasia and a Spectrum of Skeletal Dysplasia Phenotypes. Am J Hum Genet 2019; 104:422-438. [PMID: 30773277 PMCID: PMC6408318 DOI: 10.1016/j.ajhg.2019.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 01/17/2019] [Indexed: 12/14/2022] Open
Abstract
SPONASTRIME dysplasia is an autosomal-recessive spondyloepimetaphyseal dysplasia characterized by spine (spondylar) abnormalities, midface hypoplasia with a depressed nasal bridge, metaphyseal striations, and disproportionate short stature. Scoliosis, coxa vara, childhood cataracts, short dental roots, and hypogammaglobulinemia have also been reported in this disorder. Although an autosomal-recessive inheritance pattern has been hypothesized, pathogenic variants in a specific gene have not been discovered in individuals with SPONASTRIME dysplasia. Here, we identified bi-allelic variants in TONSL, which encodes the Tonsoku-like DNA repair protein, in nine subjects (from eight families) with SPONASTRIME dysplasia, and four subjects (from three families) with short stature of varied severity and spondylometaphyseal dysplasia with or without immunologic and hematologic abnormalities, but no definitive metaphyseal striations at diagnosis. The finding of early embryonic lethality in a Tonsl-/- murine model and the discovery of reduced length, spinal abnormalities, reduced numbers of neutrophils, and early lethality in a tonsl-/- zebrafish model both support the hypomorphic nature of the identified TONSL variants. Moreover, functional studies revealed increased amounts of spontaneous replication fork stalling and chromosomal aberrations, as well as fewer camptothecin (CPT)-induced RAD51 foci in subject-derived cell lines. Importantly, these cellular defects were rescued upon re-expression of wild-type (WT) TONSL; this rescue is consistent with the hypothesis that hypomorphic TONSL variants are pathogenic. Overall, our studies in humans, mice, zebrafish, and subject-derived cell lines confirm that pathogenic variants in TONSL impair DNA replication and homologous recombination-dependent repair processes, and they lead to a spectrum of skeletal dysplasia phenotypes with numerous extra-skeletal manifestations.
Collapse
Affiliation(s)
- Lindsay C Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA
| | - John J Reynolds
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Nissan Vida Baratang
- Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC H3T1J4, Canada
| | | | - Jeremy Wegner
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Ashley McFarquhar
- Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC H3T1J4, Canada
| | - Martin R Higgs
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Audrey E Christiansen
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Denise G Lanza
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - John R Seavitt
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mahim Jain
- Department of Bone and Osteogenesis Imperfecta, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Xiaohui Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - David A Parry
- Medical Research Council Institute of Genetics & Molecular Medicine, the University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - Vandana Raman
- Division of Pediatric Endocrinology and Diabetes, University of Utah, Salt Lake City, UT 84112, USA
| | - David Chitayat
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, ON M5G 1Z5, Canada; Department of Pediatrics, Division of Clinical and Metabolic Genetics, the Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Ivan K Chinn
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Division of Pediatric Immunology, Allergy, and Rheumatology, Texas Children's Hospital, Houston, TX 77030, USA
| | - Alison A Bertuch
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lefkothea Karaviti
- Division of Diabetes and Endocrinology, Texas Children's Hospital, Houston, TX 77030, USA
| | - Alan E Schlesinger
- Department of Pediatric Radiology, Texas Children's Hospital, Houston, TX 77030, USA; Department of Radiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dawn Earl
- Seattle Children's Hospital, Seattle, WA 98195, USA
| | - Michael Bamshad
- Seattle Children's Hospital, Seattle, WA 98195, USA; Departments of Pediatrics and Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Ravi Savarirayan
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, University of Melbourne, Parkville, VIC 3052, Australia
| | - Harsha Doddapaneni
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Donna Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shalini N Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christine M Eng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor Genetics, Houston, TX 77030, USA
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Weimin Bi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor Genetics, Houston, TX 77030, USA
| | - Lisa Emrick
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Division of Neurology and Developmental Neuroscience and Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - John Postlethwait
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Monte Westerfield
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Mary E Dickinson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Arthur L Beaudet
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Emmanuelle Ranza
- Service of Genetic Medicine, University of Geneva Medical School, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Celine Huber
- Department of Genetics, INSERM UMR1163, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, AP-HP, Hôpital Necker Enfants Malades, Paris 75015, France
| | - Valérie Cormier-Daire
- Department of Genetics, INSERM UMR1163, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, AP-HP, Hôpital Necker Enfants Malades, Paris 75015, France
| | - Wei Shen
- Associated Regional and University Pathologists Laboratories, Salt Lake City, UT 84108, USA; Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Rong Mao
- Associated Regional and University Pathologists Laboratories, Salt Lake City, UT 84108, USA; Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Jason D Heaney
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jordan S Orange
- Division of Pediatric Immunology, Allergy, and Rheumatology, Texas Children's Hospital, Houston, TX 77030, USA; Current affiliation: Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York Presbyterian, New York, NY 10032, USA
| | - Débora Bertola
- Clinical Genetics Unit, Instituto da Criança, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP 05403-000, Brazil; Centro de Pesquisa sobre o Genoma Humano e Células-Tronco, Instituto de Biociências da Universidade de São Paulo, SP 05508-0900, Brazil
| | - Guilherme L Yamamoto
- Clinical Genetics Unit, Instituto da Criança, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP 05403-000, Brazil; Centro de Pesquisa sobre o Genoma Humano e Células-Tronco, Instituto de Biociências da Universidade de São Paulo, SP 05508-0900, Brazil
| | - Wagner A R Baratela
- Clinical Genetics Unit, Instituto da Criança, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP 05403-000, Brazil
| | - Merlin G Butler
- Departments of Psychiatry and Behavioral Sciences and Pediatrics, Kansas University Medical Center, Kansas City, KS 66160, USA
| | - Asim Ali
- Department of Ophthalmology and Vision Sciences, the Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Mehdi Adeli
- Department of Allergy and Immunology, Sidra Medicine, Hamad Medical Corporation, Weill Cornell Medicine, Qatar, Doha, Qatar
| | - Daniel H Cohn
- Department of Molecular, Cell, and Developmental Biology and Department of Orthopaedic Surgery, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Deborah Krakow
- Department of Orthopaedic Surgery, Department of Human Genetics and Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Andrew P Jackson
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Melissa Lees
- North East Thames Regional Genetics Service, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Amaka C Offiah
- Department of Oncology and Metabolism, Academic Unit of Child Health, University of Sheffield, Sheffield S10 2TH, UK
| | - Colleen M Carlston
- Associated Regional and University Pathologists Laboratories, Salt Lake City, UT 84108, USA; Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - John C Carey
- Department of Pediatrics, Division of Medical Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Grant S Stewart
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Carlos A Bacino
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA
| | - Philippe M Campeau
- Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC H3T1J4, Canada
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA.
| |
Collapse
|
38
|
Brzezinka K, Altmann S, Bäurle I. BRUSHY1/TONSOKU/MGOUN3 is required for heat stress memory. PLANT, CELL & ENVIRONMENT 2019; 42:771-781. [PMID: 29884991 DOI: 10.1111/pce.13365] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/29/2018] [Accepted: 05/31/2018] [Indexed: 05/20/2023]
Abstract
Plants encounter biotic and abiotic stresses many times during their life cycle and this limits their productivity. Moderate heat stress (HS) primes a plant to survive higher temperatures that are lethal in the naïve state. Once temperature stress subsides, the memory of the priming event is actively retained for several days preparing the plant to better cope with recurring HS. Recently, chromatin regulation at different levels has been implicated in HS memory. Here, we report that the chromatin protein BRUSHY1 (BRU1)/TONSOKU/MGOUN3 plays a role in the HS memory in Arabidopsis thaliana. BRU1 is also involved in transcriptional gene silencing and DNA damage repair. This corresponds with the functions of its mammalian orthologue TONSOKU-LIKE/NFΚBIL2. During HS memory, BRU1 is required to maintain sustained induction of HS memory-associated genes, whereas it is dispensable for the acquisition of thermotolerance. In summary, we report that BRU1 is required for HS memory in A. thaliana, and propose a model where BRU1 mediates the epigenetic inheritance of chromatin states across DNA replication and cell division.
Collapse
Affiliation(s)
- Krzysztof Brzezinka
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Simone Altmann
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Isabel Bäurle
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
39
|
Sun H, Zhang J, Xin S, Jiang M, Zhang J, Li Z, Cao Q, Lou H. Cul4-Ddb1 ubiquitin ligases facilitate DNA replication-coupled sister chromatid cohesion through regulation of cohesin acetyltransferase Esco2. PLoS Genet 2019; 15:e1007685. [PMID: 30779731 PMCID: PMC6396947 DOI: 10.1371/journal.pgen.1007685] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 03/01/2019] [Accepted: 01/16/2019] [Indexed: 12/30/2022] Open
Abstract
Cohesin acetyltransferases ESCO1 and ESCO2 play a vital role in establishing sister chromatid cohesion. How ESCO1 and ESCO2 are controlled in a DNA replication-coupled manner remains unclear in higher eukaryotes. Here we show a critical role of CUL4-RING ligases (CRL4s) in cohesion establishment via regulating ESCO2 in human cells. Depletion of CUL4A, CUL4B or DDB1 subunits substantially reduces the normal cohesion efficiency. We also show that MMS22L, a vertebrate ortholog of yeast Mms22, is one of DDB1 and CUL4-associated factors (DCAFs) involved in cohesion. Several lines of evidence show selective interaction of CRL4s with ESCO2 through LxG motif, which is lost in ESCO1. Depletion of either CRL4s or ESCO2 causes a defect in SMC3 acetylation, which can be rescued by HDAC8 inhibition. More importantly, both CRL4s and PCNA act as mediators for efficiently stabilizing ESCO2 on chromatin and catalyzing SMC3 acetylation. Taken together, we propose an evolutionarily conserved mechanism in which CRL4s and PCNA promote ESCO2-dependent establishment of sister chromatid cohesion.
Collapse
Affiliation(s)
- Haitao Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jiaxin Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Siyu Xin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Meiqian Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jingjing Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhen Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qinhong Cao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Huiqiang Lou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
40
|
Fournier LA, Kumar A, Stirling PC. Chromatin as a Platform for Modulating the Replication Stress Response. Genes (Basel) 2018; 9:genes9120622. [PMID: 30544989 PMCID: PMC6316668 DOI: 10.3390/genes9120622] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 02/06/2023] Open
Abstract
Eukaryotic DNA replication occurs in the context of chromatin. Recent years have seen major advances in our understanding of histone supply, histone recycling and nascent histone incorporation during replication. Furthermore, much is now known about the roles of histone remodellers and post-translational modifications in replication. It has also become clear that nucleosome dynamics during replication play critical roles in genome maintenance and that chromatin modifiers are important for preventing DNA replication stress. An understanding of how cells deploy specific nucleosome modifiers, chaperones and remodellers directly at sites of replication fork stalling has been building more slowly. Here we will specifically discuss recent advances in understanding how chromatin composition contribute to replication fork stability and restart.
Collapse
Affiliation(s)
| | - Arun Kumar
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada.
| | - Peter C Stirling
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada.
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 1L3, Canada.
| |
Collapse
|
41
|
Kucherlapati M. Examining transcriptional changes to DNA replication and repair factors over uveal melanoma subtypes. BMC Cancer 2018; 18:818. [PMID: 30107825 PMCID: PMC6092802 DOI: 10.1186/s12885-018-4705-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 07/30/2018] [Indexed: 12/20/2022] Open
Abstract
Background Uncontrolled replication is a process common to all cancers facilitated by the summation of changes accumulated as tumors progress. The aim of this study was to examine small groups of genes with known biology in replication and repair at the transcriptional and genomic levels, correlating alterations with survival in uveal melanoma tumor progression. Selected components of Pre-Replication, Pre-Initiation, and Replisome Complexes, DNA Damage Response and Mismatch Repair have been observed. Methods Two groups have been generated for selected genes above and below the average alteration level and compared for expression and survival across The Cancer Genome Atlas uveal melanoma subtypes. Significant differences in expression between subtypes monosomic or disomic for chromosome 3 have been identified by Fisher’s exact test. Kaplan Meier survival distribution based on disease specific survival has been compared by Log-rank test. Results Genes with significant alteration include MCM2, MCM4, MCM5, CDC45, MCM10, CIZ1, PCNA, FEN1, LIG1, POLD1, POLE, HUS1, CHECK1, ATRIP, MLH3, and MSH6. Exon 4 skipping in CIZ1 previously identified as a cancer variant, and reportedly used as an early serum biomarker in lung cancer was found. Mismatch Repair protein MLH3 was found to have splicing variations with deletions to both Exon 5 and Exon 7 simultaneously. PCNA, FEN1, and LIG1 had increased relative expression levels not due to mutation or to copy number variation. Conclusion The current study proposes changes in relative and differential expression to replication and repair genes that support the concept their products are causally involved in uveal melanoma. Specific avenues for early biomarker identification and therapeutic approach are suggested.
Collapse
Affiliation(s)
- Melanie Kucherlapati
- Department of Genetics, Harvard Medical School, Boston, 02115, MA, USA. .,Department of Medicine, Division of Genetics, Brigham and Women's Hospital, 77 Avenue Louis Pasteur NRB 160B, Boston, 02115, MA, USA.
| |
Collapse
|
42
|
Henssen AG, Reed C, Jiang E, Garcia HD, von Stebut J, MacArthur IC, Hundsdoerfer P, Kim JH, de Stanchina E, Kuwahara Y, Hosoi H, Ganem NJ, Dela Cruz F, Kung AL, Schulte JH, Petrini JH, Kentsis A. Therapeutic targeting of PGBD5-induced DNA repair dependency in pediatric solid tumors. Sci Transl Med 2018; 9:9/414/eaam9078. [PMID: 29093183 DOI: 10.1126/scitranslmed.aam9078] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 07/15/2017] [Accepted: 09/25/2017] [Indexed: 12/16/2022]
Abstract
Despite intense efforts, the cure rates of childhood and adult solid tumors are not satisfactory. Resistance to intensive chemotherapy is common, and targets for molecular therapies are largely undefined. We have found that the majority of childhood solid tumors, including rhabdoid tumors, neuroblastoma, medulloblastoma, and Ewing sarcoma, express an active DNA transposase, PGBD5, that can promote site-specific genomic rearrangements in human cells. Using functional genetic approaches, we discovered that mouse and human cells deficient in nonhomologous end joining (NHEJ) DNA repair cannot tolerate the expression of PGBD5. In a chemical screen of DNA damage signaling inhibitors, we identified AZD6738 as a specific sensitizer of PGBD5-dependent DNA damage and apoptosis. We found that expression of PGBD5, but not its nuclease activity-deficient mutant, was sufficient to induce sensitivity to AZD6738. Depletion of endogenous PGBD5 conferred resistance to AZD6738 in human tumor cells. PGBD5-expressing tumor cells accumulated unrepaired DNA damage in response to AZD6738 treatment and underwent apoptosis in both dividing and G1-phase cells in the absence of immediate DNA replication stress. Accordingly, AZD6738 exhibited nanomolar potency against most neuroblastoma, medulloblastoma, Ewing sarcoma, and rhabdoid tumor cells tested while sparing nontransformed human and mouse embryonic fibroblasts in vitro. Finally, treatment with AZD6738 induced apoptosis and regression of human neuroblastoma and medulloblastoma tumors engrafted in immunodeficient mice in vivo. This effect was potentiated by combined treatment with cisplatin, including substantial antitumor activity against patient-derived primary neuroblastoma xenografts. These findings delineate a therapeutically actionable synthetic dependency induced in PGBD5-expressing solid tumors.
Collapse
Affiliation(s)
- Anton G Henssen
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Berlin Institute of Health, 10178 Berlin, Germany.,Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany.,German Cancer Consortium (DKTK), 10117 Berlin, Germany
| | - Casie Reed
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Eileen Jiang
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Heathcliff Dorado Garcia
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Jennifer von Stebut
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Ian C MacArthur
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Patrick Hundsdoerfer
- Berlin Institute of Health, 10178 Berlin, Germany.,Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Jun Hyun Kim
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yasumichi Kuwahara
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hajime Hosoi
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Neil J Ganem
- Section of Hematology and Medical Oncology, Department of Pharmacology, Boston University School of Medicine, Boston, MA 02215, USA
| | - Filemon Dela Cruz
- Department of Pediatrics, Weill Cornell Medical College of Cornell University and Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Andrew L Kung
- Department of Pediatrics, Weill Cornell Medical College of Cornell University and Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Johannes H Schulte
- Berlin Institute of Health, 10178 Berlin, Germany.,Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany.,German Cancer Consortium (DKTK), 10117 Berlin, Germany.,Deutsches Krebsforschungszentrum Heidelberg, 69120 Heidelberg, Germany
| | - John H Petrini
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alex Kentsis
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. .,Department of Pediatrics, Weill Cornell Medical College of Cornell University and Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
43
|
Ando K, Shah AK, Sachdev V, Kleinstiver BP, Taylor-Parker J, Welch MM, Hu Y, Salgia R, White FM, Parvin JD, Ozonoff A, Rameh LE, Joung JK, Bharti AK. Camptothecin resistance is determined by the regulation of topoisomerase I degradation mediated by ubiquitin proteasome pathway. Oncotarget 2018; 8:43733-43751. [PMID: 28415827 PMCID: PMC5546437 DOI: 10.18632/oncotarget.16376] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/03/2017] [Indexed: 02/06/2023] Open
Abstract
Proteasomal degradation of topoisomerase I (topoI) is one of the most remarkable cellular phenomena observed in response to camptothecin (CPT). Importantly, the rate of topoI degradation is linked to CPT resistance. Formation of the topoI-DNA-CPT cleavable complex inhibits DNA re-ligation resulting in DNA-double strand break (DSB). The degradation of topoI marks the first step in the ubiquitin proteasome pathway (UPP) dependent DNA damage response (DDR). Here, we show that the Ku70/Ku80 heterodimer binds with topoI, and that the DNA-dependent protein kinase (DNA-PKcs) phosphorylates topoI on serine 10 (topoI-pS10), which is subsequently ubiquitinated by BRCA1. A higher basal level of topoI-pS10 ensures rapid topoI degradation leading to CPT resistance. Importantly, PTEN regulates DNA-PKcs kinase activity in this pathway and PTEN deletion ensures DNA-PKcs dependent higher topoI-pS10, rapid topoI degradation and CPT resistance.
Collapse
Affiliation(s)
- Koji Ando
- Department of Medicine, Division of Hematology Oncology, Boston University School of Medicine, Boston, MA, USA
| | - Ankur K Shah
- Department of Medicine, Division of Hematology Oncology, Boston University School of Medicine, Boston, MA, USA
| | - Vibhu Sachdev
- Department of Medicine, Division of Hematology Oncology, Boston University School of Medicine, Boston, MA, USA
| | - Benjamin P Kleinstiver
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
| | - Julian Taylor-Parker
- Department of Medicine, Division of Hematology Oncology, Boston University School of Medicine, Boston, MA, USA
| | - Moira M Welch
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Yiheng Hu
- Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte , CA, USA
| | - Forest M White
- Department of Biological Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jeffrey D Parvin
- Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Al Ozonoff
- Center for Patient Safety and Quality Research, Boston Children's Hospital, Boston, MA, USA
| | - Lucia E Rameh
- Department of Medicine, Obesity Research Center, Boston University School of Medicine, Boston, MA, USA
| | - J Keith Joung
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
| | - Ajit K Bharti
- Department of Medicine, Division of Hematology Oncology, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
44
|
Serra-Cardona A, Zhang Z. Replication-Coupled Nucleosome Assembly in the Passage of Epigenetic Information and Cell Identity. Trends Biochem Sci 2017; 43:136-148. [PMID: 29292063 DOI: 10.1016/j.tibs.2017.12.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/07/2017] [Accepted: 12/09/2017] [Indexed: 12/31/2022]
Abstract
During S phase, replicated DNA must be assembled into nucleosomes using both newly synthesized and parental histones in a process that is tightly coupled to DNA replication. This DNA replication-coupled process is regulated by multitude of histone chaperones as well as by histone-modifying enzymes. In recent years novel insights into nucleosome assembly of new H3-H4 tetramers have been gained through studies on the classical histone chaperone CAF-1 and the identification of novel factors involved in this process. Moreover, in vitro reconstitution of chromatin replication has shed light on nucleosome assembly of parental H3-H4, a process that remains elusive. Finally, recent studies have revealed that the replication-coupled nucleosome assembly is important for the determination and maintenance of cell fate in multicellular organisms.
Collapse
Affiliation(s)
- Albert Serra-Cardona
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA; Department of Pediatrics, Columbia University, New York, NY 10032, USA; Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | - Zhiguo Zhang
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA; Department of Pediatrics, Columbia University, New York, NY 10032, USA; Department of Genetics and Development, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
45
|
Paculová H, Kohoutek J. The emerging roles of CDK12 in tumorigenesis. Cell Div 2017; 12:7. [PMID: 29090014 PMCID: PMC5658942 DOI: 10.1186/s13008-017-0033-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/16/2017] [Indexed: 12/25/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) are key regulators of both cell cycle progression and transcription. Since dysregulation of CDKs is a frequently occurring event driving tumorigenesis, CDKs have been tested extensively as targets for cancer therapy. Cyclin-dependent kinase 12 (CDK12) is a transcription-associated kinase which participates in various cellular processes, including DNA damage response, development and cellular differentiation, as well as splicing and pre-mRNA processing. CDK12 mutations and amplification have been recently reported in different types of malignancies, including loss-of-function mutations in high-grade serous ovarian carcinomas, and that has led to assumption that CDK12 is a tumor suppressor. On the contrary, CDK12 overexpression in other tumors suggests the possibility that CDK12 has oncogenic properties, similarly to other transcription-associated kinases. In this review, we discuss current knowledge concerning the role of CDK12 in ovarian and breast tumorigenesis and the potential for chemical inhibitors of CDK12 in future cancer treatment.
Collapse
Affiliation(s)
- Hana Paculová
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 296/70, Brno, 621 00 Czech Republic
| | - Jiří Kohoutek
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 296/70, Brno, 621 00 Czech Republic
| |
Collapse
|
46
|
Pegoraro G, Misteli T. High-Throughput Imaging for the Discovery of Cellular Mechanisms of Disease. Trends Genet 2017; 33:604-615. [PMID: 28732598 DOI: 10.1016/j.tig.2017.06.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 12/23/2022]
Abstract
High-throughput imaging (HTI) is a powerful tool in the discovery of cellular disease mechanisms. While traditional approaches to identify disease pathways often rely on knowledge of the causative genetic defect, HTI-based screens offer an unbiased discovery approach based on any morphological or functional defects of disease cells or tissues. In this review, we provide an overview of the use of HTI for the study of human disease mechanisms. We discuss key technical aspects of HTI and highlight representative examples of its practical applications for the discovery of molecular mechanisms of disease, focusing on infectious diseases and host-pathogen interactions, cancer, and rare genetic diseases. We also present some of the current challenges and possible solutions offered by novel cell culture systems and genome engineering approaches.
Collapse
Affiliation(s)
- Gianluca Pegoraro
- NCI High-Throughput Imaging Facility, Bethesda, MD 20892, USA; Center for Cancer Research, National Cancer Institute/NIH, Bethesda, MD 20892, USA.
| | - Tom Misteli
- Center for Cancer Research, National Cancer Institute/NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
47
|
Zhang J, Shi D, Li X, Ding L, Tang J, Liu C, Shirahige K, Cao Q, Lou H. Rtt101-Mms1-Mms22 coordinates replication-coupled sister chromatid cohesion and nucleosome assembly. EMBO Rep 2017; 18:1294-1305. [PMID: 28615292 DOI: 10.15252/embr.201643807] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 05/03/2017] [Accepted: 05/08/2017] [Indexed: 01/10/2023] Open
Abstract
Two sister chromatids must be held together by a cohesion process from their synthesis during S phase to segregation in anaphase. Despite its pivotal role in accurate chromosome segregation, how cohesion is established remains elusive. Here, we demonstrate that yeast Rtt101-Mms1, Cul4 family E3 ubiquitin ligases are stronger dosage suppressors of loss-of-function eco1 mutants than PCNA The essential cohesion reaction, Eco1-catalyzed Smc3 acetylation is reduced in the absence of Rtt101-Mms1. One of the adaptor subunits, Mms22, associates directly with Eco1. Point mutations (L61D/G63D) in Eco1 that abolish the interaction with Mms22 impair Smc3 acetylation. Importantly, an eco1LGpol30A251V double mutant displays additive Smc3ac reduction. Moreover, Smc3 acetylation and cohesion defects also occur in the mutants of other replication-coupled nucleosome assembly (RCNA) factors upstream or downstream of Rtt101-Mms1, indicating unanticipated cross talk between histone modifications and cohesin acetylation. These data suggest that fork-associated Cul4-Ddb1 E3s, together with PCNA, coordinate chromatin reassembly and cohesion establishment on the newly replicated sister chromatids, which are crucial for maintaining genome and chromosome stability.
Collapse
Affiliation(s)
- Jingjing Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Di Shi
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaoli Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Lin Ding
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jun Tang
- State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Cong Liu
- Laboratory of Genomic Stability, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Katsuhiko Shirahige
- Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Qinhong Cao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Huiqiang Lou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
48
|
Dewar JM, Low E, Mann M, Räschle M, Walter JC. CRL2 Lrr1 promotes unloading of the vertebrate replisome from chromatin during replication termination. Genes Dev 2017; 31:275-290. [PMID: 28235849 PMCID: PMC5358724 DOI: 10.1101/gad.291799.116] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 01/30/2017] [Indexed: 01/26/2023]
Abstract
Here, Dewar et al. use a proteomic screen in Xenopus egg extracts to identify factors that are enriched on chromatin when CMG unloading from chromatin, which is a key event during eukaryotic replication termination, is blocked. Their results show that CRL2Lrr1 is a master regulator of replisome disassembly during vertebrate DNA replication termination. A key event during eukaryotic replication termination is the removal of the CMG helicase from chromatin. CMG unloading involves ubiquitylation of its Mcm7 subunit and the action of the p97 ATPase. Using a proteomic screen in Xenopus egg extracts, we identified factors that are enriched on chromatin when CMG unloading is blocked. This approach identified the E3 ubiquitin ligase CRL2Lrr1, a specific p97 complex, other potential regulators of termination, and many replisome components. We show that Mcm7 ubiquitylation and CRL2Lrr1 binding to chromatin are temporally linked and occur only during replication termination. In the absence of CRL2Lrr1, Mcm7 is not ubiquitylated, CMG unloading is inhibited, and a large subcomplex of the vertebrate replisome that includes DNA Pol ε is retained on DNA. Our data identify CRL2Lrr1 as a master regulator of replisome disassembly during vertebrate DNA replication termination.
Collapse
Affiliation(s)
- James M Dewar
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Emily Low
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Markus Räschle
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.,Howard Hughes Medical Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
49
|
Prado F, Maya D. Regulation of Replication Fork Advance and Stability by Nucleosome Assembly. Genes (Basel) 2017; 8:genes8020049. [PMID: 28125036 PMCID: PMC5333038 DOI: 10.3390/genes8020049] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/04/2017] [Accepted: 01/16/2017] [Indexed: 12/13/2022] Open
Abstract
The advance of replication forks to duplicate chromosomes in dividing cells requires the disassembly of nucleosomes ahead of the fork and the rapid assembly of parental and de novo histones at the newly synthesized strands behind the fork. Replication-coupled chromatin assembly provides a unique opportunity to regulate fork advance and stability. Through post-translational histone modifications and tightly regulated physical and genetic interactions between chromatin assembly factors and replisome components, chromatin assembly: (1) controls the rate of DNA synthesis and adjusts it to histone availability; (2) provides a mechanism to protect the integrity of the advancing fork; and (3) regulates the mechanisms of DNA damage tolerance in response to replication-blocking lesions. Uncoupling DNA synthesis from nucleosome assembly has deleterious effects on genome integrity and cell cycle progression and is linked to genetic diseases, cancer, and aging.
Collapse
Affiliation(s)
- Felix Prado
- Department of Genome Biology, Andalusian Molecular Biology and Regenerative Medicine Center (CABIMER), Spanish National Research Council (CSIC), Seville 41092, Spain.
| | - Douglas Maya
- Department of Genome Biology, Andalusian Molecular Biology and Regenerative Medicine Center (CABIMER), Spanish National Research Council (CSIC), Seville 41092, Spain.
| |
Collapse
|
50
|
Piwko W, Mlejnkova LJ, Mutreja K, Ranjha L, Stafa D, Smirnov A, Brodersen MM, Zellweger R, Sturzenegger A, Janscak P, Lopes M, Peter M, Cejka P. The MMS22L-TONSL heterodimer directly promotes RAD51-dependent recombination upon replication stress. EMBO J 2016; 35:2584-2601. [PMID: 27797818 DOI: 10.15252/embj.201593132] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 10/02/2016] [Accepted: 10/06/2016] [Indexed: 11/09/2022] Open
Abstract
Homologous recombination (HR) is a key pathway that repairs DNA double-strand breaks (DSBs) and helps to restart stalled or collapsed replication forks. How HR supports replication upon genotoxic stress is not understood. Using in vivo and in vitro approaches, we show that the MMS22L-TONSL heterodimer localizes to replication forks under unperturbed conditions and its recruitment is increased during replication stress in human cells. MMS22L-TONSL associates with replication protein A (RPA)-coated ssDNA, and the MMS22L subunit directly interacts with the strand exchange protein RAD51. MMS22L is required for proper RAD51 assembly at DNA damage sites in vivo, and HR-mediated repair of stalled forks is abrogated in cells expressing a MMS22L mutant deficient in RAD51 interaction. Similar to the recombination mediator BRCA2, recombinant MMS22L-TONSL limits the assembly of RAD51 on dsDNA, which stimulates RAD51-ssDNA nucleoprotein filament formation and RAD51-dependent strand exchange activity in vitro Thus, by specifically regulating RAD51 activity at uncoupled replication forks, MMS22L-TONSL stabilizes perturbed replication forks by promoting replication fork reversal and stimulating their HR-mediated restart in vivo.
Collapse
Affiliation(s)
- Wojciech Piwko
- Department of Biology, Institute of Biochemistry ETH Zurich, Zurich, Switzerland
| | - Lucie J Mlejnkova
- Institute of Molecular Cancer Research University of Zurich, Zurich, Switzerland
| | - Karun Mutreja
- Institute of Molecular Cancer Research University of Zurich, Zurich, Switzerland
| | - Lepakshi Ranjha
- Institute of Molecular Cancer Research University of Zurich, Zurich, Switzerland
| | - Diana Stafa
- Department of Biology, Institute of Biochemistry ETH Zurich, Zurich, Switzerland
| | - Alexander Smirnov
- Institute of Molecular Cancer Research University of Zurich, Zurich, Switzerland
| | - Mia Ml Brodersen
- Department of Biology, Institute of Biochemistry ETH Zurich, Zurich, Switzerland
| | - Ralph Zellweger
- Institute of Molecular Cancer Research University of Zurich, Zurich, Switzerland
| | - Andreas Sturzenegger
- Institute of Molecular Cancer Research University of Zurich, Zurich, Switzerland
| | - Pavel Janscak
- Institute of Molecular Cancer Research University of Zurich, Zurich, Switzerland
| | - Massimo Lopes
- Institute of Molecular Cancer Research University of Zurich, Zurich, Switzerland
| | - Matthias Peter
- Department of Biology, Institute of Biochemistry ETH Zurich, Zurich, Switzerland
| | - Petr Cejka
- Institute of Molecular Cancer Research University of Zurich, Zurich, Switzerland
| |
Collapse
|