1
|
Latour M, Kwiatek L, Landry-Voyer AM, Bachand F. Antagonistic roles by the conserved nuclear poly(A)-binding proteins PABPN1 and ZC3H14 in nuclear RNA surveillance. Nucleic Acids Res 2025; 53:gkaf060. [PMID: 39898550 PMCID: PMC11788927 DOI: 10.1093/nar/gkaf060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 01/16/2025] [Accepted: 01/23/2025] [Indexed: 02/04/2025] Open
Abstract
Most eukaryotic genomes are transcribed pervasively, thereby producing an array of long non-coding RNAs (lncRNAs) in addition to protein-coding mRNAs. A large fraction of these lncRNAs is targeted by polyadenylation-dependent decay via the poly(A)-binding protein nuclear 1 (PABPN1) and the RNA exosome. Yet, how PABPN1 contributes to nuclear RNA surveillance by facilitating lncRNA turnover by the RNA exosome remains largely unclear. Here, we show that PABPN1 is important for the nuclear retention of polyadenylated lncRNAs, such that PABPN1 loss of function allows target lncRNAs to evade nuclear decay, leading to cytoplasmic accumulation. Interestingly, we found that another nuclear PABP, ZC3H14, functions antagonistically to PABPN1 and the poly(A)-tail exosome targeting (PAXT) connection in the control of nuclear lncRNA turnover. Collectively, our findings disclose the critical interplay between two conserved nuclear PABPs, PABPN1 and ZC3H14, in RNA surveillance via the control of nuclear RNA export.
Collapse
Affiliation(s)
- Mélodie Latour
- RNA Group, Department of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Lauren Kwiatek
- RNA Group, Department of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Anne-Marie Landry-Voyer
- RNA Group, Department of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - François Bachand
- RNA Group, Department of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| |
Collapse
|
2
|
Rambout X, Maquat LE. Nuclear mRNA decay: regulatory networks that control gene expression. Nat Rev Genet 2024; 25:679-697. [PMID: 38637632 PMCID: PMC11408106 DOI: 10.1038/s41576-024-00712-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2024] [Indexed: 04/20/2024]
Abstract
Proper regulation of mRNA production in the nucleus is critical for the maintenance of cellular homoeostasis during adaptation to internal and environmental cues. Over the past 25 years, it has become clear that the nuclear machineries governing gene transcription, pre-mRNA processing, pre-mRNA and mRNA decay, and mRNA export to the cytoplasm are inextricably linked to control the quality and quantity of mRNAs available for translation. More recently, an ever-expanding diversity of new mechanisms by which nuclear RNA decay factors finely tune the expression of protein-encoding genes have been uncovered. Here, we review the current understanding of how mammalian cells shape their protein-encoding potential by regulating the decay of pre-mRNAs and mRNAs in the nucleus.
Collapse
Affiliation(s)
- Xavier Rambout
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA.
- Center for RNA Biology, University of Rochester, Rochester, NY, USA.
| | - Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA.
- Center for RNA Biology, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
3
|
Kwiatek L, Landry-Voyer AM, Latour M, Yague-Sanz C, Bachand F. PABPN1 prevents the nuclear export of an unspliced RNA with a constitutive transport element and controls human gene expression via intron retention. RNA (NEW YORK, N.Y.) 2023; 29:644-662. [PMID: 36754576 PMCID: PMC10158996 DOI: 10.1261/rna.079294.122] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 01/12/2023] [Indexed: 05/06/2023]
Abstract
Intron retention is a type of alternative splicing where one or more introns remain unspliced in a polyadenylated transcript. Although many viral systems are known to translate proteins from mRNAs with retained introns, restriction mechanisms generally prevent export and translation of incompletely spliced mRNAs. Here, we provide evidence that the human nuclear poly(A)-binding protein, PABPN1, functions in such restrictions. Using a reporter construct in which nuclear export of an incompletely spliced mRNA is enhanced by a viral constitutive transport element (CTE), we show that PABPN1 depletion results in a significant increase in export and translation from the unspliced CTE-containing transcript. Unexpectedly, we find that inactivation of poly(A)-tail exosome targeting by depletion of PAXT components had no effect on export and translation of the unspliced reporter mRNA, suggesting a mechanism largely independent of nuclear RNA decay. Interestingly, a PABPN1 mutant selectively defective in stimulating poly(A) polymerase elongation strongly enhanced the expression of the unspliced, but not of intronless, reporter transcripts. Analysis of RNA-seq data also revealed that PABPN1 controls the expression of many human genes via intron retention. Notably, PABPN1-dependent intron retention events mostly affected 3'-terminal introns and were insensitive to PAXT and NEXT deficiencies. Our findings thus disclose a role for PABPN1 in restricting nuclear export of intron-retained transcripts and reinforce the interdependence between terminal intron splicing, 3' end processing, and polyadenylation.
Collapse
Affiliation(s)
- Lauren Kwiatek
- RNA Group, Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, Canada J1E 4K8
| | - Anne-Marie Landry-Voyer
- RNA Group, Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, Canada J1E 4K8
| | - Mélodie Latour
- RNA Group, Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, Canada J1E 4K8
| | - Carlo Yague-Sanz
- RNA Group, Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, Canada J1E 4K8
| | - Francois Bachand
- RNA Group, Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, Canada J1E 4K8
| |
Collapse
|
4
|
Soni K, Sivadas A, Horvath A, Dobrev N, Hayashi R, Kiss L, Simon B, Wild K, Sinning I, Fischer T. Mechanistic insights into RNA surveillance by the canonical poly(A) polymerase Pla1 of the MTREC complex. Nat Commun 2023; 14:772. [PMID: 36774373 PMCID: PMC9922296 DOI: 10.1038/s41467-023-36402-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 01/31/2023] [Indexed: 02/13/2023] Open
Abstract
The S. pombe orthologue of the human PAXT connection, Mtl1-Red1 Core (MTREC), is an eleven-subunit complex that targets cryptic unstable transcripts (CUTs) to the nuclear RNA exosome for degradation. It encompasses the canonical poly(A) polymerase Pla1, responsible for polyadenylation of nascent RNA transcripts as part of the cleavage and polyadenylation factor (CPF/CPSF). In this study we identify and characterise the interaction between Pla1 and the MTREC complex core component Red1 and analyse the functional relevance of this interaction in vivo. Our crystal structure of the Pla1-Red1 complex shows that a 58-residue fragment in Red1 binds to the RNA recognition motif domain of Pla1 and tethers it to the MTREC complex. Structure-based Pla1-Red1 interaction mutations show that Pla1, as part of MTREC complex, hyper-adenylates CUTs for their efficient degradation. Interestingly, the Red1-Pla1 interaction is also required for the efficient assembly of the fission yeast facultative heterochromatic islands. Together, our data suggest a complex interplay between the RNA surveillance and 3'-end processing machineries.
Collapse
Affiliation(s)
- Komal Soni
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120, Heidelberg, Germany
| | - Anusree Sivadas
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Attila Horvath
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Nikolay Dobrev
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120, Heidelberg, Germany
| | - Rippei Hayashi
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Leo Kiss
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120, Heidelberg, Germany
| | - Bernd Simon
- European Molecular Biology Laboratory (EMBL), Meyerhofstr, 1, D-69117, Heidelberg, Germany
| | - Klemens Wild
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120, Heidelberg, Germany
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120, Heidelberg, Germany.
| | - Tamás Fischer
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
5
|
Lee TA, Han H, Polash A, Cho SK, Lee JW, Ra EA, Lee E, Park A, Kang S, Choi JL, Kim JH, Lee JE, Min KW, Yang SW, Hafner M, Lee I, Yoon JH, Lee S, Park B. The nucleolus is the site for inflammatory RNA decay during infection. Nat Commun 2022; 13:5203. [PMID: 36057640 PMCID: PMC9440930 DOI: 10.1038/s41467-022-32856-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 08/16/2022] [Indexed: 11/12/2022] Open
Abstract
Inflammatory cytokines are key signaling molecules that can promote an immune response, thus their RNA turnover must be tightly controlled during infection. Most studies investigate the RNA decay pathways in the cytosol or nucleoplasm but never focused on the nucleolus. Although this organelle has well-studied roles in ribosome biogenesis and cellular stress sensing, the mechanism of RNA decay within the nucleolus is not completely understood. Here, we report that the nucleolus is an essential site of inflammatory pre-mRNA instability during infection. RNA-sequencing analysis reveals that not only do inflammatory genes have higher intronic read densities compared with non-inflammatory genes, but their pre-mRNAs are highly enriched in nucleoli during infection. Notably, nucleolin (NCL) acts as a guide factor for recruiting cytosine or uracil (C/U)-rich sequence-containing inflammatory pre-mRNAs and the Rrp6-exosome complex to the nucleolus through a physical interaction, thereby enabling targeted RNA delivery to Rrp6-exosomes and subsequent degradation. Consequently, Ncl depletion causes aberrant hyperinflammation, resulting in a severe lethality in response to LPS. Importantly, the dynamics of NCL post-translational modifications determine its functional activity in phases of LPS. This process represents a nucleolus-dependent pathway for maintaining inflammatory gene expression integrity and immunological homeostasis during infection. The nucleolus is the traditional site for ribosomal RNA biogenesis. Here, the authors find that the nucleolus is a site of inflammatory pre-mRNA turnover and elucidated how immune homeostasis can be maintained by controlling inflammatory gene expression.
Collapse
Affiliation(s)
- Taeyun A Lee
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Heonjong Han
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea.,Division of Tumor Immunology, Research Institute, National Cancer Center, Goyang, South Korea
| | - Ahsan Polash
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute for Arthritis and Musculoskeletal and Skin Disease, National Institutes of Health, Bethesda, MD, USA
| | - Seok Keun Cho
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Ji Won Lee
- Department of Biology, College of Natural Sciences, Gangneung-Wonju National University, Gangneung, South Korea
| | - Eun A Ra
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Eunhye Lee
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Areum Park
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Sujin Kang
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Junhee L Choi
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Ji Hyun Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Ji Eun Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea.,Samsung Genome Institute (SGI), Samsung Medical Center, Seoul, South Korea
| | - Kyung-Won Min
- Department of Biology, College of Natural Sciences, Gangneung-Wonju National University, Gangneung, South Korea.,Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Seong Wook Yang
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Markus Hafner
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute for Arthritis and Musculoskeletal and Skin Disease, National Institutes of Health, Bethesda, MD, USA
| | - Insuk Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Je-Hyun Yoon
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA.
| | - Sungwook Lee
- Division of Tumor Immunology, Research Institute, National Cancer Center, Goyang, South Korea.
| | - Boyoun Park
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea.
| |
Collapse
|
6
|
Wang D, Hou L, Zhu N, Yang X, Zhou J, Cui Y, Guo J, Feng X, Liu J. Interaction of Nucleolin with the Fusion Protein of Avian Metapneumovirus Subgroup C Contributes to Viral Replication. Viruses 2022; 14:v14071402. [PMID: 35891383 PMCID: PMC9317408 DOI: 10.3390/v14071402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 12/02/2022] Open
Abstract
Avian metapneumovirus subgroup C (aMPV/C) is highly pathogenic to various avian species with acute respiratory tract clinicopathology and/or drops in egg production. Nucleolin (NCL), an important nucleolar protein, has been shown to regulate multiple viral replication and serve as a functional receptor for viral entry and internalization. Whether NCL is involved in aMPV/C pathogenesis is not known. In this study, we found that aMPV/C infection altered the subcellular localization of NCL in cultured cells. siRNA-targeted NCL resulted in a remarkable decline in aMPV/C replication in Vero cells. DF-1 cells showed a similar response after CRISPR/Cas9-mediated knock out of NCL during aMPV/C infection. Conversely, NCL overexpression significantly increased aMPV/C replication. Pretreatment with AS1411-a aptamer, a guanine (G)-rich oligonucleotide that forms four-stranded structures and competitively binding to NCL, decreased aMPV/C replication and viral titers in cultured cells. Additionally, we found that the aMPV/C fusion (F) protein specifically interacts with NCL through its central domain and that AS1411 disrupts this interaction, thus inhibiting viral replication. Taken together, these results reveal that the aMPV/C F protein interacts with NCL, which is employed by aMPV/C for efficient replication, thereby highlighting the strategic potential for control and therapy of aMPV/C infection.
Collapse
Affiliation(s)
- Dedong Wang
- College of Veterimary Medicine, Yangzhou University, Yangzhou 225009, China; (D.W.); (L.H.); (N.Z.); (X.Y.); (J.Z.); (Y.C.); (J.G.); (X.F.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Lei Hou
- College of Veterimary Medicine, Yangzhou University, Yangzhou 225009, China; (D.W.); (L.H.); (N.Z.); (X.Y.); (J.Z.); (Y.C.); (J.G.); (X.F.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Ning Zhu
- College of Veterimary Medicine, Yangzhou University, Yangzhou 225009, China; (D.W.); (L.H.); (N.Z.); (X.Y.); (J.Z.); (Y.C.); (J.G.); (X.F.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyu Yang
- College of Veterimary Medicine, Yangzhou University, Yangzhou 225009, China; (D.W.); (L.H.); (N.Z.); (X.Y.); (J.Z.); (Y.C.); (J.G.); (X.F.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jianwei Zhou
- College of Veterimary Medicine, Yangzhou University, Yangzhou 225009, China; (D.W.); (L.H.); (N.Z.); (X.Y.); (J.Z.); (Y.C.); (J.G.); (X.F.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Yongqiu Cui
- College of Veterimary Medicine, Yangzhou University, Yangzhou 225009, China; (D.W.); (L.H.); (N.Z.); (X.Y.); (J.Z.); (Y.C.); (J.G.); (X.F.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jinshuo Guo
- College of Veterimary Medicine, Yangzhou University, Yangzhou 225009, China; (D.W.); (L.H.); (N.Z.); (X.Y.); (J.Z.); (Y.C.); (J.G.); (X.F.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Xufei Feng
- College of Veterimary Medicine, Yangzhou University, Yangzhou 225009, China; (D.W.); (L.H.); (N.Z.); (X.Y.); (J.Z.); (Y.C.); (J.G.); (X.F.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jue Liu
- College of Veterimary Medicine, Yangzhou University, Yangzhou 225009, China; (D.W.); (L.H.); (N.Z.); (X.Y.); (J.Z.); (Y.C.); (J.G.); (X.F.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
7
|
The Expanding Role of Alternative Splicing in Vascular Smooth Muscle Cell Plasticity. Int J Mol Sci 2021; 22:ijms221910213. [PMID: 34638554 PMCID: PMC8508619 DOI: 10.3390/ijms221910213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/15/2021] [Accepted: 09/18/2021] [Indexed: 12/21/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs) display extraordinary phenotypic plasticity. This allows them to differentiate or dedifferentiate, depending on environmental cues. The ability to ‘switch’ between a quiescent contractile phenotype to a highly proliferative synthetic state renders VSMCs as primary mediators of vascular repair and remodelling. When their plasticity is pathological, it can lead to cardiovascular diseases such as atherosclerosis and restenosis. Coinciding with significant technological and conceptual innovations in RNA biology, there has been a growing focus on the role of alternative splicing in VSMC gene expression regulation. Herein, we review how alternative splicing and its regulatory factors are involved in generating protein diversity and altering gene expression levels in VSMC plasticity. Moreover, we explore how recent advancements in the development of splicing-modulating therapies may be applied to VSMC-related pathologies.
Collapse
|
8
|
Transcription and chromatin-based surveillance mechanism controls suppression of cryptic antisense transcription. Cell Rep 2021; 36:109671. [PMID: 34496258 PMCID: PMC8441049 DOI: 10.1016/j.celrep.2021.109671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 08/26/2020] [Accepted: 08/13/2021] [Indexed: 12/25/2022] Open
Abstract
Phosphorylation of the RNA polymerase II C-terminal domain Y1S2P3T4S5P6S7 consensus sequence coordinates key events during transcription, and its deregulation leads to defects in transcription and RNA processing. Here, we report that the histone deacetylase activity of the fission yeast Hos2/Set3 complex plays an important role in suppressing cryptic initiation of antisense transcription when RNA polymerase II phosphorylation is dysregulated due to the loss of Ssu72 phosphatase. Interestingly, although single Hos2 and Set3 mutants have little effect, loss of Hos2 or Set3 combined with ssu72Δ results in a synergistic increase in antisense transcription globally and correlates with elevated sensitivity to genotoxic agents. We demonstrate a key role for the Ssu72/Hos2/Set3 mechanism in the suppression of cryptic antisense transcription at the 3' end of convergent genes that are most susceptible to these defects, ensuring the fidelity of gene expression within dense genomes of simple eukaryotes.
Collapse
|
9
|
Ziff OJ, Taha DM, Crerar H, Clarke BE, Chakrabarti AM, Kelly G, Neeves J, Tyzack GE, Luscombe NM, Patani R. Reactive astrocytes in ALS display diminished intron retention. Nucleic Acids Res 2021; 49:3168-3184. [PMID: 33684213 PMCID: PMC8034657 DOI: 10.1093/nar/gkab115] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022] Open
Abstract
Reactive astrocytes are implicated in amyotrophic lateral sclerosis (ALS), although the mechanisms controlling reactive transformation are unknown. We show that decreased intron retention (IR) is common to human-induced pluripotent stem cell (hiPSC)-derived astrocytes carrying ALS-causing mutations in VCP, SOD1 and C9orf72. Notably, transcripts with decreased IR and increased expression are overrepresented in reactivity processes including cell adhesion, stress response and immune activation. This was recapitulated in public-datasets for (i) hiPSC-derived astrocytes stimulated with cytokines to undergo reactive transformation and (ii) in vivo astrocytes following selective deletion of TDP-43. We also re-examined public translatome sequencing (TRAP-seq) of astrocytes from a SOD1 mouse model, which revealed that transcripts upregulated in translation significantly overlap with transcripts exhibiting decreased IR. Using nucleocytoplasmic fractionation of VCP mutant astrocytes coupled with mRNA sequencing and proteomics, we identify that decreased IR in nuclear transcripts is associated with enhanced nonsense mediated decay and increased cytoplasmic expression of transcripts and proteins regulating reactive transformation. These findings are consistent with a molecular model for reactive transformation in astrocytes whereby poised nuclear reactivity-related IR transcripts are spliced, undergo nuclear-to-cytoplasmic translocation and translation. Our study therefore provides new insights into the molecular regulation of reactive transformation in astrocytes.
Collapse
Affiliation(s)
- Oliver J Ziff
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.,National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London, WC1N 3BG, UK
| | - Doaa M Taha
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.,Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| | - Hamish Crerar
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Benjamin E Clarke
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Anob M Chakrabarti
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,UCL Genetics Institute, University College London, Gower Street, London WC1E 6BT, UK
| | - Gavin Kelly
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Jacob Neeves
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Giulia E Tyzack
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Nicholas M Luscombe
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,UCL Genetics Institute, University College London, Gower Street, London WC1E 6BT, UK.,Okinawa Institute of Science & Technology Graduate University, Okinawa 904-0495, Japan
| | - Rickie Patani
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.,National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London, WC1N 3BG, UK
| |
Collapse
|
10
|
Abstract
The HIV-1 Rev protein is a nuclear export factor for unspliced and incompletely spliced HIV-1 RNAs. Without Rev, these intron-retaining RNAs are trapped in the nucleus. A genome-wide screen identified nine proteins of the spliceosome, which all enhanced expression from the HIV-1 unspliced RNA after CRISPR/Cas knockdown. Depletion of DHX38, WDR70, and four proteins of the Prp19-associated complex (ISY1, BUD31, XAB2, and CRNKL1) resulted in a more than 20-fold enhancement of unspliced HIV-1 RNA levels in the cytoplasm. Targeting of CRNKL1, DHX38, and BUD31 affected nuclear export efficiencies of the HIV-1 unspliced RNA to a much larger extent than splicing. Transcriptomic analyses further revealed that CRNKL1 also suppresses cytoplasmic levels of a subset of cellular mRNAs, including some with selectively retained introns. Thus, CRNKL1-dependent nuclear retention is a novel cellular mechanism for the regulation of cytoplasmic levels of intron-retaining HIV-1 mRNAs, which HIV-1 may have harnessed to direct its complex splicing pattern.IMPORTANCE To regulate its complex splicing pattern, HIV-1 uses the adaptor protein Rev to shuttle unspliced or partially spliced mRNA from the nucleus to the cytoplasm. In the absence of Rev, these RNAs are retained in the nucleus, but it is unclear why. Here we identify cellular proteins whose depletion enhances cytoplasmic levels of the HIV-1 unspliced RNA. Depletion of one of them, CRNKL1, also increases cytoplasmic levels of a subset of intron-retaining cellular mRNA, suggesting that CRNKL1-dependent nuclear retention may be a basic cellular mechanism exploited by HIV-1.
Collapse
|
11
|
Yao J, Ding D, Li X, Shen T, Fu H, Zhong H, Wei G, Ni T. Prevalent intron retention fine-tunes gene expression and contributes to cellular senescence. Aging Cell 2020; 19:e13276. [PMID: 33274830 PMCID: PMC7744961 DOI: 10.1111/acel.13276] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/24/2020] [Accepted: 10/18/2020] [Indexed: 12/20/2022] Open
Abstract
Intron retention (IR) is the least well‐understood alternative splicing type in animals, and its prevalence and function in physiological and pathological processes have long been underestimated. Cellular senescence contributes to individual aging and age‐related diseases and can also serve as an important cancer prevention mechanism. Dynamic IR events have been observed in senescence models and aged tissues; however, whether and how IR impacts senescence remain unclear. Through analyzing polyA+ RNA‐seq data from human replicative senescence models, we found IR was prevalent and dynamically regulated during senescence and IR changes negatively correlated with expression alteration of corresponding genes. We discovered that knocking down (KD) splicing factor U2AF1, which showed higher binding density to retained introns and decreased expression during senescence, led to senescence‐associated phenotypes and global IR changes. Intriguingly, U2AF1‐KD‐induced IR changes also negatively correlated with gene expression. Furthermore, we demonstrated that U2AF1‐mediated IR of specific gene (CPNE1 as an example) contributed to cellular senescence. Decreased expression of U2AF1, higher IR of CPNE1, and reduced expression of CPNE1 were also discovered in dermal fibroblasts with age. We discovered prevalent IR could fine‐tune gene expression and contribute to senescence‐associated phenotypes, largely extending the biological significance of IR.
Collapse
Affiliation(s)
- Jun Yao
- State Key Laboratory of Genetic Engineering Collaborative Innovation Center of Genetics and Development Human Phenome Institute School of Life Sciences Fudan University Shanghai P.R. China
| | - Dong Ding
- State Key Laboratory of Genetic Engineering Collaborative Innovation Center of Genetics and Development Human Phenome Institute School of Life Sciences Fudan University Shanghai P.R. China
| | - Xueping Li
- State Key Laboratory of Genetic Engineering Collaborative Innovation Center of Genetics and Development Human Phenome Institute School of Life Sciences Fudan University Shanghai P.R. China
| | - Ting Shen
- State Key Laboratory of Genetic Engineering Collaborative Innovation Center of Genetics and Development Human Phenome Institute School of Life Sciences Fudan University Shanghai P.R. China
| | - Haihui Fu
- State Key Laboratory of Genetic Engineering Collaborative Innovation Center of Genetics and Development Human Phenome Institute School of Life Sciences Fudan University Shanghai P.R. China
| | - Hua Zhong
- Department of Population Health NYU Langone School of Medicine New York NY USA
| | - Gang Wei
- State Key Laboratory of Genetic Engineering Collaborative Innovation Center of Genetics and Development Human Phenome Institute School of Life Sciences Fudan University Shanghai P.R. China
| | - Ting Ni
- State Key Laboratory of Genetic Engineering Collaborative Innovation Center of Genetics and Development Human Phenome Institute School of Life Sciences Fudan University Shanghai P.R. China
| |
Collapse
|
12
|
Wan G, Yan J, Fei Y, Pagano DJ, Kennedy S. A Conserved NRDE-2/MTR-4 Complex Mediates Nuclear RNAi in Caenorhabditis elegans. Genetics 2020; 216:1071-1085. [PMID: 33055090 PMCID: PMC7768265 DOI: 10.1534/genetics.120.303631] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/05/2020] [Indexed: 12/21/2022] Open
Abstract
Small regulatory RNAs, such as small interfering RNAs (siRNAs) and PIWI-interacting RNAs, regulate splicing, transcription, and genome integrity in many eukaryotes. In Caenorhabditis elegans, siRNAs bind nuclear Argonautes (AGOs), which interact with homologous premessenger RNAs to recruit downstream silencing effectors, such as NRDE-2, to direct cotranscriptional gene silencing [or nuclear RNA interference (RNAi)]. To further our understanding of the mechanism of nuclear RNAi, we conducted immunoprecipitation-mass spectrometry on C. elegans NRDE-2 The major NRDE-2 interacting protein identified was the RNA helicase MTR-4 Co-immunoprecipitation analyses confirmed a physical association between NRDE-2 and MTR-4 MTR-4 colocalizes with NRDE-2 within the nuclei of most/all C. elegans somatic and germline cells. MTR-4 is required for nuclear RNAi, and interestingly, MTR-4 is recruited to premessenger RNAs undergoing nuclear RNAi via a process requiring nuclear siRNAs, the nuclear AGO HRDE-1, and NRDE-2, indicating that MTR-4 is a component of the C. elegans nuclear RNAi machinery. Finally, we confirm previous reports showing that human (Hs)NRDE2 and HsMTR4 also physically interact. Our data show that the NRDE-2/MTR-4 interactions are evolutionarily conserved, and that, in C. elegans, the NRDE-2/MTR-4 complex contributes to siRNA-directed cotranscriptional gene silencing.
Collapse
Affiliation(s)
- Gang Wan
- Ministry Of Education Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China 510275
- Department of Genetics, Blavatnik Institute at Harvard Medical School, Boston, Massachusetts 02115
| | - Jenny Yan
- Department of Genetics, Blavatnik Institute at Harvard Medical School, Boston, Massachusetts 02115
| | - Yuhan Fei
- Department of Genetics, Blavatnik Institute at Harvard Medical School, Boston, Massachusetts 02115
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, China 210095
| | - Daniel J Pagano
- Department of Genetics, Blavatnik Institute at Harvard Medical School, Boston, Massachusetts 02115
| | - Scott Kennedy
- Department of Genetics, Blavatnik Institute at Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
13
|
Sansó M, Parua PK, Pinto D, Svensson JP, Pagé V, Bitton DA, MacKinnon S, Garcia P, Hidalgo E, Bähler J, Tanny JC, Fisher RP. Cdk9 and H2Bub1 signal to Clr6-CII/Rpd3S to suppress aberrant antisense transcription. Nucleic Acids Res 2020; 48:7154-7168. [PMID: 32496538 PMCID: PMC7367204 DOI: 10.1093/nar/gkaa474] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022] Open
Abstract
Mono-ubiquitylation of histone H2B (H2Bub1) and phosphorylation of elongation factor Spt5 by cyclin-dependent kinase 9 (Cdk9) occur during transcription by RNA polymerase II (RNAPII), and are mutually dependent in fission yeast. It remained unclear whether Cdk9 and H2Bub1 cooperate to regulate the expression of individual genes. Here, we show that Cdk9 inhibition or H2Bub1 loss induces intragenic antisense transcription of ∼10% of fission yeast genes, with each perturbation affecting largely distinct subsets; ablation of both pathways de-represses antisense transcription of over half the genome. H2Bub1 and phospho-Spt5 have similar genome-wide distributions; both modifications are enriched, and directly proportional to each other, in coding regions, and decrease abruptly around the cleavage and polyadenylation signal (CPS). Cdk9-dependence of antisense suppression at specific genes correlates with high H2Bub1 occupancy, and with promoter-proximal RNAPII pausing. Genetic interactions link Cdk9, H2Bub1 and the histone deacetylase Clr6-CII, while combined Cdk9 inhibition and H2Bub1 loss impair Clr6-CII recruitment to chromatin and lead to decreased occupancy and increased acetylation of histones within gene coding regions. These results uncover novel interactions between co-transcriptional histone modification pathways, which link regulation of RNAPII transcription elongation to suppression of aberrant initiation.
Collapse
Affiliation(s)
- Miriam Sansó
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Cancer Genomics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Pabitra K Parua
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel Pinto
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - J Peter Svensson
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Viviane Pagé
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Danny A Bitton
- Research Department of Genetics, Evolution & Environment, University College, London, UK
| | - Sarah MacKinnon
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Patricia Garcia
- Departament de Ciènces Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Elena Hidalgo
- Departament de Ciènces Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Jürg Bähler
- Research Department of Genetics, Evolution & Environment, University College, London, UK
| | - Jason C Tanny
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Robert P Fisher
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
14
|
Green ID, Pinello N, Song R, Lee Q, Halstead JM, Kwok CT, Wong ACH, Nair SS, Clark SJ, Roediger B, Schmitz U, Larance M, Hayashi R, Rasko JEJ, Wong JJL. Macrophage development and activation involve coordinated intron retention in key inflammatory regulators. Nucleic Acids Res 2020; 48:6513-6529. [PMID: 32449925 PMCID: PMC7337907 DOI: 10.1093/nar/gkaa435] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/04/2020] [Accepted: 05/11/2020] [Indexed: 12/31/2022] Open
Abstract
Monocytes and macrophages are essential components of the innate immune system. Herein, we report that intron retention (IR) plays an important role in the development and function of these cells. Using Illumina mRNA sequencing, Nanopore direct cDNA sequencing and proteomics analysis, we identify IR events that affect the expression of key genes/proteins involved in macrophage development and function. We demonstrate that decreased IR in nuclear-detained mRNA is coupled with increased expression of genes encoding regulators of macrophage transcription, phagocytosis and inflammatory signalling, including ID2, IRF7, ENG and LAT. We further show that this dynamic IR program persists during the polarisation of resting macrophages into activated macrophages. In the presence of proinflammatory stimuli, intron-retaining CXCL2 and NFKBIZ transcripts are rapidly spliced, enabling timely expression of these key inflammatory regulators by macrophages. Our study provides novel insights into the molecular factors controlling vital regulators of the innate immune response.
Collapse
Affiliation(s)
- Immanuel D Green
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown 2050, Australia.,Faculty of Medicine and Health, The University of Sydney, Camperdown 2050, Australia
| | - Natalia Pinello
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown 2050, Australia.,Faculty of Medicine and Health, The University of Sydney, Camperdown 2050, Australia
| | - Renhua Song
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown 2050, Australia.,Faculty of Medicine and Health, The University of Sydney, Camperdown 2050, Australia
| | - Quintin Lee
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown 2050, Australia.,Faculty of Medicine and Health, The University of Sydney, Camperdown 2050, Australia.,Immune Imaging Program Centenary Institute, The University of Sydney, Camperdown 2050, Australia
| | - James M Halstead
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown 2050, Australia.,Faculty of Medicine and Health, The University of Sydney, Camperdown 2050, Australia
| | - Chau-To Kwok
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown 2050, Australia.,Faculty of Medicine and Health, The University of Sydney, Camperdown 2050, Australia
| | - Alex C H Wong
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown 2050, Australia.,Faculty of Medicine and Health, The University of Sydney, Camperdown 2050, Australia.,Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown 2050, Australia
| | - Shalima S Nair
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst 2010, Australia.,St. Vincent's Clinical School, UNSW, Sydney 2010, Australia.,Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst 2010, Australia
| | - Susan J Clark
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst 2010, Australia.,St. Vincent's Clinical School, UNSW, Sydney 2010, Australia
| | - Ben Roediger
- Faculty of Medicine and Health, The University of Sydney, Camperdown 2050, Australia.,Immune Imaging Program Centenary Institute, The University of Sydney, Camperdown 2050, Australia
| | - Ulf Schmitz
- Faculty of Medicine and Health, The University of Sydney, Camperdown 2050, Australia.,Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown 2050, Australia.,Computational Biomedicine Laboratory Centenary Institute, The University of Sydney, Camperdown 2050, Australia
| | - Mark Larance
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Camperdown 2006, New South Wales, Australia
| | - Rippei Hayashi
- The John Curtin School of Medical Research, The Australian National University, ACT 2601, Australia
| | - John E J Rasko
- Faculty of Medicine and Health, The University of Sydney, Camperdown 2050, Australia.,Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown 2050, Australia.,Cell and Molecular Therapies, Royal Prince Alfred Hospital, Camperdown 2050, Australia
| | - Justin J-L Wong
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown 2050, Australia.,Faculty of Medicine and Health, The University of Sydney, Camperdown 2050, Australia
| |
Collapse
|
15
|
Wu D, Dean J. EXOSC10 sculpts the transcriptome during the growth-to-maturation transition in mouse oocytes. Nucleic Acids Res 2020; 48:5349-5365. [PMID: 32313933 DOI: 10.1093/nar/gkaa249] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/28/2020] [Accepted: 04/01/2020] [Indexed: 12/21/2022] Open
Abstract
Growing mammalian oocytes accumulate substantial amounts of RNA, most of which is degraded during subsequent meiotic maturation. The growth-to-maturation transition begins with germinal vesicle or nuclear envelope breakdown (GVBD) and is critical for oocyte quality and early development. The molecular machinery responsible for the oocyte transcriptome transition remains unclear. Here, we report that an exosome-associated RNase, EXOSC10, sculpts the transcriptome to facilitate the growth-to-maturation transition of mouse oocytes. We establish an oocyte-specific conditional knockout of Exosc10 in mice using CRISPR/Cas9 which results in female subfertility due to delayed GVBD. By performing multiple single oocyte RNA-seq, we document dysregulation of several types of RNA, and the mRNAs that encode proteins important for endomembrane trafficking and meiotic cell cycle. As expected, EXOSC10-depleted oocytes have impaired endomembrane components including endosomes, lysosomes, endoplasmic reticulum and Golgi. In addition, CDK1 fails to activate, possibly due to persistent WEE1 activity, which blocks lamina phosphorylation and disassembly. Moreover, we identified rRNA processing defects that cause higher percentage of developmentally incompetent oocytes after EXOSC10 depletion. Collectively, we propose that EXOSC10 promotes normal growth-to-maturation transition in mouse oocytes by sculpting the transcriptome to degrade RNAs encoding growth-phase factors and, thus, support the maturation phase of oogenesis.
Collapse
Affiliation(s)
- Di Wu
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jurrien Dean
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
16
|
Abstract
The RNA exosome is a ribonucleolytic multiprotein complex that is conserved and essential in all eukaryotes. Although we tend to speak of "the" exosome complex, it should be more correctly viewed as several different subtypes that share a common core. Subtypes of the exosome complex are present in the cytoplasm, the nucleus and the nucleolus of all eukaryotic cells, and carry out the 3'-5' processing and/or degradation of a wide range of RNA substrates.Because the substrate specificity of the exosome complex is determined by cofactors, the system is highly adaptable, and different organisms have adjusted the machinery to their specific needs. Here, we present an overview of exosome complexes and their cofactors that have been described in different eukaryotes.
Collapse
Affiliation(s)
- Cornelia Kilchert
- Institut für Biochemie, Justus-Liebig-Universität Gießen, Gießen, Germany.
| |
Collapse
|
17
|
Highly efficient multiplex human T cell engineering without double-strand breaks using Cas9 base editors. Nat Commun 2019; 10:5222. [PMID: 31745080 PMCID: PMC6864045 DOI: 10.1038/s41467-019-13007-6] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 10/07/2019] [Indexed: 12/16/2022] Open
Abstract
The fusion of genome engineering and adoptive cellular therapy holds immense promise for the treatment of genetic disease and cancer. Multiplex genome engineering using targeted nucleases can be used to increase the efficacy and broaden the application of such therapies but carries safety risks associated with unintended genomic alterations and genotoxicity. Here, we apply base editor technology for multiplex gene modification in primary human T cells in support of an allogeneic CAR-T platform and demonstrate that base editor can mediate highly efficient multiplex gene disruption with minimal double-strand break induction. Importantly, multiplex base edited T cells exhibit improved expansion and lack double strand break-induced translocations observed in T cells edited with Cas9 nuclease. Our findings highlight base editor as a powerful platform for genetic modification of therapeutically relevant primary cell types.
Collapse
|
18
|
Telekawa C, Boisvert FM, Bachand F. Proteomic profiling and functional characterization of post-translational modifications of the fission yeast RNA exosome. Nucleic Acids Res 2019; 46:11169-11183. [PMID: 30321377 PMCID: PMC6265454 DOI: 10.1093/nar/gky915] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 10/11/2018] [Indexed: 12/11/2022] Open
Abstract
The RNA exosome is a conserved multi-subunit complex essential for processing and degradation of several types of RNAs. Although many of the functions of the RNA exosome are well established, whether the activity of this complex is regulated remains unclear. Here we performed a proteomic analysis of the RNA exosome complex purified from Schizosaccharomyces pombe and identified 39 post-translational modifications (PTMs), including phosphorylation, methylation, and acetylation sites. Interestingly, most of the modifications were identified in Dis3, a catalytic subunit of the RNA exosome, as well as in the exosome-associated RNA helicase, Mtr4. Functional analysis of selected PTM sites using modification-deficient and -mimetic versions of exosome subunits revealed substitutions that affected cell growth and exosome functions. Notably, our results suggest that site-specific phosphorylation in the catalytic center of Dis3 and in the helical bundle domain of Mtr4 control their activity. Our findings support a view in which post-translational modifications fine-tune exosome activity and add a layer of regulation to RNA degradation.
Collapse
Affiliation(s)
- Caroline Telekawa
- RNA Group, Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - François Bachand
- RNA Group, Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
19
|
Liu X, Ma L, Wang M, Wang K, Li J, Yan H, Zhu H, Lan X. Two indel variants of prolactin receptor ( PRLR) gene are associated with growth traits in goat. Anim Biotechnol 2019; 31:314-323. [PMID: 30987502 DOI: 10.1080/10495398.2019.1594863] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Prolactin receptor (PRLR) gene plays a crucial role in the milk production, reproduction and the growth of mammals. To fully characterize the structure of the mutation and to further study the function of the goat PRLR gene, two insertion/deletion (indel) loci (12 bp; 16-bp; 5-bp) were detected in 1038 Shaanbei white cashmere (SBWC) goats. Associated analysis revealed that the 16-bp indel mutation was significantly associated the body length, body height, chest depth (CD), body length index (BLI), heart girth index and cannon circumference index (CCI) (p < 0.05). The polymorphism of 5-bp indel was significantly associated with CD, heart girth, CCI and BLI (p < 0.05). Overall, individuals with genotype DD showed better phenotypic traits than individuals with other genotypes at the two loci of PRLR gene in SBWC goat. These findings suggested that the two novel indels within the caprine PRLR gene could be considered as effective DNA molecular markers and could provide a valuable theoretical basis for the application of marker-assisted selection in the goat industry.
Collapse
Affiliation(s)
- Xinfeng Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Lin Ma
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Min Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Ke Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Jie Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Hailong Yan
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin, Shaanxi, People's Republic of China.,Life Science Research Center, Yulin University, Yulin, Shaanxi, People's Republic of China
| | - Haijing Zhu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin, Shaanxi, People's Republic of China.,Life Science Research Center, Yulin University, Yulin, Shaanxi, People's Republic of China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| |
Collapse
|
20
|
A Species-Correlated Transitional Residue D132 on Human FMRP Plays a Role in Nuclear Localization via an RNA-Dependent Interaction With PABP1. Neuroscience 2019; 404:282-296. [DOI: 10.1016/j.neuroscience.2019.01.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/16/2018] [Accepted: 01/17/2019] [Indexed: 11/22/2022]
|
21
|
Peck SA, Hughes KD, Victorino JF, Mosley AL. Writing a wrong: Coupled RNA polymerase II transcription and RNA quality control. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1529. [PMID: 30848101 PMCID: PMC6570551 DOI: 10.1002/wrna.1529] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 12/27/2018] [Accepted: 02/07/2019] [Indexed: 12/20/2022]
Abstract
Processing and maturation of precursor RNA species is coupled to RNA polymerase II transcription. Co-transcriptional RNA processing helps to ensure efficient and proper capping, splicing, and 3' end processing of different RNA species to help ensure quality control of the transcriptome. Many improperly processed transcripts are not exported from the nucleus, are restricted to the site of transcription, and are in some cases degraded, which helps to limit any possibility of aberrant RNA causing harm to cellular health. These critical quality control pathways are regulated by the highly dynamic protein-protein interaction network at the site of transcription. Recent work has further revealed the extent to which the processes of transcription and RNA processing and quality control are integrated, and how critically their coupling relies upon the dynamic protein interactions that take place co-transcriptionally. This review focuses specifically on the intricate balance between 3' end processing and RNA decay during transcription termination. This article is categorized under: RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA Processing > 3' End Processing RNA Processing > Splicing Mechanisms RNA Processing > Capping and 5' End Modifications.
Collapse
Affiliation(s)
- Sarah A Peck
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Katlyn D Hughes
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jose F Victorino
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Amber L Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
22
|
Zhang C, Shen Y, Tang D, Shi W, Zhang D, Du G, Zhou Y, Liang G, Li Y, Cheng Z. The zinc finger protein DCM1 is required for male meiotic cytokinesis by preserving callose in rice. PLoS Genet 2018; 14:e1007769. [PMID: 30419020 PMCID: PMC6258382 DOI: 10.1371/journal.pgen.1007769] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 11/26/2018] [Accepted: 10/16/2018] [Indexed: 12/11/2022] Open
Abstract
Meiotic cytokinesis influences the fertility and ploidy of gametes. However, limited information is available on the genetic control of meiotic cytokinesis in plants. Here, we identified a rice mutant with low male fertility, defective callose in meiosis 1 (dcm1). The pollen grains of dcm1 are proved to be defective in exine formation. Meiotic cytokinesis is disrupted in dcm1, resulting in disordered spindle orientation during meiosis II and formation of pollen grains with varied size and DNA content. We demonstrated that meiotic cytokinesis defect in dcm1 is caused by prematurely dissolution of callosic plates. Furthermore, peripheral callose surrounding the dcm1 pollen mother cells (PMCs) also disappeared untimely around pachytene. The DCM1 protein contains five tandem CCCH motifs and interacts with nuclear poly (A) binding proteins (PABNs) in nuclear speckles. The expression profiles of genes related to callose synthesis and degradation are significantly modified in dcm1. Together, we propose that DCM1 plays an essential role in male meiotic cytokinesis by preserving callose from prematurely dissolution in rice. Meiosis comprises two successive cell divisions after a single S phase, generating four haploid products. Meiotic caryokinesis (nuclear division) has been extensively studied in many organisms, while mechanisms underlying meiotic cytokinesis remain elusive. Here, we identified a novel CCCH-tandem zinc finger protein DCM1 that prevent the premature dissolution of callose both around the PMCs and at the dividing site (callosic plates). Loss of the callosic plates disrupts the meiotic cytokinesis, leading to the random distribution of spindles during meiosis II and aberrant meiotic products. DCM1 interacts with the two rice poly (A) binding proteins, independently of the conserved CCCH domain. Moreover, DCM1 coordinates the expression profiles of genes related to callose synthesis and degradation. We suspect monocots and dicots may adopt distinct meiotic cytokinesis patterns during male gamete generation.
Collapse
Affiliation(s)
- Chao Zhang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yi Shen
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Ding Tang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Wenqing Shi
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Dongmei Zhang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Guijie Du
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yihua Zhou
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guohua Liang
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Yafei Li
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- * E-mail: (YL); (ZC)
| | - Zhukuan Cheng
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- * E-mail: (YL); (ZC)
| |
Collapse
|
23
|
Tudek A, Lloret-Llinares M, Jensen TH. The multitasking polyA tail: nuclear RNA maturation, degradation and export. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2018.0169. [PMID: 30397105 DOI: 10.1098/rstb.2018.0169] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2018] [Indexed: 12/17/2022] Open
Abstract
A polyA (pA) tail is an essential modification added to the 3' ends of a wide range of RNAs at different stages of their metabolism. Here, we describe the main sources of polyadenylation and outline their underlying biochemical interactions within the nuclei of budding yeast Saccharomyces cerevisiae, human cells and, when relevant, the fission yeast Schizosaccharomyces pombe Polyadenylation mediated by the S. cerevisiae Trf4/5 enzymes, and their human homologues PAPD5/7, typically leads to the 3'-end trimming or complete decay of non-coding RNAs. By contrast, the primary function of canonical pA polymerases (PAPs) is to produce stable and nuclear export-competent mRNAs. However, this dichotomy is becoming increasingly blurred, at least in S. pombe and human cells, where polyadenylation mediated by canonical PAPs may also result in transcript decay.This article is part of the theme issue '5' and 3' modifications controlling RNA degradation'.
Collapse
Affiliation(s)
- Agnieszka Tudek
- Department of Molecular Biology and Genetics, Aarhus University, C. F. Møllers Allé 3, building 1130, 8000 Aarhus C, Denmark
| | - Marta Lloret-Llinares
- Department of Molecular Biology and Genetics, Aarhus University, C. F. Møllers Allé 3, building 1130, 8000 Aarhus C, Denmark
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Aarhus University, C. F. Møllers Allé 3, building 1130, 8000 Aarhus C, Denmark
| |
Collapse
|
24
|
Kecman T, Kuś K, Heo DH, Duckett K, Birot A, Liberatori S, Mohammed S, Geis-Asteggiante L, Robinson CV, Vasiljeva L. Elongation/Termination Factor Exchange Mediated by PP1 Phosphatase Orchestrates Transcription Termination. Cell Rep 2018; 25:259-269.e5. [PMID: 30282034 PMCID: PMC6180485 DOI: 10.1016/j.celrep.2018.09.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/27/2018] [Accepted: 09/04/2018] [Indexed: 11/20/2022] Open
Abstract
Termination of RNA polymerase II (Pol II) transcription is a key step that is important for 3' end formation of functional mRNA, mRNA release, and Pol II recycling. Even so, the underlying termination mechanism is not yet understood. Here, we demonstrate that the conserved and essential termination factor Seb1 is found on Pol II near the end of the RNA exit channel and the Rpb4/7 stalk. Furthermore, the Seb1 interaction surface with Pol II largely overlaps with that of the elongation factor Spt5. Notably, Seb1 co-transcriptional recruitment is dependent on Spt5 dephosphorylation by the conserved PP1 phosphatase Dis2, which also dephosphorylates threonine 4 within the Pol II heptad repeated C-terminal domain. We propose that Dis2 orchestrates the transition from elongation to termination phase during the transcription cycle by mediating elongation to termination factor exchange and dephosphorylation of Pol II C-terminal domain.
Collapse
Affiliation(s)
- Tea Kecman
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Krzysztof Kuś
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Dong-Hyuk Heo
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Katie Duckett
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Adrien Birot
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | | | - Shabaz Mohammed
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Department of Chemistry, University of Oxford, Oxford OX1 3QU, UK
| | | | - Carol V Robinson
- Department of Chemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Lidia Vasiljeva
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
25
|
Atkinson SR, Marguerat S, Bitton DA, Rodríguez-López M, Rallis C, Lemay JF, Cotobal C, Malecki M, Smialowski P, Mata J, Korber P, Bachand F, Bähler J. Long noncoding RNA repertoire and targeting by nuclear exosome, cytoplasmic exonuclease, and RNAi in fission yeast. RNA (NEW YORK, N.Y.) 2018; 24:1195-1213. [PMID: 29914874 PMCID: PMC6097657 DOI: 10.1261/rna.065524.118] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 06/14/2018] [Indexed: 05/31/2023]
Abstract
Long noncoding RNAs (lncRNAs), which are longer than 200 nucleotides but often unstable, contribute a substantial and diverse portion to pervasive noncoding transcriptomes. Most lncRNAs are poorly annotated and understood, although several play important roles in gene regulation and diseases. Here we systematically uncover and analyze lncRNAs in Schizosaccharomyces pombe. Based on RNA-seq data from twelve RNA-processing mutants and nine physiological conditions, we identify 5775 novel lncRNAs, nearly 4× the previously annotated lncRNAs. The expression of most lncRNAs becomes strongly induced under the genetic and physiological perturbations, most notably during late meiosis. Most lncRNAs are cryptic and suppressed by three RNA-processing pathways: the nuclear exosome, cytoplasmic exonuclease, and RNAi. Double-mutant analyses reveal substantial coordination and redundancy among these pathways. We classify lncRNAs by their dominant pathway into cryptic unstable transcripts (CUTs), Xrn1-sensitive unstable transcripts (XUTs), and Dicer-sensitive unstable transcripts (DUTs). XUTs and DUTs are enriched for antisense lncRNAs, while CUTs are often bidirectional and actively translated. The cytoplasmic exonuclease, along with RNAi, dampens the expression of thousands of lncRNAs and mRNAs that become induced during meiosis. Antisense lncRNA expression mostly negatively correlates with sense mRNA expression in the physiological, but not the genetic conditions. Intergenic and bidirectional lncRNAs emerge from nucleosome-depleted regions, upstream of positioned nucleosomes. Our results highlight both similarities and differences to lncRNA regulation in budding yeast. This broad survey of the lncRNA repertoire and characteristics in S. pombe, and the interwoven regulatory pathways that target lncRNAs, provides a rich framework for their further functional analyses.
Collapse
Affiliation(s)
- Sophie R Atkinson
- Research Department of Genetics, Evolution and Environment and UCL Genetics Institute, University College London, London WC1E 6BT, United Kingdom
| | - Samuel Marguerat
- Research Department of Genetics, Evolution and Environment and UCL Genetics Institute, University College London, London WC1E 6BT, United Kingdom
- MRC London Institute of Medical Sciences (LMS), London W12 0NN, United Kingdom
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Danny A Bitton
- Research Department of Genetics, Evolution and Environment and UCL Genetics Institute, University College London, London WC1E 6BT, United Kingdom
| | - Maria Rodríguez-López
- Research Department of Genetics, Evolution and Environment and UCL Genetics Institute, University College London, London WC1E 6BT, United Kingdom
| | - Charalampos Rallis
- Research Department of Genetics, Evolution and Environment and UCL Genetics Institute, University College London, London WC1E 6BT, United Kingdom
| | - Jean-François Lemay
- Department of Biochemistry, Sherbrooke, Université de Sherbrooke, Quebec J1H 5N4, Canada
| | - Cristina Cotobal
- Research Department of Genetics, Evolution and Environment and UCL Genetics Institute, University College London, London WC1E 6BT, United Kingdom
| | - Michal Malecki
- Research Department of Genetics, Evolution and Environment and UCL Genetics Institute, University College London, London WC1E 6BT, United Kingdom
| | - Pawel Smialowski
- LMU Munich, Biomedical Center, 82152 Planegg-Martinsried near Munich, Germany
| | - Juan Mata
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Philipp Korber
- LMU Munich, Biomedical Center, 82152 Planegg-Martinsried near Munich, Germany
| | - François Bachand
- Department of Biochemistry, Sherbrooke, Université de Sherbrooke, Quebec J1H 5N4, Canada
| | - Jürg Bähler
- Research Department of Genetics, Evolution and Environment and UCL Genetics Institute, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
26
|
Jin Y, Yang Q, Zhang M, Zhang S, Cai H, Dang R, Lei C, Chen H, Lan X. Identification of a Novel Polymorphism in Bovine lncRNA ADNCR Gene and Its Association with Growth Traits. Anim Biotechnol 2018; 30:159-165. [DOI: 10.1080/10495398.2018.1456446] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yunyun Jin
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, P.R. China
| | - Qing Yang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, P.R. China
| | - Meng Zhang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, P.R. China
| | - Sihuan Zhang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, P.R. China
| | - Hanfang Cai
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, P.R. China
| | - Ruihua Dang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, P.R. China
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, P.R. China
| | - Hong Chen
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, P.R. China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, P.R. China
| |
Collapse
|
27
|
Abstract
The nuclear RNA exosome is an essential and versatile machinery that regulates maturation and degradation of a huge plethora of RNA species. The past two decades have witnessed remarkable progress in understanding the whole picture of its RNA substrates and the structural basis of its functions. In addition to the exosome itself, recent studies focusing on associated co-factors have been elucidating how the exosome is directed towards specific substrates. Moreover, it has been gradually realized that loss-of-function of exosome subunits affect multiple biological processes such as the DNA damage response, R-loop resolution, maintenance of genome integrity, RNA export, translation and cell differentiation. In this review, we summarize the current knowledge of the mechanisms of nuclear exosome-mediated RNA metabolism and discuss their physiological significance.
Collapse
|
28
|
Bresson S, Tollervey D. Surveillance-ready transcription: nuclear RNA decay as a default fate. Open Biol 2018; 8:170270. [PMID: 29563193 PMCID: PMC5881035 DOI: 10.1098/rsob.170270] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/23/2018] [Indexed: 12/21/2022] Open
Abstract
Eukaryotic cells synthesize enormous quantities of RNA from diverse classes, most of which are subject to extensive processing. These processes are inherently error-prone, and cells have evolved robust quality control mechanisms to selectively remove aberrant transcripts. These surveillance pathways monitor all aspects of nuclear RNA biogenesis, and in addition remove nonfunctional transcripts arising from spurious transcription and a host of non-protein-coding RNAs (ncRNAs). Surprisingly, this is largely accomplished with only a handful of RNA decay enzymes. It has, therefore, been unclear how these factors efficiently distinguish between functional RNAs and huge numbers of diverse transcripts that must be degraded. Here we describe how bona fide transcripts are specifically protected, particularly by 5' and 3' modifications. Conversely, a plethora of factors associated with the nascent transcripts all act to recruit the RNA quality control, surveillance and degradation machinery. We conclude that initiating RNAPII is 'surveillance ready', with degradation being a default fate for all transcripts that lack specific protective features. We further postulate that this promiscuity is a key feature that allowed the proliferation of vast numbers of ncRNAs in eukaryotes, including humans.
Collapse
Affiliation(s)
- Stefan Bresson
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - David Tollervey
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| |
Collapse
|
29
|
Gavish-Izakson M, Velpula BB, Elkon R, Prados-Carvajal R, Barnabas GD, Ugalde AP, Agami R, Geiger T, Huertas P, Ziv Y, Shiloh Y. Nuclear poly(A)-binding protein 1 is an ATM target and essential for DNA double-strand break repair. Nucleic Acids Res 2018; 46:730-747. [PMID: 29253183 PMCID: PMC5778506 DOI: 10.1093/nar/gkx1240] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 11/28/2017] [Accepted: 12/04/2017] [Indexed: 12/13/2022] Open
Abstract
The DNA damage response (DDR) is an extensive signaling network that is robustly mobilized by DNA double-strand breaks (DSBs). The primary transducer of the DSB response is the protein kinase, ataxia-telangiectasia, mutated (ATM). Here, we establish nuclear poly(A)-binding protein 1 (PABPN1) as a novel target of ATM and a crucial player in the DSB response. PABPN1 usually functions in regulation of RNA processing and stability. We establish that PABPN1 is recruited to the DDR as a critical regulator of DSB repair. A portion of PABPN1 relocalizes to DSB sites and is phosphorylated on Ser95 in an ATM-dependent manner. PABPN1 depletion sensitizes cells to DSB-inducing agents and prolongs the DSB-induced G2/M cell-cycle arrest, and DSB repair is hampered by PABPN1 depletion or elimination of its phosphorylation site. PABPN1 is required for optimal DSB repair via both nonhomologous end-joining (NHEJ) and homologous recombination repair (HRR), and specifically is essential for efficient DNA-end resection, an initial, key step in HRR. Using mass spectrometry analysis, we capture DNA damage-induced interactions of phospho-PABPN1, including well-established DDR players as well as other RNA metabolizing proteins. Our results uncover a novel ATM-dependent axis in the rapidly growing interface between RNA metabolism and the DDR.
Collapse
Affiliation(s)
- Michal Gavish-Izakson
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Bhagya Bhavana Velpula
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ran Elkon
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Rosario Prados-Carvajal
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER) and Department of Genetics, University of Sevilla, Sevilla, Spain
| | - Georgina D Barnabas
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Alejandro Pineiro Ugalde
- Division of Biological Stress Response, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Reuven Agami
- Division of Biological Stress Response, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Tamar Geiger
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Pablo Huertas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER) and Department of Genetics, University of Sevilla, Sevilla, Spain
| | - Yael Ziv
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yosef Shiloh
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
30
|
Fan J, Kuai B, Wu G, Wu X, Chi B, Wang L, Wang K, Shi Z, Zhang H, Chen S, He Z, Wang S, Zhou Z, Li G, Cheng H. Exosome cofactor hMTR4 competes with export adaptor ALYREF to ensure balanced nuclear RNA pools for degradation and export. EMBO J 2017; 36:2870-2886. [PMID: 28801509 DOI: 10.15252/embj.201696139] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 07/21/2017] [Accepted: 07/23/2017] [Indexed: 12/20/2022] Open
Abstract
The exosome is a key RNA machine that functions in the degradation of unwanted RNAs. Here, we found that significant fractions of precursors and mature forms of mRNAs and long noncoding RNAs are degraded by the nuclear exosome in normal human cells. Exosome-mediated degradation of these RNAs requires its cofactor hMTR4. Significantly, hMTR4 plays a key role in specifically recruiting the exosome to its targets. Furthermore, we provide several lines of evidence indicating that hMTR4 executes this role by directly competing with the mRNA export adaptor ALYREF for associating with ARS2, a component of the cap-binding complex (CBC), and this competition is critical for determining whether an RNA is degraded or exported to the cytoplasm. Together, our results indicate that the competition between hMTR4 and ALYREF determines exosome recruitment and functions in creating balanced nuclear RNA pools for degradation and export.
Collapse
Affiliation(s)
- Jing Fan
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Bin Kuai
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Guifen Wu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xudong Wu
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Binkai Chi
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lantian Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ke Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhubing Shi
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Heng Zhang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - She Chen
- National Institute of Biological Sciences, Beijing, China
| | - Zhisong He
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Siyuan Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhaocai Zhou
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Hong Cheng
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
31
|
Meola N, Jensen TH. Targeting the nuclear RNA exosome: Poly(A) binding proteins enter the stage. RNA Biol 2017; 14:820-826. [PMID: 28421898 DOI: 10.1080/15476286.2017.1312227] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Centrally positioned in nuclear RNA metabolism, the exosome deals with virtually all transcript types. This 3'-5' exo- and endo-nucleolytic degradation machine is guided to its RNA targets by adaptor proteins that enable substrate recognition. Recently, the discovery of the 'Poly(A) tail exosome targeting (PAXT)' connection as an exosome adaptor to human nuclear polyadenylated transcripts has relighted the interest of poly(A) binding proteins (PABPs) in both RNA productive and destructive processes.
Collapse
Affiliation(s)
- Nicola Meola
- a Department of Molecular Biology and Genetics , Aarhus University , Aarhus C , Denmark
| | - Torben Heick Jensen
- a Department of Molecular Biology and Genetics , Aarhus University , Aarhus C , Denmark
| |
Collapse
|
32
|
Kühn U, Buschmann J, Wahle E. The nuclear poly(A) binding protein of mammals, but not of fission yeast, participates in mRNA polyadenylation. RNA (NEW YORK, N.Y.) 2017; 23:473-482. [PMID: 28096519 PMCID: PMC5340911 DOI: 10.1261/rna.057026.116] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 01/04/2017] [Indexed: 05/22/2023]
Abstract
The nuclear poly(A) binding protein (PABPN1) has been suggested, on the basis of biochemical evidence, to play a role in mRNA polyadenylation by strongly increasing the processivity of poly(A) polymerase. While experiments in metazoans have tended to support such a role, the results were not unequivocal, and genetic data show that the S. pombe ortholog of PABPN1, Pab2, is not involved in mRNA polyadenylation. The specific model in which PABPN1 increases the rate of poly(A) tail elongation has never been examined in vivo. Here, we have used 4-thiouridine pulse-labeling to examine the lengths of newly synthesized poly(A) tails in human cells. Knockdown of PABPN1 strongly reduced the synthesis of full-length tails of ∼250 nucleotides, as predicted from biochemical data. We have also purified S. pombe Pab2 and the S. pombe poly(A) polymerase, Pla1, and examined their in vitro activities. Whereas PABPN1 strongly increases the activity of its cognate poly(A) polymerase in vitro, Pab2 was unable to stimulate Pla1 to any significant extent. Thus, in vitro and in vivo data are consistent in supporting a role of PABPN1 but not S. pombe Pab2 in the polyadenylation of mRNA precursors.
Collapse
Affiliation(s)
- Uwe Kühn
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Juliane Buschmann
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Elmar Wahle
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| |
Collapse
|
33
|
Multiple Transcriptional and Post-transcriptional Pathways Collaborate to Control Sense and Antisense RNAs of Tf2 Retroelements in Fission Yeast. Genetics 2016; 205:621-632. [PMID: 28007890 DOI: 10.1534/genetics.116.193870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 12/21/2016] [Indexed: 01/06/2023] Open
Abstract
Retrotransposons are mobile genetic elements that colonize eukaryotic genomes by replicating through an RNA intermediate. As retrotransposons can move within the host genome, defense mechanisms have evolved to repress their potential mutagenic activities. In the fission yeast Schizosaccharomyces pombe, the mRNA of Tf2 long terminal repeat retrotransposons is targeted for degradation by the 3'-5' exonucleolytic activity of the exosome-associated protein Rrp6. Here, we show that the nuclear poly(A)-binding protein Pab2 functions with Rrp6 to negatively control Tf2 mRNA accumulation. Furthermore, we found that Pab2/Rrp6-dependent RNA elimination functions redundantly to the transcriptional silencing mediated by the CENP-B homolog, Abp1, in the suppression of antisense Tf2 RNA accumulation. Interestingly, the absence of Pab2 attenuated the derepression of Tf2 transcription and the increased frequency of Tf2 mobilization caused by the deletion of abp1 Our data also reveal that the expression of antisense Tf2 transcripts is developmentally regulated and correlates with decreased levels of Tf2 mRNA. Our findings suggest that transcriptional and post-transcriptional pathways cooperate to control sense and antisense RNAs expressed from Tf2 retroelements.
Collapse
|
34
|
Meola N, Domanski M, Karadoulama E, Chen Y, Gentil C, Pultz D, Vitting-Seerup K, Lykke-Andersen S, Andersen JS, Sandelin A, Jensen TH. Identification of a Nuclear Exosome Decay Pathway for Processed Transcripts. Mol Cell 2016; 64:520-533. [PMID: 27871484 DOI: 10.1016/j.molcel.2016.09.025] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/18/2016] [Accepted: 09/20/2016] [Indexed: 12/20/2022]
Abstract
The RNA exosome is fundamental for the degradation of RNA in eukaryotic nuclei. Substrate targeting is facilitated by its co-factor Mtr4p/hMTR4, which links to RNA-binding protein adaptors. One example is the trimeric human nuclear exosome targeting (NEXT) complex, which is composed of hMTR4, the Zn-finger protein ZCCHC8, and the RNA-binding factor RBM7. NEXT primarily targets early and unprocessed transcripts, which demands a rationale for how the nuclear exosome recognizes processed RNAs. Here, we describe the poly(A) tail exosome targeting (PAXT) connection, which comprises the ZFC3H1 Zn-knuckle protein as a central link between hMTR4 and the nuclear poly(A)-binding protein PABPN1. Individual depletion of ZFC3H1 and PABPN1 results in the accumulation of common transcripts that are generally both longer and more extensively polyadenylated than NEXT substrates. Importantly, ZFC3H1/PABPN1 and ZCCHC8/RBM7 contact hMTR4 in a mutually exclusive manner, revealing that the exosome targets nuclear transcripts of different maturation status by substituting its hMTR4-associating adaptors.
Collapse
Affiliation(s)
- Nicola Meola
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Allé 3, Building 1130, DK-8000 Aarhus C, Denmark
| | - Michal Domanski
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Allé 3, Building 1130, DK-8000 Aarhus C, Denmark
| | - Evdoxia Karadoulama
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Allé 3, Building 1130, DK-8000 Aarhus C, Denmark; The Bioinformatics Centre, Department of Biology & Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloesvej 5, DK-2200 Copenhagen, Denmark
| | - Yun Chen
- The Bioinformatics Centre, Department of Biology & Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloesvej 5, DK-2200 Copenhagen, Denmark
| | - Coline Gentil
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Allé 3, Building 1130, DK-8000 Aarhus C, Denmark
| | - Dennis Pultz
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | - Kristoffer Vitting-Seerup
- The Bioinformatics Centre, Department of Biology & Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloesvej 5, DK-2200 Copenhagen, Denmark
| | - Søren Lykke-Andersen
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Allé 3, Building 1130, DK-8000 Aarhus C, Denmark
| | - Jens S Andersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | - Albin Sandelin
- The Bioinformatics Centre, Department of Biology & Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloesvej 5, DK-2200 Copenhagen, Denmark
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Allé 3, Building 1130, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
35
|
The Evolutionarily-conserved Polyadenosine RNA Binding Protein, Nab2, Cooperates with Splicing Machinery to Regulate the Fate of pre-mRNA. Mol Cell Biol 2016; 36:2697-2714. [PMID: 27528618 PMCID: PMC5064217 DOI: 10.1128/mcb.00402-16] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Numerous RNA binding proteins are deposited onto an mRNA transcript to modulate post-transcriptional processing events ensuring proper mRNA maturation. Defining the interplay between RNA binding proteins that couple mRNA biogenesis events is crucial for understanding how gene expression is regulated. To explore how RNA binding proteins control mRNA processing, we investigated a role for the evolutionarily conserved polyadenosine RNA binding protein, Nab2, in mRNA maturation within the nucleus. This work reveals that nab2 mutant cells accumulate intron-containing pre-mRNA in vivo We extend this analysis to identify genetic interactions between mutant alleles of nab2 and genes encoding the splicing factor, MUD2, and the RNA exosome, RRP6, with in vivo consequences of altered pre-mRNA splicing and poly(A) tail length control. As further evidence linking Nab2 proteins to splicing, an unbiased proteomic analysis of vertebrate Nab2, ZC3H14, identifies physical interactions with numerous components of the spliceosome. We validated the interaction between ZC3H14 and U2AF2/U2AF65 Taking all the findings into consideration, we present a model where Nab2/ZC3H14 interacts with spliceosome components to allow proper coupling of splicing with subsequent mRNA processing steps contributing to a kinetic proofreading step that allows properly processed mRNA to exit the nucleus and escape Rrp6-dependent degradation.
Collapse
|
36
|
Abstract
Viruses have evolved diverse strategies to maximize the functional and coding capacities of their genetic material. Individual viral RNAs are often used as substrates for both replication and translation and can contain multiple, sometimes overlapping open reading frames. Further, viral RNAs engage in a wide variety of interactions with both host and viral proteins to modify the activities of important cellular factors and direct their own trafficking, packaging, localization, stability, and translation. However, adaptations increasing the information density of small viral genomes can have unintended consequences. In particular, viral RNAs have developed features that mark them as potential targets of host RNA quality control pathways. This minireview focuses on ways in which viral RNAs run afoul of the cellular mRNA quality control and decay machinery, as well as on strategies developed by viruses to circumvent or exploit cellular mRNA surveillance.
Collapse
|
37
|
Niblock M, Smith BN, Lee YB, Sardone V, Topp S, Troakes C, Al-Sarraj S, Leblond CS, Dion PA, Rouleau GA, Shaw CE, Gallo JM. Retention of hexanucleotide repeat-containing intron in C9orf72 mRNA: implications for the pathogenesis of ALS/FTD. Acta Neuropathol Commun 2016; 4:18. [PMID: 26916632 PMCID: PMC4766718 DOI: 10.1186/s40478-016-0289-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 02/15/2016] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION The most common forms of amyotrophic lateral sclerosis and frontotemporal dementia are caused by a large GGGGCC repeat expansion in the first intron of the C9orf72 gene. The repeat-containing intron should be degraded after being spliced out, however GGGGCC repeat-containing RNA species either accumulate in nuclear foci or are exported to the cytoplasm where they are translated into potentially toxic dipeptide repeat proteins by repeat-associated non-AUG-initiated (RAN) translation. RESULTS In order to determine the mechanisms of repeat-containing intron misprocessing, we have analyzed C9orf72 transcripts in lymphoblasts from C9orf72 expansion carriers (n = 15) and control individuals (n = 15). We have identified polyadenylated C9orf72 RNA species retaining the repeat-containing intron and in which downstream exons are spliced correctly resulting in a C9orf72 mRNA with an enlarged 5'-UTR containing the GGGGCC repeats. Intron-retaining transcripts are produced from both wild-type and mutant alleles. Intron-retaining C9orf72 transcripts were also detected in brain with a 2.7 fold increase measured in the frontal cortex from heterozygous expansion carriers (n = 11) compared to controls (n = 10). The level of intron-retaining transcripts was increased 5.9 fold in a case homozygous for the expansion. We also show that a large proportion of intron 1-retaining C9orf72 transcripts accumulate in the nucleus. CONCLUSIONS Retention of the repeat-containing intron in mature C9orf72 mRNA can potentially explain nuclear foci formation as well as nuclear export of GGGGCC repeat RNA and suggests that the misprocessing of C9orf72 transcripts initiates the pathogenic process caused by C9orf72 hexanucleotide repeat expansions as well as provides the basis for novel therapeutic strategies.
Collapse
Affiliation(s)
- Michael Niblock
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Bradley N Smith
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Youn-Bok Lee
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Valentina Sardone
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Simon Topp
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Claire Troakes
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 125 Coldharbour Lane, London, SE5 9NU, UK
- London Neurodegenerative Disease Brain Bank, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Safa Al-Sarraj
- London Neurodegenerative Disease Brain Bank, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Claire S Leblond
- Montreal Neurological Institute and Hospital, McGill University, Ludmer Building, 1033 Pine Avenue West, Montreal, QC, H3A 1A1, Canada
| | - Patrick A Dion
- Montreal Neurological Institute and Hospital, McGill University, Ludmer Building, 1033 Pine Avenue West, Montreal, QC, H3A 1A1, Canada
| | - Guy A Rouleau
- Montreal Neurological Institute and Hospital, McGill University, Ludmer Building, 1033 Pine Avenue West, Montreal, QC, H3A 1A1, Canada
| | - Christopher E Shaw
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Jean-Marc Gallo
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 125 Coldharbour Lane, London, SE5 9NU, UK.
| |
Collapse
|
38
|
The regulation and functions of the nuclear RNA exosome complex. Nat Rev Mol Cell Biol 2016; 17:227-39. [PMID: 26726035 DOI: 10.1038/nrm.2015.15] [Citation(s) in RCA: 307] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The RNA exosome complex is the most versatile RNA-degradation machine in eukaryotes. The exosome has a central role in several aspects of RNA biogenesis, including RNA maturation and surveillance. Moreover, it is emerging as an important player in regulating the expression levels of specific mRNAs in response to environmental cues and during cell differentiation and development. Although the mechanisms by which RNA is targeted to (or escapes from) the exosome are still not fully understood, general principles have begun to emerge, which we discuss in this Review. In addition, we introduce and discuss novel, previously unappreciated functions of the nuclear exosome, including in transcription regulation and in the maintenance of genome stability.
Collapse
|
39
|
Regulation of mRNA Levels by Decay-Promoting Introns that Recruit the Exosome Specificity Factor Mmi1. Cell Rep 2015; 13:2504-2515. [PMID: 26670050 PMCID: PMC4695336 DOI: 10.1016/j.celrep.2015.11.026] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 09/19/2015] [Accepted: 11/06/2015] [Indexed: 01/29/2023] Open
Abstract
In eukaryotic cells, inefficient splicing is surprisingly common and leads to the degradation of transcripts with retained introns. How pre-mRNAs are committed to nuclear decay is unknown. Here, we uncover a mechanism by which specific intron-containing transcripts are targeted for nuclear degradation in fission yeast. Sequence elements within these "decay-promoting" introns co-transcriptionally recruit the exosome specificity factor Mmi1, which induces degradation of the unspliced precursor and leads to a reduction in the levels of the spliced mRNA. This mechanism negatively regulates levels of the RNA helicase DDX5/Dbp2 to promote cell survival in response to stress. In contrast, fast removal of decay-promoting introns by co-transcriptional splicing precludes Mmi1 recruitment and relieves negative expression regulation. We propose that decay-promoting introns facilitate the regulation of gene expression. Based on the identification of multiple additional Mmi1 targets, including mRNAs, long non-coding RNAs, and sn/snoRNAs, we suggest a general role in RNA regulation for Mmi1 through transcript degradation.
Collapse
|
40
|
Bitton DA, Schubert F, Dey S, Okoniewski M, Smith GC, Khadayate S, Pancaldi V, Wood V, Bähler J. AnGeLi: A Tool for the Analysis of Gene Lists from Fission Yeast. Front Genet 2015; 6:330. [PMID: 26635866 PMCID: PMC4644808 DOI: 10.3389/fgene.2015.00330] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 10/30/2015] [Indexed: 01/08/2023] Open
Abstract
Genome-wide assays and screens typically result in large lists of genes or proteins. Enrichments of functional or other biological properties within such lists can provide valuable insights and testable hypotheses. To systematically detect these enrichments can be challenging and time-consuming, because relevant data to compare against query gene lists are spread over many different sources. We have developed AnGeLi (Analysis of Gene Lists), an intuitive, integrated web-tool for comprehensive and customized interrogation of gene lists from the fission yeast, Schizosaccharomyces pombe. AnGeLi searches for significant enrichments among multiple qualitative and quantitative information sources, including gene and phenotype ontologies, genetic and protein interactions, numerous features of genes, transcripts, translation, and proteins such as copy numbers, chromosomal positions, genetic diversity, RNA polymerase II and ribosome occupancy, localization, conservation, half-lives, domains, and molecular weight among others, as well as diverse sets of genes that are co-regulated or lead to the same phenotypes when mutated. AnGeLi uses robust statistics which can be tailored to specific needs. It also provides the option to upload user-defined gene sets to compare against the query list. Through an integrated data submission form, AnGeLi encourages the community to contribute additional curated gene lists to further increase the usefulness of this resource and to get the most from the ever increasing large-scale experiments. AnGeLi offers a rigorous yet flexible statistical analysis platform for rich insights into functional enrichments and biological context for query gene lists, thus providing a powerful exploratory tool through which S. pombe researchers can uncover fresh perspectives and unexpected connections from genomic data. AnGeLi is freely available at: www.bahlerlab.info/AnGeLi.
Collapse
Affiliation(s)
- Danny A. Bitton
- Research Department of Genetics, Evolution and Environment – UCL Genetics Institute, University College LondonLondon, UK
| | - Falk Schubert
- Research Department of Genetics, Evolution and Environment – UCL Genetics Institute, University College LondonLondon, UK
| | - Shoumit Dey
- Research Department of Genetics, Evolution and Environment – UCL Genetics Institute, University College LondonLondon, UK
| | | | - Graeme C. Smith
- Research Department of Genetics, Evolution and Environment – UCL Genetics Institute, University College LondonLondon, UK
| | - Sanjay Khadayate
- Research Department of Genetics, Evolution and Environment – UCL Genetics Institute, University College LondonLondon, UK
| | - Vera Pancaldi
- Research Department of Genetics, Evolution and Environment – UCL Genetics Institute, University College LondonLondon, UK
| | - Valerie Wood
- Cambridge Systems Biology and Department of Biochemistry, University of CambridgeCambridge, UK
| | - Jürg Bähler
- Research Department of Genetics, Evolution and Environment – UCL Genetics Institute, University College LondonLondon, UK
| |
Collapse
|
41
|
Bresson SM, Hunter OV, Hunter AC, Conrad NK. Canonical Poly(A) Polymerase Activity Promotes the Decay of a Wide Variety of Mammalian Nuclear RNAs. PLoS Genet 2015; 11:e1005610. [PMID: 26484760 PMCID: PMC4618350 DOI: 10.1371/journal.pgen.1005610] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 09/27/2015] [Indexed: 11/30/2022] Open
Abstract
The human nuclear poly(A)-binding protein PABPN1 has been implicated in the decay of nuclear noncoding RNAs (ncRNAs). In addition, PABPN1 promotes hyperadenylation by stimulating poly(A)-polymerases (PAPα/γ), but this activity has not previously been linked to the decay of endogenous transcripts. Moreover, the mechanisms underlying target specificity have remained elusive. Here, we inactivated PAP-dependent hyperadenylation in cells by two independent mechanisms and used an RNA-seq approach to identify endogenous targets. We observed the upregulation of various ncRNAs, including snoRNA host genes, primary miRNA transcripts, and promoter upstream antisense RNAs, confirming that hyperadenylation is broadly required for the degradation of PABPN1-targets. In addition, we found that mRNAs with retained introns are susceptible to PABPN1 and PAPα/γ-mediated decay (PPD). Transcripts are targeted for degradation due to inefficient export, which is a consequence of reduced intron number or incomplete splicing. Additional investigation showed that a genetically-encoded poly(A) tail is sufficient to drive decay, suggesting that degradation occurs independently of the canonical cleavage and polyadenylation reaction. Surprisingly, treatment with transcription inhibitors uncouples polyadenylation from decay, leading to runaway hyperadenylation of nuclear decay targets. We conclude that PPD is an important mammalian nuclear RNA decay pathway for the removal of poorly spliced and nuclear-retained transcripts. Cells control gene expression by balancing the rates of RNA synthesis and decay. While the mechanisms of transcription regulation are extensively studied, the parameters that control nuclear RNA stability remain largely unknown. Previously, we and others reported that poly(A) tails may stimulate RNA decay in mammalian nuclei. This function is mediated by the concerted actions of the nuclear poly(A) binding protein PABPN1, poly(A) polymerase (PAP), and the nuclear exosome complex, a pathway we have named PABPN1 and PAP-mediated RNA decay (PPD). Because nearly all mRNAs possess a poly(A) tail, it remains unclear how PPD targets specific transcripts. Here, we inactivated PPD by two distinct mechanisms and examined global gene expression. We identified a number of potential target genes, including snoRNA host genes, promoter antisense RNAs, and mRNAs. Interestingly, target transcripts tend to be incompletely spliced or possess fewer introns than non-target transcripts, suggesting that efficient splicing allows normal mRNAs to escape decay. We suggest that PPD plays an important role in gene expression by limiting the accumulation of inefficiently processed RNAs. In addition, our results highlight the complex relationship between (pre-)mRNA splicing and nuclear RNA decay.
Collapse
Affiliation(s)
- Stefan M. Bresson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Olga V. Hunter
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Allyson C. Hunter
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Nicholas K. Conrad
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
42
|
Zhong F, Zhou N, Wu K, Guo Y, Tan W, Zhang H, Zhang X, Geng G, Pan T, Luo H, Zhang Y, Xu Z, Liu J, Liu B, Gao W, Liu C, Ren L, Li J, Zhou J, Zhang H. A SnoRNA-derived piRNA interacts with human interleukin-4 pre-mRNA and induces its decay in nuclear exosomes. Nucleic Acids Res 2015; 43:10474-91. [PMID: 26405199 PMCID: PMC4666397 DOI: 10.1093/nar/gkv954] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 09/10/2015] [Indexed: 02/06/2023] Open
Abstract
PIWI interacting RNAs (piRNAs) are highly expressed in germline cells and are involved in maintaining genome integrity by silencing transposons. These are also involved in DNA/histone methylation and gene expression regulation in somatic cells of invertebrates. The functions of piRNAs in somatic cells of vertebrates, however, remain elusive. We found that snoRNA-derived and C (C′)/D′ (D)-box conserved piRNAs are abundant in human CD4 primary T-lymphocytes. piRNA (piR30840) significantly downregulated interleukin-4 (IL-4) via sequence complementarity binding to pre-mRNA intron, which subsequently inhibited the development of Th2 T-lymphocytes. Piwil4 and Ago4 are associated with this piRNA, and this complex further interacts with Trf4-Air2-Mtr4 Polyadenylation (TRAMP) complex, which leads to the decay of targeted pre-mRNA through nuclear exosomes. Taken together, we demonstrate a novel piRNA mechanism in regulating gene expression in highly differentiated somatic cells and a possible novel target for allergy therapeutics.
Collapse
Affiliation(s)
- Fudi Zhong
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Key Laboratory of Tropical Diseases Control of Ministry of Education of China, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Nan Zhou
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Key Laboratory of Tropical Diseases Control of Ministry of Education of China, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Kang Wu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Key Laboratory of Tropical Diseases Control of Ministry of Education of China, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yubiao Guo
- Respiratory Division & Medicine Intensive Care Unit, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Weiping Tan
- Department of Pediatrics, the Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Hong Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Key Laboratory of Tropical Diseases Control of Ministry of Education of China, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Xue Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Key Laboratory of Tropical Diseases Control of Ministry of Education of China, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Guannan Geng
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Key Laboratory of Tropical Diseases Control of Ministry of Education of China, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Ting Pan
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Key Laboratory of Tropical Diseases Control of Ministry of Education of China, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Haihua Luo
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Key Laboratory of Tropical Diseases Control of Ministry of Education of China, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yijun Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Key Laboratory of Tropical Diseases Control of Ministry of Education of China, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhibin Xu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Key Laboratory of Tropical Diseases Control of Ministry of Education of China, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jun Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Key Laboratory of Tropical Diseases Control of Ministry of Education of China, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Bingfeng Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Key Laboratory of Tropical Diseases Control of Ministry of Education of China, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Wenchao Gao
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Key Laboratory of Tropical Diseases Control of Ministry of Education of China, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Chao Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Key Laboratory of Tropical Diseases Control of Ministry of Education of China, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Liangliang Ren
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Key Laboratory of Tropical Diseases Control of Ministry of Education of China, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jun Li
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Key Laboratory of Tropical Diseases Control of Ministry of Education of China, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jie Zhou
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Key Laboratory of Tropical Diseases Control of Ministry of Education of China, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Hui Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Key Laboratory of Tropical Diseases Control of Ministry of Education of China, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
43
|
Schmid M, Olszewski P, Pelechano V, Gupta I, Steinmetz LM, Jensen TH. The Nuclear PolyA-Binding Protein Nab2p Is Essential for mRNA Production. Cell Rep 2015; 12:128-139. [PMID: 26119729 DOI: 10.1016/j.celrep.2015.06.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 05/13/2015] [Accepted: 06/01/2015] [Indexed: 10/23/2022] Open
Abstract
Polyadenylation of mRNA is a key step in eukaryotic gene expression. However, despite the major impact of poly(A) tails on mRNA metabolism, the precise roles of poly(A)-binding proteins (PABPs) in nuclear mRNA biogenesis remain elusive. Here, we demonstrate that rapid nuclear depletion of the S. cerevisiae PABP Nab2p leads to a global loss of cellular mRNA, but not of RNA lacking poly(A) tails. Disappearance of mRNA is a nuclear event, but not due to decreased transcription. Instead, the absence of Nab2p results in robust nuclear mRNA decay by the ribonucleolytic RNA exosome in a polyadenylation-dependent process. We conclude that Nab2p is required to protect early mRNA and therefore constitutes a crucial nuclear mRNA biogenesis factor.
Collapse
Affiliation(s)
- Manfred Schmid
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Alle 3, Building 1130, 8000 Aarhus C., Denmark.
| | - Pawel Olszewski
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Alle 3, Building 1130, 8000 Aarhus C., Denmark
| | - Vicent Pelechano
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Ishaan Gupta
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Lars M Steinmetz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany; Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Torben Heick Jensen
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Alle 3, Building 1130, 8000 Aarhus C., Denmark.
| |
Collapse
|
44
|
An X, Hou J, Gao T, Lei Y, Li G, Song Y, Wang J, Cao B. Single-nucleotide polymorphisms g.151435C>T and g.173057T>C in PRLR gene regulated by bta-miR-302a are associated with litter size in goats. Theriogenology 2015; 83:1477-1483.e1. [DOI: 10.1016/j.theriogenology.2015.01.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 01/19/2015] [Accepted: 01/24/2015] [Indexed: 01/22/2023]
|
45
|
Regulated Intron Retention and Nuclear Pre-mRNA Decay Contribute to PABPN1 Autoregulation. Mol Cell Biol 2015; 35:2503-17. [PMID: 25963658 DOI: 10.1128/mcb.00070-15] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 05/02/2015] [Indexed: 11/20/2022] Open
Abstract
The poly(A)-binding protein nuclear 1 is encoded by the PABPN1 gene, whose mutations result in oculopharyngeal muscular dystrophy, a late-onset disorder for which the molecular basis remains unknown. Despite recent studies investigating the functional roles of PABPN1, little is known about its regulation. Here, we show that PABPN1 negatively controls its own expression to maintain homeostatic levels in human cells. Transcription from the PABPN1 gene results in the accumulation of two major isoforms: an unspliced nuclear transcript that retains the 3'-terminal intron and a fully spliced cytoplasmic mRNA. Increased dosage of PABPN1 protein causes a significant decrease in the spliced/unspliced ratio, reducing the levels of endogenous PABPN1 protein. We also show that PABPN1 autoregulation requires inefficient splicing of its 3'-terminal intron. Our data suggest that autoregulation occurs via the binding of PABPN1 to an adenosine (A)-rich region in its 3' untranslated region, which promotes retention of the 3'-terminal intron and clearance of intron-retained pre-mRNAs by the nuclear exosome. Our findings unveil a mechanism of regulated intron retention coupled to nuclear pre-mRNA decay that functions in the homeostatic control of PABPN1 expression.
Collapse
|
46
|
Poly(A) Polymerase and the Nuclear Poly(A) Binding Protein, PABPN1, Coordinate the Splicing and Degradation of a Subset of Human Pre-mRNAs. Mol Cell Biol 2015; 35:2218-30. [PMID: 25896913 PMCID: PMC4456446 DOI: 10.1128/mcb.00123-15] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/11/2015] [Indexed: 12/13/2022] Open
Abstract
Most human protein-encoding transcripts contain multiple introns that are removed by splicing. Although splicing catalysis is frequently cotranscriptional, some introns are excised after polyadenylation. Accumulating evidence suggests that delayed splicing has regulatory potential, but the mechanisms are still not well understood. Here we identify a terminal poly(A) tail as being important for a subset of intron excision events that follow cleavage and polyadenylation. In these cases, splicing is promoted by the nuclear poly(A) binding protein, PABPN1, and poly(A) polymerase (PAP). PABPN1 promotes intron excision in the context of 3′-end polyadenylation but not when bound to internal A-tracts. Importantly, the ability of PABPN1 to promote splicing requires its RNA binding and, to a lesser extent, PAP-stimulatory functions. Interestingly, an N-terminal alanine expansion in PABPN1 that is thought to cause oculopharyngeal muscular dystrophy cannot completely rescue the effects of PABPN1 depletion, suggesting that this pathway may have relevance to disease. Finally, inefficient polyadenylation is associated with impaired recruitment of splicing factors to affected introns, which are consequently degraded by the exosome. Our studies uncover a new function for polyadenylation in controlling the expression of a subset of human genes via pre-mRNA splicing.
Collapse
|
47
|
Bitton DA, Atkinson SR, Rallis C, Smith GC, Ellis DA, Chen YYC, Malecki M, Codlin S, Lemay JF, Cotobal C, Bachand F, Marguerat S, Mata J, Bähler J. Widespread exon skipping triggers degradation by nuclear RNA surveillance in fission yeast. Genome Res 2015; 25:884-96. [PMID: 25883323 PMCID: PMC4448684 DOI: 10.1101/gr.185371.114] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 03/31/2015] [Indexed: 12/31/2022]
Abstract
Exon skipping is considered a principal mechanism by which eukaryotic cells expand their transcriptome and proteome repertoires, creating different splice variants with distinct cellular functions. Here we analyze RNA-seq data from 116 transcriptomes in fission yeast (Schizosaccharomyces pombe), covering multiple physiological conditions as well as transcriptional and RNA processing mutants. We applied brute-force algorithms to detect all possible exon-skipping events, which were widespread but rare compared to normal splicing events. Exon-skipping events increased in cells deficient for the nuclear exosome or the 5′-3′ exonuclease Dhp1, and also at late stages of meiotic differentiation when nuclear-exosome transcripts decreased. The pervasive exon-skipping transcripts were stochastic, did not increase in specific physiological conditions, and were mostly present at less than one copy per cell, even in the absence of nuclear RNA surveillance and during late meiosis. These exon-skipping transcripts are therefore unlikely to be functional and may reflect splicing errors that are actively removed by nuclear RNA surveillance. The average splicing rate by exon skipping was ∼0.24% in wild type and ∼1.75% in nuclear exonuclease mutants. We also detected approximately 250 circular RNAs derived from single or multiple exons. These circular RNAs were rare and stochastic, although a few became stabilized during quiescence and in splicing mutants. Using an exhaustive search algorithm, we also uncovered thousands of previously unknown splice sites, indicating pervasive splicing; yet most of these splicing variants were cryptic and increased in nuclear degradation mutants. This study highlights widespread but low frequency alternative or aberrant splicing events that are targeted by nuclear RNA surveillance.
Collapse
Affiliation(s)
- Danny A Bitton
- University College London, Research Department of Genetics, Evolution and Environment and UCL Cancer Institute, London WC1E 6BT, United Kingdom
| | - Sophie R Atkinson
- University College London, Research Department of Genetics, Evolution and Environment and UCL Cancer Institute, London WC1E 6BT, United Kingdom
| | - Charalampos Rallis
- University College London, Research Department of Genetics, Evolution and Environment and UCL Cancer Institute, London WC1E 6BT, United Kingdom
| | - Graeme C Smith
- University College London, Research Department of Genetics, Evolution and Environment and UCL Cancer Institute, London WC1E 6BT, United Kingdom
| | - David A Ellis
- University College London, Research Department of Genetics, Evolution and Environment and UCL Cancer Institute, London WC1E 6BT, United Kingdom
| | - Yuan Y C Chen
- University College London, Research Department of Genetics, Evolution and Environment and UCL Cancer Institute, London WC1E 6BT, United Kingdom
| | - Michal Malecki
- University College London, Research Department of Genetics, Evolution and Environment and UCL Cancer Institute, London WC1E 6BT, United Kingdom
| | - Sandra Codlin
- University College London, Research Department of Genetics, Evolution and Environment and UCL Cancer Institute, London WC1E 6BT, United Kingdom
| | - Jean-François Lemay
- Université de Sherbrooke, Department of Biochemistry, Sherbrooke, Quebec J1H 5N4, Canada
| | - Cristina Cotobal
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - François Bachand
- Université de Sherbrooke, Department of Biochemistry, Sherbrooke, Quebec J1H 5N4, Canada
| | - Samuel Marguerat
- University College London, Research Department of Genetics, Evolution and Environment and UCL Cancer Institute, London WC1E 6BT, United Kingdom
| | - Juan Mata
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Jürg Bähler
- University College London, Research Department of Genetics, Evolution and Environment and UCL Cancer Institute, London WC1E 6BT, United Kingdom
| |
Collapse
|
48
|
Vaz-Drago R, Pinheiro MT, Martins S, Enguita FJ, Carmo-Fonseca M, Custódio N. Transcription-coupled RNA surveillance in human genetic diseases caused by splice site mutations. Hum Mol Genet 2015; 24:2784-95. [PMID: 25652404 DOI: 10.1093/hmg/ddv039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 01/31/2015] [Indexed: 12/15/2022] Open
Abstract
Current estimates indicate that approximately one-third of all disease-causing mutations are expected to disrupt splicing. Abnormal splicing often leads to disruption of the reading frame with introduction of a premature termination codon (PTC) that targets the mRNA for degradation in the cytoplasm by nonsense mediated decay (NMD). In addition to NMD there are RNA surveillance mechanisms that act in the nucleus while transcripts are still associated with the chromatin template. However, the significance of nuclear RNA quality control in the context of human genetic diseases is unknown. Here we used patient-derived lymphoblastoid cell lines as disease models to address how biogenesis of mRNAs is affected by splice site mutations. We observed that most of the mutations analyzed introduce PTCs and trigger mRNA degradation in the cytoplasm. However, for some mutant transcripts, RNA levels associated with chromatin were found down-regulated. Quantification of nascent transcripts further revealed that a subset of genes containing splicing mutations (SM) have reduced transcriptional activity. Following treatment with the translation inhibitor cycloheximide the cytoplasmic levels of mutant RNAs increased, while the levels of chromatin-associated transcripts remained unaltered. These results suggest that transcription-coupled surveillance mechanisms operate independently from NMD to reduce cellular levels of abnormal RNAs caused by SM.
Collapse
Affiliation(s)
- Rita Vaz-Drago
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
| | - Marco T Pinheiro
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
| | - Sandra Martins
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
| | - Francisco J Enguita
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
| | - Maria Carmo-Fonseca
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
| | - Noélia Custódio
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
| |
Collapse
|
49
|
Hasan A, Cotobal C, Duncan CDS, Mata J. Systematic analysis of the role of RNA-binding proteins in the regulation of RNA stability. PLoS Genet 2014; 10:e1004684. [PMID: 25375137 PMCID: PMC4222612 DOI: 10.1371/journal.pgen.1004684] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 08/18/2014] [Indexed: 01/18/2023] Open
Abstract
mRNA half-lives are transcript-specific and vary over a range of more than 100-fold in eukaryotic cells. mRNA stabilities can be regulated by sequence-specific RNA-binding proteins (RBPs), which bind to regulatory sequence elements and modulate the interaction of the mRNA with the cellular RNA degradation machinery. However, it is unclear if this kind of regulation is sufficient to explain the large range of mRNA stabilities. To address this question, we examined the transcriptome of 74 Schizosaccharomyces pombe strains carrying deletions in non-essential genes encoding predicted RBPs (86% of all such genes). We identified 25 strains that displayed changes in the levels of between 4 and 104 mRNAs. The putative targets of these RBPs formed biologically coherent groups, defining regulons involved in cell separation, ribosome biogenesis, meiotic progression, stress responses and mitochondrial function. Moreover, mRNAs in these groups were enriched in specific sequence motifs in their coding sequences and untranslated regions, suggesting that they are coregulated at the posttranscriptional level. We performed genome-wide RNA stability measurements for several RBP mutants, and confirmed that the altered mRNA levels were caused by changes in their stabilities. Although RBPs regulate the decay rates of multiple regulons, only 16% of all S. pombe mRNAs were affected in any of the 74 deletion strains. This suggests that other players or mechanisms are required to generate the observed range of RNA half-lives of a eukaryotic transcriptome.
Collapse
Affiliation(s)
- Ayesha Hasan
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Cristina Cotobal
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Caia D. S. Duncan
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Juan Mata
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
50
|
Lemay JF, Larochelle M, Marguerat S, Atkinson S, Bähler J, Bachand F. The RNA exosome promotes transcription termination of backtracked RNA polymerase II. Nat Struct Mol Biol 2014; 21:919-26. [DOI: 10.1038/nsmb.2893] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 08/26/2014] [Indexed: 11/09/2022]
|