1
|
Ashitomi H, Nakagawa T, Nakagawa M, Hosoi T. Cullin-RING Ubiquitin Ligases in Neurodevelopment and Neurodevelopmental Disorders. Biomedicines 2025; 13:810. [PMID: 40299365 PMCID: PMC12024872 DOI: 10.3390/biomedicines13040810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/30/2025] Open
Abstract
Ubiquitination is a dynamic and tightly regulated post-translational modification essential for modulating protein stability, trafficking, and function to preserve cellular homeostasis. This process is orchestrated through a hierarchical enzymatic cascade involving three key enzymes: the E1 ubiquitin-activating enzyme, the E2 ubiquitin-conjugating enzyme, and the E3 ubiquitin ligase. The final step of ubiquitination is catalyzed by the E3 ubiquitin ligase, which facilitates the transfer of ubiquitin from the E2 enzyme to the substrate, thereby dictating which proteins undergo ubiquitination. Emerging evidence underscores the critical roles of ubiquitin ligases in neurodevelopment, regulating fundamental processes such as neuronal polarization, axonal outgrowth, synaptogenesis, and synaptic function. Mutations in genes encoding ubiquitin ligases and the consequent dysregulation of these pathways have been increasingly implicated in a spectrum of neurodevelopmental disorders, including autism spectrum disorder, intellectual disability, and attention-deficit/hyperactivity disorder. This review synthesizes current knowledge on the molecular mechanisms underlying neurodevelopment regulated by Cullin-RING ubiquitin ligases-the largest subclass of ubiquitin ligases-and their involvement in the pathophysiology of neurodevelopmental disorders. A deeper understanding of these mechanisms holds significant promise for informing novel therapeutic strategies, ultimately advancing clinical outcomes for individuals affected by neurodevelopmental disorders.
Collapse
Affiliation(s)
- Honoka Ashitomi
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda 756-0084, Japan; (H.A.)
| | - Tadashi Nakagawa
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda 756-0084, Japan; (H.A.)
- Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Makiko Nakagawa
- Institute of Gene Research, Yamaguchi University Science Research Center, Ube 755-8505, Japan
- Advanced Technology Institute, Life Science Division, Yamaguchi University, Ube 755-8611, Japan
| | - Toru Hosoi
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda 756-0084, Japan; (H.A.)
| |
Collapse
|
2
|
Nakagawa M, Nakagawa T. CUL4-Based Ubiquitin Ligases in Chromatin Regulation: An Evolutionary Perspective. Cells 2025; 14:63. [PMID: 39851492 PMCID: PMC11763709 DOI: 10.3390/cells14020063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/22/2024] [Accepted: 01/06/2025] [Indexed: 01/26/2025] Open
Abstract
Ubiquitylation is a post-translational modification that modulates protein function and stability. It is orchestrated by the concerted action of three types of enzymes, with substrate specificity governed by ubiquitin ligases (E3s), which may exist as single proteins or as part of multi-protein complexes. Although Cullin (CUL) proteins lack intrinsic enzymatic activity, they participate in the formation of active ubiquitin ligase complexes, known as Cullin-Ring ubiquitin Ligases (CRLs), through their association with ROC1 or ROC2, along with substrate adaptor and receptor proteins. Mammalian genomes encode several CUL proteins (CUL1-9), each contributing to distinct CRLs. Among these CUL proteins, CUL1, CUL3, and CUL4 are believed to be the most ancient and evolutionarily conserved from yeast to mammals, with CUL4 uniquely duplicated in vertebrates. Genetic evidence strongly implicates CUL4-based ubiquitin ligases (CRL4s) in chromatin regulation across various species and suggests that, in vertebrates, CRL4s have also acquired a cytosolic role, which is facilitated by a cytosol-localizing paralog of CUL4. Substrates identified through biochemical studies have elucidated the molecular mechanisms by which CRL4s regulate chromatin and cytosolic processes. The substantial body of knowledge on CUL4 biology amassed over the past two decades provides a unique opportunity to explore the functional evolution of CRL4. In this review, we synthesize the available structural, genetic, and biochemical data on CRL4 from various model organisms and discuss the conserved and novel functions of CRL4s.
Collapse
Affiliation(s)
- Makiko Nakagawa
- Institute of Gene Research, Yamaguchi University Science Research Center, Yamaguchi 755-8505, Japan;
- Advanced Technology Institute, Life Science Division, Yamaguchi University, Yamaguchi 755-8611, Japan
| | - Tadashi Nakagawa
- Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda 756-0084, Japan
| |
Collapse
|
3
|
Dasgupta A, Nandi S, Gupta S, Roy S, Das C. To Ub or not to Ub: The epic dilemma of histones that regulate gene expression and epigenetic cross-talk. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195033. [PMID: 38750882 DOI: 10.1016/j.bbagrm.2024.195033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 01/04/2024] [Accepted: 05/06/2024] [Indexed: 05/23/2024]
Abstract
A dynamic array of histone post-translational modifications (PTMs) regulate diverse cellular processes in the eukaryotic chromatin. Among them, histone ubiquitination is particularly complex as it alters nucleosome surface area fostering intricate cross-talk with other chromatin modifications. Ubiquitin signaling profoundly impacts DNA replication, repair, and transcription. Histones can undergo varied extent of ubiquitination such as mono, multi-mono, and polyubiquitination, which brings about distinct cellular fates. Mechanistic studies of the ubiquitin landscape in chromatin have unveiled a fascinating tapestry of events that orchestrate gene regulation. In this review, we summarize the key contributors involved in mediating different histone ubiquitination and deubiquitination events, and discuss their mechanism which impacts cell transcriptional identity and DNA damage response. We also focus on the proteins bearing epigenetic reader modules critical in discerning site-specific histone ubiquitination, pivotal for establishing complex epigenetic crosstalk. Moreover, we highlight the role of histone ubiquitination in different human diseases including neurodevelopmental disorders and cancer. Overall the review elucidates the intricate orchestration of histone ubiquitination impacting diverse cellular functions and disease pathogenesis, and provides insights into the current challenges of targeting them for therapeutic interventions.
Collapse
Affiliation(s)
- Anirban Dasgupta
- Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, India; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Sandhik Nandi
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Sayan Gupta
- Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, India
| | - Siddhartha Roy
- Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
4
|
Dobransky A, Root M, Hafner N, Marcum M, Sharifi HJ. CRL4-DCAF1 Ubiquitin Ligase Dependent Functions of HIV Viral Protein R and Viral Protein X. Viruses 2024; 16:1313. [PMID: 39205287 PMCID: PMC11360348 DOI: 10.3390/v16081313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/04/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
The Human Immunodeficiency Virus (HIV) encodes several proteins that contort the host cell environment to promote viral replication and spread. This is often accomplished through the hijacking of cellular ubiquitin ligases. These reprogrammed complexes initiate or enhance the ubiquitination of cellular proteins that may otherwise act to restrain viral replication. Ubiquitination of target proteins may alter protein function or initiate proteasome-dependent destruction. HIV Viral Protein R (Vpr) and the related HIV-2 Viral Protein X (Vpx), engage the CRL4-DCAF1 ubiquitin ligase complex to target numerous cellular proteins. In this review we describe the CRL4-DCAF1 ubiquitin ligase complex and its interactions with HIV Vpr and Vpx. We additionally summarize the cellular proteins targeted by this association as well as the observed or hypothesized impact on HIV.
Collapse
Affiliation(s)
- Ashley Dobransky
- Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, NY 13214, USA
| | - Mary Root
- Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, NY 13214, USA
| | - Nicholas Hafner
- Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, NY 13214, USA
| | - Matty Marcum
- Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, NY 13214, USA
| | - H John Sharifi
- Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, NY 13214, USA
| |
Collapse
|
5
|
Ren P, Tong X, Li J, Jiang H, Liu S, Li X, Lai M, Yang W, Rong Y, Zhang Y, Jin J, Ma Y, Pan W, Fan HY, Zhang S, Zhang YL. CRL4 DCAF13 E3 ubiquitin ligase targets MeCP2 for degradation to prevent DNA hypermethylation and ensure normal transcription in growing oocytes. Cell Mol Life Sci 2024; 81:165. [PMID: 38578457 PMCID: PMC10997554 DOI: 10.1007/s00018-024-05185-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 04/06/2024]
Abstract
The DNA methylation is gradually acquired during oogenesis, a process sustained by successful follicle development. However, the functional roles of methyl-CpG-binding protein 2 (MeCP2), an epigenetic regulator displaying specifical binding with methylated DNA, remains unknown in oogenesis. In this study, we found MeCP2 protein was highly expressed in primordial and primary follicle, but was almost undetectable in secondary follicles. However, in aged ovary, MeCP2 protein is significantly increased in both oocyte and granulosa cells. Overexpression of MeCP2 in growing oocyte caused transcription dysregulation, DNA hypermethylation, and genome instability, ultimately leading to follicle growth arrest and apoptosis. MeCP2 is targeted by DCAF13, a substrate recognition adaptor of the Cullin 4-RING (CRL4) E3 ligase, and polyubiquitinated for degradation in both cells and oocytes. Dcaf13-null oocyte exhibited an accumulation of MeCP2 protein, and the partial rescue of follicle growth arrest induced by Dcaf13 deletion was observed following MeCP2 knockdown. The RNA-seq results revealed that large amounts of genes were regulated by the DCAF13-MeCP2 axis in growing oocytes. Our study demonstrated that CRL4DCAF13 E3 ubiquitin ligase targets MeCP2 for degradation to ensure normal DNA methylome and transcription in growing oocytes. Moreover, in aged ovarian follicles, deceased DCAF13 and DDB1 protein were observed, indicating a potential novel mechanism that regulates ovary aging.
Collapse
Affiliation(s)
- Peipei Ren
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Xiaomei Tong
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Junjian Li
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Huifang Jiang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Siya Liu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Xiang Li
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Mengru Lai
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Weijie Yang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Yan Rong
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Yingyi Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Jiamin Jin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Yerong Ma
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Weiwei Pan
- Department of Cell Biology, College of Medicine, Jiaxing University, Jiaxing, 314001, China
| | - Heng-Yu Fan
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China.
| | - Yin-Li Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
6
|
Dar AA, Ortega Y, Aktas S, Wu K, Guha I, Porter N, Rosen S, DeVita RJ, Pan ZQ, Oliver PM. CRL4b Inhibition Ameliorates Experimental Autoimmune Encephalomyelitis Progression. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:982-991. [PMID: 38265261 PMCID: PMC11060073 DOI: 10.4049/jimmunol.2300754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/04/2024] [Indexed: 01/25/2024]
Abstract
Multiple sclerosis, and its murine model experimental autoimmune encephalomyelitis (EAE), is a neurodegenerative autoimmune disease of the CNS characterized by T cell influx and demyelination. Similar to other autoimmune diseases, therapies can alleviate symptoms but often come with side effects, necessitating the exploration of new treatments. We recently demonstrated that the Cullin-RING E3 ubiquitin ligase 4b (CRL4b) aided in maintaining genome stability in proliferating T cells. In this study, we examined whether CRL4b was required for T cells to expand and drive EAE. Mice lacking Cul4b (Cullin 4b) in T cells had reduced EAE symptoms and decreased inflammation during the peak of the disease. Significantly fewer CD4+ and CD8+ T cells were found in the CNS, particularly among the CD4+ T cell population producing IL-17A, IFN-γ, GM-CSF, and TNF-α. Additionally, Cul4b-deficient CD4+ T cells cultured in vitro with their wild-type counterparts were less likely to expand and differentiate into IL-17A- or IFN-γ-producing effector cells. When wild-type CD4+ T cells were activated in vitro in the presence of the recently developed CRL4 inhibitor KH-4-43, they exhibited increased apoptosis and DNA damage. Treatment of mice with KH-4-43 following EAE induction resulted in stabilized clinical scores and significantly reduced numbers of T cells and innate immune cells in the CNS compared with control mice. Furthermore, KH-4-43 treatment resulted in elevated expression of p21 and cyclin E2 in T cells. These studies support that therapeutic inhibition of CRL4 and/or CRL4-related pathways could be used to treat autoimmune disease.
Collapse
Affiliation(s)
- Asif A Dar
- Division of Protective Immunity, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104
| | - Yohaniz Ortega
- Division of Protective Immunity, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104
| | - Sera Aktas
- Division of Protective Immunity, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104
| | - Kenneth Wu
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinani, New York, NY 10029
| | - Ipsita Guha
- Division of Protective Immunity, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104
| | - Nadia Porter
- Division of Protective Immunity, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104
| | - Siera Rosen
- Division of Protective Immunity, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104
| | - Robert J DeVita
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Zhen-qiang Pan
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinani, New York, NY 10029
| | - Paula M Oliver
- Division of Protective Immunity, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104
- Department of Pathology, University of Pennsylvania, Philadelphia, PA, 19104
| |
Collapse
|
7
|
Shim T, Kim JY, Kim W, Lee YI, Cho B, Moon C. Cullin-RING E3 ubiquitin ligase 4 regulates neurite morphogenesis during neurodevelopment. iScience 2024; 27:108933. [PMID: 38318354 PMCID: PMC10839267 DOI: 10.1016/j.isci.2024.108933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/30/2023] [Accepted: 01/12/2024] [Indexed: 02/07/2024] Open
Abstract
Neuritogenesis is crucial for establishing proper neuronal connections during brain development; its failure causes neurodevelopmental defects. Cullin-RING E3 ubiquitin ligase complexes participate in various neurodevelopmental processes by regulating protein stability. We demonstrated the regulatory function of Cullin-RING E3 ubiquitin ligase 4 (CRL4) in neurite morphogenesis during early neurodevelopment. Cul4a and Cul4b, the core scaffold proteins of CRL4, exhibit high expression and activation within the cytosol of developing neurons, regulated by neuronal stimulation through N-methyl D-aspartate (NMDA) receptor signaling. CRL4 also interacts with cytoskeleton-regulating proteins involved in neurite morphogenesis. Notably, genetic depletion and inhibition of cytosolic CRL4 enhance neurite extension and branching in developing neurons. Conversely, Cul4a overexpression suppresses basal and NMDA-enhanced neuritogenesis. Furthermore, CRL4 and its substrate adaptor regulate the polyubiquitination and proteasomal degradation of doublecortin protein. Collectively, our findings suggest that CRL4 ensures proper neurite morphogenesis in developing neurons by regulating cytoskeleton-regulating proteins.
Collapse
Affiliation(s)
- Tammy Shim
- Department of Brain Sciences, DGIST, Daegu 42988, Republic of Korea
- Convergence Research Advanced Centre for Olfaction, DGIST, Daegu 42988, Republic of Korea
| | - Jae Yeon Kim
- Department of Neurology, University of California, San Francisco, CA 94143, USA
| | - WonCheol Kim
- Department of Brain Sciences, DGIST, Daegu 42988, Republic of Korea
- Convergence Research Advanced Centre for Olfaction, DGIST, Daegu 42988, Republic of Korea
| | - Yun-Il Lee
- Division of Biotechnology, DGIST, Daegu 42988, Republic of Korea
| | - Bongki Cho
- Division of Biotechnology, DGIST, Daegu 42988, Republic of Korea
| | - Cheil Moon
- Department of Brain Sciences, DGIST, Daegu 42988, Republic of Korea
- Convergence Research Advanced Centre for Olfaction, DGIST, Daegu 42988, Republic of Korea
| |
Collapse
|
8
|
Zhang L, Hao P, Chen X, Lv S, Gao W, Li C, Li Z, Zhang W. CRL4B E3 ligase recruited by PRPF19 inhibits SARS-CoV-2 infection by targeting ORF6 for ubiquitin-dependent degradation. mBio 2024; 15:e0307123. [PMID: 38265236 PMCID: PMC10865787 DOI: 10.1128/mbio.03071-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/12/2023] [Indexed: 01/25/2024] Open
Abstract
The accessory protein ORF6 of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a key interferon (IFN) antagonist that strongly suppresses the production of primary IFN as well as the expression of IFN-stimulated genes. However, how host cells respond to ORF6 remains largely unknown. Our research of ORF6-binding proteins by pulldown revealed that E3 ligase components such as Cullin 4B (CUL4B), DDB1, and RBX1 are potential ORF6-interacting proteins. Further study found that the substrate recognition receptor PRPF19 interacts with CUL4B, DDB1, and RBX1 to form a CRL4B-based E3 ligase, which catalyzes ORF6 ubiquitination and subsequent degradation. Overexpression of PRPF19 promotes ORF6 degradation, releasing ORF6-mediated IFN inhibition, which inhibits SARS-CoV-2 replication. Moreover, we found that activation of CUL4B by the neddylation inducer etoposide alleviates lung lesions in a SARS-CoV-2 mouse infection model. Therefore, targeting ORF6 for degradation may be an effective therapeutic strategy against SARS-CoV-2 infection.IMPORTANCEThe cellular biological function of the ubiquitin-proteasome pathway as an important modulator for the regulation of many fundamental cellular processes has been greatly appreciated. The critical role of the ubiquitin-proteasome pathway in viral pathogenesis has become increasingly apparent. It is a powerful tool that host cells use to defend against viral infection. Some cellular proteins can function as restriction factors to limit viral infection by ubiquitin-dependent degradation. In this research, we identificated of CUL4B-DDB1-PRPF19 E3 Ubiquitin Ligase Complex can mediate proteasomal degradation of ORF6, leading to inhibition of viral replication. Moreover, the CUL4B activator etoposide alleviates disease development in a mouse infection model, suggesting that this agent or its derivatives may be used to treat infections caused by SARS-CoV-2. We believe that these results will be extremely useful for the scientific and clinic communities in their search for cues and preventive measures to combat the COVID-19 pandemic.
Collapse
Affiliation(s)
- Linran Zhang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Pengfei Hao
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Xiang Chen
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Shuai Lv
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Wenying Gao
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Chang Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Zhaolong Li
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Wenyan Zhang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin, China
- Department of Infectious Diseases, Infectious Diseases and Pathogen Biology Center, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Ma Y, Liu X, Zhou M, Sun W, Jiang B, Liu Q, Wang M, Zou Y, Liu Q, Gong Y, Sun G. CUL4B mutations impair human cortical neurogenesis through PP2A-dependent inhibition of AKT and ERK. Cell Death Dis 2024; 15:121. [PMID: 38331954 PMCID: PMC10853546 DOI: 10.1038/s41419-024-06501-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024]
Abstract
Mutation in CUL4B gene is one of the most common causes for X-linked intellectual disability (XLID). CUL4B is the scaffold protein in CUL4B-RING ubiquitin ligase (CRL4B) complex. While the roles of CUL4B in cancer progression and some developmental processes like adipogenesis, osteogenesis, and spermatogenesis have been studied, the mechanisms underlying the neurological disorders in patients with CUL4B mutations are poorly understood. Here, using 2D neuronal culture and cerebral organoids generated from the patient-derived induced pluripotent stem cells and their isogenic controls, we demonstrate that CUL4B is required to prevent premature cell cycle exit and precocious neuronal differentiation of neural progenitor cells. Moreover, loss-of-function mutations of CUL4B lead to increased synapse formation and enhanced neuronal excitability. Mechanistically, CRL4B complex represses transcription of PPP2R2B and PPP2R2C genes, which encode two isoforms of the regulatory subunit of protein phosphatase 2 A (PP2A) complex, through catalyzing monoubiquitination of H2AK119 in their promoter regions. CUL4B mutations result in upregulated PP2A activity, which causes inhibition of AKT and ERK, leading to premature cell cycle exit. Activation of AKT and ERK or inhibition of PP2A activity in CUL4B mutant organoids rescues the neurogenesis defect. Our work unveils an essential role of CUL4B in human cortical development.
Collapse
Affiliation(s)
- Yanyan Ma
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xiaolin Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Min Zhou
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Wenjie Sun
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Baichun Jiang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Qiao Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Molin Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yongxin Zou
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Qiji Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yaoqin Gong
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Gongping Sun
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
10
|
Pierre TH, Toren E, Kepple J, Hunter CS. Epigenetic Regulation of Pancreas Development and Function. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2024; 239:1-30. [PMID: 39283480 DOI: 10.1007/978-3-031-62232-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
The field of epigenetics broadly seeks to define heritable phenotypic modifications that occur within cells without changes to the underlying DNA sequence. These modifications allow for precise control and specificity of function between cell types-ultimately creating complex organ systems that all contain the same DNA but only have access to the genes and sequences necessary for their cell-type-specific functions. The pancreas is an organ that contains varied cellular compartments with functions ranging from highly regulated glucose-stimulated insulin secretion in the β-cell to the pancreatic ductal cells that form a tight epithelial lining for the delivery of digestive enzymes. With diabetes cases on the rise worldwide, understanding the epigenetic mechanisms driving β-cell identity, function, and even disease is particularly valuable. In this chapter, we will discuss the known epigenetic modifications in pancreatic islet cells, how they are deposited, and the environmental and metabolic contributions to epigenetic mechanisms. We will also explore how a deeper understanding of epigenetic effectors can be used as a tool for diabetes therapeutic strategies.
Collapse
Affiliation(s)
- Tanya Hans Pierre
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Eliana Toren
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jessica Kepple
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chad S Hunter
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
11
|
Zhang C, Ye W, Zhao M, Long L, Xia D, Fan Z. MLL1 inhibits the neurogenic potential of SCAPs by interacting with WDR5 and repressing HES1. Int J Oral Sci 2023; 15:48. [PMID: 37852994 PMCID: PMC10584904 DOI: 10.1038/s41368-023-00253-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/20/2023] Open
Abstract
Mesenchymal stem cell (MSC)-based therapy has emerged as a promising treatment for spinal cord injury (SCI), but improving the neurogenic potential of MSCs remains a challenge. Mixed lineage leukemia 1 (MLL1), an H3K4me3 methyltransferases, plays a critical role in regulating lineage-specific gene expression and influences neurogenesis. In this study, we investigated the role and mechanism of MLL1 in the neurogenesis of stem cells from apical papilla (SCAPs). We examined the expression of neural markers, and the nerve repair and regeneration ability of SCAPs using dynamic changes in neuron-like cells, immunofluorescence staining, and a SCI model. We employed a coimmunoprecipitation (Co-IP) assay, real-time RT-PCR, microarray analysis, and chromatin immunoprecipitation (ChIP) assay to investigate the molecular mechanism. The results showed that MLL1 knock-down increased the expression of neural markers, including neurogenic differentiation factor (NeuroD), neural cell adhesion molecule (NCAM), tyrosine hydroxylase (TH), βIII-tubulin and Nestin, and promoted neuron-like cell formation in SCAPs. In vivo, a transplantation experiment showed that depletion of MLL 1 in SCAPs can restore motor function in a rat SCI model. MLL1 can combine with WD repeat domain 5 (WDR5) and WDR5 inhibit the expression of neural markers in SCAPs. MLL1 regulates Hairy and enhancer of split 1 (HES1) expression by directly binds to HES1 promoters via regulating H3K4me3 methylation by interacting with WDR5. Additionally, HES1 enhances the expression of neural markers in SCAPs. Our findings demonstrate that MLL1 inhibits the neurogenic potential of SCAPs by interacting with WDR5 and repressing HES1. These results provide a potential therapeutic target for promoting the recovery of motor function in SCI patients.
Collapse
Affiliation(s)
- Chen Zhang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
- Department of Dental Emergency, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Weilong Ye
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Mengyao Zhao
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Lujue Long
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Dengsheng Xia
- Department of Dental Emergency, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China.
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China.
- Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
12
|
Zhang C, Ye W, Zhao M, Long L, Xia D, Fan Z. MLL1 inhibits the neurogenic potential of SCAPs by interacting with WDR5 and repressing HES1. Int J Oral Sci 2023; 15:48. [DOI: 7.doi: 10.1038/s41368-023-00253-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 05/19/2025] Open
Abstract
AbstractMesenchymal stem cell (MSC)-based therapy has emerged as a promising treatment for spinal cord injury (SCI), but improving the neurogenic potential of MSCs remains a challenge. Mixed lineage leukemia 1 (MLL1), an H3K4me3 methyltransferases, plays a critical role in regulating lineage-specific gene expression and influences neurogenesis. In this study, we investigated the role and mechanism of MLL1 in the neurogenesis of stem cells from apical papilla (SCAPs). We examined the expression of neural markers, and the nerve repair and regeneration ability of SCAPs using dynamic changes in neuron-like cells, immunofluorescence staining, and a SCI model. We employed a coimmunoprecipitation (Co-IP) assay, real-time RT-PCR, microarray analysis, and chromatin immunoprecipitation (ChIP) assay to investigate the molecular mechanism. The results showed that MLL1 knock-down increased the expression of neural markers, including neurogenic differentiation factor (NeuroD), neural cell adhesion molecule (NCAM), tyrosine hydroxylase (TH), βIII-tubulin and Nestin, and promoted neuron-like cell formation in SCAPs. In vivo, a transplantation experiment showed that depletion of MLL 1 in SCAPs can restore motor function in a rat SCI model. MLL1 can combine with WD repeat domain 5 (WDR5) and WDR5 inhibit the expression of neural markers in SCAPs. MLL1 regulates Hairy and enhancer of split 1 (HES1) expression by directly binds to HES1 promoters via regulating H3K4me3 methylation by interacting with WDR5. Additionally, HES1 enhances the expression of neural markers in SCAPs. Our findings demonstrate that MLL1 inhibits the neurogenic potential of SCAPs by interacting with WDR5 and repressing HES1. These results provide a potential therapeutic target for promoting the recovery of motor function in SCI patients.
Collapse
|
13
|
Kreienbühl J, Changkhong S, Orlowski V, Kirschner MB, Opitz I, Meerang M. Cullin 4B Ubiquitin Ligase Is Important for Cell Survival and Regulates TGF-β1 Expression in Pleural Mesothelioma. Int J Mol Sci 2023; 24:13410. [PMID: 37686215 PMCID: PMC10487616 DOI: 10.3390/ijms241713410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
We previously demonstrated that cullin 4B (CUL4B) upregulation was associated with worse outcomes of pleural mesothelioma (PM) patients, while the overexpression of its paralog CUL4A was not associated with clinical outcomes. Here, we aimed to identify the distinct roles of CUL4B and CUL4A in PM using an siRNA approach in PM cell lines (ACC Meso-1 and Mero82) and primary culture. The knockdown of CUL4B and CUL4A resulted in significantly reduced colony formation, increased cell death, and delayed cell proliferation. Furthermore, similar to the effect of CUL4A knockdown, downregulation of CUL4B led to reduced expression of Hippo pathway genes including YAP1, CTGF, and survivin. Interestingly, CUL4B and not CUL4A knockdown reduced TGF-β1 and MMP2 expression, suggesting a unique association of CUL4B with this pathway. However, the treatment of PM cells with exogenous TGF-β1 following CUL4B knockdown did not rescue PM cell growth. We further analyzed ACC Meso-1 xenograft tumor tissues treated with the cullin inhibitor, pevonedistat, which targets protein neddylation, and observed the downregulation of human TGF-β1 and MMP2. In summary, our data suggest that CUL4B overexpression is important for tumor cell growth and survival and may drive PM aggressiveness via the regulation of TGF-β1 expression and, furthermore, reveal a new mechanism of action of pevonedistat.
Collapse
Affiliation(s)
| | | | | | | | | | - Mayura Meerang
- Department of Thoracic Surgery, University Hospital Zürich, 8091 Zürich, Switzerland (V.O.); (M.B.K.); (I.O.)
| |
Collapse
|
14
|
Ford TJL, Jeon BT, Lee H, Kim WY. Dendritic spine and synapse pathology in chromatin modifier-associated autism spectrum disorders and intellectual disability. Front Mol Neurosci 2023; 15:1048713. [PMID: 36743289 PMCID: PMC9892461 DOI: 10.3389/fnmol.2022.1048713] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/05/2022] [Indexed: 01/20/2023] Open
Abstract
Formation of dendritic spine and synapse is an essential final step of brain wiring to establish functional communication in the developing brain. Recent findings have displayed altered dendritic spine and synapse morphogenesis, plasticity, and related molecular mechanisms in animal models and post-mortem human brains of autism spectrum disorders (ASD) and intellectual disability (ID). Many genes and proteins are shown to be associated with spines and synapse development, and therefore neurodevelopmental disorders. In this review, however, particular attention will be given to chromatin modifiers such as AT-Rich Interactive Domain 1B (ARID1B), KAT8 regulatory non-specific lethal (NSL) complex subunit 1 (KANSL1), and WD Repeat Domain 5 (WDR5) which are among strong susceptibility factors for ASD and ID. Emerging evidence highlights the critical status of these chromatin remodeling molecules in dendritic spine morphogenesis and synaptic functions. Molecular and cellular insights of ARID1B, KANSL1, and WDR5 will integrate into our current knowledge in understanding and interpreting the pathogenesis of ASD and ID. Modulation of their activities or levels may be an option for potential therapeutic treatment strategies for these neurodevelopmental conditions.
Collapse
|
15
|
Kleene R, Loers G, Schachner M. The KDET Motif in the Intracellular Domain of the Cell Adhesion Molecule L1 Interacts with Several Nuclear, Cytoplasmic, and Mitochondrial Proteins Essential for Neuronal Functions. Int J Mol Sci 2023; 24:932. [PMID: 36674445 PMCID: PMC9866381 DOI: 10.3390/ijms24020932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
Abnormal functions of the cell adhesion molecule L1 are linked to several neural diseases. Proteolytic L1 fragments were reported to interact with nuclear and mitochondrial proteins to regulate events in the developing and the adult nervous system. Recently, we identified a 55 kDa L1 fragment (L1-55) that interacts with methyl CpG binding protein 2 (MeCP2) and heterochromatin protein 1 (HP1) via the KDET motif. We now show that L1-55 also interacts with histone H1.4 (HistH1e) via this motif. Moreover, we show that this motif binds to NADH dehydrogenase ubiquinone flavoprotein 2 (NDUFV2), splicing factor proline/glutamine-rich (SFPQ), the non-POU domain containing octamer-binding protein (NonO), paraspeckle component 1 (PSPC1), WD-repeat protein 5 (WDR5), heat shock cognate protein 71 kDa (Hsc70), and synaptotagmin 1 (SYT1). Furthermore, applications of HistH1e, NDUFV2, SFPQ, NonO, PSPC1, WDR5, Hsc70, or SYT1 siRNAs or a cell-penetrating KDET-carrying peptide decrease L1-dependent neurite outgrowth and the survival of cultured neurons. These findings indicate that L1's KDET motif binds to an unexpectedly large number of molecules that are essential for nervous system-related functions, such as neurite outgrowth and neuronal survival. In summary, L1 interacts with cytoplasmic, nuclear and mitochondrial proteins to regulate development and, in adults, the formation, maintenance, and flexibility of neural functions.
Collapse
Affiliation(s)
- Ralf Kleene
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Gabriele Loers
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854, USA
| |
Collapse
|
16
|
Xie XP, Yang W, Zhang L, Wang HQ. Identifying Biomarkers of Cisplatin Sensitivity in Non-Small Cell Lung
Cancer via Comprehensive Integrative Analysis. Curr Bioinform 2022; 17:498-509. [DOI: 10.2174/1574893617666220407105905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/25/2022] [Accepted: 02/09/2022] [Indexed: 11/22/2022]
Abstract
Background:
Only 30-40% of non-small cell lung cancer (NSCLC) patients are clinically
sensitive to cisplatin-based chemotherapy. Thus, it is necessary to identify biomarkers for personalized
cisplatin chemotherapy in NSCLC. However, data heterogeneity and low-value density make it challenging
to detect reliable cisplatin efficacy biomarkers using traditional analysis methods.
Objective:
This paper aims to find reliable cisplatin efficacy biomarkers for NSCLC patients using
comprehensive integrative analysis.
Method:
We searched online resources and collected six NSCLC transcriptomics data sets with responses
to cisplatin. The six data sets are divided into two groups: the learning group for biomarker
identification and the test group for independent validation. We performed comprehensive integrative
analysis under two kinds of frameworks, i.e., one-level and two-level, with three integrative models.
Pathway analysis was performed to estimate the biological significance of the resulting biomarkers. For
independent validation, logrank statistic was employed to test how significant the difference of Kaplan-
Meier (KM) curves between two patient groups is, and the Cox proportional-hazards model was used to
test how the expression of a gene is associated with patients’ survival time. Especially, a permutation
test was performed to verify the predictive power of a biomarker panel on cisplatin efficacy. For comparison,
we also analyzed each learning data set individually, in which three popular differential expression
models, Limma, SAM, and RankSum, were used.
Results:
A total of 318 genes were identified as a core panel of cisplatin efficacy markers for NSCLC
patients, exhibiting consistent differential expression between cisplatin-sensitive and –resistant groups
across studies. A total of 129 of 344 KEGG pathways were found to be enriched in the core panel, reflecting
a picture of the molecular mechanism of cisplatin resistance in NSCLC. By mapping onto the
KEGG pathway tree, we found that a KEGG pathway-level I module, genetic information processing, is
most active in the core panel with the highest activity ratio in response to cisplatin in NSCLC as expected.
Related pathways include mismatch repair, nucleotide excision repair, aminoacyl-tRNA biosynthesis,
and basal transcription factors, most of which respond to DNA double-strand damage in patients.
Evaluation on two independent data sets demonstrated the predictive power of the core marker panel for
cisplatin sensitivity in NSCLC. Also, some single markers, e.g., MST1R, were observed to be remarkably
predictive of cisplatin resistance in NSCLC.
Conclusion:
Integrative analysis is more powerful in detecting biomarkers for cisplatin efficacy by
overcoming data heterogeneity and low-value density in data sets, and the identified core panel (318
genes) can help develop personalized medicine of cisplatin chemotherapy for NSCLC patients.
Collapse
Affiliation(s)
- Xin-Ping Xie
- School of Mathematics and Physics, Anhui Jianzhu University, Hefei, China
| | - Wulin Yang
- Cancer hospital, Hefei Institutes of Physical
Science, Chinese Academy of Science, Hefei, China
| | - Lei Zhang
- Department of Pharmacy, The First Affiliated Hospital of
USTC, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, China
| | - Hong-Qiang Wang
- Cancer hospital, Hefei Institutes of Physical
Science, Chinese Academy of Science, Hefei, China
| |
Collapse
|
17
|
Huang XT, Zheng Y, Long G, Peng WT, Wan QQ. Insulin alleviates LPS-induced ARDS via inhibiting CUL4B-mediated proteasomal degradation and restoring expression level of Na,K-ATPase α1 subunit through elevating HCF-1. Biochem Biophys Res Commun 2022; 611:60-67. [PMID: 35477094 DOI: 10.1016/j.bbrc.2022.04.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/09/2022] [Accepted: 04/10/2022] [Indexed: 11/24/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is a critical disease with a high mortality rate, characterized by obstinate hypoxemia caused by accumulation of alveolar fluid and excessive uncontrolled inflammation. Na,K-ATPase α1 (ATP1A1) subunit is an important component of Na,K-ATPase that transports Na+ and K+ and scavenges alveolar fluid. The function of Na,K-ATPase is always impaired during ARDS and results in more severe symptoms of ARDS. However, the regulatory mechanism of Na,K-ATPase after ARDS remains unclear. Here, we revealed ATP1A1 was downregulated post-transcriptionally by an E3 ligase component CUL4B mediated proteasomal degradation. Moreover, we found insulin could inhibit the upregulation of CUL4B in an insulin receptor cofactor HCF-1-dependent manner. Our study resolved the molecular mechanism underlying the clearance impairment of alveolar fluid and provided a clue for the usage of insulin as a potential therapeutic medicine for ARDS.
Collapse
Affiliation(s)
- Xue-Ting Huang
- Department of Transplant Surgery, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Yu Zheng
- Department of Transplant Surgery, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Guo Long
- Department of Medical Intensive Care Unit, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Wei-Ting Peng
- Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Qi-Quan Wan
- Department of Transplant Surgery, The Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| |
Collapse
|
18
|
Nakagawa T, Morohoshi A, Nagasawa Y, Nakagawa M, Hosogane M, Noda Y, Hosoi T, Nakayama K. SPT16 ubiquitylation by DCAF14-CRL4 regulates FACT binding to histones. Cell Rep 2022; 38:110541. [PMID: 35320725 DOI: 10.1016/j.celrep.2022.110541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/23/2021] [Accepted: 02/28/2022] [Indexed: 12/27/2022] Open
Abstract
The histone chaperone complex FACT comprises SPT16 and SSRP1 and contributes to DNA replication, transcription, and repair, but how it plays such various roles is unclear. Here, we show that human SPT16 is ubiquitylated at lysine-674 (K674) by the DCAF14-CRL4 ubiquitin ligase. K674 is located in the middle domain of SPT16, and the corresponding residue of the yeast ortholog is critical for binding to histone H3.1-H4. We show that the middle domain of human SPT16 binds to histone H3.1-H4 and that this binding is inhibited by K674 ubiquitylation. Cells with heterozygous knockin of a K674R mutant of SPT16 manifest reduction of both SPT16 ubiquitylation and H3.1 in chromatin, a reduced population in mid S phase, impaired proliferation, and increased susceptibility to S phase stress. Our data thus indicate that SPT16 ubiquitylation by DCAF14-CRL4 regulates FACT binding to histones and may thereby control DNA replication-coupled histone incorporation into chromatin.
Collapse
Affiliation(s)
- Tadashi Nakagawa
- Division of Cell Proliferation, ART, Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8575, Japan; Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda, Yamaguchi 756-0884, Japan
| | - Akane Morohoshi
- Division of Cell Proliferation, ART, Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8575, Japan
| | - Yuko Nagasawa
- Division of Cell Proliferation, ART, Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8575, Japan
| | - Makiko Nakagawa
- Division of Cell Proliferation, ART, Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8575, Japan
| | - Masaki Hosogane
- Division of Cell Proliferation, ART, Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8575, Japan
| | - Yasuhiro Noda
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda, Yamaguchi 756-0884, Japan
| | - Toru Hosoi
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda, Yamaguchi 756-0884, Japan
| | - Keiko Nakayama
- Division of Cell Proliferation, ART, Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8575, Japan.
| |
Collapse
|
19
|
Chen X, Xu J, Wang X, Long G, You Q, Guo X. Targeting WD Repeat-Containing Protein 5 (WDR5): A Medicinal Chemistry Perspective. J Med Chem 2021; 64:10537-10556. [PMID: 34283608 DOI: 10.1021/acs.jmedchem.1c00037] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
WD repeat-containing protein 5 (WDR5) is a member of the WD40 protein family, and it is widely involved in various biological activities and not limited to epigenetic regulation in vivo. WDR5 is also involved in the initiation and development of many diseases and plays a key role in these diseases. Since WDR5 was discovered, it has been suggested as a potential disease treatment target, and a large number of inhibitors targeting WDR5 have been discovered. In this review, we discussed the development of inhibitors targeting WDR5 over the years, and the biological mechanisms of these inhibitors based on previous mechanistic studies were explored. Finally, we describe the development potential of inhibitors targeting WDR5 and prospects for further applications.
Collapse
Affiliation(s)
- Xin Chen
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Junjie Xu
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xianghan Wang
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Guanlu Long
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoke Guo
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
20
|
Zhao J, Chen W, Pan Y, Zhang Y, Sun H, Wang H, Yang F, Liu Y, Shen N, Zhang X, Mo X, Zang J. Structural insights into the recognition of histone H3Q5 serotonylation by WDR5. SCIENCE ADVANCES 2021; 7:7/25/eabf4291. [PMID: 34144982 PMCID: PMC8213231 DOI: 10.1126/sciadv.abf4291] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 05/06/2021] [Indexed: 05/02/2023]
Abstract
Serotonylation of histone H3Q5 (H3Q5ser) is a recently identified posttranslational modification of histones that acts as a permissive marker for gene activation in synergy with H3K4me3 during neuronal cell differentiation. However, any proteins that specifically recognize H3Q5ser remain unknown. Here, we found that WDR5 interacts with the N-terminal tail of histone H3 and functions as a "reader" for H3Q5ser. Crystal structures of WDR5 in complex with H3Q5ser and H3K4me3Q5ser peptides revealed that the serotonyl group is accommodated in a shallow surface pocket of WDR5. Experiments in neuroblastoma cells demonstrate that H3K4me3 modification is hampered upon disruption of WDR5-H3Q5ser interaction. WDR5 colocalizes with H3Q5ser in the promoter regions of cancer-promoting genes in neuroblastoma cells, where it promotes gene transcription to induce cell proliferation. Thus, beyond revealing a previously unknown mechanism through which WDR5 reads H3Q5ser to activate transcription, our study suggests that this WDR5-H3Q5ser-mediated epigenetic regulation apparently promotes tumorigenesis.
Collapse
Affiliation(s)
- Jie Zhao
- Hefei National Laboratory for Physical Sciences at Microscale, the first affiliated hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, CAS Center for Excellence in Biomacromolecules, and School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Wanbiao Chen
- Hefei National Laboratory for Physical Sciences at Microscale, the first affiliated hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, CAS Center for Excellence in Biomacromolecules, and School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yi Pan
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yinfeng Zhang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Huiying Sun
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Han Wang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fan Yang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yu Liu
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Nan Shen
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Xuan Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, the first affiliated hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, CAS Center for Excellence in Biomacromolecules, and School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China.
| | - Xi Mo
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Jianye Zang
- Hefei National Laboratory for Physical Sciences at Microscale, the first affiliated hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, CAS Center for Excellence in Biomacromolecules, and School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China.
| |
Collapse
|
21
|
Jevtić P, Haakonsen DL, Rapé M. An E3 ligase guide to the galaxy of small-molecule-induced protein degradation. Cell Chem Biol 2021; 28:1000-1013. [PMID: 33891901 DOI: 10.1016/j.chembiol.2021.04.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/28/2021] [Accepted: 04/05/2021] [Indexed: 12/13/2022]
Abstract
Induced protein degradation accomplishes elimination, rather than inhibition, of pathological proteins. Key to the success of this novel therapeutic modality is the modification of proteins with ubiquitin chains, which is brought about by molecular glues or bivalent compounds that induce proximity between the target protein and an E3 ligase. The human genome encodes ∼600 E3 ligases that differ widely in their structures, catalytic mechanisms, modes of regulation, and physiological roles. While many of these enzymes hold great promise for drug discovery, few have been successfully engaged by small-molecule degraders. Here, we review E3 ligases that are being used for induced protein degradation. Based on these prior successes and our growing understanding of the biology and biochemistry of E3 ligases, we propose new ubiquitylation enzymes that can be harnessed for drug discovery to firmly establish induced protein degradation as a specific and efficient therapeutic approach.
Collapse
Affiliation(s)
- Predrag Jevtić
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA
| | - Diane L Haakonsen
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA
| | - Michael Rapé
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA.
| |
Collapse
|
22
|
Wang Y, Pan X, Li Y, Wang R, Yang Y, Jiang B, Sun G, Shao C, Wang M, Gong Y. CUL4B renders breast cancer cells tamoxifen-resistant via miR-32-5p/ER-α36 axis. J Pathol 2021; 254:185-198. [PMID: 33638154 DOI: 10.1002/path.5657] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/28/2021] [Accepted: 02/24/2021] [Indexed: 12/24/2022]
Abstract
Tamoxifen (TAM) resistance is a significant clinical challenge in endocrine therapies for estrogen receptor (ER)-positive breast cancer patients. Cullin 4B (CUL4B), which acts as a scaffold protein in CUL4B-RING ubiquitin ligase complexes (CRL4B), is frequently overexpressed in cancer and represses tumor suppressors through diverse epigenetic mechanisms. However, the role and the underlying mechanisms of CUL4B in regulating drug resistance remain unknown. Here, we showed that CUL4B promotes TAM resistance in breast cancer cells through a miR-32-5p/ER-α36 axis. We found that upregulation of CUL4B correlated with decreased TAM sensitivity of breast cancer cells, and knockdown of CUL4B or expression of a dominant-negative CUL4B mutant restored the response to TAM in TAM-resistant MCF7-TAMR and T47D-TAMR cells. Mechanistically, we demonstrated that CUL4B renders breast cancer cells TAM-resistant by upregulating ER-α36 expression, which was mediated by downregulation of miR-32-5p. We further showed that CRL4B epigenetically represses the transcription of miR-32-5p by catalyzing monoubiquitination at H2AK119 and coordinating with PRC2 and HDAC complexes to promote trimethylation at H3K27 at the promoter of miR-32-5p. Pharmacologic or genetic inhibition of CRL4B/PRC2/HDAC complexes significantly increased TAM sensitivity in breast cancer cells in vitro and in vivo. Taken together, our findings thus establish a critical role for the CUL4B-miR-32-5p-ER-α36 axis in the regulation of TAM resistance and have important therapeutic implications for combined application of TAM and the inhibitors of CRL4B/PRC2/HDAC complex in breast cancer treatment. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yuxing Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Xiaohua Pan
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, PR China
| | - Yanjun Li
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Ru Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Yuanyuan Yang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Baichun Jiang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Gongping Sun
- Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Changshun Shao
- State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, PR China
| | - Molin Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Yaoqin Gong
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| |
Collapse
|
23
|
Dar AA, Sawada K, Dybas JM, Moser EK, Lewis EL, Park E, Fazelinia H, Spruce LA, Ding H, Seeholzer SH, Oliver PM. The E3 ubiquitin ligase Cul4b promotes CD4+ T cell expansion by aiding the repair of damaged DNA. PLoS Biol 2021; 19:e3001041. [PMID: 33524014 PMCID: PMC7888682 DOI: 10.1371/journal.pbio.3001041] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 02/17/2021] [Accepted: 01/15/2021] [Indexed: 12/26/2022] Open
Abstract
The capacity for T cells to become activated and clonally expand during pathogen invasion is pivotal for protective immunity. Our understanding of how T cell receptor (TCR) signaling prepares cells for this rapid expansion remains limited. Here we provide evidence that the E3 ubiquitin ligase Cullin-4b (Cul4b) regulates this process. The abundance of total and neddylated Cul4b increased following TCR stimulation. Disruption of Cul4b resulted in impaired proliferation and survival of activated T cells. Additionally, Cul4b-deficient CD4+ T cells accumulated DNA damage. In T cells, Cul4b preferentially associated with the substrate receptor DCAF1, and Cul4b and DCAF1 were found to interact with proteins that promote the sensing or repair of damaged DNA. While Cul4b-deficient CD4+ T cells showed evidence of DNA damage sensing, downstream phosphorylation of SMC1A did not occur. These findings reveal an essential role for Cul4b in promoting the repair of damaged DNA to allow survival and expansion of activated T cells.
Collapse
Affiliation(s)
- Asif A. Dar
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Keisuke Sawada
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Joseph M. Dybas
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Department of Biomedical Health and Informatics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Emily K. Moser
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Emma L. Lewis
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Eddie Park
- Center for Computational and Genomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Hossein Fazelinia
- Division of Cell Pathology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Lynn A. Spruce
- Division of Cell Pathology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Hua Ding
- Division of Cell Pathology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Steven H. Seeholzer
- Division of Cell Pathology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Paula M. Oliver
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Department of Pathology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
24
|
Gomes TM, Dias da Silva D, Carmo H, Carvalho F, Silva JP. Epigenetics and the endocannabinoid system signaling: An intricate interplay modulating neurodevelopment. Pharmacol Res 2020; 162:105237. [PMID: 33053442 DOI: 10.1016/j.phrs.2020.105237] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/16/2020] [Accepted: 10/02/2020] [Indexed: 01/08/2023]
Abstract
The endocannabinoid (eCB) system is a complex system comprising endogenous cannabinoids (eCBs), their synthesis and degradation enzymes, and cannabinoid receptors. These elements crucially regulate several biological processes during neurodevelopment, such as proliferation, differentiation, and migration. Recently, eCBs were also reported to have an epigenetic action on genes that play key functions in the neurotransmitter signaling, consequently regulating their expression. In turn, epigenetic modifications (e.g. DNA methylation, histone modifications) may also modulate the function of eCB system's elements. For example, the expression of the cnr gene in the central nervous system may be epigenetically regulated (e.g. DNA methylation, histone modifications), thus altering the function of the cannabinoid receptor type-1 (CB1R). Considering the importance of the eCB system during neurodevelopment, it is thus reasonable to expect that alterations in this interaction between the eCB system and epigenetic modifications may give rise to neurodevelopmental disorders. Here, we review key concepts related to the regulation of neuronal function by the eCB system and the different types of epigenetic modifications. In particular, we focus on the mechanisms involved in the intricate interplay between both signaling systems and how they control cell fate during neurodevelopment. Noteworthy, such mechanistic understanding assumes high relevance considering the implications of the dysregulation of key neurogenic processes towards the onset of neurodevelopment-related disorders. Moreover, considering the increasing popularity of cannabis and its synthetic derivatives among young adults, it becomes of utmost importance to understand how exogenous cannabinoids may epigenetically impact neurodevelopment.
Collapse
Affiliation(s)
- Telma Marisa Gomes
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Diana Dias da Silva
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Helena Carmo
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Félix Carvalho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| | - João Pedro Silva
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| |
Collapse
|
25
|
Meerang M, Kreienbühl J, Orlowski V, Müller SLC, Kirschner MB, Opitz I. Importance of Cullin4 Ubiquitin Ligase in Malignant Pleural Mesothelioma. Cancers (Basel) 2020; 12:cancers12113460. [PMID: 33233664 PMCID: PMC7699720 DOI: 10.3390/cancers12113460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/04/2020] [Accepted: 11/17/2020] [Indexed: 12/26/2022] Open
Abstract
Neurofibromatosis type 2 (NF2), the tumor suppressor frequently lost in malignant pleural mesothelioma (MPM), suppresses tumorigenesis in part by inhibiting the Cullin4 ubiquitin ligase (CUL4) complex in the nucleus. Here, we evaluated the importance of CUL4 in MPM progression and tested the efficacy of cullin inhibition by pevonedistat, a small molecule inhibiting cullin neddylation. CUL4 paralogs (CUL4A and CUL4B) were upregulated in MPM tumor specimens compared to nonmalignant pleural tissues. High gene and protein expressions of CUL4B was associated with a worse progression-free survival of MPM patients. Among 13 MPM cell lines tested, five (38%) were highly sensitive to pevonedistat (half maximal inhibitory concentration of cell survival IC50 < 0.5 µM). This remained true in a 3D spheroid culture. Pevonedistat treatment caused the accumulation of CDT1 and p21 in both sensitive and resistant cell lines. However, the treatment induced S/G2 cell cycle arrest and DNA rereplication predominantly in the sensitive cell lines. In an in vivo mouse model, the pevonedistat treatment significantly prolonged the survival of mice bearing both sensitive and resistant MPM tumors. Pevonedistat treatment reduced growth in sensitive tumors but increased apoptosis in resistant tumors. The mechanism in the resistant tumor model may be mediated by reduced macrophage infiltration, resulting from the suppression of macrophage chemotactic cytokines, C-C motif chemokine ligand 2 (CCL2), expression in tumor cells.
Collapse
|
26
|
Hu E, Du H, Shang S, Zhang Y, Lu X. Beta-Hydroxybutyrate Enhances BDNF Expression by Increasing H3K4me3 and Decreasing H2AK119ub in Hippocampal Neurons. Front Neurosci 2020; 14:591177. [PMID: 33192276 PMCID: PMC7655964 DOI: 10.3389/fnins.2020.591177] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/12/2020] [Indexed: 12/18/2022] Open
Abstract
Neurological evidence suggests that beta-hydroxybutyrate (BHBA) has positive effects on the central nervous system. Previous studies have explored the molecular mechanisms by which BHBA affects different brain functions, but the effects of BHBA on epigenetic modifications remain elusive. Here, we showed that BHBA enhanced brain-derived neurotrophic factor (BDNF) expression by increasing H3K4me3 and decreasing H2AK119ub occupancy at the Bdnf promoters I, II, IV, and VI in hippocampal neurons. Moreover, BHBA treatment induced the upregulation of H3K4me3 and downregulation of H2AK119ub on the global level, both of which were dependent on the L-type calcium channel. Additionally, the BHBA-activated L-type calcium channel subsequently triggered the activation of Ca2+/CaMKII/CREB signaling, and promoted the binding of p-CREB and CBP to Bdnf promoters. These results indicate that BHBA regulates cellular signaling and multiple histone modifications to cooperatively modulate BDNF, suggesting a wide range of regulatory effects of BHBA in the central nervous system.
Collapse
Affiliation(s)
- Erling Hu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Huan Du
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Sen Shang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yali Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoyun Lu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
27
|
Girbes Minguez M, Wolters-Eisfeld G, Lutz D, Buck F, Schachner M, Kleene R. The cell adhesion molecule L1 interacts with nuclear proteins via its intracellular domain. FASEB J 2020; 34:9869-9883. [PMID: 32533745 DOI: 10.1096/fj.201902242r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 02/05/2023]
Abstract
Proteolytic cleavage of the cell adhesion molecule L1 (L1) in brain tissue and in cultured cerebellar neurons results in the generation and nuclear import of a 30 kDa fragment comprising most of L1's C-terminal, intracellular domain. In search of molecules that interact with this domain, we performed affinity chromatography with the recombinant intracellular L1 domain and a nuclear extract from mouse brains, and identified potential nuclear L1 binding partners involved in transcriptional regulation, RNA processing and transport, DNA repair, chromatin remodeling, and nucleocytoplasmic transport. By co-immunoprecipitation and enzyme-linked immunosorbent assay using recombinant proteins, we verified the direct interaction between L1 and the nuclear binding partners non-POU domain containing octamer-binding protein and splicing factor proline/glutamine-rich. The proximity ligation assay confirmed this close interaction in cultures of cerebellar granule cells. Our findings suggest that L1 fragments regulate multiple nuclear functions in the nervous system. We discuss possible physiological and pathological roles of these interactions in regulation of chromatin structure, gene expression, RNA processing, and DNA repair.
Collapse
Affiliation(s)
- Maria Girbes Minguez
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Gerrit Wolters-Eisfeld
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - David Lutz
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Buck
- Zentrum für Diagnostik, Institut für Klinische Chemie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical College, Shantou, China
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Ralf Kleene
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
28
|
Duan PJ, Zhao JH, Xie LL. Cul4B promotes the progression of ovarian cancer by upregulating the expression of CDK2 and CyclinD1. J Ovarian Res 2020; 13:76. [PMID: 32622365 PMCID: PMC7335446 DOI: 10.1186/s13048-020-00677-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023] Open
Abstract
Background Ovarian cancer is one of the most common malignant tumors in the female reproductive system with the highest mortality rate. Cul4B participates in the oncogenesis and progression of several malignant tumors. However, the role of Cul4B in ovarian cancer has not been studied. Results High expression of intratumor Cul4B was associated with poor patient survival. Cul4B expression was associated with FIGO stage and Cul4B was independent risk factor of ovarian cancer disease-free survival and overall survival. In vitro studies revealed that overexpression of Cul4B promoted tumor proliferation while knockdown of Cul4B significantly inhibited the proliferation capacity of ovarian cancer cells. Mechanistically, Cul4B was found to promotes cell entering S phase from G0/G1 phase by regulating the expression of CDK2 and CyclinD1. Cul4B regulates the expression of CDK2 and CyclinD1 by repressing miR-372. Conclusions The results revealed that high expression of Cul4B is associated with poor ovarian cancer prognosis and Cul4B may serve as a potential treating target for an adjuvant therapy.
Collapse
Affiliation(s)
- Peng-Jing Duan
- Department of Gynaecology and Obstetrics, Affiliated Hospital of Shandong Medical College, 80 Jintan Road, Linyi, 276000, Shandong, China
| | - Juan-Hong Zhao
- Department of Gynaecology and Obstetrics, Affiliated Hospital of Shandong Medical College, 80 Jintan Road, Linyi, 276000, Shandong, China
| | - Li-Li Xie
- Department of Gynaecology, The people's hospital of Linshu, 182 West Shuhe Road, Linshu, 276700, Shandong, China.
| |
Collapse
|
29
|
YU Q, XIONG X, SUN Y. [Targeting Cullin-RING E3 ligases for anti-cancer therapy: efforts on drug discovery]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2020; 49:1-19. [PMID: 32621419 PMCID: PMC8800688 DOI: 10.3785/j.issn.1008-9292.2020.02.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/16/2020] [Indexed: 06/11/2023]
Abstract
Cullin-RING E3 ligases (CRLs) are the major components of ubiquitin-proteasome system, responsible for ubiquitylation and subsequent degradation of thousands of cellular proteins. CRLs play vital roles in the regulation of multiple cellular processes, including cell cycle, cell apoptosis, DNA replication, signalling transduction among the others, and are frequently dysregulated in many human cancers. The discovery of specific neddylation inhibitors, represented by MLN4924, has validated CRLs as promising targets for anti-cancer therapies with a growing market. Recent studies have focused on the discovery of the CRLs inhibitors by a variety of approaches, including high through-put screen, virtual screen or structure-based drug design. The field is, however, still facing the major challenging, since CRLs are a large multi-unit protein family without typical active pockets to facilitate the drug design, and enzymatic activity is mainly dependent on undruggable protein-protein interactions and dynamic conformation changes. Up to now, most reported CRLs inhibitors are aiming at targeting the F-box family proteins (e.g., SKP2, β-TrCP and FBXW7), the substrate recognition subunit of SCF E3 ligases. Other studies reported few small molecule inhibitors targeting the UBE2M-DCN1 interaction, which specifically inhibits CRL3/CRL1 by blocking the cullin neddylation. On the other hand, several CRL activators have been reported, such as plant auxin and immunomodulatory imide drugs, thalidomide. Finally, proteolysis-targeting chimeras (PROTACs) has emerged as a new technology in the field of drug discovery, specifically targeting the undruggable protein-protein interaction. The technique connects the small molecule that selectively binds to a target protein to a CRL E3 via a chemical linker to trigger the degradation of target protein. The PROTAC has become a hotspot in the field of E3-ligase-based anti-cancer drug discovery.
Collapse
|
30
|
Yu Y, Nakagawa T, Morohoshi A, Nakagawa M, Ishida N, Suzuki N, Aoki M, Nakayama K. Pathogenic mutations in the ALS gene CCNF cause cytoplasmic mislocalization of Cyclin F and elevated VCP ATPase activity. Hum Mol Genet 2020; 28:3486-3497. [PMID: 31577344 DOI: 10.1093/hmg/ddz119] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/29/2019] [Accepted: 05/24/2019] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset motor neuron disease characterized by a progressive decline in motor function. Genetic analyses have identified several genes mutated in ALS patients, and one of them is Cyclin F gene (CCNF), the product of which (Cyclin F) serves as the substrate-binding module of a SKP1-CUL1-F-box protein (SCF) ubiquitin ligase complex. However, the role of Cyclin F in ALS pathogenesis has remained unclear. Here, we show that Cyclin F binds to valosin-containing protein (VCP), which is also reported to be mutated in ALS, and that the two proteins colocalize in the nucleus. VCP was found to bind to the NH2-terminal region of Cyclin F and was not ubiquitylated by SCFCyclin F in transfected cells. Instead, the ATPase activity of VCP was enhanced by Cyclin F in vitro. Furthermore, whereas ALS-associated mutations of CCNF did not affect the stability of Cyclin F or disrupt formation of the SCFCyclin F complex, amino acid substitutions in the VCP binding region increased the binding ability of Cyclin F to VCP and activity of VCP as well as mislocalization of the protein in the cytoplasm. We also provided evidence that the ATPase activity of VCP promotes cytoplasmic aggregation of transactivation responsive region (TAR) DNA-binding protein 43, which is commonly observed in degenerating neurons in ALS patients. Given that mutations of VCP identified in ALS patients also increase its ATPase activity, our results suggest that Cyclin F mutations may contribute to ALS pathogenesis by increasing the ATPase activity of VCP in the cytoplasm, which in turn increases TDP-43 aggregates.
Collapse
Affiliation(s)
- Yujiao Yu
- Division of Cell Proliferation, ART, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
| | - Tadashi Nakagawa
- Division of Cell Proliferation, ART, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
| | - Akane Morohoshi
- Division of Cell Proliferation, ART, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
| | - Makiko Nakagawa
- Division of Cell Proliferation, ART, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
| | - Noriko Ishida
- Division of Cell Proliferation, ART, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
| | - Naoki Suzuki
- Department of Neurology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
| | - Masashi Aoki
- Department of Neurology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
| | - Keiko Nakayama
- Division of Cell Proliferation, ART, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
31
|
Gao W, Jia Z, Tian Y, Yang P, Sun H, Wang C, Ding Y, Zhang M, Zhang Y, Yang D, Tian Z, Zhou J, Ruan Z, Wu Y, Ni B. HBx Protein Contributes to Liver Carcinogenesis by H3K4me3 Modification Through Stabilizing WD Repeat Domain 5 Protein. Hepatology 2020; 71:1678-1695. [PMID: 31544250 DOI: 10.1002/hep.30947] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 09/09/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Cancer is typically considered as a genetic and epigenetic disease. Although numerous studies have indicated that an aberrant structure, function, or expression level of epigenetic enzymes contribute to many tumor types, precisely how the epigenetic mechanisms are involved in the hepatitis B virus (HBV)-induced hepatocellular carcinoma (HCC) remains unknown. APPROACH AND RESULTS In this study, we found that the WD repeat domain 5 protein (WDR5)-a core subunit of histone H3 lysine 4 methyltransferase complexes, which catalyze the generation of histone H3 lysine 4 trimethylation (H3K4me3) modification-is highly expressed in HBV-related HCC and promotes HCC development. WDR5 plays a critical role in HBV-driven cell proliferation and tumor growth in mice, and the WDR5-0103 small-molecule inhibitor of WDR5 activity compromises HBV- and hepatitis B x protein (HBx)-driven tumor proliferation. The aberrantly high WDR5 protein level was found to involve HBx through its stabilization of the WDR5 protein by inhibiting the interaction between the damage-specific DNA-binding protein 1/cullin-4 and WDR5, causing decreased ubiquitination of the WDR5 protein. HBx was found to colocalize with WDR5 on chromatin genome wide and promotes genome-wide H3K4me3 modification by means of WDR5. Furthermore, the recruitment of HBx to promoters of target genes relied on its interaction with WDR5 through its α-helix domain. WDR5 was also found to promote HBV transcription through H3K4 modification of covalently closed circular DNA minichromosome, and WDR5-0103 was able to inhibit HBV transcription. Finally, the in vitro and in vivo data further proved that HBx exerted its tumor-promoting function in a WDR5-dependent manner. CONCLUSIONS Our data reveals that WDR5 is a key epigenetic determinant of HBV-induced tumorigenesis and that the HBx-WDR5-H3K4me3 axis may be a potential therapeutic target in HBV-induced liver pathogenesis.
Collapse
Affiliation(s)
- Weiwu Gao
- Department of Pathophysiology, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
- Key Laboratory of High Altitude Medicine, PLA, Chongqing, China
- Institute of Immunology of PLA, Third Military Medical University, Chongqing, China
| | - Zhengcai Jia
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yi Tian
- Institute of Immunology of PLA, Third Military Medical University, Chongqing, China
| | | | - Hui Sun
- Department of Rheumatology and Immunology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Chenhui Wang
- Institute of Immunology of PLA, Third Military Medical University, Chongqing, China
| | - Yi Ding
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD
- Allen Institute for Brain Science, Seattle, WA
| | - Mengjie Zhang
- Department of Pathophysiology, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, China
| | - Yi Zhang
- Department of Pathophysiology, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, China
| | - Di Yang
- Institute of Immunology of PLA, Third Military Medical University, Chongqing, China
| | - Zhiqiang Tian
- Institute of Immunology of PLA, Third Military Medical University, Chongqing, China
| | - Jian Zhou
- Institute of Immunology of PLA, Third Military Medical University, Chongqing, China
| | - Zhihua Ruan
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yuzhang Wu
- Institute of Immunology of PLA, Third Military Medical University, Chongqing, China
| | - Bing Ni
- Department of Pathophysiology, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
- Key Laboratory of High Altitude Medicine, PLA, Chongqing, China
| |
Collapse
|
32
|
Abstract
Cullin-RING ligase 4 (CRL4), a member of the cullin-RING ligase family, orchestrates a variety of critical cellular processes and pathophysiological events. Recent results from mouse genetics, clinical analyses, and biochemical studies have revealed the impact of CRL4 in development and cancer etiology and elucidated its in-depth mechanism on catalysis of ubiquitination as a ubiquitin E3 ligase. Here, we summarize the versatile roles of the CRL4 E3 ligase complexes in tumorigenesis dependent on the evidence obtained from knockout and transgenic mouse models as well as biochemical and pathological studies.
Collapse
|
33
|
Cullin-4B E3 ubiquitin ligase mediates Apaf-1 ubiquitination to regulate caspase-9 activity. PLoS One 2019; 14:e0219782. [PMID: 31329620 PMCID: PMC6645535 DOI: 10.1371/journal.pone.0219782] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/01/2019] [Indexed: 11/25/2022] Open
Abstract
Apoptotic protease-activating factor 1 (Apaf-1) is a component of apoptosome, which regulates caspase-9 activity. In addition to apoptosis, Apaf-1 plays critical roles in the intra-S-phase checkpoint; therefore, impaired expression of Apaf-1 has been demonstrated in chemotherapy-resistant malignant melanoma and nuclear translocation of Apaf-1 has represented a favorable prognosis of patients with non-small cell lung cancer. In contrast, increased levels of Apaf-1 protein are observed in the brain in Huntington’s disease. The regulation of Apaf-1 protein is not yet fully understood. In this study, we show that etoposide triggers the interaction of Apaf-1 with Cullin-4B, resulting in enhanced Apaf-1 ubiquitination. Ubiquitinated Apaf-1, which was degraded in healthy cells, binds p62 and forms aggregates in the cytosol. This complex of ubiquitinated Apaf-1 and p62 induces caspase-9 activation following MG132 treatment of HEK293T cells that stably express bcl-xl. These results show that ubiquitinated Apaf-1 may activate caspase-9 under conditions of proteasome impairment.
Collapse
|
34
|
Lopes F, Torres F, Soares G, Barbosa M, Silva J, Duque F, Rocha M, Sá J, Oliveira G, Sá MJ, Temudo T, Sousa S, Marques C, Lopes S, Gomes C, Barros G, Jorge A, Rocha F, Martins C, Mesquita S, Loureiro S, Cardoso EM, Cálix MJ, Dias A, Martins C, Mota CR, Antunes D, Dupont J, Figueiredo S, Figueiroa S, Gama-de-Sousa S, Cruz S, Sampaio A, Eijk P, Weiss MM, Ylstra B, Rendeiro P, Tavares P, Reis-Lima M, Pinto-Basto J, Fortuna AM, Maciel P. Genomic imbalances defining novel intellectual disability associated loci. Orphanet J Rare Dis 2019; 14:164. [PMID: 31277718 PMCID: PMC6612161 DOI: 10.1186/s13023-019-1135-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 06/12/2019] [Indexed: 11/29/2022] Open
Abstract
Background High resolution genome-wide copy number analysis, routinely used in clinical diagnosis for several years, retrieves new and extremely rare copy number variations (CNVs) that provide novel candidate genes contributing to disease etiology. The aim of this work was to identify novel genetic causes of neurodevelopmental disease, inferred from CNVs detected by array comparative hybridization (aCGH), in a cohort of 325 Portuguese patients with intellectual disability (ID). Results We have detected CNVs in 30.1% of the patients, of which 5.2% corresponded to novel likely pathogenic CNVs. For these 11 rare CNVs (which encompass novel ID candidate genes), we identified those most likely to be relevant, and established genotype-phenotype correlations based on detailed clinical assessment. In the case of duplications, we performed expression analysis to assess the impact of the rearrangement. Interestingly, these novel candidate genes belong to known ID-related pathways. Within the 8% of patients with CNVs in known pathogenic loci, the majority had a clinical presentation fitting the phenotype(s) described in the literature, with a few interesting exceptions that are discussed. Conclusions Identification of such rare CNVs (some of which reported for the first time in ID patients/families) contributes to our understanding of the etiology of ID and for the ever-improving diagnosis of this group of patients. Electronic supplementary material The online version of this article (10.1186/s13023-019-1135-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fátima Lopes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Fátima Torres
- CGC Genetics, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Gabriela Soares
- Center for Medical Genetics Dr. Jacinto Magalhães, Porto Hospital Center, Praça Pedro Nunes, Porto, Portugal
| | - Mafalda Barbosa
- Center for Medical Genetics Dr. Jacinto Magalhães, Porto Hospital Center, Praça Pedro Nunes, Porto, Portugal.,Unit for Multidisciplinary Research in Biomedicine, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.,The Mindich Child Health & Development Institute and the Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,The Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - João Silva
- Center for Medical Genetics Dr. Jacinto Magalhães, Porto Hospital Center, Praça Pedro Nunes, Porto, Portugal.,Centro de Genética Preditiva e Preventiva - CGPP, Instituto de Biologia Molecular e Celular - IBMC, Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto, Porto, Portugal
| | - Frederico Duque
- Unidade de Neurodesenvolvimento e Autismo do Serviço do Centro de Desenvolvimento da Criança and Centro de Investigação e Formação Clínica, Pediatric Hospital, Centro Hospitalar e Universitário de Coimbra, 3041-80, Coimbra, Portugal.,University Clinic of Pediatrics and Institute for Biomedical Imaging and Life Science, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Miguel Rocha
- Center for Medical Genetics Dr. Jacinto Magalhães, Porto Hospital Center, Praça Pedro Nunes, Porto, Portugal.,Medical Genetics Unit, Hospital de Braga, Braga, Portugal
| | - Joaquim Sá
- CGC Genetics, Porto, Portugal.,Department of Medical Genetics, Hospital de Faro, Faro, Portugal
| | - Guiomar Oliveira
- Unidade de Neurodesenvolvimento e Autismo do Serviço do Centro de Desenvolvimento da Criança and Centro de Investigação e Formação Clínica, Pediatric Hospital, Centro Hospitalar e Universitário de Coimbra, 3041-80, Coimbra, Portugal.,University Clinic of Pediatrics and Institute for Biomedical Imaging and Life Science, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Maria João Sá
- Center for Medical Genetics Dr. Jacinto Magalhães, Porto Hospital Center, Praça Pedro Nunes, Porto, Portugal.,Unit for Multidisciplinary Research in Biomedicine, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Teresa Temudo
- Pediatric Neurology Department, Centro Materno-Infantil Centro Hospitalar do Porto, Porto, Portugal
| | - Susana Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Centro de Genética Preditiva e Preventiva - CGPP, Instituto de Biologia Molecular e Celular - IBMC, Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto, Porto, Portugal
| | - Carla Marques
- Unidade de Neurodesenvolvimento e Autismo do Serviço do Centro de Desenvolvimento da Criança and Centro de Investigação e Formação Clínica, Pediatric Hospital, Centro Hospitalar e Universitário de Coimbra, 3041-80, Coimbra, Portugal
| | - Sofia Lopes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Catarina Gomes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Gisela Barros
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Arminda Jorge
- Development Unit, Pediatrics Service, Hospital Centre of Cova da Beira, Covilhã, Portugal.,CICS - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Felisbela Rocha
- Department of Pediatrics, Médio Ave Hospital Center, Vila Nova de Famalicão, Portugal
| | - Cecília Martins
- Department of Pediatrics, Médio Ave Hospital Center, Vila Nova de Famalicão, Portugal
| | - Sandra Mesquita
- Development Unit, Pediatrics Service, Hospital Centre of Cova da Beira, Covilhã, Portugal
| | - Susana Loureiro
- Department of Pediatrics, Hospital S. Teotónio, Tondela/Viseu Hospital Center, Viseu, Portugal
| | - Elisa Maria Cardoso
- Department of Pediatrics, Hospital S. Teotónio, Tondela/Viseu Hospital Center, Viseu, Portugal
| | - Maria José Cálix
- Department of Pediatrics, Hospital S. Teotónio, Tondela/Viseu Hospital Center, Viseu, Portugal
| | - Andreia Dias
- Department of Pediatrics, Hospital S. Teotónio, Tondela/Viseu Hospital Center, Viseu, Portugal
| | - Cristina Martins
- Neuropaediatric Unit - Garcia de Orta Hospital, Almada, Portugal
| | - Céu R Mota
- Pediatric and Neonatal Intensive Care, Department of Pediatrics, Porto Hospital Center, Porto, Portugal
| | - Diana Antunes
- Department of Genetics, Hospital D. Estefânia, Lisboa-Norte Hospital Center, Lisbon, Portugal
| | - Juliette Dupont
- Genetics Service, Paediatric Department, University Hospital Santa Maria, Lisbon, Portugal
| | - Sara Figueiredo
- Department of Pediatrics, Médio Ave Hospital Center, Santo Tirso, Portugal
| | - Sónia Figueiroa
- Division of Pediatric Neurology, Department of Child and Adolescent, Centro Hospitalar do Porto e Hospital de Santo António, Porto, Portugal
| | - Susana Gama-de-Sousa
- Department of Pediatrics, Médio Ave Hospital Center, Vila Nova de Famalicão, Portugal
| | - Sara Cruz
- Neuropsychophysiology Lab, CIPsi, School of Psychology, University of Minho, Braga, Portugal
| | - Adriana Sampaio
- Neuropsychophysiology Lab, CIPsi, School of Psychology, University of Minho, Braga, Portugal
| | - Paul Eijk
- Department of Pathology, VU University Medical Center, Amsterdam, 1007, MB, The Netherlands
| | - Marjan M Weiss
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, 1007, MB, The Netherlands
| | - Bauke Ylstra
- Department of Pathology, VU University Medical Center, Amsterdam, 1007, MB, The Netherlands
| | | | | | - Margarida Reis-Lima
- Center for Medical Genetics Dr. Jacinto Magalhães, Porto Hospital Center, Praça Pedro Nunes, Porto, Portugal.,GDPN- SYNLAB, Porto, Portugal
| | | | - Ana Maria Fortuna
- Center for Medical Genetics Dr. Jacinto Magalhães, Porto Hospital Center, Praça Pedro Nunes, Porto, Portugal
| | - Patrícia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal. .,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
35
|
Okumoto K, Miyata N, Fujiki Y. Identification of Peroxisomal Protein Complexes with PTS Receptors, Pex5 and Pex7, in Mammalian Cells. Subcell Biochem 2019; 89:287-298. [PMID: 30378028 DOI: 10.1007/978-981-13-2233-4_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Pex5 and Pex7 are cytosolic receptors for peroxisome targeting signal type-1 (PTS1) and type-2 (PTS2), respectively, and play a pivotal role in import of peroxisomal matrix proteins. Recent advance in mass spectrometry analysis has facilitated comprehensive analysis of protein-protein interaction network by a combination with immunoprecipitation or biochemical purification. In this chapter, we introduce several findings obtained by these methods applied to mammalian cells. Exploring Pex5-binding partners in mammalian cells revealed core components comprising the import machinery complex of matrix proteins and a number of PTS1-type cargo proteins. Biochemical purification of the Pex5-export stimulating factor from rat liver cytosol fraction identified Awp1, providing further insight into molecular mechanisms of the export step of mono-ubiquitinated Pex5. Identification of DDB1 (damage-specific DNA-binding protein 1), a component of CRL4 (Cullin4A-RING ubiquitin ligase) E3 complex, as a Pex7-interacting protein revealed that quality control of Pex7 by CRL4A is important for PTS2 protein import by preventing the accumulation of dysfunctional Pex7. Furthermore, analysis of binding partners of an intraperoxisomal processing enzyme, trypsin-domain containing 1 (Tysnd1), showed a protein network regulating peroxisomal fatty acid β-oxidation.
Collapse
Affiliation(s)
- Kanji Okumoto
- Department of Biology, Faculty of Sciences, Kyushu University, Nishi-ku, Fukuoka, 819-0395, Japan.,Graduate School of Systems Life Sciences, Kyushu University, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Non Miyata
- Department of Biology, Faculty of Sciences, Kyushu University, Nishi-ku, Fukuoka, 819-0395, Japan.,Department of Chemistry, Faculty of Sciences, Kyushu University, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yukio Fujiki
- Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
36
|
O'Donnell-Luria AH, Pais LS, Faundes V, Wood JC, Sveden A, Luria V, Abou Jamra R, Accogli A, Amburgey K, Anderlid BM, Azzarello-Burri S, Basinger AA, Bianchini C, Bird LM, Buchert R, Carre W, Ceulemans S, Charles P, Cox H, Culliton L, Currò A, Demurger F, Dowling JJ, Duban-Bedu B, Dubourg C, Eiset SE, Escobar LF, Ferrarini A, Haack TB, Hashim M, Heide S, Helbig KL, Helbig I, Heredia R, Héron D, Isidor B, Jonasson AR, Joset P, Keren B, Kok F, Kroes HY, Lavillaureix A, Lu X, Maas SM, Maegawa GHB, Marcelis CLM, Mark PR, Masruha MR, McLaughlin HM, McWalter K, Melchinger EU, Mercimek-Andrews S, Nava C, Pendziwiat M, Person R, Ramelli GP, Ramos LLP, Rauch A, Reavey C, Renieri A, Rieß A, Sanchez-Valle A, Sattar S, Saunders C, Schwarz N, Smol T, Srour M, Steindl K, Syrbe S, Taylor JC, Telegrafi A, Thiffault I, Trauner DA, van der Linden H, van Koningsbruggen S, Villard L, Vogel I, Vogt J, Weber YG, Wentzensen IM, Widjaja E, Zak J, Baxter S, Banka S, Rodan LH. Heterozygous Variants in KMT2E Cause a Spectrum of Neurodevelopmental Disorders and Epilepsy. Am J Hum Genet 2019; 104:1210-1222. [PMID: 31079897 PMCID: PMC6556837 DOI: 10.1016/j.ajhg.2019.03.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/21/2019] [Indexed: 01/22/2023] Open
Abstract
We delineate a KMT2E-related neurodevelopmental disorder on the basis of 38 individuals in 36 families. This study includes 31 distinct heterozygous variants in KMT2E (28 ascertained from Matchmaker Exchange and three previously reported), and four individuals with chromosome 7q22.2-22.23 microdeletions encompassing KMT2E (one previously reported). Almost all variants occurred de novo, and most were truncating. Most affected individuals with protein-truncating variants presented with mild intellectual disability. One-quarter of individuals met criteria for autism. Additional common features include macrocephaly, hypotonia, functional gastrointestinal abnormalities, and a subtle facial gestalt. Epilepsy was present in about one-fifth of individuals with truncating variants and was responsive to treatment with anti-epileptic medications in almost all. More than 70% of the individuals were male, and expressivity was variable by sex; epilepsy was more common in females and autism more common in males. The four individuals with microdeletions encompassing KMT2E generally presented similarly to those with truncating variants, but the degree of developmental delay was greater. The group of four individuals with missense variants in KMT2E presented with the most severe developmental delays. Epilepsy was present in all individuals with missense variants, often manifesting as treatment-resistant infantile epileptic encephalopathy. Microcephaly was also common in this group. Haploinsufficiency versus gain-of-function or dominant-negative effects specific to these missense variants in KMT2E might explain this divergence in phenotype, but requires independent validation. Disruptive variants in KMT2E are an under-recognized cause of neurodevelopmental abnormalities.
Collapse
Affiliation(s)
- Anne H O'Donnell-Luria
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA.
| | - Lynn S Pais
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Víctor Faundes
- Division of Evolution & Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; Laboratorio de Genética y Enfermedades Metabólicas, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
| | - Jordan C Wood
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Abigail Sveden
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Victor Luria
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig 04103, Germany
| | - Andrea Accogli
- Department of Pediatrics, Department of Neurology and Neurosurgery, McGill University, Montreal, QC H4A 3J1, Quebec, Canada; Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica Scienze Materno-Infantili, Università degli studi di Genova, 16126 Genova, Italy; IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Kimberly Amburgey
- Division of Neurology, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto M5G 1X8, ON, Canada
| | - Britt Marie Anderlid
- Department of Molecular Medicine and Surgery, Centre for Molecular Medicine, Karolinska Institutet, Stockholm 17176, Sweden; Department of Clinical Genetics, Karolinska University Hospital, Stockholm 17176, Sweden
| | - Silvia Azzarello-Burri
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich CH-8952, Switzerland; Neuroscience Center Zurich, University of Zurich and Eidgenössische Technische Hochschule, Zurich 8057, Switzerland
| | - Alice A Basinger
- Genetics, Cook Children's Physician Network, Fort Worth, TX 76104, USA
| | - Claudia Bianchini
- Pediatric Neurology, Neurogenetics, and Neurobiology Unit and Laboratories, Neuroscience Department, Meyer Children's Hospital, University of Florence, 50139 Florence, Italy
| | - Lynne M Bird
- Department of Pediatrics, University of California, San Diego, San Diego, CA 92093, USA; Division of Genetics, Rady Children's Hospital of San Diego, San Diego, CA 92123, USA
| | - Rebecca Buchert
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen 72076, Germany
| | - Wilfrid Carre
- Laboratoire de Génétique Moléculaire et Génomique, Centre Hospitalier Universitaire de Rennes, Rennes 35033, France
| | - Sophia Ceulemans
- Division of Genetics, Rady Children's Hospital of San Diego, San Diego, CA 92123, USA
| | - Perrine Charles
- Department of Genetics, Centre de Référence Déficiences Intellectuelles de Causes Rares, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris 75013, France; Groupe de Recherche Clinique Déficience Intellectuelle et Autisme, Sorbonne University, Paris 75006, France
| | - Helen Cox
- West Midlands Regional Clinical Genetics Service, Birmingham Women's and Children's Hospital, National Health Service Foundation Trust, Birmingham B15 2TG, UK; Birmingham Health Partners, Birmingham Women's and Children's Hospital, National Health Service Foundation Trust, Birmingham B15 2TG, UK
| | - Lisa Culliton
- Department of Neurology, Children's Mercy Hospital and Clinics, Kansas City, MO 64108, USA
| | - Aurora Currò
- Medical Genetics, University of Siena, 53100 Siena, Italy; Genetica Medica, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy
| | - Florence Demurger
- Service de Génétique Clinique, Centre de Référence Maladies Rares Centre Labellisé Anomalies du Développement-Ouest, Centre Hospitalier Universitaire de Rennes, 35033 Rennes, France
| | - James J Dowling
- Division of Neurology, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto M5G 1X8, ON, Canada
| | - Benedicte Duban-Bedu
- Centre de Génétique Chromosomique, Groupement des Hôpitaux de l'Institut Catholique de Lille Hôpital Saint Vincent de Paul, 59020 Lille, France; Faculté de médecine de l'Université Catholoique de Lille, 59800 Lille, France
| | - Christèle Dubourg
- Laboratoire de Génétique Moléculaire et Génomique, Centre Hospitalier Universitaire de Rennes, Rennes 35033, France
| | - Saga Elise Eiset
- Department of Clinical Genetics, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Luis F Escobar
- St. Vincent's Children's Hospital, Indianapolis, IN 46260, USA
| | - Alessandra Ferrarini
- Medical Genetic Unit, Italian Hospital of Lugano, Lugano, Switzerland; Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen 72076, Germany
| | - Mona Hashim
- Oxford National Institute for Health Research Biomedical Research Centre, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Solveig Heide
- Department of Genetics, Centre de Référence Déficiences Intellectuelles de Causes Rares, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris 75013, France; Groupe de Recherche Clinique Déficience Intellectuelle et Autisme, Sorbonne University, Paris 75006, France
| | - Katherine L Helbig
- Division of Neurology and Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ingo Helbig
- Division of Neurology and Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104 USA; Department of Neuropediatrics, University Medical Center, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | | | - Delphine Héron
- Department of Genetics, Centre de Référence Déficiences Intellectuelles de Causes Rares, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris 75013, France; Groupe de Recherche Clinique Déficience Intellectuelle et Autisme, Sorbonne University, Paris 75006, France
| | - Bertrand Isidor
- Service de Génétique Médicale, Hôpital Hôtel-Dieu, Centre Hospitalier Universitaire de Nantes, 44093 Nantes, France
| | - Amy R Jonasson
- Division of Genetics and Metabolism, Department of Pediatrics, University of Florida, FL 32610, USA
| | - Pascal Joset
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich CH-8952, Switzerland; Neuroscience Center Zurich, University of Zurich and Eidgenössische Technische Hochschule, Zurich 8057, Switzerland
| | - Boris Keren
- Department of Genetics, Centre de Référence Déficiences Intellectuelles de Causes Rares, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris 75013, France; Groupe de Recherche Clinique Déficience Intellectuelle et Autisme, Sorbonne University, Paris 75006, France
| | - Fernando Kok
- Mendelics Genomic Analysis, Sao Paulo 04013, Brazil
| | - Hester Y Kroes
- Department of Medical Genetics, University Medical Center Utrecht, 3584 CX Utrecht, Netherlands
| | - Alinoë Lavillaureix
- Service de Génétique Clinique, Centre de Référence Maladies Rares Centre Labellisé Anomalies du Développement-Ouest, Centre Hospitalier Universitaire de Rennes, 35033 Rennes, France
| | - Xin Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Saskia M Maas
- Department of Clinical Genetics, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Gustavo H B Maegawa
- Division of Genetics and Metabolism, Department of Pediatrics, University of Florida, FL 32610, USA
| | - Carlo L M Marcelis
- Department of Clinical Genetics, Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands
| | - Paul R Mark
- Division of Medical Genetics and Genomics, Spectrum Health, Grand Rapids, MI 49544, USA
| | - Marcelo R Masruha
- Department of Neurology and Neurosurgery, Universidade de Federal de São Paulo, São Paulo 04023, Brazil
| | | | | | - Esther U Melchinger
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen 72076, Germany
| | - Saadet Mercimek-Andrews
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, University of Toronto, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Caroline Nava
- Department of Genetics, Centre de Référence Déficiences Intellectuelles de Causes Rares, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris 75013, France; Groupe de Recherche Clinique Déficience Intellectuelle et Autisme, Sorbonne University, Paris 75006, France
| | - Manuela Pendziwiat
- Department of Neuropediatrics, University Medical Center, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | | | - Gian Paolo Ramelli
- Neuropediatric Unit, Pediatric Department of Southern Switzerland, San Giovanni Hospital, 6500 Bellinzona, Switzerland
| | | | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich CH-8952, Switzerland; Neuroscience Center Zurich, University of Zurich and Eidgenössische Technische Hochschule, Zurich 8057, Switzerland; Rare Disease Initiative Zürich, Clinical Research Priority Program for Rare Diseases, University of Zurich, CH-8006 Zurich, Switzerland
| | | | - Alessandra Renieri
- Medical Genetics, University of Siena, 53100 Siena, Italy; Genetica Medica, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy
| | - Angelika Rieß
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen 72076, Germany
| | - Amarilis Sanchez-Valle
- Department of Pediatrics, Division of Genetics and Metabolism, University of South Florida, Tampa, FL 33606, USA
| | - Shifteh Sattar
- Section of Pediatric Neurology, Rady Children's Hospital, San Diego, CA 92123, USA; Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Carol Saunders
- Center for Pediatric Genomic Medicine, Children's Mercy Hospital and Clinics, Kansas City, MO 64108, USA; School of Medicine, University of Missouri, Kansas City, MO 64108, USA
| | - Niklas Schwarz
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
| | - Thomas Smol
- EA7364 Rares du Developpement Embryonnaire et du Metabolisme, Institut de Genetique Medicale, Centre Hospitalier Universitaire de Lille, University of Lille, F-59000 Lille, France
| | - Myriam Srour
- Department of Pediatrics, Department of Neurology and Neurosurgery, McGill University, Montreal, QC H4A 3J1, Quebec, Canada
| | - Katharina Steindl
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich CH-8952, Switzerland; Neuroscience Center Zurich, University of Zurich and Eidgenössische Technische Hochschule, Zurich 8057, Switzerland
| | - Steffen Syrbe
- Division of Child Neurology and Inherited Metabolic Diseases, Department of General Paediatrics, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Jenny C Taylor
- Oxford National Institute for Health Research Biomedical Research Centre, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | | | - Isabelle Thiffault
- School of Medicine, University of Missouri, Kansas City, MO 64108, USA; Department of Pathology and Laboratory Medicine, Children's Mercy Hospital and Clinics, Kansas City, MO 64108, USA
| | - Doris A Trauner
- Section of Pediatric Neurology, Rady Children's Hospital, San Diego, CA 92123, USA; Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Helio van der Linden
- Pediatric Neurology and Neurophysiology, Instituto de Neurologia de Goiania, Goiania 74210, Brazil
| | - Silvana van Koningsbruggen
- Department of Clinical Genetics, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Laurent Villard
- Department of Medical Genetics, Assistance Publique - Hôpitaux de Marseille, Hôpital d'Enfants de La Timone, 13005 Marseille, France; Marseille Medical Genetics Center, Aix Marseille Univ, Inserm, U1251, Marseille, France
| | - Ida Vogel
- Department of Clinical Genetics, Aarhus University Hospital, 8200 Aarhus, Denmark; Center for Fetal Diagnostics, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Julie Vogt
- West Midlands Regional Clinical Genetics Service, Birmingham Women's and Children's Hospital, National Health Service Foundation Trust, Birmingham B15 2TG, UK; Birmingham Health Partners, Birmingham Women's and Children's Hospital, National Health Service Foundation Trust, Birmingham B15 2TG, UK
| | - Yvonne G Weber
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany; Department for Neurosurgery, University of Tübingen, 72076 Tübingen, Germany
| | | | - Elysa Widjaja
- Department of Diagnostic Imaging, Hospital for Sick Children, University of Toronto, Toronto, M5G 1X8, ON, Canada
| | - Jaroslav Zak
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Samantha Baxter
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Siddharth Banka
- Division of Evolution & Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University National Health Service Foundation Trust, Health Innovation Manchester, Manchester M13 9WL, UK
| | - Lance H Rodan
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
37
|
Zhao M, Qi M, Li X, Hu J, Zhang J, Jiao M, Bai X, Peng X, Han B. CUL4B/miR-33b/C-MYC axis promotes prostate cancer progression. Prostate 2019; 79:480-488. [PMID: 30609075 DOI: 10.1002/pros.23754] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/27/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Cullin 4B (CUL4B), a scaffold protein that assembles CRL4B ubiquitin ligase complexes, is overexpressed in many types of solid tumors and contributes to epigenetic silencing of tumor suppressors. However, its clinical significance and underlying molecular mechanisms in prostate cancer (PCa) remain unknown. METHODS The clinical significance of CUL4B in PCa was characterized by in silico method. RT-qPCR and Western blot were used to study the transcript and protein expression levels of CUL4B and C-MYC. Bioinformatics tools, chromatin immunoprecipitation (ChIP) and luciferase reporter assay were utilized to identify and characterize the microRNAs (miRNAs) regulated by CUL4B. The biological function of CUL4B and miR-33b-5p was evaluated by MTS, transwell, and wound healing assays, accordingly. RESULTS CUL4B is significantly overexpressed in PCa tissues compared with benign prostatic tissues and its overexpression is correlated with poor prognosis. CUL4B promotes proliferation and aggressiveness of PCa cells in vitro. Mechanistically, we demonstrate that CUL4B upregulates the expression of C-MYC at post-transcriptional level through epigenetic silencing of miR-33b-5p. Importantly, CUL4B-induced oncogenic activity in PCa by targeting C-MYC is repressed by miR-33b-5p. CONCLUSIONS Our results suggested a novel CUL4B/miR-33b/C-MYC axis implicated in PCa cell growth and progression. This might provide novel insight into how CUL4B contributed to PCa aggressiveness and progression.
Collapse
Affiliation(s)
- Mingfeng Zhao
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, Shandong University QiLu Medical College, School of Basic Medical Sciences, Jinan, China
- Department of Pathology, Binzhou Medical University, Binzhou, China
| | - Mei Qi
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, Shandong University QiLu Medical College, School of Basic Medical Sciences, Jinan, China
| | - Xinjun Li
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, Shandong University QiLu Medical College, School of Basic Medical Sciences, Jinan, China
- Department of Pathology, Binzhou People's Hospital, Binzhou, China
| | - Jing Hu
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, Shandong University QiLu Medical College, School of Basic Medical Sciences, Jinan, China
| | - Jing Zhang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Meng Jiao
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, Shandong University QiLu Medical College, School of Basic Medical Sciences, Jinan, China
| | - Xinnuo Bai
- Department of Public Health Sciences, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Xijia Peng
- Human Biology Program, University of Toronto, Toronto, Ontario, Canada
| | - Bo Han
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, Shandong University QiLu Medical College, School of Basic Medical Sciences, Jinan, China
- Department of Pathology, Shandong University QiLu Hospital, Jinan, China
| |
Collapse
|
38
|
Patrón LA, Nagatomo K, Eves DT, Imad M, Young K, Torvund M, Guo X, Rogers GC, Zinsmaier KE. Cul4 ubiquitin ligase cofactor DCAF12 promotes neurotransmitter release and homeostatic plasticity. J Cell Biol 2019; 218:993-1010. [PMID: 30670470 PMCID: PMC6400570 DOI: 10.1083/jcb.201805099] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 11/13/2018] [Accepted: 12/20/2018] [Indexed: 12/20/2022] Open
Abstract
Patrón et al. show that presynaptic Drosophila DCAF12 is required for neurotransmitter release and homeostatic synaptic plasticity at neuromuscular junctions. Postsynaptic nuclear DCAF12 controls the expression of glutamate receptor IIA subunits in cooperation with Cullin4 ubiquitin ligase. We genetically characterized the synaptic role of the Drosophila homologue of human DCAF12, a putative cofactor of Cullin4 (Cul4) ubiquitin ligase complexes. Deletion of Drosophila DCAF12 impairs larval locomotion and arrests development. At larval neuromuscular junctions (NMJs), DCAF12 is expressed presynaptically in synaptic boutons, axons, and nuclei of motor neurons. Postsynaptically, DCAF12 is expressed in muscle nuclei and facilitates Cul4-dependent ubiquitination. Genetic experiments identified several mechanistically independent functions of DCAF12 at larval NMJs. First, presynaptic DCAF12 promotes evoked neurotransmitter release. Second, postsynaptic DCAF12 negatively controls the synaptic levels of the glutamate receptor subunits GluRIIA, GluRIIC, and GluRIID. The down-regulation of synaptic GluRIIA subunits by nuclear DCAF12 requires Cul4. Third, presynaptic DCAF12 is required for the expression of synaptic homeostatic potentiation. We suggest that DCAF12 and Cul4 are critical for normal synaptic function and plasticity at larval NMJs.
Collapse
Affiliation(s)
- Lilian A Patrón
- Department of Neuroscience, University of Arizona, Tucson, AZ.,Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, AZ
| | - Kei Nagatomo
- Department of Neuroscience, University of Arizona, Tucson, AZ
| | | | - Mays Imad
- Department of Neuroscience, University of Arizona, Tucson, AZ
| | - Kimberly Young
- Department of Neuroscience, University of Arizona, Tucson, AZ
| | - Meaghan Torvund
- Department of Neuroscience, University of Arizona, Tucson, AZ.,Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, AZ
| | - Xiufang Guo
- Department of Neuroscience, University of Arizona, Tucson, AZ
| | - Gregory C Rogers
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ.,Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| | - Konrad E Zinsmaier
- Department of Neuroscience, University of Arizona, Tucson, AZ .,Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ
| |
Collapse
|
39
|
Fonseca S, Rubio V. Arabidopsis CRL4 Complexes: Surveying Chromatin States and Gene Expression. FRONTIERS IN PLANT SCIENCE 2019; 10:1095. [PMID: 31608079 PMCID: PMC6761389 DOI: 10.3389/fpls.2019.01095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/09/2019] [Indexed: 05/10/2023]
Abstract
CULLIN4 (CUL4) RING ligase (CRL4) complexes contain a CUL4 scaffold protein, associated to RBX1 and to DDB1 proteins and have traditionally been associated to protein degradation events. Through DDB1, these complexes can associate with numerous DCAF proteins, which directly interact with specific targets promoting their ubiquitination and subsequent degradation by the proteasome. A characteristic feature of the majority of DCAF proteins that associate with DDB1 is the presence of the DWD motif. DWD-containing proteins sum up to 85 in the plant model species Arabidopsis. In the last decade, numerous Arabidopsis DWD proteins have been studied and their molecular functions uncovered. Independently of whether their association with CRL4 has been confirmed or not, DWD proteins are often found as components of additional multimeric protein complexes that play key roles in essential nuclear events. For most of them, the significance of their complex partnership is still unexplored. Here, we summarize recent findings involving both confirmed and putative CRL4-associated DCAF proteins in regulating nuclei architecture remodelling, DNA damage repair, histone post-translational modification, mRNA processing and export, and ribosome biogenesis, that definitely have an impact in gene expression and de novo protein synthesis. We hypothesized that, by maintaining accurate levels of regulatory proteins through targeted degradation and transcriptional control, CRL4 complexes help to surveil nuclear processes essential for plant development and survival.
Collapse
|
40
|
Cheng J, Guo J, North BJ, Tao K, Zhou P, Wei W. The emerging role for Cullin 4 family of E3 ligases in tumorigenesis. Biochim Biophys Acta Rev Cancer 2018; 1871:138-159. [PMID: 30602127 DOI: 10.1016/j.bbcan.2018.11.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 02/06/2023]
Abstract
As a member of the Cullin-RING ligase family, Cullin-RING ligase 4 (CRL4) has drawn much attention due to its broad regulatory roles under physiological and pathological conditions, especially in neoplastic events. Based on evidence from knockout and transgenic mouse models, human clinical data, and biochemical interactions, we summarize the distinct roles of the CRL4 E3 ligase complexes in tumorigenesis, which appears to be tissue- and context-dependent. Notably, targeting CRL4 has recently emerged as a noval anti-cancer strategy, including thalidomide and its derivatives that bind to the substrate recognition receptor cereblon (CRBN), and anticancer sulfonamides that target DCAF15 to suppress the neoplastic proliferation of multiple myeloma and colorectal cancers, respectively. To this end, PROTACs have been developed as a group of engineered bi-functional chemical glues that induce the ubiquitination-mediated degradation of substrates via recruiting E3 ligases, such as CRL4 (CRBN) and CRL2 (pVHL). We summarize the recent major advances in the CRL4 research field towards understanding its involvement in tumorigenesis and further discuss its clinical implications. The anti-tumor effects using the PROTAC approach to target the degradation of undruggable targets are also highlighted.
Collapse
Affiliation(s)
- Ji Cheng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jianping Guo
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Brian J North
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Pengbo Zhou
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
41
|
Symmank J, Bayer C, Schmidt C, Hahn A, Pensold D, Zimmer-Bensch G. DNMT1 modulates interneuron morphology by regulating Pak6 expression through crosstalk with histone modifications. Epigenetics 2018; 13:536-556. [PMID: 29912614 DOI: 10.1080/15592294.2018.1475980] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Epigenetic mechanisms of gene regulation, including DNA methylation and histone modifications, call increasing attention in the context of development and human health. Thereby, interactions between DNA methylating enzymes and histone modifications tremendously multiply the spectrum of potential regulatory functions. Epigenetic networks are critically involved in the establishment and functionality of neuronal circuits that are composed of gamma-aminobutyric acid (GABA)-positive inhibitory interneurons and excitatory principal neurons in the cerebral cortex. We recently reported a crucial role of the DNA methyltransferase 1 (DNMT1) during the migration of immature POA-derived cortical interneurons by promoting the migratory morphology through repression of Pak6. However, the DNMT1-dependent regulation of Pak6 expression appeared to occur independently of direct DNA methylation. Here, we show that in addition to its DNA methylating activity, DNMT1 can act on gene transcription by modulating permissive H3K4 and repressive H3K27 trimethylation in developing inhibitory interneurons, similar to what was found in other cell types. In particular, the transcriptional control of Pak6, interactions of DNMT1 with the Polycomb-repressor complex 2 (PCR2) core enzyme EZH2, mediating repressive H3K27 trimethylations at regulatory regions of the Pak6 gene locus. Similar to what was observed upon Dnmt1 depletion, inhibition of EZH2 caused elevated Pak6 expression levels accompanied by increased morphological complexity, which was rescued by siRNA-mediated downregulation of Pak6 expression. Together, our data emphasise the relevance of DNMT1-dependent crosstalk with histone tail methylation for transcriptional control of genes like Pak6 required for proper cortical interneuron migration.
Collapse
Affiliation(s)
- Judit Symmank
- a Institute of Human Genetics , University Hospital Jena , Jena , Germany
| | - Cathrin Bayer
- a Institute of Human Genetics , University Hospital Jena , Jena , Germany
| | - Christiane Schmidt
- a Institute of Human Genetics , University Hospital Jena , Jena , Germany
| | - Anne Hahn
- a Institute of Human Genetics , University Hospital Jena , Jena , Germany
| | - Daniel Pensold
- a Institute of Human Genetics , University Hospital Jena , Jena , Germany
| | - Geraldine Zimmer-Bensch
- a Institute of Human Genetics , University Hospital Jena , Jena , Germany.,b Institute for Biology II , Division of Functional Epigenetics in the Animal Model, RWTH Aachen University , Aachen , Germany
| |
Collapse
|
42
|
WDR5 Facilitates Human Cytomegalovirus Replication by Promoting Capsid Nuclear Egress. J Virol 2018; 92:JVI.00207-18. [PMID: 29437978 DOI: 10.1128/jvi.00207-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 02/05/2018] [Indexed: 01/27/2023] Open
Abstract
WD repeat-containing protein 5 (WDR5) is essential for assembling the VISA-associated complex to induce a type I interferon antiviral response to Sendai virus infection. However, the roles of WDR5 in DNA virus infections are not well described. Here, we report that human cytomegalovirus exploits WDR5 to facilitate capsid nuclear egress. Overexpression of WDR5 in fibroblasts slightly enhanced the infectious virus yield. However, WDR5 knockdown dramatically reduced infectious virus titers with only a small decrease in viral genome replication or gene expression. Further investigation of late steps of viral replication found that WDR5 knockdown significantly impaired formation of the viral nuclear egress complex and induced substantially fewer infoldings of the inner nuclear membrane. In addition, fewer capsids were associated with these infoldings, and there were fewer capsids in the cytoplasm. Restoration of WDR5 partially reversed these effects. These results suggest that WDR5 knockdown impairs the nuclear egress of capsids, which in turn decreases virus titers. These findings reveal an important role for a host factor whose function(s) is usurped by a viral pathogen to promote efficient replication. Thus, WDR5 represents an interesting regulatory mechanism and a potential antiviral target.IMPORTANCE Human cytomegalovirus (HCMV) has a large (∼235-kb) genome with over 170 open reading frames and exploits numerous cellular factors to facilitate its replication. HCMV infection increases protein levels of WD repeat-containing protein 5 (WDR5) during infection, overexpression of WDR5 enhances viral replication, and knockdown of WDR5 dramatically attenuates viral replication. Our results indicate that WDR5 promotes the nuclear egress of viral capsids, the depletion of WDR5 resulting in a significant decrease in production of infectious virions. This is the first report that WDR5 favors HCMV, a DNA virus, replication and highlights a novel target for antiviral therapy.
Collapse
|
43
|
Cheon S, Dean M, Chahrour M. The ubiquitin proteasome pathway in neuropsychiatric disorders. Neurobiol Learn Mem 2018; 165:106791. [PMID: 29398581 DOI: 10.1016/j.nlm.2018.01.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/19/2018] [Accepted: 01/26/2018] [Indexed: 12/20/2022]
Abstract
The ubiquitin proteasome system (UPS) is a highly conserved pathway that tightly regulates protein turnover in cells. This process is integral to neuronal development, differentiation, and function. Several members of the UPS are disrupted in neuropsychiatric disorders, highlighting the importance of this pathway in brain development and function. In this review, we discuss some of these pathway members, the molecular processes they regulate, and the potential for targeting the UPS in an effort to develop therapeutic strategies in neuropsychiatric and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Solmi Cheon
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Milan Dean
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Maria Chahrour
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Departments of Neuroscience and Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
44
|
Song T, Liang S, Liu J, Zhang T, Yin Y, Geng C, Gao S, Feng Y, Xu H, Guo D, Roberts A, Gu Y, Cang Y. CRL4 antagonizes SCFFbxo7-mediated turnover of cereblon and BK channel to regulate learning and memory. PLoS Genet 2018; 14:e1007165. [PMID: 29370161 PMCID: PMC5800687 DOI: 10.1371/journal.pgen.1007165] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 02/06/2018] [Accepted: 12/25/2017] [Indexed: 12/18/2022] Open
Abstract
Intellectual disability (ID), one of the most common human developmental disorders, can be caused by genetic mutations in Cullin 4B (Cul4B) and cereblon (CRBN). CRBN is a substrate receptor for the Cul4A/B-DDB1 ubiquitin ligase (CRL4) and can target voltage- and calcium-activated BK channel for ER retention. Here we report that ID-associated CRL4CRBN mutations abolish the interaction of the BK channel with CRL4, and redirect the BK channel to the SCFFbxo7 ubiquitin ligase for proteasomal degradation. Glioma cell lines harbouring CRBN mutations record density-dependent decrease of BK currents, which can be restored by blocking Cullin ubiquitin ligase activity. Importantly, mice with neuron-specific deletion of DDB1 or CRBN express reduced BK protein levels in the brain, and exhibit similar impairment in learning and memory, a deficit that can be partially rescued by activating the BK channel. Our results reveal a competitive targeting of the BK channel by two ubiquitin ligases to achieve exquisite control of its stability, and support changes in neuronal excitability as a common pathogenic mechanism underlying CRL4CRBN-associated ID.
Collapse
Affiliation(s)
- Tianyu Song
- Life Sciences Institute and Innovation Center for Cell Signalling Network, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shenghui Liang
- Translational and Regenerative Medicine Center, Aston Medical School, Aston University, Birmingham, United Kingdom
| | - Jiye Liu
- Life Sciences Institute and Innovation Center for Cell Signalling Network, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tingyue Zhang
- Life Sciences Institute and Innovation Center for Cell Signalling Network, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yifei Yin
- Life Sciences Institute and Innovation Center for Cell Signalling Network, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chenlu Geng
- Life Sciences Institute and Innovation Center for Cell Signalling Network, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shaobing Gao
- Life Sciences Institute and Innovation Center for Cell Signalling Network, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yan Feng
- Life Sciences Institute and Innovation Center for Cell Signalling Network, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hao Xu
- Laboratory of Molecular Pharmacology, Institute of Molecular Medicine, Peking University, Peking, China
| | - Dongqing Guo
- Laboratory of Molecular Pharmacology, Institute of Molecular Medicine, Peking University, Peking, China
| | - Amanda Roberts
- Molecular and Cellular Neurosciences Department, The Scripps Research Institute, University of California, San Diego, La Jolla, California, United States of America
| | - Yuchun Gu
- Translational and Regenerative Medicine Center, Aston Medical School, Aston University, Birmingham, United Kingdom
- * E-mail: (YC); (YG)
| | - Yong Cang
- Life Sciences Institute and Innovation Center for Cell Signalling Network, Zhejiang University, Hangzhou, Zhejiang, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- * E-mail: (YC); (YG)
| |
Collapse
|
45
|
Li D, Zhang L, Li X, Kong X, Wang X, Li Y, Liu Z, Wang J, Li X, Yang Y. AtRAE1 is involved in degradation of ABA receptor RCAR1 and negatively regulates ABA signalling in Arabidopsis. PLANT, CELL & ENVIRONMENT 2018; 41:231-244. [PMID: 29044697 DOI: 10.1111/pce.13086] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/24/2017] [Accepted: 09/28/2017] [Indexed: 06/07/2023]
Abstract
The phytohormone abscisic acid (ABA) plays an important role in regulating plant growth, development, and adaption to various environmental stresses. Regulatory components of ABA receptors (RCARs, also known as PYR/PYLs) sense ABA and initiate ABA signalling through inhibiting the activities of protein phosphatase 2C in Arabidopsis. However, the way in which ABA receptors are regulated is not well known. A DWD protein AtRAE1 (for RNA export factor 1 in Arabidopsis), which may act as a substrate receptor of CUL4-DDB1 E3 ligase, is an interacting partner of RCAR1/PYL9. The physical interaction between RCAR1 and AtRAE1 is confirmed in vitro and in vivo. Overexpression of AtRAE1 in Arabidopsis causes reduced sensitivity of plants to ABA, whereas suppression of AtRAE1 causes increased sensitivity to ABA. Analysis of protein stability demonstrates that RCAR1 is ubiquitinated and degraded in plant cells and AtRAE1 regulates the degradation speed of RCAR1. Our findings indicate that AtRAE1 likely participates in ABA signalling through regulating the degradation of ABA receptor RCAR1.
Collapse
Affiliation(s)
- Dekuan Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Liang Zhang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Xiaoyi Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Xiangge Kong
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Xiaoyu Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Ying Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Zhibin Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Jianmei Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Xufeng Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yi Yang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
46
|
MicroRNA-300 Regulates the Ubiquitination of PTEN through the CRL4B DCAF13 E3 Ligase in Osteosarcoma Cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 10:254-268. [PMID: 29499938 PMCID: PMC5768150 DOI: 10.1016/j.omtn.2017.12.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/18/2017] [Accepted: 12/18/2017] [Indexed: 12/24/2022]
Abstract
Cullins, critical members of the cullin-RING ubiquitin ligases (CRLs), are often aberrantly expressed in different cancers. However, the underlying mechanisms regarding aberrant expression of these cullins and the specific substrates of CRLs in different cancers are mostly unknown. Here, we demonstrate that overexpressed CUL4B in human osteosarcoma cells forms an E3 complex with DNA damage binding protein 1 (DDB1) and DDB1- and CUL4-associated factor 13 (DCAF13). In vitro and in vivo analyses indicated that the CRL4BDCAF13 E3 ligase specifically recognized the tumor suppressor PTEN (phosphatase and tensin homolog deleted on chromosome 10) for degradation, and disruption of this E3 ligase resulted in PTEN accumulation. Further analyses indicated that miR-300 directly targeted the 3' UTR of CUL4B, and DNA hypermethylation of a CpG island in the miR-300 promoter region contributed to the downregulation of miR-300. Interestingly, ectopic expression of miR-300 or treatment with 5-AZA-2'-deoxycytidine, a DNA methylation inhibitor, decreased the stability of CRL4BDCAF13 E3 ligase and reduced PTEN ubiquitination. By applying in vitro screening to identify small molecules that specifically inhibit CUL4B-DDB1 interaction, we found that TSC01131 could greatly inhibit osteosarcoma cell growth and could disrupt the stability of the CRL4BDCAF13 E3 ligase. Collectively, our findings shed new light on the molecular mechanism of CUL4B function and might also provide a new avenue for osteosarcoma therapy.
Collapse
|
47
|
Murphy CM, Xu Y, Li F, Nio K, Reszka-Blanco N, Li X, Wu Y, Yu Y, Xiong Y, Su L. Hepatitis B Virus X Protein Promotes Degradation of SMC5/6 to Enhance HBV Replication. Cell Rep 2017; 16:2846-2854. [PMID: 27626656 DOI: 10.1016/j.celrep.2016.08.026] [Citation(s) in RCA: 232] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 07/06/2016] [Accepted: 08/05/2016] [Indexed: 12/15/2022] Open
Abstract
The hepatitis B virus (HBV) regulatory protein X (HBx) activates gene expression from the HBV covalently closed circular DNA (cccDNA) genome. Interaction of HBx with the DDB1-CUL4-ROC1 (CRL4) E3 ligase is critical for this function. Using substrate-trapping proteomics, we identified the structural maintenance of chromosomes (SMC) complex proteins SMC5 and SMC6 as CRL4(HBx) substrates. HBx expression and HBV infection degraded the SMC5/6 complex in human hepatocytes in vitro and in humanized mice in vivo. HBx targets SMC5/6 for ubiquitylation by the CRL4(HBx) E3 ligase and subsequent degradation by the proteasome. Using a minicircle HBV (mcHBV) reporter system with HBx-dependent activity, we demonstrate that SMC5/6 knockdown, or inhibition with a dominant-negative SMC6, enhance HBx null mcHBV-Gluc gene expression. Furthermore, SMC5/6 knockdown rescued HBx-deficient HBV replication in human hepatocytes. These results indicate that a primary function of HBx is to degrade SMC5/6, which restricts HBV replication by inhibiting HBV gene expression.
Collapse
Affiliation(s)
- Christopher M Murphy
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yanping Xu
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Feng Li
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kouki Nio
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Natalia Reszka-Blanco
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xiaodong Li
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yaxu Wu
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yanbao Yu
- J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD 20850, USA
| | - Yue Xiong
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Lishan Su
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
48
|
Nattel SN, Adrianzen L, Kessler EC, Andelfinger G, Dehaes M, Côté-Corriveau G, Trelles MP. Congenital Heart Disease and Neurodevelopment: Clinical Manifestations, Genetics, Mechanisms, and Implications. Can J Cardiol 2017; 33:1543-1555. [PMID: 29173597 DOI: 10.1016/j.cjca.2017.09.020] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/27/2017] [Accepted: 09/27/2017] [Indexed: 10/18/2022] Open
Abstract
Children with congenital heart disease (CHD) are at increased risk of neurodevelopmental disorders (NDDs) and psychiatric conditions. These include cognitive, adaptive, motor, speech, behavioural, and executive functioning deficits, as well as autism spectrum disorder and psychiatric conditions. Structural and functional neuroimaging have demonstrated brain abnormalities in young children with CHD before undergoing surgical repair, likely as a result of an in utero developmental insult. Surgical factors do not seem to play a significant role in neurodevelopmental outcomes. Specific genetic abnormalities, particularly copy number variants, have been increasingly implicated in both CHD and NDDs. Variations in genes involved in apolipoprotein E (APOE) production, the Wnt signalling pathway, and histone modification, as well as in the 1q21.1, 16p13.1-11, and 8p23.1 genetic loci, have been associated with CHD and NDDs and are important targets for future research. Understanding these associations is important for risk stratification, disease classification, improved screening, and pharmacologic management of individuals with CHD.
Collapse
Affiliation(s)
- Sarah N Nattel
- Department of Psychiatry, Albert Einstein College of Medicine and Seaver Autism Center at Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Laura Adrianzen
- Department of Psychiatry, Seaver Autism Center at Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Gregor Andelfinger
- Department of Pediatrics, University of Montreal and Ste-Justine Hospital University Centre, Montreal, Quebec, Canada
| | - Mathieu Dehaes
- Department of Radiology, Radio-oncology, and Nuclear Medicine, University of Montreal and Ste-Justine Hospital University Centre, Montreal, Quebec, Canada
| | - Gabriel Côté-Corriveau
- Department of Radiology, Radio-oncology, and Nuclear Medicine, University of Montreal and Ste-Justine Hospital University Centre, Montreal, Quebec, Canada
| | - M Pilar Trelles
- Department of Psychiatry, Seaver Autism Center at Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
49
|
Prospective cohort study for identification of underlying genetic causes in neonatal encephalopathy using whole-exome sequencing. Genet Med 2017; 20:486-494. [PMID: 28817111 DOI: 10.1038/gim.2017.129] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/19/2017] [Indexed: 11/08/2022] Open
Abstract
PurposeNeonatal encephalopathy, which is characterized by a decreased level of consciousness, occurs in 1-7/1,000 live-term births. In more than half of term newborns, there is no identifiable etiological factor. To identify underlying genetic defects, we applied whole-exome sequencing (WES) in term newborns with neonatal encephalopathy as a prospective cohort study.MethodsTerm newborns with neonatal encephalopathy and no history of perinatal asphyxia were included. WES was performed using patient and both parents' DNA.ResultsNineteen patients fulfilling inclusion criteria were enrolled. Five patients were excluded owing to withdrawal of consent, no parental DNA samples, or a genetic diagnosis prior to WES. Fourteen patients underwent WES. We confirmed a genetic diagnosis in five patients (36%): epileptic encephalopathy associated with autosomal dominant de novo variants in SCN2A (p.Met1545Val), KCNQ2 (p.Asp212Tyr), and GNAO1 (p.Gly40Arg); lipoic acid synthetase deficiency due to compound heterozygous variants in LIAS (p.Ala253Pro and p.His236Gln); and encephalopathy associated with an X-linked variant in CUL4B (p.Asn211Ser).ConclusionWES is helpful at arriving genetic diagnoses in neonatal encephalopathy and/or seizures and brain damage. It will increase our understanding and probably enable us to develop targeted neuroprotective treatment strategies.
Collapse
|
50
|
Weissbach S, Reinert MC, Altmüller J, Krätzner R, Thiele H, Rosenbaum T, Nürnberg P, Gärtner J. A new CUL4B variant associated with a mild phenotype and an exceptional pattern of leukoencephalopathy. Am J Med Genet A 2017; 173:2803-2807. [PMID: 28817236 DOI: 10.1002/ajmg.a.38390] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/29/2017] [Accepted: 07/14/2017] [Indexed: 11/07/2022]
Abstract
Cabezas type of X-linked syndromic intellectual disability (MRXSC; MIM300354) is a rare X-linked recessive intellectual disability characterized primarily by intellectual disability, short stature, hypogonadism, and gait abnormalities. It is caused by a wide spectrum of hemizygous variants in CUL4B. In a 10-year-old boy with an exceptional leukoencephalopathy pattern, we identified a new missense variant p.Leu329Gln in CUL4B using "Mendeliome" sequencing. However, his phenotype does not include the severe characteristics currently known for MRXSC. We discuss the divergent phenotype and propose a potential connection between the different CUL4B variants and corresponding phenotypes in the context of the current literature as well as 3D homology modeling.
Collapse
Affiliation(s)
- Susann Weissbach
- Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, Göttingen, Germany
| | - Marie-Christine Reinert
- Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, Göttingen, Germany
| | - Janine Altmüller
- Cologne Center for Genomics, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Ralph Krätzner
- Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, Göttingen, Germany
| | - Holger Thiele
- Cologne Center for Genomics, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Thorsten Rosenbaum
- Department of Pediatrics and Adolescent Medicine, Sana Hospitals Duisburg, Duisburg, Germany
| | - Peter Nürnberg
- Cologne Center for Genomics, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Jutta Gärtner
- Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|