1
|
Jiang C, Tan X, Jin J, Wang P. The Molecular Basis of Amino Acids Sensing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2501889. [PMID: 40411419 DOI: 10.1002/advs.202501889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/29/2025] [Indexed: 05/26/2025]
Abstract
Amino acids are organic compounds that serve as the building blocks of proteins and peptides. Additionally, they function as bioactive molecules that play important roles in metabolic regulation and signal transduction. The ability of cells to sense fluctuations in intracellular and extracellular amino acid levels is vital for effectively regulating protein synthesis and catabolism, maintaining homeostasis, adapting to diverse nutritional environments and influencing cell fate decision. In this review, the recent molecular insights into amino acids sensing are discussed, along with the different sensing mechanisms in distinct organisms.
Collapse
Affiliation(s)
- Cong Jiang
- Shanghai Tenth People's Hospital, School of Medicine, Tongji University Cancer Center, Tongji University, Shanghai, 200092, China
| | - Xiao Tan
- Shanghai Tenth People's Hospital, School of Medicine, Tongji University Cancer Center, Tongji University, Shanghai, 200092, China
| | - Jiali Jin
- Shanghai Tenth People's Hospital, School of Medicine, Tongji University Cancer Center, Tongji University, Shanghai, 200092, China
| | - Ping Wang
- Shanghai Tenth People's Hospital, School of Medicine, Tongji University Cancer Center, Tongji University, Shanghai, 200092, China
| |
Collapse
|
2
|
Paukštytė J, Tena EC, Saarikangas J. A dual reporter system for intracellular and extracellular amino acid sensing in budding yeast. Mol Biol Cell 2025; 36:mr4. [PMID: 40172974 DOI: 10.1091/mbc.e24-04-0162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025] Open
Abstract
Amino acid homeostasis is essential for cellular functions such as growth, metabolism, and signaling. In budding yeast Saccharomyces cerevisiae, the General Amino Acid Control (GAAC) and Target of Rapamycin Complex 1 (TORC1) pathways are utilized for intracellular amino acid sensing, while the Ssy1-Ptr3-Ssy5 (SPS) pathway is used for extracellular sensing. These pathways maintain homeostasis by responding to variations in amino acid levels to regulate amino acid biosynthesis and uptake. However, their interactions under various conditions and behavior at single-cell resolution remain insufficiently understood. We developed fluorescent transcriptional reporters to monitor amino acid biosynthesis and uptake pathways in single cells, revealing pathway engagement in response to different amino acid levels and types. Inhibition experiments demonstrated that the SPS pathway influences TORC1 and GAAC activities differently. Additionally, pathway engagement varied between liquid culture and colony environments. In colonies, some cells specialized in either amino acid synthesis or uptake. Disruption of the SPS pathway hindered this specialization and increased cell death rates in aging colonies, indicating a role for metabolic differentiation in maintaining colony viability. Collectively, this study introduces a new tool for exploring cellular amino acid homeostasis and highlights the importance of cellular differentiation in amino acid control for colony survival.
Collapse
Affiliation(s)
- Jurgita Paukštytė
- Helsinki Institute of Life Science HiLIFE, Helsinki 00014, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00014, Finland
| | - Emma Cervera Tena
- Helsinki Institute of Life Science HiLIFE, Helsinki 00014, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00014, Finland
| | - Juha Saarikangas
- Helsinki Institute of Life Science HiLIFE, Helsinki 00014, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
3
|
Shin KWD, Atalay MV, Cetin-Atalay R, O'Leary EM, Glass ME, Szafran JCH, Woods PS, Meliton AY, Shamaa OR, Tian Y, Mutlu GM, Hamanaka RB. mTOR signaling regulates multiple metabolic pathways in human lung fibroblasts after TGF-β and in pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2025; 328:L215-L228. [PMID: 39745695 DOI: 10.1152/ajplung.00189.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/25/2024] [Accepted: 12/11/2024] [Indexed: 01/24/2025] Open
Abstract
Idiopathic pulmonary fibrosis is a fatal disease characterized by the transforming growth factor (TGF-β)-dependent activation of lung fibroblasts, leading to excessive deposition of collagen proteins and progressive replacement of healthy lungs with scar tissue. We and others have shown that TGF-β-mediated activation of the mechanistic target of rapamycin complex 1 (mTORC1) and downstream upregulation of activating transcription factor 4 (ATF4) promotes metabolic reprogramming in lung fibroblasts characterized by upregulation of the de novo synthesis of glycine, the most abundant amino acid found in collagen protein. Whether mTOR and ATF4 regulate other metabolic pathways in lung fibroblasts has not been explored. Here, we used RNA sequencing to determine how both ATF4 and mTOR regulate gene expression in human lung fibroblasts following TGF-β. We found that ATF4 primarily regulates enzymes and transporters involved in amino acid homeostasis as well as aminoacyl-tRNA synthetases. mTOR inhibition resulted not only in the loss of ATF4 target gene expression but also in the reduced expression of glycolytic enzymes and mitochondrial electron transport chain subunits. Analysis of TGF-β-induced changes in cellular metabolite levels confirmed that ATF4 regulates amino acid homeostasis in lung fibroblasts, whereas mTOR also regulates glycolytic and TCA cycle metabolites. We further analyzed publicly available single-cell RNA-seq datasets and found increased expression of ATF4 and mTOR-regulated genes in pathologic fibroblast populations from the lungs of patients with IPF. Our results provide insight into the mechanisms of metabolic reprogramming in lung fibroblasts and highlight novel ATF4 and mTOR-dependent pathways that may be targeted to inhibit fibrotic processes.NEW & NOTEWORTHY Here, we used transcriptomic and metabolomic approaches to develop a more complete understanding of the role that mTOR, and its downstream effector ATF4, play in promoting metabolic reprogramming in lung fibroblasts. We identify novel metabolic pathways that may promote pathologic phenotypes, and we provide evidence from single-cell RNA-seq datasets that similar metabolic reprogramming occurs in patient lungs.
Collapse
Affiliation(s)
- Kun Woo D Shin
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois, United States
| | - M Volkan Atalay
- Department of Information Systems and Supply Chain Management, Loyola University Chicago, Chicago, Illinois, United States
| | - Rengul Cetin-Atalay
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Erin M O'Leary
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Mariel E Glass
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Jennifer C Houpy Szafran
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Parker S Woods
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Angelo Y Meliton
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Obada R Shamaa
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Yufeng Tian
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Gökhan M Mutlu
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Robert B Hamanaka
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois, United States
| |
Collapse
|
4
|
Bérard M, Merlini L, Martin SG. Proteomic and phosphoproteomic analyses reveal that TORC1 is reactivated by pheromone signaling during sexual reproduction in fission yeast. PLoS Biol 2024; 22:e3002963. [PMID: 39705284 PMCID: PMC11750111 DOI: 10.1371/journal.pbio.3002963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/21/2025] [Accepted: 12/02/2024] [Indexed: 12/22/2024] Open
Abstract
Starvation, which is associated with inactivation of the growth-promoting TOR complex 1 (TORC1), is a strong environmental signal for cell differentiation. In the fission yeast Schizosaccharomyces pombe, nitrogen starvation has distinct physiological consequences depending on the presence of mating partners. In their absence, cells enter quiescence, and TORC1 inactivation prolongs their life. In presence of compatible mates, TORC1 inactivation is essential for sexual differentiation. Gametes engage in paracrine pheromone signaling, grow towards each other, fuse to form the diploid zygote, and form resistant, haploid spore progenies. To understand the signaling changes in the proteome and phospho-proteome during sexual reproduction, we developed cell synchronization strategies and present (phospho-)proteomic data sets that dissect pheromone from starvation signals over the sexual differentiation and cell-cell fusion processes. Unexpectedly, these data sets reveal phosphorylation of ribosomal protein S6 during sexual development, which we establish requires TORC1 activity. We demonstrate that TORC1 is re-activated by pheromone signaling, in a manner that does not require autophagy. Mutants with low TORC1 re-activation exhibit compromised mating and poorly viable spores. Thus, while inactivated to initiate the mating process, TORC1 is reactivated by pheromone signaling in starved cells to support sexual reproduction.
Collapse
Affiliation(s)
- Melvin Bérard
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Laura Merlini
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Sophie G. Martin
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
5
|
You JS, Karaman K, Reyes-Ordoñez A, Lee S, Kim Y, Bashir R, Chen J. Leucyl-tRNA Synthetase Contributes to Muscle Weakness through Mammalian Target of Rapamycin Complex 1 Activation and Autophagy Suppression in a Mouse Model of Duchenne Muscular Dystrophy. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1571-1580. [PMID: 38762116 PMCID: PMC11393824 DOI: 10.1016/j.ajpath.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/24/2024] [Accepted: 04/05/2024] [Indexed: 05/20/2024]
Abstract
Duchenne muscular dystrophy (DMD), caused by loss-of-function mutations in the dystrophin gene, results in progressive muscle weakness and early fatality. Impaired autophagy is one of the cellular hallmarks of DMD, contributing to the disease progression. Molecular mechanisms underlying the inhibition of autophagy in DMD are not well understood. In the current study, the DMD mouse model mdx was used for the investigation of signaling pathways leading to suppression of autophagy. Mammalian target of rapamycin complex 1 (mTORC1) was hyperactive in the DMD muscles, accompanying muscle weakness and autophagy impairment. Surprisingly, Akt, a well-known upstream regulator of mTORC1, was not responsible for mTORC1 activation or the dystrophic muscle phenotypes. Instead, leucyl-tRNA synthetase (LeuRS) was overexpressed in mdx muscles compared with the wild type. LeuRS activates mTORC1 in a noncanonical mechanism that involves interaction with RagD, an activator of mTORC1. Disrupting LeuRS interaction with RagD by the small-molecule inhibitor BC-LI-0186 reduced mTORC1 activity, restored autophagy, and ameliorated myofiber damage in the mdx muscles. Furthermore, inhibition of LeuRS by BC-LI-0186 improved dystrophic muscle strength in an autophagy-dependent manner. Taken together, our findings uncovered a noncanonical function of the housekeeping protein LeuRS as a potential therapeutic target in the treatment of DMD.
Collapse
Affiliation(s)
- Jae-Sung You
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois; Nick J. Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois.
| | - Kate Karaman
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Adriana Reyes-Ordoñez
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Soohyun Lee
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Yongdeok Kim
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois; Nick J. Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Rashid Bashir
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois; Nick J. Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, Urbana, Illinois
| | - Jie Chen
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, Urbana, Illinois.
| |
Collapse
|
6
|
Xiang Y, Zhang C, Wang J, Cheng Y, Wang K, Wang L, Tong Y, Yan D. Role of blood metabolites in mediating the effect of gut microbiome on the mutated-RAS/BRAF metastatic colorectal cancer-specific survival. Int J Colorectal Dis 2024; 39:116. [PMID: 39046546 PMCID: PMC11269474 DOI: 10.1007/s00384-024-04686-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/09/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND Recent studies have linked alterations in the gut microbiome and metabolic disruptions to the invasive behavior and metastasis of colorectal cancer (CRC), thus affecting patient prognosis. However, the specific relationship among gut microbiome, metabolite profiles, and mutated-RAS/BRAF metastatic colorectal cancer (M-mCRC) remains unclear. Furthermore, the potential mechanisms and prognostic implications of metabolic changes induced by gut microbiome alterations in patients with M-mCRC still need to be better understood. METHODS We conducted Mendelian randomization (MR) to evaluate the causal relationship of genetically predicted 196 gut microbiome features and 1400 plasma metabolites/metabolite ratios on M-mCRC-specific survival. Additionally, we identified significant gut microbiome-metabolites/metabolite ratio associations based on M-mCRC. Metabolite information was annotated, and functional annotation and pathway enrichment analyses were performed on shared proteins corresponding to significant metabolite ratios, aiming to reveal potential mechanisms by which gut microbiome influences M-mCRC prognosis via modulation of human metabolism. RESULTS We identified 11 gut microbiome features and 49 known metabolites/metabolite ratios correlated with M-mCRC-specific survival. Furthermore, we identified 17 gut microbiome-metabolite/metabolite ratio associations specific to M-mCRC, involving eight lipid metabolites and three bilirubin degradation products. The shared proteins corresponding to significant metabolite ratios were predominantly localized within the integral component of the membrane and exhibited enzymatic activities such as glucuronosyltransferase and UDP-glucuronosyltransferase, crucial in processes such as glucuronidation, bile secretion, and lipid metabolism. Moreover, these proteins were significantly enriched in pathways related to ascorbate and aldarate metabolism, pentose and glucuronate interconversions, steroid hormone biosynthesis, and bile secretion. CONCLUSION Our study offers novel insights into the potential mechanisms underlying the impact of the gut microbiome on the prognosis of M-mCRC. These findings serve as a meaningful reference for exploring potential therapeutic targets and strategies in the future.
Collapse
Affiliation(s)
- Yaoxian Xiang
- Department of Oncology, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, 101149, China
| | - Chan Zhang
- Department of Oncology, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, 101149, China
| | - Jing Wang
- Department of Oncology, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, 101149, China
| | - Yurong Cheng
- Department of Oncology, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, 101149, China
| | - Kangjie Wang
- Department of Oncology, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, 101149, China
| | - Li Wang
- Department of Oncology, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, 101149, China
| | - Yingying Tong
- Department of Oncology, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, 101149, China
| | - Dong Yan
- Department of Oncology, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, 101149, China.
| |
Collapse
|
7
|
Weiss M, Hettrich S, Hofmann T, Hachim S, Günther S, Braun T, Boettger T. Mitolnc controls cardiac BCAA metabolism and heart hypertrophy by allosteric activation of BCKDH. Nucleic Acids Res 2024; 52:6629-6646. [PMID: 38567728 PMCID: PMC11194096 DOI: 10.1093/nar/gkae226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 06/25/2024] Open
Abstract
Enzyme activity is determined by various different mechanisms, including posttranslational modifications and allosteric regulation. Allosteric activators are often metabolites but other molecules serve similar functions. So far, examples of long non-coding RNAs (lncRNAs) acting as allosteric activators of enzyme activity are missing. Here, we describe the function of mitolnc in cardiomyocytes, a nuclear encoded long non-coding RNA, located in mitochondria and directly interacting with the branched-chain ketoacid dehydrogenase (BCKDH) complex to increase its activity. The BCKDH complex is critical for branched-chain amino acid catabolism (BCAAs). Inactivation of mitolnc in mice reduces BCKDH complex activity, resulting in accumulation of BCAAs in the heart and cardiac hypertrophy via enhanced mTOR signaling. We found that mitolnc allosterically activates the BCKDH complex, independent of phosphorylation. Mitolnc-mediated regulation of the BCKDH complex constitutes an important additional layer to regulate the BCKDH complex in a tissue-specific manner, evading direct coupling of BCAA metabolism to ACLY-dependent lipogenesis.
Collapse
Affiliation(s)
- Maria Weiss
- Max Planck Institute for Heart- and Lung Research, Department of Cardiac Development and Remodelling, Ludwigstr. 43, D-61231 Bad Nauheim, Germany
| | - Sara Hettrich
- Max Planck Institute for Heart- and Lung Research, Department of Cardiac Development and Remodelling, Ludwigstr. 43, D-61231 Bad Nauheim, Germany
| | - Theresa Hofmann
- Max Planck Institute for Heart- and Lung Research, Department of Cardiac Development and Remodelling, Ludwigstr. 43, D-61231 Bad Nauheim, Germany
| | - Salma Hachim
- Max Planck Institute for Heart- and Lung Research, Department of Cardiac Development and Remodelling, Ludwigstr. 43, D-61231 Bad Nauheim, Germany
| | - Stefan Günther
- Max Planck Institute for Heart- and Lung Research, Department of Cardiac Development and Remodelling, Ludwigstr. 43, D-61231 Bad Nauheim, Germany
| | - Thomas Braun
- Max Planck Institute for Heart- and Lung Research, Department of Cardiac Development and Remodelling, Ludwigstr. 43, D-61231 Bad Nauheim, Germany
| | - Thomas Boettger
- Max Planck Institute for Heart- and Lung Research, Department of Cardiac Development and Remodelling, Ludwigstr. 43, D-61231 Bad Nauheim, Germany
| |
Collapse
|
8
|
Zhang Y, Zhan L, Zhang L, Shi Q, Li L. Branched-Chain Amino Acids in Liver Diseases: Complexity and Controversy. Nutrients 2024; 16:1875. [PMID: 38931228 PMCID: PMC11206364 DOI: 10.3390/nu16121875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Branched-chain amino acids (BCAAs), as essential amino acids, engage in various physiological processes, such as protein synthesis, energy supply, and cellular signaling. The liver is a crucial site for BCAA metabolism, linking the changes in BCAA homeostasis with the pathogenesis of a variety of liver diseases and their complications. Peripheral circulating BCAA levels show complex trends in different liver diseases. This review delineates the alterations of BCAAs in conditions including non-alcoholic fatty liver disease, hepatocellular carcinoma, cirrhosis, hepatic encephalopathy, hepatitis C virus infection, and acute liver failure, as well as the potential mechanisms underlying these changes. A significant amount of clinical research has utilized BCAA supplements in the treatment of patients with cirrhosis and liver cancer. However, the efficacy of BCAA supplementation in clinical practice remains uncertain and controversial due to the heterogeneity of studies. This review delves into the complicated relationship between BCAAs and liver diseases and tries to untangle what role BCAAs play in the occurrence, development, and outcomes of liver diseases.
Collapse
Affiliation(s)
- Yaqi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Luqi Zhan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Lingjian Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
- Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou 310024, China
| | - Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| |
Collapse
|
9
|
Inoue M, Sebastian WA, Sonoda S, Miyahara H, Shimizu N, Shiraishi H, Maeda M, Yanagi K, Kaname T, Hanada R, Hanada T, Ihara K. Biallelic variants in LARS1 induce steatosis in developing zebrafish liver via enhanced autophagy. Orphanet J Rare Dis 2024; 19:219. [PMID: 38807157 PMCID: PMC11134648 DOI: 10.1186/s13023-024-03226-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/19/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Biallelic pathogenic variants of LARS1 cause infantile liver failure syndrome type 1 (ILFS1), which is characterized by acute hepatic failure with steatosis in infants. LARS functions as a protein associated with mTORC1 and plays a crucial role in amino acid-triggered mTORC1 activation and regulation of autophagy. A previous study demonstrated that larsb-knockout zebrafish exhibit conditions resembling ILFS. However, a comprehensive analysis of larsb-knockout zebrafish has not yet been performed because of early mortality. METHODS We generated a long-term viable zebrafish model carrying a LARS1 variant identified in an ILFS1 patient (larsb-I451F zebrafish) and analyzed the pathogenesis of the affected liver of ILFS1. RESULTS Hepatic dysfunction is most prominent in ILFS1 patients during infancy; correspondingly, the larsb-I451F zebrafish manifested hepatic anomalies during developmental stages. The larsb-I451F zebrafish demonstrates augmented lipid accumulation within the liver during autophagy activation. Inhibition of DGAT1, which converts fatty acids to triacylglycerols, improved lipid droplets in the liver of larsb-I451F zebrafish. Notably, treatment with an autophagy inhibitor ameliorated hepatic lipid accumulation in this model. CONCLUSIONS Our findings suggested that enhanced autophagy caused by biallelic LARS1 variants contributes to ILFS1-associated hepatic dysfunction. Furthermore, the larsb-I451F zebrafish model, which has a prolonged survival rate compared with the larsb-knockout model, highlights its potential utility as a tool for investigating the pathophysiology of ILFS1-associated liver dysfunction.
Collapse
Affiliation(s)
- Masanori Inoue
- Department of Pediatrics, Oita University Faculty of Medicine, Oita, Japan
| | | | - Shota Sonoda
- Department of Pediatrics, Oita University Faculty of Medicine, Oita, Japan
| | - Hiroaki Miyahara
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan
| | - Nobuyuki Shimizu
- Department of Cell Biology, Oita University Faculty of Medicine, Oita, Japan
| | - Hiroshi Shiraishi
- Department of Cell Biology, Oita University Faculty of Medicine, Oita, Japan
| | - Miwako Maeda
- Department of Pediatrics, Oita University Faculty of Medicine, Oita, Japan
| | - Kumiko Yanagi
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Tadashi Kaname
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Reiko Hanada
- Department of Neurophysiology, Oita University Faculty of Medicine, Oita, Japan
| | - Toshikatsu Hanada
- Department of Cell Biology, Oita University Faculty of Medicine, Oita, Japan.
| | - Kenji Ihara
- Department of Pediatrics, Oita University Faculty of Medicine, Oita, Japan.
| |
Collapse
|
10
|
Liu Y, Wang R, Liu J, Fan M, Ye Z, Hao Y, Xie F, Wang T, Jiang Y, Liu N, Cui X, Lv Q, Yan L. The vacuolar fusion regulated by HOPS complex promotes hyphal initiation and penetration in Candida albicans. Nat Commun 2024; 15:4131. [PMID: 38755250 PMCID: PMC11099166 DOI: 10.1038/s41467-024-48525-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 05/02/2024] [Indexed: 05/18/2024] Open
Abstract
The transition between yeast and hyphae is crucial for regulating the commensalism and pathogenicity in Candida albicans. The mechanisms that affect the invasion of hyphae in solid media, whose deficiency is more related to the pathogenicity of C. albicans, have not been elucidated. Here, we found that the disruption of VAM6 or VPS41 which are components of the homotypic vacuolar fusion and protein sorting (HOPS) complex, or the Rab GTPase YPT72, all responsible for vacuole fusion, led to defects in hyphal growth in both liquid and solid media, but more pronounced on solid agar. The phenotypes of vac8Δ/Δ and GTR1OE-vam6Δ/Δ mutants indicated that these deficiencies are mainly caused by the reduced mechanical forces that drive agar and organs penetration, and confirmed that large vacuoles are required for hyphal mechanical penetration. In summary, our study revealed that large vacuoles generated by vacuolar fusion support hyphal penetration and provided a perspective to refocus attention on the role of solid agar in evaluating C. albicans invasion.
Collapse
Affiliation(s)
- Yu Liu
- Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai, 200433, PR China
| | - Ruina Wang
- Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai, 200433, PR China
| | - Jiacun Liu
- Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai, 200433, PR China
| | - Mengting Fan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, PR China
| | - Zi Ye
- Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai, 200433, PR China
| | - Yumeng Hao
- Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai, 200433, PR China
| | - Fei Xie
- Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai, 200433, PR China
| | - Ting Wang
- Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai, 200433, PR China
| | - Yuanying Jiang
- School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Ningning Liu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China.
| | - Xiaoyan Cui
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, PR China.
| | - Quanzhen Lv
- Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai, 200433, PR China.
| | - Lan Yan
- Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai, 200433, PR China.
| |
Collapse
|
11
|
Barai P, Chen J. Beyond protein synthesis: non-translational functions of threonyl-tRNA synthetases. Biochem Soc Trans 2024; 52:661-670. [PMID: 38477373 PMCID: PMC11088916 DOI: 10.1042/bst20230506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024]
Abstract
Aminoacyl-tRNA synthetases (AARSs) play an indispensable role in the translation of mRNAs into proteins. It has become amply clear that AARSs also have non-canonical or non-translational, yet essential, functions in a myriad of cellular and developmental processes. In this mini-review we discuss the current understanding of the roles of threonyl-tRNA synthetase (TARS) beyond protein synthesis and the underlying mechanisms. The two proteins in eukaryotes - cytoplasmic TARS1 and mitochondrial TARS2 - exert their non-canonical functions in the regulation of gene expression, cell signaling, angiogenesis, inflammatory responses, and tumorigenesis. The TARS proteins utilize a range of biochemical mechanisms, including assembly of a translation initiation complex, unexpected protein-protein interactions that lead to activation or inhibition of intracellular signaling pathways, and cytokine-like signaling through cell surface receptors in inflammation and angiogenesis. It is likely that new functions and novel mechanisms will continue to emerge for these multi-talented proteins.
Collapse
Affiliation(s)
- Pallob Barai
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Jie Chen
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| |
Collapse
|
12
|
Kaplan K, Levkovich SA, DeRowe Y, Gazit E, Laor Bar-Yosef D. Mind your marker: the effect of common auxotrophic markers on complex traits in yeast. FEBS J 2024. [PMID: 38383986 DOI: 10.1111/febs.17095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 01/02/2024] [Accepted: 02/05/2024] [Indexed: 02/23/2024]
Abstract
Yeast cells are extensively used as a key model organism owing to their highly conserved genome, metabolic pathways, and cell biology processes. To assist in genetic engineering and analysis, laboratory yeast strains typically harbor auxotrophic selection markers. When uncompensated, auxotrophic markers cause significant phenotypic bias compared to prototrophic strains and have different combinatorial influences on the metabolic network. Here, we used BY4741, a laboratory strain commonly used as a "wild type" strain in yeast studies, to generate a set of revertant strains, containing all possible combinations of four common auxotrophic markers (leu2∆, ura3∆, his3∆1, met15∆). We examined the effect of the auxotrophic combinations on complex phenotypes such as resistance to rapamycin, acetic acid, and ethanol. Among the markers, we found that leucine auxotrophy most significantly affected the phenotype. We analyzed the phenotypic bias caused by auxotrophy at the genomic level using a prototrophic version of a genome-wide deletion library and a decreased mRNA perturbation (DAmP) library. Prototrophy was found to suppress rapamycin sensitivity in many mutants previously annotated for the phenotype, raising a possible need for reevaluation of the findings in a native metabolic context. These results reveal a significant phenotypic bias caused by common auxotrophic markers and support the use of prototrophic wild-type strains in yeast research.
Collapse
Affiliation(s)
- Keila Kaplan
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel
| | - Shon A Levkovich
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel
| | - Yasmin DeRowe
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel
| | - Ehud Gazit
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel
- BLAVATNIK CENTER for Drug Discovery, Tel Aviv University, Israel
| | - Dana Laor Bar-Yosef
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel
| |
Collapse
|
13
|
Zeng Q, Araki Y, Noda T. Pib2 is a cysteine sensor involved in TORC1 activation in Saccharomyces cerevisiae. Cell Rep 2024; 43:113599. [PMID: 38127619 DOI: 10.1016/j.celrep.2023.113599] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/24/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Target of rapamycin complex 1 (TORC1) is a master regulator that monitors the availability of various amino acids to promote cell growth in Saccharomyces cerevisiae. It is activated via two distinct upstream pathways: the Gtr pathway, which corresponds to mammalian Rag, and the Pib2 pathway. This study shows that Ser3 was phosphorylated exclusively in a Pib2-dependent manner. Using Ser3 as an indicator of TORC1 activity, together with the established TORC1 substrate Sch9, we investigated which pathways were employed by individual amino acids. Different amino acids exhibited different dependencies on the Gtr and Pib2 pathways. Cysteine was most dependent on the Pib2 pathway and increased the interaction between TORC1 and Pib2 in vivo and in vitro. Moreover, cysteine directly bound to Pib2 via W632 and F635, two critical residues in the T(ail) motif that are necessary to activate TORC1. These results indicate that Pib2 functions as a sensor for cysteine in TORC1 regulation.
Collapse
Affiliation(s)
- Qingzhong Zeng
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | - Yasuhiro Araki
- Center for Frontier Oral Sciences, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan.
| | - Takeshi Noda
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan; Center for Frontier Oral Sciences, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan; Center for Infectious Disease Education and Research, Osaka University, Osaka 565-0871, Japan.
| |
Collapse
|
14
|
Yoon I, Kim U, Choi J, Kim S. Disease association and therapeutic routes of aminoacyl-tRNA synthetases. Trends Mol Med 2024; 30:89-105. [PMID: 37949787 DOI: 10.1016/j.molmed.2023.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 11/12/2023]
Abstract
Aminoacyl-tRNA synthetases (ARSs) are enzymes that catalyze the ligation of amino acids to tRNAs for translation. Beyond their traditional role in translation, ARSs have acquired regulatory functions in various biological processes (epi-translational functions). With their dual-edged activities, aberrant expression, secretion, and mutations of ARSs are associated with human diseases, including cancer, autoimmune diseases, and neurological diseases. The increasing numbers of newly unveiled activities and disease associations of ARSs have spurred interest in novel drug development, targeting disease-related catalytic and noncatalytic activities of ARSs as well as harnessing ARSs as sources for biological therapeutics. This review speculates how the translational and epi-translational activities of ARSs can be related and describes how their activities can be linked to diseases and drug discovery.
Collapse
Affiliation(s)
- Ina Yoon
- Institute for Artificial Intelligence and Biomedical Research, Medicinal Bioconvergence Research Center, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Uijoo Kim
- Institute for Artificial Intelligence and Biomedical Research, Medicinal Bioconvergence Research Center, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Jaeyoung Choi
- Institute for Artificial Intelligence and Biomedical Research, Medicinal Bioconvergence Research Center, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Sunghoon Kim
- Institute for Artificial Intelligence and Biomedical Research, Medicinal Bioconvergence Research Center, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea; College of Medicine, Gangnam Severance Hospital, Yonsei University, Seoul 06273, Republic of Korea; Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Incheon 21983, Republic of Korea.
| |
Collapse
|
15
|
Goul C, Peruzzo R, Zoncu R. The molecular basis of nutrient sensing and signalling by mTORC1 in metabolism regulation and disease. Nat Rev Mol Cell Biol 2023; 24:857-875. [PMID: 37612414 DOI: 10.1038/s41580-023-00641-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2023] [Indexed: 08/25/2023]
Abstract
The Ser/Thr kinase mechanistic target of rapamycin (mTOR) is a central regulator of cellular metabolism. As part of mTOR complex 1 (mTORC1), mTOR integrates signals such as the levels of nutrients, growth factors, energy sources and oxygen, and triggers responses that either boost anabolism or suppress catabolism. mTORC1 signalling has wide-ranging consequences for the growth and homeostasis of key tissues and organs, and its dysregulated activity promotes cancer, type 2 diabetes, neurodegeneration and other age-related disorders. How mTORC1 integrates numerous upstream cues and translates them into specific downstream responses is an outstanding question with major implications for our understanding of physiology and disease mechanisms. In this Review, we discuss recent structural and functional insights into the molecular architecture of mTORC1 and its lysosomal partners, which have greatly increased our mechanistic understanding of nutrient-dependent mTORC1 regulation. We also discuss the emerging involvement of aberrant nutrient-mTORC1 signalling in multiple diseases.
Collapse
Affiliation(s)
- Claire Goul
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Roberta Peruzzo
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Roberto Zoncu
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
| |
Collapse
|
16
|
Gupta S, Jani J, Vijayasurya, Mochi J, Tabasum S, Sabarwal A, Pappachan A. Aminoacyl-tRNA synthetase - a molecular multitasker. FASEB J 2023; 37:e23219. [PMID: 37776328 DOI: 10.1096/fj.202202024rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 08/31/2023] [Accepted: 09/12/2023] [Indexed: 10/02/2023]
Abstract
Aminoacyl-tRNA synthetases (AaRSs) are valuable "housekeeping" enzymes that ensure the accurate transmission of genetic information in living cells, where they aminoacylated tRNA molecules with their cognate amino acid and provide substrates for protein biosynthesis. In addition to their translational or canonical function, they contribute to nontranslational/moonlighting functions, which are mediated by the presence of other domains on the proteins. This was supported by several reports which claim that AaRS has a significant role in gene transcription, apoptosis, translation, and RNA splicing regulation. Noncanonical/ nontranslational functions of AaRSs also include their roles in regulating angiogenesis, inflammation, cancer, and other major physio-pathological processes. Multiple AaRSs are also associated with a broad range of physiological and pathological processes; a few even serve as cytokines. Therefore, the multifunctional nature of AaRSs suggests their potential as viable therapeutic targets as well. Here, our discussion will encompass a range of noncanonical functions attributed to Aminoacyl-tRNA Synthetases (AaRSs), highlighting their links with a diverse array of human diseases.
Collapse
Affiliation(s)
- Swadha Gupta
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Jaykumar Jani
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Vijayasurya
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Jigneshkumar Mochi
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Saba Tabasum
- Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Akash Sabarwal
- Harvard Medical School, Boston, Massachusetts, USA
- Boston Children's Hospital, Boston, Massachusetts, USA
| | - Anju Pappachan
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| |
Collapse
|
17
|
Alfatah M, Cui L, Goh CJH, Cheng TYN, Zhang Y, Naaz A, Wong JH, Lewis J, Poh WJ, Arumugam P. Metabolism of glucose activates TORC1 through multiple mechanisms in Saccharomyces cerevisiae. Cell Rep 2023; 42:113205. [PMID: 37792530 DOI: 10.1016/j.celrep.2023.113205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/30/2023] [Accepted: 09/18/2023] [Indexed: 10/06/2023] Open
Abstract
Target of Rapamycin Complex 1 (TORC1) is a conserved eukaryotic protein complex that links the presence of nutrients with cell growth. In Saccharomyces cerevisiae, TORC1 activity is positively regulated by the presence of amino acids and glucose in the medium. However, the mechanisms underlying nutrient-induced TORC1 activation remain poorly understood. By utilizing an in vivo TORC1 activation assay, we demonstrate that differential metabolism of glucose activates TORC1 through three distinct pathways in yeast. The first "canonical Rag guanosine triphosphatase (GTPase)-dependent pathway" requires conversion of glucose to fructose 1,6-bisphosphate, which activates TORC1 via the Rag GTPase heterodimer Gtr1GTP-Gtr2GDP. The second "non-canonical Rag GTPase-dependent pathway" requires conversion of glucose to glucose 6-phosphate, which activates TORC1 via a process that involves Gtr1GTP-Gtr2GTP and mitochondrial function. The third "Rag GTPase-independent pathway" requires complete glycolysis and vacuolar ATPase reassembly for TORC1 activation. We have established a roadmap to deconstruct the link between glucose metabolism and TORC1 activation.
Collapse
Affiliation(s)
- Mohammad Alfatah
- Bioinformatics Institute, A(∗)STAR, 30 Biopolis Street, Singapore 138671, Singapore.
| | - Liang Cui
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, Singapore 138602, Singapore
| | - Corinna Jie Hui Goh
- Bioinformatics Institute, A(∗)STAR, 30 Biopolis Street, Singapore 138671, Singapore
| | | | - Yizhong Zhang
- Bioinformatics Institute, A(∗)STAR, 30 Biopolis Street, Singapore 138671, Singapore
| | - Arshia Naaz
- Genome Institute of Singapore, A(∗)STAR, 60 Biopolis Street, Genome #02-01, Singapore 138672, Singapore
| | - Jin Huei Wong
- Bioinformatics Institute, A(∗)STAR, 30 Biopolis Street, Singapore 138671, Singapore
| | - Jacqueline Lewis
- Institute of Molecular and Cellular Biology, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Wei Jie Poh
- Bioinformatics Institute, A(∗)STAR, 30 Biopolis Street, Singapore 138671, Singapore
| | - Prakash Arumugam
- Singapore Institute of Food and Biotechnology Innovation, A(∗)STAR, 31 Biopolis Way, Singapore 138669, Singapore; Nanyang Technological University, School of Biological Sciences, Singapore 637551, Singapore.
| |
Collapse
|
18
|
Nicastro R, Brohée L, Alba J, Nüchel J, Figlia G, Kipschull S, Gollwitzer P, Romero-Pozuelo J, Fernandes SA, Lamprakis A, Vanni S, Teleman AA, De Virgilio C, Demetriades C. Malonyl-CoA is a conserved endogenous ATP-competitive mTORC1 inhibitor. Nat Cell Biol 2023; 25:1303-1318. [PMID: 37563253 PMCID: PMC10495264 DOI: 10.1038/s41556-023-01198-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/29/2023] [Indexed: 08/12/2023]
Abstract
Cell growth is regulated by the mammalian/mechanistic target of rapamycin complex 1 (mTORC1), which functions both as a nutrient sensor and a master controller of virtually all biosynthetic pathways. This ensures that cells are metabolically active only when conditions are optimal for growth. Notably, although mTORC1 is known to regulate fatty acid biosynthesis, how and whether the cellular lipid biosynthetic capacity signals back to fine-tune mTORC1 activity remains poorly understood. Here we show that mTORC1 senses the capacity of a cell to synthesise fatty acids by detecting the levels of malonyl-CoA, an intermediate of this biosynthetic pathway. We find that, in both yeast and mammalian cells, this regulation is direct, with malonyl-CoA binding to the mTOR catalytic pocket and acting as a specific ATP-competitive inhibitor. When fatty acid synthase (FASN) is downregulated/inhibited, elevated malonyl-CoA levels are channelled to proximal mTOR molecules that form direct protein-protein interactions with acetyl-CoA carboxylase 1 (ACC1) and FASN. Our findings represent a conserved and unique homeostatic mechanism whereby impaired fatty acid biogenesis leads to reduced mTORC1 activity to coordinately link this metabolic pathway to the overall cellular biosynthetic output. Moreover, they reveal the existence of a physiological metabolite that directly inhibits the activity of a signalling kinase in mammalian cells by competing with ATP for binding.
Collapse
Affiliation(s)
- Raffaele Nicastro
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Laura Brohée
- Max Planck Institute for Biology of Ageing (MPI-AGE), Cologne, Germany
| | - Josephine Alba
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Julian Nüchel
- Max Planck Institute for Biology of Ageing (MPI-AGE), Cologne, Germany
| | - Gianluca Figlia
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg University, Heidelberg, Germany
| | | | - Peter Gollwitzer
- Max Planck Institute for Biology of Ageing (MPI-AGE), Cologne, Germany
| | - Jesus Romero-Pozuelo
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg University, Heidelberg, Germany
- Unidad de Investigación Biomedica, Universidad Alfonso X El Sabio (UAX), Madrid, Spain
| | | | - Andreas Lamprakis
- Max Planck Institute for Biology of Ageing (MPI-AGE), Cologne, Germany
| | - Stefano Vanni
- Department of Biology, University of Fribourg, Fribourg, Switzerland.
| | - Aurelio A Teleman
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Heidelberg University, Heidelberg, Germany.
| | | | - Constantinos Demetriades
- Max Planck Institute for Biology of Ageing (MPI-AGE), Cologne, Germany.
- University of Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany.
| |
Collapse
|
19
|
Tanahashi R, Nishimura A, Morita F, Nakazawa H, Taniguchi A, Ichikawa K, Nakagami K, Boundy-Mills K, Takagi H. The arginine transporter Can1 acts as a transceptor for regulation of proline utilization in the yeast Saccharomyces cerevisiae. Yeast 2023; 40:333-348. [PMID: 36573467 DOI: 10.1002/yea.3836] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/29/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Proline is the most abundant amino acid in wine and beer, because the yeast Saccharomyces cerevisiae hardly assimilates proline during fermentation processes. Our previous studies showed that arginine induces endocytosis of the proline transporter Put4, resulting in inhibition of proline utilization. We here report a possible role of arginine sensing in the inhibition of proline utilization. We first found that two basic amino acids, ornithine, and lysine, inhibit proline utilization by inducing Put4 endocytosis in a manner similar to arginine, but citrulline does not. Our genetic screening revealed that the arginine transporter Can1 is involved in the inhibition of proline utilization by arginine. Intriguingly, the arginine uptake activity of Can1 was not required for the arginine-dependent inhibition of proline utilization, suggesting that Can1 has a function beyond its commonly known function of transporting arginine. More importantly, our biochemical analyses revealed that Can1 activates signaling cascades of protein kinase A in response to extracellular arginine. Hence, we proposed that Can1 regulates proline utilization by functioning as a transceptor possessing the activity of both a transporter and receptor of arginine.
Collapse
Affiliation(s)
- Ryoya Tanahashi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
- Division for Research Strategy, Institute for Research Initiatives, Nara Institute of Science and Technology, Ikoma, Japan
- Department of Food Science and Technology, University of California Davis, Davis, California, USA
| | - Akira Nishimura
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Fumika Morita
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Hayate Nakazawa
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Atsuki Taniguchi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Kazuki Ichikawa
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Kazuki Nakagami
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Kyria Boundy-Mills
- Department of Food Science and Technology, University of California Davis, Davis, California, USA
| | - Hiroshi Takagi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| |
Collapse
|
20
|
Tate JJ, Rai R, Cooper TG. TorC1 and nitrogen catabolite repression control of integrated GABA shunt and retrograde pathway gene expression. Yeast 2023; 40:318-332. [PMID: 36960709 PMCID: PMC10518031 DOI: 10.1002/yea.3849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/25/2023] Open
Abstract
Despite our detailed understanding of how the lower GABA shunt and retrograde genes are regulated, there is a paucity of validated information concerning control of GAD1, the glutamate decarboxylase gene which catalyzes the first reaction of the GABA shunt. Further, integration of glutamate degradation via the GABA shunt has not been investigated. Here, we show that while GAD1 shares a response to rapamycin-inhibition of the TorC1 kinase, it does so independently of the Gln3 and Gat1 NCR-sensitive transcriptional activators that mediate transcription of the lower GABA shunt genes. We also show that GABA shunt gene expression increases dramatically in response to nickel ions. The α-ketoglutarate needed for the GABA shunt to cycle, thereby producing reduced pyridine nucleotides, derives from the retrograde pathway as shown by a similar high increase in the retrograde reporter, CIT2 when nickel is present in the medium. These observations demonstrate high integration of the GABA shunt, retrograde, peroxisomal glyoxylate cycle, and β-oxidation pathways.
Collapse
Affiliation(s)
- Jennifer J. Tate
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, U.S.A
| | - Rajendra Rai
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, U.S.A
| | - Terrance G. Cooper
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, U.S.A
| |
Collapse
|
21
|
Sung Y, Yu YC, Han JM. Nutrient sensors and their crosstalk. Exp Mol Med 2023; 55:1076-1089. [PMID: 37258576 PMCID: PMC10318010 DOI: 10.1038/s12276-023-01006-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/22/2023] [Accepted: 03/13/2023] [Indexed: 06/02/2023] Open
Abstract
The macronutrients glucose, lipids, and amino acids are the major components that maintain life. The ability of cells to sense and respond to fluctuations in these nutrients is a crucial feature for survival. Nutrient-sensing pathways are thus developed to govern cellular energy and metabolic homeostasis and regulate diverse biological processes. Accordingly, perturbations in these sensing pathways are associated with a wide variety of pathologies, especially metabolic diseases. Molecular sensors are the core within these sensing pathways and have a certain degree of specificity and affinity to sense the intracellular fluctuation of each nutrient either by directly binding to that nutrient or indirectly binding to its surrogate molecules. Once the changes in nutrient levels are detected, sensors trigger signaling cascades to fine-tune cellular processes for energy and metabolic homeostasis, for example, by controlling uptake, de novo synthesis or catabolism of that nutrient. In this review, we summarize the major discoveries on nutrient-sensing pathways and explain how those sensors associated with each pathway respond to intracellular nutrient availability and how these mechanisms control metabolic processes. Later, we further discuss the crosstalk between these sensing pathways for each nutrient, which are intertwined to regulate overall intracellular nutrient/metabolic homeostasis.
Collapse
Affiliation(s)
- Yulseung Sung
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983, South Korea
| | - Ya Chun Yu
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983, South Korea
| | - Jung Min Han
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983, South Korea.
- Department of Integrated OMICS for Biomedical Science, Yonsei University, Seoul, 03722, South Korea.
- POSTECH Biotech Center, Pohang University of Science and Technology, Pohang, 37673, South Korea.
| |
Collapse
|
22
|
Zeng QY, Zhang F, Zhang JH, Hei Z, Li ZH, Huang MH, Fang P, Wang ED, Sun XJ, Zhou XL. Loss of threonyl-tRNA synthetase-like protein Tarsl2 has little impact on protein synthesis but affects mouse development. J Biol Chem 2023; 299:104704. [PMID: 37059185 DOI: 10.1016/j.jbc.2023.104704] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/29/2023] [Accepted: 04/01/2023] [Indexed: 04/16/2023] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are essential components for mRNA translation. Two sets of aaRSs are required for cytoplasmic and mitochondrial translation in vertebrates. Interestingly, TARSL2 is a recently evolved duplicated gene of TARS1 (encoding cytoplasmic threonyl-tRNA synthetase) and represents the only duplicated aaRS gene in vertebrates. Although TARSL2 retains the canonical aminoacylation and editing activities in vitro, whether it is a true tRNA synthetase for mRNA translation in vivo is unclear. In this study, we showed that Tars1 is an essential gene since homozygous Tars1 knockout mice were lethal. In contrast, when Tarsl2 was deleted in mice and zebrafish, neither the abundance nor the charging levels of tRNAThrs were changed, indicating that cells relied on Tars1 but not on Tarsl2 for mRNA translation. Furthermore, Tarsl2 deletion did not influence the integrity of the multiple tRNA synthetase complex (MSC), suggesting that Tarsl2 is a peripheral member of the MSC. Finally, we observed that Tarsl2-deleted mice exhibited severe developmental retardation, elevated metabolic capacity, and abnormal bone and muscle development after 3 weeks. Collectively, these data suggest that, despite its intrinsic activity, loss of Tarsl2 has little influence on protein synthesis but does affect mouse development.
Collapse
Affiliation(s)
- Qi-Yu Zeng
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031
| | - Fan Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200010
| | - Jian-Hui Zhang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024
| | - Zhoufei Hei
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China; School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Zi-Han Li
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031
| | - Meng-Han Huang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031
| | - Pengfei Fang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China; School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - En-Duo Wang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031.
| | - Xiao-Jian Sun
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200010.
| | - Xiao-Long Zhou
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024.
| |
Collapse
|
23
|
Park SJ, Cho JG, Han SH, Kim YM, Pak MG, Roh MS, Park JI. Dickkopf 4 Alone and in Combination with Leucyl-tRNA Synthetase as a Good Prognostic Biomarker for Human Colorectal Cancer. BIOMED RESEARCH INTERNATIONAL 2023; 2023:9057735. [PMID: 37096225 PMCID: PMC10122595 DOI: 10.1155/2023/9057735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/26/2023]
Abstract
The prognosis of patients with colorectal cancer (CRC) is affected by invasion and metastasis. Leucyl-tRNA synthetase (LARS) was shown to be related to the growth and migration of lung cancer cells. Dickkopf 4 (DKK4) is known as a Wnt/β-catenin pathway inhibitor, and its upregulation was reported in several cancers. However, the clinical significance of LARS and DKK4 in human CRC has not been clearly defined. We investigated the expression of LARS and DKK4 by immunohistochemical staining in tissue microarrays from 642 primary CRC patients and analyzed the relationship between their expression and the clinicopathological characteristics of CRC patients. LARS and DKK4 expressions were not related to gender, age at surgery, histologic grade, size, tumor location, tumor invasion, or metastasis, but LARS expression was significantly correlated with TNM stage, N stage, and lymph node metastasis. DKK4 expression was inversely related to the TNM stage and N stage. Survival analysis demonstrated that the OS and DFS in the LARS high expression group were not different compared to the LARS low expression group. OS and DFS in the DKK4 high expression group were significantly higher than in the DKK4 low expression group. In addition, OS and DFS in the group with the combination of the LARS high/DKK4 low expression were significantly lower than in the LARS high/DKK4 high expression group. The low expression of DKK4 alone can be used as a predictor of relapse in CRC patients. In addition, DKK4 low expression in the case of LARS high expression can be used as a poor prognostic factor in CRC patients. Thus, our findings suggest that DKK4 alone or in combination with LARS at diagnosis may be a useful prognostic factor for CRC.
Collapse
Affiliation(s)
- Su-Jeong Park
- Department of Biochemistry, Dong-A University College of Medicine, 32, Daesingongwon-ro, Seo-gu, Busan 49201, Republic of Korea
- Department of Translational Biomedical Sciences, Graduate School, Dong-A University, 32, Daesingongwon-ro, Seo-gu, Busan 49201, Republic of Korea
- Peripheral Neuropathy Center, Dong-A University, 32, Daesingongwon-ro, Seo-gu, Busan 49201, Republic of Korea
| | - Jun Gi Cho
- Department of Biochemistry, Dong-A University College of Medicine, 32, Daesingongwon-ro, Seo-gu, Busan 49201, Republic of Korea
- Department of Translational Biomedical Sciences, Graduate School, Dong-A University, 32, Daesingongwon-ro, Seo-gu, Busan 49201, Republic of Korea
- Peripheral Neuropathy Center, Dong-A University, 32, Daesingongwon-ro, Seo-gu, Busan 49201, Republic of Korea
| | - Sang-Heum Han
- Department of Biochemistry, Dong-A University College of Medicine, 32, Daesingongwon-ro, Seo-gu, Busan 49201, Republic of Korea
- Department of Translational Biomedical Sciences, Graduate School, Dong-A University, 32, Daesingongwon-ro, Seo-gu, Busan 49201, Republic of Korea
- Peripheral Neuropathy Center, Dong-A University, 32, Daesingongwon-ro, Seo-gu, Busan 49201, Republic of Korea
| | - Yu-Mi Kim
- Department of Preventive Medicine, Dong-A University College of Medicine, 32, Daesingongwon-ro, Seo-gu, Busan 49201, Republic of Korea
| | - Min-Gyoung Pak
- Department of Pathology, Dong-A University College of Medicine, 32, Daesingongwon-ro, Seo-gu, Busan 49201, Republic of Korea
| | - Mee-Sook Roh
- Department of Pathology, Dong-A University College of Medicine, 32, Daesingongwon-ro, Seo-gu, Busan 49201, Republic of Korea
| | - Joo-In Park
- Department of Biochemistry, Dong-A University College of Medicine, 32, Daesingongwon-ro, Seo-gu, Busan 49201, Republic of Korea
- Department of Translational Biomedical Sciences, Graduate School, Dong-A University, 32, Daesingongwon-ro, Seo-gu, Busan 49201, Republic of Korea
- Peripheral Neuropathy Center, Dong-A University, 32, Daesingongwon-ro, Seo-gu, Busan 49201, Republic of Korea
| |
Collapse
|
24
|
PGC-1α Regulates Cell Proliferation, Migration, and Invasion by Modulating Leucyl-tRNA Synthetase 1 Expression in Human Colorectal Cancer Cells. Cancers (Basel) 2022; 15:cancers15010159. [PMID: 36612155 PMCID: PMC9818264 DOI: 10.3390/cancers15010159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Although mounting evidence has demonstrated that peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) can promote tumorigenesis, its role in cancer remains controversial. To find potential target molecules of PGC-1α, GeneFishingTM DEG (differentially expressed genes) screening was performed using stable HEK293 cell lines expressing PGC-1α (PGC-1α-HEK293). As results, leucyl-tRNA synthetase 1 (LARS1) was upregulated. Western blot analysis showed that LARS1 was increased in PGC-1α overexpressed SW480 cells but decreased in PGC-1α shRNA knockdown SW620 cells. Several studies have suggested that LARS1 can be a potential target of anticancer agents. However, the molecular network of PGC-1α and LARS1 in human colorectal cancer cells remains unclear. LARS1 overexpression enhanced cell proliferation, migration, and invasion, whereas LARS1 knockdown reduced them. We also observed that expression levels of cyclin D1, c-Myc, and vimentin were regulated by LARS1 expression. We aimed to investigate whether effects of PGC-1α on cell proliferation and invasion were mediated by LARS1. Our results showed that PGC-1α might modulate cell proliferation and invasion by regulating LARS1 expression. These results suggest that LARS1 inhibitors might be used as anticancer agents in PGC-1α-overexpressing colorectal cancer. Further studies are needed in the future to clarify the detailed molecular mechanism by which PGC-1α regulates LARS1 expression.
Collapse
|
25
|
Cysteine Inhibits the Growth of Fusarium oxysporum and Promotes T-2 Toxin Synthesis through the Gtr/Tap42 Pathway. Microbiol Spectr 2022; 10:e0368222. [PMID: 36314982 PMCID: PMC9769839 DOI: 10.1128/spectrum.03682-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Fusarium oxysporum is ubiquitous and can easily contaminate food during processing and storage, potentially producing T-2 toxin, which can pose a severe health risk to public health. Previous research on the presence of T-2 has focused on starch-rich foods, while protein- and amino acid-rich foods have received relatively little attention. In this study, the effects of amino acids on the growth of F. oxysporum and its T-2 production were investigated by gene deletion and complementation experiments. The results showed that amino acids, including aspartic acid, methionine, isoleucine, serine, phenylalanine, and cysteine, significantly inhibited the growth of F. oxysporum, while promoting T-2 synthesis, with cysteine having the most pronounced effect. The target of rapamycin complex 1 (TORC1) is a key pathway in response to a variety of amino acids, including cysteine. gtr2 and tap42 were found to be negative regulators of T-2 synthesis. The study highlights the elevated risk of T-2 production by F. oxysporum in cysteine-rich foods and the need to take appropriate measures to prevent and control the potential harm that such foods may present to public health. IMPORTANCE F. oxysporum and its T-2 contamination of food not only leads to food wastage but also poses a major food safety challenge to humans. The growth and T-2 production characteristics of F. oxysporum in high-protein substrates are considerably different from those in grains. Here, we show that the abundant free amino acids in a protein-rich food matrix are a key regulatory factor for the growth of, and toxin production by, F. oxysporum. Cysteine has the most pronounced effect on inhibiting mycelial growth and promoting T-2 synthesis through the TORC1 pathway. This implies that consumers tend to overlook T-2 contamination due to the poor growth of F. oxysporum in food rich in protein and amino acids, especially cysteine. Therefore, particular attention should be paid to the protection of those products.
Collapse
|
26
|
Zhao WB, An JX, Hu YM, Li AP, Zhang SY, Zhang BQ, Zhang ZJ, Luo XF, Bian Q, Ma Y, Ding YY, Wang R, Liu YQ. Tavaborole-Induced Inhibition of the Aminoacyl-tRNA Biosynthesis Pathway against Botrytis cinerea Contributes to Disease Control and Fruit Quality Preservation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12297-12309. [PMID: 36149871 DOI: 10.1021/acs.jafc.2c03441] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The inhibitory effect of tavaborole on the invasion of Botrytis cinerea in grapes and tomatoes, as well as the potential mechanism involved, was discovered in this study. Our findings showed that tavaborole inhibited Botrytis cinerea spore germination and mycelial expansion in vitro and that the control efficiency in vivo on fruit decay was dose-dependent, which was effective in reducing disease severity and maintaining the organoleptic quality of the fruit, such as reducing weight loss and retaining fruit hardness and titratable acid contents during storage. Furthermore, the precise mechanism of action was investigated further. Propidium iodide staining revealed that Botrytis cinerea treated with tavaborole lost membrane integrity. For further validation, cytoplasmic malondialdehyde accumulation and leakage of cytoplasmic constituents were determined. Notably, the inhibitory effect was also dependent on inhibiting the activities of aminoacyl-tRNA synthetases involved in the aminoacyl-tRNA biosynthesis pathway in Botrytis cinerea. The above findings concluded that tavaborole was effective against Botrytis cinerea infection in postharvest fruit, and a related mechanism was also discussed, which may provide references for the drug repurposing of tavaborole as a postharvest fungicide.
Collapse
Affiliation(s)
- Wen-Bin Zhao
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jun-Xia An
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Yong-Mei Hu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - An-Ping Li
- Gansu Institute for Drug Control, Lanzhou 730000, P. R. China
| | - Shao-Yong Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
| | - Bao-Qi Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Zhi-Jun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Xiong-Fei Luo
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Qiang Bian
- National Pesticide Engineering Research Center (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yue Ma
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Yan-Yan Ding
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Rui Wang
- Key Laboratory of Biochemistry and Molecular Biology in Universities of Shandong Province, Weifang University, Weifang 261061, China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
27
|
Troutman KK, Varlakhanova NV, Tornabene BA, Ramachandran R, Ford MGJ. Conserved Pib2 regions have distinct roles in TORC1 regulation at the vacuole. J Cell Sci 2022; 135:jcs259994. [PMID: 36000409 PMCID: PMC9584352 DOI: 10.1242/jcs.259994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/15/2022] [Indexed: 12/27/2022] Open
Abstract
TORC1 is a critical controller of cell growth in eukaryotes. In yeast (Saccharomyces cerevisiae), the presence of nutrients is signaled to TORC1 by several upstream regulatory sensors that together coordinate TORC1 activity. TORC1 localizes to both vacuolar and endosomal membranes, where differential signaling occurs. This localization is mimicked by Pib2, a key upstream TORC1 regulator that is essential for TORC1 reactivation after nutrient starvation or pharmacological inhibition. Pib2 has both positive and negative effects on TORC1 activity, but the mechanisms remain poorly understood. Here, we pinpoint the Pib2 inhibitory function on TORC1 to residues within short, conserved N-terminal regions. We also show that the Pib2 C-terminal regions, helical region E and tail, are essential for TORC1 reactivation. Furthermore, the Pib2 FYVE domain plays a role in vacuolar localization, but it is surprisingly unnecessary for recovery from rapamycin exposure. Using chimeric Pib2 targeting constructs, we show that endosomal localization is not necessary for TORC1 reactivation and cell growth after rapamycin treatment. Thus, a comprehensive molecular dissection of Pib2 demonstrates that each of its conserved regions differentially contribute to Pib2-mediated regulation of TORC1 activity.
Collapse
Affiliation(s)
- Kayla K. Troutman
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Natalia V. Varlakhanova
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Bryan A. Tornabene
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Rajesh Ramachandran
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Marijn G. J. Ford
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
28
|
Wallace RL, Lu E, Luo X, Capaldi AP. Ait1 regulates TORC1 signaling and localization in budding yeast. eLife 2022; 11:68773. [PMID: 36047762 PMCID: PMC9499541 DOI: 10.7554/elife.68773] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/31/2022] [Indexed: 11/23/2022] Open
Abstract
The target of rapamycin complex I (TORC1) regulates cell growth and metabolism in eukaryotes. Previous studies have shown that nitrogen and amino acid signals activate TORC1 via the highly conserved small GTPases, Gtr1/2 (RagA/C in humans), and the GTPase activating complex SEAC/GATOR. However, it remains unclear if, and how, other proteins/pathways regulate TORC1 in simple eukaryotes like yeast. Here, we report that the previously unstudied GPCR-like protein, Ait1, binds to TORC1-Gtr1/2 in Saccharomyces cerevisiae and holds TORC1 around the vacuole during log-phase growth. Then, during amino acid starvation, Ait1 inhibits TORC1 via Gtr1/2 using a loop that resembles the RagA/C-binding domain in the human protein SLC38A9. Importantly, Ait1 is only found in the Saccharomycetaceae/codaceae, two closely related families of yeast that have lost the ancient TORC1 regulators Rheb and TSC1/2. Thus, the TORC1 circuit found in the Saccharomycetaceae/codaceae, and likely other simple eukaryotes, has undergone significant rewiring during evolution.
Collapse
Affiliation(s)
- Ryan L Wallace
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, United States
| | - Eric Lu
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, United States
| | - Xiangxia Luo
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, United States
| | - Andrew P Capaldi
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, United States
| |
Collapse
|
29
|
Yue S, Li G, He S, Li T. The central role of mTORC1 in amino acid sensing. Cancer Res 2022; 82:2964-2974. [PMID: 35749594 DOI: 10.1158/0008-5472.can-21-4403] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/28/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022]
Abstract
The mechanistic target of rapamycin (mTOR) is a master regulator of cell growth that controls cell homeostasis in response to nutrients, growth factors, and other environmental cues. Recent studies have emphasized the importance of lysosomes as a hub for nutrient sensing, especially amino acid sensing by mTORC1. This review highlights recent advances in understanding the amino acid-mTORC1 signaling axis and the role of mTORC1 in cancer.
Collapse
|
30
|
Primo C, Navarre C, Chaumont F, André B. Plasma membrane H +-ATPases promote TORC1 activation in plant suspension cells. iScience 2022; 25:104238. [PMID: 35494253 PMCID: PMC9046228 DOI: 10.1016/j.isci.2022.104238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 11/28/2022] Open
Abstract
The TORC1 (Target of Rapamycin Complex 1) kinase complex plays a pivotal role in controlling cell growth in probably all eukaryotic species. The signals and mechanisms regulating TORC1 have been intensely studied in mammals but those of fungi and plants are much less known. We have previously reported that the yeast plasma membrane H+-ATPase Pma1 promotes TORC1 activation when stimulated by cytosolic acidification or nutrient-uptake-coupled H+ influx. Furthermore, a homologous plant H+-ATPase can substitute for yeast Pma1 to promote this H+-elicited TORC1 activation. We here report that TORC1 activity in Nicotiana tabacum BY-2 cells is also strongly influenced by the activity of plasma membrane H+-ATPases. In particular, stimulation of H+-ATPases by fusicoccin activates TORC1, and this response is also observed in cells transferred to a nutrient-free and auxin-free medium. Our results suggest that plant H+-ATPases, known to be regulated by practically all factors controlling cell growth, contribute to TOR signaling. Isolation of a tobacco BY-2 cell line suitable for analyzing TOR signaling Activation of plasma membrane H+-ATPases in BY-2 suspension cells elicits TOR signaling TOR signaling upon H+-ATPase activation also occurs in the absence of nutrients and auxin
Collapse
Affiliation(s)
- Cecilia Primo
- Molecular Physiology of the Cell, Université Libre de Bruxelles (ULB), Biopark, B-6041 Gosselies, Belgium
| | - Catherine Navarre
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, B-1348 Louvain-la-Neuve, Belgium
| | - François Chaumont
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, B-1348 Louvain-la-Neuve, Belgium
| | - Bruno André
- Molecular Physiology of the Cell, Université Libre de Bruxelles (ULB), Biopark, B-6041 Gosselies, Belgium
| |
Collapse
|
31
|
Functional and pathologic association of aminoacyl-tRNA synthetases with cancer. Exp Mol Med 2022; 54:553-566. [PMID: 35501376 PMCID: PMC9166799 DOI: 10.1038/s12276-022-00765-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/21/2021] [Accepted: 12/30/2021] [Indexed: 11/26/2022] Open
Abstract
Although key tumorigenic and tumor-suppressive factors have been unveiled over the last several decades, cancer remains the most life-threatening disease. Multiomic analyses of patient samples and an in-depth understanding of tumorigenic processes have rapidly revealed unexpected pathologic associations of new cellular factors previously overlooked in cancer biology. In this regard, the newly discovered activities of human aminoacyl-tRNA synthases (ARSs) deserve attention not only for their pathological significance in tumorigenesis but also regarding diagnostic and therapeutic implications. ARSs are not only essential enzymes covalently linking substrate amino acids to cognate tRNAs for protein synthesis but also function as regulators of cellular processes by sensing different cellular conditions. With their catalytic role in protein synthesis and their regulatory role in homeostasis, functional alterations or dysregulation of ARSs might be pathologically associated with tumorigenesis. This review focuses on the potential implications of ARS genes and proteins in different aspects of cancer based on various bioinformatic analyses and experimental data. We also review their diverse activities involving extracellular secretion, protein–protein interactions, and amino acid sensing, which are related to cancers. The newly discovered cancer-related activities of ARSs are expected to provide new opportunities for detecting, preventing and curing cancers. Enzymes called aminoacyl-tRNA synthetases (ARSs), which play a central role in all life, are becoming implicated in several aspects of cancer in ways that may lead to new approaches for prevention, detection and treatment. ARS enzymes catalyse the ligation of amino acids to transfer RNA molecules to allow amino acids to combine in the correct sequences to form proteins. Jung Min Han, Sunghoon Kim and colleagues at Yonsei University, Incheon, South Korea, review researches implicating ARS enzymes and the genes that code for them in a variety of cancers. The behavior of ARS enzymes and their genes are found to be altered in several types of cancer cells in ways that may either initiate or support the onset and development of the disease, through which they could be suggested as targets for novel anti-cancer drugs.
Collapse
|
32
|
Laidlaw KME, Paine KM, Bisinski DD, Calder G, Hogg K, Ahmed S, James S, O’Toole PJ, MacDonald C. Endosomal cargo recycling mediated by Gpa1 and phosphatidylinositol 3-kinase is inhibited by glucose starvation. Mol Biol Cell 2022; 33:ar31. [PMID: 35080991 PMCID: PMC9250360 DOI: 10.1091/mbc.e21-04-0163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 01/29/2023] Open
Abstract
Cell surface protein trafficking is regulated in response to nutrient availability, with multiple pathways directing surface membrane proteins to the lysosome for degradation in response to suboptimal extracellular nutrients. Internalized protein and lipid cargoes recycle back to the surface efficiently in glucose-replete conditions, but this trafficking is attenuated following glucose starvation. We find that cells with either reduced or hyperactive phosphatidylinositol 3-kinase (PI3K) activity are defective for endosome to surface recycling. Furthermore, we find that the yeast Gα subunit Gpa1, an endosomal PI3K effector, is required for surface recycling of cargoes. Following glucose starvation, mRNA and protein levels of a distinct Gα subunit Gpa2 are elevated following nuclear translocation of Mig1, which inhibits recycling of various cargoes. As Gpa1 and Gpa2 interact at the surface where Gpa2 concentrates during glucose starvation, we propose that this disrupts PI3K activity required for recycling, potentially diverting Gpa1 to the surface and interfering with its endosomal role in recycling. In support of this model, glucose starvation and overexpression of Gpa2 alter PI3K endosomal phosphoinositide production. Glucose deprivation therefore triggers a survival mechanism to increase retention of surface cargoes in endosomes and promote their lysosomal degradation.
Collapse
Affiliation(s)
| | | | | | - Grant Calder
- Bioscience Technology Facility, Department of Biology, University of York, YO10 5DD York, UK
| | - Karen Hogg
- Bioscience Technology Facility, Department of Biology, University of York, YO10 5DD York, UK
| | - Sophia Ahmed
- Bioscience Technology Facility, Department of Biology, University of York, YO10 5DD York, UK
| | - Sally James
- Bioscience Technology Facility, Department of Biology, University of York, YO10 5DD York, UK
| | - Peter J. O’Toole
- Bioscience Technology Facility, Department of Biology, University of York, YO10 5DD York, UK
| | - Chris MacDonald
- York Biomedical Research Institute and Department of Biology and
| |
Collapse
|
33
|
Tate JJ, Marsikova J, Vachova L, Palkova Z, Cooper TG. Effects of abolishing Whi2 on the proteome and nitrogen catabolite repression-sensitive protein production. G3 (BETHESDA, MD.) 2022; 12:jkab432. [PMID: 35100365 PMCID: PMC9210300 DOI: 10.1093/g3journal/jkab432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/08/2021] [Indexed: 11/17/2022]
Abstract
In yeast physiology, a commonly used reference condition for many experiments, including those involving nitrogen catabolite repression (NCR), is growth in synthetic complete (SC) medium. Four SC formulations, SCCSH,1990, SCCSH,1994, SCCSH,2005, and SCME, have been used interchangeably as the nitrogen-rich medium of choice [Cold Spring Harbor Yeast Course Manuals (SCCSH) and a formulation in the methods in enzymology (SCME)]. It has been tacitly presumed that all of these formulations support equivalent responses. However, a recent report concluded that (i) TorC1 activity is downregulated by the lower concentration of primarily leucine in SCME relative to SCCSH. (ii) The Whi2-Psr1/2 complex is responsible for this downregulation. TorC1 is a primary nitrogen-responsive regulator in yeast. Among its downstream targets is control of NCR-sensitive transcription activators Gln3 and Gat1. They in turn control production of catabolic transporters and enzymes needed to scavenge poor nitrogen sources (e.g., Proline) and activate autophagy (ATG14). One of the reporters used in Chen et al. was an NCR-sensitive DAL80-GFP promoter fusion. This intrigued us because we expected minimal if any DAL80 expression in SC medium. Therefore, we investigated the source of the Dal80-GFP production and the proteomes of wild-type and whi2Δ cells cultured in SCCSH and SCME. We found a massive and equivalent reorientation of amino acid biosynthetic proteins in both wild-type and whi2Δ cells even though both media contained high overall concentrations of amino acids. Gcn2 appears to play a significant regulatory role in this reorientation. NCR-sensitive DAL80 expression and overall NCR-sensitive protein production were only marginally affected by the whi2Δ. In contrast, the levels of 58 proteins changed by an absolute value of log2 between 3 and 8 when Whi2 was abolished relative to wild type. Surprisingly, with only two exceptions could those proteins be related in GO analyses, i.e., GO terms associated with carbohydrate metabolism and oxidative stress after shifting a whi2Δ from SCCSH to SCME for 6 h. What was conspicuously missing were proteins related by TorC1- and NCR-associated GO terms.
Collapse
Affiliation(s)
- Jennifer J Tate
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jana Marsikova
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 128 00 Prague, Czech Republic
| | - Libuse Vachova
- Institute of Microbiology of the Czech Academy of Sciences, BIOCEV, 142 20 Prague, Czech Republic
| | - Zdena Palkova
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 128 00 Prague, Czech Republic
| | - Terrance G Cooper
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
34
|
Amino Acid Signaling for TOR in Eukaryotes: Sensors, Transducers, and a Sustainable Agricultural fuTORe. Biomolecules 2022; 12:biom12030387. [PMID: 35327579 PMCID: PMC8945916 DOI: 10.3390/biom12030387] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 02/06/2023] Open
Abstract
Eukaryotic cells monitor and regulate metabolism through the atypical protein kinase target of rapamycin (TOR) regulatory hub. TOR is activated by amino acids in animals and fungi through molecular signaling pathways that have been extensively defined in the past ten years. Very recently, several studies revealed that TOR is also acutely responsive to amino acid metabolism in plants, but the mechanisms of amino acid sensing are not yet established. In this review, we summarize these discoveries, emphasizing the diversity of amino acid sensors in human cells and highlighting pathways that are indirectly sensitive to amino acids, i.e., how TOR monitors changes in amino acid availability without a bona fide amino acid sensor. We then discuss the relevance of these model discoveries to plant biology. As plants can synthesize all proteinogenic amino acids from inorganic precursors, we focus on the possibility that TOR senses both organic metabolites and inorganic nutrients. We conclude that an evolutionary perspective on nutrient sensing by TOR benefits both agricultural and biomedical science, contributing to ongoing efforts to generate crops for a sustainable agricultural future.
Collapse
|
35
|
Abstract
The target of rapamycin (TOR) kinase is a master regulator that integrates nutrient signals to promote cell growth in all eukaryotes. It is well established that amino acids and glucose are major regulators of TOR signaling in yeast and metazoan, but whether and how TOR responds to carbon availability in photosynthetic organisms is less understood. In this study, we showed that photosynthetic assimilation of CO2 by the Calvin-Benson-Bassham (CBB) cycle regulates TOR activity in the model single-celled microalga Chlamydomonas reinhardtii Stimulation of CO2 fixation boosted TOR activity, whereas inhibition of the CBB cycle and photosynthesis down-regulated TOR. We uncovered a tight link between TOR activity and the endogenous level of a set of amino acids including Ala, Glu, Gln, Leu, and Val through the modulation of CO2 fixation and the use of amino acid synthesis inhibitors. Moreover, the finding that the Chlamydomonas starch-deficient mutant sta6 displayed disproportionate TOR activity and high levels of most amino acids, particularly Gln, further connected carbon assimilation and amino acids to TOR signaling. Thus, our results showed that CO2 fixation regulates TOR signaling, likely through the synthesis of key amino acids.
Collapse
|
36
|
Loissell-Baltazar YA, Dokudovskaya S. SEA and GATOR 10 Years Later. Cells 2021; 10:cells10102689. [PMID: 34685669 PMCID: PMC8534245 DOI: 10.3390/cells10102689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/30/2021] [Accepted: 10/03/2021] [Indexed: 12/17/2022] Open
Abstract
The SEA complex was described for the first time in yeast Saccharomyces cerevisiae ten years ago, and its human homologue GATOR complex two years later. During the past decade, many advances on the SEA/GATOR biology in different organisms have been made that allowed its role as an essential upstream regulator of the mTORC1 pathway to be defined. In this review, we describe these advances in relation to the identification of multiple functions of the SEA/GATOR complex in nutrient response and beyond and highlight the consequence of GATOR mutations in cancer and neurodegenerative diseases.
Collapse
|
37
|
Liu Z, Kim HK, Xu J, Jing Y, Kay MA. The 3'tsRNAs are aminoacylated: Implications for their biogenesis. PLoS Genet 2021; 17:e1009675. [PMID: 34324497 PMCID: PMC8354468 DOI: 10.1371/journal.pgen.1009675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 08/10/2021] [Accepted: 06/20/2021] [Indexed: 12/03/2022] Open
Abstract
Emerging evidence indicates that tRNA-derived small RNAs (tsRNAs) are involved in fine-tuning gene expression and become dysregulated in various cancers. We recently showed that the 22nt LeuCAG3´tsRNA from the 3´ end of tRNALeu is required for efficient translation of a ribosomal protein mRNA and ribosome biogenesis. Inactivation of this 3´tsRNA induced apoptosis in rapidly dividing cells and suppressed the growth of a patient-derived orthotopic hepatocellular carcinoma in mice. The mechanism involved in the generation of the 3´tsRNAs remains elusive and it is unclear if the 3´-ends of 3´tsRNAs are aminoacylated. Here we report an enzymatic method utilizing exonuclease T to determine the 3´charging status of tRNAs and tsRNAs. Our results showed that the LeuCAG3´tsRNA, and two other 3´tsRNAs are fully aminoacylated. When the leucyl-tRNA synthetase (LARS1) was inhibited, there was no change in the total tRNALeu concentration but a reduction in both the charged tRNALeu and LeuCAG3´tsRNA, suggesting the 3´tsRNAs are fully charged and originated solely from the charged mature tRNA. Altering LARS1 expression or the expression of various tRNALeu mutants were also shown to affect the generation of the LeuCAG3´tsRNA further suggesting they are created in a highly regulated process. The fact that the 3´tsRNAs are aminoacylated and their production is regulated provides additional insights into their importance in post-transcriptional gene regulation that includes coordinating the production of the protein synthetic machinery.
Collapse
Affiliation(s)
- Ziwei Liu
- Department of Pediatrics, Stanford University, Stanford, California, United States of America
- Department of Genetics, Stanford University, Stanford, Califormia, United States of America
| | - Hak Kyun Kim
- Department of Pediatrics, Stanford University, Stanford, California, United States of America
- Department of Genetics, Stanford University, Stanford, Califormia, United States of America
| | - Jianpeng Xu
- Department of Pediatrics, Stanford University, Stanford, California, United States of America
- Department of Genetics, Stanford University, Stanford, Califormia, United States of America
| | - Yuqing Jing
- Department of Pediatrics, Stanford University, Stanford, California, United States of America
- Department of Genetics, Stanford University, Stanford, Califormia, United States of America
| | - Mark A. Kay
- Department of Pediatrics, Stanford University, Stanford, California, United States of America
- Department of Genetics, Stanford University, Stanford, Califormia, United States of America
| |
Collapse
|
38
|
Review: Schistosoma mansoni phosphatidylinositol 3 kinase (PI3K)/Akt/mechanistic target of rapamycin (mTOR) signaling pathway. Comp Biochem Physiol B Biochem Mol Biol 2021; 256:110632. [PMID: 34119651 DOI: 10.1016/j.cbpb.2021.110632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/19/2021] [Accepted: 06/07/2021] [Indexed: 11/22/2022]
Abstract
Schistosoma mansoni worms are under a milieu of external and internal signaling pathways. The life-cycle stages are exposed to enormous stimuli within the mammalian and the snail hosts and as free-living stages in the fresh water. Furthermore, there is a unique interplay between the male and the female worms involving many stimuli from the male essential for full development of the female. PI3K/Akt/mTOR is an evolutionarily divergent signal transduction pathway universal to nearly every multicellular organism. This work reviews the Schistosoma mansoni PI3K/Akt/mTOR signal pathways and the involvement of the signal in the worms' physiology concerning the uptake of glucose, reproduction and survival. The inhibitors of the signal pathway used against Schistosoma mansoni were summarized. Given the importance of the PI3K/Akt/mTOR signal pathway, its inhibition could be a promising control strategy against schistosomiasis.
Collapse
|
39
|
Seibert M, Kurrle N, Schnütgen F, Serve H. Amino acid sensory complex proteins in mTORC1 and macroautophagy regulation. Matrix Biol 2021; 100-101:65-83. [DOI: 10.1016/j.matbio.2021.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/02/2021] [Accepted: 01/02/2021] [Indexed: 12/15/2022]
|
40
|
Toyoda Y, Soejima S, Masuda F, Saitoh S. TORC2 inhibition of α-arrestin Aly3 mediates cell surface persistence of S. pombe Ght5 glucose transporter in low glucose. J Cell Sci 2021; 134:268339. [PMID: 34028542 DOI: 10.1242/jcs.257485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/14/2021] [Indexed: 01/04/2023] Open
Abstract
In the fission yeast, Schizosaccharomyces pombe, the high-affinity hexose transporter, Ght5, must be transcriptionally upregulated and localized to the cell surface for cell division under limited glucose. Although cell-surface localization of Ght5 depends on Target of rapamycin complex 2 (TORC2), the molecular mechanisms by which TORC2 ensures proper localization of Ght5 remain unknown. We performed genetic screening for gene mutations that restore Ght5 localization on the cell surface in TORC2-deficient mutant cells, and identified a gene encoding an uncharacterized α-arrestin-like protein, Aly3/SPCC584.15c. α-arrestins are thought to recruit a ubiquitin ligase to membrane-associated proteins. Consistently, Ght5 is ubiquitylated in TORC2-deficient cells, and this ubiquitylation is dependent on Aly3. TORC2 supposedly enables cell-surface localization of Ght5 by preventing Aly3-dependent ubiquitylation and subsequent ubiquitylation-dependent translocation of Ght5 to vacuoles. Surprisingly, nitrogen starvation, but not glucose depletion, triggers Aly3-dependent transport of Ght5 to vacuoles in S. pombe, unlike budding yeast hexose transporters, vacuolar transport of which is initiated upon changes in hexose concentration. This study provides new insights into the molecular mechanisms controlling the subcellular localization of hexose transporters in response to extracellular stimuli.
Collapse
Affiliation(s)
- Yusuke Toyoda
- Department of Cell Biology, Institute of Life Science, Kurume University, Asahi-machi 67, Kurume, Fukuoka 830-0011, Japan
| | - Saeko Soejima
- Department of Cell Biology, Institute of Life Science, Kurume University, Asahi-machi 67, Kurume, Fukuoka 830-0011, Japan
| | - Fumie Masuda
- Department of Cell Biology, Institute of Life Science, Kurume University, Asahi-machi 67, Kurume, Fukuoka 830-0011, Japan
| | - Shigeaki Saitoh
- Department of Cell Biology, Institute of Life Science, Kurume University, Asahi-machi 67, Kurume, Fukuoka 830-0011, Japan
| |
Collapse
|
41
|
Leucyl-tRNA synthetase deficiency systemically induces excessive autophagy in zebrafish. Sci Rep 2021; 11:8392. [PMID: 33863987 PMCID: PMC8052342 DOI: 10.1038/s41598-021-87879-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/05/2021] [Indexed: 01/23/2023] Open
Abstract
Leucyl-tRNA synthetase (LARS) is an enzyme that catalyses the ligation of leucine with leucine tRNA. LARS is also essential to sensitize the intracellular leucine concentration to the mammalian target of rapamycin complex 1 (mTORC1) activation. Biallelic mutation in the LARS gene causes infantile liver failure syndrome type 1 (ILFS1), which is characterized by acute liver failure, anaemia, and neurological disorders, including microcephaly and seizures. However, the molecular mechanism underlying ILFS1 under LARS deficiency has been elusive. Here, we generated Lars deficient (larsb−/−) zebrafish that showed progressive liver failure and anaemia, resulting in early lethality within 12 days post fertilization. The atg5-morpholino knockdown and bafilomycin treatment partially improved the size of the liver and survival rate in larsb−/− zebrafish. These findings indicate the involvement of autophagy in the pathogenesis of larsb−/− zebrafish. Indeed, excessive autophagy activation was observed in larsb−/− zebrafish. Therefore, our data clarify a mechanistic link between LARS and autophagy in vivo. Furthermore, autophagy regulation by LARS could lead to development of new therapeutics for IFLS1.
Collapse
|
42
|
Tate JJ, Rai R, De Virgilio C, Cooper TG. N- and C-terminal Gln3-Tor1 interaction sites: one acting negatively and the other positively to regulate nuclear Gln3 localization. Genetics 2021; 217:iyab017. [PMID: 33857304 PMCID: PMC8049557 DOI: 10.1093/genetics/iyab017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/24/2021] [Indexed: 12/31/2022] Open
Abstract
Gln3 activates Nitrogen Catabolite Repression, NCR-sensitive expression of the genes required for Saccharomyces cerevisiae to scavenge poor nitrogen sources from its environment. The global TorC1 kinase complex negatively regulates nuclear Gln3 localization, interacting with an α-helix in the C-terminal region of Gln3, Gln3656-666. In nitrogen replete conditions, Gln3 is sequestered in the cytoplasm, whereas when TorC1 is down-regulated, in nitrogen restrictive conditions, Gln3 migrates into the nucleus. In this work, we show that the C-terminal Gln3-Tor1 interaction site is required for wild type, rapamycin-elicited, Sit4-dependent nuclear Gln3 localization, but not for its dephosphorylation. In fact, truncated Gln31-384 can enter the nucleus in the absence of Sit4 in both repressive and derepressive growth conditions. However, Gln31-384 can only enter the nucleus if a newly discovered second positively-acting Gln3-Tor1 interaction site remains intact. Importantly, the N- and C-terminal Gln3-Tor1 interaction sites function both autonomously and collaboratively. The N-terminal Gln3-Tor1 interaction site, previously designated Gln3URS contains a predicted α-helix situated within an unstructured coiled-coil region. Eight of the thirteen serine/threonine residues in the Gln3URS are dephosphorylated 3-15-fold with three of them by 10-15-fold. Substituting phosphomimetic aspartate for serine/threonine residues in the Gln3 URS abolishes the N-terminal Gln3-Tor1 interaction, rapamycin-elicited nuclear Gln3 localization, and ½ of the derepressed levels of nuclear Gln3 localization. Cytoplasmic Gln3 sequestration in repressive conditions, however, remains intact. These findings further deconvolve the mechanisms that achieve nitrogen-responsive transcription factor regulation downstream of TorC1.
Collapse
Affiliation(s)
- Jennifer J Tate
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Rajendra Rai
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | - Terrance G Cooper
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
43
|
Österberg L, Domenzain I, Münch J, Nielsen J, Hohmann S, Cvijovic M. A novel yeast hybrid modeling framework integrating Boolean and enzyme-constrained networks enables exploration of the interplay between signaling and metabolism. PLoS Comput Biol 2021; 17:e1008891. [PMID: 33836000 PMCID: PMC8059808 DOI: 10.1371/journal.pcbi.1008891] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 04/21/2021] [Accepted: 03/18/2021] [Indexed: 12/11/2022] Open
Abstract
The interplay between nutrient-induced signaling and metabolism plays an important role in maintaining homeostasis and its malfunction has been implicated in many different human diseases such as obesity, type 2 diabetes, cancer, and neurological disorders. Therefore, unraveling the role of nutrients as signaling molecules and metabolites together with their interconnectivity may provide a deeper understanding of how these conditions occur. Both signaling and metabolism have been extensively studied using various systems biology approaches. However, they are mainly studied individually and in addition, current models lack both the complexity of the dynamics and the effects of the crosstalk in the signaling system. To gain a better understanding of the interconnectivity between nutrient signaling and metabolism in yeast cells, we developed a hybrid model, combining a Boolean module, describing the main pathways of glucose and nitrogen signaling, and an enzyme-constrained model accounting for the central carbon metabolism of Saccharomyces cerevisiae, using a regulatory network as a link. The resulting hybrid model was able to capture a diverse utalization of isoenzymes and to our knowledge outperforms constraint-based models in the prediction of individual enzymes for both respiratory and mixed metabolism. The model showed that during fermentation, enzyme utilization has a major contribution in governing protein allocation, while in low glucose conditions robustness and control are prioritized. In addition, the model was capable of reproducing the regulatory effects that are associated with the Crabtree effect and glucose repression, as well as regulatory effects associated with lifespan increase during caloric restriction. Overall, we show that our hybrid model provides a comprehensive framework for the study of the non-trivial effects of the interplay between signaling and metabolism, suggesting connections between the Snf1 signaling pathways and processes that have been related to chronological lifespan of yeast cells.
Collapse
Affiliation(s)
- Linnea Österberg
- Department of Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Iván Domenzain
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| | - Julia Münch
- Department of Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
- BioInnovation Institute, Copenhagen, Denmark
| | - Stefan Hohmann
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Marija Cvijovic
- Department of Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
44
|
Kim S, Yoon I, Son J, Park J, Kim K, Lee JH, Park SY, Kang BS, Han JM, Hwang KY, Kim S. Leucine-sensing mechanism of leucyl-tRNA synthetase 1 for mTORC1 activation. Cell Rep 2021; 35:109031. [PMID: 33910001 DOI: 10.1016/j.celrep.2021.109031] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 12/18/2020] [Accepted: 04/02/2021] [Indexed: 01/07/2023] Open
Abstract
Leucyl-tRNA synthetase 1 (LARS1) mediates activation of leucine-dependent mechanistic target of rapamycin complex 1 (mTORC1) as well as ligation of leucine to its cognate tRNAs, yet its mechanism of leucine sensing is poorly understood. Here we describe leucine binding-induced conformational changes of LARS1. We determine different crystal structures of LARS1 complexed with leucine, ATP, and a reaction intermediate analog, leucyl-sulfamoyl-adenylate (Leu-AMS), and find two distinct functional states of LARS1 for mTORC1 activation. Upon leucine binding to the synthetic site, H251 and R517 in the connective polypeptide and 50FPYPY54 in the catalytic domain change the hydrogen bond network, leading to conformational change in the C-terminal domain, correlating with RagD association. Leucine binding to LARS1 is increased in the presence of ATP, further augmenting leucine-dependent interaction of LARS1 and RagD. Thus, this work unveils the structural basis for leucine-dependent long-range communication between the catalytic and RagD-binding domains of LARS1 for mTORC1 activation.
Collapse
Affiliation(s)
- Sulhee Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Ina Yoon
- Medicinal Bioconvergence Research Center, Institute for Artificial Intelligence and Biomedical Research, College of Pharmacy & College of Medicine, Gangnam Severance Hospital, Yonsei University, Incheon 21983, Republic of Korea
| | - Jonghyeon Son
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Junga Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Kibum Kim
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea; Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul 03722, Republic of Korea
| | - Ji-Ho Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Sam-Yong Park
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Beom Sik Kang
- School of Life Science and Biotechnology, KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jung Min Han
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea; Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul 03722, Republic of Korea
| | - Kwang Yeon Hwang
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, Institute for Artificial Intelligence and Biomedical Research, College of Pharmacy & College of Medicine, Gangnam Severance Hospital, Yonsei University, Incheon 21983, Republic of Korea.
| |
Collapse
|
45
|
Zhao Y, Cholewa J, Shang H, Yang Y, Ding X, Wang Q, Su Q, Zanchi NE, Xia Z. Advances in the Role of Leucine-Sensing in the Regulation of Protein Synthesis in Aging Skeletal Muscle. Front Cell Dev Biol 2021; 9:646482. [PMID: 33869199 PMCID: PMC8047301 DOI: 10.3389/fcell.2021.646482] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/04/2021] [Indexed: 12/21/2022] Open
Abstract
Skeletal muscle anabolic resistance (i.e., the decrease in muscle protein synthesis (MPS) in response to anabolic stimuli such as amino acids and exercise) has been identified as a major cause of age-related sarcopenia, to which blunted nutrition-sensing contributes. In recent years, it has been suggested that a leucine sensor may function as a rate-limiting factor in skeletal MPS via small-molecule GTPase. Leucine-sensing and response may therefore have important therapeutic potential in the steady regulation of protein metabolism in aging skeletal muscle. This paper systematically summarizes the three critical processes involved in the leucine-sensing and response process: (1) How the coincidence detector mammalian target of rapamycin complex 1 localizes on the surface of lysosome and how its crucial upstream regulators Rheb and RagB/RagD interact to modulate the leucine response; (2) how complexes such as Ragulator, GATOR, FLCN, and TSC control the nucleotide loading state of Rheb and RagB/RagD to modulate their functional activity; and (3) how the identified leucine sensor leucyl-tRNA synthetase (LARS) and stress response protein 2 (Sestrin2) participate in the leucine-sensing process and the activation of RagB/RagD. Finally, we discuss the potential mechanistic role of exercise and its interactions with leucine-sensing and anabolic responses.
Collapse
Affiliation(s)
- Yan Zhao
- Exercise Physiology and Biochemistry Laboratory, College of Physical Education, Jinggangshan University, Ji'an, China
| | - Jason Cholewa
- Department of Exercise Physiology, University of Lynchburg, Lynchburg, VA, United States
| | - Huayu Shang
- School of Sport Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Yueqin Yang
- Hubei Provincial Collaborative Innovation Center for Exercise and Health Promotion, College of Health Science, Wuhan Sports University, Wuhan, China
| | - Xiaomin Ding
- Exercise Physiology and Biochemistry Laboratory, College of Physical Education, Jinggangshan University, Ji'an, China
| | - Qianjin Wang
- Exercise Physiology and Biochemistry Laboratory, College of Physical Education, Jinggangshan University, Ji'an, China
| | - Quansheng Su
- School of Sport Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Nelo Eidy Zanchi
- Department of Physical Education, Federal University of Maranhão (UFMA), São Luís-MA, Brazil.,Laboratory of Cellular and Molecular Biology of Skeletal Muscle (LABCEMME), São Luís-MA, Brazil
| | - Zhi Xia
- Exercise Physiology and Biochemistry Laboratory, College of Physical Education, Jinggangshan University, Ji'an, China.,School of Sport Medicine and Health, Chengdu Sport University, Chengdu, China
| |
Collapse
|
46
|
Ho MT, Lu J, Brunßen D, Suter B. A translation-independent function of PheRS activates growth and proliferation in Drosophila. Dis Model Mech 2021; 14:dmm.048132. [PMID: 33547043 PMCID: PMC7988764 DOI: 10.1242/dmm.048132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/21/2021] [Indexed: 12/24/2022] Open
Abstract
Aminoacyl transfer RNA (tRNA) synthetases (aaRSs) not only load the appropriate amino acid onto their cognate tRNAs, but many of them also perform additional functions that are not necessarily related to their canonical activities. Phenylalanyl tRNA synthetase (PheRS/FARS) levels are elevated in multiple cancers compared to their normal cell counterparts. Our results show that downregulation of PheRS, or only its α-PheRS subunit, reduces organ size, whereas elevated expression of the α-PheRS subunit stimulates cell growth and proliferation. In the wing disc system, this can lead to a 67% increase in cells that stain for a mitotic marker. Clonal analysis of twin spots in the follicle cells of the ovary revealed that elevated expression of the α-PheRS subunit causes cells to grow and proliferate ∼25% faster than their normal twin cells. This faster growth and proliferation did not affect the size distribution of the proliferating cells. Importantly, this stimulation proliferation turned out to be independent of the β-PheRS subunit and the aminoacylation activity, and it did not visibly stimulate translation. This article has an associated First Person interview with the joint first authors of the paper. Summary: A moonlighting activity of the α-subunit of the Phenylalanyl tRNA synthetase in Drosophila promotes growth and proliferation through a novel mechanism that neither involves aminoacylation nor translation.
Collapse
Affiliation(s)
- Manh Tin Ho
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, Bern 3012, Switzerland
| | - Jiongming Lu
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, Bern 3012, Switzerland
| | - Dominique Brunßen
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, Bern 3012, Switzerland
| | - Beat Suter
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, Bern 3012, Switzerland
| |
Collapse
|
47
|
Melnik BC. Lifetime Impact of Cow's Milk on Overactivation of mTORC1: From Fetal to Childhood Overgrowth, Acne, Diabetes, Cancers, and Neurodegeneration. Biomolecules 2021; 11:404. [PMID: 33803410 PMCID: PMC8000710 DOI: 10.3390/biom11030404] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 02/07/2023] Open
Abstract
The consumption of cow's milk is a part of the basic nutritional habits of Western industrialized countries. Recent epidemiological studies associate the intake of cow's milk with an increased risk of diseases, which are associated with overactivated mechanistic target of rapamycin complex 1 (mTORC1) signaling. This review presents current epidemiological and translational evidence linking milk consumption to the regulation of mTORC1, the master-switch for eukaryotic cell growth. Epidemiological studies confirm a correlation between cow's milk consumption and birthweight, body mass index, onset of menarche, linear growth during childhood, acne vulgaris, type 2 diabetes mellitus, prostate cancer, breast cancer, hepatocellular carcinoma, diffuse large B-cell lymphoma, neurodegenerative diseases, and all-cause mortality. Thus, long-term persistent consumption of cow's milk increases the risk of mTORC1-driven diseases of civilization. Milk is a highly conserved, lactation genome-controlled signaling system that functions as a maternal-neonatal relay for optimized species-specific activation of mTORC1, the nexus for regulation of eukaryotic cell growth, and control of autophagy. A deeper understanding of milk´s impact on mTORC1 signaling is of critical importance for the prevention of common diseases of civilization.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Am Finkenhügel 7a, D-49076 Osnabrück, Germany
| |
Collapse
|
48
|
Saliba E, Primo C, Guarini N, André B. A plant plasma-membrane H +-ATPase promotes yeast TORC1 activation via its carboxy-terminal tail. Sci Rep 2021; 11:4788. [PMID: 33637787 PMCID: PMC7910539 DOI: 10.1038/s41598-021-83525-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 01/28/2021] [Indexed: 01/05/2023] Open
Abstract
The Target of Rapamycin Complex 1 (TORC1) involved in coordination of cell growth and metabolism is highly conserved among eukaryotes. Yet the signals and mechanisms controlling its activity differ among taxa, according to their biological specificities. A common feature of fungal and plant cells, distinguishing them from animal cells, is that their plasma membrane contains a highly abundant H+-ATPase which establishes an electrochemical H+ gradient driving active nutrient transport. We have previously reported that in yeast, nutrient-uptake-coupled H+ influx elicits transient TORC1 activation and that the plasma-membrane H+-ATPase Pma1 plays an important role in this activation, involving more than just establishment of the H+ gradient. We show here that the PMA2 H+-ATPase from the plant Nicotiana plumbaginifolia can substitute for Pma1 in yeast, to promote H+-elicited TORC1 activation. This H+-ATPase is highly similar to Pma1 but has a longer carboxy-terminal tail binding 14-3-3 proteins. We report that a C-terminally truncated PMA2, which remains fully active, fails to promote H+-elicited TORC1 activation. Activation is also impaired when binding of PMA2 to 14-3-3 s is hindered. Our results show that at least some plant plasma-membrane H+-ATPases share with yeast Pma1 the ability to promote TORC1 activation in yeast upon H+-coupled nutrient uptake.
Collapse
Affiliation(s)
- Elie Saliba
- Molecular Physiology of the Cell, Université Libre de Bruxelles (ULB), 6041, Biopark, Gosselies, Belgium
| | - Cecilia Primo
- Molecular Physiology of the Cell, Université Libre de Bruxelles (ULB), 6041, Biopark, Gosselies, Belgium
| | - Nadia Guarini
- Molecular Physiology of the Cell, Université Libre de Bruxelles (ULB), 6041, Biopark, Gosselies, Belgium
| | - Bruno André
- Molecular Physiology of the Cell, Université Libre de Bruxelles (ULB), 6041, Biopark, Gosselies, Belgium.
| |
Collapse
|
49
|
Zhang Z, Cottignie I, Van Zeebroeck G, Thevelein JM. Nutrient transceptors physically interact with the yeast S6/protein kinase B homolog, Sch9, a TOR kinase target. Biochem J 2021; 478:357-375. [PMID: 33394033 PMCID: PMC7850899 DOI: 10.1042/bcj20200722] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/04/2020] [Accepted: 01/04/2021] [Indexed: 12/18/2022]
Abstract
Multiple starvation-induced, high-affinity nutrient transporters in yeast function as receptors for activation of the protein kinase A (PKA) pathway upon re-addition of their substrate. We now show that these transceptors may play more extended roles in nutrient regulation. The Gap1 amino acid, Mep2 ammonium, Pho84 phosphate and Sul1 sulfate transceptors physically interact in vitro and in vivo with the PKA-related Sch9 protein kinase, the yeast homolog of mammalian S6 protein kinase and protein kinase B. Sch9 is a phosphorylation target of TOR and well known to affect nutrient-controlled cellular processes, such as growth rate. Mapping with peptide microarrays suggests specific interaction domains in Gap1 for Sch9 binding. Mutagenesis of the major domain affects the upstart of growth upon the addition of L-citrulline to nitrogen-starved cells to different extents but apparently does not affect in vitro binding. It also does not correlate with the drop in L-citrulline uptake capacity or transceptor activation of the PKA target trehalase by the Gap1 mutant forms. Our results reveal a nutrient transceptor-Sch9-TOR axis in which Sch9 accessibility for phosphorylation by TOR may be affected by nutrient transceptor-Sch9 interaction under conditions of nutrient starvation or other environmental challenges.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Ines Cottignie
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Griet Van Zeebroeck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Johan M. Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| |
Collapse
|
50
|
Abstract
Sensing and responding to changes in nutrient levels, including those of glucose, lipids, and amino acids, by the body is necessary for survival. Accordingly, perturbations in nutrient sensing are tightly linked with human pathologies, particularly metabolic diseases such as obesity, type 2 diabetes mellitus, and other complications of metabolic syndromes. The conventional view is that amino acids are fundamental elements for protein and peptide synthesis, while recent studies have revealed that amino acids are also important bioactive molecules that play key roles in signaling pathways and metabolic regulation. Different pathways that sense intracellular and extracellular levels of amino acids are integrated and coordinated at the organismal level, and, together, these pathways maintain whole metabolic homeostasis. In this review, we discuss the studies describing how important sensing signals respond to amino acid availability and how these sensing mechanisms modulate metabolic processes, including energy, glucose, and lipid metabolism. We further discuss whether dysregulation of amino acid sensing signals can be targeted to promote metabolic disorders, and discuss how to translate these mechanisms to treat human diseases. This review will help to enhance our overall understanding of the correlation between amino acid sensing and metabolic homeostasis, which have important implications for human health.
Collapse
Affiliation(s)
- Xiaoming Hu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Feifan Guo
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|