1
|
Cai W, Liu X, Barajas S, Xiao S, Vemula S, Chen H, Yang Y, Bochers C, Henley D, Liu S, Jia Y, Hong M, Mays TM, Capitano ML, Liu H, Ji P, Gao Z, Pasini D, Wan J, Yue F, Platanias LC, Xi R, Chen S, Liu Y. Polycomb group protein Mel18 inhibits hematopoietic stem cell self-renewal through repressing the transcription of self-renewal and proliferation genes. Leukemia 2025; 39:296-307. [PMID: 39562720 PMCID: PMC12050008 DOI: 10.1038/s41375-024-02462-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/21/2024]
Abstract
Polycomb group (PcG) proteins play important roles in hematopoietic stem cell (HSC) self-renewal. Mel18 and Bmi1 are homologs of the PCGF subunit within the Polycomb repressive complex 1 (PRC1). Bmi1 (PCGF4) enhances HSC self-renewal and promotes terminal differentiation. However, the role of Mel18 (PCGF2) in hematopoiesis is not fully understood and how Mel18 regulates gene transcription in HSCs remains elusive. We found that acute deletion of Mel18 in the hematopoietic compartment significantly increased the frequency of functional HSCs in the bone marrow. Furthermore, we demonstrate that Mel18 inhibits HSC self-renewal and proliferation. RNA-seq studies revealed that HSC self-renewal and proliferation gene signatures are enriched in Mel18-/- hematopoietic stem and progenitors (HSPCs) compared to Mel18+/+ HSPCs. Notably, ATAC-seq revealed increased chromatin accessibility at genes important for HSC self-renewal, whereas CUT&RUN showed decreased enrichment of H2AK119ub1 at genes important for proliferation, leading to increased expression of both Hoxb4 and Cdk4 in Mel18-/- HSPCs. Thus, we demonstrate that Mel18 inhibits hematopoietic stem cell self-renewal through repressing the transcription of genes important for HSC self-renewal and proliferation.
Collapse
Affiliation(s)
- Wenjie Cai
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Xicheng Liu
- National Institute of Biological Science, Beijing, China
| | - Sergio Barajas
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Shiyu Xiao
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Sasidhar Vemula
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Hongxia Chen
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Hematology and Oncology, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Yuxia Yang
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Christopher Bochers
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Danielle Henley
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Sheng Liu
- Department of Medical Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yuzhi Jia
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Michelle Hong
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Tiffany M Mays
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Maegan L Capitano
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Huiping Liu
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL, 60611, USA
| | - Peng Ji
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL, 60611, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Zhonghua Gao
- Department of Biochemistry and Molecular Biology, College of Medicine, Pennsylvania State University, Hershey, PA, 17033, USA
| | - Diego Pasini
- European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139, Milan, Italy
- University of Milan, Department of Health Sciences, Via A. di Rudinì 8, 20142, Milan, Italy
| | - Jun Wan
- Department of Medical Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Feng Yue
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL, 60611, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Leonidas C Platanias
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL, 60611, USA
| | - Rongwen Xi
- National Institute of Biological Science, Beijing, China
| | - Sisi Chen
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Precision Research Center for Refractory Diseases, Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China.
| | - Yan Liu
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL, 60611, USA.
| |
Collapse
|
2
|
Hegde M, Ahmad MH, Mulet Lazaro R, Sugita M, Li R, Hu K, Gebhard C, Guzman ML, Bushweller JH, Zhu LJ, Brehm M, Wolfe SA, Delwel R, Castilla LH. The co-receptor Neuropilin-1 enhances proliferation in inv(16) acute myeloid leukemia via VEGF signaling. Leukemia 2025; 39:360-370. [PMID: 39572712 DOI: 10.1038/s41375-024-02471-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 02/06/2025]
Abstract
Oncogenic programs regulate the proliferation and maintenance of cancer stem cells, and can define pharmacologic dependencies. In acute myeloid leukemia (AML) with the chromosome inversion 16 (inv(16)), the fusion oncoprotein CBFβ::MYH11 regulates pathways associated with leukemia stem cell activity. Here we demonstrate that expression of Neuropilin-1 (NRP1) is regulated by the fusion oncoprotein, and promotes AML expansion. Mechanistically, we show that the NRP1 locus has open chromatin in inv(16) AML, and that CBFβ::MYH11 modulates the local function of the transcription factors ERG, GATA2 and RUNX1 to sustain NRP1 levels. We found that ERG activates NRP1 expression, and that CBFβ::MYH11 knockdown represses ERG expression, thereby allowing the repressive activity of GATA2/RUNX1 at three NRP1 enhancers. Functionally, we demonstrate that NRP1 enhances the expansion of leukemic cells in vitro and in mice, and that this activity is dependent on its VEGFR-associated FV/FVIII domain. Finally, we show that treatment with VEGF inhibitor axitinib reduces AML cell growth and delays median leukemia latency in vivo. Our findings reveal that the NRP1/VEGF axis mediates proliferation in inv(16) AML blasts, and suggest that targeting NRP1 function could be promising in combination AML therapy.
Collapse
MESH Headings
- Neuropilin-1/genetics
- Neuropilin-1/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Humans
- Cell Proliferation
- Animals
- Mice
- Signal Transduction
- Vascular Endothelial Growth Factor A/metabolism
- Vascular Endothelial Growth Factor A/genetics
- Chromosome Inversion
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Chromosomes, Human, Pair 16/genetics
- Transcriptional Regulator ERG
- Cell Line, Tumor
Collapse
Affiliation(s)
- Mahesh Hegde
- Department of Molecular, Cell and Cancer Biology; University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA, USA
| | - Mohd H Ahmad
- Department of Molecular, Cell and Cancer Biology; University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA, USA
| | - Roger Mulet Lazaro
- Department of Hematology, Erasmus University Medical Center and Oncode Institute, Rotterdam, The Netherlands
| | - Mayumi Sugita
- Department of Medicine, Weill Cornell Medical College, 1300 York Ave, New York, NY, USA
| | - Rui Li
- Department of Molecular, Cell and Cancer Biology; University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA, USA
| | - Kai Hu
- Department of Molecular, Cell and Cancer Biology; University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA, USA
| | - Claudia Gebhard
- Department of Internal Medicine III and Regensburg Centre for Interventional Immunology, University Hospital Regensburg, Regensburg, Germany
| | - Monica L Guzman
- Department of Medicine, Weill Cornell Medical College, 1300 York Ave, New York, NY, USA
| | - John H Bushweller
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Lihua J Zhu
- Department of Molecular, Cell and Cancer Biology; University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA, USA
| | - Michael Brehm
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Chan Medical School, 368 Plantation Street, Worcester, MA, USA
| | - Scot A Wolfe
- Department of Molecular, Cell and Cancer Biology; University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA, USA
| | - Ruud Delwel
- Department of Hematology, Erasmus University Medical Center and Oncode Institute, Rotterdam, The Netherlands
| | - Lucio H Castilla
- Department of Molecular, Cell and Cancer Biology; University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA, USA.
| |
Collapse
|
3
|
Chavez J, Wolf T, Geng Z, Tai YT, Bright K, Stafford J, Gao Z. The zinc-finger protein POGZ associates with Polycomb repressive complex 1 to regulate bone morphogenetic protein signaling during neuronal differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631780. [PMID: 39829763 PMCID: PMC11741289 DOI: 10.1101/2025.01.07.631780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Polycomb Repressive Complex 1 (PRC1) is a family of epigenetic regulators critical for mammalian development. Elucidating PRC1 composition and function across cell types and developmental stages is key to understanding the epigenetic regulation of cell fate determination. In this study, we discovered POGZ, a prominent Autism Spectrum Disorder (ASD) risk factor, as a novel component of PRC1.6, forming the PRC1.6-POGZ complex. Functional assays revealed that POGZ elicits transcriptional repression that is dependent on RING1B expression. Analysis of publicly available ChIP-Seq data showed that POGZ highly colocalizes with RING1B and HP1γ, two PRC1.6 components, at genes involved in multiple aspects of transcriptional regulation in the embryonic mouse cortex. Although Pogz knockout (KO) does not compromise stem cell pluripotency, Pogz ablation in neuronal progenitor cells (NPCs) led to widespread transcriptomic dysregulation with failed activation of key neuronal genes. Finally, we demonstrated that PRC1.6-POGZ regulates neuronal differentiation by repressing the bone morphogenetic protein (BMP) signaling pathway. These findings reveal a mechanism by which PRC1 and POGZ coordinate transcriptional regulation during neuronal differentiation, which offers insights into how disruptions in this pathway may contribute to neurodevelopmental disorders such as ASD.
Collapse
|
4
|
Hanafiah A, Geng Z, Liu T, Tai YT, Cai W, Wang Q, Christensen N, Liu Y, Yue F, Gao Z. PRC1 and CTCF-Mediated Transition from Poised to Active Chromatin Loops Drives Bivalent Gene Activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.13.623456. [PMID: 39605346 PMCID: PMC11601310 DOI: 10.1101/2024.11.13.623456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Polycomb Repressive Complex 1 (PRC1) and CCCTC-binding factor (CTCF) are critical regulators of 3D chromatin architecture that influence cellular transcriptional programs. Spatial chromatin structures comprise conserved compartments, topologically associating domains (TADs), and dynamic, cell-type-specific chromatin loops. Although the role of CTCF in chromatin organization is well-known, the involvement of PRC1 is less understood. In this study, we identified an unexpected, essential role for the canonical Pcgf2-containing PRC1 complex (cPRC1.2), a known transcriptional repressor, in activating bivalent genes during differentiation. Our Hi-C analysis revealed that cPRC1.2 forms chromatin loops at bivalent promoters, rendering them silent yet poised for activation. Using mouse embryonic stem cells (ESCs) with CRISPR/Cas9-mediated gene editing, we found that the loss of Pcgf2, though not affecting the global level of H2AK119ub1, disrupts these cPRC1.2 loops in ESCs and impairs the transcriptional induction of crucial target genes necessary for neuronal differentiation. Furthermore, we identified CTCF enrichment at cPRC1.2 loop anchors and at Polycomb group (PcG) bodies, nuclear foci with concentrated PRC1 and its tethered chromatin domains, suggesting that PRC1 and CTCF cooperatively shape chromatin loop structures. Through virtual 4C and other genomic analyses, we discovered that establishing neuronal progenitor cell (NPC) identity involves a switch from cPRC1.2-mediated chromatin loops to CTCF-mediated active loops, enabling the expression of critical lineage-specific factors. This study uncovers a novel mechanism by which pre-formed PRC1 and CTCF loops at lineage-specific genes maintain a poised state for subsequent gene activation, advancing our understanding of the role of chromatin architecture in controlling cell fate transitions.
Collapse
Affiliation(s)
- Aflah Hanafiah
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033
- Penn State Hershey Cancer Institute, Hershey, PA 17033
| | - Zhuangzhuang Geng
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033
- Penn State Hershey Cancer Institute, Hershey, PA 17033
| | - Tingting Liu
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL 60611
- Center for Cancer Genomics, Feinberg School of Medicine Northwestern University, Chicago, IL 60611
| | - Yen Teng Tai
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033
- Penn State Hershey Cancer Institute, Hershey, PA 17033
| | - Wenjie Cai
- Department of Medicine, Feinberg School of Medicine Northwestern University, Chicago, IL 60611
| | - Qiang Wang
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033
- Penn State Hershey Cancer Institute, Hershey, PA 17033
| | - Neil Christensen
- Department of Pathology and Laboratory Medicine, Penn State College of Medicine, Hershey, PA 17033
| | - Yan Liu
- Center for Cancer Genomics, Feinberg School of Medicine Northwestern University, Chicago, IL 60611
- Department of Medicine, Feinberg School of Medicine Northwestern University, Chicago, IL 60611
| | - Feng Yue
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL 60611
- Center for Cancer Genomics, Feinberg School of Medicine Northwestern University, Chicago, IL 60611
| | - Zhonghua Gao
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033
- Penn State Hershey Cancer Institute, Hershey, PA 17033
| |
Collapse
|
5
|
Jonkhout MCM, Vanhessche T, Ferreira M, Verbinnen I, Withof F, Van der Hoeven G, Szekér K, Azhir Z, Lien WH, Van Eynde A, Bollen M. Embryonic NIPP1 Depletion in Keratinocytes Triggers a Cell Cycle Arrest and Premature Senescence in Adult Mice. J Invest Dermatol 2024; 144:2162-2175.e12. [PMID: 38431220 DOI: 10.1016/j.jid.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/24/2024] [Accepted: 02/09/2024] [Indexed: 03/05/2024]
Abstract
NIPP1 is a ubiquitously expressed regulatory subunit of PP1. Its embryonic deletion in keratinocytes causes chronic sterile skin inflammation, epidermal hyperproliferation, and resistance to mutagens in adult mice. To explore the primary effects of NIPP1 deletion, we first examined hair cycle progression of NIPP1 skin knockouts (SKOs). The entry of the first hair cycle in the SKOs was delayed owing to prolonged quiescence of hair follicle stem cells. In contrast, the entry of the second hair cycle in the SKOs was advanced as a result of precocious activation of hair follicle stem cells. The epidermis of SKOs progressively accumulated senescent cells, and this cell-fate switch was accelerated by DNA damage. Primary keratinocytes from SKO neonates and human NIPP1-depleted HaCaT keratinocytes failed to proliferate and showed an increase in the expression of cell cycle inhibitors (p21, p16/Ink4a, and/or p19/Arf) and senescence-associated-secretory-phenotype factors as well as in DNA damage (γH2AX and 53BP1). Our data demonstrate that the primary effect of NIPP1 deletion in keratinocytes is a cell cycle arrest and premature senescence that gradually progresse to chronic senescence and likely contribute to the decreased sensitivity of SKOs to mutagens.
Collapse
Affiliation(s)
- Marloes C M Jonkhout
- Laboratory of Biosignaling & Therapeutics, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Tijs Vanhessche
- Laboratory of Biosignaling & Therapeutics, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Mónica Ferreira
- Laboratory of Biosignaling & Therapeutics, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Iris Verbinnen
- Laboratory of Biosignaling & Therapeutics, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Fabienne Withof
- Laboratory of Biosignaling & Therapeutics, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Gerd Van der Hoeven
- Laboratory of Biosignaling & Therapeutics, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Kathelijne Szekér
- Laboratory of Biosignaling & Therapeutics, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Zahra Azhir
- Laboratory of Biosignaling & Therapeutics, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Wen-Hui Lien
- de Duve Institute, Faculty of Medicine, Université catholique de Louvain, Brussels, Belgium
| | - Aleyde Van Eynde
- Laboratory of Biosignaling & Therapeutics, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium.
| | - Mathieu Bollen
- Laboratory of Biosignaling & Therapeutics, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Williams RM, Taylor G, Ling ITC, Candido-Ferreira I, Fountain DM, Mayes S, Ateş-Kalkan PS, Haug JO, Price AJ, McKinney SA, Bozhilovh YK, Tyser RCV, Srinivas S, Hughes JR, Sauka-Spengler T. Chromatin remodeller Chd7 is developmentally regulated in the neural crest by tissue-specific transcription factors. PLoS Biol 2024; 22:e3002786. [PMID: 39418292 PMCID: PMC11521297 DOI: 10.1371/journal.pbio.3002786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 10/29/2024] [Accepted: 08/02/2024] [Indexed: 10/19/2024] Open
Abstract
Neurocristopathies such as CHARGE syndrome result from aberrant neural crest development. A large proportion of CHARGE cases are attributed to pathogenic variants in the gene encoding CHD7, chromodomain helicase DNA binding protein 7, which remodels chromatin. While the role for CHD7 in neural crest development is well documented, how this factor is specifically up-regulated in neural crest cells is not understood. Here, we use epigenomic profiling of chick and human neural crest to identify a cohort of enhancers regulating Chd7 expression in neural crest cells and other tissues. We functionally validate upstream transcription factor binding at candidate enhancers, revealing novel epistatic relationships between neural crest master regulators and Chd7, showing tissue-specific regulation of a globally acting chromatin remodeller. Furthermore, we find conserved enhancer features in human embryonic epigenomic data and validate the activity of the human equivalent CHD7 enhancers in the chick embryo. Our findings embed Chd7 in the neural crest gene regulatory network and offer potentially clinically relevant elements for interpreting CHARGE syndrome cases without causative allocation.
Collapse
Affiliation(s)
- Ruth M. Williams
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford, United Kingdom
| | - Guneş Taylor
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford, United Kingdom
| | - Irving T. C. Ling
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford, United Kingdom
- University of Oxford, Department of Paediatric Surgery, Children’s Hospital Oxford, Oxford, United Kingdom
| | - Ivan Candido-Ferreira
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford, United Kingdom
| | - Daniel M. Fountain
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford, United Kingdom
| | - Sarah Mayes
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford, United Kingdom
| | | | - Julianna O. Haug
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Andrew J. Price
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Sean A. McKinney
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Yavor K. Bozhilovh
- University of Oxford, MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Oxford, United Kingdom
- University of Oxford, MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford, United Kingdom
| | - Richard C. V. Tyser
- University of Oxford, Department of Physiology, Anatomy and Genetics, South Parks Road, Oxford, United Kingdom
| | - Shankar Srinivas
- University of Oxford, Department of Physiology, Anatomy and Genetics, South Parks Road, Oxford, United Kingdom
| | - Jim R. Hughes
- University of Oxford, MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Oxford, United Kingdom
- University of Oxford, MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford, United Kingdom
| | - Tatjana Sauka-Spengler
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford, United Kingdom
- University of Oxford, MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Oxford, United Kingdom
| |
Collapse
|
7
|
Jayne ND, Liang Z, Lim DH, Chen PB, Diaz C, Arimoto KI, Xia L, Liu M, Ren B, Fu XD, Zhang DE. RUNX1 C-terminal mutations impair blood cell differentiation by perturbing specific enhancer-promoter networks. Blood Adv 2024; 8:2410-2423. [PMID: 38513139 PMCID: PMC11112616 DOI: 10.1182/bloodadvances.2023011484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 01/02/2024] [Accepted: 02/15/2024] [Indexed: 03/23/2024] Open
Abstract
ABSTRACT The transcription factor RUNX1 is a master regulator of hematopoiesis and is frequently mutated in myeloid malignancies. Mutations in its runt homology domain (RHD) frequently disrupt DNA binding and result in loss of RUNX1 function. However, it is not clearly understood how other RUNX1 mutations contribute to disease development. Here, we characterized RUNX1 mutations outside of the RHD. Our analysis of the patient data sets revealed that mutations within the C-terminus frequently occur in hematopoietic disorders. Remarkably, most of these mutations were nonsense or frameshift mutations and were predicted to be exempt from nonsense-mediated messenger RNA decay. Therefore, this class of mutation is projected to produce DNA-binding proteins that contribute to the pathogenesis in a distinct manner. To model this, we introduced the RUNX1R320∗ mutation into the endogenous gene locus and demonstrated the production of RUNX1R320∗ protein. Expression of RUNX1R320∗ resulted in the disruption of RUNX1 regulated processes such as megakaryocytic differentiation, through a transcriptional signature different from RUNX1 depletion. To understand the underlying mechanisms, we used Global RNA Interactions with DNA by deep sequencing (GRID-seq) to examine enhancer-promoter connections. We identified widespread alterations in the enhancer-promoter networks within RUNX1 mutant cells. Additionally, we uncovered enrichment of RUNX1R320∗ and FOXK2 binding at the MYC super enhancer locus, significantly upregulating MYC transcription and signaling pathways. Together, our study demonstrated that most RUNX1 mutations outside the DNA-binding domain are not subject to nonsense-mediated decay, producing protein products that act in concert with additional cofactors to dysregulate hematopoiesis through mechanisms distinct from those induced by RUNX1 depletion.
Collapse
Affiliation(s)
- Nathan D. Jayne
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA
- School of Biological Sciences, University of California San Diego, La Jolla, CA
| | - Zhengyu Liang
- School of Medicine, University of California San Diego, La Jolla, CA
| | - Do-Hwan Lim
- School of Medicine, University of California San Diego, La Jolla, CA
| | - Poshen B. Chen
- School of Medicine, University of California San Diego, La Jolla, CA
| | - Cristina Diaz
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA
- School of Biological Sciences, University of California San Diego, La Jolla, CA
| | - Kei-Ichiro Arimoto
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA
| | - Lingbo Xia
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA
- School of Biological Sciences, University of California San Diego, La Jolla, CA
| | - Mengdan Liu
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA
- School of Biological Sciences, University of California San Diego, La Jolla, CA
| | - Bing Ren
- School of Medicine, University of California San Diego, La Jolla, CA
| | - Xiang-Dong Fu
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Dong-Er Zhang
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA
- School of Biological Sciences, University of California San Diego, La Jolla, CA
- School of Medicine, University of California San Diego, La Jolla, CA
| |
Collapse
|
8
|
Peramangalam PS, Surapally S, Veltri AJ, Zheng S, Burns R, Zhu N, Rao S, Muller-Tidow C, Bushweller JH, Pulikkan JA. N-MYC regulates cell survival via eIF4G1 in inv(16) acute myeloid leukemia. SCIENCE ADVANCES 2024; 10:eadh8493. [PMID: 38416825 PMCID: PMC10901375 DOI: 10.1126/sciadv.adh8493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 01/24/2024] [Indexed: 03/01/2024]
Abstract
N-MYC (encoded by MYCN) is a critical regulator of hematopoietic stem cell function. While the role of N-MYC deregulation is well established in neuroblastoma, the importance of N-MYC deregulation in leukemogenesis remains elusive. Here, we demonstrate that N-MYC is overexpressed in acute myeloid leukemia (AML) cells with chromosome inversion inv(16) and contributes to the survival and maintenance of inv(16) leukemia. We identified a previously unknown MYCN enhancer, active in multiple AML subtypes, essential for MYCN mRNA levels and survival in inv(16) AML cells. We also identified eukaryotic translation initiation factor 4 gamma 1 (eIF4G1) as a key N-MYC target that sustains leukemic survival in inv(16) AML cells. The oncogenic role of eIF4G1 in AML has not been reported before. Our results reveal a mechanism whereby N-MYC drives a leukemic transcriptional program and provides a rationale for the therapeutic targeting of the N-MYC/eIF4G1 axis in myeloid leukemia.
Collapse
Affiliation(s)
| | - Sridevi Surapally
- Program in Stem Cell Biology and Hematopoiesis, Versiti Blood Research Institute, Milwaukee, WI, USA
| | - Anthony J. Veltri
- Program in Stem Cell Biology and Hematopoiesis, Versiti Blood Research Institute, Milwaukee, WI, USA
| | - Shikan Zheng
- Program in Stem Cell Biology and Hematopoiesis, Versiti Blood Research Institute, Milwaukee, WI, USA
| | - Robert Burns
- Program in Stem Cell Biology and Hematopoiesis, Versiti Blood Research Institute, Milwaukee, WI, USA
| | - Nan Zhu
- Program in Stem Cell Biology and Hematopoiesis, Versiti Blood Research Institute, Milwaukee, WI, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Sridhar Rao
- Program in Stem Cell Biology and Hematopoiesis, Versiti Blood Research Institute, Milwaukee, WI, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, Division of Hematology, Oncology, and Transplantation, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Carsten Muller-Tidow
- Department of Medicine, Hematology, Oncology, University Hospital Heidelberg, Heidelberg, Germany
| | - John H. Bushweller
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - John A. Pulikkan
- Program in Stem Cell Biology and Hematopoiesis, Versiti Blood Research Institute, Milwaukee, WI, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
9
|
Liu J, Fan H, Liang X, Chen Y. Polycomb repressor complex: Its function in human cancer and therapeutic target strategy. Biomed Pharmacother 2023; 169:115897. [PMID: 37981459 DOI: 10.1016/j.biopha.2023.115897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023] Open
Abstract
The Polycomb Repressor Complex (PRC) plays a pivotal role in gene regulation during development and disease, with dysregulation contributing significantly to various human cancers. The intricate interplay between PRC and cellular signaling pathways sheds light on cancer complexity. PRC presents promising therapeutic opportunities, with inhibitors undergoing rigorous evaluation in preclinical and clinical studies. In this review, we emphasize the critical role of PRC complex in gene regulation, particularly PcG proteins mediated chromatin compaction through phase separation. We also highlight the pathological implications of PRC complex dysregulation in various tumors, elucidating underlying mechanisms driving cancer progression. The burgeoning field of therapeutic strategies targeting PRC complexes, notably EZH2 inhibitors, has advanced significantly. However, we explore the need for combination therapies to enhance PRC targeted treatments efficacy, providing a glimpse into the future of cancer therapeutics.
Collapse
Affiliation(s)
- Jingrong Liu
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Hongjie Fan
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Xinmiao Liang
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Yang Chen
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
10
|
Shin B, Zhou W, Wang J, Gao F, Rothenberg EV. Runx factors launch T cell and innate lymphoid programs via direct and gene network-based mechanisms. Nat Immunol 2023; 24:1458-1472. [PMID: 37563311 PMCID: PMC10673614 DOI: 10.1038/s41590-023-01585-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 07/12/2023] [Indexed: 08/12/2023]
Abstract
Runx factors are essential for lineage specification of various hematopoietic cells, including T lymphocytes. However, they regulate context-specific genes and occupy distinct genomic regions in different cell types. Here, we show that dynamic Runx binding shifts in mouse early T cell development are mostly not restricted by local chromatin state but regulated by Runx dosage and functional partners. Runx cofactors compete to recruit a limited pool of Runx factors in early T progenitor cells, and a modest increase in Runx protein availability at pre-commitment stages causes premature Runx occupancy at post-commitment binding sites. This increased Runx factor availability results in striking T cell lineage developmental acceleration by selectively activating T cell-identity and innate lymphoid cell programs. These programs are collectively regulated by Runx together with other, Runx-induced transcription factors that co-occupy Runx-target genes and propagate gene network changes.
Collapse
Affiliation(s)
- Boyoung Shin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Wen Zhou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Program in Biochemistry and Molecular Biophysics, California Institute of Technology, Pasadena, CA, USA
- BillionToOne, Menlo Park, CA, USA
| | - Jue Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Program in Biochemistry and Molecular Biophysics, California Institute of Technology, Pasadena, CA, USA
| | - Fan Gao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Bioinformatics Resource Center, Beckman Institute of California Institute of Technology, Pasadena, CA, USA
- Lyterian Therapeutics, South San Francisco, CA, USA
| | - Ellen V Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
11
|
Polycomb Alterations in Acute Myeloid Leukaemia: From Structure to Function. Cancers (Basel) 2023; 15:cancers15061693. [PMID: 36980579 PMCID: PMC10046783 DOI: 10.3390/cancers15061693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/12/2023] Open
Abstract
Epigenetic dysregulation is a hallmark of many haematological malignancies and is very frequent in acute myeloid leukaemia (AML). A cardinal example is the altered activity of the Polycomb Repressive Complex 2 (PRC2) due to somatic mutations and deletions in genes encoding PRC2 core factors that are necessary for correct complex assembly. These genetic alterations typically lead to reduced histone methyltransferase activity that, in turn, has been strongly linked to poor prognosis and chemoresistance. In this review, we provide an overview of genetic alterations of PRC components in AML, with particular reference to structural and functional features of PRC2 factors. We further review genetic interactions between these alterations and other AML-associated mutations in both adult and paediatric leukaemias. Finally, we discuss reported prognostic links between PRC2 mutations and deletions and disease outcomes and potential implications for therapy.
Collapse
|
12
|
Wang J, Yang B, Zhang X, Liu S, Pan X, Ma C, Ma S, Yu D, Wu W. Chromobox proteins in cancer: Multifaceted functions and strategies for modulation (Review). Int J Oncol 2023; 62:36. [PMID: 36734270 PMCID: PMC9937689 DOI: 10.3892/ijo.2023.5484] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/23/2023] [Indexed: 02/01/2023] Open
Abstract
Chromobox (CBX) proteins are important epigenetic regulatory proteins and are widely involved in biological processes, such as embryonic development, the maintenance of stem cell characteristics and the regulation of cell proliferation and apoptosis. Disorder and dysfunction of CBXs in cancer usually lead to the blockade or ectoptic activation of developmental pathways, promoting the occurrence, development and progression of cancer. In the present review, the characteristics and functions of CBXs were first introduced. Subsequently, the expression of CBXs in cancers and the relationship between CBXs and clinical characteristics (mainly cancer grade, stage, metastasis and relapse) and prognosis were discussed. Finally, it was described how CBXs regulate cell proliferation and self‑renewal, apoptosis and the acquisition of malignant phenotypes, such as invasion, migration and chemoresistance, through mechanisms involving epigenetic modification, nuclear translocation, noncoding RNA interactions, transcriptional regulation, posttranslational modifications, protein‑protein interactions, signal transduction and metabolic reprogramming. The study also focused on cancer therapies targeting CBXs. The present review provides new insight and a comprehensive basis for follow‑up research on CBXs and cancer.
Collapse
Affiliation(s)
- Jian Wang
- Department of Neurovascular Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Bo Yang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiuhang Zhang
- Department of Burn Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Shuhan Liu
- Department of Neurovascular Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiaoqiang Pan
- Department of Neurovascular Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Changkai Ma
- Department of Neurovascular Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Shiqiang Ma
- Department of Neurovascular Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Dehai Yu
- Department of Public Research Platform, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China,Professor Dehai Yu, Public Research Platform, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, Jilin 130021, P.R. China, E-mail:
| | - Wei Wu
- Department of Neurovascular Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China,Correspondence to: Professor Wei Wu, Department of Neurovascular Surgery, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, Jilin 130021, P.R. China, E-mail:
| |
Collapse
|
13
|
Hanot M, Raby L, Völkel P, Le Bourhis X, Angrand PO. The Contribution of the Zebrafish Model to the Understanding of Polycomb Repression in Vertebrates. Int J Mol Sci 2023; 24:ijms24032322. [PMID: 36768643 PMCID: PMC9916924 DOI: 10.3390/ijms24032322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
Polycomb group (PcG) proteins are highly conserved proteins assembled into two major types of complexes, PRC1 and PRC2, involved in the epigenetic silencing of a wide range of gene expression programs regulating cell fate and tissue development. The crucial role of PRC1 and PRC2 in the fundamental cellular processes and their involvement in human pathologies such as cancer attracted intense attention over the last few decades. Here, we review recent advancements regarding PRC1 and PRC2 function using the zebrafish model. We point out that the unique characteristics of the zebrafish model provide an exceptional opportunity to increase our knowledge of the role of the PRC1 and PRC2 complexes in tissue development, in the maintenance of organ integrity and in pathology.
Collapse
Affiliation(s)
- Mariette Hanot
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Ludivine Raby
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Pamela Völkel
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Xuefen Le Bourhis
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Pierre-Olivier Angrand
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| |
Collapse
|
14
|
Halperin C, Hey J, Weichenhan D, Stein Y, Mayer S, Lutsik P, Plass C, Scherz-Shouval R. Global DNA Methylation Analysis of Cancer-Associated Fibroblasts Reveals Extensive Epigenetic Rewiring Linked with RUNX1 Upregulation in Breast Cancer Stroma. Cancer Res 2022; 82:4139-4152. [PMID: 36287637 DOI: 10.1158/0008-5472.can-22-0209] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 08/10/2022] [Accepted: 09/14/2022] [Indexed: 12/14/2022]
Abstract
Cancer cells recruit and rewire normal fibroblasts in their microenvironment to become protumorigenic cancer-associated fibroblasts (CAF). These CAFs are genomically stable, yet their transcriptional programs are distinct from those of their normal counterparts. Transcriptional regulation plays a major role in this reprogramming, but the extent to which epigenetic modifications of DNA also contribute to the rewiring of CAF transcription is not clear. Here we address this question by dissecting the epigenetic landscape of breast CAFs. Applying tagmentation-based whole-genome bisulfite sequencing in a mouse model of breast cancer, we found that fibroblasts undergo massive DNA methylation changes as they transition into CAFs. Transcriptional and epigenetic analyses revealed RUNX1 as a potential mediator of this process and identified a RUNX1-dependent stromal gene signature. Coculture and mouse models showed that both RUNX1 and its stromal signature are induced as normal fibroblasts transition into CAFs. In breast cancer patients, RUNX1 was upregulated in CAFs, and expression of the RUNX1 signature was associated with poor disease outcome, highlighting the relevance of these findings to human disease. This work presents a comprehensive genome-wide map of DNA methylation in CAFs and reveals a previously unknown facet of the dynamic plasticity of the stroma. SIGNIFICANCE The first genome-wide map of DNA methylation in breast cancer-associated fibroblasts unravels a previously unknown facet of the dynamic plasticity of the stroma, with far-reaching therapeutic implications.
Collapse
Affiliation(s)
- Coral Halperin
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Joschka Hey
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Ruprecht Karl University of Heidelberg, Heidelberg, Germany
| | - Dieter Weichenhan
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Yaniv Stein
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Shimrit Mayer
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Pavlo Lutsik
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ruth Scherz-Shouval
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
15
|
Critical Roles of Polycomb Repressive Complexes in Transcription and Cancer. Int J Mol Sci 2022; 23:ijms23179574. [PMID: 36076977 PMCID: PMC9455514 DOI: 10.3390/ijms23179574] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Polycomp group (PcG) proteins are members of highly conserved multiprotein complexes, recognized as gene transcriptional repressors during development and shown to play a role in various physiological and pathological processes. PcG proteins consist of two Polycomb repressive complexes (PRCs) with different enzymatic activities: Polycomb repressive complexes 1 (PRC1), a ubiquitin ligase, and Polycomb repressive complexes 2 (PRC2), a histone methyltransferase. Traditionally, PRCs have been described to be associated with transcriptional repression of homeotic genes, as well as gene transcription activating effects. Particularly in cancer, PRCs have been found to misregulate gene expression, not only depending on the function of the whole PRCs, but also through their separate subunits. In this review, we focused especially on the recent findings in the transcriptional regulation of PRCs, the oncogenic and tumor-suppressive roles of PcG proteins, and the research progress of inhibitors targeting PRCs.
Collapse
|
16
|
Hernández-Romero IA, Valdes VJ. De Novo Polycomb Recruitment and Repressive Domain Formation. EPIGENOMES 2022; 6:25. [PMID: 35997371 PMCID: PMC9397058 DOI: 10.3390/epigenomes6030025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022] Open
Abstract
Every cell of an organism shares the same genome; even so, each cellular lineage owns a different transcriptome and proteome. The Polycomb group proteins (PcG) are essential regulators of gene repression patterning during development and homeostasis. However, it is unknown how the repressive complexes, PRC1 and PRC2, identify their targets and elicit new Polycomb domains during cell differentiation. Classical recruitment models consider the pre-existence of repressive histone marks; still, de novo target binding overcomes the absence of both H3K27me3 and H2AK119ub. The CpG islands (CGIs), non-core proteins, and RNA molecules are involved in Polycomb recruitment. Nonetheless, it is unclear how de novo targets are identified depending on the physiological context and developmental stage and which are the leading players stabilizing Polycomb complexes at domain nucleation sites. Here, we examine the features of de novo sites and the accessory elements bridging its recruitment and discuss the first steps of Polycomb domain formation and transcriptional regulation, comprehended by the experimental reconstruction of the repressive domains through time-resolved genomic analyses in mammals.
Collapse
Affiliation(s)
| | - Victor Julian Valdes
- Department of Cell Biology and Development, Institute of Cellular Physiology (IFC), National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico
| |
Collapse
|
17
|
Owen BM, Davidovich C. DNA binding by polycomb-group proteins: searching for the link to CpG islands. Nucleic Acids Res 2022; 50:4813-4839. [PMID: 35489059 PMCID: PMC9122586 DOI: 10.1093/nar/gkac290] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/25/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Polycomb group proteins predominantly exist in polycomb repressive complexes (PRCs) that cooperate to maintain the repressed state of thousands of cell-type-specific genes. Targeting PRCs to the correct sites in chromatin is essential for their function. However, the mechanisms by which PRCs are recruited to their target genes in mammals are multifactorial and complex. Here we review DNA binding by polycomb group proteins. There is strong evidence that the DNA-binding subunits of PRCs and their DNA-binding activities are required for chromatin binding and CpG targeting in cells. In vitro, CpG-specific binding was observed for truncated proteins externally to the context of their PRCs. Yet, the mere DNA sequence cannot fully explain the subset of CpG islands that are targeted by PRCs in any given cell type. At this time we find very little structural and biophysical evidence to support a model where sequence-specific DNA-binding activity is required or sufficient for the targeting of CpG-dinucleotide sequences by polycomb group proteins while they are within the context of their respective PRCs, either PRC1 or PRC2. We discuss the current knowledge and open questions on how the DNA-binding activities of polycomb group proteins facilitate the targeting of PRCs to chromatin.
Collapse
Affiliation(s)
- Brady M Owen
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Chen Davidovich
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia.,EMBL-Australia, Clayton, VIC, Australia
| |
Collapse
|
18
|
Parreno V, Martinez AM, Cavalli G. Mechanisms of Polycomb group protein function in cancer. Cell Res 2022; 32:231-253. [PMID: 35046519 PMCID: PMC8888700 DOI: 10.1038/s41422-021-00606-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/10/2021] [Indexed: 02/01/2023] Open
Abstract
Cancer arises from a multitude of disorders resulting in loss of differentiation and a stem cell-like phenotype characterized by uncontrolled growth. Polycomb Group (PcG) proteins are members of multiprotein complexes that are highly conserved throughout evolution. Historically, they have been described as essential for maintaining epigenetic cellular memory by locking homeotic genes in a transcriptionally repressed state. What was initially thought to be a function restricted to a few target genes, subsequently turned out to be of much broader relevance, since the main role of PcG complexes is to ensure a dynamically choregraphed spatio-temporal regulation of their numerous target genes during development. Their ability to modify chromatin landscapes and refine the expression of master genes controlling major switches in cellular decisions under physiological conditions is often misregulated in tumors. Surprisingly, their functional implication in the initiation and progression of cancer may be either dependent on Polycomb complexes, or specific for a subunit that acts independently of other PcG members. In this review, we describe how misregulated Polycomb proteins play a pleiotropic role in cancer by altering a broad spectrum of biological processes such as the proliferation-differentiation balance, metabolism and the immune response, all of which are crucial in tumor progression. We also illustrate how interfering with PcG functions can provide a powerful strategy to counter tumor progression.
Collapse
Affiliation(s)
- Victoria Parreno
- Institute of Human Genetics, UMR 9002, CNRS-University of Montpellier, Montpellier, France
| | - Anne-Marie Martinez
- Institute of Human Genetics, UMR 9002, CNRS-University of Montpellier, Montpellier, France.
| | - Giacomo Cavalli
- Institute of Human Genetics, UMR 9002, CNRS-University of Montpellier, Montpellier, France.
| |
Collapse
|
19
|
Liaw GJ. Polycomb repressive complex 1 initiates and maintains tailless repression in Drosophila embryo. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194786. [PMID: 35032681 DOI: 10.1016/j.bbagrm.2022.194786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Maternally-deposited morphogens specify the fates of embryonic cells via hierarchically regulating the expression of zygotic genes that encode various classes of developmental regulators. Once the cell fates are determined, Polycomb-group proteins frequently maintain the repressed state of the genes. This study investigates how Polycomb-group proteins repress the expression of tailless, which encodes a developmental regulator in Drosophila embryo. Previous studies have shown that maternal Tramtrack69 facilitates maternal GAGA-binding factor and Heat shock factor binding to the torso response element (tor-RE) to initiate tailless repression in the stage-4 embryo. Chromatin-immunoprecipitation and genetic-interaction studies exhibit that maternally-deposited Polycomb repressive complex 1 (PRC1) recruited by the tor-RE-associated Tramtrack69 represses tailless expression in the stage-4 embryo. A noncanonical Polycomb-group response element (PRE) is mapped to the tailless proximal region. High levels of Bric-a-brac, Tramtrack, and Broad (BTB)-domain proteins are fundamental for maintaining tailless repression in the stage-8 to -10 embryos. Trmtrack69 sporadically distributes in the linear BTB-domain oligomer, which recruits and retains a high level of PRC1 near the GCCAT cluster for repressing tll expression in the stage-14 embryos. Disrupting the retention of PRC1 decreases the levels of PRC1 and Pleiohomeotic protein substantially on the PRE and causes tailless derepression in the stage-14 embryo. Furthermore, the retained PRC1 potentially serves as a second foundation for assembling the well-characterized polymer of the Sterile alpha motif domain in Polyhomeotic protein, which compacts chromatin to maintain the repressed state of tailless in the embryos after stage 14.
Collapse
Affiliation(s)
- Gwo-Jen Liaw
- Department of Life Sciences and Institute of Genomic Sciences, National Yang Ming Chiao Tung University, Yangming Campus, No. 155, Sec. 2, Linong St., Taipei 112, Taiwan.
| |
Collapse
|
20
|
Thomsen I, Kunowska N, de Souza R, Moody AM, Crawford G, Wang YF, Khadayate S, Whilding C, Strid J, Karimi MM, Barr AR, Dillon N, Sabbattini P. RUNX1 Regulates a Transcription Program That Affects the Dynamics of Cell Cycle Entry of Naive Resting B Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:2976-2991. [PMID: 34810221 PMCID: PMC8675107 DOI: 10.4049/jimmunol.2001367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 09/28/2021] [Indexed: 11/19/2022]
Abstract
RUNX1 is a transcription factor that plays key roles in hematopoietic development and in hematopoiesis and lymphopoiesis. In this article, we report that RUNX1 regulates a gene expression program in naive mouse B cells that affects the dynamics of cell cycle entry in response to stimulation of the BCR. Conditional knockout of Runx1 in mouse resting B cells resulted in accelerated entry into S-phase after BCR engagement. Our results indicate that Runx1 regulates the cyclin D2 (Ccnd2) gene, the immediate early genes Fosl2, Atf3, and Egr2, and the Notch pathway gene Rbpj in mouse B cells, reducing the rate at which transcription of these genes increases after BCR stimulation. RUNX1 interacts with the chromatin remodeler SNF-2-related CREB-binding protein activator protein (SRCAP), recruiting it to promoter and enhancer regions of the Ccnd2 gene. BCR-mediated activation triggers switching between binding of RUNX1 and its paralog RUNX3 and between SRCAP and the switch/SNF remodeling complex member BRG1. Binding of BRG1 is increased at the Ccnd2 and Rbpj promoters in the Runx1 knockout cells after BCR stimulation. We also find that RUNX1 exerts positive or negative effects on a number of genes that affect the activation response of mouse resting B cells. These include Cd22 and Bank1, which act as negative regulators of the BCR, and the IFN receptor subunit gene Ifnar1 The hyperresponsiveness of the Runx1 knockout B cells to BCR stimulation and its role in regulating genes that are associated with immune regulation suggest that RUNX1 could be involved in regulating B cell tolerance.
Collapse
Affiliation(s)
- Inesa Thomsen
- Gene Regulation and Chromatin Group, MRC London Institute of Medical Sciences, London, United Kingdom
| | - Natalia Kunowska
- Gene Regulation and Chromatin Group, MRC London Institute of Medical Sciences, London, United Kingdom
| | - Roshni de Souza
- Gene Regulation and Chromatin Group, MRC London Institute of Medical Sciences, London, United Kingdom
| | - Anne-Marie Moody
- Gene Regulation and Chromatin Group, MRC London Institute of Medical Sciences, London, United Kingdom
| | - Greg Crawford
- Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Yi-Fang Wang
- Bioinformatics and Computing, MRC London Institute of Medical Sciences, London, United Kingdom
| | - Sanjay Khadayate
- Bioinformatics and Computing, MRC London Institute of Medical Sciences, London, United Kingdom
| | - Chad Whilding
- Microscopy Facility, MRC London Institute of Medical Sciences, London, United Kingdom
| | - Jessica Strid
- Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Mohammad M Karimi
- Bioinformatics and Computing, MRC London Institute of Medical Sciences, London, United Kingdom
- Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Alexis R Barr
- Cell Cycle Control Group, MRC London Institute of Medical Sciences, London, United Kingdom; and
- Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| | - Niall Dillon
- Gene Regulation and Chromatin Group, MRC London Institute of Medical Sciences, London, United Kingdom;
- Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| | - Pierangela Sabbattini
- Gene Regulation and Chromatin Group, MRC London Institute of Medical Sciences, London, United Kingdom;
| |
Collapse
|
21
|
Blackledge NP, Klose RJ. The molecular principles of gene regulation by Polycomb repressive complexes. Nat Rev Mol Cell Biol 2021; 22:815-833. [PMID: 34400841 PMCID: PMC7612013 DOI: 10.1038/s41580-021-00398-y] [Citation(s) in RCA: 251] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2021] [Indexed: 12/12/2022]
Abstract
Precise control of gene expression is fundamental to cell function and development. Although ultimately gene expression relies on DNA-binding transcription factors to guide the activity of the transcription machinery to genes, it has also become clear that chromatin and histone post-translational modification have fundamental roles in gene regulation. Polycomb repressive complexes represent a paradigm of chromatin-based gene regulation in animals. The Polycomb repressive system comprises two central protein complexes, Polycomb repressive complex 1 (PRC1) and PRC2, which are essential for normal gene regulation and development. Our early understanding of Polycomb function relied on studies in simple model organisms, but more recently it has become apparent that this system has expanded and diverged in mammals. Detailed studies are now uncovering the molecular mechanisms that enable mammalian PRC1 and PRC2 to identify their target sites in the genome, communicate through feedback mechanisms to create Polycomb chromatin domains and control transcription to regulate gene expression. In this Review, we discuss and contextualize the emerging principles that define how this fascinating chromatin-based system regulates gene expression in mammals.
Collapse
Affiliation(s)
| | - Robert J Klose
- Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
22
|
Yu H, Gao R, Chen S, Liu X, Wang Q, Cai W, Vemula S, Fahey AC, Henley D, Kobayashi M, Liu SZ, Qian Z, Kapur R, Broxmeyer HE, Gao Z, Xi R, Liu Y. Bmi1 Regulates Wnt Signaling in Hematopoietic Stem and Progenitor Cells. Stem Cell Rev Rep 2021; 17:2304-2313. [PMID: 34561772 PMCID: PMC9097559 DOI: 10.1007/s12015-021-10253-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2021] [Indexed: 11/26/2022]
Abstract
Polycomb group protein Bmi1 is essential for hematopoietic stem cell (HSC) self-renewal and terminal differentiation. However, its target genes in hematopoietic stem and progenitor cells are largely unknown. We performed gene expression profiling assays and found that genes of the Wnt signaling pathway are significantly elevated in Bmi1 null hematopoietic stem and progenitor cells (HSPCs). Bmi1 is associated with several genes of the Wnt signaling pathway in hematopoietic cells. Further, we found that Bmi1 represses Wnt gene expression in HSPCs. Importantly, loss of β-catenin, which reduces Wnt activation, partially rescues the HSC self-renewal and differentiation defects seen in the Bmi1 null mice. Thus, we have identified Bmi1 as a novel regulator of Wnt signaling pathway in HSPCs. Given that Wnt signaling pathway plays an important role in hematopoiesis, our studies suggest that modulating Wnt signaling may hold potential for enhancing HSC self-renewal, thereby improving the outcomes of HSC transplantation.
Collapse
Affiliation(s)
- Hao Yu
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Rui Gao
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Sisi Chen
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Xicheng Liu
- National Institute of Biological Science, Beijing, China
| | - Qiang Wang
- Department of Biochemistry and Molecular Biology, College of Medicine, Pennsylvania State University, Hershey, PA, 17033, USA
| | - Wenjie Cai
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Sasidhar Vemula
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Aidan C Fahey
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Danielle Henley
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Michihiro Kobayashi
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Stephen Z Liu
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Zhijian Qian
- Department of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Reuben Kapur
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Hal E Broxmeyer
- Department of Microbiology and Immunology, Indiana University, Indianapolis, IN, 46202, USA
| | - Zhonghua Gao
- Department of Biochemistry and Molecular Biology, College of Medicine, Pennsylvania State University, Hershey, PA, 17033, USA
| | - Rongwen Xi
- National Institute of Biological Science, Beijing, China.
| | - Yan Liu
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL, 60611, USA.
| |
Collapse
|
23
|
Krishnan V, Kim DDH, Hughes TP, Branford S, Ong ST. Integrating genetic and epigenetic factors in chronic myeloid leukemia risk assessment: toward gene expression-based biomarkers. Haematologica 2021; 107:358-370. [PMID: 34615339 PMCID: PMC8804571 DOI: 10.3324/haematol.2021.279317] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Indexed: 11/17/2022] Open
Abstract
Cancer treatment is constantly evolving from a one-size-fits-all towards bespoke approaches for each patient. In certain solid cancers, including breast and lung, tumor genome profiling has been incorporated into therapeutic decision-making. For chronic phase chronic myeloid leukemia (CML), while tyrosine kinase inhibitor therapy is the standard treatment, current clinical scoring systems cannot accurately predict the heterogeneous treatment outcomes observed in patients. Biomarkers capable of segregating patients according to outcome at diagnosis are needed to improve management, and facilitate enrollment in clinical trials seeking to prevent blast crisis transformation and improve the depth of molecular responses. To this end, gene expression (GE) profiling studies have evaluated whether GE signatures at diagnosis are clinically informative. Patient material from a variety of sources has been profiled using microarrays, RNA sequencing and, more recently, single-cell RNA sequencing. However, differences in the cell types profiled, the technologies used, and the inherent complexities associated with the interpretation of genomic data pose challenges in distilling GE datasets into biomarkers with clinical utility. The goal of this paper is to review previous studies evaluating GE profiling in CML, and explore their potential as risk assessment tools for individualized CML treatment. We also review the contribution that acquired mutations, including those seen in clonal hematopoiesis, make to GE profiles, and how a model integrating contributions of genetic and epigenetic factors in resistance to tyrosine kinase inhibitors and blast crisis transformation can define a route to GE-based biomarkers. Finally, we outline a four-stage approach for the development of GE-based biomarkers in CML.
Collapse
Affiliation(s)
- Vaidehi Krishnan
- Cancer and Stem Cell Biology Signature Research Program, Duke-NUS Medical School, Singapore, Singapore; International Chronic Myeloid Leukemia Foundation
| | - Dennis Dong Hwan Kim
- International Chronic Myeloid Leukemia Foundation; Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto
| | - Timothy P Hughes
- International Chronic Myeloid Leukemia Foundation; School of Medicine, University of Adelaide, Adelaide, Australia; South Australian Health and Medical Research Institute, Adelaide, Australia; Department of Haematology, Royal Adelaide Hospital, Adelaide
| | - Susan Branford
- International Chronic Myeloid Leukemia Foundation; School of Medicine, University of Adelaide, Adelaide, Australia; Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide, Australia; School of Pharmacy and Medical Science, University of South Australia, Adelaide
| | - S Tiong Ong
- Cancer and Stem Cell Biology Signature Research Program, Duke-NUS Medical School, Singapore, Singapore; International Chronic Myeloid Leukemia Foundation; Department of Haematology, Singapore General Hospital, Singapore, Singapore; Department of Medical Oncology, National Cancer Centre Singapore; Department of Medicine, Duke University Medical Center, Durham, NC.
| |
Collapse
|
24
|
Sugden WW, North TE. Making Blood from the Vessel: Extrinsic and Environmental Cues Guiding the Endothelial-to-Hematopoietic Transition. Life (Basel) 2021; 11:life11101027. [PMID: 34685398 PMCID: PMC8539454 DOI: 10.3390/life11101027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 01/10/2023] Open
Abstract
It is increasingly recognized that specialized subsets of endothelial cells carry out unique functions in specific organs and regions of the vascular tree. Perhaps the most striking example of this specialization is the ability to contribute to the generation of the blood system, in which a distinct population of “hemogenic” endothelial cells in the embryo transforms irreversibly into hematopoietic stem and progenitor cells that produce circulating erythroid, myeloid and lymphoid cells for the lifetime of an animal. This review will focus on recent advances made in the zebrafish model organism uncovering the extrinsic and environmental factors that facilitate hemogenic commitment and the process of endothelial-to-hematopoietic transition that produces blood stem cells. We highlight in particular biomechanical influences of hemodynamic forces and the extracellular matrix, metabolic and sterile inflammatory cues present during this developmental stage, and outline new avenues opened by transcriptomic-based approaches to decipher cell–cell communication mechanisms as examples of key signals in the embryonic niche that regulate hematopoiesis.
Collapse
Affiliation(s)
- Wade W. Sugden
- Stem Cell Program, Department of Hematology/Oncology, Boston Children’s Hospital, Boston, MA 02115, USA;
- Developmental and Regenerative Biology Program, Harvard Medical School, Boston, MA 02115, USA
| | - Trista E. North
- Stem Cell Program, Department of Hematology/Oncology, Boston Children’s Hospital, Boston, MA 02115, USA;
- Developmental and Regenerative Biology Program, Harvard Medical School, Boston, MA 02115, USA
- Correspondence:
| |
Collapse
|
25
|
Korinfskaya S, Parameswaran S, Weirauch MT, Barski A. Runx Transcription Factors in T Cells-What Is Beyond Thymic Development? Front Immunol 2021; 12:701924. [PMID: 34421907 PMCID: PMC8377396 DOI: 10.3389/fimmu.2021.701924] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Runx proteins (also known as Runt-domain transcription factors) have been studied for a long time as key regulators of cellular differentiation. RUNX2 has been described as essential for osteogenesis, whereas RUNX1 and RUNX3 are known to control blood cell development during different stages of cell lineage specification. However, recent studies show evidence of complex relationships between RUNX proteins, chromatin-modifying machinery, the cytoskeleton and different transcription factors in various non-embryonic contexts, including mature T cell homeostasis, inflammation and cancer. In this review, we discuss the diversity of Runx functions in mature T helper cells, such as production of cytokines and chemokines by different CD4 T cell populations; apoptosis; and immunologic memory acquisition. We then briefly cover recent findings about the contribution of RUNX1, RUNX2 and RUNX3 to various immunologic diseases. Finally, we discuss areas that require further study to better understand the role that Runx proteins play in inflammation and immunity.
Collapse
Affiliation(s)
- Svetlana Korinfskaya
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Sreeja Parameswaran
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Artem Barski
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
26
|
De Novo Polycomb Recruitment: Lessons from Latent Herpesviruses. Viruses 2021; 13:v13081470. [PMID: 34452335 PMCID: PMC8402699 DOI: 10.3390/v13081470] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 12/11/2022] Open
Abstract
The Human Herpesviruses persist in the form of a latent infection in specialized cell types. During latency, the herpesvirus genomes associate with cellular histone proteins and the viral lytic genes assemble into transcriptionally repressive heterochromatin. Although there is divergence in the nature of heterochromatin on latent herpesvirus genomes, in general, the genomes assemble into forms of heterochromatin that can convert to euchromatin to permit gene expression and therefore reactivation. This reversible form of heterochromatin is known as facultative heterochromatin and is most commonly characterized by polycomb silencing. Polycomb silencing is prevalent on the cellular genome and plays a role in developmentally regulated and imprinted genes, as well as X chromosome inactivation. As herpesviruses initially enter the cell in an un-chromatinized state, they provide an optimal system to study how de novo facultative heterochromatin is targeted to regions of DNA and how it contributes to silencing. Here, we describe how polycomb-mediated silencing potentially assembles onto herpesvirus genomes, synergizing what is known about herpesvirus latency with facultative heterochromatin targeting to the cellular genome. A greater understanding of polycomb silencing of herpesviruses will inform on the mechanism of persistence and reactivation of these pathogenic human viruses and provide clues regarding how de novo facultative heterochromatin forms on the cellular genome.
Collapse
|
27
|
Shukla S, Ying W, Gray F, Yao Y, Simes ML, Zhao Q, Miao H, Cho HJ, González-Alonso P, Winkler A, Lund G, Purohit T, Kim E, Zhang X, Ray JM, He S, Nikolaidis C, Ndoj J, Wang J, Jaremko Ł, Jaremko M, Ryan RJH, Guzman ML, Grembecka J, Cierpicki T. Small-molecule inhibitors targeting Polycomb repressive complex 1 RING domain. Nat Chem Biol 2021; 17:784-793. [PMID: 34155404 PMCID: PMC8238916 DOI: 10.1038/s41589-021-00815-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/10/2021] [Indexed: 12/11/2022]
Abstract
Polycomb repressive complex 1 (PRC1) is an essential chromatin-modifying complex that monoubiquitinates histone H2A and is involved in maintaining the repressed chromatin state. Emerging evidence suggests PRC1 activity in various cancers, rationalizing the need for small-molecule inhibitors with well-defined mechanisms of action. Here, we describe the development of compounds that directly bind to RING1B-BMI1, the heterodimeric complex constituting the E3 ligase activity of PRC1. These compounds block the association of RING1B-BMI1 with chromatin and inhibit H2A ubiquitination. Structural studies demonstrate that these inhibitors bind to RING1B by inducing the formation of a hydrophobic pocket in the RING domain. Our PRC1 inhibitor, RB-3, decreases the global level of H2A ubiquitination and induces differentiation in leukemia cell lines and primary acute myeloid leukemia (AML) samples. In summary, we demonstrate that targeting the PRC1 RING domain with small molecules is feasible, and RB-3 represents a valuable chemical tool to study PRC1 biology.
Collapse
Affiliation(s)
- Shirish Shukla
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Weijiang Ying
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Felicia Gray
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yiwu Yao
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Miranda L Simes
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Qingjie Zhao
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Hongzhi Miao
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Hyo Je Cho
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | | | - Alyssa Winkler
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - George Lund
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Trupta Purohit
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - EunGi Kim
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Xiaotian Zhang
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Joshua M Ray
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Shihan He
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | | | - Juliano Ndoj
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Jingya Wang
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- MedImmune, LLC, Gaithersburg, MD, USA
| | - Łukasz Jaremko
- Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Mariusz Jaremko
- Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Russell J H Ryan
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Monica L Guzman
- Division of Hematology and Medical Oncology, Leukemia Program, Weill Cornell Medicine/New York-Presbyterian Hospital, New York, NY, USA
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA.
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
28
|
Ghotbi E, Ye P, Ervin T, Kum A, Benes J, Jones RS. Polycomb-group recruitment to a Drosophila target gene is the default state that is inhibited by a transcriptional activator. SCIENCE ADVANCES 2021; 7:7/29/eabg1556. [PMID: 34272248 PMCID: PMC8284896 DOI: 10.1126/sciadv.abg1556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/25/2021] [Indexed: 06/13/2023]
Abstract
Polycomb-group (PcG) proteins are epigenetic regulators that maintain the transcriptional repression of target genes following their initial repression by transcription factors. PcG target genes are repressed in some cells, but active in others. Therefore, a mechanism must exist by which PcG proteins distinguish between the repressed and active states and only assemble repressive chromatin environments at target genes that are repressed. Here, we present experimental evidence that the repressed state of a Drosophila PcG target gene, giant (gt), is not identified by the presence of a repressor. Rather, de novo establishment of PcG-mediated silencing at gt is the default state that is prevented by the presence of an activator or coactivator, which may inhibit the catalytic activity of Polycomb-repressive complex 2 (PRC2).
Collapse
Affiliation(s)
- Elnaz Ghotbi
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275-0376, USA
| | - Piao Ye
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275-0376, USA
| | - Taylor Ervin
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275-0376, USA
| | - Anni Kum
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275-0376, USA
| | - Judith Benes
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275-0376, USA
| | - Richard S Jones
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275-0376, USA.
| |
Collapse
|
29
|
The transcription factor code: a beacon for histone methyltransferase docking. Trends Cell Biol 2021; 31:792-800. [PMID: 34016504 DOI: 10.1016/j.tcb.2021.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/30/2021] [Accepted: 04/08/2021] [Indexed: 12/19/2022]
Abstract
Histone methylation is required for the establishment and maintenance of gene expression patterns that determine cellular identity, and its perturbation often leads to aberrant development and disease. Recruitment of histone methyltransferases (HMTs) to gene regulatory elements (GREs) of developmental genes is important for the correct activation and silencing of these genes, but the drivers of this recruitment are largely unknown. Here we propose that lineage-instructive transcription factors (Lin-TFs) act as general recruiters of HMT complexes to cell type-specific GREs through protein-protein interactions. We also postulate that the specificity of these interactions is dictated by Lin-TF post-translational modifications (PTMs), which act as a 'transcription factor code' that can determine the directionality of cell fate decisions during differentiation and development.
Collapse
|
30
|
Abstract
The core binding factor composed of CBFβ and RUNX subunits plays a critical role in most hematopoietic lineages and is deregulated in acute myeloid leukemia (AML). The fusion oncogene CBFβ-SMMHC expressed in AML with the chromosome inversion inv(16)(p13q22) acts as a driver oncogene in hematopoietic stem cells and induces AML. This review focuses on novel insights regarding the molecular mechanisms involved in CBFβ-SMMHC-driven leukemogenesis and recent advances in therapeutic approaches to target CBFβ-SMMHC in inv(16) AML.
Collapse
|
31
|
Assumpção ALFV, Fu G, Singh DK, Lu Z, Kuehnl AM, Welch R, Ong IM, Wen R, Pan X. A lineage-specific requirement for YY1 Polycomb Group protein function in early T cell development. Development 2021; 148:dev.197319. [PMID: 33766932 DOI: 10.1242/dev.197319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 03/12/2021] [Indexed: 01/22/2023]
Abstract
Yin Yang 1 (YY1) is a ubiquitous transcription factor and mammalian Polycomb Group protein (PcG) with important functions for regulating lymphocyte development and stem cell self-renewal. YY1 mediates stable PcG-dependent transcriptional repression via recruitment of PcG proteins that result in histone modifications. Many questions remain unanswered regarding how cell- and tissue-specificity is achieved by PcG proteins. Here, we demonstrate that a conditional knockout of Yy1 in the hematopoietic system results in an early T cell developmental blockage at the double negative (DN) 1 stage with reduced Notch1 signaling. There is a lineage-specific requirement for YY1 PcG function. YY1 PcG domain is required for T and B cell development but not necessary for myeloid cells. YY1 functions in early T cell development are multicomponent and involve both PcG-dependent and -independent regulations. Although YY1 promotes early T cell survival through its PcG function, its function to promote the DN1-to-DN2 transition and Notch1 expression and signaling is independent of its PcG function. Our results reveal how a ubiquitously expressed PcG protein mediates lineage-specific and context-specific functions to control early T cell development.
Collapse
Affiliation(s)
- Anna L F V Assumpção
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, 2015 Linden Dr., Madison, WI 57306, USA.,Carbone Cancer Center, UW-Madison Blood Research Program, Madison, WI 53705, USA
| | - Guoping Fu
- Versiti, Blood Research Institute, 8701 Watertown Plank Road, Milwaukee, WI 53223, USA
| | - Deependra K Singh
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, 2015 Linden Dr., Madison, WI 57306, USA.,Carbone Cancer Center, UW-Madison Blood Research Program, Madison, WI 53705, USA
| | - Zhanping Lu
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, 2015 Linden Dr., Madison, WI 57306, USA.,Carbone Cancer Center, UW-Madison Blood Research Program, Madison, WI 53705, USA
| | - Ashley M Kuehnl
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, 2015 Linden Dr., Madison, WI 57306, USA.,Carbone Cancer Center, UW-Madison Blood Research Program, Madison, WI 53705, USA
| | - Rene Welch
- Department of Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, 750 Highland Ave, Madison, WI 53705, USA.,Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, 610 Walnut St, Madison, WI 53726, USA
| | - Irene M Ong
- Carbone Cancer Center, UW-Madison Blood Research Program, Madison, WI 53705, USA.,Department of Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, 750 Highland Ave, Madison, WI 53705, USA.,Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, 610 Walnut St, Madison, WI 53726, USA
| | - Renren Wen
- Versiti, Blood Research Institute, 8701 Watertown Plank Road, Milwaukee, WI 53223, USA
| | - Xuan Pan
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, 2015 Linden Dr., Madison, WI 57306, USA.,Carbone Cancer Center, UW-Madison Blood Research Program, Madison, WI 53705, USA
| |
Collapse
|
32
|
Epigenetics in a Spectrum of Myeloid Diseases and Its Exploitation for Therapy. Cancers (Basel) 2021; 13:cancers13071746. [PMID: 33917538 PMCID: PMC8038780 DOI: 10.3390/cancers13071746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The genome is stored in the limited space of the nucleus in a highly condensed form. The regulation of this packaging contributes to determining the accessibility of genes and is important for cell function. Genes affecting the genome’s packaging are frequently mutated in bone marrow cells that give rise to the different types of blood cells. Here, we first discuss the molecular functions of these genes and their role in blood generation under healthy conditions. Then, we describe how their mutations relate to a subset of diseases including blood cancers. Finally, we provide an overview of the current efforts of using and developing drugs targeting these and related genes. Abstract Mutations in genes encoding chromatin regulators are early events contributing to developing asymptomatic clonal hematopoiesis of indeterminate potential and its frequent progression to myeloid diseases with increasing severity. We focus on the subset of myeloid diseases encompassing myelodysplastic syndromes and their transformation to secondary acute myeloid leukemia. We introduce the major concepts of chromatin regulation that provide the basis of epigenetic regulation. In greater detail, we discuss those chromatin regulators that are frequently mutated in myelodysplastic syndromes. We discuss their role in the epigenetic regulation of normal hematopoiesis and the consequence of their mutation. Finally, we provide an update on the drugs interfering with chromatin regulation approved or in development for myelodysplastic syndromes and acute myeloid leukemia.
Collapse
|
33
|
Li Y, Ge C, Franceschi RT. Role of Runx2 in prostate development and stem cell function. Prostate 2021; 81:231-241. [PMID: 33411419 PMCID: PMC7856111 DOI: 10.1002/pros.24099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND RUNX2, a critical transcription factor in bone development, is also expressed in prostate and breast where it has been linked to cancer progression and cancer stem cells. However, its role in normal prostate biology has not been previously examined. METHODS Selective growth of murine prostate epithelium under non-adherent conditions was used to enrich for stem cells. Expression of runt domain transcription factors, stem cell and prostate marker messenger RNAs (mRNAs) was determined by quantitative reverse transcription polymerase chain reaction. Effects of Runx2 loss and gain-of-function on prostate epithelial cells were assessed using cells isolated from Runx2loxp/loxp mice transduced with Adeno-Cre or by Adeno-Runx2 transduction of wild type cells. Cellular distribution of RUNX2 and prostate-associated proteins was assessed using immunofluorescence microscopy. In vivo Runx2 knock out was achieved by tamoxifen treatment of Nkx3.1CreERT; Runx2loxp/loxp mice. RESULTS Prostate epithelium-derived spheroids, which are enriched in stem cells, were shown to contain elevated levels of Runx2 mRNA. Spheroid formation required Runx2 since adenovirus-Cre mediated knockout of Runx2 in prostatic epithelial cells from Runx2loxp/loxp mice severely reduced spheroid formation and stem cell markers while Runx2 overexpression was stimulatory. In vivo, Runx2 was detected during early prostate development (E16.5) and in adult mice where it was present in basal and luminal cells of ventral and anterior lobes. Prostate-selective deletion of Runx2 in tamoxifen-treated Nkx3.1CreERT; Runx2loxp/loxp mice severely inhibited growth and maturation of tubules in the anterior prostate and reduced expression of stem cell markers and prostate-associated genes. CONCLUSION This study demonstrates an important role for Runx2 in prostate development that may be explained by actions in prostate epithelial stem cells.
Collapse
Affiliation(s)
- Yan Li
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI
| | - Chunxi Ge
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI
| | - Renny T. Franceschi
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI
- Department of Biological Chemistry, University of Michigan School of Medicine, Ann Arbor, MI
- Department of Biomedical Engineering, University of Michigan School of Engineering, Ann Arbor, MI
| |
Collapse
|
34
|
Wang Y, Sun Y, Shang C, Chen L, Chen H, Wang D, Zeng X. Distinct Ring1b complexes defined by DEAD-box helicases and EMT transcription factors synergistically enhance E-cadherin silencing in breast cancer. Cell Death Dis 2021; 12:202. [PMID: 33608512 PMCID: PMC7895950 DOI: 10.1038/s41419-021-03491-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 01/31/2023]
Abstract
Ring1b is a core subunit of polycomb repressive complex 1 (PRC1) and is essential in several high-risk cancers. However, the epigenetic mechanism of Ring1b underlying breast cancer malignancy is poorly understood. In this study, we showed increased expression of Ring1b promoted metastasis by weakening cell-cell adhesions of breast cancer cells. We confirmed that Ring1b could downregulate E-cadherin and contributed to an epigenetic rewiring via PRC1-dependent function by forming distinct complexes with DEAD-box RNA helicases (DDXs) or epithelial-mesenchymal transition transcription factors (EMT TFs) on site-specific loci of E-cadherin promoter. DDXs-Ring1b complexes moderately inhibited E-cadherin, which resulted in an early hybrid EMT state of epithelial cells, and EMT TFs-Ring1b complexes cooperated with DDXs-Ring1b complexes to further repress E-cadherin in mesenchymal-like cancer cells. Clinically, high expression of Ring1b with DDXs or EMT TFs predicted low levels of E-cadherin, metastatic behavior, and poor prognosis. These findings provide an epigenetic regulation mechanism of Ring1b complexes in E-cadherin expression. Ring1b complexes may be potential therapeutic targets and biomarkers for diagnosis and prognosis in invasion breast cancer.
Collapse
Affiliation(s)
- Yawei Wang
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin, China
| | - Yingying Sun
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin, China
| | - Chao Shang
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin, China
| | - Lili Chen
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin, China
| | - Hongyu Chen
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin, China
| | - Dake Wang
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin, China
| | - Xianlu Zeng
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin, China.
| |
Collapse
|
35
|
Cordonnier G, Mandoli A, Cagnard N, Hypolite G, Lhermitte L, Verhoeyen E, Asnafi V, Dillon N, Macintyre E, Martens JHA, Bond J. CBFβ-SMMHC Affects Genome-wide Polycomb Repressive Complex 1 Activity in Acute Myeloid Leukemia. Cell Rep 2021; 30:299-307.e3. [PMID: 31940477 DOI: 10.1016/j.celrep.2019.12.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/16/2019] [Accepted: 12/06/2019] [Indexed: 10/25/2022] Open
Abstract
Mutations and deletions of polycomb repressive complex (PRC) components are increasingly recognized to affect tumor biology in a range of cancers. However, little is known about how genetic alterations of PRC-interacting molecules such as the core binding factor (CBF) complex influence polycomb activity. We report that the acute myeloid leukemia (AML)-associated CBFβ-SMMHC fusion oncoprotein physically interacts with the PRC1 complex and that these factors co-localize across the AML genome in an apparently PRC2-independent manner. Depletion of CBFβ-SMMHC caused substantial increases in genome-wide PRC1 binding and marked changes in the association between PRC1 and the CBF DNA-binding subunit RUNX1. PRC1 was more likely to be associated with actively transcribed genes in CBFβ-SMMHC-expressing cells. CBFβ-SMMHC depletion had heterogeneous effects on gene expression, including significant reductions in transcription of ribosomal loci occupied by PRC1. Our results provide evidence that CBFβ-SMMHC markedly and diversely affects polycomb recruitment and transcriptional regulation across the AML genome.
Collapse
Affiliation(s)
- Gaëlle Cordonnier
- Université Paris Descartes Sorbonne Cité, Institut Necker Enfants Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151, Paris, France; Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker-Enfants Malades, Paris, France
| | - Amit Mandoli
- Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands
| | - Nicolas Cagnard
- Sorbonne Universités, Université Paris Descartes, Bioinformatics Platform, Paris, France
| | - Guillaume Hypolite
- Université Paris Descartes Sorbonne Cité, Institut Necker Enfants Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151, Paris, France; Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker-Enfants Malades, Paris, France
| | - Ludovic Lhermitte
- Université Paris Descartes Sorbonne Cité, Institut Necker Enfants Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151, Paris, France; Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker-Enfants Malades, Paris, France
| | - Els Verhoeyen
- CIRI, International Center for Infectiology Research, EVIR Team, Université de Lyon, INSERM U1111, Lyon, France; Université Côte d'Azur, INSERM, C3M, 06204 Nice, France
| | - Vahid Asnafi
- Université Paris Descartes Sorbonne Cité, Institut Necker Enfants Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151, Paris, France; Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker-Enfants Malades, Paris, France
| | - Niall Dillon
- Gene Regulation and Chromatin Group, MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Elizabeth Macintyre
- Université Paris Descartes Sorbonne Cité, Institut Necker Enfants Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151, Paris, France; Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker-Enfants Malades, Paris, France
| | - Joost H A Martens
- Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands
| | - Jonathan Bond
- Université Paris Descartes Sorbonne Cité, Institut Necker Enfants Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151, Paris, France; Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker-Enfants Malades, Paris, France; Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland; National Children's Research Centre, Children's Health Ireland at Crumlin, Dublin, Ireland.
| |
Collapse
|
36
|
Polycomb group-mediated histone H2A monoubiquitination in epigenome regulation and nuclear processes. Nat Commun 2020; 11:5947. [PMID: 33230107 PMCID: PMC7683540 DOI: 10.1038/s41467-020-19722-9] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 10/12/2020] [Indexed: 12/19/2022] Open
Abstract
Histone posttranslational modifications are key regulators of chromatin-associated processes including gene expression, DNA replication and DNA repair. Monoubiquitinated histone H2A, H2Aub (K118 in Drosophila or K119 in vertebrates) is catalyzed by the Polycomb group (PcG) repressive complex 1 (PRC1) and reversed by the PcG-repressive deubiquitinase (PR-DUB)/BAP1 complex. Here we critically assess the current knowledge regarding H2Aub deposition and removal, its crosstalk with PcG repressive complex 2 (PRC2)-mediated histone H3K27 methylation, and the recent attempts toward discovering its readers and solving its enigmatic functions. We also discuss mounting evidence of the involvement of H2A ubiquitination in human pathologies including cancer, while highlighting some knowledge gaps that remain to be addressed. Histone H2A monoubiquitination on lysine 119 in vertebrate and lysine 118 in Drosophila (H2Aub) is an epigenomic mark usually associated with gene repression by Polycomb group factors. Here the authors review the current knowledge on the deposition and removal of H2Aub, its function in transcription and other DNA-associated processes as well as its relevance to human disease.
Collapse
|
37
|
Geng Z, Gao Z. Mammalian PRC1 Complexes: Compositional Complexity and Diverse Molecular Mechanisms. Int J Mol Sci 2020; 21:E8594. [PMID: 33202645 PMCID: PMC7697839 DOI: 10.3390/ijms21228594] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022] Open
Abstract
Polycomb group (PcG) proteins function as vital epigenetic regulators in various biological processes, including pluripotency, development, and carcinogenesis. PcG proteins form multicomponent complexes, and two major types of protein complexes have been identified in mammals to date, Polycomb Repressive Complexes 1 and 2 (PRC1 and PRC2). The PRC1 complexes are composed in a hierarchical manner in which the catalytic core, RING1A/B, exclusively interacts with one of six Polycomb group RING finger (PCGF) proteins. This association with specific PCGF proteins allows for PRC1 to be subdivided into six distinct groups, each with their own unique modes of action arising from the distinct set of associated proteins. Historically, PRC1 was considered to be a transcription repressor that deposited monoubiquitylation of histone H2A at lysine 119 (H2AK119ub1) and compacted local chromatin. More recently, there is increasing evidence that demonstrates the transcription activation role of PRC1. Moreover, studies on the higher-order chromatin structure have revealed a new function for PRC1 in mediating long-range interactions. This provides a different perspective regarding both the transcription activation and repression characteristics of PRC1. This review summarizes new advancements regarding the composition of mammalian PRC1 and accompanying explanations of how diverse PRC1-associated proteins participate in distinct transcription regulation mechanisms.
Collapse
Affiliation(s)
- Zhuangzhuang Geng
- Departments of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA;
| | - Zhonghua Gao
- Departments of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA;
- Penn State Hershey Cancer Institute, Hershey, PA 17033, USA
- The Stem Cell and Regenerative Biology Program, Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
38
|
Varlet E, Ovejero S, Martinez AM, Cavalli G, Moreaux J. Role of Polycomb Complexes in Normal and Malignant Plasma Cells. Int J Mol Sci 2020; 21:ijms21218047. [PMID: 33126754 PMCID: PMC7662980 DOI: 10.3390/ijms21218047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 02/01/2023] Open
Abstract
Plasma cells (PC) are the main effectors of adaptive immunity, responsible for producing antibodies to defend the body against pathogens. They are the result of a complex highly regulated cell differentiation process, taking place in several anatomical locations and involving unique genetic events. Pathologically, PC can undergo tumorigenesis and cause a group of diseases known as plasma cell dyscrasias, including multiple myeloma (MM). MM is a severe disease with poor prognosis that is characterized by the accumulation of malignant PC within the bone marrow, as well as high clinical and molecular heterogeneity. MM patients frequently develop resistance to treatment, leading to relapse. Polycomb group (PcG) proteins are epigenetic regulators involved in cell fate and carcinogenesis. The emerging roles of PcG in PC differentiation and myelomagenesis position them as potential therapeutic targets in MM. Here, we focus on the roles of PcG proteins in normal and malignant plasma cells, as well as their therapeutic implications.
Collapse
Affiliation(s)
- Emmanuel Varlet
- Institute of Human Genetics, UMR 9002 Centre National de la Recherche Scientifique, University of Montpellier, Montpellier, 34396 Montpellier, France; (E.V.); (S.O.); (A.-M.M.); (G.C.)
| | - Sara Ovejero
- Institute of Human Genetics, UMR 9002 Centre National de la Recherche Scientifique, University of Montpellier, Montpellier, 34396 Montpellier, France; (E.V.); (S.O.); (A.-M.M.); (G.C.)
- Department of Biological Hematology, CHU Montpellier, 34295 Montpellier, France
| | - Anne-Marie Martinez
- Institute of Human Genetics, UMR 9002 Centre National de la Recherche Scientifique, University of Montpellier, Montpellier, 34396 Montpellier, France; (E.V.); (S.O.); (A.-M.M.); (G.C.)
| | - Giacomo Cavalli
- Institute of Human Genetics, UMR 9002 Centre National de la Recherche Scientifique, University of Montpellier, Montpellier, 34396 Montpellier, France; (E.V.); (S.O.); (A.-M.M.); (G.C.)
| | - Jerome Moreaux
- Institute of Human Genetics, UMR 9002 Centre National de la Recherche Scientifique, University of Montpellier, Montpellier, 34396 Montpellier, France; (E.V.); (S.O.); (A.-M.M.); (G.C.)
- Department of Biological Hematology, CHU Montpellier, 34295 Montpellier, France
- UFR Medicine, University of Montpellier, 34003 Montpellier, France
- Institut Universitaire de France (IUF), 75005 Paris, France
- Correspondence: ; Tel.: +33-04-6733-7903
| |
Collapse
|
39
|
Hsp70/Bmi1-FoxO1-SOD Signaling Pathway Contributes to the Protective Effect of Sound Conditioning against Acute Acoustic Trauma in a Rat Model. Neural Plast 2020; 2020:8823785. [PMID: 33082778 PMCID: PMC7556106 DOI: 10.1155/2020/8823785] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/27/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023] Open
Abstract
Sound conditioning (SC) is defined as “toughening” to lower levels of sound over time, which reduces a subsequent noise-induced threshold shift. Although the protective effect of SC in mammals is generally understood, the exact mechanisms involved have not yet been elucidated. To confirm the protective effect of SC against noise exposure (NE) and the stress-related signaling pathway of its rescue, we observed target molecule changes caused by SC of low frequency prior to NE as well as histology analysis in vivo and verified the suggested mechanisms in SGNs in vitro. Further, we investigated the potential role of Hsp70 and Bmi1 in SC by targeting SOD1 and SOD2 which are regulated by the FoxO1 signaling pathway based on mitochondrial function and reactive oxygen species (ROS) levels. Finally, we sought to identify the possible molecular mechanisms associated with the beneficial effects of SC against noise-induced trauma. Data from the rat model were evaluated by western blot, immunofluorescence, and RT-PCR. The results revealed that SC upregulated Hsp70, Bmi1, FoxO1, SOD1, and SOD2 expression in spiral ganglion neurons (SGNs). Moreover, the auditory brainstem responses (ABRs) and electron microscopy revealed that SC could protect against acute acoustic trauma (AAT) based on a significant reduction of hearing impairment and visible reduction in outer hair cell loss as well as ultrastructural changes in OHCs and SGNs. Collectively, these results suggested that the contribution of Bmi1 toward decreased sensitivity to noise-induced trauma following SC was triggered by Hsp70 induction and associated with enhancement of the antioxidant system and decreased mitochondrial superoxide accumulation. This contribution of Bmi1 was achieved by direct targeting of SOD1 and SOD2, which was regulated by FoxO1. Therefore, the Hsp70/Bmi1-FoxO1-SOD signaling pathway might contribute to the protective effect of SC against AAT in a rat model.
Collapse
|
40
|
Fang C, Rao S, Crispino JD, Ntziachristos P. Determinants and role of chromatin organization in acute leukemia. Leukemia 2020; 34:2561-2575. [PMID: 32690881 PMCID: PMC7999176 DOI: 10.1038/s41375-020-0981-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/26/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022]
Abstract
DNA is compacted into higher order structures that have major implications in gene regulation. These structures allow for long-range interactions of DNA elements, such as the association of promoters with their cognate enhancers. In recent years, mutations in genes that control these structures, including the cohesin-complex and the insulator-binding protein CTCF, have been found in a spectrum of hematologic disorders, and especially in acute leukemias. Cohesin and CTCF are critical for mediating looping and establishing boundaries within chromatin. Cells that harbor mutations in these genes display aberrant chromatin architecture and resulting differences in gene expression that contribute to leukemia initiation and progression. Here, we provide detailed discussion of the nature of 3D interactions and the way that they are disrupted in acute leukemia. Continued research in this area will provide new insights into the mechanisms of leukemogenesis and may shed light on novel treatment strategies.
Collapse
Affiliation(s)
- Celestia Fang
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Sridhar Rao
- Versiti Blood Research Institute, Milwaukee, WI, 53226, USA
| | - John D Crispino
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Division of Hematology, Northwestern University, Chicago, IL, 60611, USA.
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
| | - Panagiotis Ntziachristos
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Division of Hematology, Northwestern University, Chicago, IL, 60611, USA.
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
41
|
Ribosomes: An Exciting Avenue in Stem Cell Research. Stem Cells Int 2020; 2020:8863539. [PMID: 32695182 PMCID: PMC7362291 DOI: 10.1155/2020/8863539] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 02/07/2023] Open
Abstract
Stem cell research has focused on genomic studies. However, recent evidence has indicated the involvement of epigenetic regulation in determining the fate of stem cells. Ribosomes play a crucial role in epigenetic regulation, and thus, we focused on the role of ribosomes in stem cells. Majority of living organisms possess ribosomes that are involved in the translation of mRNA into proteins and promote cellular proliferation and differentiation. Ribosomes are stable molecular machines that play a role with changes in the levels of RNA during translation. Recent research suggests that specific ribosomes actively regulate gene expression in multiple cell types, such as stem cells. Stem cells have the potential for self-renewal and differentiation into multiple lineages and, thus, require high efficiency of translation. Ribosomes induce cellular transdifferentiation and reprogramming, and disrupted ribosome synthesis affects translation efficiency, thereby hindering stem cell function leading to cell death and differentiation. Stem cell function is regulated by ribosome-mediated control of stem cell-specific gene expression. In this review, we have presented a detailed discourse on the characteristics of ribosomes in stem cells. Understanding ribosome biology in stem cells will provide insights into the regulation of stem cell function and cellular reprogramming.
Collapse
|
42
|
Cohen I, Bar C, Ezhkova E. Activity of PRC1 and Histone H2AK119 Monoubiquitination: Revising Popular Misconceptions. Bioessays 2020; 42:e1900192. [PMID: 32196702 PMCID: PMC7585675 DOI: 10.1002/bies.201900192] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/12/2020] [Indexed: 12/21/2022]
Abstract
Polycomb group proteins are evolutionary conserved chromatin-modifying complexes, essential for the regulation of developmental and cell-identity genes. Polycomb-mediated transcriptional regulation is provided by two multi-protein complexes known as Polycomb repressive complex 1 (PRC1) and 2 (PRC2). Recent studies positioned PRC1 as a foremost executer of Polycomb-mediated transcriptional control. Mammalian PRC1 complexes can form multiple sub-complexes that vary in their core and accessory subunit composition, leading to fascinating and diverse transcriptional regulatory mechanisms employed by PRC1 complexes. These mechanisms include PRC1-catalytic activity toward monoubiquitination of histone H2AK119, a well-established hallmark of PRC1 complexes, whose importance has been long debated. In this review, the central roles that PRC1-catalytic activity plays in transcriptional repression are emphasized and the recent evidence supporting a role for PRC1 complexes in gene activation is discussed.
Collapse
Affiliation(s)
- Idan Cohen
- The Shraga Segal Department of Microbiology, Immunology and Genetics; Faculty of Health Science; Ben-Gurion University of the Negev; Beer Sheva 84105; Israel
- These authors contributed equally to this work
| | - Carmit Bar
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology; Icahn School of Medicine at Mount Sinai; 1 Gustave L. Levy Place, New York, NY 10029; USA
- These authors contributed equally to this work
| | - Elena Ezhkova
- The Shraga Segal Department of Microbiology, Immunology and Genetics; Faculty of Health Science; Ben-Gurion University of the Negev; Beer Sheva 84105; Israel
| |
Collapse
|
43
|
Harly C, Kenney D, Wang Y, Ding Y, Zhao Y, Awasthi P, Bhandoola A. A Shared Regulatory Element Controls the Initiation of Tcf7 Expression During Early T Cell and Innate Lymphoid Cell Developments. Front Immunol 2020; 11:470. [PMID: 32265924 PMCID: PMC7099406 DOI: 10.3389/fimmu.2020.00470] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 02/28/2020] [Indexed: 12/26/2022] Open
Abstract
The transcription factor TCF-1 (encoded by Tcf7) plays critical roles in several lineages of hematopoietic cells. In this study, we examined the molecular basis for Tcf7 regulation in T cells, innate lymphoid cells, and migratory conventional dendritic cells that we find express Tcf7. We identified a 1 kb regulatory element crucial for the initiation of Tcf7 expression in T cells and innate lymphoid cells, but dispensable for Tcf7 expression in Tcf7-expressing dendritic cells. Within this region, we identified a Notch binding site important for the initiation of Tcf7 expression in T cells but not in innate lymphoid cells. Our work establishes that the same regulatory element is used by distinct transcriptional controllers to initiate Tcf7 expression in T cells and ILCs.
Collapse
Affiliation(s)
- Christelle Harly
- T-Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD, United States.,Université de Nantes, CNRS, Inserm, CRCINA, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Devin Kenney
- T-Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD, United States
| | - Yueqiang Wang
- T-Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD, United States.,Typhoon Biotech, BGI-Shenzhen, Shenzhen, China
| | - Yi Ding
- T-Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD, United States
| | - Yongge Zhao
- T-Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD, United States
| | - Parirokh Awasthi
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, National Institute of Health, Frederick, MD, United States
| | - Avinash Bhandoola
- T-Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD, United States
| |
Collapse
|
44
|
Shokouhian M, Bagheri M, Poopak B, Chegeni R, Davari N, Saki N. Altering chromatin methylation patterns and the transcriptional network involved in regulation of hematopoietic stem cell fate. J Cell Physiol 2020; 235:6404-6423. [PMID: 32052445 DOI: 10.1002/jcp.29642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 01/31/2020] [Indexed: 12/15/2022]
Abstract
Hematopoietic stem cells (HSCs) are quiescent cells with self-renewal capacity and potential multilineage development. Various molecular regulatory mechanisms such as epigenetic modifications and transcription factor (TF) networks play crucial roles in establishing a balance between self-renewal and differentiation of HSCs. Histone/DNA methylations are important epigenetic modifications involved in transcriptional regulation of specific lineage HSCs via controlling chromatin structure and accessibility of DNA. Also, TFs contribute to either facilitation or inhibition of gene expression through binding to enhancer or promoter regions of DNA. As a result, epigenetic factors and TFs regulate the activation or repression of HSCs genes, playing a central role in normal hematopoiesis. Given the importance of histone/DNA methylation and TFs in gene expression regulation, their aberrations, including changes in HSCs-related methylation of histone/DNA and TFs (e.g., CCAAT-enhancer-binding protein α, phosphatase and tensin homolog deleted on the chromosome 10, Runt-related transcription factor 1, signal transducers and activators of transcription, and RAS family proteins) could disrupt HSCs fate. Herewith, we summarize how dysregulations in the expression of genes related to self-renewal, proliferation, and differentiation of HSCs caused by changes in epigenetic modifications and transcriptional networks lead to clonal expansion and leukemic transformation.
Collapse
Affiliation(s)
- Mohammad Shokouhian
- Department of Hematology and Blood Transfusion, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Marziye Bagheri
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Behzad Poopak
- Department of Hematology, Faculty of Paramedical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Rouzbeh Chegeni
- Michener Institute of Education at University Health Network, Toronto, Canada
| | - Nader Davari
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
45
|
Benzodiazepines Drive Alteration of Chromatin at the Integrated HIV-1 LTR. Viruses 2020; 12:v12020191. [PMID: 32050449 PMCID: PMC7077212 DOI: 10.3390/v12020191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/29/2020] [Accepted: 02/04/2020] [Indexed: 12/19/2022] Open
Abstract
Antiretroviral therapy (ART) lowers human immunodeficiency virus type 1 (HIV-1) viral load to undetectable levels, but does not eliminate the latent reservoir. One of the factors controlling the latent reservoir is transcriptional silencing of the integrated HIV-1 long terminal repeat (LTR). The molecular mechanisms that control HIV-1 transcription are not completely understood. We have previously shown that RUNX1, a host transcription factor, may play a role in the establishment and maintenance of HIV-1 latency. Prior work has demonstrated that inhibition of RUNX1 by the benzodiazepine (BDZ) Ro5-3335 synergizes with suberanilohydroxamic acid (SAHA) to activate HIV-1 transcription. In this current work, we examine the effect of RUNX1 inhibition on the chromatin state of the integrated HIV-1 LTR. Using chromatin immunoprecipitation (ChIP), we found that Ro5-3335 significantly increased the occupancy of STAT5 at the HIV-1 LTR. We also screened other BDZs for their ability to regulate HIV-1 transcription and demonstrate their ability to increase transcription and alter chromatin at the LTR without negatively affecting Tat activity. These findings shed further light on the mechanism by which RUNX proteins control HIV-1 transcription and suggest that BDZ compounds might be useful in activating HIV-1 transcription through STAT5 recruitment to the HIV-1 LTR.
Collapse
|
46
|
Epigenetic factor siRNA screen during primary KSHV infection identifies novel host restriction factors for the lytic cycle of KSHV. PLoS Pathog 2020; 16:e1008268. [PMID: 31923286 PMCID: PMC6977772 DOI: 10.1371/journal.ppat.1008268] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 01/23/2020] [Accepted: 12/09/2019] [Indexed: 12/12/2022] Open
Abstract
Establishment of viral latency is not only essential for lifelong Kaposi’s sarcoma-associated herpesvirus (KSHV) infection, but it is also a prerequisite of viral tumorigenesis. The latent viral DNA has a complex chromatin structure, which is established in a stepwise manner regulated by host epigenetic factors during de novo infection. However, despite the importance of viral latency in KSHV pathogenesis, we still have limited information about the repertoire of epigenetic factors that are critical for the establishment and maintenance of KSHV latency. Therefore, the goal of this study was to identify host epigenetic factors that suppress lytic KSHV genes during primary viral infection, which would indicate their role in latency establishment. We performed an siRNA screen targeting 392 host epigenetic factors during primary infection and analyzed which ones affect the expression of the viral replication and transcription activator (RTA) and/or the latency-associated nuclear antigen (LANA), which are viral genes essential for lytic replication and latency, respectively. As a result, we identified the Nucleosome Remodeling and Deacetylase (NuRD) complex, Tip60 and Tip60-associated co-repressors, and the histone demethylase KDM2B as repressors of KSHV lytic genes during both de novo infection and the maintenance of viral latency. Furthermore, we showed that KDM2B rapidly binds to the incoming viral DNA as early as 8 hpi, and can limit the enrichment of activating histone marks on the RTA promoter favoring the downregulation of RTA expression even prior to the polycomb proteins-regulated heterochromatin establishment on the viral genome. Strikingly, KDM2B can also suppress viral gene expression and replication during lytic infection of primary gingival epithelial cells, revealing that KDM2B can act as a host restriction factor of the lytic cycle of KSHV during both latent and lytic infections in multiple different cell types. Latent viral infection of cancer cells in KSHV-associated tumors is critical for the growth and survival of the cancer. Thus, revealing how lytic viral genes get suppressed through epigenetic regulation following de novo KSHV infection, resulting in the establishment of latency, is central to understanding the pathogenesis of KSHV infection. Importantly, the epigenetic factors that we identified as suppressors of KSHV lytic genes are not only crucial for the establishment and maintenance of KSHV latency in different cell types, but also several of them can block lytic KSHV infection in oral epithelial cells. Since herpesviruses often rely on similar sets of host epigenetic factors, the characterization of these newly identified epigenetic factors in KSHV infection may help to better understand fundamental epigenetic mechanisms that may also be utilized by other herpesviruses to establish latency following primary infection.
Collapse
|
47
|
Abstract
Mammal megakaryocytes (MK) undergo polyploidization during their differentiation. This process leads to a marked increase in the MK size and of their cytoplasm. Contrary to division by classical mitosis, ploidization allows an economical manner to produce platelets as they arise from the fragmentation of the MK cytoplasm. The platelet production in vivo correlates to the entire MK cytoplasm mass that depends both upon the number of MKs and their size. Polyploidization occurs by several rounds of DNA replication with at the end of each round an aborted mitosis at late phase of cytokinesis. As there is also a defect in karyokinesis, MKs are giant cells with a single polylobulated nucleus with a 2xN ploidy. However, polyploidization per se does not increase platelet production because it requires a parallel development of MK organelles such as mitochondria, granules and the demarcation membrane system. MK polyploidization is regulated by extrinsic factors, more particularly by thrombopoietin (TPO), which during a platelet stress increases first polyploidization before enhancing the MK number and by transcription factors such as RUNX1, GATA1, and FLI1 that regulate MK differentiation explaining why polyploidization and cytoplasmic maturation are intermingled. MK polyploidization is ontogenically regulated and is markedly altered in malignant myeloid disorders such as acute megakaryoblastic leukemia and myeloproliferative disorders as well as in hereditary thrombocytopenia, more particularly those involving transcription factors or signaling pathways. In addition, MKs arising from progenitors in vitro have a much lower ploidy in vitro than in vivo leading to a low yield of platelet production in vitro. Thus, it is tempting to find approaches to increase MK polyploidization in vitro. However, these approaches require molecules that are able to simultaneously increase MK polyploidization and to induce terminal differentiation. Here, we will focus on the regulation by extrinsic and intrinsic factors of MK polyploidization during development and pathological conditions.
Collapse
Affiliation(s)
- William Vainchenker
- UMR 1170, Institut National de la Santé et de la Recherche Médicale, Univ. Paris-Sud, Université Paris-Saclay, Gustave Roussy Cancer Campus, Equipe Labellisée Ligue Nationale Contre le Cancer , Villejuif, France
| | - Hana Raslova
- UMR 1170, Institut National de la Santé et de la Recherche Médicale, Univ. Paris-Sud, Université Paris-Saclay, Gustave Roussy Cancer Campus, Equipe Labellisée Ligue Nationale Contre le Cancer , Villejuif, France
| |
Collapse
|
48
|
Kouznetsova VL, Tchekanov A, Li X, Yan X, Tsigelny IF. Polycomb repressive 2 complex-Molecular mechanisms of function. Protein Sci 2019; 28:1387-1399. [PMID: 31095801 PMCID: PMC6635771 DOI: 10.1002/pro.3647] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 12/31/2022]
Abstract
Numerous molecular processes conduct epigenetic regulation of protein transcription to maintain cell specification. In this review, we discuss molecular mechanisms of the Polycomb group of proteins and its enzymatic role in epigenetics. More specifically, we focus on the Polycomb repressive complex 2 (PRC2) and the effects of its repressive marker. We have compiled information regarding the biological structure and how that impacts the stability of the complex. In addition, we examined functions of the individual core proteins of PRC2 in relation to the accessory proteins that interact with the complex. Lastly, we discuss the implications of unregulated and downregulated PRC2 activity in Alzheimer's disease and cancer and possible methods of treatment related to PRC2 regulation.
Collapse
Affiliation(s)
- Valentina L. Kouznetsova
- Moores Cancer Center, UC San DiegoLa JollaCalifornia92093
- San Diego Supercomputer Center, UC San DiegoLa JollaCalifornia92093
| | | | - Xiaoming Li
- Saviour Bioscience, Inc.San DiegoCalifornia92121
| | | | - Igor F. Tsigelny
- Moores Cancer Center, UC San DiegoLa JollaCalifornia92093
- San Diego Supercomputer Center, UC San DiegoLa JollaCalifornia92093
- CureMatch, Inc.San DiegoCA 92121
| |
Collapse
|
49
|
Chisholm KM, Denton C, Keel S, Geddis AE, Xu M, Appel BE, Cantor AB, Fleming MD, Shimamura A. Bone Marrow Morphology Associated With Germline RUNX1 Mutations in Patients With Familial Platelet Disorder With Associated Myeloid Malignancy. Pediatr Dev Pathol 2019; 22:315-328. [PMID: 30600763 DOI: 10.1177/1093526618822108] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Germline mutations in RUNX1 result in autosomal dominant familial platelet disorder with associated myeloid malignancy (FPDMM). To characterize the hematopathologic features associated with a germline RUNX1 mutation, we reviewed a total of 42 bone marrow aspirates from 14 FPDMM patients, including 24 cases with no cytogenetic clonal abnormalities, and 18 with clonal karyotypes or leukemia. We found that all aspirate smears had ≥10% atypical megakaryocytes, predominantly characterized by small forms with hypolobated and eccentric nuclei, and forms with high nuclear-to-cytoplasmic ratios. Core biopsies showed variable cellularity and variable numbers of megakaryocytes with similar features to those in the aspirates. Granulocytic and/or erythroid dysplasia (≥10% cells per lineage) were present infrequently. Megakaryocytes with separate nuclear lobes were increased in patients with myelodysplastic syndrome (MDS) and acute leukemia. Comparison to an immune thrombocytopenic purpura cohort confirms increased megakaryocytes with hypolobated eccentric nuclei in FPDMM patients. As such, patients with FPDMM often have atypical megakaryocytes with small hypolobated and eccentric nuclei even in the absence of clonal cytogenetic abnormalities; these findings are related to the underlying RUNX1 germline mutation and not diagnostic of MDS. Isolated megakaryocytic dysplasia in patients with unexplained thrombocytopenia should raise the possibility of an underlying germline RUNX1 mutation.
Collapse
Affiliation(s)
- Karen M Chisholm
- 1 Department of Laboratories, Seattle Children's Hospital, Seattle, Washington.,2 Department of Laboratory Medicine, University of Washington, Seattle, Washington.,3 Department of Pathology, Boston Children's Hospital, Boston, Massachusetts
| | - Christopher Denton
- 4 Department of Pediatrics, Seattle Children's Hospital, Seattle, Washington
| | - Sioban Keel
- 5 Division of Hematology, Department of Medicine, University of Washington, Seattle, Washington
| | - Amy E Geddis
- 6 Cancer and Blood Disorders Center, Seattle Children's Hospital, Seattle, Washington.,7 Division of Hematology & Oncology, Department of Pediatrics, University of Washington, Seattle, Washington
| | - Min Xu
- 1 Department of Laboratories, Seattle Children's Hospital, Seattle, Washington.,2 Department of Laboratory Medicine, University of Washington, Seattle, Washington
| | - Burton E Appel
- 8 Joseph M. Sanzari Children's Hospital, Hackensack University Medical Center, Children's Cancer Institute, Hackensack, New Jersey
| | - Alan B Cantor
- 9 Division of Hematology Oncology, Boston Children's Hospital, Boston, Massachusetts.,10 Department of Hematology Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Mark D Fleming
- 3 Department of Pathology, Boston Children's Hospital, Boston, Massachusetts
| | - Akiko Shimamura
- 9 Division of Hematology Oncology, Boston Children's Hospital, Boston, Massachusetts.,10 Department of Hematology Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
50
|
Vidal M. Polycomb Assemblies Multitask to Regulate Transcription. EPIGENOMES 2019; 3:12. [PMID: 34968234 PMCID: PMC8594731 DOI: 10.3390/epigenomes3020012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/14/2019] [Accepted: 06/16/2019] [Indexed: 02/06/2023] Open
Abstract
The Polycomb system is made of an evolutionary ancient group of proteins, present throughout plants and animals. Known initially from developmental studies with the fly Drosophila melanogaster, they were associated with stable sustainment of gene repression and maintenance of cell identity. Acting as multiprotein assemblies with an ability to modify chromatin, through chemical additions to histones and organization of topological domains, they have been involved subsequently in control of developmental transitions and in cell homeostasis. Recent work has unveiled an association of Polycomb components with transcriptionally active loci and the promotion of gene expression, in clear contrast with conventional recognition as repressors. Focusing on mammalian models, I review here advances concerning roles in transcriptional control. Among new findings highlighted is the regulation of their catalytic properties, recruiting to targets, and activities in chromatin organization and compartmentalization. The need for a more integrated approach to the study of the Polycomb system, given its fundamental complexity and its adaptation to cell context, is discussed.
Collapse
Affiliation(s)
- Miguel Vidal
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|