1
|
Göransson S, Olofsson H, Johansson HJ, Yan F, Vogiatzakis C, Liang S, Bellato HM, Masvidal L, Aksoylu I, Hartman J, Hajj GNM, Larsson O, Lehtiö J, Strömblad S. Mechanical control of breast cancer malignancy by promotion of mevalonate pathway enzyme synthesis. Matrix Biol 2025:S0945-053X(25)00050-2. [PMID: 40516663 DOI: 10.1016/j.matbio.2025.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2025] [Accepted: 05/24/2025] [Indexed: 06/16/2025]
Abstract
In breast cancer, mechanotransduction from stiffened extracellular matrix (ECM) drives proliferation and invasion. Here, we use a model of matrix stiffening mimicking progression of breast ductal carcinoma in situ to invasive ductal carcinoma. Quantitative mass spectrometry identified enrichment of ECM-stiffness upregulated mevalonate pathway enzymes, indicating sterol/isoprenoid metabolism reprogramming. Consistently, the first committed mevalonate pathway enzyme, Hydroxymethylglutaryl-CoA Synthase (HMGCS1), was upregulated in human breast cancer specimens and spatially correlated with cross-linked ECM. ECM-stiffness promoted HMGCS1 protein synthesis without corresponding mRNA level alterations, indicating post-transcriptional regulation of mevalonate biosynthesis via microenvironmental mechanical cues to impose rapid metabolic alterations. Moreover, HMGCS1-RNAi blocked the stiffness-driven breast cancer proliferative and invasive phenotype. Mechanistically, mechanotransduction signaling, through integrin and Rac1 to promote HMGCS1 protein expression, drives the breast cancer malignant phenotype. Intriguingly, the Rac1-P29S cancer mutant promoted a malignant phenotype without stiff ECM in a mevalonate-dependent manner. In summary, we define a mechano-responsive pathway controlling mevalonate pathway enzyme synthesis that drives breast cancer malignant behaviors.
Collapse
Affiliation(s)
- Sara Göransson
- Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Helene Olofsson
- Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Henrik J Johansson
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Solna, Sweden
| | - Feifei Yan
- Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden
| | | | - Shuo Liang
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Solna, Sweden
| | | | - Laia Masvidal
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Solna, Sweden
| | - Inci Aksoylu
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Solna, Sweden
| | - Johan Hartman
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Solna, Sweden; Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Glaucia N M Hajj
- International Research Center, A.C.Camargo Cancer Center, Sao Paulo, Brazil
| | - Ola Larsson
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Solna, Sweden
| | - Janne Lehtiö
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Solna, Sweden
| | - Staffan Strömblad
- Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
2
|
Lin YJ, Huang LT, Ke PY, Chen GC. The deubiquitinase USP45 inhibits autophagy through actin regulation by Coronin 1B. J Cell Biol 2025; 224:e202407014. [PMID: 40067150 PMCID: PMC11895698 DOI: 10.1083/jcb.202407014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/20/2024] [Accepted: 02/05/2025] [Indexed: 03/15/2025] Open
Abstract
The autophagy-lysosomal system comprises a highly dynamic and interconnected vesicular network that plays a central role in maintaining proteostasis and cellular homeostasis. In this study, we uncovered the deubiquitinating enzyme (DUB), dUsp45/USP45, as a key player in regulating autophagy and lysosomal activity in Drosophila and mammalian cells. Loss of dUsp45/USP45 results in autophagy activation and increased levels of V-ATPase to lysosomes, thus enhancing lysosomal acidification and function. Furthermore, we identified the actin-binding protein Coronin 1B (Coro1B) as a substrate of USP45. USP45 interacts with and deubiquitinates Coro1B, thereby stabilizing Coro1B levels. Notably, the ablation of USP45 or Coro1B promotes the formation of F-actin patches and the translocation of V-ATPase to lysosomes in an N-WASP-dependent manner. Additionally, we observed positive effects of dUsp45 depletion on extending lifespan and ameliorating polyglutamine (polyQ)-induced toxicity in Drosophila. Our findings highlight the important role of dUsp45/USP45 in regulating lysosomal function by modulating actin structures through Coro1B.
Collapse
Affiliation(s)
- Yuchieh Jay Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
- Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
| | - Li-Ting Huang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Po-Yuan Ke
- Department of Biochemistry & Molecular Biology and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Guang-Chao Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
- Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
3
|
Azar I, Khan HY, Bannoura SF, Gandhi N, Uddin MH, Nagasaka M, Gong J, Nazha B, Choucair K, Vojjala N, Khushman MM, Soares HP, El-Deiry WS, Philip PA, El-Rayes B, Chen H, Lou E, Muqbil I, Farrell AP, Swensen J, Oberley MJ, Nabhan C, Goel S, Shields AF, Mohammad RM, Pasche BC, Azmi AS. Molecular Characterization and Clinical Outcomes of Pancreatic Neuroendocrine Neoplasms Harboring PAK4-NAMPT Alterations. JCO ONCOLOGY ADVANCES 2025; 2:e2400032. [PMID: 40330142 PMCID: PMC12052073 DOI: 10.1200/oa-24-00032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 12/30/2024] [Accepted: 03/24/2025] [Indexed: 05/08/2025]
Abstract
PURPOSE The mammalian target of rapamycin (mTOR) inhibitor everolimus is US Food and Drug Administration-approved for advanced pancreatic neuroendocrine neoplasms (pNENs), yet resistance is common, necessitating the identification of resistance mechanisms for effective treatment strategies. Previous studies suggest that targeting the aberrant expression of mTOR regulators p21-activated kinase 4 (PAK4) and nicotinamide phosphoribosyl transferase (NAMPT) sensitizes pNENs to everolimus. In this study, we queried a large real-world data set of pNENs, characterizing the molecular and immune landscapes, as well as the clinical outcomes associated with aberrant PAK4 and NAMPT expression. METHODS Two-hundred and ninety-four pNEN cases were analyzed using next-generation sequencing and whole-exome/whole-transcriptome sequencing. We stratified patients into clusters on the basis of median cutoff. RESULTS High expression of genes activated in response to mTOR activation was found in NAMPT-high and PAK4-high groups. Enrichment of PI3K/AKT/mTOR and glycolysis pathways was observed in these tumors. Higher mutation rates in multiple endocrine neoplasia type 1, alpha thalassemia/mental retardation syndrome X-linked, TSC2, SETD2, and CCNE1 were observed in high NAMPT and PAK4 clusters. Immune analysis revealed enrichment in inflammatory response pathways, IL2/STAT5 signaling, and immune checkpoint genes. Increased neutrophils, natural killer cells, and macrophages were found in PAK4-high/NAMPT-high tumors. Analysis of real-world patient data revealed that high PAK4 (P = .0428) or NAMPT (P = .0002) expression individually correlated with lower overall survival in all neuroendocrine neoplasms (NEN) cohorts, while the combined high expression of both was associated with the worst outcomes (P = .0002). Similar trends were observed in pancreatic NEN cohorts. CONCLUSION Our study demonstrates that PAK4-high/NAMPT-high pNENs are associated with distinct molecular and immune profiles. Further investigation is warranted to determine if dual PAK4 and NAMPT blockade enhances the efficacy of immunotherapeutics.
Collapse
Affiliation(s)
- Ibrahim Azar
- IHA Hematology Oncology, Pontiac, MI
- Wayne State University, Detroit, MI
| | - Husain Yar Khan
- Wayne State University, Detroit, MI
- Barbara Ann Karmanos Cancer Institute, Detroit, MI
| | | | | | | | | | - Jun Gong
- Caris Life Sciences, Phoenix, AZ
| | - Bassel Nazha
- Winship Cancer Institute of Emory University, Atlanta, GA
| | | | | | | | | | | | | | | | - Herbert Chen
- University of Alabama School of Medicine, Birmingham, AL
| | - Emil Lou
- Masonic Cancer Center/University of Minnesota School of Medicine, Minneapolis, MN
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Li W, Li Y, Wang M, Liu H, Hong G, Jiang L, Liu Z, Wu Y, Yuan L, Zhao X, He Z, Guo S, Xiao Y, Bi X, Xia M, Zou G, Zhang L, Gao J, Fu X. TNFAIP8L2 maintains hair cell function and regulates age-related hearing loss via mTORC1 signaling. Mol Ther 2025:S1525-0016(25)00218-7. [PMID: 40165373 DOI: 10.1016/j.ymthe.2025.03.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/15/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025] Open
Abstract
Age-related hearing loss (ARHL) is one of the most prevalent and complex disorders. Our previous study demonstrated that abnormal activation of mammalian target of rapamycin complex 1 (mTORC1) signaling in the cochlear neurosensory epithelium causes auditory hair cell (HC) damage and contributes to ARHL. However, the underlying mechanism of mTORC1 activation remains unclear. In this study, we identified tumor necrosis factor-alpha-induced protein 8-like 2 (TNFAIP8L2), an immune regulatory gene, as a potential candidate. To elucidate the effect of TNFAIP8L2 on mTORC1 signaling in the neurosensory epithelium and on hearing function, we generated a Tnfaip8l2-deficient (Tnfaip8l2-/-) mouse model. We discovered that Tnfaip8l2 deficiency led to features of oxidative stress in cochlear HCs and age-related hearing degeneration, exhibiting a similar phenotype to the mTORC1-over-activated Tsc1-cKO mice described previously. Furthermore, rapamycin, a well-known mTORC1 inhibitor, significantly mitigated the hearing dysfunction caused by Tnfaip8l2-deficiency. Mechanistically, we found that TNFAIP8L2 regulates mTORC1 signaling by simultaneously inhibiting the GTPase activity of Ras homolog enriched in brain (RHEB) and Ras-related C3 botulinum toxin substrate 1 (RAC1). Notably, both RHEB and RAC1 inhibitors alleviated the hearing phenotype observed in Tnfaip8l2-/- mice by inhibiting mTORC1 signaling. Collectively, our results provide insights into the activation of the mTORC1 pathway in aged mouse cochleae and positions TNFAIP8L2 as a valuable theoretical strategy.
Collapse
Affiliation(s)
- Wen Li
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Yu Li
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Min Wang
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Hao Liu
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Guodong Hong
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Luhan Jiang
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Ziyi Liu
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Yunhao Wu
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Liangjie Yuan
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Xiaoxu Zhao
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Zuhong He
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Siwei Guo
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Yu Xiao
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Xiuli Bi
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Ming Xia
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Guichang Zou
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Lining Zhang
- School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Jiangang Gao
- School of Life Science, Shandong University, Qingdao, Shandong 266237, China
| | - Xiaolong Fu
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China; Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
5
|
Festuccia WT. mTORC1 and 2 Adrenergic Regulation and Function in Brown Adipose Tissue. Physiology (Bethesda) 2025; 40:0. [PMID: 39470603 DOI: 10.1152/physiol.00023.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 10/30/2024] Open
Abstract
Brown adipose tissue (BAT) thermogenesis results from the uncoupling of mitochondrial inner membrane proton gradient mediated by uncoupling protein 1 (UCP-1), which is activated by lipolysis-derived fatty acids. Norepinephrine (NE) secreted by sympathetic innervation not only activates BAT lipolysis and UCP-1 but, uniquely in brown adipocytes, promotes "futile" metabolic cycles and enhances BAT thermogenic capacity by increasing UCP-1 content, mitochondrial biogenesis, and brown adipocyte hyperplasia. NE exerts these actions by triggering signaling in the canonical G protein-coupled β-adrenergic receptors, cAMP, and protein kinase A (PKA) pathway, which in brown adipocytes is under a complex and intricate cross talk with important growth-promoting signaling pathways such as those of mechanistic target of rapamycin (mTOR) complexes 1 (mTORC1) and 2 (mTORC2). This article reviews evidence suggesting that mTOR complexes are modulated by and participate in the thermogenic, metabolic, and growth-promoting effects elicited by NE in BAT and discusses current gaps and future directions in this field of research.
Collapse
|
6
|
Rathnakar BH, Rackley A, Kwon HR, Berry WL, Olson LE. Mouse scalp development requires Rac1 and SRF for the maintenance of mechanosensing mesenchyme. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.11.637680. [PMID: 39990423 PMCID: PMC11844550 DOI: 10.1101/2025.02.11.637680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Regulation of essential cellular responses like proliferation, migration, and differentiation is crucial for normal development. Rac1, a ubiquitously expressed small GTPase, executes these responses under the regulation of guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GTPases). Mutations in specific GEFs (DOCK6) and GTPases (AHGAP31) that regulate Rac1 are associated with Adams-Oliver syndrome (AOS), a developmental syndrome characterized by congenital scalp defects and limb truncations. Genetic ablation of Rac1 in the mouse embryonic limb ectoderm results in limb truncation. However, the etiology of Rac1-associated cranial defects is unknown. To investigate the origin and nature of cranial defects, we used a mesenchymal Cre line ( Pdgfra-Cre ) to delete Rac1 in cranial mesenchyme. Rac1 -KO mice died perinatally and lacked the apical portion of the calvarium and overlying dermis, resembling cranial defects seen in severe cases of AOS. In control embryos, α-smooth muscle actin (αSMA) expression was spatially restricted to the apical mesenchyme, suggesting a mechanical interaction between the growing brain and the overlying mesenchyme. In Rac1 -KO embryos there was reduced proliferation of apical mesenchyme, and reduced expression of αSMA and its regulator, serum response factor (SRF). Remarkably, Srf -KO mice generated with Pdgfra-Cre recapitulated the cranial phenotype observed in Rac1- KO mice. Together, these data suggest a model where Rac1 and SRF are critical to maintaining apical fibroblasts in a mechano-sensitive and proliferative state needed to complete cranial development.
Collapse
|
7
|
Xu W, Chen H, Xiao H. mTORC2: A neglected player in aging regulation. J Cell Physiol 2024; 239:e31363. [PMID: 38982866 DOI: 10.1002/jcp.31363] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/21/2024] [Accepted: 06/19/2024] [Indexed: 07/11/2024]
Abstract
Mammalian target of rapamycin (mTOR) is a serine/threonine kinase that plays a pivotal role in various biological processes, through integrating external and internal signals, facilitating gene transcription and protein translation, as well as by regulating mitochondria and autophagy functions. mTOR kinase operates within two distinct protein complexes known as mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2), which engage separate downstream signaling pathways impacting diverse cellular processes. Although mTORC1 has been extensively studied as a pro-proliferative factor and a pro-aging hub if activated aberrantly, mTORC2 received less attention, particularly regarding its implication in aging regulation. However, recent studies brought increasing evidence or clues for us, which implies the associations of mTORC2 with aging, as the genetic elimination of unique subunits of mTORC2, such as RICTOR, has been shown to alleviate aging progression in comparison to mTORC1 inhibition. In this review, we first summarized the basic characteristics of mTORC2, including its protein architecture and signaling network. We then focused on reviewing the molecular signaling regulation of mTORC2 in cellular senescence and organismal aging, and proposed the multifaceted regulatory characteristics under senescent and nonsenescent contexts. Next, we outlined the research progress of mTOR inhibitors in the field of antiaging and discussed future prospects and challenges. It is our pleasure if this review article could provide meaningful information for our readers and call forth more investigations working on this topic.
Collapse
Affiliation(s)
- Weitong Xu
- The Lab of Aging Research, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Honghan Chen
- The Lab of Aging Research, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hengyi Xiao
- The Lab of Aging Research, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Ding Q, Cai J, Jin L, Hu W, Song W, Rose P, Tang Z, Zhan Y, Bao L, Lei W, Zhu YZ. A novel small molecule ZYZ384 targeting SMYD3 for hepatocellular carcinoma via reducing H3K4 trimethylation of the Rac1 promoter. MedComm (Beijing) 2024; 5:e711. [PMID: 39286779 PMCID: PMC11401973 DOI: 10.1002/mco2.711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/19/2024] [Accepted: 06/04/2024] [Indexed: 09/19/2024] Open
Abstract
SMYD3 (SET and MYND domain-containing 3) is a histone lysine methyltransferase highly expressed in different types of cancer(s) and is a promising epigenetic target for developing novel antitumor therapeutics. No selective inhibitors for this protein have been developed for cancer treatment. Therefore, the current study describes developing and characterizing a novel small molecule ZYZ384 screened and synthesized based on SMYD3 structure. Virtual screening was initially used to identify a lead compound and followed up by modification to get the novel molecules. Several technologies were used to facilitate compound screening about these novel molecules' binding affinities and inhibition activities with SMYD3 protein; the antitumor activity has been assessed in vitro using various cancer cell lines. In addition, a tumor-bearing nude mice model was established, and the activity of the selected molecule was determined in vivo. Both RNA-seq and chip-seq were performed to explore the antitumor mechanism. This work identified a novel small molecule ZYZ384 targeting SMYD3 with antitumor activity and impaired hepatocellular carcinoma tumor growth by reducing H3K4 trimethylation of the Rac1 promoter triggering the tumor cell cycle arrest through the AKT pathway.
Collapse
Affiliation(s)
- Qian Ding
- State Key Laboratory of Quality Research in Chinese Medicine & Laboratory of Drug Discovery from Natural Resources and Industrialization & School of Pharmacy Macau University of Science and Technology Macau SAR China
- Affiliated Hospital of Guangdong Medical University Zhanjiang China
- Joint Laboratory of TCM Innovation (Transformation) of Guizhou and Macau Guizhou University of Traditional Chinese Medicine Guiyang China
| | - Jianghong Cai
- State Key Laboratory of Quality Research in Chinese Medicine & Laboratory of Drug Discovery from Natural Resources and Industrialization & School of Pharmacy Macau University of Science and Technology Macau SAR China
| | - Li Jin
- State Key Laboratory of Quality Research in Chinese Medicine & Laboratory of Drug Discovery from Natural Resources and Industrialization & School of Pharmacy Macau University of Science and Technology Macau SAR China
| | - Wei Hu
- State Key Laboratory of Quality Research in Chinese Medicine & Laboratory of Drug Discovery from Natural Resources and Industrialization & School of Pharmacy Macau University of Science and Technology Macau SAR China
| | - Wu Song
- State Key Laboratory of Quality Research in Chinese Medicine & Laboratory of Drug Discovery from Natural Resources and Industrialization & School of Pharmacy Macau University of Science and Technology Macau SAR China
| | - Peter Rose
- School of Biosciences University of Nottingham Loughborough UK
| | - Zhiyuan Tang
- Department of Pharmacy Affiliated Hospital of Nantong University & Medical School of Nantong University Nantong China
| | - Yangyang Zhan
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital Navy Military Medical University Shanghai China
| | - Leilei Bao
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital Navy Military Medical University Shanghai China
| | - Wei Lei
- Affiliated Hospital of Guangdong Medical University Zhanjiang China
| | - Yi Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine & Laboratory of Drug Discovery from Natural Resources and Industrialization & School of Pharmacy Macau University of Science and Technology Macau SAR China
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy Fudan University Shanghai China
| |
Collapse
|
9
|
Teran Pumar OY, Zanotelli MR, Lin MCJ, Schmitt RR, Green KS, Rojas KS, Hwang IY, Cerione RA, Wilson KF. A multiprotein signaling complex sustains AKT and mTOR/S6K activity necessary for the survival of cancer cells undergoing stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.03.522657. [PMID: 36711811 PMCID: PMC9881951 DOI: 10.1101/2023.01.03.522657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The ability of cancer cells to survive microenvironmental stresses is critical for tumor progression and metastasis; however, how they survive these challenges is not fully understood. Here, we describe a novel multiprotein complex (DockTOR) essential for the survival of cancer cells under stress, triggered by the GTPase Cdc42 and a signaling partner Dock7, which includes AKT, mTOR, and the mTOR regulators TSC1, TSC2, and Rheb. DockTOR enables cancer cells to maintain a low but critical mTORC2-dependent phosphorylation of AKT during serum deprivation by preventing AKT dephosphorylation through an interaction between phospho-AKT and the Dock7 DHR1 domain. This activity stimulates a Raptor-independent but Rapamycin-sensitive mTOR/S6K activity necessary for survival. These findings address long-standing questions of how Cdc42 signals result in mTOR activation and demonstrate how cancer cells survive conditions when growth factor-dependent activation of mTORC1 is off. Determining how cancer cells survive stress conditions could identify vulnerabilities that lead to new therapeutic strategies.
Collapse
Affiliation(s)
- Oriana Y. Teran Pumar
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
- These authors contributed equally
| | - Matthew R. Zanotelli
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
- These authors contributed equally
| | - Miao-chong Joy Lin
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
- These authors contributed equally
| | - Rebecca R. Schmitt
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Kai Su Green
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Katherine S. Rojas
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Irene Y. Hwang
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Richard A. Cerione
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
- Department of Chemistry, Cornell University, Ithaca, NY 14853, USA
| | - Kristin F. Wilson
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
10
|
Yang JC, Liu M, Huang RH, Zhao L, Niu QJ, Xu ZJ, Wei JT, Lei XG, Sun LH. Loss of SELENOW aggravates muscle loss with regulation of protein synthesis and the ubiquitin-proteasome system. SCIENCE ADVANCES 2024; 10:eadj4122. [PMID: 39303039 DOI: 10.1126/sciadv.adj4122] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/13/2024] [Indexed: 09/22/2024]
Abstract
Sarcopenia is characterized by accelerated muscle mass and function loss, which burdens and challenges public health worldwide. Several studies indicated that selenium deficiency is associated with sarcopenia; however, the specific mechanism remains unclear. Here, we demonstrated that selenoprotein W (SELENOW) containing selenium in the form of selenocysteine functioned in sarcopenia. SELENOW expression is up-regulated in dexamethasone (DEX)-induced muscle atrophy and age-related sarcopenia mouse models. Knockout (KO) of SELENOW profoundly aggravated the process of muscle mass loss in the two mouse models. Mechanistically, SELENOW KO suppressed the RAC1-mTOR cascade by the interaction between SELENOW and RAC1 and induced the imbalance of protein synthesis and degradation. Consistently, overexpression of SELENOW in vivo and in vitro alleviated the muscle and myotube atrophy induced by DEX. SELENOW played a role in age-related sarcopenia and regulated the genes associated with aging. Together, our study uncovered the function of SELENOW in age-related sarcopenia and provides promising evidence for the prevention and treatment of sarcopenia.
Collapse
Affiliation(s)
- Jia-Cheng Yang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Meng Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Rong-Hui Huang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qin-Jian Niu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ze-Jing Xu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jin-Tao Wei
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA
| | - Lv-Hui Sun
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
11
|
Matsueda S, Yamada S, Torisu K, Kitamura H, Ninomiya T, Nakano T, Kitazono T. Vascular Calcification Is Accelerated by Hyponatremia and Low Osmolality. Arterioscler Thromb Vasc Biol 2024; 44:1925-1943. [PMID: 38989577 DOI: 10.1161/atvbaha.123.320069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 06/27/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Hyponatremia, frequently observed in patients with chronic kidney disease, is associated with increased cardiovascular morbidity and mortality. Hyponatremia or low osmolality induces oxidative stress and cell death, both of which accelerate vascular calcification (VC), a critical phenotype in patients with chronic kidney disease. Whether hyponatremia or low osmolality plays a role in the pathogenesis of VC is unknown. METHODS Human vascular smooth muscle cells (VSMCs) and mouse aortic rings were cultured in various osmotic conditions and calcifying medium supplemented with high calcium and phosphate. The effects of low osmolality on phenotypic change and oxidative stress in the cultured VSMCs were examined. Microarray analysis was conducted to determine the main signaling pathway of osmolality-related VC. The transcellular sodium and calcium ions flux across the VSMCs were visualized by live imaging. Furthermore, the effect of osmolality on calciprotein particles (CPPs) was investigated. Associations between arterial intimal calcification and hyponatremia or low osmolality were examined by a cross-sectional study using human autopsy specimens obtained in the Hisayama Study. RESULTS Low osmolality exacerbated calcification of the ECM (extracellular matrix) of cultured VSMCs and mouse aortic rings. Oxidative stress and osteogenic differentiation of VSMCs were identified as the underlying mechanisms responsible for low osmolality-induced VC. Microarray analysis showed that low osmolality activated the Rac1 (Ras-related C3 botulinum toxin substrate 1)-Akt (protein kinase B) pathway and reduced NCX1 (Na-Ca exchanger 1) expression. Live imaging showed synchronic calcium ion efflux and sodium ion influx via NCX1 when extracellular sodium ion concentrations were increased. An NCX1 inhibitor promoted calcifying media-induced VC by reducing calcium ion efflux. Furthermore, low osmolality accelerated the generation and maturation steps of CPPs. The cross-sectional study of human autopsy specimens showed that hyponatremia and low osmolality were associated with a greater area of arterial intimal calcification. CONCLUSIONS Hyponatremia and low osmolality promote VC through multiple cellular processes, including the Rac1-Akt pathway activation.
Collapse
Affiliation(s)
- Shumei Matsueda
- Departments of Medicine and Clinical Science (M.S., S.Y., K.T., T. Nakano, T.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shunsuke Yamada
- Departments of Medicine and Clinical Science (M.S., S.Y., K.T., T. Nakano, T.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kumiko Torisu
- Departments of Medicine and Clinical Science (M.S., S.Y., K.T., T. Nakano, T.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Toshiharu Ninomiya
- Epidemiology and Public Health (T. Ninomiya), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiaki Nakano
- Departments of Medicine and Clinical Science (M.S., S.Y., K.T., T. Nakano, T.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Kidney Care Unit, Kyushu University Hospital, Fukuoka, Japan (T. Nakano)
| | - Takanari Kitazono
- Departments of Medicine and Clinical Science (M.S., S.Y., K.T., T. Nakano, T.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
12
|
Tian H, Lyu R, Yi P. Crosstalk between Rho of Plants GTPase signalling and plant hormones. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3778-3796. [PMID: 38616410 DOI: 10.1093/jxb/erae162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/12/2024] [Indexed: 04/16/2024]
Abstract
Rho of Plants (ROPs) constitute a plant-specific subset of small guanine nucleotide-binding proteins within the Cdc42/Rho/Rac family. These versatile proteins regulate diverse cellular processes, including cell growth, cell division, cell morphogenesis, organ development, and stress responses. In recent years, the dynamic cellular and subcellular behaviours orchestrated by ROPs have unveiled a notable connection to hormone-mediated organ development and physiological responses, thereby expanding our knowledge of the functions and regulatory mechanisms of this signalling pathway. This review delineates advancements in understanding the interplay between plant hormones and the ROP signalling cascade, focusing primarily on the connections with auxin and abscisic acid pathways, alongside preliminary discoveries in cytokinin, brassinosteroid, and salicylic acid responses. It endeavours to shed light on the intricate, coordinated mechanisms bridging cell- and tissue-level signals that underlie plant cell behaviour, organ development, and physiological processes, and highlights future research prospects and challenges in this rapidly developing field.
Collapse
Affiliation(s)
- Haoyu Tian
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China
| | - Ruohan Lyu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China
| | - Peishan Yi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China
| |
Collapse
|
13
|
Wahoski CC, Singh B. The Roles of RAC1 and RAC1B in Colorectal Cancer and Their Potential Contribution to Cetuximab Resistance. Cancers (Basel) 2024; 16:2472. [PMID: 39001533 PMCID: PMC11240352 DOI: 10.3390/cancers16132472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most diagnosed cancers and a leading contributor to cancer-related deaths in the United States. Clinically, standard treatment regimens include surgery, radiation, and chemotherapy; however, there has been increasing development and clinical use of targeted therapies for CRC. Unfortunately, many patients develop resistance to these treatments. Cetuximab, the first targeted therapy approved to treat advanced CRC, is a monoclonal antibody that targets the epidermal growth factor receptor and inhibits downstream pathway activation to restrict tumor cell growth and proliferation. CRC resistance to cetuximab has been well studied, and common resistance mechanisms include constitutive signal transduction through downstream protein mutations and promotion of the epithelial-to-mesenchymal transition. While the most common resistance mechanisms are known, a proportion of patients develop resistance through unknown mechanisms. One protein predicted to contribute to therapy resistance is RAC1, a small GTPase that is involved in cytoskeleton rearrangement, cell migration, motility, and proliferation. RAC1 has also been shown to be overexpressed in CRC. Despite evidence that RAC1 and its alternative splice isoform RAC1B play important roles in CRC and the pathways known to contribute to cetuximab resistance, there is a need to directly study the relationship between RAC1 and RAC1B and cetuximab resistance. This review highlights the recent studies investigating RAC1 and RAC1B in the context of CRC and suggests that these proteins could play a role in resistance to cetuximab.
Collapse
Affiliation(s)
- Claudia C. Wahoski
- Program in Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Bhuminder Singh
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
14
|
Smith SF, Islam AFMT, Alimukhamedov S, Weiss ET, Charest PG. Molecular determinants of Ras-mTORC2 signaling. J Biol Chem 2024; 300:107423. [PMID: 38815864 PMCID: PMC11255897 DOI: 10.1016/j.jbc.2024.107423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024] Open
Abstract
Recent research has identified the mechanistic Target of Rapamycin Complex 2 (mTORC2) as a conserved direct effector of Ras proteins. While previous studies suggested the involvement of the Switch I (SWI) effector domain of Ras in binding mTORC2 components, the regulation of the Ras-mTORC2 pathway is not entirely understood. In Dictyostelium, mTORC2 is selectively activated by the Ras protein RasC, and the RasC-mTORC2 pathway then mediates chemotaxis to cAMP and cellular aggregation by regulating the actin cytoskeleton and promoting cAMP signal relay. Here, we investigated the role of specific residues in RasC's SWI, C-terminal allosteric domain, and hypervariable region (HVR) related to mTORC2 activation. Interestingly, our results suggest that RasC SWI residue A31, which was previously implicated in RasC-mediated aggregation, regulates RasC's specific activation by the Aimless RasGEF. On the other hand, our investigation identified a crucial role for RasC SWI residue T36, with secondary contributions from E38 and allosteric domain residues. Finally, we found that conserved basic residues and the adjacent prenylation site in the HVR, which are crucial for RasC's membrane localization, are essential for RasC-mTORC2 pathway activation by allowing for both RasC's own cAMP-induced activation and its subsequent activation of mTORC2. Therefore, our findings revealed new determinants of RasC-mTORC2 pathway specificity in Dictyostelium, contributing to a deeper understanding of Ras signaling regulation in eukaryotic cells.
Collapse
Affiliation(s)
- Stephen F Smith
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA
| | - A F M Tariqul Islam
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| | | | - Ethan T Weiss
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| | - Pascale G Charest
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA; Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA; University of Arizona Cancer Center, Tucson, Arizona, USA.
| |
Collapse
|
15
|
Chen Q, Zhou S, Qu M, Yang Y, Chen Q, Meng X, Fan H. Cucumber (Cucumis sativus L.) translationally controlled tumor protein interacts with CsRab11A and promotes activation of target of rapamycin in response to Podosphaera xanthii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:332-347. [PMID: 38700955 DOI: 10.1111/tpj.16766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 05/05/2024]
Abstract
The target of rapamycin (TOR) kinase serves as a central regulator that integrates nutrient and energy signals to orchestrate cellular and organismal physiology in both animals and plants. Despite significant advancements having been made in understanding the molecular and cellular functions of plant TOR kinases, the upstream regulators that modulate TOR activity are not yet fully elucidated. In animals, the translationally controlled tumor protein (TCTP) is recognized as a key player in TOR signaling. This study reveals that two TCTP isoforms from Cucumis sativus, when introduced into Arabidopsis, are instrumental in balancing growth and defense mechanisms against the fungal pathogen Golovinomyces cichoracearum. We hypothesize that plant TCTPs act as upstream regulators of TOR in response to powdery mildew caused by Podosphaera xanthii in Cucumis. Our research further uncovers a stable interaction between CsTCTP and a small GTPase, CsRab11A. Transient transformation assays indicate that CsRab11A is involved in the defense against P. xanthii and promotes the activation of TOR signaling through CsTCTP. Moreover, our findings demonstrate that the critical role of TOR in plant disease resistance is contingent upon its regulated activity; pretreatment with a TOR inhibitor (AZD-8055) enhances cucumber plant resistance to P. xanthii, while pretreatment with a TOR activator (MHY-1485) increases susceptibility. These results suggest a sophisticated adaptive response mechanism in which upstream regulators, CsTCTP and CsRab11A, coordinate to modulate TOR function in response to P. xanthii, highlighting a novel aspect of plant-pathogen interactions.
Collapse
Affiliation(s)
- Qiumin Chen
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Shuang Zhou
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Mengqi Qu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Yun Yang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Qinglei Chen
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Xiangnan Meng
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Haiyan Fan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
16
|
Santos-Ribeiro D, Cunha C, Carvalho A. Humoral pathways of innate immune regulation in granuloma formation. Trends Immunol 2024; 45:419-427. [PMID: 38762333 DOI: 10.1016/j.it.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/20/2024]
Abstract
The humoral arm of mammalian innate immunity regulates several molecular mechanisms involved in resistance to pathogens, inflammation, and tissue repair. Recent studies highlight the crucial role played by humoral mediators in granulomatous inflammation. However the molecular mechanisms linking the function of these soluble molecules to the initiation and maintenance of granulomas remain elusive. We propose that humoral innate immunity coordinates fundamental physiological processes in macrophages which, in turn, initiate activation and transformation events that enable granuloma formation. We discuss the involvement of humoral mediators in processes such as immune activation, phagocytosis, metabolism, and tissue remodeling, and how these can dictate macrophage functionality during granuloma formation. These advances present opportunities for discovering novel disease factors and developing targeted, more effective treatments for granulomatous diseases.
Collapse
Affiliation(s)
- Diana Santos-Ribeiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
17
|
Dhaliwal NK, Weng OY, Dong X, Bhattacharya A, Ahmed M, Nishimura H, Choi WWY, Aggarwal A, Luikart BW, Shu Q, Li X, Wilson MD, Moffat J, Wang LY, Muffat J, Li Y. Synergistic hyperactivation of both mTORC1 and mTORC2 underlies the neural abnormalities of PTEN-deficient human neurons and cortical organoids. Cell Rep 2024; 43:114173. [PMID: 38700984 DOI: 10.1016/j.celrep.2024.114173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/20/2024] [Accepted: 04/16/2024] [Indexed: 05/05/2024] Open
Abstract
Mutations in the phosphatase and tensin homolog (PTEN) gene are associated with severe neurodevelopmental disorders. Loss of PTEN leads to hyperactivation of the mechanistic target of rapamycin (mTOR), which functions in two distinct protein complexes, mTORC1 and mTORC2. The downstream signaling mechanisms that contribute to PTEN mutant phenotypes are not well delineated. Here, we show that pluripotent stem cell-derived PTEN mutant human neurons, neural precursors, and cortical organoids recapitulate disease-relevant phenotypes, including hypertrophy, electrical hyperactivity, enhanced proliferation, and structural overgrowth. PTEN loss leads to simultaneous hyperactivation of mTORC1 and mTORC2. We dissect the contribution of mTORC1 and mTORC2 by generating double mutants of PTEN and RPTOR or RICTOR, respectively. Our results reveal that the synergistic hyperactivation of both mTORC1 and mTORC2 is essential for the PTEN mutant human neural phenotypes. Together, our findings provide insights into the molecular mechanisms that underlie PTEN-related neural disorders and highlight novel therapeutic targets.
Collapse
Affiliation(s)
- Navroop K Dhaliwal
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Octavia Yifang Weng
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Program in Neurosciences and Mental Health, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Xiaoxue Dong
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou 310052, China; The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Afrin Bhattacharya
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Mai Ahmed
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Haruka Nishimura
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Wendy W Y Choi
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Aditi Aggarwal
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Bryan W Luikart
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Qiang Shu
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou 310052, China
| | - Xuekun Li
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou 310052, China; The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Michael D Wilson
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Jason Moffat
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Lu-Yang Wang
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Julien Muffat
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Yun Li
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
18
|
Jiang J, Ruan Y, Liu X, Ma J, Chen H. Ferritinophagy Is Critical for Deoxynivalenol-Induced Liver Injury in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6660-6671. [PMID: 38501926 DOI: 10.1021/acs.jafc.4c00556] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Background: Deoxynivalenol (DON) contamination, pervasive throughout all stages of food production and processing, presents a significant threat to human health. The degradation of ferritin mediated by nuclear receptor coactivator 4 (NCOA4), termed ferritinophagy, plays a crucial role in maintaining iron homeostasis and regulating ferroptosis. Aim: This study aims to elucidate the role of ferritinophagy and ferroptosis in DON-induced liver injury. Methods: Male mice and AML12 cells were subjected to varying doses of DON, serving as in vivo and in vitro models, respectively. Protein expression was assessed by using immunofluorescence and western blot techniques. Co-immunoprecipitation was employed to investigate the protein-protein interactions. Results: Our findings demonstrate that DON triggers hepatocyte ferroptosis in a ferritinophagy-dependent manner. Specifically, DON impedes the activation of the mammalian target of rapamycin complex 1 (mTORC1) by inhibiting RAC1's binding to mTOR, thereby ultimately inducing autophagy. Concurrently, DON amplifies NCOA4's affinity for ferritin by facilitating NCOA4 phosphorylation through the ataxia-telangiectasia mutated kinase (ATM), thus promoting the autophagy-dependent degradation of ferritin. Both autophagy inhibition and NCOA4 expression suppression ameliorate DON-induced ferroptosis. Conclusion: Our study concludes that DON facilitates NCOA4-mediated ferritinophagy via the ATM-NCOA4 pathway, subsequently inducing ferroptosis in the liver.
Collapse
Affiliation(s)
- Junze Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Yongbao Ruan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xiaohui Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Jun Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin 150030, P. R. China
| | - Hao Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| |
Collapse
|
19
|
Chen C, Luo N, Dai F, Zhou W, Wu X, Zhang J. Advance in pathogenesis of sarcoidosis: Triggers and progression. Heliyon 2024; 10:e27612. [PMID: 38486783 PMCID: PMC10938127 DOI: 10.1016/j.heliyon.2024.e27612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/17/2024] Open
Abstract
Sarcoidosis, a multisystemic immune disease, significantly impacts patients' quality of life. The complexity and diversity of its pathogenesis, coupled with limited comprehensive research, had hampered both diagnosis and treatment, resulting in an unsatisfactory prognosis for many patients. In recent years, the research had made surprising progress in the triggers of sarcoidosis (genetic inheritance, infection and environmental factors) and the abnormal regulations on immunity during the formation of granuloma. This review consolidated the latest findings on sarcoidosis research, providing a systematic exploration of advanced studies on triggers, immune-related regulatory mechanisms, and clinical applications. By synthesizing previous discoveries, we aimed to offer valuable insights for future research directions and the development of clinical diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Cong Chen
- Department of Thoracic Surgery and Institute of Thoracic Oncology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, 610097, China
| | - Nanzhi Luo
- Department of Thoracic Surgery and Institute of Thoracic Oncology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, 610097, China
| | - Fuqiang Dai
- Department of Thoracic Surgery and Institute of Thoracic Oncology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, 610097, China
- Department of Thoracic Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Wenjing Zhou
- Department of Thoracic Surgery and Institute of Thoracic Oncology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, 610097, China
| | - Xiaoqing Wu
- Department of Thoracic Surgery and Institute of Thoracic Oncology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, 610097, China
| | - Jian Zhang
- Department of Thoracic Surgery and Institute of Thoracic Oncology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, 610097, China
| |
Collapse
|
20
|
Ragupathi A, Kim C, Jacinto E. The mTORC2 signaling network: targets and cross-talks. Biochem J 2024; 481:45-91. [PMID: 38270460 PMCID: PMC10903481 DOI: 10.1042/bcj20220325] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/29/2023] [Accepted: 12/18/2023] [Indexed: 01/26/2024]
Abstract
The mechanistic target of rapamycin, mTOR, controls cell metabolism in response to growth signals and stress stimuli. The cellular functions of mTOR are mediated by two distinct protein complexes, mTOR complex 1 (mTORC1) and mTORC2. Rapamycin and its analogs are currently used in the clinic to treat a variety of diseases and have been instrumental in delineating the functions of its direct target, mTORC1. Despite the lack of a specific mTORC2 inhibitor, genetic studies that disrupt mTORC2 expression unravel the functions of this more elusive mTOR complex. Like mTORC1 which responds to growth signals, mTORC2 is also activated by anabolic signals but is additionally triggered by stress. mTORC2 mediates signals from growth factor receptors and G-protein coupled receptors. How stress conditions such as nutrient limitation modulate mTORC2 activation to allow metabolic reprogramming and ensure cell survival remains poorly understood. A variety of downstream effectors of mTORC2 have been identified but the most well-characterized mTORC2 substrates include Akt, PKC, and SGK, which are members of the AGC protein kinase family. Here, we review how mTORC2 is regulated by cellular stimuli including how compartmentalization and modulation of complex components affect mTORC2 signaling. We elaborate on how phosphorylation of its substrates, particularly the AGC kinases, mediates its diverse functions in growth, proliferation, survival, and differentiation. We discuss other signaling and metabolic components that cross-talk with mTORC2 and the cellular output of these signals. Lastly, we consider how to more effectively target the mTORC2 pathway to treat diseases that have deregulated mTOR signaling.
Collapse
Affiliation(s)
- Aparna Ragupathi
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, U.S.A
| | - Christian Kim
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, U.S.A
| | - Estela Jacinto
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, U.S.A
| |
Collapse
|
21
|
Noubissi FK, Odubanjo OV, Ogle BM, Tchounwou PB. Mechanisms of Cell Fusion in Cancer. Results Probl Cell Differ 2024; 71:407-432. [PMID: 37996688 PMCID: PMC10893907 DOI: 10.1007/978-3-031-37936-9_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Cell-cell fusion is a normal physiological mechanism that requires a well-orchestrated regulation of intracellular and extracellular factors. Dysregulation of this process could lead to diseases such as osteoporosis, malformation of muscles, difficulties in pregnancy, and cancer. Extensive literature demonstrates that fusion occurs between cancer cells and other cell types to potentially promote cancer progression and metastasis. However, the mechanisms governing this process in cancer initiation, promotion, and progression are less well-studied. Fusogens involved in normal physiological processes such as syncytins and associated factors such as phosphatidylserine and annexins have been observed to be critical in cancer cell fusion as well. Some of the extracellular factors associated with cancer cell fusion include chronic inflammation and inflammatory cytokines, hypoxia, and viral infection. The interaction between these extracellular factors and cell's intrinsic factors potentially modulates actin dynamics to drive the fusion of cancer cells. In this review, we have discussed the different mechanisms that have been identified or postulated to drive cancer cell fusion.
Collapse
Affiliation(s)
- Felicite K Noubissi
- Department of Biology, Jackson State University, Jackson, MS, USA.
- Research Centers in Minority Institutions (RCMI), Center for Health Disparity Research (RCMI-CHDR), Jackson State University, Jackson, MS, USA.
| | - Oluwatoyin V Odubanjo
- Department of Biology, Jackson State University, Jackson, MS, USA
- Research Centers in Minority Institutions (RCMI), Center for Health Disparity Research (RCMI-CHDR), Jackson State University, Jackson, MS, USA
| | - Brenda M Ogle
- Department of Biomedical Engineering, University of Minnesota-Twin Cities, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota-Twin Cities, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Paul B Tchounwou
- Department of Biology, Jackson State University, Jackson, MS, USA
- Research Centers in Minority Institutions (RCMI), Center for Health Disparity Research (RCMI-CHDR), Jackson State University, Jackson, MS, USA
| |
Collapse
|
22
|
Tsutsumi K, Nohara A, Tanaka T, Murano M, Miyagaki Y, Ohta Y. FilGAP regulates tumor growth in Glioma through the regulation of mTORC1 and mTORC2. Sci Rep 2023; 13:20956. [PMID: 38065968 PMCID: PMC10709582 DOI: 10.1038/s41598-023-47892-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
The mechanistic target of rapamycin (mTOR) is a serine/threonine protein kinase that forms the two different protein complexes, known as mTORC1 and mTORC2. mTOR signaling is activated in a variety of tumors, including glioma that is one of the malignant brain tumors. FilGAP (ARHGAP24) is a negative regulator of Rac, a member of Rho family small GTPases. In this study, we found that FilGAP interacts with mTORC1/2 and is involved in tumor formation in glioma. FilGAP interacted with mTORC1 via Raptor and with mTORC2 via Rictor and Sin1. Depletion of FilGAP in KINGS-1 glioma cells decreased phosphorylation of S6K and AKT. Furthermore, overexpression of FilGAP increased phosphorylation of S6K and AKT, suggesting that FilGAP activates mTORC1/2. U-87MG, glioblastoma cells, showed higher mTOR activity than KINGS-1, and phosphorylation of S6K and AKT was not affected by suppression of FilGAP expression. However, in the presence of PI3K inhibitors, phosphorylation of S6K and AKT was also decreased in U-87MG by depletion of FilGAP, suggesting that FilGAP may also regulate mTORC2 in U-87MG. Finally, we showed that depletion of FilGAP in KINGS-1 and U-87MG cells significantly reduced spheroid growth. These results suggest that FilGAP may contribute to tumor growth in glioma by regulating mTORC1/2 activities.
Collapse
Affiliation(s)
- Koji Tsutsumi
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Sagamihara, Minami-Ku, Kanagawa, 252-0373, Japan.
| | - Ayumi Nohara
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Sagamihara, Minami-Ku, Kanagawa, 252-0373, Japan
| | - Taiki Tanaka
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Sagamihara, Minami-Ku, Kanagawa, 252-0373, Japan
| | - Moe Murano
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Sagamihara, Minami-Ku, Kanagawa, 252-0373, Japan
| | - Yurina Miyagaki
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Sagamihara, Minami-Ku, Kanagawa, 252-0373, Japan
| | - Yasutaka Ohta
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Sagamihara, Minami-Ku, Kanagawa, 252-0373, Japan.
| |
Collapse
|
23
|
Turgu B, El‐Naggar A, Kogler M, Tortola L, Zhang H, Hassan M, Lizardo MM, Kung SHY, Lam W, Penninger JM, Sorensen PH. The HACE1 E3 ligase mediates RAC1-dependent control of mTOR signaling complexes. EMBO Rep 2023; 24:e56815. [PMID: 37846480 PMCID: PMC10702814 DOI: 10.15252/embr.202356815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 10/18/2023] Open
Abstract
HACE1 is a HECT family E3 ubiquitin-protein ligase with broad but incompletely understood tumor suppressor activity. Here, we report a previously unrecognized link between HACE1 and signaling complexes containing mammalian target of rapamycin (mTOR). HACE1 blocks mTORC1 and mTORC2 activities by reducing mTOR stability in an E3 ligase-dependent manner. Mechanistically, HACE1 binds to and ubiquitylates Ras-related C3 botulinum toxin substrate 1 (RAC1) when RAC1 is associated with mTOR complexes, including at focal adhesions, leading to proteasomal degradation of RAC1. This in turn decreases the stability of mTOR to reduce mTORC1 and mTORC2 activity. HACE1 deficient cells show enhanced mTORC1/2 activity, which is reversed by chemical or genetic RAC1 inactivation but not in cells expressing the HACE1-insensitive mutant, RAC1K147R . In vivo, Rac1 deletion reverses enhanced mTOR expression in KRasG12D -driven lung tumors of Hace1-/- mice. HACE1 co-localizes with mTOR and RAC1, resulting in RAC1-dependent loss of mTOR protein stability. Together, our data demonstrate that HACE1 destabilizes mTOR by targeting RAC1 within mTOR-associated complexes, revealing a unique ubiquitin-dependent process to control the activity of mTOR signaling complexes.
Collapse
Affiliation(s)
- Busra Turgu
- Department of Molecular OncologyBritish Columbia Cancer Research CentreVancouverBCCanada
- Faculty of MedicineUniversity of British ColumbiaVancouverBCCanada
| | - Amal El‐Naggar
- Department of Molecular OncologyBritish Columbia Cancer Research CentreVancouverBCCanada
- Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
- Department of Pathology, Faculty of MedicineMenoufia UniversityShibin El KomEgypt
| | - Melanie Kogler
- Institute of Molecular Biotechnology of the Austrian Academy of SciencesViennaAustria
| | - Luigi Tortola
- Institute of Molecular Biotechnology of the Austrian Academy of SciencesViennaAustria
- Department of Biology, Institute of Molecular Health SciencesETH ZurichZurichSwitzerland
| | - Hai‐Feng Zhang
- Department of Molecular OncologyBritish Columbia Cancer Research CentreVancouverBCCanada
| | - Mariam Hassan
- Department of Molecular OncologyBritish Columbia Cancer Research CentreVancouverBCCanada
| | - Michael M Lizardo
- Department of Molecular OncologyBritish Columbia Cancer Research CentreVancouverBCCanada
| | - Sonia HY Kung
- Department of Urological Sciences, Vancouver Prostate CentreUniversity of British ColumbiaVancouverBCCanada
| | - Wan Lam
- Department of Molecular OncologyBritish Columbia Cancer Research CentreVancouverBCCanada
- Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of SciencesViennaAustria
- Department of Medical Genetics, Life Sciences InstituteUniversity of British ColumbiaVancouverBCCanada
- Department of Laboratory MedicineMedical University of ViennaViennaAustria
- Helmholtz Centre for Infection ResearchBraunschweigGermany
| | - Poul H Sorensen
- Department of Molecular OncologyBritish Columbia Cancer Research CentreVancouverBCCanada
- Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
| |
Collapse
|
24
|
Peixoto PM, Bromfield JJ, Ribeiro ES, Santos JEP, Thatcher WW, Bisinotto RS. Transcriptome changes associated with elongation of bovine conceptuses I: Differentially expressed transcripts in the conceptus on day 17 after insemination. J Dairy Sci 2023; 106:9745-9762. [PMID: 37641295 DOI: 10.3168/jds.2023-23398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/15/2023] [Indexed: 08/31/2023]
Abstract
The objective was to characterize transcriptome changes associated with elongation in bovine conceptuses during preimplantation stages. Nonlactating Holstein cows were euthanized 17 d after artificial insemination (AI) and the uterine horn ipsilateral to the CL was flushed with saline solution. Recovered conceptuses were classified as small (1.2 to 6.9 cm; n = 9), medium (10.5 to 16.0 cm; n = 9), or large (18.0 to 26.4 cm; n = 10). Total mRNA was extracted and subjected to transcriptome analyses using the Affymetrix Gene Chip Bovine array. Data were normalized using the GCRMA method and analyzed by robust regression using the Linear Models for Microarray library within Bioconductor in R. Transcripts with P ≤ 0.05 after adjustment for false discovery rate and fold change ≥1.5 were considered differentially expressed. Functional analyses were conducted using the Ingenuity Pathway Analysis platform. Comparisons between large versus small (LvsS), large versus medium (LvsM), and medium versus small (MvsS) conceptuses yielded a total of 634, 240, and 63 differentially expressed transcripts, respectively. Top canonical pathways of known involvement with embryo growth that were upregulated in large conceptuses included actin cytoskeleton (LvsS), integrin signaling (LvsS and LvsM), ephrin receptor (LvsS), mesenchymal transition by growth factor (LvsM), and regulation of calpain protease (LvsS). Transcripts involved with lipid metabolism pathways (LXR/RXR, FXR/RXR, hepatic fibrosis) were associated with the LvsS and LvsM, and some transcripts such as APOC2, APOH, APOM, RARA, RBP4, and PPARGC1A, were involved in these pathways. An overall network summary associated biological downstream effects of invasion of cells, proliferation of embryonic cells, and inhibition of organismal death in the LvsS. In conclusion, differently expressed transcripts in the LvsS comparison were associated with the cell growth, adhesion, and organismal development, although part of these findings could be attributed to differences in circulatory concentrations of progesterone of the cows that bore large and small conceptuses. The large and medium conceptuses developed under similar concentrations of progesterone and presented 240 differently expressed transcripts, associated with cell differentiation, metabolite regulation, and other biological processes.
Collapse
Affiliation(s)
- P M Peixoto
- Department of Large Animal Clinical Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL 32610
| | - J J Bromfield
- Department of Animal Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL 32608
| | - E S Ribeiro
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - J E P Santos
- Department of Animal Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL 32608
| | - W W Thatcher
- Department of Animal Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL 32608
| | - R S Bisinotto
- Department of Large Animal Clinical Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL 32610.
| |
Collapse
|
25
|
Frappaolo A, Giansanti MG. Using Drosophila melanogaster to Dissect the Roles of the mTOR Signaling Pathway in Cell Growth. Cells 2023; 12:2622. [PMID: 37998357 PMCID: PMC10670727 DOI: 10.3390/cells12222622] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/25/2023] Open
Abstract
The evolutionarily conserved target of rapamycin (TOR) serine/threonine kinase controls eukaryotic cell growth, metabolism and survival by integrating signals from the nutritional status and growth factors. TOR is the catalytic subunit of two distinct functional multiprotein complexes termed mTORC1 (mechanistic target of rapamycin complex 1) and mTORC2, which phosphorylate a different set of substrates and display different physiological functions. Dysregulation of TOR signaling has been involved in the development and progression of several disease states including cancer and diabetes. Here, we highlight how genetic and biochemical studies in the model system Drosophila melanogaster have been crucial to identify the mTORC1 and mTORC2 signaling components and to dissect their function in cellular growth, in strict coordination with insulin signaling. In addition, we review new findings that involve Drosophila Golgi phosphoprotein 3 in regulating organ growth via Rheb-mediated activation of mTORC1 in line with an emerging role for the Golgi as a major hub for mTORC1 signaling.
Collapse
Affiliation(s)
- Anna Frappaolo
- Istituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, 00185 Roma, Italy
| | - Maria Grazia Giansanti
- Istituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, 00185 Roma, Italy
| |
Collapse
|
26
|
Nozawa T, Toh H, Iibushi J, Kogai K, Minowa-Nozawa A, Satoh J, Ito S, Murase K, Nakagawa I. Rab41-mediated ESCRT machinery repairs membrane rupture by a bacterial toxin in xenophagy. Nat Commun 2023; 14:6230. [PMID: 37802980 PMCID: PMC10558455 DOI: 10.1038/s41467-023-42039-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 09/26/2023] [Indexed: 10/08/2023] Open
Abstract
Xenophagy, a type of selective autophagy, is a bactericidal membrane trafficking that targets cytosolic bacterial pathogens, but the membrane homeostatic system to cope with bacterial infection in xenophagy is not known. Here, we show that the endosomal sorting complexes required for transport (ESCRT) machinery is needed to maintain homeostasis of xenophagolysosomes damaged by a bacterial toxin, which is regulated through the TOM1L2-Rab41 pathway that recruits AAA-ATPase VPS4. We screened Rab GTPases and identified Rab41 as critical for maintaining the acidification of xenophagolysosomes. Confocal microscopy revealed that ESCRT components were recruited to the entire xenophagolysosome, and this recruitment was inhibited by intrabody expression against bacterial cytolysin, indicating that ESCRT targets xenophagolysosomes in response to a bacterial toxin. Rab41 translocates to damaged autophagic membranes via adaptor protein TOM1L2 and recruits VPS4 to complete ESCRT-mediated membrane repair in a unique GTPase-independent manner. Finally, we demonstrate that the TOM1L2-Rab41 pathway-mediated ESCRT is critical for the efficient clearance of bacteria through xenophagy.
Collapse
Affiliation(s)
- Takashi Nozawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hirotaka Toh
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Junpei Iibushi
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Kohei Kogai
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Atsuko Minowa-Nozawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Junko Satoh
- Medical Research Support Center, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Shinji Ito
- Medical Research Support Center, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Kazunori Murase
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Ichiro Nakagawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
27
|
Chen Y, Xu Z, Sun H, Ouyang X, Han Y, Yu H, Wu N, Xie Y, Su B. Regulation of CD8 + T memory and exhaustion by the mTOR signals. Cell Mol Immunol 2023; 20:1023-1039. [PMID: 37582972 PMCID: PMC10468538 DOI: 10.1038/s41423-023-01064-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 07/02/2023] [Indexed: 08/17/2023] Open
Abstract
CD8+ T cells are the key executioners of the adaptive immune arm, which mediates antitumor and antiviral immunity. Naïve CD8+ T cells develop in the thymus and are quickly activated in the periphery after encountering a cognate antigen, which induces these cells to proliferate and differentiate into effector cells that fight the initial infection. Simultaneously, a fraction of these cells become long-lived memory CD8+ T cells that combat future infections. Notably, the generation and maintenance of memory cells is profoundly affected by various in vivo conditions, such as the mode of primary activation (e.g., acute vs. chronic immunization) or fluctuations in host metabolic, inflammatory, or aging factors. Therefore, many T cells may be lost or become exhausted and no longer functional. Complicated intracellular signaling pathways, transcription factors, epigenetic modifications, and metabolic processes are involved in this process. Therefore, understanding the cellular and molecular basis for the generation and fate of memory and exhausted CD8+ cells is central for harnessing cellular immunity. In this review, we focus on mammalian target of rapamycin (mTOR), particularly signaling mediated by mTOR complex (mTORC) 2 in memory and exhausted CD8+ T cells at the molecular level.
Collapse
Affiliation(s)
- Yao Chen
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ziyang Xu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hongxiang Sun
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xinxing Ouyang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Tumor Biology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yuheng Han
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Haihui Yu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ningbo Wu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yiting Xie
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Bing Su
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Department of Tumor Biology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Key Laboratory of Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
28
|
Kim EY, Kim JE, Chung SH, Park JE, Yoon D, Min HJ, Sung Y, Lee SB, Kim SW, Chang EJ. Concomitant induction of SLIT3 and microRNA-218-2 in macrophages by toll-like receptor 4 activation limits osteoclast commitment. Cell Commun Signal 2023; 21:213. [PMID: 37596575 PMCID: PMC10436635 DOI: 10.1186/s12964-023-01226-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/12/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND Toll-like receptor 4 (TLR4) conducts a highly regulated inflammatory process by limiting the extent of inflammation to avoid toxicity and tissue damage, even in bone tissues. Thus, it is plausible that strategies for the maintenance of normal bone-immunity to prevent undesirable bone damage by TLR4 activation can exist, but direct evidence is still lacking. METHODS Osteoclast precursors (OCPs) obtained from WT or Slit3-deficient mice were differentiated into osteoclast (OC) with macrophage colony-stimulating factor (M-CSF), RANK ligand (RANKL) and lipopolysaccharide (LPS) by determining the number of TRAP-positive multinuclear cells (TRAP+ MNCs). To determine the alteration of OCPs population, fluorescence-activated cell sorting (FACS) was conducted in bone marrow cells in mice after LPS injection. The severity of bone loss in LPS injected WT or Slit3-deficient mice was evaluated by micro-CT analysis. RESULT We demonstrate that TLR4 activation by LPS inhibits OC commitment by inducing the concomitant expression of miR-218-2-3p and its host gene, Slit3, in mouse OCPs. TLR4 activation by LPS induced SLIT3 and its receptor ROBO1 in BMMs, and this SLIT3-ROBO1 axis hinders RANKL-induced OC differentiation by switching the protein levels of C/EBP-β isoforms. A deficiency of SLIT3 resulted in increased RANKL-induced OC differentiation, and the elevated expression of OC marker genes including Pu.1, Nfatc1, and Ctsk. Notably, Slit3-deficient mice showed expanded OCP populations in the bone marrow. We also found that miR-218-2 was concomitantly induced with SLIT3 expression after LPS treatment, and that this miRNA directly suppressed Tnfrsf11a (RANK) expression at both gene and protein levels, linking it to a decrease in OC differentiation. An endogenous miR-218-2 block rescued the expression of RANK and subsequent OC formation in LPS-stimulated OCPs. Aligned with these results, SLIT3-deficient mice displayed increased OC formation and reduced bone density after LPS challenge. CONCLUSION Our findings suggest that the TLR4-dependent concomitant induction of Slit3 and miR-218-2 targets RANK in OCPs to restrain OC commitment, thereby avoiding an uncoordinated loss of bone through inflammatory processes. These observations provide a mechanistic explanation for the role of TLR4 in controlling the commitment phase of OC differentiation. Video Abstract.
Collapse
Affiliation(s)
- Eun-Young Kim
- Department of Biochemistry and Molecular Biology, Asan Medical Center and AMIST, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Korea
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Ji-Eun Kim
- Department of Biochemistry and Molecular Biology, Asan Medical Center and AMIST, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Korea
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Soo-Hyun Chung
- Department of Biochemistry and Molecular Biology, Asan Medical Center and AMIST, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Korea
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Ji-Eun Park
- Department of Biochemistry and Molecular Biology, Asan Medical Center and AMIST, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Korea
| | - Dohee Yoon
- Department of Biochemistry and Molecular Biology, Asan Medical Center and AMIST, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Korea
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Hyo-Jin Min
- Department of Biochemistry and Molecular Biology, Asan Medical Center and AMIST, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Korea
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Yoolim Sung
- Department of Biochemistry and Molecular Biology, Asan Medical Center and AMIST, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Korea
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Soo Been Lee
- Department of Biochemistry and Molecular Biology, Asan Medical Center and AMIST, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Korea
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Seong Who Kim
- Department of Biochemistry and Molecular Biology, Asan Medical Center and AMIST, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Korea.
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, 05505, Korea.
| | - Eun-Ju Chang
- Department of Biochemistry and Molecular Biology, Asan Medical Center and AMIST, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Korea.
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, 05505, Korea.
| |
Collapse
|
29
|
Marques-Ramos A, Cervantes R. Expression of mTOR in normal and pathological conditions. Mol Cancer 2023; 22:112. [PMID: 37454139 PMCID: PMC10349476 DOI: 10.1186/s12943-023-01820-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023] Open
Abstract
The mechanistic/mammalian target of rapamycin (mTOR), a protein discovered in 1991, integrates a complex pathway with a key role in maintaining cellular homeostasis. By comprising two functionally distinct complexes, mTOR complex 1 (mTORC1) and mTORC2, it is a central cellular hub that integrates intra- and extracellular signals of energy, nutrient, and hormone availability, modulating the molecular responses to acquire a homeostatic state through the regulation of anabolic and catabolic processes. Accordingly, dysregulation of mTOR pathway has been implicated in a variety of human diseases. While major advances have been made regarding the regulators and effectors of mTOR signaling pathway, insights into the regulation of mTOR gene expression are beginning to emerge. Here, we present the current available data regarding the mTOR expression regulation at the level of transcription, translation and mRNA stability and systematize the current knowledge about the fluctuations of mTOR expression observed in several diseases, both cancerous and non-cancerous. In addition, we discuss whether mTOR expression changes can be used as a biomarker for diagnosis, disease progression, prognosis and/or response to therapeutics. We believe that our study will contribute for the implementation of new disease biomarkers based on mTOR as it gives an exhaustive perspective about the regulation of mTOR gene expression in both normal and pathological conditions.
Collapse
Affiliation(s)
- A Marques-Ramos
- H&TRC-Health & Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal.
| | - R Cervantes
- H&TRC-Health & Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
- Public Health Research Centre, NOVA National School of Public Health, Universidade Nova de Lisboa, Lisbon, Portugal
- Comprehensive Health Research Center (CHRC), Lisbon, Portugal
| |
Collapse
|
30
|
Kwon J, Yeh YS, Kawarasaki S, Minamino H, Fujita Y, Okamatsu-Ogura Y, Takahashi H, Nomura W, Matsumura S, Yu R, Kimura K, Saito M, Inagaki N, Inoue K, Kawada T, Goto T. Mevalonate biosynthesis pathway regulates the development and survival of brown adipocytes. iScience 2023; 26:106161. [PMID: 36895651 PMCID: PMC9988578 DOI: 10.1016/j.isci.2023.106161] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/08/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
The high thermogenic activity of brown adipose tissue (BAT) has received considerable attention. Here, we demonstrated the role of the mevalonate (MVA) biosynthesis pathway in the regulation of brown adipocyte development and survival. The inhibition of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), the rate-limiting enzyme in the MVA pathway and the molecular target of statins, suppressed brown adipocyte differentiation by suppressing protein geranylgeranylation-mediated mitotic clonal expansion. The development of BAT in neonatal mice exposed to statins during the fetal period was severely impaired. Moreover, statin-induced geranylgeranyl pyrophosphate (GGPP) deficiency led to the apoptosis of mature brown adipocytes. Brown adipocyte-specific Hmgcr knockout induced BAT atrophy and disrupted thermogenesis. Importantly, both genetic and pharmacological inhibition of HMGCR in adult mice induced morphological changes in BAT accompanied by an increase in apoptosis, and statin-treated diabetic mice showed worsened hyperglycemia. These findings revealed that MVA pathway-generated GGPP is indispensable for BAT development and survival.
Collapse
Affiliation(s)
- Jungin Kwon
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 611-0011, Japan
| | - Yu-Sheng Yeh
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 611-0011, Japan
| | - Satoko Kawarasaki
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 611-0011, Japan
| | - Hiroto Minamino
- Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Yoshihito Fujita
- Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Yuko Okamatsu-Ogura
- Departments of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Haruya Takahashi
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 611-0011, Japan
| | - Wataru Nomura
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 611-0011, Japan.,Research Unit for Physiological Chemistry, the Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8501, Japan
| | - Shigenobu Matsumura
- Division of Clinical Nutrition, Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Osaka 583-0872, Japan
| | - Rina Yu
- Department of Food Science and Nutrition, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Kazuhiro Kimura
- Departments of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Masayuki Saito
- Departments of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Kazuo Inoue
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 611-0011, Japan.,Research Unit for Physiological Chemistry, the Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8501, Japan
| | - Teruo Kawada
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 611-0011, Japan.,Research Unit for Physiological Chemistry, the Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8501, Japan
| | - Tsuyoshi Goto
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 611-0011, Japan.,Research Unit for Physiological Chemistry, the Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
31
|
Sun Y, Wang H, Qu T, Luo J, An P, Ren F, Luo Y, Li Y. mTORC2: a multifaceted regulator of autophagy. Cell Commun Signal 2023; 21:4. [PMID: 36604720 PMCID: PMC9814435 DOI: 10.1186/s12964-022-00859-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/06/2022] [Indexed: 01/06/2023] Open
Abstract
Autophagy is a multi-step catabolic process that delivers cellular components to lysosomes for degradation and recycling. The dysregulation of this precisely controlled process disrupts cellular homeostasis and leads to many pathophysiological conditions. The mechanistic target of rapamycin (mTOR) is a central nutrient sensor that integrates growth signals with anabolism to fulfil biosynthetic and bioenergetic requirements. mTOR nucleates two distinct evolutionarily conserved complexes (mTORC1 and mTORC2). However, only mTORC1 is acutely inhibited by rapamycin. Consequently, mTORC1 is a well characterized regulator of autophagy. While less is known about mTORC2, the availability of acute small molecule inhibitors and multiple genetic models has led to increased understanding about the role of mTORC2 in autophagy. Emerging evidence suggests that the regulation of mTORC2 in autophagy is mainly through its downstream effector proteins, and is variable under different conditions and cellular contexts. Here, we review recent advances that describe a role for mTORC2 in this catabolic process, and propose that mTORC2 could be a potential clinical target for the treatment of autophagy-related diseases. Video abstract.
Collapse
Affiliation(s)
- Yanan Sun
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083 China
| | - Huihui Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070 China
| | - Taiqi Qu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083 China
| | - Junjie Luo
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083 China
| | - Peng An
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083 China
| | - Fazheng Ren
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083 China
| | - Yongting Luo
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083 China
| | - Yixuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083 China
| |
Collapse
|
32
|
Kaur H, Moreau R. Raptor knockdown concurrently increases the electrical resistance and paracellular permeability of Caco-2 cell monolayers. Life Sci 2022; 308:120989. [PMID: 36152680 DOI: 10.1016/j.lfs.2022.120989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 11/18/2022]
Abstract
AIMS As a critical regulatory point of nutrient sensing, growth and metabolism, the mechanistic target of rapamycin complex 1 (mTORC1) is poised to influence intestinal homeostasis under basal conditions and in disease state. Intestinal barrier integrity ensures tissue homeostasis by closely regulating the permeability of the epithelium to lumenal contents. The role of mTORC1 in the regulation of intestinal barrier function and permeability remains to be fully elucidated. MATERIALS AND METHODS In this study, we employed lentivirus-mediated knockdown of mTORC1 signaling-associated proteins Raptor (regulatory-associated protein of mTOR) and TSC2 (tuberin) to ascertain the effects of constitutive activation or repression of mTORC1 activity on barrier function in Caco-2 cell monolayers. KEY FINDINGS Results showed that the loss of Raptor concomitantly raised the transepithelial electrical resistance (TEER) and para/transcellular permeability leading to a cell monolayer that is leaky for dextran yet electrically resistant to the movement of ions. Paracellular permeability was linked to the downregulation of tight junction protein expression and enhanced autophagy. Raptor-depleted cells had the highest abundance of myosin binding subunit MYPT1 concomitantly with the lowest abundance of p-MYPT1 (Thr696) and phosphorylated myosin light chain (p-MLC, Ser19) implying that MLC phosphatase activity was increased resulting in MLC relaxation. Although rapamycin suppressed mTORC1 activity and decreased the abundance of tight junction proteins in control cells, rapamycin caused a modest increase of TEER compared to Raptor knockdown. SIGNIFICANCE The study showed that epithelium paracellular permeability of small molecular weight dextran is dissociated from TEER.
Collapse
Affiliation(s)
- Harleen Kaur
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Régis Moreau
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| |
Collapse
|
33
|
Stejerean-Todoran I, Gimotty PA, Watters A, Brafford P, Krepler C, Godok T, Li H, Bonilla Del Rio Z, Zieseniss A, Katschinski DM, Sertel SM, Rizzoli SO, Garman B, Nathanson KL, Xu X, Chen Q, Oswald JH, Lotem M, Mills GB, Davies MA, Schön MP, Bogeski I, Herlyn M, Vultur A. A distinct pattern of growth and RAC1 signaling in melanoma brain metastasis cells. Neuro Oncol 2022; 25:674-686. [PMID: 36054930 PMCID: PMC10076948 DOI: 10.1093/neuonc/noac212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Melanoma, the deadliest of skin cancers, has a high propensity to form brain metastases that are associated with a markedly worsened prognosis. In spite of recent therapeutic advances, melanoma brain lesions remain a clinical challenge, biomarkers predicting brain dissemination are not clear and differences with other metastatic sites are poorly understood. METHODS We examined a genetically diverse panel of human-derived melanoma brain metastasis (MBM) and extracranial cell lines using targeted sequencing, a Reverse Phase Protein Array, protein expression analyses, and functional studies in vitro and in vivo. RESULTS Brain-specific genetic alterations were not detected; however, MBM cells in vitro displayed lower proliferation rates and MBM-specific protein expression patterns associated with proliferation, DNA damage, adhesion, and migration. MBM lines displayed higher levels of RAC1 expression, involving a distinct RAC1-PAK1-JNK1 signaling network. RAC1 knockdown or treatment with small molecule inhibitors contributed to a less aggressive MBM phenotype in vitro, while RAC1 knockdown in vivo led to reduced tumor volumes and delayed tumor appearance. Proliferation, adhesion, and migration were higher in MBM vs. non-MBM lines in the presence of insulin or brain-derived factors and were affected by RAC1 levels. CONCLUSIONS Our findings indicate that despite their genetic variability, MBM engage specific molecular processes such as RAC1 signaling to adapt to the brain microenvironment and this can be used for the molecular characterization and treatment of brain metastases.
Collapse
Affiliation(s)
- Ioana Stejerean-Todoran
- Molecular Physiology, Department of Cardiovascular Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Phyllis A Gimotty
- Department of Biostatistics, Informatics and Epidemiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Andrea Watters
- Program of Cellular and Molecular Oncogenesis, Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - Patricia Brafford
- Program of Cellular and Molecular Oncogenesis, Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - Clemens Krepler
- Program of Cellular and Molecular Oncogenesis, Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - Tetiana Godok
- Program of Cellular and Molecular Oncogenesis, Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - Haiyin Li
- Program of Cellular and Molecular Oncogenesis, Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - Zuriñe Bonilla Del Rio
- Molecular Physiology, Department of Cardiovascular Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Anke Zieseniss
- Department of Cardiovascular Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Dörthe M Katschinski
- Department of Cardiovascular Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Sinem M Sertel
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Silvio O Rizzoli
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Bradley Garman
- Department of Medicine, Div. Translational Medicine and Human Genetics; Abramson Cancer Center; University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Katherine L Nathanson
- Department of Medicine, Div. Translational Medicine and Human Genetics; Abramson Cancer Center; University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Xiaowei Xu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Qing Chen
- Immunology Microenvironment & Metastasis, The Wistar Institute, Philadelphia, PA, USA
| | - Jack H Oswald
- Immunology Microenvironment & Metastasis, The Wistar Institute, Philadelphia, PA, USA
| | - Michal Lotem
- Sharett Institute of Oncology, Hadassah Hebrew University Medical Center, Jerusalem, IL
| | - Gordon B Mills
- Department of Melanoma Medical Oncology, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Michael P Schön
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany
| | - Ivan Bogeski
- Molecular Physiology, Department of Cardiovascular Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Meenhard Herlyn
- Program of Cellular and Molecular Oncogenesis, Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - Adina Vultur
- Molecular Physiology, Department of Cardiovascular Physiology, University Medical Center Göttingen, Göttingen, Germany.,Program of Cellular and Molecular Oncogenesis, Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| |
Collapse
|
34
|
Farnesyl diphosphate synthase regulated endothelial proliferation and autophagy during rat pulmonary arterial hypertension induced by monocrotaline. Mol Med 2022; 28:94. [PMID: 35962329 PMCID: PMC9373289 DOI: 10.1186/s10020-022-00511-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/13/2022] [Indexed: 11/10/2022] Open
Abstract
Background The proliferation ability and autophagy level of pulmonary artery endothelial cells (PAECs) play an important role in promoting the development of pulmonary artery hypertension (PAH), and there is still no effective treatment for PAH. Farnesyl diphosphate synthase (FDPS) is a key enzyme in the mevalonate pathway. The intermediate metabolites of this pathway are closely related to the activity of autophagy-associated small G proteins, including Ras-related C3 botulinum toxin substrate 1 (Rac1). Studies have shown that the mevalonate pathway affects the activation levels of different small G proteins, autophagy signaling pathways, vascular endothelial function, and so on. However, the exact relationship between them is still unclear in PAH. Method In vitro, western blotting and mRFP-GFP-LC3 puncta formation assays were used to observe the expression of FDPS and the level of autophagy in PAECs treated with monocrotaline pyrrole (MCTP). In addition, cell proliferation and migration assays were used to assess the effect of FDPS on endothelial function, and Rac1 activity assays were used to evaluate the effect of Rac1 activation on PAEC autophagy via the PI3K/AKT/mTOR signaling pathway. In vivo, the right heart catheterization method, hematoxylin and eosin (H&E) staining and western blotting were used to determine the effect of FDPS on PAEC autophagy and monocrotaline (MCT)-induced PAH. Results We show that the expression of FDPS is increased in the PAH module in vitro and in vivo, concomitant with the induction of autophagy and the activation of Rac1. Our data demonstrate that inhibition of FDPS ameliorates endothelial function and decreases MCT-induced autophagy levels. Mechanistically, we found that FDPS promotes autophagy, Rac1 activity and endothelial disfunction through the PI3K/AKT/mTOR signaling pathway. Conclusion Our study suggests that FDPS contributes to active small G protein-induced autophagy during MCT-induced PAH, which may serve as a potential therapeutic target against PAH. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-022-00511-7.
Collapse
|
35
|
Identification of potent and novel inhibitors against RAC1: a Rho family GTPase. In Silico Pharmacol 2022; 10:13. [PMID: 35928028 PMCID: PMC9343513 DOI: 10.1007/s40203-022-00127-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/13/2022] [Indexed: 10/16/2022] Open
Abstract
Head and Neck Squamous Cell Carcinoma (HNSCC) is one of the most common form of cancer worldwide. It has high incidence and mortality rate making it one of the top causes of cancer related deaths. Tremendous efforts have being made towards treatment of HNSCC but still the overall survival rate hasn't improved much. Unregulated activation of Rho GTPase Ras-related C3 botulinum toxin substrate 1 or Rac1 has been reported in various tumor such as HNSCC, breast cancer, pancreatic cancer, etc. Rac1 is significant in activation and regulation of multiple signaling pathways and it's aberrant activation leads to uncontrolled proliferation, invasion and metastasis which contributes to the hallmarks of cancer. Therefore for treating proliferative disorders such as cancer, inhibition of Rac1 could be a viable approach. Rho GTPases were earlier considered "undruggable" due to their picomolar binding affinity for their guanine nucleotides. In addition presence of high micromolar concentrations of GDP (> 30 μm) and GTP (> 300 μm) in the cell, led to unsuccessful attempts in identification of potent or selective nucleotide competitive GTPase inhibitors. Therefore we identified small molecule inhibitors that target the GEF binding site of the Rho GTPase instead of nucleotide binding site by performing high throughput screening, molecular dynamics simulations, free energy calculations and protein-ligand interaction studies. As a result of this study, we identified four potential inhibitors against RAC1. This study provides a significant in-depth understanding of the Rho GTPases and can prove beneficial in the development of potential therapeutics against HNSCC.
Collapse
|
36
|
Zhao Y, Li J, Chen J, Ye M, Jin X. Functional roles of E3 ubiquitin ligases in prostate cancer. J Mol Med (Berl) 2022; 100:1125-1144. [PMID: 35816219 DOI: 10.1007/s00109-022-02229-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 12/16/2022]
Abstract
Prostate cancer (PCa) is a malignant epithelial tumor of the prostate gland with a high male cancer incidence. Numerous studies indicate that abnormal function of ubiquitin-proteasome system (UPS) is associated with the progression and metastasis of PCa. E3 ubiquitin ligases, key components of UPS, determine the specificity of substrates, and substantial advances of E3 ubiquitin ligases have been reached recently. Herein, we introduce the structures and functions of E3 ubiquitin ligases and summarize the mechanisms of E3 ubiquitin ligases-related PCa signaling pathways. In addition, some progresses in the development of inhibitors targeting E3 ubiquitin ligases are also included.
Collapse
Affiliation(s)
- Yiting Zhao
- Department of Oncology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, China.,Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China.,Department of Chemoradiotherapy, the Affiliated People's Hospital of Ningbo University, Ningbo, 315040, China
| | - Jinyun Li
- Department of Oncology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, China.,Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China
| | - Jun Chen
- Department of Chemoradiotherapy, the Affiliated People's Hospital of Ningbo University, Ningbo, 315040, China
| | - Meng Ye
- Department of Oncology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, China.,Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China
| | - Xiaofeng Jin
- Department of Oncology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, China. .,Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
37
|
Wang L, Shi J, Liu S, Huang Y, Ding H, Zhao B, Liu Y, Wang W, Yang J, Chen Z. RAC3 Inhibition Induces Autophagy to Impair Metastasis in Bladder Cancer Cells via the PI3K/AKT/mTOR Pathway. Front Oncol 2022; 12:915240. [PMID: 35847878 PMCID: PMC9279623 DOI: 10.3389/fonc.2022.915240] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Background Bladder cancer (BCa) is one of the most frequent malignant tumors globally, with a significant morbidity and mortality rate. Gene expression dysregulation has been proven to play a critical role in tumorigenesis. Ras-related C3 botulinum toxin substrate3 (RAC3), which is overexpressed in several malignancies and promotes tumor progression, has been identified as an oncogene. However, RAC3 has important but not fully understood biological functions in cancer. Our research aims to reveal the new functions and potential mechanisms of RAC3 involved in BCa progression. Methods We explored the expression level of RAC3 and its relationship with prognosis by publicly accessible BCa datasets, while the correlation of RAC3 expression with clinicopathological variables of patients was analyzed. In vitro and in vivo proliferation, migration, autophagy, and other phenotypic changes were examined by constructing knockdown(KD)/overexpression(OE) RAC3 cells and their association with PI3K/AKT/mTOR pathway was explored by adding autophagy-related compounds. Results Compared with non-tumor samples, RAC3 was highly expressed in BCa and negatively correlated with prognosis. KD/OE RAC3 inhibited/promoted the proliferation and migration of BCa cells. Knockdown RAC3 caused cell cycle arrest and decreased adhesion without affecting apoptosis. Inhibition of RAC3 activates PI3K/AKT/mTOR mediated autophagy and inhibits proliferation and migration of BCa cells in vivo and in vitro. Autophagy inhibitor 3MA can partially rescue the metastasis and proliferation inhibition effect caused by RAC3 inhibition. Inhibit/activate mTOR enhanced/impaired autophagy, resulting in shRAC3-mediated migration defect exacerbated/rescued. Conclusion RAC3 is highly expressed in BCa. It is associated with advanced clinicopathological variables and poor prognosis. Knockdown RAC3 exerts an antitumor effect by enhancing PI3K/AKT/mTOR mediated autophagy. Targeting RAC3 and autophagy simultaneously is a potential therapeutic strategy for inhibiting BCa progression and prolonging survival.
Collapse
Affiliation(s)
- Liwei Wang
- Urology Institute of People’s Liberation Army, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Unit 32357 of People’s Liberation Army, Pujiang, China
| | - Jiazhong Shi
- Department of Cell Biology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Sha Liu
- Department of Cell Biology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yaqin Huang
- Department of Cell Biology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hua Ding
- Urology Institute of People’s Liberation Army, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Baixiong Zhao
- Urology Institute of People’s Liberation Army, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yuting Liu
- Urology Institute of People’s Liberation Army, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Wuxing Wang
- Urology Institute of People’s Liberation Army, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jin Yang
- Department of Cell Biology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhiwen Chen
- Urology Institute of People’s Liberation Army, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
38
|
Ramos DFV, Mancuso RI, Contieri B, Duarte A, Paiva L, de Melo Carrilho J, Saad STO, Lazarini M. Rac GTPases in acute myeloid leukemia cells: Expression profile and biological effects of pharmacological inhibition. Toxicol Appl Pharmacol 2022; 442:115990. [PMID: 35331739 DOI: 10.1016/j.taap.2022.115990] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 12/17/2022]
Abstract
Acute myeloid leukemia (AML) is a highly heterogeneous hematological neoplasm with low survival rates. Thus, the investigation of new therapeutic targets is essential. The Rac subfamily of GTPase proteins has been shown to participate in the physiopathology of hematological malignancies. However, their expression and function in AML remain unclear. In this study, we evaluated Rac1, Rac2 and Rac3 gene expressions in AML and their impact on clinical outcomes. We further investigated the effects of the in vitro treatment with a Rac inhibitor (EHT-1864) on AML cell lines. Rac3 expression was increased in AML derived from myelodysplastic syndromes compared to healthy donors. Rac2 expression did not differ between AML patients and healthy donors, but de novo AML patients with higher Rac2 presented lower overall survival. Oncogenic pathway gene-sets related to AKT/mTOR were identified as associated with Rac1, Rac2 and Rac3 expressions. EHT-1864 treatment reduced the viability of OCI-AML3, KG1 and Kasumi-1 cells in a time and dose-dependent manner. In OCI-AML3 cells, treatment with EHT-1864 induced apoptosis, autophagy, and led to the accumulation of cells in the G1 phase of the cell cycle. These changes were concomitant with alterations in p53 and cyclins. Dowregulation of the PI3K/AKT/mTOR pathway was also observed. Interestingly, the combined treatment of EHT-1864 and low doses of daunorubicin enhanced OCI-AML3 cell apoptosis. In conclusion, Rac2 expression is a prognostic factor in AML and our preclinical results suggest that Rac inhibition may be an attractive mechanism to compose the antineoplastic strategy for this disease.
Collapse
Affiliation(s)
| | - Rubia Isler Mancuso
- Hematology and Bloood Transfusion Center, University of Campinas, Campinas, São Paulo, Brazil
| | - Bruna Contieri
- Department of Pharmaceutical Sciences, Federal University of São Paulo, Diadema, São Paulo, Brazil
| | - Adriana Duarte
- Hematology and Bloood Transfusion Center, University of Campinas, Campinas, São Paulo, Brazil
| | - Luciana Paiva
- Hematology and Bloood Transfusion Center, University of Campinas, Campinas, São Paulo, Brazil
| | | | | | - Mariana Lazarini
- Department of Pharmaceutical Sciences, Federal University of São Paulo, Diadema, São Paulo, Brazil; Hematology and Bloood Transfusion Center, University of Campinas, Campinas, São Paulo, Brazil.
| |
Collapse
|
39
|
Huan J, Grivas P, Birch J, Hansel DE. Emerging Roles for Mammalian Target of Rapamycin (mTOR) Complexes in Bladder Cancer Progression and Therapy. Cancers (Basel) 2022; 14:1555. [PMID: 35326708 PMCID: PMC8946148 DOI: 10.3390/cancers14061555] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/03/2022] [Accepted: 03/15/2022] [Indexed: 12/15/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) pathway regulates important cellular functions. Aberrant activation of this pathway, either through upstream activation by growth factors, loss of inhibitory controls, or molecular alterations, can enhance cancer growth and progression. Bladder cancer shows high levels of mTOR activity in approximately 70% of urothelial carcinomas, suggesting a key role for this pathway in this cancer. mTOR signaling initiates through upstream activation of phosphatidylinositol 3 kinase (PI3K) and protein kinase B (AKT) and results in activation of either mTOR complex 1 (mTORC1) or mTOR complex 2 (mTORC2). While these complexes share several key protein components, unique differences in their complex composition dramatically alter the function and downstream cellular targets of mTOR activity. While significant work has gone into analysis of molecular alterations of the mTOR pathway in bladder cancer, this has not yielded significant benefit in mTOR-targeted therapy approaches in urothelial carcinoma to date. New discoveries regarding signaling convergence onto mTOR complexes in bladder cancer could yield unique insights the biology and targeting of this aggressive disease. In this review, we highlight the functional significance of mTOR signaling in urothelial carcinoma and its potential impact on future therapy implications.
Collapse
Affiliation(s)
- Jianya Huan
- Department of Pathology & Laboratory Medicine, Oregon Health & Science University, Portland, OR 97239, USA; (J.H.); (J.B.)
| | - Petros Grivas
- Division of Medical Oncology, Department of Medicine, University of Washington School of Medicine, Fred Hutchinson Cancer Research Center, Seattle Cancer Care Alliance, Seattle, WA 98195, USA;
| | - Jasmine Birch
- Department of Pathology & Laboratory Medicine, Oregon Health & Science University, Portland, OR 97239, USA; (J.H.); (J.B.)
| | - Donna E. Hansel
- Department of Pathology & Laboratory Medicine, Oregon Health & Science University, Portland, OR 97239, USA; (J.H.); (J.B.)
| |
Collapse
|
40
|
Hanoudi SN, Talwar H, Draghici S, Samavati L. Autoantibodies against cytoskeletons and lysosomal trafficking discriminate sarcoidosis from healthy controls, tuberculosis and lung cancers. MOLECULAR BIOMEDICINE 2022; 3:3. [PMID: 35048206 PMCID: PMC8770712 DOI: 10.1186/s43556-021-00064-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
Sarcoidosis is a systemic granulomatous disease of unknown etiology. Hypergammaglobulinemia and the presence of autoantibodies in sarcoidosis suggest active humoral immunity to unknown antigen(s). We developed a complex cDNA library derived from tissues of sarcoidosis patients. Using a high throughput method, we constructed a microarray platform from this cDNA library containing large numbers of sarcoidosis clones. After selective biopanning, 1070 sarcoidosis-specifc clones were arrayed and immunoscreend with 152 sera from patients with sarcoidosis and other pulmonary diseases. To identify the sarcoidosis classifiers two statistical approaches were conducted: First, we identified significant biomarkers between sarcoidosis and healthy controls, and second identified markers comparing sarcoidosis to all other groups. At the threshold of an False Discovery Rate (FDR) < 0.01, we identified 14 clones in the first approach and 12 clones in the second approach discriminating sarcoidosis from other groups. We used the classifiers to build a naïve Bayes model on the training-set and validated it on an independent test-set. The first approach yielded an AUC of 0.947 using 14 significant clones with a sensitivity of 0.93 and specificity of 0.88, whereas the AUC of the second option was 0.92 with a sensitivity of 0.96 and specificity of 0.83. These results suggest robust classifier performance. Furthermore, we characterized the informative phage clones by sequencing and homology searches. Large numbers of classifier-clones were peptides involved in cellular trafficking and cytoskeletons. These results show that sarcoidosis is associated with a specific pattern of immunoreactivity that can discriminate it from other diseases.
Collapse
Affiliation(s)
| | - Harvinder Talwar
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Wayne State University School of Medicine, 3990 John R, 3 Hudson, Detroit, MI 48201 USA
| | - Sorin Draghici
- Department of Computer Science, Wayne State University, Detroit, MI 48202 USA
| | - Lobelia Samavati
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Wayne State University School of Medicine, 3990 John R, 3 Hudson, Detroit, MI 48201 USA
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI 48201 USA
| |
Collapse
|
41
|
Fan X, Wen J, Bao L, Gao F, Li Y, He D. Identification and Validation of DEPDC1B as an Independent Early Diagnostic and Prognostic Biomarker in Liver Hepatocellular Carcinoma. Front Genet 2022; 12:681809. [PMID: 35095994 PMCID: PMC8793833 DOI: 10.3389/fgene.2021.681809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 12/10/2021] [Indexed: 12/24/2022] Open
Abstract
Liver hepatocellular carcinoma (LIHC) is one of the most lethal tumors worldwide, and while its detailed mechanism of occurrence remains unclear, an early diagnosis of LIHC could significantly improve the 5-years survival of LIHC patients. It is therefore imperative to explore novel molecular markers for the early diagnosis and to develop efficient therapies for LIHC patients. Currently, DEPDC1B has been reported to participate in the regulation of cell mitosis, transcription, and tumorigenesis. To explore the valuable diagnostic and prognostic markers for LIHC and further elucidate the mechanisms underlying DEPDC1B-related LIHC, numerous databases, such as Oncomine, Gene Expression Profiling Interactive Analysis (GEPIA), UALCAN, Kaplan-Meier plotter, and The Cancer Genome Atlas (TCGA) were employed to determine the association between the expression of DEPDC1B and prognosis in LIHC patients. Generally, the DEPDC1B mRNA level was highly expressed in LIHC tissues, compared with that in normal tissues (p < 0.01). High DEPDC1B expression was associated with poor overall survival (OS) in LIHC patients, especially in stage II, IV, and grade I, II, III patients (all p < 0.05). The univariate and multivariate Cox regression analysis showed that DEPDC1B was an independent risk factor for OS among LIHC patients (HR = 1.3, 95% CI: 1.08–1.6, p = 0.007). In addition, the protein expression of DEPDC1B was validated using Human Protein Atlas database. Furthermore, the expression of DEPDC1B was confirmed by quantitative real-time polymerase chain reaction (qRT-PCR) assay using five pairs of matched LIHC tissues and their adjacent noncancerous tissues. The KEGG pathway analysis indicated that high expression of DEPDC1B may be associated with several signaling pathways, such as MAPK signaling, the regulation of actin cytoskeleton, p53 signaling, and the Wnt signaling pathways. Furthermore, high DEPDC1B expression may be significantly associated with various cancers. Conclusively, DEPDC1B may be an independent risk factor for OS among LIHC cancer patients and may be used as an early diagnostic marker in patients with LIHC.
Collapse
Affiliation(s)
- Xiaoyan Fan
- Department of Oncology, Hebei General Hospital, Shijiazhuang, China
| | - Junye Wen
- Department of Hepatobiliary Surgery, Hebei General Hospital, Shijiazhuang, China
| | - Lei Bao
- Department of Hepatobiliary Surgery, Hebei General Hospital, Shijiazhuang, China
| | - Fei Gao
- Department of Oncology, Hebei General Hospital, Shijiazhuang, China
| | - You Li
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Dongwei He
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Dongwei He,
| |
Collapse
|
42
|
Liu L, Dai X, Yin S, Liu P, Hill EG, Wei W, Gan W. DNA-PK promotes activation of the survival kinase AKT in response to DNA damage through an mTORC2-ECT2 pathway. Sci Signal 2022; 15:eabh2290. [PMID: 34982576 DOI: 10.1126/scisignal.abh2290] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Liu Liu
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA.,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Xiaoming Dai
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Shasha Yin
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA.,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Pengda Liu
- Lineberger Comprehensive Cancer Center and Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Elizabeth G Hill
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA.,Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Wenjian Gan
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA.,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
43
|
Shams R, Ito Y, Miyatake H. Mapping of mTOR drug targets: Featured platforms for anti-cancer drug discovery. Pharmacol Ther 2021; 232:108012. [PMID: 34624427 DOI: 10.1016/j.pharmthera.2021.108012] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022]
Abstract
The mammalian/mechanistic target of rapamycin (mTOR) is a regulatory protein kinase involved in cell growth and proliferation. mTOR is usually assembled in two different complexes with different regulatory mechanisms, mTOR complex 1 (mTORC1) and mTORC2, which are involved in different functions such as cell proliferation and cytoskeleton assembly, respectively. In cancer cells, mTOR is hyperactivated in response to metabolic alterations and/or oncogenic signals to overcome the stressful microenvironments. Therefore, recent research progress for mTOR inhibition involves a variety of compounds that have been developed to disturb the metabolic processes of cancer cells through mTOR inhibition. In addition to competitive or allosteric inhibition, a new inhibition strategy that emerged mTOR complexes destabilization has recently been a concern. Here, we review the history of mTOR and its inhibition, along with the timeline of the mTOR inhibitors. We also introduce prospective drug targets to inhibit mTOR by disrupting the complexation of the components with peptides and small molecules.
Collapse
Affiliation(s)
- Raef Shams
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, RIKEN, Wako, Saitama 351-0198, Japan; Department of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan.
| | - Yoshihiro Ito
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, RIKEN, Wako, Saitama 351-0198, Japan; Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, Wako, Saitama 351-0198, Japan
| | - Hideyuki Miyatake
- Department of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan; Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
44
|
Crosas-Molist E, Samain R, Kohlhammer L, Orgaz J, George S, Maiques O, Barcelo J, Sanz-Moreno V. RhoGTPase Signalling in Cancer Progression and Dissemination. Physiol Rev 2021; 102:455-510. [PMID: 34541899 DOI: 10.1152/physrev.00045.2020] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Rho GTPases are a family of small G proteins that regulate a wide array of cellular processes related to their key roles controlling the cytoskeleton. On the other hand, cancer is a multi-step disease caused by the accumulation of genetic mutations and epigenetic alterations, from the initial stages of cancer development when cells in normal tissues undergo transformation, to the acquisition of invasive and metastatic traits, responsible for a large number of cancer related deaths. In this review, we discuss the role of Rho GTPase signalling in cancer in every step of disease progression. Rho GTPases contribute to tumour initiation and progression, by regulating proliferation and apoptosis, but also metabolism, senescence and cell stemness. Rho GTPases play a major role in cell migration, and in the metastatic process. They are also involved in interactions with the tumour microenvironment and regulate inflammation, contributing to cancer progression. After years of intensive research, we highlight the importance of relevant models in the Rho GTPase field, and we reflect on the therapeutic opportunities arising for cancer patients.
Collapse
Affiliation(s)
- Eva Crosas-Molist
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Remi Samain
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Leonie Kohlhammer
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jose Orgaz
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.,Instituto de Investigaciones Biomédicas 'Alberto Sols', CSIC-UAM, 28029, Madrid, Spain
| | - Samantha George
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Oscar Maiques
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jaume Barcelo
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | | |
Collapse
|
45
|
Bi J, Cheng C, Zheng C, Huang C, Zheng X, Wan X, Chen YH, Tian Z, Sun H. TIPE2 is a checkpoint of natural killer cell maturation and antitumor immunity. SCIENCE ADVANCES 2021; 7:eabi6515. [PMID: 34524845 PMCID: PMC8443187 DOI: 10.1126/sciadv.abi6515] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The maturation process of NK cells determines their functionality during which IL-15 plays a critical role. However, very few checkpoints specifically targeting this process have been discovered. Here, we report that TIPE2 expression gradually increased during NK cell ontogenesis correlating to their maturation stages in both mice and humans. NK-specific TIPE2 deficiency increased mature NK cells in mice, and these TIPE2-deficient NK cells exhibited enhanced activation, cytotoxicity, and IFN-γ production upon stimulation and enhanced response to IL-15 for maturation. Moreover, TIPE2 suppressed IL-15–triggered mTOR activity in both human and murine NK cells. Consequently, blocking mTOR constrained the effect of TIPE2 deficiency on NK cell maturation in response to IL-15. Last, NK-specific TIPE2-deficient mice were resistant to tumor growth in vivo. Our results uncover a potent checkpoint in NK cell maturation and antitumor immunity in both mice and humans, suggesting a promising approach of targeting TIPE2 for NK cell–based immunotherapies.
Collapse
Affiliation(s)
- Jiacheng Bi
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Corresponding author. (J.B.); (H.S.)
| | - Chen Cheng
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chaoyue Zheng
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chen Huang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaohu Zheng
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei 230027, China
| | - Xiaochun Wan
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Youhai H. Chen
- Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhigang Tian
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei 230027, China
- Research Unit of NK Cell Study, Chinese Academy of Medical Sciences, Beijing 100864, China
| | - Haoyu Sun
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei 230027, China
- Corresponding author. (J.B.); (H.S.)
| |
Collapse
|
46
|
An P, Xu W, Luo J, Luo Y. Expanding TOR Complex 2 Signaling: Emerging Regulators and New Connections. Front Cell Dev Biol 2021; 9:713806. [PMID: 34395443 PMCID: PMC8363310 DOI: 10.3389/fcell.2021.713806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/15/2021] [Indexed: 12/16/2022] Open
Abstract
Almost three decades after its seminal discovery, our understanding of the remarkable TOR pathway continues to expand. As a TOR complex, TORC2 lies at the nexus of many signaling pathways and directs a diverse array of fundamental processes such as cell survival, proliferation, and metabolism by integrating environmental and intracellular cues. The dysregulation of TORC2 activity disrupts cellular homeostasis and leads to many pathophysiological conditions. With continued efforts at mapping the signaling landscape, the pace of discovery in TORC2 regulation has been accelerated in recent years. Consequently, emerging evidence has expanded the repertoire of upstream regulators and has revealed unexpected diversity in the modes of TORC2 regulation. Multiple environmental cues and plasma membrane proteins that fine-tune TORC2 activity are unfolding. Furthermore, TORC2 signaling is intricately intertwined with other major signaling pathways. Therefore, feedback and crosstalk regulation also extensively modulate TORC2. In this context, we provide a comprehensive overview of revolutionary concepts regarding emerging regulators of TORC2 and discuss evidence of feedback and crosstalk regulation that shed new light on TORC2 biology.
Collapse
Affiliation(s)
| | | | - Junjie Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yongting Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| |
Collapse
|
47
|
Abstract
The ageing population is becoming a significant socio-economic issue. To address the expanding health gap, it is important to deepen our understanding of the mechanisms underlying ageing in various organisms at the single-cell level. The discovery of the antifungal, immunosuppressive, and anticancer drug rapamycin, which possesses the ability to extend the lifespan of several species, has prompted extensive research in the areas of cell metabolic regulation, development, and senescence. At the centre of this research is the mTOR pathway, with key roles in cell growth, proteosynthesis, ribosomal biogenesis, transcriptional regulation, glucose and lipid metabolism, and autophagy. Recently, it has become obvious that mTOR dysregulation is involved in several age-related diseases, such as cancer, neurodegenerative diseases, and type 2 diabetes mellitus. Additionally, mTOR hyperactivation affects the process of ageing per se. In this review, we provide an overview of recent insights into the mTOR signalling pathway, including its regulation and its influence on various hallmarks of ageing at the cellular level.
Collapse
Affiliation(s)
- Zofia Chrienova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
| |
Collapse
|
48
|
Zhang F, Liu Y, You Q, Yang E, Liu B, Wang H, Xu S, Nawaz W, Chen D, Wu Z. NSC23766 and Ehop016 Suppress Herpes Simplex Virus-1 Replication by Inhibiting Rac1 Activity. Biol Pharm Bull 2021; 44:1263-1271. [PMID: 34162786 DOI: 10.1248/bpb.b21-00054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Herpes simplex virus-1 (HSV-1) infection of the eyes leads to herpes simplex virus keratitis (HSK), the main cause of infectious blindness in the world. As the current therapeutics for HSV-1 infection are rather limited and prolonged use of acyclovir (ACV)/ganciclovir (GCV) and in immunocompromised patients lead to the rise of drug resistant mutants, it underlines the urgent need for new antiviral agents with distinct mechanisms. Our study attempted to establish ras-related C3 botulinum toxin substrate 1 (Rac1) as a new therapeutic target for HSV-1 infection by using Rac1-specific inhibitors to evaluate the in vitro inhibition of virus growth. Our results showed that increased Rac1 activity facilitated HSV-1 replication and inhibition of Rac1 activity by NSC23766 and Ehop016 significantly reduced HSV-1 replication. Thus, we identified NSC23766 and Ehop016 as possessing potent anti-HSV-1 activities by suppressing the Rac1 activity, suggesting that Rac1 is a potential target for treating HSV-1-related diseases.
Collapse
Affiliation(s)
- Fang Zhang
- Center for Public Health Research, Medical School of Nanjing University.,Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University
| | - Ye Liu
- Center for Public Health Research, Medical School of Nanjing University.,Department of Ophthalmology, JinLing Hospital, Medical School of Nanjing University
| | - Qiao You
- Center for Public Health Research, Medical School of Nanjing University
| | - Enhui Yang
- Nanjing Children's Hospital, Nanjing Medical University
| | - Bingxin Liu
- Center for Public Health Research, Medical School of Nanjing University
| | - Huanru Wang
- Center for Public Health Research, Medical School of Nanjing University
| | - Shijie Xu
- Center for Public Health Research, Medical School of Nanjing University
| | - Waqas Nawaz
- Center for Public Health Research, Medical School of Nanjing University.,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University
| | - Deyan Chen
- Center for Public Health Research, Medical School of Nanjing University
| | - Zhiwei Wu
- Center for Public Health Research, Medical School of Nanjing University.,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University.,School of Life Sciences, Ningxia University
| |
Collapse
|
49
|
Li C, Li Z, Song L, Meng L, Xu G, Zhang H, Hu J, Li F, Liu C. GEFT Inhibits Autophagy and Apoptosis in Rhabdomyosarcoma via Activation of the Rac1/Cdc42-mTOR Signaling Pathway. Front Oncol 2021; 11:656608. [PMID: 34221974 PMCID: PMC8252888 DOI: 10.3389/fonc.2021.656608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
Autophagy and apoptosis are dynamic processes that determine the fate of cells, and regulating these processes can treat cancer. GEFT is highly expressed in rhabdomyosarcoma (RMS), which accelerates the tumorigenicity and metastasis of RMS by activating Rac1/Cdc42 signaling, but the regulatory mechanisms of autophagy and apoptosis are unclear. In our study, we found that the RMS tissues had high Rac1, Cdc42, mTOR, and Bcl-2 expression levels and low Beclin1, LC3, and Bax expression levels compared with the normal striated muscle tissues (P < 0.05). In addition, multivariate analysis has proven that Rac1 is an independent prognostic factor (P < 0.05), and the high expression level of the Beclin1 protein was closely associated with the tumor diameter of the RMS patients (P = 0.044), whereas the high expression level of the LC3 protein was associated with the clinical stage of the RMS patients (P = 0.027). Furthermore, GEFT overexpression could inhibit autophagy and apoptosis in RMS. A Rac1/Cdc42 inhibitor was added, and the inhibition of autophagy and apoptosis decreased. Rac1 and Cdc42 could regulate mTOR to inhibit autophagy and apoptosis in RMS. Overall, these studies demonstrated that the GEFT–Rac1/Cdc42–mTOR pathway can inhibit autophagy and apoptosis in RMS and provide evidence for innovative treatments.
Collapse
Affiliation(s)
- Chunsen Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
| | - Zhenzhen Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
| | - Lingxie Song
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China.,Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Lian Meng
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
| | - Guixuan Xu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
| | - Haijun Zhang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
| | - Jianming Hu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
| | - Feng Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China.,Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Chunxia Liu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China.,Department of Pathology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
50
|
Meng D, Yang Q, Melick CH, Park BC, Hsieh T, Curukovic A, Jeong M, Zhang J, James NG, Jewell JL. ArfGAP1 inhibits mTORC1 lysosomal localization and activation. EMBO J 2021; 40:e106412. [PMID: 33988249 PMCID: PMC8204869 DOI: 10.15252/embj.2020106412] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 03/14/2021] [Accepted: 03/24/2021] [Indexed: 12/11/2022] Open
Abstract
The mammalian target of rapamycin complex 1 (mTORC1) integrates nutrients, growth factors, stress, and energy status to regulate cell growth and metabolism. Amino acids promote mTORC1 lysosomal localization and subsequent activation. However, the subcellular location or interacting proteins of mTORC1 under amino acid-deficient conditions is not completely understood. Here, we identify ADP-ribosylation factor GTPase-activating protein 1 (ArfGAP1) as a crucial regulator of mTORC1. ArfGAP1 interacts with mTORC1 in the absence of amino acids and inhibits mTORC1 lysosomal localization and activation. Mechanistically, the membrane curvature-sensing amphipathic lipid packing sensor (ALPS) motifs that bind to vesicle membranes are crucial for ArfGAP1 to interact with and regulate mTORC1 activity. Importantly, ArfGAP1 represses cell growth through mTORC1 and is an independent prognostic factor for the overall survival of pancreatic cancer patients. Our study identifies ArfGAP1 as a critical regulator of mTORC1 that functions by preventing the lysosomal transport and activation of mTORC1, with potential for cancer therapeutics.
Collapse
Affiliation(s)
- Delong Meng
- Department of Molecular BiologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Harold C. Simmons Comprehensive Cancer CenterUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Hamon Center for Regenerative Science and MedicineUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Qianmei Yang
- Department of Molecular BiologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Harold C. Simmons Comprehensive Cancer CenterUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Hamon Center for Regenerative Science and MedicineUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Chase H Melick
- Department of Molecular BiologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Harold C. Simmons Comprehensive Cancer CenterUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Hamon Center for Regenerative Science and MedicineUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Brenden C Park
- Department of Molecular BiologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Harold C. Simmons Comprehensive Cancer CenterUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Hamon Center for Regenerative Science and MedicineUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Ting‐Sung Hsieh
- Department of Molecular BiologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Harold C. Simmons Comprehensive Cancer CenterUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Hamon Center for Regenerative Science and MedicineUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Adna Curukovic
- Department of Molecular BiologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Harold C. Simmons Comprehensive Cancer CenterUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Hamon Center for Regenerative Science and MedicineUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Mi‐Hyeon Jeong
- Department of Molecular BiologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Harold C. Simmons Comprehensive Cancer CenterUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Hamon Center for Regenerative Science and MedicineUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Junmei Zhang
- Department of Molecular BiologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Nicholas G James
- Department of Cell and Molecular BiologyJohn A. Burns School of MedicineUniversity of HawaiiHonoluluHIUSA
| | - Jenna L Jewell
- Department of Molecular BiologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Harold C. Simmons Comprehensive Cancer CenterUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Hamon Center for Regenerative Science and MedicineUniversity of Texas Southwestern Medical CenterDallasTXUSA
| |
Collapse
|