1
|
Shen J, Jiang Y, Bu W, Yu M, Huang R, Tang C, Yang Z, Gao H, Su L, Cheng D, Zhao X. Protein Ubiquitination Modification in Pulmonary Fibrosis. Compr Physiol 2025; 15:e70013. [PMID: 40312137 DOI: 10.1002/cph4.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/31/2025] [Accepted: 04/22/2025] [Indexed: 05/03/2025]
Abstract
Pulmonary fibrosis (PF) is a chronic, progressive fibrotic interstitial lung disease characterized by a high incidence and mortality rate, which encompasses features, such as diffuse alveolar inflammation, invasive fibroblast activation, and uncontrolled extracellular matrix (ECM) deposition. Beyond the local pathological processes, PF can be better understood in light of interorgan communication networks that are involved in its progression. Notably, pulmonary inflammation can affect cardiovascular, renal, hepatic, and neural functions, highlighting the importance of understanding these systemic interactions. Posttranslational modifications play a crucial role in regulating protein function, localization, stability, and activity. Specifically, protein ubiquitination modifications are involved in PF induced by various stimuli, involving a range of ubiquitin-modifying enzymes and substrates. In this review, we provide an overview of how E3 ubiquitin ligases and deubiquitinating enzymes (DUBs) modulate PF through several signaling pathways, such as TGF-β, Wnt, metabolic activity, aging, ferroptosis, endoplasmic reticulum stress, and inflammatory responses. This perspective includes the role of ubiquitin-proteasome systems in interorgan communication, affecting the progression of PF and related systemic conditions. Additionally, we also summarize the currently available therapeutic compounds targeting protein ubiquitination-related enzymes or ubiquitination substrates for the treatment of PF. Understanding the interplay between ubiquitination and interorgan communication may pave the way for novel therapeutic strategies.
Collapse
Affiliation(s)
- Jinping Shen
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
- Nantong Center for Disease Control and Prevention, Nantong, China
| | - Yuling Jiang
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Wenxia Bu
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Mengjiao Yu
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Ruiyao Huang
- Department of Clinical Medicine, Nantong University Xinglin College, Nantong, China
| | - Can Tang
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Zeyun Yang
- Nantong Center for Disease Control and Prevention, Nantong, China
| | - Haiping Gao
- Nantong Center for Disease Control and Prevention, Nantong, China
| | - Liling Su
- Department of Clinical Medicine, Jiangxi Medical College, Shangrao, China
| | - Demin Cheng
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Xinyuan Zhao
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| |
Collapse
|
2
|
Wang X, Su Y, Lan B, Li X, Zhang B, Zhang L, Wang Y, Zhang C, Xuan C. USP22 promotes the proliferation and Sorafenib resistance of hepatocellular carcinoma cells via its deubiquitinase activity. Clin Transl Med 2025; 15:e70324. [PMID: 40341781 PMCID: PMC12059209 DOI: 10.1002/ctm2.70324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/21/2025] [Accepted: 04/17/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma remains one of the most lethal cancers, characterized by poor prognosis and low life expectancy. Unfortunately, there are very few molecular therapeutic options available for it. Sorafenib is a current standard first-line treatment for advanced hepatocellular carcinoma, however, drug resistance significantly limits its therapeutic efficacy. METHODS Ubiquitin-specific protease 22 (USP22) expression level and its prognostic significance in hepatocellular carcinoma were analyzed using The Cancer Genome Atlas (TCGA) database. A series of cellular experiments related to cell proliferation and ferroptosis, and mouse tumor-bearing experiments were performed to investigate the role of USP22 in hepatocellular carcinoma cell growth and Sorafenib resistance. Flag affinity purification coupled with mass spectrometry, co-immunoprecipitation, and ubiquitination assays were conducted to identify direct substrates of USP22. Spike-in chromatin-immunoprecipitation (ChIP)-seq, RNA-seq, and ChIP assays were employed to explore the transcriptional substrates of USP22 as an H2BK120ub deubiquitinase. RESULTS Analysis of TCGA database reveals that USP22 is highly expressed in hepatocellular carcinoma tissues, which is closely associated with poor patient prognosis. Our data further indicates that USP22 promotes the proliferation of hepatocellular carcinoma cells via deubiquitinating and stabilizing cyclin-dependent kinase 11B (CDK11B). Additionally, USP22 acts as a novel inducer of Sorafenib resistance and suppresses Sorafenib-triggered ferroptosis in hepatocellular carcinoma cells. It reduces the transcription of transferrin receptor (TFRC) by decreasing H2BK120ub occupancy at TFRC transcription start site (TSS) downstream region, thereby inhibiting ferroptosis upon Sorafenib treatment. Finally, animal experiments confirm the role of USP22 in promoting hepatocellular carcinoma cell growth and Sorafenib resistance in vivo. Taken together, this study demonstrates that USP22 promotes hepatocellular carcinoma growth and inhibits Sorafenib-induced ferroptosis by deubiquitinating non-histone substrate CDK11B and histone H2B, respectively. CONCLUSIONS Our findings suggest USP22 as a promising prognostic biomarker and therapeutic target for hepatocellular carcinoma patients, particularly those with Sorafenib resistance. KEY POINTS USP22 promotes the proliferation of hepatocellular carcinoma cells by deubiquitinating and stabilizing cyclin-dependent kinase CDK11B. USP22 enhances Sorafenib resistance of hepatocellular carcinoma cells by inhibiting ferroptosis through the USP22/H2BK120ub/TFRC axis.
Collapse
Affiliation(s)
- Xiaochen Wang
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education); The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical Epigenetics; Key Laboratory of Immune Microenvironment and Disease (Ministry of Education); Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical UniversityTianjinChina
| | - Yijie Su
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education); The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical Epigenetics; Key Laboratory of Immune Microenvironment and Disease (Ministry of Education); Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical UniversityTianjinChina
| | - Bei Lan
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education); The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical Epigenetics; Key Laboratory of Immune Microenvironment and Disease (Ministry of Education); Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical UniversityTianjinChina
| | - Xuanyuan Li
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education); The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical Epigenetics; Key Laboratory of Immune Microenvironment and Disease (Ministry of Education); Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical UniversityTianjinChina
| | - Bodi Zhang
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education); The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical Epigenetics; Key Laboratory of Immune Microenvironment and Disease (Ministry of Education); Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical UniversityTianjinChina
| | - Liang Zhang
- Research Center of Translational MedicineJinan Central Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Yingmei Wang
- Department of Gynecology and ObstetricsTianjin Medical University General HospitalTianjinChina
| | - Chunze Zhang
- Department of Colorectal SurgeryTianjin Union Medical CenterTianjinChina
| | - Chenghao Xuan
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education); The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical Epigenetics; Key Laboratory of Immune Microenvironment and Disease (Ministry of Education); Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical UniversityTianjinChina
| |
Collapse
|
3
|
Guo Q, Qin H, Chen Z, Zhang W, Zheng L, Qin T. Key roles of ubiquitination in regulating critical regulators of cancer stem cell functionality. Genes Dis 2025; 12:101311. [PMID: 40034124 PMCID: PMC11875185 DOI: 10.1016/j.gendis.2024.101311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/23/2024] [Accepted: 03/07/2024] [Indexed: 03/05/2025] Open
Abstract
The ubiquitin (Ub) system, a ubiquitous presence across eukaryotes, plays a crucial role in the precise orchestration of diverse cellular protein processes. From steering cellular signaling pathways and orchestrating cell cycle progression to guiding receptor trafficking and modulating immune responses, this process plays a crucial role in regulating various biological functions. The dysregulation of Ub-mediated signaling pathways in prevalent cancers ushers in a spectrum of clinical outcomes ranging from tumorigenesis and metastasis to recurrence and drug resistance. Ubiquitination, a linchpin process mediated by Ub, assumes a central mantle in molding cellular signaling dynamics. It navigates transitions in biological cues and ultimately shapes the destiny of proteins. Recent years have witnessed an upsurge in the momentum surrounding the development of protein-based therapeutics aimed at targeting the Ub system under the sway of cancer stem cells. The article provides a comprehensive overview of the ongoing in-depth discussions regarding the regulation of the Ub system and its impact on the development of cancer stem cells. Amidst the tapestry of insights, the article delves into the expansive roles of E3 Ub ligases, deubiquitinases, and transcription factors entwined with cancer stem cells. Furthermore, the spotlight turns to the interplay with pivotal signaling pathways the Notch, Hedgehog, Wnt/β-catenin, and Hippo-YAP signaling pathways all play crucial roles in the regulation of cancer stem cells followed by the specific modulation of Ub-proteasome.
Collapse
Affiliation(s)
- Qianqian Guo
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Hai Qin
- Department of Clinical Laboratory, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, Guizhou 550014, China
| | - Zelong Chen
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Artificial Intelligence and IoT Smart Medical Engineering Research Center of Henan Province, Zhengzhou, Henan 450008, China
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Lufeng Zheng
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Tingting Qin
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| |
Collapse
|
4
|
Tang S, Lu C, Meng Z, Ye Z, Qin Y, Na N, Xian S, Huang F, Zeng Z. USP22 enhances atherosclerotic plaque stability and macrophage efferocytosis by stabilizing PPARγ. Commun Biol 2025; 8:678. [PMID: 40301680 PMCID: PMC12041205 DOI: 10.1038/s42003-025-08116-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 04/22/2025] [Indexed: 05/01/2025] Open
Abstract
Atherosclerosis is a chronic inflammatory disease that strongly threatens human health, and macrophages play a pivotal role in its pathogenesis. Ubiquitin-specific peptidase 22 (USP22) is involved in the regulation of macrophage inflammation. However, its role in the atherosclerotic microenvironment remains unclear. In this study, we found that USP22 overexpression in macrophages alleviated atherosclerosis progression in ApoE-/- mice. In vitro, USP22 silencing enhanced macrophage inflammation and foam cell formation, and macrophage efferocytosis was significantly impaired. Mechanistically, USP22 bound to peroxisome proliferator-activated receptor γ (PPARγ) and inhibited its ubiquitination, thereby stabilizing PPARγ and promoting efferocytosis. In addition, intraperitoneal injection of the USP22 inhibitor USP22i-S02 exacerbated atherosclerosis in ApoE-/- mice. In summary, these findings indicate that USP22 may be a potential therapeutic target for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Senhu Tang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning, Guangxi, China
| | - Chuanghong Lu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning, Guangxi, China
| | - Zhongyuan Meng
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning, Guangxi, China
| | - Zihua Ye
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning, Guangxi, China
| | - Yue Qin
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning, Guangxi, China
| | - Na Na
- Department of Neuroscience, Scripps Research Institute, San Diego, CA, USA
| | - Shenglin Xian
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning, Guangxi, China
| | - Feng Huang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning, Guangxi, China.
| | - Zhiyu Zeng
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning, Guangxi, China.
| |
Collapse
|
5
|
Gürhan G, Sevinç K, Aztekin C, Gayretli M, Yılmaz A, Yıldız AB, Ervatan EN, Morova T, Datlı E, Coleman OD, Kawamura A, Lack NA, Syed H, Önder T. A chromatin-focused CRISPR screen identifies USP22 as a barrier to somatic cell reprogramming. Commun Biol 2025; 8:454. [PMID: 40102626 PMCID: PMC11920211 DOI: 10.1038/s42003-025-07899-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/06/2025] [Indexed: 03/20/2025] Open
Abstract
Cell-autonomous barriers to reprogramming somatic cells into induced pluripotent stem cells (iPSCs) remain poorly understood. Using a focused CRISPR-Cas9 screen, we identified Ubiquitin-specific peptidase 22 (USP22) as a key chromatin-based barrier to human iPSC derivation. Suppression of USP22 significantly enhances reprogramming efficiency. Surprisingly, this effect is likely to be independent of USP22's deubiquitinase activity or its association with the SAGA complex, as shown through module-specific knockouts, and genetic rescue experiments. USP22 is not required for iPSC derivation or maintenance. Mechanistically, USP22 loss during reprogramming downregulates fibroblast-specific genes while activating pluripotency-associated genes, including DNMT3L, LIN28A, SOX2, and GDF3. Additionally, USP22 loss enhances reprogramming efficiency under naïve stem cell conditions. These findings reveal an unrecognized role for USP22 in maintaining somatic cell identity and repressing pluripotency genes, highlighting its potential as a target to improve reprogramming efficiency.
Collapse
Affiliation(s)
- Gülben Gürhan
- School of Medicine, Koç University, Istanbul, Turkey
| | - Kenan Sevinç
- School of Medicine, Koç University, Istanbul, Turkey
| | - Can Aztekin
- School of Medicine, Koç University, Istanbul, Turkey
| | - Mert Gayretli
- School of Medicine, Koç University, Istanbul, Turkey
| | | | | | | | - Tunç Morova
- School of Medicine, Koç University, Istanbul, Turkey
- Vancouver Prostate Centre, Department of Urologic Science, University of British Columbia, Vancouver, BC, Canada
| | - Elif Datlı
- School of Medicine, Koç University, Istanbul, Turkey
| | - Oliver D Coleman
- Chemistry - School of Natural and Environmental Sciences, Newcastle University, Newcastle, United Kingdom
| | - Akane Kawamura
- Chemistry - School of Natural and Environmental Sciences, Newcastle University, Newcastle, United Kingdom
| | - Nathan A Lack
- School of Medicine, Koç University, Istanbul, Turkey
- Vancouver Prostate Centre, Department of Urologic Science, University of British Columbia, Vancouver, BC, Canada
| | - Hamzah Syed
- School of Medicine, Koç University, Istanbul, Turkey
- Biostatistics, Bioinformatics and Data Management Core, KUTTAM, Koç University, Istanbul, Turkey
| | - Tamer Önder
- School of Medicine, Koç University, Istanbul, Turkey.
| |
Collapse
|
6
|
Wu Z, Zhang P, Huang W, Zhou Y, Cao Z, Wu C. Qufeng epimedium decoction alleviates rheumatoid arthritis through CYLD-antagonized NF-kB activation by deubiquitinating Sirt1. Immunobiology 2025; 230:152875. [PMID: 39908772 DOI: 10.1016/j.imbio.2025.152875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/20/2024] [Accepted: 01/25/2025] [Indexed: 02/07/2025]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic autoimmune disease that markedly limits the patients´ day-to-day functional abilities and life quality. Currently, there is no known cure for RA. Qufeng epimedium decoction, a traditional Chinese medicine, is widely used in China to treat RA. However, its underlying mechanism remains elusive. METHODS The RA animal model was established to investigate the anti-RA effect and regulatory effect on fibroblast-like synoviocytes (FLS) pyroptosis, qRT-PCR, Western blot, flow cytometry, histology staining, and ELISA were utilized to confirm the gene and protein expressions. The interactions between Sirt1 and CYLD were validated through Co-immunoprecipitation (Co-IP) and RNA-FISH assay. RESULTS Administration with Qufeng epimedium decoction attenuated inflammatory damage, excessive proliferation, and FLSs pyroptosis in an RA rat model. Moreover, treatment of Qufeng epimedium decoction reduced the ubiquitination modification level of Sirt1 in FLSs isolated from an RA rat model. Mechanistically, CYLD, an intermediation for linking Qufeng epimedium decoction and RA, was responsible for Sirt1 deubiquitination to its protein stabilization, thereby deactivating the NF-kB /GSDMD signaling pathway. CONCLUSION Our findings indicate that Qufeng epimedium decoction suppresses FLSs pyroptosis and RA progression via CYLD-mediated Sirt1 deubiquitination and deactivation of the NF-kB /GSDMD signaling pathway. This study sheds light on the underlying mechanism of Qufeng epimedium decoction's effectiveness in RA treatment.
Collapse
Affiliation(s)
- Zhiming Wu
- Chinese Medicine Department, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, Jiangxi Province, PR China.
| | - Peng Zhang
- Chinese Medicine Department, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, Jiangxi Province, PR China
| | - Wenyan Huang
- Day Surgery Center, Jiangxi Maternal and Child Health Care Hospital, Nanchang 330000, Jiangxi Province, PR China
| | - Yifen Zhou
- Chinese Medicine Department, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, Jiangxi Province, PR China
| | - Zhengliu Cao
- Chinese Medicine Department, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, Jiangxi Province, PR China
| | - Chunhong Wu
- Outpatient Department, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, Jiangxi Province, PR China
| |
Collapse
|
7
|
Yang K, He T, Sun X, Dong W. Post-translational modifications and bronchopulmonary dysplasia. Front Pediatr 2025; 12:1426030. [PMID: 39830627 PMCID: PMC11738936 DOI: 10.3389/fped.2024.1426030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025] Open
Abstract
Bronchopulmonary dysplasia is a prevalent respiratory disorder posing a significant threat to the quality of life in premature infants. Its pathogenesis is intricate, and therapeutic options are limited. Besides genetic coding, protein post-translational modification plays a pivotal role in regulating cellular function, contributing complexity and diversity to substrate proteins and influencing various cellular processes. Substantial evidence indicates that post-translational modifications of several substrate proteins are intricately related to the molecular mechanisms underlying bronchopulmonary dysplasia. These modifications facilitate the progression of bronchopulmonary dysplasia through a cascade of signal transduction events. This review outlines the relationships between substrate protein phosphorylation, acetylation, ubiquitination, SUMOylation, methylation, glycosylation, glycation, S-glutathionylation, S-nitrosylation and bronchopulmonary dysplasia. The aim is to provide novel insights into bronchopulmonary dysplasia's pathogenesis and potential therapeutic targets for clinical management.
Collapse
Affiliation(s)
| | | | | | - Wenbin Dong
- Department of Neonatology, Children’s Medical Center, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
8
|
Wu L, Wang J, Chai L, Chen J, Jin X. Roles of deubiquitinases in urologic cancers (Review). Oncol Lett 2024; 28:609. [PMID: 39525605 PMCID: PMC11544529 DOI: 10.3892/ol.2024.14743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/23/2024] [Indexed: 11/16/2024] Open
Abstract
Human health is endangered by the occurrence and progression of urological cancers, including renal cell carcinoma, prostate cancer and bladder cancer, which are usually associated with the activation of oncogenic factors and inhibition of cancer suppressors. The primary mechanism for protein breakdown in cells is the ubiquitin-proteasome system, whilst deubiquitinases contribute to the reversal of this process. However, both are important for protein homeostasis. Deubiquitination may also be involved in the control of the cell cycle, proliferation and apoptosis, and dysregulated deubiquitination is associated with the malignant transformation, invasion and metastasis of urologic malignancies. Therefore, a comprehensive summary of the mechanisms underlying deubiquitination in urological cancers may provide novel strategies and insights for diagnosis and treatment. The present review aimed to methodically clarify the role of deubiquitinating enzymes in urinary system cancers as well as their prospective application prospects for clinical treatment.
Collapse
Affiliation(s)
- Liangpei Wu
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jiahui Wang
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Lin Chai
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jun Chen
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
9
|
Zhuang X, Yin S, Cheng J, Sun W, Fang Z, Xiang Y, Peng EY, Yao Y, Li Y, He X, Lu L, Deng Y, Huang H, Cai G, Liao Y. METTL14-mediated m 6A modification enhances USP22-ERα axis to drive breast cancer malignancy. Pharmacol Res 2024; 210:107509. [PMID: 39557350 DOI: 10.1016/j.phrs.2024.107509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
The abundance and activity of estrogen receptor alpha (ERα) are tightly regulated by ubiquitin-specific peptidase 22 (USP22) during the progression of breast cancer (BCa). However, the post-transcriptional modifications on the USP22-ERα axis remain elusive. N6-methyladenosine (m6A) is critical to modulate RNA status in eukaryotic cells. Here, we find that METTL14 positively regulates the mRNA expression of USP22 and ERα. Mechanistically, METTL14 potently binds to the USP22 and ERα mRNA, and thereby enhancing their stability through m6A modification. YTHDC1 and YTHDF1 function as readers for m6A-modified USP22 and ERα, respectively. Additionally, METTL14 promotes the growth and migration of ERα+ BCa via the USP22-ERα-Cyclin D1 axis. Enforced expression of USP22/ERα significantly reverses the METTL14 depletion-induced growth and migration inhibition in BCa. Moreover, our analysis of clinical samples shows that the expression of METTL14, USP22, and ERα is upregulated and correlated in BCa tissues. Overall, our findings reveal the key role of the METTL14-USP22-ERα axis in BCa progression, which further provides a druggable target to treat BCa.
Collapse
Affiliation(s)
- Xuefen Zhuang
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou 510095, China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Shusha Yin
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou 510095, China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Ji Cheng
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou 510095, China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Wenshuang Sun
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou 510095, China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Zesen Fang
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 511436, China
| | - Yujie Xiang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - E-Ying Peng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Yu Yao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Yuting Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiaoyue He
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Li Lu
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Yuanfei Deng
- Department of Pathology, The First People's Hospital of Foshan, Foshan 528000, China
| | - Hongbiao Huang
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou 510095, China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| | - Gengxi Cai
- Department of Breast Surgery, The First People's Hospital of Foshan, Foshan 528000, China.
| | - Yuning Liao
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou 510095, China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
10
|
Gao Q, Li N, Pan Y, Chu P, Zhou Y, Jia H, Cheng Y, Xue G, Song J, Zhang Y, Zhu H, Sun J, Zhang B, Sun Z, Fang D. Hepatocyte growth factor promotes melanoma metastasis through ubiquitin-specific peptidase 22-mediated integrins upregulation. Cancer Lett 2024; 604:217196. [PMID: 39222676 PMCID: PMC11542356 DOI: 10.1016/j.canlet.2024.217196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/15/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Hepatocyte growth factor (HGF) plays a critical role in promoting tumor migration, invasion, and metastasis, partly by upregulating integrins. The molecular mechanisms behind how HGF facilitates integrin-mediated tumorigenesis are not fully understood. In this study, we demonstrate that the ubiquitin-specific peptidase 22 (USP22) is essential for HGF-induced melanoma metastasis. HGF treatment dramatically increased the expression of both USP22 and multiple integrin family members in particular ITGAV, ITGB3, and ITGA1. An unbiased analysis of the TCGA database reveals integrins as common downstream targets of both USP22 and HGF across multiple human cancer types. Notably, CRISPR-mediated deletion of USP22 completely eliminates HGF-induced integrin expression in melanoma cells. At the molecular level, USP22 acts as a bona fide deubiquitinase for Sp1, a transcription factor for the ITGAV, ITGB3, and ITGA1 genes. USP22 interacts with and inhibits Sp1 ubiquitination, protecting against Sp1 proteasomal degradation. Supporting this, immunohistology analysis detects a positive correlation among USP22, Sp1, and integrin αv in human melanoma tissues. This study identifies the death from the signature gene USP22 as a critical positive regulator for HGF-induced integrin expression by deubiquitinating the Sp1 transcription factor during melanoma metastasis.
Collapse
Affiliation(s)
- Qiong Gao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China; Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Na Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China
| | - Yujie Pan
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China
| | - Peng Chu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China
| | - Yuanzhang Zhou
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China
| | - Huijun Jia
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China
| | - Yang Cheng
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Guoqing Xue
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China
| | - Jiankun Song
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China
| | - Yue Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China
| | - Houyu Zhu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China
| | - Jia Sun
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China
| | - Bin Zhang
- Department of Medicine, Hematology/Oncology Division, Robert H. Lurie Comprehensive Cancer Center, USA
| | - Zhaolin Sun
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China.
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Department of Medicine, Hematology/Oncology Division, Robert H. Lurie Comprehensive Cancer Center, USA.
| |
Collapse
|
11
|
Zhen F, Sun Y, Wang H, Liu W, Liang X, Wang Y, Wang Q, Hu J. Ubiquitin-Specific Protease 22 Plays a Key Role in Increasing Extracellular Vesicle Secretion and Regulating Cell Motility of Lung Adenocarcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405731. [PMID: 39101247 PMCID: PMC11481270 DOI: 10.1002/advs.202405731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/12/2024] [Indexed: 08/06/2024]
Abstract
Tumor-derived extracellular vesicles (EVs) are potential biomarkers for tumors, but their reliable molecular targets have not been identified. The previous study confirms that ubiquitin-specific protease 22 (USP22) promotes lung adenocarcinoma (LUAD) metastasis in vivo and in vitro. Moreover, USP22 regulates endocytosis of tumor cells and localizes to late endosomes. However, the role of USP22 in the secretion of tumor cell-derived EVs remains unknown. In this study, it demonstrates that USP22 increases the secretion of tumor cell-derived EVs and accelerates their migration and invasion, invadopodia formation, and angiogenesis via EV transfer. USP22 enhances EV secretion by upregulating myosin IB (MYO1B). This study further discovers that USP22 activated the SRC signaling pathway by upregulating the molecule KDEL endoplasmic reticulum protein retention receptor 1 (KDELR1), thereby contributing to LUAD cell progression. The study provides novel insights into the role of USP22 in EV secretion and cell motility regulation in LUAD.
Collapse
Affiliation(s)
- Fang Zhen
- Department of Breast Medical OncologyHarbin Medical University Cancer HospitalHarbin Medical UniversityNo. 150 Haping RoadHarbinHeilongjiang150040China
| | - Yue Sun
- Department of Breast Medical OncologyHarbin Medical University Cancer HospitalHarbin Medical UniversityNo. 150 Haping RoadHarbinHeilongjiang150040China
| | - Hongyi Wang
- Department of Breast Medical OncologyHarbin Medical University Cancer HospitalHarbin Medical UniversityNo. 150 Haping RoadHarbinHeilongjiang150040China
| | - Wei Liu
- Department of Breast Medical OncologyHarbin Medical University Cancer HospitalHarbin Medical UniversityNo. 150 Haping RoadHarbinHeilongjiang150040China
| | - Xiao Liang
- Key laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University)Ministry of EducationHarbinHeilongjiang150081China
| | - Yaru Wang
- Department of Breast Medical OncologyHarbin Medical University Cancer HospitalHarbin Medical UniversityNo. 150 Haping RoadHarbinHeilongjiang150040China
| | - Qi Wang
- Department of Medicinal Chemistry and Natural Medicinal ChemistryCollege of PharmacyHarbin Medical UniversityNo. 157 Baojian RoadHarbinHeilongjiang150081China
| | - Jing Hu
- Department of Breast Medical OncologyHarbin Medical University Cancer HospitalHarbin Medical UniversityNo. 150 Haping RoadHarbinHeilongjiang150040China
- Key laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University)Ministry of EducationHarbinHeilongjiang150081China
| |
Collapse
|
12
|
Liu Y, Yang P, Wang J, Peng W, Zhao J, Wang Z. MiRNA Regulates Ferroptosis in Cardiovascular and Cerebrovascular Diseases. DNA Cell Biol 2024; 43:492-509. [PMID: 39417991 DOI: 10.1089/dna.2024.0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Cardiovascular and cerebrovascular diseases (CCVDs) significantly contribute to global mortality and morbidity due to their complex pathogenesis involving multiple biological processes. Ferroptosis is an important physiological process in CCVDs, manifested by an abnormal increase in intracellular iron concentration. MiRNAs, a key class of noncoding RNA molecules, are crucial in regulating CCVDs through pathways like glutathione-glutathione peroxidase 4, glutamate/cystine transport, iron metabolism, lipid metabolism, and other oxidative stress pathways. This article summarizes the progress of miRNAs' regulation on CCVDs, aiming to provide insights for the diagnosis and treatment of CCVDs.
Collapse
Affiliation(s)
- Yiman Liu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| | - Peijuan Yang
- Hengyang Maternal and Child Health Hospital, Hengyang, China
| | - Jingjing Wang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| | - Wu Peng
- Hengyang Maternal and Child Health Hospital, Hengyang, China
| | - Jinli Zhao
- Emergency Department, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Zuo Wang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
13
|
Liu K, Gao Q, Jia Y, Wei J, Chaudhuri SM, Wang S, Tang A, Mani NL, Iyer R, Cheng Y, Gao B, Lu W, Sun Z, Zhang B, Liu H, Fang D. Ubiquitin-specific peptidase 22 controls integrin-dependent cancer cell stemness and metastasis. iScience 2024; 27:110592. [PMID: 39246448 PMCID: PMC11378969 DOI: 10.1016/j.isci.2024.110592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/28/2024] [Accepted: 07/24/2024] [Indexed: 09/10/2024] Open
Abstract
Integrins play critical roles in connecting the extracellular matrix and actin. While the upregulation of integrins is thought to promote cancer stemness and metastasis, the mechanisms underlying their upregulation in cancer stem cells (CSCs) remain poorly understood. Herein, we show that USP22 is essential in maintaining breast cancer cell stemness by promoting the transcription of integrin β1 (ITGB1). Both genetic and pharmacological inhibition of USP22 largely impaired breast CSCs self-renewal and prevented their metastasis. Reconstitution of integrin β1 partially rescued USP22-null breast cancer metastasis. USP22 functions as a bona fide deubiquitinase to protect the proteasomal degradation of the forkhead box M1 (FoxM1), a transcription factor for tumoral ITGB1 gene transcription. Immunohistochemistry staining detected a positive correlation among USP22, FoxM1, and integrin β1 in human breast cancers. Collectively, our study identifies the USP22-FoxM1-integrin β1 signaling axis as critical for cancer stemness and offers a potential target for antitumor therapy.
Collapse
Affiliation(s)
- Kun Liu
- Department of Pathology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Qiong Gao
- Department of Pathology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, P.R. China
| | - Yuzhi Jia
- Department of Medicine, Hematology/Oncology Division, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Juncheng Wei
- Department of Pathology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Shuvam Mohan Chaudhuri
- Department of Pathology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Shengnan Wang
- Department of Pathology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Amy Tang
- Department of Pathology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Nikita Lavanya Mani
- Department of Pathology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Radhika Iyer
- Department of Pathology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yang Cheng
- Department of Pathology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Beixue Gao
- Department of Pathology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Weiyuan Lu
- Department of Pathology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Zhaolin Sun
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, P.R. China
| | - Bin Zhang
- Department of Medicine, Hematology/Oncology Division, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Huiping Liu
- Department of Pharmacology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Deyu Fang
- Department of Pathology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
14
|
Ma M, Yi L, Pei Y, Zhang Q, Tong C, Zhao M, Chen Y, Zhu J, Zhang W, Yao F, Yang P, Zhang P. USP26 as a hepatitis B virus-induced deubiquitinase primes hepatocellular carcinogenesis by epigenetic remodeling. Nat Commun 2024; 15:7856. [PMID: 39251623 PMCID: PMC11385750 DOI: 10.1038/s41467-024-52201-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 08/29/2024] [Indexed: 09/11/2024] Open
Abstract
Despite recent advances in systemic therapy for hepatocellular carcinoma (HCC), the prognosis of hepatitis B virus (HBV)-induced HCC patients remains poor. By screening a sgRNA library targeting human deubiquitinases, we find that ubiquitin-specific peptidase 26 (USP26) deficiency impairs HBV-positive HCC cell proliferation. Genetically engineered murine models with Usp26 knockout confirm that Usp26 drives HCC tumorigenesis. Mechanistically, we find that the HBV-encoded protein HBx binds to the promoter and induces the production of USP26, which is an X-linked gene exclusively expressed in the testis. HBx consequently promotes the association of USP26 with SIRT1 to synergistically stabilize SIRT1 by deubiquitination, which promotes cell proliferation and impedes cell apoptosis to accelerate HCC tumorigenesis. In patients with HBV-positive HCC, USP26 is robustly induced, and its levels correlate with SIRT1 levels and poor prognosis. Collectively, our study highlights a causative link between HBV infection, deubiquitinase induction and development of HCC, identifying a druggable target, USP26.
Collapse
Affiliation(s)
- Mengru Ma
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lian Yi
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yifei Pei
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qimin Zhang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Chao Tong
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Manyu Zhao
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yuanhong Chen
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jinghan Zhu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wanguang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fan Yao
- Hubei Hongshan Laboratory, College of Life Science and Technology, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, China
| | - Pengyuan Yang
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Peijing Zhang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
15
|
Zhou M, Gao Y, Wu S, Wang Y, Yang J. USP22 is required for human endometrial stromal cell proliferation and decidualization by deubiquitinating FoxM1. Cell Signal 2024; 121:111265. [PMID: 38897527 DOI: 10.1016/j.cellsig.2024.111265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/08/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
Despite significant advances in assisted reproductive technology (ART), recurrent implantation failure (RIF) still occurs in some patients. Poor endometrial receptivity and abnormal human endometrial stromal cell (HESC) proliferation and decidualization have been identified as the major causes. Ubiquitin-specific protease 22 (USP22) has been reported to participate in the decidualization of endometrial stromal cells in mice. However, the role of USP22 in HESC function and RIF development remains unknown. In this study, clinical endometrial tissue samples were gathered to investigate the involvement of USP22 in RIF, and HESCs were utilized to examine the molecular mechanisms of USP22 and Forkhead box M1 (FoxM1). The findings indicated a high expression of USP22 in the secretory phase of the endometrium. Knockdown of USP22 led to a notable reduction in the proliferation and decidualization of HESCs, along with a decrease in FoxM1 expression, while overexpression of USP22 yielded opposite results. Furthermore, USP22 was found to deubiquitinate FoxM1 in HESCs. Moreover, both USP22 and FoxM1 were downregulated in the endometria of patients with RIF. In conclusion, these results suggest that USP22 may have a significant impact on HESCs proliferation and decidualization through its interaction with FoxM1, potentially contributing to the underlying mechanisms of RIF pathogenesis.
Collapse
Affiliation(s)
- Mengqi Zhou
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China; Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei 430060, China
| | - Yue Gao
- Department of Reproductive Medicine, Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei 430070, China
| | - Shujuan Wu
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China; Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei 430060, China
| | - Yaqin Wang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China; Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei 430060, China.
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China; Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei 430060, China.
| |
Collapse
|
16
|
Zhou Y, Chu P, Wang Y, Li N, Gao Q, Wang S, Wei J, Xue G, Zhao Y, Jia H, Song J, Zhang Y, Pang Y, Zhu H, Sun J, Ma S, Su C, Hu B, Zhao Z, Zhang H, Lu J, Wang J, Wang H, Sun Z, Fang D. Epinephrine promotes breast cancer metastasis through a ubiquitin-specific peptidase 22-mediated lipolysis circuit. SCIENCE ADVANCES 2024; 10:eado1533. [PMID: 39151008 PMCID: PMC11328899 DOI: 10.1126/sciadv.ado1533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/10/2024] [Indexed: 08/18/2024]
Abstract
Chronic stress-induced epinephrine (EPI) accelerates breast cancer progression and metastasis, but the molecular mechanisms remain unclear. Herein, we found a strong positive correlation between circulating EPI levels and the tumoral expression of ubiquitin-specific peptidase 22 (USP22) in patients with breast cancer. USP22 facilitated EPI-induced breast cancer progression and metastasis by enhancing adipose triglyceride lipase (ATGL)-mediated lipolysis. Targeted USP22 deletion decreased ATGL expression and lipolysis, subsequently inhibiting EPI-mediated breast cancer lung metastasis. USP22 acts as a bona fide deubiquitinase for the Atgl gene transcription factor FOXO1, and EPI architects a lipolysis signaling pathway to stabilize USP22 through AKT-mediated phosphorylation. Notably, USP22 phosphorylation levels are positively associated with EPI and with downstream pathways involving both FOXO1 and ATGL in breast cancers. Pharmacological USP22 inhibition synergized with β-blockers in treating preclinical xenograft breast cancer models. This study reveals a molecular pathway behind EPI's tumor-promoting effects and provides a strong rationale for combining USP22 inhibition with β-blockers to treat aggressive breast cancer.
Collapse
Affiliation(s)
- Yuanzhang Zhou
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
| | - Peng Chu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
- Dalian College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Ya Wang
- Department of Breast Surgery, First Affiliated Hospital of Dalian Medical University, Dalian 116044, China
| | - Na Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
| | - Qiong Gao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
- Department of Pathology & Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Shengnan Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
- Department of Pathology & Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Juncheng Wei
- Department of Pathology & Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Guoqing Xue
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
| | - Yue Zhao
- Department of Clinical Laboratory, Dalian Municipal Central Hospital, Dalian 116000, China
| | - Huijun Jia
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
| | - Jiankun Song
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
| | - Yue Zhang
- Department of Breast Surgery, First Affiliated Hospital of Dalian Medical University, Dalian 116044, China
| | - Yujie Pang
- Department of Breast Surgery, First Affiliated Hospital of Dalian Medical University, Dalian 116044, China
| | - Houyu Zhu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
| | - Jia Sun
- Dalian College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Suxian Ma
- Dalian College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Chen Su
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
| | - Bingjin Hu
- Dalian College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Zhuoyue Zhao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
| | - Hui Zhang
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Janice Lu
- Department of Medicine & Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jian Wang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Hongjiang Wang
- Department of Breast Surgery, First Affiliated Hospital of Dalian Medical University, Dalian 116044, China
| | - Zhaolin Sun
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
- Dalian College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Deyu Fang
- Department of Pathology & Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
17
|
Lu W, Chu P, Tang A, Si L, Fang D. The secoiridoid glycoside Gentiopicroside is a USP22 inhibitor with potent antitumor immunotherapeutic activity. Biomed Pharmacother 2024; 177:116974. [PMID: 38968798 DOI: 10.1016/j.biopha.2024.116974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/28/2024] [Accepted: 06/15/2024] [Indexed: 07/07/2024] Open
Abstract
Over the past decade, immunotherapies have brought about significant changes in how we approach the treatment of various solid tumors and blood-related cancers. However, the effectiveness of checkpoint blockade therapy has been constrained to a rate of under 30 %. A significant challenge in the realm of tumor immunotherapy revolves around comprehending the mechanisms through which regulatory T (Treg) cells induce immunosuppression. We have recently discovered that USP22 (ubiquitin-specific peptidase 22) a deubiquitinating enzyme that is increased in various tumors, is an oncogene and controls Treg immune suppressive activity for tumor evasion, providing a rationale for USP22 targeting to achieve both onco- and immuno-therapeutic efficacies. Herein, we identified the traditional Chinese secoiridoid compound gentiopicroside as a USP22 inhibitor. Gentiopicroside treatment decreased the forkhead box P3 (Foxp3) expression, which subsequently reduced Treg immune suppressive activity. Treatment of cancer cells by gentiopicroside resulted in an increase in histone 2B monoubiquitination (H2Bub) in a USP22-dependent manner and a decrease in programmed cell death ligand 1 (PD-L1) expression, both of which are known as USP22-specific substrates. Docking and molecular dynamic simulation revealed that gentiopicroside stably binds to USP22 catalytic pocket, supporting that gentiopicroside is a USP22 inhibitor. Importantly, administration of gentiopicroside to mice significantly inhibited the growth of syngenetic lung adenocarcinoma. Further analysis of intratumoral immune cells revealed a dramatic increase CD8+ T cell production of IFN-γ and granzyme B (GZMB), confirming that gentiopicroside enhances antitumor immunity. Our study revealed that gentiopicroside is a USP22-specific inhibitor with potent antitumor therapeutic potentials.
Collapse
Affiliation(s)
- Weiyuan Lu
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Avenue, Chicago, IL 60611, USA; Department of Pediatrics, The Sixth Affiliated Hospital of Harbin Medical University, Heilongjiang 150028, China
| | - Peng Chu
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Amy Tang
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Avenue, Chicago, IL 60611, USA
| | - Ligang Si
- Department of Pediatrics, The Sixth Affiliated Hospital of Harbin Medical University, Heilongjiang 150028, China
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Avenue, Chicago, IL 60611, USA.
| |
Collapse
|
18
|
Cheng Y, Wang S, Gao Q, Fang D. ATXN3 functions as a tumor suppressor through potentiating galectin-9-mediated apoptosis in human colon adenocarcinoma. J Biol Chem 2024; 300:107415. [PMID: 38815863 PMCID: PMC11254720 DOI: 10.1016/j.jbc.2024.107415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/30/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024] Open
Abstract
While deubiquitinase ATXN3 has been implicated as a potential oncogene in various types of human cancers, its role in colon adenocarcinoma remains understudied. Surprisingly, our findings demonstrate that ATXN3 exerts an antitumor effect in human colon cancers through potentiating Galectin-9-induced apoptosis. CRISPR-mediated ATXN3 deletion unexpectedly intensified colon cancer growth both in vitro and in xenograft colon cancers. At the molecular level, we identified ATXN3 as a bona fide deubiquitinase specifically targeting Galectin-9, as ATXN3 interacted with and inhibited Galectin-9 ubiquitination. Consequently, targeted ATXN3 ablation resulted in reduced Galectin-9 protein expression, thereby diminishing Galectin-9-induced colon cancer apoptosis and cell growth arrest. The ectopic expression of Galectin-9 fully reversed the growth of ATXN3-null colon cancer in mice. Furthermore, immunohistochemistry staining revealed a significant reduction in both ATXN3 and Galectin-9 protein expression, along with a positive correlation between them in human colon cancer. Our study identifies the first Galectin-9-specific deubiquitinase and unveils a tumor-suppressive role of ATXN3 in human colon cancer.
Collapse
Affiliation(s)
- Yang Cheng
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Shengnan Wang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Qiong Gao
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Center for Human Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| |
Collapse
|
19
|
Xie L, Li C, Wang C, Wu Z, Wang C, Chen C, Chen X, Zhou D, Zhou Q, Lu P, Ding C, Liu C, Lin J, Zhang X, Yu X, Yu W. Aspirin-Mediated Acetylation of SIRT1 Maintains Intestinal Immune Homeostasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306378. [PMID: 38482749 PMCID: PMC11109641 DOI: 10.1002/advs.202306378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/07/2024] [Indexed: 05/23/2024]
Abstract
Aspirin, also named acetylsalicylate, can directly acetylate the side-chain of lysine in protein, which leads to the possibility of unexplained drug effects. Here, the study used isotopic-labeling aspirin-d3 with mass spectrometry analysis to discover that aspirin directly acetylates 10 HDACs proteins, including SIRT1, the most studied NAD+-dependent deacetylase. SIRT1 is also acetylated by aspirin in vitro. It is also identified that aspirin directly acetylates lysine 408 of SIRT1, which abolishes SIRT1 deacetylation activity by impairing the substrates binding affinity. Interestingly, the lysine 408 of SIRT1 can be acetylated by CBP acetyltransferase in cells without aspirin supplement. Aspirin can inhibit SIRT1 to increase the levels of acetylated p53 and promote p53-dependent apoptosis. Moreover, the knock-in mice of the acetylation-mimic mutant of SIRT1 show the decreased production of pro-inflammatory cytokines and maintain intestinal immune homeostasis. The study indicates the importance of the acetylated internal functional site of SIRT1 in maintaining intestinal immune homeostasis.
Collapse
Affiliation(s)
- Liangguo Xie
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesZhongshan HospitalFudan UniversityShanghaiChina
| | - Chaoqun Li
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesZhongshan HospitalFudan UniversityShanghaiChina
| | - Chao Wang
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesZhongshan HospitalFudan UniversityShanghaiChina
| | - Zhen Wu
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesZhongshan HospitalFudan UniversityShanghaiChina
| | - Changchun Wang
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesZhongshan HospitalFudan UniversityShanghaiChina
| | - Chunyu Chen
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesZhongshan HospitalFudan UniversityShanghaiChina
| | - Xiaojian Chen
- Department of Colorectal and Anal SurgeryXinhua HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Dejian Zhou
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesZhongshan HospitalFudan UniversityShanghaiChina
| | - Qiang Zhou
- Department of Research Center for Molecular Recognition and SynthesisDepartment of ChemistryFudan UniversityShanghaiChina
| | - Ping Lu
- Department of Research Center for Molecular Recognition and SynthesisDepartment of ChemistryFudan UniversityShanghaiChina
| | - Chen Ding
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesZhongshan HospitalFudan UniversityShanghaiChina
| | - Chen‐Ying Liu
- Department of Colorectal and Anal SurgeryXinhua HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jinzhong Lin
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesZhongshan HospitalFudan UniversityShanghaiChina
| | - Xumin Zhang
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesZhongshan HospitalFudan UniversityShanghaiChina
| | - Xiaofei Yu
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesZhongshan HospitalFudan UniversityShanghaiChina
| | - Wei Yu
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesZhongshan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
20
|
Zeng M, Yang Y, Wang Z, Zhao X, Zhu D, Wang M, Chen Y, Wei X. CTRP9 prevents atherosclerosis progression through changing autophagic status of macrophages by activating USP22 mediated-de-ubiquitination on Sirt1 in vitro. Mol Cell Endocrinol 2024; 584:112161. [PMID: 38280475 DOI: 10.1016/j.mce.2024.112161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/29/2024]
Abstract
BACKGROUND Atherosclerosis (AS) is commonly regarded as a key driver accounted for the leading causes of morbidity and mortality among cardiovascular and cerebrovascular diseases. A growing body of evidence indicates that autophagy in macrophages involved in AS might be a potential therapeutic target. C1q/TNF-related protein 9 (CTRP9) has been proven to delay the progression of cardiovascular diseases. However, the relations between CTRP9 and Sirt1, as well as their effects on macrophages autophagy have not been fully explored. METHODS Macrophages were differentiated from mononuclear cells collected from peripheral blood samples of healthy donors. The in vitro AS models were constructed by ox-LDL treatment. Cell viability was determined by CCK-8 assay. Immunofluorescence assay of LC3 was implemented for evaluating autophagy activity. Oil Red O staining was performed for lipid accumulation detection. ELISA, cholesterol concentration assay and cholesterol efflux analysis were conducted using commercial kits. Cycloheximide assay was implemented for revealing protein stability. RT-qPCR was used for mRNA expression detection, and western blotting was performed for protein level monitoring. RESULTS CTRP9 attenuated impaired cell viability, autophagy inhibition and increased lipid accumulation induced by ox-LDL. Moreover, CTRP9 maintained Sirt1 protein level through enhancing its stability through de-ubiquitination, which was mediated by upregulated USP22 level. CRTP9 exerted its protective role in promoting autophagy and reducing lipid accumulation through the USP22/Sirt1 axis. CONCLUSION Collectively, CTRP9 alleviates lipid accumulation and facilitated the macrophages autophagy by upregulating USP22 level and maintaining Sirt1 protein expression, thereby exerting a protective role in AS progression in vitro.
Collapse
Affiliation(s)
- Min Zeng
- Medical Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, Hainan Province, PR China.
| | - Yali Yang
- Hainan Medical University, Haikou, 570311, Hainan Province, PR China
| | - Ziyan Wang
- Hainan Medical University, Haikou, 570311, Hainan Province, PR China
| | - Xiuyang Zhao
- Hainan Medical University, Haikou, 570311, Hainan Province, PR China
| | - Dianshu Zhu
- Hainan Medical University, Haikou, 570311, Hainan Province, PR China
| | - Mengdi Wang
- Hainan Medical University, Haikou, 570311, Hainan Province, PR China
| | - Yue Chen
- Hainan Medical University, Haikou, 570311, Hainan Province, PR China
| | - Xin Wei
- Otolaryngology Department, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, Hainan Province, PR China.
| |
Collapse
|
21
|
Yao X, Guo P, Li YH, Guo H, Jin Z, Lui W, Yuan J, Gao Q, Wang L, Li Y, Shi J, Zhang X, Cao Q, Xu YN, Kim NH. Apigenin delays postovulatory oocyte aging by reducing oxidative stress through SIRT1 upregulation. Theriogenology 2024; 218:89-98. [PMID: 38308957 DOI: 10.1016/j.theriogenology.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/06/2024] [Accepted: 01/06/2024] [Indexed: 02/05/2024]
Abstract
After ovulation, senescent oocytes inevitably experience reduced quality and defects in embryonic development. Apigenin (API) is a flavonoid with a wide range of pharmacological effects. Therefore, this study examined the protective effects of API on the quality of porcine oocytes during in-vitro ageing and the underlying mechanisms. The results showed that API treatment could reduce the activation rate after aging for 48 h. In addition, API significantly reduced reactive oxygen species, abnormal distribution of mitochondria, early apoptosis in ageing oocytes, increased glutathione, and mitochondrial adenosine triphosphate levels in ageing oocytes. Importantly, API increased the embryonic development rate in aged oocytes. We also examined molecular changes, finding decreased sirtuin 1 expression in in-vitro postovulatory oocytes, but API reversed this effect. Our results suggest that API attenuates the deterioration of oocyte quality during in-vitro ageing, possibly by reducing oxidative stress through the upregulation of sirtuin 1.
Collapse
Affiliation(s)
- Xuerui Yao
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China; International Healthcare Innovation Institute (Jiangmen), 333 Nanshan Road, Waihai Street, Jianghai, Jiangmen City, Guangdong Province, China; Guangdong University of Technology, Guangzhou City, Guangdong Province, China; Research and Development Department, Qingdao Haier Biotech Co. Ltd, Qingdao, China
| | - Panpan Guo
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China; International Healthcare Innovation Institute (Jiangmen), 333 Nanshan Road, Waihai Street, Jianghai, Jiangmen City, Guangdong Province, China; Guangdong University of Technology, Guangzhou City, Guangdong Province, China
| | - Ying-Hua Li
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Hao Guo
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China; International Healthcare Innovation Institute (Jiangmen), 333 Nanshan Road, Waihai Street, Jianghai, Jiangmen City, Guangdong Province, China; Guangdong University of Technology, Guangzhou City, Guangdong Province, China
| | - Zhelong Jin
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China; International Healthcare Innovation Institute (Jiangmen), 333 Nanshan Road, Waihai Street, Jianghai, Jiangmen City, Guangdong Province, China; Guangdong University of Technology, Guangzhou City, Guangdong Province, China
| | - Wen Lui
- Chungbuk National University, Cheongju, Chungbuk, 361-763, Republic of Korea; Southern Medical University, Guangzhou, Guangdong, China
| | - Jianbin Yuan
- Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, China
| | - Qingshan Gao
- College of Agriculture, Yanbian University, Yanji, 133000, China
| | - Lin Wang
- Research and Development Department, Qingdao Haier Biotech Co. Ltd, Qingdao, China
| | - Yunxiao Li
- Research and Development Department, Qingdao Haier Biotech Co. Ltd, Qingdao, China; Xi'an Jiaotong University, Xi'an, 710049, China
| | | | - Xiwei Zhang
- Wang Qing County Animal Quarantine Station, Yanji, 133200, China
| | - Qilong Cao
- Research and Development Department, Qingdao Haier Biotech Co. Ltd, Qingdao, China.
| | - Yong-Nan Xu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China.
| | - Nam-Hyung Kim
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China; Research and Development Department, Qingdao Haier Biotech Co. Ltd, Qingdao, China.
| |
Collapse
|
22
|
Kowald L, Roedig J, Karlowitz R, Wagner K, Smith S, Juretschke T, Beli P, Müller S, van Wijk SJL. USP22 regulates APL differentiation via PML-RARα stabilization and IFN repression. Cell Death Discov 2024; 10:128. [PMID: 38467608 PMCID: PMC10928094 DOI: 10.1038/s41420-024-01894-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/13/2024] Open
Abstract
Ubiquitin-specific peptidase 22 (USP22) is a deubiquitinating enzyme (DUB) that underlies tumorigenicity, proliferation, cell death and differentiation through deubiquitination of histone and non-histone targets. Ubiquitination determines stability, localization and functions of cell fate proteins and controls cell-protective signaling pathways to surveil cell cycle progression. In a variety of carcinomas, lymphomas and leukemias, ubiquitination regulates the tumor-suppressive functions of the promyelocytic leukemia protein (PML), but PML-specific DUBs, DUB-controlled PML ubiquitin sites and the functional consequences of PML (de)ubiquitination remain unclear. Here, we identify USP22 as regulator of PML and the oncogenic acute promyelocytic leukemia (APL) fusion PML-RARα protein stability and identify a destabilizing role of PML residue K394. Additionally, loss of USP22 upregulates interferon (IFN) and IFN-stimulated gene (ISG) expression in APL and induces PML-RARα stabilization and a potentiation of the cell-autonomous sensitivity towards all-trans retinoic acid (ATRA)-mediated differentiation. Our findings imply USP22-dependent surveillance of PML-RARα stability and IFN signaling as important regulator of APL pathogenesis, with implications for viral mimicry, differentiation and cell fate regulation in other leukemia subtypes.
Collapse
Affiliation(s)
- Lisa Kowald
- Institute for Experimental Pediatric Hematology and Oncology, Medical Faculty, Goethe-University Frankfurt, Komturstrasse 3a, 60528, Frankfurt am Main, Germany
| | - Jens Roedig
- Institute for Experimental Pediatric Hematology and Oncology, Medical Faculty, Goethe-University Frankfurt, Komturstrasse 3a, 60528, Frankfurt am Main, Germany
| | - Rebekka Karlowitz
- Institute for Experimental Pediatric Hematology and Oncology, Medical Faculty, Goethe-University Frankfurt, Komturstrasse 3a, 60528, Frankfurt am Main, Germany
| | - Kristina Wagner
- Institute of Biochemistry II (IBCII), Medical Faculty, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Sonja Smith
- Institute for Experimental Pediatric Hematology and Oncology, Medical Faculty, Goethe-University Frankfurt, Komturstrasse 3a, 60528, Frankfurt am Main, Germany
| | - Thomas Juretschke
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Petra Beli
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Stefan Müller
- Institute of Biochemistry II (IBCII), Medical Faculty, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Sjoerd J L van Wijk
- Institute for Experimental Pediatric Hematology and Oncology, Medical Faculty, Goethe-University Frankfurt, Komturstrasse 3a, 60528, Frankfurt am Main, Germany.
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Frankfurt am Main, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
- University Cancer Centre Frankfurt (UCT), University Hospital Frankfurt, Goethe-University Frankfurt, Frankfurt, Germany.
| |
Collapse
|
23
|
Kang JA, Kim YJ, Jang KY, Moon HW, Lee H, Lee S, Song HK, Cho SW, Yoo YS, Han HG, Kim MJ, Chung MJ, Choi CY, Lee C, Chung C, Hur GM, Kim YS, Jeon YJ. SIRT1 ISGylation accelerates tumor progression by unleashing SIRT1 from the inactive state to promote its deacetylase activity. Exp Mol Med 2024; 56:656-673. [PMID: 38443596 PMCID: PMC10985095 DOI: 10.1038/s12276-024-01194-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/29/2023] [Accepted: 12/26/2023] [Indexed: 03/07/2024] Open
Abstract
ISG15 is an interferon-stimulated ubiquitin-like protein (UBL) with multifaceted roles as a posttranslational modifier in ISG15 conjugation (ISGylation). However, the mechanistic consequences of ISGylation in cancer have not been fully elucidated, largely due to a lack of knowledge on the ISG15 target repertoire. Here, we identified SIRT1, a nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylase, as a new target for ISGylation. SIRT1 ISGylation impairs the association of SIRT1 with its negative regulator, deleted in breast cancer 1 (DBC1), which unleashes SIRT1 from its inactive state and leads to an increase in its deacetylase activity. Importantly, SIRT1 ISGylation promoted lung cancer progression and limited lung cancer cell sensitivity to DNA damage-based therapeutics in vivo and in vitro models. The levels of ISG15 mRNA and protein were significantly higher in lung cancer tissues than in adjacent normal tissues. Accordingly, elevated expression of SIRT1 and ISG15 was associated with poor prognosis in lung cancer patients, a finding that could be translated for lung cancer patient stratification and disease outcome evaluation. Taken together, our findings provide a mechanistic understanding of the regulatory effect of SIRT1 ISGylation on tumor progression and therapeutic efficacy in lung cancer.
Collapse
Affiliation(s)
- Ji An Kang
- Department of Biochemistry, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon, 35015, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Yoon Jung Kim
- Department of Biochemistry, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon, 35015, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Kyu Yun Jang
- Department of Pathology, Jeonbuk National University Medical School, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, 54896, Republic of Korea
| | - Hye Won Moon
- Department of Biochemistry, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Haeseung Lee
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Seonjeong Lee
- Chemical & Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Hyun Kyu Song
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Sang Woo Cho
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yoon Sun Yoo
- Department of Biochemistry, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Hye Gyeong Han
- Department of Biochemistry, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Min-Ju Kim
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Myoung Ja Chung
- Department of Pathology, Jeonbuk National University Medical School, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, 54896, Republic of Korea
| | - Cheol Yong Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Cheolju Lee
- Chemical & Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Chaeuk Chung
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Gang Min Hur
- Department of Pharmacology, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - You-Sun Kim
- Department of Biochemistry, Ajou University, School of Medicine & Department of Biomedical Sciences, Graduate School, Ajou University, Suwon, 16499, Republic of Korea
| | - Young Joo Jeon
- Department of Biochemistry, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea.
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea.
| |
Collapse
|
24
|
Kuang X, Salinger A, Benavides F, Muller WJ, Dent SYR, Koutelou E. USP22 overexpression fails to augment tumor formation in MMTV-ERBB2 mice but loss of function impacts MMTV promoter activity. PLoS One 2024; 19:e0290837. [PMID: 38236941 PMCID: PMC10796002 DOI: 10.1371/journal.pone.0290837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/15/2023] [Indexed: 01/22/2024] Open
Abstract
The Ubiquitin Specific Peptidase 22 (USP22), a component of the Spt-Ada-Gcn5 Acetyltransferase (SAGA) histone modifying complex, is overexpressed in multiple human cancers, but how USP22 impacts tumorigenesis is not clear. We reported previously that Usp22 loss in mice impacts execution of several signaling pathways driven by growth factor receptors such as erythroblastic oncogene B b2 (ERBB2). To determine whether changes in USP22 expression affects ERBB2-driven tumorigenesis, we introduced conditional overexpression or deletion alleles of Usp22 into mice bearing the Mouse mammary tumor virus-Neu-Ires-Cre (MMTV-NIC) transgene, which drives both rat ERBB2/NEU expression and Cre recombinase activity from the MMTV promoter resulting in mammary tumor formation. We found that USP22 overexpression in mammary glands did not further enhance primary tumorigenesis in MMTV-NIC female mice, but increased lung metastases were observed. However, deletion of Usp22 significantly decreased tumor burden and increased survival of MMTV-NIC mice. These effects were associated with markedly decreased levels of both Erbb2 mRNA and protein, indicating Usp22 loss impacts MMTV promoter activity. Usp22 loss had no impact on ERBB2 expression in other settings, including MCF10A cells bearing a Cytomegalovirus (CMV)-driven ERBB2 transgene or in human epidermal growth factor receptor 2 (HER2)+ human SKBR3 and HCC1953 cells. Decreased activity of the MMTV promoter in MMTV-NIC mice correlated with decreased expression of known regulatory factors, including the glucocorticoid receptor (GR), the progesterone receptor (PR), and the chromatin remodeling factor Brahma-related gene-1 (BRG1). Together our findings indicate that increased expression of USP22 does not augment the activity of an activated ERBB2/NEU transgene but impacts of Usp22 loss on tumorigenesis cannot be assessed in this model due to unexpected effects on MMTV-driven Erbb2/Neu expression.
Collapse
Affiliation(s)
- Xianghong Kuang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Andrew Salinger
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Fernando Benavides
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - William J. Muller
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Canada
- Department of Biochemistry, McGill University, Montreal, Canada
- Faculty of Medicine, McGill University, Montreal, Canada
| | - Sharon Y. R. Dent
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
- The University of Texas MD Anderson Cancer Center/UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, United States of America
| | - Evangelia Koutelou
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| |
Collapse
|
25
|
Wang S, Iyer R, Han X, Wei J, Li N, Cheng Y, Zhou Y, Gao Q, Zhang L, Yan M, Sun Z, Fang D. CRISPR screening identifies the deubiquitylase ATXN3 as a PD-L1-positive regulator for tumor immune evasion. J Clin Invest 2023; 133:e167728. [PMID: 38038129 PMCID: PMC10688982 DOI: 10.1172/jci167728] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 09/27/2023] [Indexed: 12/02/2023] Open
Abstract
Regulation of tumoral PD-L1 expression is critical to advancing our understanding of tumor immune evasion and the improvement of existing antitumor immunotherapies. Herein, we describe a CRISPR-based screening platform and identified ATXN3 as a positive regulator for PD-L1 transcription. TCGA database analysis revealed a positive correlation between ATXN3 and CD274 in more than 80% of human cancers. ATXN3-induced Pd-l1 transcription was promoted by tumor microenvironmental factors, including the inflammatory cytokine IFN-γ and hypoxia, through protection of their downstream transcription factors IRF1, STAT3, and HIF-2α. Moreover, ATXN3 functioned as a deubiquitinase of the AP-1 transcription factor JunB, indicating that ATNX3 promotes PD-L1 expression through multiple pathways. Targeted deletion of ATXN3 in cancer cells largely abolished IFN-γ- and hypoxia-induced PD-L1 expression and consequently enhanced antitumor immunity in mice, and these effects were partially reversed by PD-L1 reconstitution. Furthermore, tumoral ATXN3 suppression improved the preclinical efficacy of checkpoint blockade antitumor immunotherapy. Importantly, ATXN3 expression was increased in human lung adenocarcinoma and melanoma, and its levels were positively correlated with PD-L1 as well as its transcription factors IRF1 and HIF-2α. Collectively, our study identifies what we believe to be a previously unknown deubiquitinase, ATXN3, as a positive regulator for PD-L1 transcription and provides a rationale for targeting ATXN3 to sensitize checkpoint blockade antitumor immunotherapy.
Collapse
Affiliation(s)
- Shengnan Wang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Radhika Iyer
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Xiaohua Han
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Juncheng Wei
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Na Li
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yang Cheng
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Yuanzhang Zhou
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Qiong Gao
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, National Center of Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Ming Yan
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Oral Maxillofacial Head and Neck Oncology, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Zhaolin Sun
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
26
|
Zhang Y, Song J, Zhou Y, Jia H, Zhou T, Sun Y, Gao Q, Zhao Y, Pan Y, Sun Z, Chu P. Discovery of selective and potent USP22 inhibitors via structure-based virtual screening and bioassays exerting anti-tumor activity. Bioorg Chem 2023; 141:106842. [PMID: 37769523 DOI: 10.1016/j.bioorg.2023.106842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/20/2023] [Accepted: 09/05/2023] [Indexed: 10/03/2023]
Abstract
Ubiquitin-specific protease 22 (USP22) plays a prominent role in tumor development, invasion, metastasis and immune reprogramming, which has been proposed as a potential therapeutic target for cancer. Herein, we employed a structure-based discovery and biological evaluation and discovered that Rottlerin (IC50 = 2.53 μM) and Morusin (IC50 = 8.29 μM) and as selective and potent USP22 inhibitors. Treatment of HCT116 cells and A375 cells with each of the two compounds resulted in increased monoubiquitination of histones H2A and H2B, as well as reduced protein expression levels of Sirt1 and PD-L1, all of which are known as USP22 substrates. Additionally, our study demonstrated that the administration of Rottlerin or Morusin resulted in an increase H2Bub levels, while simultaneously reducing the expression of Sirt1 and PD-L1 in a manner dependent on USP22. Furthermore, Rottlerin and Morusin were found to enhance the degradation of PD-L1 and Sirt1, as well as increase the polyubiquitination of endogenous PD-L1 and Sirt1 in HCT116 cells. Moreover, in an in vivo syngeneic tumor model, Rottlerin and Morusin exhibited potent antitumor activity, which was accompanied by an enhanced infiltration of T cells into the tumor tissues. Using in-depth molecular dynamics (MD) and binding free energy calculation, conserved residue Leu475 and non-conserved residue Arg419 were proven to be crucial for the binding affinity and inhibitory function of USP22 inhibitors. In summary, our study established a highly efficient approach for USP22-specific inhibitor discovery, which lead to identification of two selective and potent USP22 inhibitors as potential drugs in anticancer therapy.
Collapse
Affiliation(s)
- Yue Zhang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Jiankun Song
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China
| | - Yuanzhang Zhou
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China
| | - Huijun Jia
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China
| | - Tianyu Zhou
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Yingbo Sun
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Qiong Gao
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China
| | - Yue Zhao
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China
| | - Yujie Pan
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Zhaolin Sun
- College of Pharmacy, Dalian Medical University, Dalian 116044, China; Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China.
| | - Peng Chu
- College of Pharmacy, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
27
|
Zhang K, Sun T, Li W, Guo Y, Li A, Hsieh M, Wang J, Wu J, Arvanitis L, Raz DJ. Inhibition of USP7 upregulates USP22 and activates its downstream cancer-related signaling pathways in human cancer cells. Cell Commun Signal 2023; 21:319. [PMID: 37946202 PMCID: PMC10634000 DOI: 10.1186/s12964-023-01320-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/14/2023] [Indexed: 11/12/2023] Open
Abstract
Deubiquitinases (DUBs) play important roles in various human cancers and targeting DUBs is considered as a novel anticancer therapeutic strategy. Overexpression of ubiquitin specific protease 7 and 22 (USP7 and USP22) are associated with malignancy, therapy resistance, and poor prognosis in many cancers. Although both DUBs are involved in the regulation of similar genes and signaling pathways, such as histone H2B monoubiquitination (H2Bub1), c-Myc, FOXP3, and p53, the interdependence of USP22 and USP7 expression has never been described. In the study, we found that targeting USP7 via either siRNA-mediated knockdown or pharmaceutical inhibitors dramatically upregulates USP22 in cancer cells. Mechanistically, the elevated USP22 occurs through a transcriptional pathway, possibly due to desuppression of the transcriptional activity of SP1 via promoting its degradation upon USP7 inhibition. Importantly, increased USP22 expression leads to significant activation of downstream signal pathways including H2Bub1 and c-Myc, which may potentially enhance cancer malignancy and counteract the anticancer efficacy of USP7 inhibition. Importantly, targeting USP7 further suppresses the in vitro proliferation of USP22-knockout (USP22-Ko) A549 and H1299 lung cancer cells and induces a stronger activation of p53 tumor suppressor signaling pathway. In addition, USP22-Ko cancer cells are more sensitive to a combination of cisplatin and USP7 inhibitor. USP7 inhibitor treatment further suppresses in vivo angiogenesis and tumor growth and induced more apoptosis in USP22-Ko cancer xenografts. Taken together, our findings demonstrate that USP7 inhibition can dramatically upregulate USP22 in cancer cells; and targeting USP7 and USP22 may represent a more effective approach for targeted cancer therapy, which warrants further study. Video Abstract.
Collapse
Affiliation(s)
- Keqiang Zhang
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, CA, USA.
| | - Ting Sun
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, CA, USA
- Faculty of Health Science, University of Macau, Macau, China
| | - Wendong Li
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Yuming Guo
- Division of Comparative Medicine, City of Hope National Medical Center, Duarte, CA, USA
| | - Aimin Li
- Pathology Core of Shared Resources, City of Hope National Medical Center, Duarte, CA, USA
| | - Marcus Hsieh
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Jinghan Wang
- Department of Hepatobiliary and Pancreatic Surgery, East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jun Wu
- Division of Comparative Medicine, City of Hope National Medical Center, Duarte, CA, USA
| | - Leonidas Arvanitis
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, USA
| | - Dan J Raz
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, CA, USA.
| |
Collapse
|
28
|
Friebus-Kardash J, Christ TC, Dietlein N, Elwy A, Abdelrahman H, Holnsteiner L, Hu Z, Rodewald HR, Lang KS. Usp22 Deficiency Leads to Downregulation of PD-L1 and Pathological Activation of CD8 + T Cells and Causes Immunopathology in Response to Acute LCMV Infection. Vaccines (Basel) 2023; 11:1563. [PMID: 37896966 PMCID: PMC10610587 DOI: 10.3390/vaccines11101563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/07/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Ubiquitin-specific peptidase 22 (Usp22) cleaves ubiquitin moieties from numerous proteins, including histone H2B and transcription factors. Recently, it was reported that Usp22 acts as a negative regulator of interferon-dependent responses. In the current study, we investigated the role of Usp22 deficiency in acute viral infection with lymphocytic choriomeningitis virus (LCMV). We found that the lack of Usp22 on bone marrow-derived cells (Usp22fl/fl Vav1-Cre mice) reduced the induction of type I and II interferons. A limited type I interferon response did not influence virus replication. However, restricted expression of PD-L1 led to increased frequencies of functional virus-specific CD8+ T cells and rapid death of Usp22-deficient mice. CD8+ T cell depletion experiments revealed that accelerated CD8+ T cells were responsible for enhanced lethality in Usp22 deficient mice. In conclusion, we found that the lack of Usp22 generated a pathological CD8+ T cell response, which gave rise to severe disease in mice.
Collapse
Affiliation(s)
- Justa Friebus-Kardash
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, 45147 Essen, Germany; (T.C.C.); (A.E.); (H.A.); (L.H.); (Z.H.); (K.S.L.)
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Theresa Charlotte Christ
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, 45147 Essen, Germany; (T.C.C.); (A.E.); (H.A.); (L.H.); (Z.H.); (K.S.L.)
| | - Nikolaus Dietlein
- Division of Cellular Immunology, German Cancer Research Center, 69120 Heidelberg, Germany; (N.D.)
| | - Abdelrahman Elwy
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, 45147 Essen, Germany; (T.C.C.); (A.E.); (H.A.); (L.H.); (Z.H.); (K.S.L.)
| | - Hossam Abdelrahman
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, 45147 Essen, Germany; (T.C.C.); (A.E.); (H.A.); (L.H.); (Z.H.); (K.S.L.)
| | - Lisa Holnsteiner
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, 45147 Essen, Germany; (T.C.C.); (A.E.); (H.A.); (L.H.); (Z.H.); (K.S.L.)
| | - Zhongwen Hu
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, 45147 Essen, Germany; (T.C.C.); (A.E.); (H.A.); (L.H.); (Z.H.); (K.S.L.)
| | - Hans-Reimer Rodewald
- Division of Cellular Immunology, German Cancer Research Center, 69120 Heidelberg, Germany; (N.D.)
| | - Karl Sebastian Lang
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, 45147 Essen, Germany; (T.C.C.); (A.E.); (H.A.); (L.H.); (Z.H.); (K.S.L.)
| |
Collapse
|
29
|
Li S, Xiao H, Sun X, Chen Z, Lin Z, Li C, Zeng J, Xu Z, Cheng Y, Huang H. Connexin32 Promotes the Activation of Foxo3a to Ameliorate Diabetic Nephropathy via Inhibiting the Polyubiquitination and Degradation of Sirt1. Antioxid Redox Signal 2023; 39:241-261. [PMID: 36601735 DOI: 10.1089/ars.2022.0108] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Aims: Renal oxidative stress (OSS) is the leading cause of diabetic nephropathy (DN). The silent information regulator 1/forkhead boxo3a (Sirt1/Foxo3a) pathway plays an essential role in regulating the antioxidant enzyme system. In this study, we aimed to investigate the mechanism of connexin32 (Cx32) on the antioxidant enzyme system in DN. Results: In this study, Cx32 overexpression significantly reduced reactive oxygen species generation and effectively inhibited the excessive production of extracellular matrix such as fibronectin (FN) and intercellular adhesion molecule-1 (ICAM-1) in high-glucose (HG)-induced glomerular mesangial cells. In addition, Cx32 overexpression reversed the downregulation of Sirt1, and promoted the nuclear transcription of Foxo3a, subsequently activating the antioxidant enzymes including catalase and manganese superoxide dismutase (MnSOD), however, Cx32 knockdown showed the opposite effects. A further mechanism study showed that Cx32 promoted the autoubiquitination and degradation of Smad ubiquitylation regulatory factor-1 (Smurf1), thereby reducing the ubiquitination of Sirt1 at Lys335 and the degradation of Sirt1. Moreover, the in vivo results showed that adenovirus-mediated Cx32 overexpression activated the Sirt1/Foxo3a pathway, and inhibited OSS in the kidney tissues, eventually improving the renal function and glomerulosclerosis in diabetic mice. Innovation: This study highlighted the antioxidant role of Cx32-Sirt1-Foxo3a axis to alleviate DN, which is a new mechanism of Cx32 alleviating DN. Conclusion: Cx32 alleviated DN via activating the Sirt1/Foxo3a antioxidant pathway. The specific mechanism was that Cx32 upregulated the Sirt1 expression through reducing the ubiquitination of Lys335 of Sirt1 by inhibiting Smurf1. Antioxid. Redox Signal. 39, 241-261.
Collapse
Affiliation(s)
- Shanshan Li
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Haiming Xiao
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaohong Sun
- Department of Pharmacy, Shenzhen Children's Hospital, Shenzhen, China
| | - Zhiquan Chen
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, China
| | - Zeyuan Lin
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chuting Li
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jingran Zeng
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhanchi Xu
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yuanyuan Cheng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Heqing Huang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
30
|
Fan W, Li X. The SIRT1-c-Myc axis in regulation of stem cells. Front Cell Dev Biol 2023; 11:1236968. [PMID: 37554307 PMCID: PMC10405831 DOI: 10.3389/fcell.2023.1236968] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/10/2023] [Indexed: 08/10/2023] Open
Abstract
SIRT1 is the most conserved mammalian NAD+-dependent protein deacetylase. Through deacetylation of transcriptional factors and co-factors, this protein modification enzyme is critically involved in metabolic and epigenetic regulation of stem cells, which is functionally important in maintaining their pluripotency and regulating their differentiation. C-Myc, a key member of Myc proton-oncogene family, is a pivotal factor for transcriptional regulation of genes that control acquisition and maintenance of stemness. Previous cancer research has revealed an intriguing positive feedback loop between SIRT1 and c-Myc that is crucial in tumorigenesis. Recent literature has uncovered important functions of this axis in regulation of maintenance and differentiation of stem cells, including pluripotent stem cells and cancer stem cells. This review highlights recent advances of the SIRT1-c-Myc axis in stem cells.
Collapse
Affiliation(s)
- Wei Fan
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, United States
| | - Xiaoling Li
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, United States
| |
Collapse
|
31
|
Han X, Yin M, Gong C, Zhang C, Zhu G, Hu M, Tan K, Jiang L, Wang G, Li L. A1BG-AS1 promotes the biological functions of osteosarcoma cells via regulating the microRNA-148a-3p/USP22 axis and stabilizing the expression of SIRT1 through deubiquitinase function. Expert Opin Ther Targets 2023; 27:1017-1029. [PMID: 37747800 DOI: 10.1080/14728222.2023.2263908] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 09/24/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND The study aims to explore the role of A1BG antisense RNA 1 (A1BG-AS1), microRNA (miR)-148a-3p and ubiquitin-specific protease 22 (USP22) on osteosarcoma (OS) cell growth. RESEARCH DESIGN & METHODS A1BG-AS1, miR-148a-3p, USP22, and silent information regulator 2 homolog 1 (SIRT1) levels in OS tissues and cells were determined. The effects of A1BG-AS1, miR-148a-3p, and USP22 on the biological functions of OS cells were examined by functional assays. In vivo assay was conducted to observe the effect of A1BG-AS1 on OS growth in vitro. The relationship of A1BG-AS1, miR-148a-3p, and USP22 was analyzed by bioinformatics analysis, RNA-fluorescence in situ hybridization, luciferase activity, and RNA binding protein immunoprecipitation assays. The relation between USP22 and SIRT1 was evaluated by immunoprecipitation. RESULTS A1BG-AS1 and USP22 were highly expressed, and miR-148a-3p was lowly expressed in OS tissues and cells. Down-regulation of A1BG-AS1 and USP22 or up-regulation of miR-148a-3p impaired the malignant behaviors of OS cells. A1BG-AS1 sponged miR-148a-3p, and miR-148a-3p targeted USP22, thereby inhibiting USP22 expression. Up-regulating USP22 reversed the A1BG-AS1 suppression-induced phenotypic inhibition of OS cells. USP22 affected the biological functions of OS cells by deubiquitinating SIRT1. CONCLUSION A1BG-AS1 facilitates the biological functions of OS cells via mediating the miR-148a-3p/USP22 axis.
Collapse
Affiliation(s)
- Xiuxin Han
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center of Cancer, Tianjin, China
| | - Mengfan Yin
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center of Cancer, Tianjin, China
- Department of Orthopedic Surgery, Tianjin Fifth Central Hospital, Tianjin, China
| | - Chen Gong
- General Clinical Research Center, Anhui Wanbei Coal-Electricity Group General Hospital, Suzhou, Anhui, China
| | - Chao Zhang
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center of Cancer, Tianjin, China
| | - Genbao Zhu
- General Clinical Research Center, Anhui Wanbei Coal-Electricity Group General Hospital, Suzhou, Anhui, China
| | - Mengxue Hu
- General Clinical Research Center, Anhui Wanbei Coal-Electricity Group General Hospital, Suzhou, Anhui, China
| | - Kemeng Tan
- General Clinical Research Center, Anhui Wanbei Coal-Electricity Group General Hospital, Suzhou, Anhui, China
| | - La Jiang
- General Clinical Research Center, Anhui Wanbei Coal-Electricity Group General Hospital, Suzhou, Anhui, China
| | - Guowen Wang
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center of Cancer, Tianjin, China
| | - Lili Li
- General Clinical Research Center, Anhui Wanbei Coal-Electricity Group General Hospital, Suzhou, Anhui, China
| |
Collapse
|
32
|
Liu K, Gao Q, Jia Y, Wei J, Chaudhuri S, Wang S, Tang A, Mani N, Iyer R, Cheng Y, Gao B, Lu W, Sun Z, Liu H, Fang D. Ubiquitin-specific peptidase 22 controls integrin-dependent cancer cell stemness and metastasis. RESEARCH SQUARE 2023:rs.3.rs-2922367. [PMID: 37398311 PMCID: PMC10312927 DOI: 10.21203/rs.3.rs-2922367/v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Integrins plays critical roles in connecting the extracellular matrix and actin skeleton for cell adhesion, migration, signal transduction, and gene transcription, which upregulation is involved in cancer stemness and metastasis. However, the molecular mechanisms underlying how integrins are upregulated in cancer stem cells (CSCs) remain as a biomedical mystery. Herein, we show that the death from cancer signature gene USP22 is essential to maintain the stemness of breast cancer cells through promoting the transcription of a group of integrin family members in particular integrin β1 (ITGB1). Both genetic and pharmacological USP22 inhibition largely impaired breast cancer stem cell self-renewal and prevented their metastasis. Integrin β1 reconstitution partially rescued USP22-null breast cancer stemness and their metastasis. At the molecular level, USP22 functions as a bona fide deubiquitinase to protect the proteasomal degradation of the forkhead box M1 (FoxM1), a transcription factor for tumoral ITGB1 gene transcription. Importantly unbiased analysis of the TCGA database revealed a strong positive correlation between the death from cancer signature gene ubiquitin-specific peptidase 22 (USP22) and ITGB1, both of which are critical for cancer stemness, in more than 90% of human cancer types, implying that USP22 functions as a key factor to maintain stemness for a broad spectrum of human cancer types possibly through regulating ITGB1. To support this notion, immunohistochemistry staining detected a positive correlation among USP22, FoxM1 and integrin β1 in human breast cancers. Collectively, our study identifies the USP22-FoxM1-integrin β1 signaling axis critical for cancer stemness and offers a potential target for antitumor therapy.
Collapse
|
33
|
Lee SH, Yang JH, Park UH, Choi H, Kim YS, Yoon BE, Han HJ, Kim HT, Um SJ, Kim EJ. SIRT1 ubiquitination is regulated by opposing activities of APC/C-Cdh1 and AROS during stress-induced premature senescence. Exp Mol Med 2023; 55:1232-1246. [PMID: 37258580 PMCID: PMC10318011 DOI: 10.1038/s12276-023-01012-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/28/2023] [Accepted: 03/16/2023] [Indexed: 06/02/2023] Open
Abstract
SIRT1, a member of the mammalian sirtuin family, is a nicotinamide adenosine dinucleotide (NAD)-dependent deacetylase with key roles in aging-related diseases and cellular senescence. However, the mechanism by which SIRT1 protein homeostasis is controlled under senescent conditions remains elusive. Here, we revealed that SIRT1 protein is significantly downregulated due to ubiquitin-mediated proteasomal degradation during stress-induced premature senescence (SIPS) and that SIRT1 physically associates with anaphase-promoting complex/cyclosome (APC/C), a multisubunit E3 ubiquitin ligase. Ubiquitin-dependent SIRT1 degradation is stimulated by the APC/C coactivator Cdh1 and not by the coactivator Cdc20. We found that Cdh1 depletion impaired the SIPS-promoted downregulation of SIRT1 expression and reduced cellular senescence, likely through SIRT1-driven p53 inactivation. In contrast, AROS, a SIRT1 activator, reversed the SIRT1 degradation induced by diverse stressors and antagonized Cdh1 function through competitive interactions with SIRT1. Furthermore, our data indicate opposite roles for Cdh1 and AROS in the epigenetic regulation of the senescence-associated secretory phenotype genes IL-6 and IL-8. Finally, we demonstrated that pinosylvin restores downregulated AROS (and SIRT1) expression levels in bleomycin-induced mouse pulmonary senescent tissue while repressing bleomycin-promoted Cdh1 expression. Overall, our study provides the first evidence of the reciprocal regulation of SIRT1 stability by APC/C-Cdh1 and AROS during stress-induced premature senescence, and our findings suggest pinosylvin as a potential senolytic agent for pulmonary fibrosis.
Collapse
Affiliation(s)
- Sang Hyup Lee
- Department of Molecular Biology, Dankook University, Cheonan, 31116, Korea
| | - Ji-Hye Yang
- Department of Molecular Biology, Dankook University, Cheonan, 31116, Korea
| | - Ui-Hyun Park
- Department of Integrative Bioscience and Biotechnology/Institute of Bioscience, Sejong University, Seoul, 143-747, Korea
| | - Hanbyeul Choi
- Department of Molecular Biology, Dankook University, Cheonan, 31116, Korea
| | - Yoo Sung Kim
- Department of Molecular Biology, Dankook University, Cheonan, 31116, Korea
| | - Bo-Eun Yoon
- Department of Molecular Biology, Dankook University, Cheonan, 31116, Korea
| | - Hye-Jeong Han
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, 31151, Cheonan-si, Republic of Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, 31151, Cheonan-si, Republic of Korea
| | - Hyun-Taek Kim
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, 31151, Cheonan-si, Republic of Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, 31151, Cheonan-si, Republic of Korea
| | - Soo-Jong Um
- Department of Integrative Bioscience and Biotechnology/Institute of Bioscience, Sejong University, Seoul, 143-747, Korea.
| | - Eun-Joo Kim
- Department of Molecular Biology, Dankook University, Cheonan, 31116, Korea.
| |
Collapse
|
34
|
Sun HJ, Tan JX, Shan XD, Wang ZC, Wu ZY, Bian JS, Nie XW. DR region of NKAα1 is a target to ameliorate hepatic lipid metabolism disturbance in obese mice. Metabolism 2023; 145:155579. [PMID: 37127227 DOI: 10.1016/j.metabol.2023.155579] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/12/2023] [Accepted: 04/26/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Na+/K+-ATPase (NKA), an ion pumping enzyme ubiquitously expressed in various cells, is critically involved in cellular ion homeostasis and signal transduction. However, the role of NKA in hepatic lipid homeostasis has yet to be fully characterized. METHODS The activity of NKA and NKAα1 expression were determined in steatotic cells, mice and patients. The roles of NKAα1 in hepatosteatosis were detected using hepatocyte knockout or specific overexpression of NKAα1 in mice. RESULTS Herein, we demonstrated that the expression and activity of α1 subunit of NKA (NKAα1) were lowered in the livers of nonalcoholic fatty liver disease (NAFLD) patients, high-fat diet (HFD)-induced obese mice, and genetically obese (ob/ob, db/db) mice, as well as oleic acid-induced hepatocytes. Hepatic deficiency of NKAα1 exacerbated, while adeno-associated virus-mediated liver specific overexpression of NKAα1 alleviated hepatic steatosis through regulation of fatty acid oxidation (FAO) and lipogenesis. Mechanistically, we revealed that NKAα1 upregulated sirtuin 1 (SIRT1) via interacting with ubiquitin specific peptidase 22 (USP22), a deubiquitinating enzyme for the stabilization and deubiquitination of SIRT1, thus activating the downstream autophagy signaling. Blockade of the SIRT1/autophagy signaling pathway eliminated the protective effects of NKAα1 against lipid deposition in hepatocytes. Importantly, we found that an antibody against the DR region (897DVEDSYGQQWTYEQR911) of NKAα1 subunit (DR-Ab) ameliorated hepatic steatosis through maintaining the membrane density of NKAα1 and inducing its activation. CONCLUSIONS Collectively, this study renews the functions of NKAα1 in liver lipid metabolism and provides a new clue for gene therapy or antibody treatment of hepatic lipid metabolism disturbance by targeting NKAα1.
Collapse
Affiliation(s)
- Hai-Jian Sun
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Basic School, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Jian-Xin Tan
- Lung Transplant Group, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi 214023, China
| | - Xiao-Dong Shan
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China
| | - Zi-Chao Wang
- Department of Basic School, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Zhi-Yuan Wu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jin-Song Bian
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Xiao-Wei Nie
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Lung Transplant Group, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi 214023, China; Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen 518020, China.
| |
Collapse
|
35
|
Buczyńska A, Sidorkiewicz I, Kościuszko M, Adamska A, Siewko K, Dzięcioł J, Szumowski P, Myśliwiec J, Popławska-Kita A, Krętowski AJ. The Relationship between Oxidative Status and Radioiodine Treatment Qualification among Papillary Thyroid Cancer Patients. Cancers (Basel) 2023; 15:cancers15092436. [PMID: 37173902 PMCID: PMC10177082 DOI: 10.3390/cancers15092436] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Total oxidative status (TOS), total antioxidant capacity (TAC), tumor protein 53 (p53), nuclear factor kappa B (NF-κB), forkhead box protein O1 (FOXO), and sirtuin 1 (SIRT1) play crucial roles in oxidative homeostasis and the progression of papillary thyroid cancer (PTC), as previously demonstrated in the literature. Therefore, profiling these markers among PTC patients may be useful in determining their eligibility for radioiodine (RAI) treatment. Since treatment indications are based on multiple and dynamic recommendations, additional criteria for adjuvant RAI therapy are still needed. In our study, we evaluated the TOS, TAC, and serum concentrations of p53, NF-κB, FOXO, and SIRT1 to analyze the relationship between oxidative status and qualification for RAI treatment. For the purpose of this study, we enrolled 60 patients with PTC allocated for RAI treatment as the study group and 25 very low-risk PTC patients not allocated for RAI treatment as a reference group. The serum TOS and SIRT1 concentrations were significantly higher in the study group compared to the reference group (both p < 0.001), whereas the TAC and p53, NK-κB, and FOXO concentrations were significantly lower (all p < 0.05). We also demonstrated the diagnostic utility of TAC (AUC = 0.987), FOXO (AUC = 0.648), TOS (AUC = 0.664), SIRT1 (AUC = 0.709), p53 (AUC = 0.664), and NF-κB (AUC = 0.651) measurements as indications for RAI treatment based on American Thyroid Association recommendations. Our study revealed that oxidative status-related markers may become additional criteria for RAI treatment in PTC patients.
Collapse
Affiliation(s)
- Angelika Buczyńska
- Clinical Research Centre, Medical University of Bialystok, M. Skłodowskiej 24a, 15-276 Bialystok, Poland
| | - Iwona Sidorkiewicz
- Clinical Research Centre, Medical University of Bialystok, M. Skłodowskiej 24a, 15-276 Bialystok, Poland
| | - Maria Kościuszko
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, M. Skłodowskiej 24a, 15-276 Bialystok, Poland
| | - Agnieszka Adamska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, M. Skłodowskiej 24a, 15-276 Bialystok, Poland
| | - Katarzyna Siewko
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, M. Skłodowskiej 24a, 15-276 Bialystok, Poland
| | - Janusz Dzięcioł
- Department of Human Anatomy, Medical University of Bialystok, ul. Mickiewicza 2A, 15-230 Bialystok, Poland
| | - Piotr Szumowski
- Nuclear Medicine, Medical University of Bialystok, M. Skłodowskiej 24a, 15-276 Bialystok, Poland
| | - Janusz Myśliwiec
- Nuclear Medicine, Medical University of Bialystok, M. Skłodowskiej 24a, 15-276 Bialystok, Poland
| | - Anna Popławska-Kita
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, M. Skłodowskiej 24a, 15-276 Bialystok, Poland
| | - Adam Jacek Krętowski
- Clinical Research Centre, Medical University of Bialystok, M. Skłodowskiej 24a, 15-276 Bialystok, Poland
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, M. Skłodowskiej 24a, 15-276 Bialystok, Poland
| |
Collapse
|
36
|
Wang H, Langlais D, Nijnik A. Histone H2A deubiquitinases in the transcriptional programs of development and hematopoiesis: a consolidated analysis. Int J Biochem Cell Biol 2023; 157:106384. [PMID: 36738766 DOI: 10.1016/j.biocel.2023.106384] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Monoubiquitinated lysine 119 of histone H2A (H2AK119ub) is a highly abundant epigenetic mark, associated with gene repression and deposited on chromatin by the polycomb repressor complex 1 (PRC1), which is an essential regulator of diverse transcriptional programs in mammalian development and tissue homeostasis. While multiple deubiquitinases (DUBs) with catalytic activity for H2AK119ub (H2A-DUBs) have been identified, we lack systematic analyses of their roles and cross-talk in transcriptional regulation. Here, we address H2A-DUB functions in epigenetic regulation of mammalian development and tissue maintenance by conducting a meta-analysis of 248 genomics datasets from 32 independent studies, focusing on the mouse model and covering embryonic stem cells (ESCs), hematopoietic, and immune cell lineages. This covers all the publicly available datasets that map genomic H2A-DUB binding and H2AK119ub distributions (ChIP-Seq), and all datasets assessing dysregulation in gene expression in the relevant H2A-DUB knockout models (RNA-Seq). Many accessory datasets for PRC1-2 and DUB-interacting proteins are also analyzed and interpreted, as well as further data assessing chromatin accessibility (ATAC-Seq) and transcriptional activity (RNA-seq). We report co-localization in the binding of H2A-DUBs BAP1, USP16, and to a lesser extent others that is conserved across different cell-types, and also the enrichment of antagonistic PRC1-2 protein complexes at the same genomic locations. Such conserved sites enriched for the H2A-DUBs and PRC1-2 are proximal to transcriptionally active genes that engage in housekeeping cellular functions. Nevertheless, they exhibit H2AK119ub levels significantly above the genomic average that can undergo further increase with H2A-DUB knockout. This indicates a cooperation between H2A-DUBs and PRC1-2 in the modulation of housekeeping transcriptional programs, conserved across many cell types, likely operating through their antagonistic effects on H2AK119ub and the regulation of local H2AK119ub turnover. Our study further highlights existing knowledge gaps and discusses important directions for future work.
Collapse
Affiliation(s)
- HanChen Wang
- Department of Physiology, McGill University, Montreal, QC, Canada; McGill University Research Centre on Complex Traits, McGill University, QC, Canada
| | - David Langlais
- McGill University Research Centre on Complex Traits, McGill University, QC, Canada; Department of Human Genetics, McGill University, Montreal, QC, Canada; McGill Genome Centre, Montreal, QC, Canada.
| | - Anastasia Nijnik
- Department of Physiology, McGill University, Montreal, QC, Canada; McGill University Research Centre on Complex Traits, McGill University, QC, Canada.
| |
Collapse
|
37
|
Zhao X, He X, Wei W, Huang K. USP22 aggravated diabetic renal tubulointerstitial fibrosis progression through deubiquitinating and stabilizing Snail1. Eur J Pharmacol 2023; 947:175671. [PMID: 37001578 DOI: 10.1016/j.ejphar.2023.175671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/21/2023] [Accepted: 03/21/2023] [Indexed: 04/01/2023]
Abstract
Renal tubulointerstitial fibrosis (TIF) is one of the main pathological changes induced by diabetic kidney disease (DKD), and epithelial-to-mesenchymal transition (EMT) induced by high glucose (HG) can promote TIF. Our previous study has shown that ubiquitin-specific protease 22 (USP22) could affect the process of DKD by deubiquitinating and stabilizing Sirt1 in glomerular mesangial cells. However, whether USP22 could regulate EMT occurrence in renal tubular epithelial cells and further aggravate the pathological process of TIF in DKD remains to be elucidated. In this study, we found that USP22 expression was upregulated in kidney tissues of db/db mice and HG-treated NRK-52E cells. In vitro, USP22 overexpression promoted the EMT process of NRK-52E cells stimulated by HG and further increased the levels of extracellular matrix (ECM) components such as fibronectin, Collagen I, and Collagen Ⅳ. Meanwhile, USP22 deficiency exhibited the opposite effects. Mechanism studies showed that USP22, depending on its deubiquitinase activity, deubiquitinated and stabilized the EMT transcriptional factor Snail1. In vivo experiment showed that interfering with USP22 could improve the renal pathological damages and renal function of the db/db spontaneous diabetic mice by decreasing Snail1 expression, which could inhibit EMT occurrence, and reduce the production of ECM components. These results suggested that USP22 could accelerate renal EMT and promote the pathological progression of diabetic TIF by deubiquitinating Snail1, providing an experimental basis for using USP22 as a potential target for DKD.
Collapse
Affiliation(s)
- Xilin Zhao
- Institute of Clinical Pharmacology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xuelan He
- Phase I Clinical Trial Center, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510060, China
| | - Wentao Wei
- Institute of Clinical Pharmacology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Kaipeng Huang
- Phase I Clinical Trial Center, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510060, China.
| |
Collapse
|
38
|
Li S, Lin Z, Xiao H, Xu Z, Li C, Zeng J, Xie X, Deng L, Huang H. Fyn deficiency inhibits oxidative stress by decreasing c-Cbl-mediated ubiquitination of Sirt1 to attenuate diabetic renal fibrosis. Metabolism 2023; 139:155378. [PMID: 36538986 DOI: 10.1016/j.metabol.2022.155378] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/15/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Oxidative stress (OS) is the main cause leading to diabetic renal fibrosis. Recently, Fyn was paid much attention on OS and emerged as a pivotal player in acute kidney injury, while whether Fyn regulates oxidative stress in chronic diabetes nephropathy (DN) has not been clarified yet. The purpose of this study was to identify the role of Fyn in DN and elucidated its regulatory mechanism. METHODS The db/db mice and littermate control C57BKS/J mice were injected by tail vein with Fyn interfering adenovirus or Fyn overexpressing adenovirus to investigate the role of Fyn in vivo. Primary glomerular mesangial cells (GMCs) were used for in vitro studies. RESULTS Fyn was up-regulated in high glucose (HG)-induced GMCs and kidneys of diabetic mice. Additionally, Fyn knockdown reduced the level of OS in HG-induced GMCs and kidneys of diabetic mice, thereby ameliorating diabetic renal fibrosis. While overexpression of Fyn significantly increased the level of OS in GMCs and kidney tissues, resulting in renal damage. Moreover, Fyn deficiency exerted antioxidant effects by activating the Sirt1/Foxo3a pathway. Mechanistically, Fyn facilitated the combination of c-Cbl and Sirt1 by phosphorylating c-Cbl at Tyr731, which triggered K48-linked polyubiquitination of Sirt1 at Lys377 and Lys513 by c-Cbl and promoted Sirt1 degradation, impairing the antioxidant effects of Foxo3a. CONCLUSIONS Fyn deficiency promoted Foxo3a nuclear transcription via reducing the ubiquitination of Sirt1 by c-Cbl, thereby alleviating renal oxidative damage in diabetic mice. These results identified Fyn as a potential therapeutic target against DN.
Collapse
Affiliation(s)
- Shanshan Li
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zeyuan Lin
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Haiming Xiao
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhanchi Xu
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chuting Li
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jingran Zeng
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xi Xie
- School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China.
| | - Li Deng
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China.
| | - Heqing Huang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
39
|
Xie X, Cao Y, Dai L, Zhou D. Bone marrow mesenchymal stem cell-derived exosomal lncRNA KLF3-AS1 stabilizes Sirt1 protein to improve cerebral ischemia/reperfusion injury via miR-206/USP22 axis. Mol Med 2023; 29:3. [PMID: 36627572 PMCID: PMC9830826 DOI: 10.1186/s10020-022-00595-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Cerebral ischemia/reperfusion (I/R) is a pathological process that occurs in ischemic stroke. Bone marrow mesenchymal stem cell-derived exosomes (BMSC-Exos) have been verified to relieve cerebral I/R-induced inflammatory injury. Hence, we intended to clarify the function of BMSC-Exos-delivered lncRNA KLF3-AS1 (BMSC-Exos KLF3-AS1) in neuroprotection and investigated its potential mechanism. METHODS To mimic cerebral I/R injury in vivo and in vitro, middle cerebral artery occlusion (MCAO) mice model and oxygen-glucose deprivation (OGD) BV-2 cell model were established. BMSC-Exos KLF3-AS1 were administered in MCAO mice or OGD-exposed cells. The modified neurological severity score (mNSS), shuttle box test, and cresyl violet staining were performed to measure the neuroprotective functions, while cell injury was evaluated with MTT, TUNEL and reactive oxygen species (ROS) assays. Targeted genes and proteins were detected using western blot, qRT-PCR, and immunohistochemistry. The molecular interactions were assessed using RNA immunoprecipitation, co-immunoprecipitation and luciferase assays. RESULTS BMSC-Exos KLF3-AS1 reduced cerebral infarction and improved neurological function in MCAO mice. Similarly, it also promoted cell viability, suppressed apoptosis, inflammatory injury and ROS production in cells exposed to OGD. BMSC-Exos KLF3-AS1 upregulated the decreased Sirt1 induced by cerebral I/R. Mechanistically, KLF3-AS1 inhibited the ubiquitination of Sirt1 protein through inducing USP22. Additionally, KLF3-AS1 sponged miR-206 to upregulate USP22 expression. Overexpression of miR-206 or silencing of Sirt1 abolished KLF3-AS1-mediated protective effects. CONCLUSION BMSC-Exos KLF3-AS1 promoted the Sirt1 deubiquitinating to ameliorate cerebral I/R-induced inflammatory injury via KLF3-AS1/miR-206/USP22 network.
Collapse
Affiliation(s)
- Xiaowei Xie
- grid.452708.c0000 0004 1803 0208Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan People’s Republic of China
| | - Yu Cao
- grid.477407.70000 0004 1806 9292Department of Comprehensive Surgery, Hunan Provincial People’s Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, 410005 Hunan People’s Republic of China
| | - Liangping Dai
- grid.477407.70000 0004 1806 9292Department of Comprehensive Surgery, Hunan Provincial People’s Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, 410005 Hunan People’s Republic of China
| | - Dingzhou Zhou
- grid.477407.70000 0004 1806 9292Department of Comprehensive Surgery, Hunan Provincial People’s Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, 410005 Hunan People’s Republic of China
| |
Collapse
|
40
|
Karlowitz R, van Wijk SJL. Surviving death: emerging concepts of RIPK3 and MLKL ubiquitination in the regulation of necroptosis. FEBS J 2023; 290:37-54. [PMID: 34710282 DOI: 10.1111/febs.16255] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/14/2021] [Accepted: 10/27/2021] [Indexed: 01/14/2023]
Abstract
Lytic forms of programmed cell death, like necroptosis, are characterised by cell rupture and the release of cellular contents, often provoking inflammatory responses. In the recent years, necroptosis has been shown to play important roles in human diseases like cancer, infections and ischaemia/reperfusion injury. Coordinated interactions between RIPK1, RIPK3 and MLKL lead to the formation of a dedicated death complex called the necrosome that triggers MLKL-mediated membrane rupture and necroptotic cell death. Necroptotic cell death is tightly controlled by post-translational modifications, among which especially phosphorylation has been characterised in great detail. Although selective ubiquitination is relatively well-explored in the early initiation stages of necroptosis, the mechanisms and functional consequences of RIPK3 and MLKL ubiquitination for necrosome function and necroptosis are only starting to emerge. This review provides an overview on how site-specific ubiquitination of RIPK3 and MLKL regulates, fine-tunes and reverses the execution of necroptotic cell death.
Collapse
Affiliation(s)
- Rebekka Karlowitz
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Germany
| | - Sjoerd J L van Wijk
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Germany
| |
Collapse
|
41
|
Dietlein N, Wang X, Metz J, Disson O, Shang F, Beyersdörffer C, Rodríguez Correa E, Lipka DB, Begus-Nahrmann Y, Kosinsky RL, Johnsen SA, Lecuit M, Höfer T, Rodewald HR. Usp22 is an intracellular regulator of systemic emergency hematopoiesis. Sci Immunol 2022; 7:eabq2061. [PMID: 36490327 DOI: 10.1126/sciimmunol.abq2061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Emergency hematopoiesis is a concerted response aimed toward enhanced protection from infection, involving multiple cell types and developmental stages across the immune system. Despite its importance, the underlying molecular regulation remains poorly understood. The deubiquitinase USP22 regulates the levels of monoubiquitinated histone H2B (H2Bub1), which is associated with activation of interferon responses upon viral infection. Here, we show that in the absence of infection or inflammation, mice lacking Usp22 in all hematopoietic cells display profound systemic emergency hematopoiesis, evident by increased hematopoietic stem cell proliferation, myeloid bias, and extramedullary hematopoiesis. Functionally, loss of Usp22 results in elevated phagocytosis by neutrophilic granulocytes and enhanced innate protection against Listeria monocytogenes infection. At the molecular level, we found this state of emergency hematopoiesis associated with transcriptional signatures of myeloid priming, enhanced mitochondrial respiration, and innate and adaptive immunity and inflammation. Augmented expression of many inflammatory genes was linked to elevated locus-specific H2Bub1 levels. Collectively, these results demonstrate the existence of a tunable epigenetic state that promotes systemic emergency hematopoiesis in a cell-autonomous manner to enhance innate protection, identifying potential paths toward immune enhancement.
Collapse
Affiliation(s)
- Nikolaus Dietlein
- Division of Cellular Immunology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany
| | - Xi Wang
- Division of Cellular Immunology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Jonas Metz
- Faculty of Biosciences, Heidelberg University, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany.,Division of Theoretical Systems Biology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Olivier Disson
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, 75015 Paris, France
| | - Fuwei Shang
- Division of Cellular Immunology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.,Faculty of Medicine, Heidelberg University, Im Neuenheimer Feld 672, 69120 Heidelberg, Germany
| | - Celine Beyersdörffer
- Division of Cellular Immunology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Esther Rodríguez Correa
- Division of Cellular Immunology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Daniel B Lipka
- Section Translational Cancer Epigenomics, Department of Translational Medical Oncology, German Cancer Research Center and National Center for Tumor Diseases, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany.,Faculty of Medicine, Otto-von-Guericke-University, Magdeburg, Germany
| | - Yvonne Begus-Nahrmann
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Göttingen, Germany
| | - Robyn Laura Kosinsky
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Steven A Johnsen
- Robert Bosch Center for Tumor Diseases, Stuttgart, Germany.,Department of General, Visceral & Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Marc Lecuit
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, 75015 Paris, France.,Institut Pasteur, National Reference Center and WHO Collaborating Center Listeria, 75015 Paris, France.,Division of Infectious Diseases and Tropical Medicine, Necker-Enfants Malades University Hospital, APHP, Institut Imagine, 75006 Paris, France
| | - Thomas Höfer
- Division of Theoretical Systems Biology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Hans-Reimer Rodewald
- Division of Cellular Immunology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
42
|
Jiang X, Zhang K, Gao C, Ma W, Liu M, Guo X, Bao G, Han B, Hu H, Zhao Z. Activation of FMS-like tyrosine kinase 3 protects against isoprenaline-induced cardiac hypertrophy by improving autophagy and mitochondrial dynamics. FASEB J 2022; 36:e22672. [PMID: 36440960 DOI: 10.1096/fj.202200419rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 10/28/2022] [Accepted: 11/15/2022] [Indexed: 11/30/2022]
Abstract
FMS-like receptor tyrosine kinase 3 (Flt3) expression was reported to increase in the heart in response to pathological stress, but the role of Flt3 activation and its underlying mechanisms remain poorly elucidated. This study was designed to investigate the role of Flt3 activation in sympathetic hyperactivity-induced cardiac hypertrophy and its mechanisms through autophagy and mitochondrial dynamics. In vivo, cardiac hypertrophy was established by subcutaneous injection of isoprenaline (6 mg/kg·day) in C57BL/6 mice for 7 consecutive days. The Flt3-ligand intervention was launched 2 h prior to isoprenaline each day. In vitro, experiments of cardiomyocyte hypertrophy, autophagy, and mitochondrial dynamics were performed in neonatal rat cardiomyocytes (NRCMs). Our results revealed that the expression level of Flt3 protein was significantly increased in the hypertrophic myocardium provoked by isoprenaline administration. Flt3-ligand intervention alleviated isoprenaline-induced cardiac oxidative stress, hypertrophy, fibrosis, and contractile dysfunction. Isoprenaline stimulation impaired autophagic flux in hypertrophic mouse hearts, supported by the accumulation of LC3II and P62 proteins, while Flt3-ligand restored the impairment of autophagic flux. Flt3 activation normalized the imbalance of mitochondrial fission and fusion in the hearts of mice evoked by isoprenaline as evidenced by the neutralization of elevated mitochondrial fission markers and reduced mitochondrial fusion markers. In NRCMs, Flt3-ligand treatment attenuated isoprenaline-stimulated hypertrophy, which was abolished by a Flt3-specific blocker AC220. Activating Flt3 reversed isoprenaline-induced autophagosome accumulation and impairment of autophagic flux probably by enhancing SIRT1 expression and consequently TFEB nuclear translocation. Flt3 activation improved the imbalance of mitochondrial dynamics induced by isoprenaline in NRCMs through the SIRT1/P53 pathway. Activation of Flt3 mitigated ISO-stimulated hypertrophy probably involves the restoration of autophagic flux and balance of mitochondrial dynamics. Therefore, activation of Flt3 attenuates isoprenaline-induced cardiac hypertrophy in vivo and in vitro, the potential mechanism probably attributes to SIRT1/TFEB-mediated autophagy promotion and SIRT1/P53-mediated mitochondrial dynamics balance. These findings suggest that activation of Flt3 may be a novel target for protection against cardiac remodeling and heart failure during sympathetic hyperactivity.
Collapse
Affiliation(s)
- Xixi Jiang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Kaina Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Chenying Gao
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Wenzhuo Ma
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Mengqing Liu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xinyu Guo
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Gaowa Bao
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Bing Han
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Hao Hu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Zhenghang Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| |
Collapse
|
43
|
Insights into Regulators of p53 Acetylation. Cells 2022; 11:cells11233825. [PMID: 36497084 PMCID: PMC9737083 DOI: 10.3390/cells11233825] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
The tumor suppressor p53 is a transcription factor that regulates the expression of dozens of target genes and diverse physiological processes. To precisely regulate the p53 network, p53 undergoes various post-translational modifications and alters the selectivity of target genes. Acetylation plays an essential role in cell fate determination through the activation of p53. Although the acetylation of p53 has been examined, the underlying regulatory mechanisms remain unclear and, thus, have attracted the interest of researchers. We herein discuss the role of acetylation in the p53 pathway, with a focus on p53 acetyltransferases and deacetylases. We also review recent findings on the regulators of these enzymes to understand the mode of p53 acetylation from a broader perspective.
Collapse
|
44
|
Montauti E, Weinberg SE, Chu P, Chaudhuri S, Mani NL, Iyer R, Zhou Y, Zhang Y, Liu C, Xin C, Gregory S, Wei J, Zhang Y, Chen W, Sun Z, Yan M, Fang D. A deubiquitination module essential for T reg fitness in the tumor microenvironment. SCIENCE ADVANCES 2022; 8:eabo4116. [PMID: 36427305 PMCID: PMC9699683 DOI: 10.1126/sciadv.abo4116] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
The tumor microenvironment (TME) enhances regulatory T (Treg) cell stability and immunosuppressive functions through up-regulation of lineage transcription factor Foxp3, a phenomenon known as Treg fitness or adaptation. Here, we characterize previously unknown TME-specific cellular and molecular mechanisms underlying Treg fitness. We demonstrate that TME-specific stressors including transforming growth factor-β (TGF-β), hypoxia, and nutrient deprivation selectively induce two Foxp3-specific deubiquitinases, ubiquitin-specific peptidase 22 (Usp22) and Usp21, by regulating TGF-β, HIF, and mTOR signaling, respectively, to maintain Treg fitness. Simultaneous deletion of both USPs in Treg cells largely diminishes TME-induced Foxp3 up-regulation, alters Treg metabolic signatures, impairs Treg-suppressive function, and alleviates Treg suppression on cytotoxic CD8+ T cells. Furthermore, we developed the first Usp22-specific small-molecule inhibitor, which dramatically reduced intratumoral Treg Foxp3 expression and consequently enhanced antitumor immunity. Our findings unveil previously unappreciated mechanisms underlying Treg fitness and identify Usp22 as an antitumor therapeutic target that inhibits Treg adaptability in the TME.
Collapse
Affiliation(s)
- Elena Montauti
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Samuel E. Weinberg
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Peng Chu
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Shuvam Chaudhuri
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Nikita L. Mani
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Radhika Iyer
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Yuanzhang Zhou
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Yusi Zhang
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China
| | - Changhong Liu
- Department of Thoracic Surgery, The Second Hospital of Dalian Medical University, Dalian 116021, China
| | - Chen Xin
- Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian 116021, China
| | - Shana Gregory
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Juncheng Wei
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Yana Zhang
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Wantao Chen
- Department of Oral Maxillofacial Head and Neck Oncology, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Zhaolin Sun
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Ming Yan
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL 60611, USA
- Department of Oral Maxillofacial Head and Neck Oncology, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL 60611, USA
| |
Collapse
|
45
|
Pan Y, Wang X, Liu X, Shen L, Chen Q, Shu Q. Targeting Ferroptosis as a Promising Therapeutic Strategy for Ischemia-Reperfusion Injury. Antioxidants (Basel) 2022; 11:2196. [PMID: 36358568 PMCID: PMC9686892 DOI: 10.3390/antiox11112196] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 07/29/2023] Open
Abstract
Ischemia-reperfusion (I/R) injury is a major challenge in perioperative medicine that contributes to pathological damage in various conditions, including ischemic stroke, myocardial infarction, acute lung injury, liver transplantation, acute kidney injury and hemorrhagic shock. I/R damage is often irreversible, and current treatments for I/R injury are limited. Ferroptosis, a type of regulated cell death characterized by the iron-dependent accumulation of lipid hydroperoxides, has been implicated in multiple diseases, including I/R injury. Emerging evidence suggests that ferroptosis can serve as a therapeutic target to alleviate I/R injury, and pharmacological strategies targeting ferroptosis have been developed in I/R models. Here, we systematically summarize recent advances in research on ferroptosis in I/R injury and provide a comprehensive analysis of ferroptosis-regulated genes investigated in the context of I/R, as well as the therapeutic applications of ferroptosis regulators, to provide insights into developing therapeutic strategies for this devastating disease.
Collapse
Affiliation(s)
- Yihang Pan
- Department of Clinical Research Center, The Children’s Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Xueke Wang
- Department of Clinical Research Center, The Children’s Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Xiwang Liu
- Department of Thoracic & Cardiovascular Surgery, The Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Lihua Shen
- Department of Clinical Research Center, The Children’s Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Qixing Chen
- Department of Clinical Research Center, The Children’s Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou 310052, China
- Key Laboratory of Diagnosis and Treatment of Neonatal Diseases of Zhejiang Province, Hangzhou 310052, China
| | - Qiang Shu
- Department of Clinical Research Center, The Children’s Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou 310052, China
- Department of Thoracic & Cardiovascular Surgery, The Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Key Laboratory of Diagnosis and Treatment of Neonatal Diseases of Zhejiang Province, Hangzhou 310052, China
| |
Collapse
|
46
|
Derepression of the USP22-FASN axis by p53 loss under oxidative stress drives lipogenesis and tumorigenesis. Cell Death Dis 2022; 8:445. [PMID: 36333288 PMCID: PMC9636132 DOI: 10.1038/s41420-022-01241-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
Overproduction of reactive oxygen species (ROS) and aberrant lipid metabolism are established hallmarks of cancer; however, the role of ROS in lipid synthesis during tumorigenesis is almost unknown. Herein, we show that ROS regulates lipid synthesis and thus controls colorectal tumorigenesis through a p53-dependent mechanism. In p53 wild-type colorectal cancer (CRC) cells, hydrogen peroxide (H2O2)-induced p53 expression represses the transcription of deubiquitinase USP22, which otherwise deubiquitinates and stabilizes Fatty Acid Synthase (FASN), and thus inhibits fatty acid synthesis. Whereas, in p53-deficient CRC cells, ROS-mediated inhibition of USP22 is relieved, leading to FASN stabilization, which thus promotes lipid synthesis and tumor growth. In human CRC specimens, USP22 expression is positively correlated with FASN expression. Our study demonstrates that ROS critically regulates lipid synthesis and tumorigenesis through the USP22-FASN axis in a p53-dependent manner, and targeting the USP22-FASN axis may represent a potential strategy for the treatment of colorectal cancer.
Collapse
|
47
|
Characterizing and exploiting the many roles of aberrant H2B monoubiquitination in cancer pathogenesis. Semin Cancer Biol 2022; 86:782-798. [PMID: 34953650 DOI: 10.1016/j.semcancer.2021.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/08/2021] [Accepted: 12/19/2021] [Indexed: 01/27/2023]
Abstract
Monoubiquitination of histone H2B on lysine 120 (H2Bub1) is implicated in the control of multiple essential processes, including transcription, DNA damage repair and mitotic chromosome segregation. Accordingly, aberrant regulation of H2Bub1 can induce transcriptional reprogramming and genome instability that may promote oncogenesis. Remarkably, alterations of the ubiquitin ligases and deubiquitinating enzymes regulating H2Bub1 are emerging as ubiquitous features in cancer, further supporting the possibility that the misregulation of H2Bub1 is an underlying mechanism contributing to cancer pathogenesis. To date, aberrant H2Bub1 dynamics have been reported in multiple cancer types and are associated with transcriptional changes that promote oncogenesis in a cancer type-specific manner. Owing to the multi-functional nature of H2Bub1, misregulation of its writers and erasers may drive disease initiation and progression through additional synergistic processes. Accordingly, understanding the molecular determinants and pathogenic impacts associated with aberrant H2Bub1 regulation may reveal novel drug targets and therapeutic vulnerabilities that can be exploited to develop innovative precision medicine strategies that better combat cancer. In this review, we present the normal functions of H2Bub1 in the control of DNA-associated processes and describe the pathogenic implications associated with its misregulation in cancer. We further discuss the challenges coupled with the development of therapeutic strategies targeting H2Bub1 misregulation and expose the potential benefits of designing treatments that synergistically exploit the multiple functionalities of H2Bub1 to improve treatment selectivity and efficacy.
Collapse
|
48
|
Lee YH, Kim SJ, Surh YJ. Role of Post-translational Modification of Silent Mating Type Information Regulator 2 Homolog 1 in Cancer and Other Disorders. J Cancer Prev 2022; 27:157-169. [PMID: 36258719 PMCID: PMC9537581 DOI: 10.15430/jcp.2022.27.3.157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/06/2022] Open
Abstract
Silent mating type information regulator 2 homolog 1 (SIRT1), an NAD+-dependent histone/protein deacetylase, has multifarious physiological roles in development, metabolic regulation, and stress response. Thus, its abnormal expression or malfunction is implicated in pathogenesis of various diseases. SIRT1 undergoes post-translational modifications, including phosphorylation, oxidation/reduction, carbonylation, nitrosylation, glycosylation, ubiquitination/deubiquitination, SUMOylation etc. which can modulate its catalytic activity, stability, subcellular localization, and also binding affinity for substrate proteins. This short review highlights the regulation of SIRT1 post-translational modifications and their pathophysiologic implications.
Collapse
Affiliation(s)
- Yeon-Hwa Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul, Korea
| | - Su-Jung Kim
- Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, Seoul, Korea
| | - Young-Joon Surh
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul, Korea,Cancer Research Institute, Seoul National University, Seoul, Korea,Correspondence to Young-Joon Surh, E-mail: , https://orcid.org/0000-0001-8310-1795
| |
Collapse
|
49
|
Sun T, Zhang K, Li W, Liu Y, Pangeni RP, Li A, Arvanitis L, Raz DJ. Transcription factor AP2 enhances malignancy of non-small cell lung cancer through upregulation of USP22 gene expression. Cell Commun Signal 2022; 20:147. [PMID: 36123698 PMCID: PMC9484186 DOI: 10.1186/s12964-022-00946-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 07/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ubiquitin-specific protease 22 (USP22), a putative cancer stem cell marker, is frequently upregulated in cancers, and USP22 overexpression is associated with aggressive growth, metastasis, and therapy resistance in various human cancers including lung cancer. However, USP22 gene amplification seldom occurs, and the mechanism underlying USP22 upregulation in human cancers remains largely unknown. METHODS A luciferase reporter driven by a promoter region of USP22 gene was selectively constructed to screen against a customized siRNA library targeting 89 selected transcription factors to identify potential transcription factors (TFs) that regulate USP22 expression in human non-small cell lung cancers (NSCLC). Association of identified TFs with USP22 and potential role of the TFs were validated and explored in NSCLC by biological assays and immunohistochemistry analysis. RESULTS Luciferase reporter assays revealed that SP1 and activating transcription factor 3 (ATF3) inhibit USP22 transcription, while transcription factor AP-2 Alpha/Beta (TFAP2A/2B) and c-Myc promote USP22 transcription. Binding site-directed mutagenesis and chromosome immunoprecipitation (ChIP) assays validated AP2α and AP2β are novel TFs of USP22. Furthermore, overexpression of AP2A and AP2B significantly upregulates USP22 expression, and its target: Cyclin D1, concurrently enhances the proliferation, migration, and invasion of NSCLC A549 and H1299 cells in a partially USP22-dependent manner. Moreover, AP2 protein level correlated with USP22 protein in human NSCLC tissues. CONCLUSION Our findings indicate AP2α and AP2β are important transcription factors driving USP22 gene expression to promote the progression of NSCLC, and further support USP22 as a potential biomarker and therapeutic target for lung cancer. Video Abstract.
Collapse
Affiliation(s)
- Ting Sun
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, CA, USA
- Laboratory of Surgery, The General Hospital of Ningxia Medical University, Yinchuan, China
- Faculty of Health Science, University of Macau, Macau, China
| | - Keqiang Zhang
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, CA, USA.
| | - Wendong Li
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Yunze Liu
- Faculty of Health Science, University of Macau, Macau, China
| | - Rajendra P Pangeni
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Aimin Li
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, USA
| | - Leonidas Arvanitis
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, USA
| | - Dan J Raz
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, CA, USA.
| |
Collapse
|
50
|
Bouron A, Fauvarque MO. Genome-wide analysis of genes encoding core components of the ubiquitin system during cerebral cortex development. Mol Brain 2022; 15:72. [PMID: 35974412 PMCID: PMC9380329 DOI: 10.1186/s13041-022-00958-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/02/2022] [Indexed: 11/21/2022] Open
Abstract
Ubiquitination involves three types of enzymes (E1, E2, and E3) that sequentially attach ubiquitin (Ub) to target proteins. This posttranslational modification controls key cellular processes, such as the degradation, endocytosis, subcellular localization and activity of proteins. Ubiquitination, which can be reversed by deubiquitinating enzymes (DUBs), plays important roles during brain development. Furthermore, deregulation of the Ub system is linked to the pathogenesis of various diseases, including neurodegenerative disorders. We used a publicly available RNA-seq database to perform an extensive genome-wide gene expression analysis of the core components of the ubiquitination machinery, covering Ub genes as well as E1, E2, E3 and DUB genes. The ubiquitination network was governed by only Uba1 and Ube2m, the predominant E1 and E2 genes, respectively; their expression was positively regulated during cortical formation. The principal genes encoding HECT (homologous to the E6-AP carboxyl terminus), RBR (RING-in-between-RING), and RING (really interesting new gene) E3 Ub ligases were also highly regulated. Pja1, Dtx3 (RING ligases) and Stub1 (U-box RING) were the most highly expressed E3 Ub ligase genes and displayed distinct developmental expression patterns. Moreover, more than 80 DUB genes were expressed during corticogenesis, with two prominent genes, Uch-l1 and Usp22, showing highly upregulated expression. Several components of the Ub system overexpressed in cancers were also highly expressed in the cerebral cortex under conditions not related to tumour formation or progression. Altogether, this work provides an in-depth overview of transcriptomic changes during embryonic formation of the cerebral cortex. The data also offer new insight into the characterization of the Ub system and may contribute to a better understanding of its involvement in the pathogenesis of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Alexandre Bouron
- Université Grenoble Alpes, Inserm, CEA, UMR 1292, 38000, Grenoble, France. .,Genetics and Chemogenomics Lab, Building C3, CEA, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France.
| | | |
Collapse
|