1
|
Liu X, Yu H, Hu T, He Y, Li Y, Yuan Q, Dong M, Liu D, Xu Y, Mao L. G3BP1, a stress granule core protein, ameliorates metabolic dysfunction-associated fatty liver disease by attenuating hepatocyte lipid deposition. Diabetes Obes Metab 2025; 27:2985-2995. [PMID: 40230220 DOI: 10.1111/dom.16302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/05/2025] [Accepted: 02/15/2025] [Indexed: 04/16/2025]
Abstract
AIM Abnormal lipid accumulation is an important cause of metabolic dysfunction-associated fatty liver disease (MAFLD) progression and can induce several stress responses within cells. This study is the first to explore the role and molecular mechanism of stress granules (SGs) in MAFLD. METHODS A gene knock-down model of G3BP1, a core SG molecule in mice and HepG2 cells, was constructed to explore the role of SGs in MAFLD induced in vivo by a high-fat diet or in vitro by palmitic acid (PA). Methods included metabolic phenotyping; western blotting; qPCR; and immunofluorescence, haematoxylin/eosin and masson staining. The downstream molecules of G3BP1 and its specific molecular mechanism were screened using RNA sequencing (RNA-seq). RESULTS G3BP1 and TIA1 expression were upregulated in high-fat diet-fed mouse liver tissues and PA-induced HepG2 cells, and the two molecules showed significantly increased colocalisation. G3BP1 knock-down slightly increased TIA1 expression in the livers of obese mice but not in lean mice. G3BP1 deficiency aggravated liver lipid deposition and insulin resistance in obese mice, and this phenotype was confirmed in vitro in PA-induced hepatocytes. RNA-seq demonstrated that G3BP1 slowed down MAFLD progression by inhibiting APOC3, possibly through a mechanistic suppression of APOC3 entry into the nucleus. CONCLUSION This study reveals for the first time a protective role for SGs in MAFLD. Specifically, knocking down the core G3BP1 molecule in SGs aggravated the progression of fatty acid-induced MAFLD through a mechanism that may involve the nuclear entry of APOC3. These findings provide a new therapeutic direction for MAFLD.
Collapse
Affiliation(s)
- Xingjing Liu
- Department of Endocrinology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, China
| | - Huimei Yu
- Department of Endocrinology, Huai'an Hospital Affiliated to Yangzhou University, China
| | - Tongtong Hu
- Department of Cardiovascular Medicine, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, China
| | - Yu He
- Department of Endocrinology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, China
| | - Yiming Li
- Department of Endocrinology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, China
| | - Qi Yuan
- Department of Endocrinology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, China
| | - Meijuan Dong
- Department of Endocrinology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, China
| | - Dezhen Liu
- Department of Endocrinology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, China
| | - Yue Xu
- Department of Endocrinology, Huai'an Hospital Affiliated to Yangzhou University, China
| | - Li Mao
- Department of Endocrinology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, China
| |
Collapse
|
2
|
Akasaka N, Sugimoto Y, Kajihara T, Takagi H, Watanabe D. Control of alcoholic fermentation through modulation of nitrogen metabolism in Saccharomyces cerevisiae. J Biotechnol 2025; 405:159-168. [PMID: 40403977 DOI: 10.1016/j.jbiotec.2025.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 05/02/2025] [Accepted: 05/19/2025] [Indexed: 05/24/2025]
Abstract
Saccharomyces cerevisiae sake strains exhibit high alcoholic fermentation performance. Comparative transcriptomic analysis revealed that the expression of genes required for nitrogen sensing and metabolism, including amino acid biosynthesis and uptake, was markedly lower in the sake strain than in the laboratory strain. Thus, we hypothesized that changes in nitrogen metabolism affect the fermentation capability of S. cerevisiae. To evaluate the impact of altered nitrogen metabolism on alcoholic fermentation, we focused on the transcription activators Gcn4p, Gln3p, and Gat1p, and the protein kinase Npr1p, all of which are key regulators controlling expression of genes for amino acid biosynthesis and uptake responding to nitrogen availability. Fermentation tests demonstrated that laboratory strain-derived single-deletion mutants of the regulator genes exhibited higher fermentation performance than the parental strain, which was accompanied by decrease in intracellular amino acid levels in the mutants. Disruption of the genes encoding glutamate dehydrogenases, which play a central role in nitrogen assimilation, also enhanced the fermentation rate. A Greatwall family protein kinase Rim15p inhibits alcoholic fermentation by diverting carbon flux from glycolysis to the synthesis of 1,3-β-glucan, a major cell wall component. Since the content of 1,3-β-glucan was unaffected by disruption of the regulator genes, the elevated fermentation performance of the disruptants was accomplished independently of the signaling pathway governed by Rim15p. The high fermentation rate of the disruptants might be attributed to increased carbon entry into glycolysis caused by the compromised biosynthesis of amino acids, which are synthesized from intermediary metabolites of glycolysis and tricarboxylic acid cycle.
Collapse
Affiliation(s)
- Naoki Akasaka
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8961-5, Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Yukiko Sugimoto
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8961-5, Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Takuma Kajihara
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8961-5, Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Hiroshi Takagi
- Institute for Research Initiatives, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Daisuke Watanabe
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8961-5, Takayama-cho, Ikoma, Nara 630-0192, Japan.
| |
Collapse
|
3
|
Lee J, Tatebayashi K, Levin DE. Acetic acid-induced stress granules function as scaffolding complexes for Hog1 activation by Pbs2. J Cell Biol 2025; 224:e202409072. [PMID: 40067148 PMCID: PMC11895697 DOI: 10.1083/jcb.202409072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/16/2025] [Accepted: 01/29/2025] [Indexed: 03/15/2025] Open
Abstract
Stress-activated protein kinases (SAPKs) respond to a wide variety of stressors. In most cases, the pathways through which specific stress signals are transmitted to the SAPK are not known. We show that the yeast SAPK Hog1 is activated by acetic acid through an intracellular mechanism that does not involve stimulation of the high osmolarity glycerol (HOG) signaling pathway beyond its basal level. Rather, acetic acid treatment drives the formation of stress granules, which function as a scaffold to bring Hog1 together with Pbs2, its immediately upstream activating kinase, in a stable assembly that leverages the basal activity of Pbs2 to phosphorylate Hog1. Deletion analysis of stress granule components revealed that the assembly is critical for both the acetic acid-induced activation of Hog1 and its association with Pbs2. Activated Hog1 remains associated with stress granules, which may have implications for its targeting.
Collapse
Affiliation(s)
- Jongmin Lee
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, MA, USA
| | - Kazuo Tatebayashi
- Laboratory of Molecular Genetics, Frontier Research Unit, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - David E. Levin
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, MA, USA
| |
Collapse
|
4
|
Li J, Shen L, Wang K, Wu S, Wang Y, Pan Y, Chen S, Zhao T, Zhao Y, Niu L, Chen L, Zhang S, Zhu L, Gan M. Biogenesis of stress granules and their role in the regulation of stress-induced male reproduction disorders. Cell Commun Signal 2025; 23:84. [PMID: 39948590 PMCID: PMC11827146 DOI: 10.1186/s12964-025-02054-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 01/18/2025] [Indexed: 02/16/2025] Open
Abstract
Stress granules (SGs) are conserved messenger ribonucleoprotein (mRNP) granules that form through rapid coalescence in the cytoplasm of eukaryotic cells under stressful environments. These dynamic membrane-free organelles can respond to a variety of both intracellular and extracellular stressors. Studies have shown that stress conditions such as heat stress, arsenite exposure, and hypoxic stress can induce SGs formation. The formation of SGs helps mitigates the effects of environmental stimuli on cells, protects them from damage, and promotes cell survival. This paper focuses on the biogenesis of SGs and summarizes the role in regulating environmental stress-induced male reproductive disorders, with the aim of exploring SGs as a potential means of mitigating male reproduction disorders. Numerous studies have demonstrated that the detrimental effects of environmental stress on germ cells can be effectively suppressed by regulating the formation and timely disassembly of SGs. Therefore, regulating the phosphorylation of eIF2α and the assembly and disassembly of SGs could offer a promising therapeutic strategy to alleviate the impacts of environmental stress on male reproduction health.
Collapse
Affiliation(s)
- Jiaxin Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Linyuan Shen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kai Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shuang Wu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuheng Pan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Siyu Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ting Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ye Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lili Niu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lei Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shunhua Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Li Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Mailin Gan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
5
|
Sulaj E, Sandell FL, Schwaigerlehner L, Marzban G, Dohm JC, Kunert R. Systems Biology of Recombinant 2G12 and 353/11 mAb Production in CHO-K1 Cell Lines at Phosphoproteome Level. Proteomes 2025; 13:9. [PMID: 39982319 PMCID: PMC11843875 DOI: 10.3390/proteomes13010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/31/2025] [Accepted: 02/06/2025] [Indexed: 02/22/2025] Open
Abstract
Background: Chinese hamster ovary (CHO) cells are extensively used in the pharmaceutical industry for producing complex proteins, primarily because of their ability to perform human-like post-translational modifications. However, the efficiency of high-quality protein production can vary significantly for monoclonal antibody-producing cell lines, within the CHO host cell lines or by extrinsic factors. Methods: To investigate the complex cellular mechanisms underlying this variability, a phosphoproteomics analysis was performed using label-free quantitative liquid chromatography after a phosphopeptide enrichment of recombinant CHO cells producing two different antibodies and a tunicamycin treatment experiment. Using MaxQuant and Perseus for data analysis, we identified 2109 proteins and quantified 4059 phosphosites. Results: Significant phosphorylation dynamics were observed in nuclear proteins of cells producing the difficult-to-produce 2G12 mAb. It suggests that the expression of 2G12 regulates nuclear pathways based on increases and decreases in phosphorylation abundance. Furthermore, a substantial number of changes in the phosphorylation pattern related to tunicamycin treatment have been detected. TM treatment affects, among other phosphoproteins, the eukaryotic elongation factor 2 kinase (Eef2k). Conclusions: The alterations in the phosphorylation landscape of key proteins involved in cellular processes highlight the mechanisms behind stress-induced cellular responses.
Collapse
Affiliation(s)
- Eldi Sulaj
- Department of Biotechnology and Food Science, Institute of Animal Cell Technology and Systems Biology (IACTSB), BOKU University, Muthgasse 18, 1190 Vienna, Austria; (E.S.); (L.S.); (R.K.)
| | - Felix L. Sandell
- Department of Biotechnology and Food Science, Institute of Computational Biology (ICB), BOKU University, Muthgasse 18, 1190 Vienna, Austria; (F.L.S.)
| | - Linda Schwaigerlehner
- Department of Biotechnology and Food Science, Institute of Animal Cell Technology and Systems Biology (IACTSB), BOKU University, Muthgasse 18, 1190 Vienna, Austria; (E.S.); (L.S.); (R.K.)
| | - Gorji Marzban
- Department of Biotechnology and Food Science, Institute of Bioprocess Science and Engineering (IBSE), BOKU University, Muthgasse 18, 1190 Vienna, Austria
| | - Juliane C. Dohm
- Department of Biotechnology and Food Science, Institute of Computational Biology (ICB), BOKU University, Muthgasse 18, 1190 Vienna, Austria; (F.L.S.)
| | - Renate Kunert
- Department of Biotechnology and Food Science, Institute of Animal Cell Technology and Systems Biology (IACTSB), BOKU University, Muthgasse 18, 1190 Vienna, Austria; (E.S.); (L.S.); (R.K.)
| |
Collapse
|
6
|
Peng J, Yu Y, Fang X. Stress sensing and response through biomolecular condensates in plants. PLANT COMMUNICATIONS 2025; 6:101225. [PMID: 39702967 PMCID: PMC11897469 DOI: 10.1016/j.xplc.2024.101225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/03/2024] [Accepted: 12/17/2024] [Indexed: 12/21/2024]
Abstract
Plants have developed intricate mechanisms for rapid and efficient stress perception and adaptation in response to environmental stressors. Recent research highlights the emerging role of biomolecular condensates in modulating plant stress perception and response. These condensates function through numerous mechanisms to regulate cellular processes such as transcription, translation, RNA metabolism, and signaling pathways under stress conditions. In this review, we provide an overview of current knowledge on stress-responsive biomolecular condensates in plants, including well-defined condensates such as stress granules, processing bodies, and the nucleolus, as well as more recently discovered plant-specific condensates. By briefly referring to findings from yeast and animal studies, we discuss mechanisms by which plant condensates perceive stress signals and elicit cellular responses. Finally, we provide insights for future investigations on stress-responsive condensates in plants. Understanding how condensates act as stress sensors and regulators will pave the way for potential applications in improving plant resilience through targeted genetic or biotechnological interventions.
Collapse
Affiliation(s)
- Jiaxuan Peng
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yidan Yu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaofeng Fang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
7
|
Wang Z, Zhang H. Phase-separated Condensates in Autophagosome Formation and Autophagy Regulation. J Mol Biol 2025:168964. [PMID: 39880155 DOI: 10.1016/j.jmb.2025.168964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/13/2025] [Accepted: 01/23/2025] [Indexed: 01/31/2025]
Abstract
Biomacromolecules partition into numerous types of biological condensates or membrane-less organelles via liquid-liquid phase separation (LLPS). Newly formed liquid-like condensates may further undergo phase transition to convert into other material states, such as gel or solid states. Different biological condensates possess distinct material properties to fulfil their physiological functions in diverse cellular pathways and processes. Phase separation and condensates are extensively involved in the autophagy pathway. The autophagosome formation sites in both yeast and multicellular organisms are assembled as phase-separated condensates. TORC1, one of the core regulators of the autophagy-lysosome pathway, is subject to nonconventional regulation by multiple biological condensates. TFEB, the master transcription factor of the autophagy-lysosome pathway, phase separates to assemble liquid-like condensates involved in transcription of autophagic and lysosomal genes. The behaviors and transcriptional activity of TFEB condensates are governed by their material properties, thus suggesting novel autophagy intervention strategies. The phase separation process and the resulting condensates are emerging therapeutic targets for autophagy-related diseases.
Collapse
Affiliation(s)
- Zheng Wang
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006 PR China; School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006 PR China; Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang 330031 PR China.
| | - Hong Zhang
- National Laboratory of Biomacromolecules, New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 PR China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049 PR China.
| |
Collapse
|
8
|
Li X, Liao J, Chung KK, Feng L, Liao Y, Yang Z, Liu C, Zhou J, Shen W, Li H, Yang C, Zhuang X, Gao C. Stress granules sequester autophagy proteins to facilitate plant recovery from heat stress. Nat Commun 2024; 15:10910. [PMID: 39738069 PMCID: PMC11685989 DOI: 10.1038/s41467-024-55292-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 12/08/2024] [Indexed: 01/01/2025] Open
Abstract
The autophagy pathway regulates the degradation of misfolded proteins caused by heat stress (HS) in the cytoplasm, thereby maintaining cellular homeostasis. Although previous studies have established that autophagy (ATG) genes are transcriptionally upregulated in response to HS, the precise regulation of ATG proteins at the subcellular level remains poorly understood. In this study, we provide compelling evidence for the translocation of key autophagy components, including the ATG1/ATG13 kinase complex (ATG1a, ATG13a), PI3K complex (ATG6, VPS34), and ATG8-PE system (ATG5), to HS-induced stress granules (SGs) in Arabidopsis thaliana. As HS subsides, SGs disassemble, leading to the re-translocation of ATG proteins back to the cytoplasm, thereby facilitating the rapid activation of autophagy to degrade HS-induced ubiquitinated aggregates. Notably, autophagy activation is delayed in the SG-deficient (ubp1abc) mutants during the HS recovery phase, resulting in an insufficient clearance of ubiquitinated insoluble proteins that arise due to HS. Collectively, this study uncovers a previously unknown function of SGs in regulating autophagy as a temporary repository for ATG proteins under HS and provides valuable insights into the cellular mechanisms that maintain protein homeostasis during stress.
Collapse
Affiliation(s)
- Xibao Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Jun Liao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Ka Kit Chung
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Lei Feng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Yanglan Liao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Zhixin Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Chuanliang Liu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Jun Zhou
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Wenjin Shen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Hongbo Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Chengwei Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Xiaohong Zhuang
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China.
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China.
| |
Collapse
|
9
|
Yang Q, Zhang Q, Zhou X, Feng J, Zhang S, Lin L, Yi S, Qin Z, Luo J. Whole-exome sequencing identified a novel heterozygous variant in UBAP2L in a Chinese family with neurodevelopmental disorder characterized by impaired language, behavioral abnormalities, and dysmorphic facies. Front Genet 2024; 15:1503048. [PMID: 39720179 PMCID: PMC11666500 DOI: 10.3389/fgene.2024.1503048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/28/2024] [Indexed: 12/26/2024] Open
Abstract
UBAP2L-deficiency syndrome, also known as neurodevelopmental disorder with impaired language, behavioral abnormalities, and dysmorphic facies (NEDLBF, OMIM 620494), is an extremely rare autosomal dominant disorder. This condition is caused by heterozygous variant in the UBAP2L gene (NM_014847.4, MIM 616472), which encodes the ubiquitin-associated protein 2-like protein involved in the formation of stress granules (SGs). To date, only one report has documented 12 loss-of-function variants in UBAP2L, all of which were identified as de novo variants. In our study, we recruited a Chinese family with two patients exhibiting intellectual disability and seizures. Whole-exome sequencing was performed on the proband, revealing a novel heterozygous frameshift variant, UBAP2L (NM_014847.4):c.2453_2454del (p.Tyr818Trpfs*3). The variant was inherited from the affected mother, and confirmed in the proband and his parents by Sanger sequencing. This is the first familial report of a deleterious UBAP2L variant. The proband in this family presented a clinical phenotype similar to NEDLBF, which includes intellectual disability, developmental delay, speech delay, facial dysmorphism, seizures, and behavioral abnormalities. The affected mother presented only mild intellectual disability and mild language impairment. By clinical evaluation of our patients and previously reported cases with UBAP2L variants, we propose that intellectual disability, developmental delay (particularly in speech), infants' feeding difficulties, behavioural abnormalities and seizures are the main clinical features of NEDLBF patients. Our study expands the genetic and phenotypic spectrum associated with NEDLBF.
Collapse
Affiliation(s)
- Qi Yang
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qiang Zhang
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xunzhao Zhou
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Juntan Feng
- Department of Pediatric Neurology, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Guangxi Clinical Research Center for Pediatric Diseases, Nanning, China
| | - Shujie Zhang
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Li Lin
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Shang Yi
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Zailong Qin
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jingsi Luo
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
10
|
Williams TD, Rousseau A. Translation regulation in response to stress. FEBS J 2024; 291:5102-5122. [PMID: 38308808 PMCID: PMC11616006 DOI: 10.1111/febs.17076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/07/2023] [Accepted: 01/22/2024] [Indexed: 02/05/2024]
Abstract
Cell stresses occur in a wide variety of settings: in disease, during industrial processes, and as part of normal day-to-day rhythms. Adaptation to these stresses requires cells to alter their proteome. Cells modify the proteins they synthesize to aid proteome adaptation. Changes in both mRNA transcription and translation contribute to altered protein synthesis. Here, we discuss the changes in translational mechanisms that occur following the onset of stress, and the impact these have on stress adaptation.
Collapse
Affiliation(s)
- Thomas D. Williams
- MRC‐PPU, School of Life SciencesUniversity of DundeeUK
- Sir William Dunn School of PathologyUniversity of OxfordUK
| | | |
Collapse
|
11
|
Li M, Yang X, Zhang D, Tian Y, Jia ZC, Liu WH, Hao RR, Chen YS, Chen MX, Liu YG. A story of two kingdoms: unravelling the intricacies of protein phase separation in plants and animals. Crit Rev Biotechnol 2024:1-21. [PMID: 39592156 DOI: 10.1080/07388551.2024.2425989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/17/2024] [Accepted: 10/20/2024] [Indexed: 11/28/2024]
Abstract
The biomolecular condensates (BCs) formed by proteins through phase separation provide the necessary space and raw materials for the orderly progression of cellular activities, and on this basis, various membraneless organelles (MLOs) are formed. The occurrence of eukaryotic phase separation is driven by multivalent interactions from intrinsically disordered regions (IDRs) and/or specific protein/nucleic acid binding domains and is regulated by various environmental factors. In plant and animal cells, the MLOs involved in gene expression regulation, stress response, and mitotic control display similar functions and mechanisms. In contrast, the phase separation related to reproductive development and immune regulation differs significantly between the two kingdoms owing to their distinct cell structures and nutritional patterns. In addition, animals and plants each exhibit unique protein phase separation activities, such as neural regulation and light signal response. By comparing the similarities and differences in the formation mechanism and functional regulation of known protein phase separation, we elucidated its importance in the evolution, differentiation, and environmental adaptation of both animals and plants. The significance of studying protein phase separation for enhancing biological quality of life has been further emphasized.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Taian, China
| | - Xue Yang
- State Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Taian, China
| | - Di Zhang
- Department of Biology, Hong Kong Baptist University, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yuan Tian
- State Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Taian, China
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing, China
| | - Zi-Chang Jia
- State Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Taian, China
| | - Wen-Hui Liu
- State Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Taian, China
| | - Rui-Rui Hao
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing, China
| | - Yun-Sheng Chen
- Clinical Laboratory, Shenzhen Children's Hospital, Shenzhen, China
| | - Mo-Xian Chen
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing, China
| | - Ying-Gao Liu
- State Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Taian, China
| |
Collapse
|
12
|
Liu YN, Chen YL, Zhang ZJ, Wu FY, Wang HJ, Wang XL, Liu GQ. Phosphatidic acid directly activates mTOR and then regulates SREBP to promote ganoderic acid biosynthesis under heat stress in Ganoderma lingzhi. Commun Biol 2024; 7:1503. [PMID: 39537975 PMCID: PMC11560937 DOI: 10.1038/s42003-024-07225-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
Ganoderic acids (GAs), a class of secondary metabolites produced by the traditional medicinal mushroom Ganoderma, are a group of triterpenoids with superior biological activities. Heat stress (HS) is one of the most important environmental abiotic stresses. Understanding how organisms sense temperature and integrate this information into their metabolism is important for determining how organisms adapt to climate change and for applying this knowledge to breeding. We previously reported that HS induced GA biosynthesis, and phospholipase D (PLD)-mediated phosphatidic acid (PA) was involved in HS-induced GA biosynthesis. We screened a proteome to identify the PA-binding proteins in G. lingzhi. We reported that PA directly interacted with mTOR and positively correlated with the ability of mTOR to promote GA biosynthesis under HS. The PA-activated mTOR pathway promoted the processing of the transcription factor sterol regulatory element-binding protein (SREBP) under HS, which directly activated GA biosynthesis. Our results suggest that SREBP is an intermediate of the PLD-mediated PA-interacting protein mTOR in HS-induced GA biosynthesis. Our report established the link between PLD-mediated PA production and the activation of mTOR and SREBP in the HS response and HS-induced secondary metabolism in filamentous fungi.
Collapse
Affiliation(s)
- Yong-Nan Liu
- Hunan Provincial Key Laboratory of Forestry Biotechnology and International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China.
- Laboratory of Yuelushan Seed Industry, Changsha, China.
| | - Yu-Lin Chen
- Hunan Provincial Key Laboratory of Forestry Biotechnology and International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China
- Laboratory of Yuelushan Seed Industry, Changsha, China
| | - Zi-Juan Zhang
- Hunan Provincial Key Laboratory of Forestry Biotechnology and International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China
- Laboratory of Yuelushan Seed Industry, Changsha, China
| | - Feng-Yuan Wu
- Hunan Provincial Key Laboratory of Forestry Biotechnology and International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China
- Laboratory of Yuelushan Seed Industry, Changsha, China
| | - Hao-Jin Wang
- Hunan Provincial Key Laboratory of Forestry Biotechnology and International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China
- Laboratory of Yuelushan Seed Industry, Changsha, China
| | - Xiao-Ling Wang
- Hunan Provincial Key Laboratory of Forestry Biotechnology and International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China
- Laboratory of Yuelushan Seed Industry, Changsha, China
| | - Gao-Qiang Liu
- Hunan Provincial Key Laboratory of Forestry Biotechnology and International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China.
- Laboratory of Yuelushan Seed Industry, Changsha, China.
| |
Collapse
|
13
|
Himeno Y, Endo N, Rana V, Akitake N, Suda T, Suda Y, Mizuno T, Irie K. Roles of Pbp1, Mkt1, and Dhh1 in the regulation of gene expression in the medium containing non-fermentative carbon sources. Genes Cells 2024. [PMID: 39460681 DOI: 10.1111/gtc.13174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/04/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
Pbp1, a yeast ortholog of human ataxin-2, is important for cell growth in the medium containing non-fermentable carbon sources. We had reported that Pbp1 regulates expression of genes related to glycogenesis via transcriptional regulation and genes related to mitochondrial function through mRNA stability control. To further analyze the role of Pbp1 in gene expression, we first examined the time course of gene expression after transfer from YPD medium containing glucose to YPGlyLac medium containing glycerol and lactate. At 12 h after transfer to YPGlyLac medium, the pbp1∆ mutant showed decreased expression of genes related to mitochondrial function but no decrease in expression of glycogenesis-related genes. We also examined a role of the Pbp1-binding factor, Mkt1. The mkt1∆ mutant, like the pbp1∆ mutant, showed slow growth on YPGlyLac plate and reduced expression of genes related to mitochondrial function. Furthermore, we found that mutation of DHH1 gene encoding a decapping activator exacerbated the growth of the pbp1∆ mutant on YPGlyLac plate. The dhh1∆ mutant showed reduced expression of genes related to mitochondrial function. These results indicate that Pbp1 and Mkt1 regulate the expression of genes related to mitochondrial function and that the decapping activator Dhh1 also regulates the expression of those genes.
Collapse
Affiliation(s)
- Yurika Himeno
- Laboratory of Molecular Cell Biology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- College of Medicine, School of Medicine and Health Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Nozomi Endo
- Laboratory of Molecular Cell Biology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Master's Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Varsha Rana
- Laboratory of Molecular Cell Biology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Doctoral Program in Human Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Natsu Akitake
- Laboratory of Molecular Cell Biology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- College of Medical Sciences, School of Medicine and Health Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Tomomi Suda
- Laboratory of Molecular Cell Biology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yasuyuki Suda
- Laboratory of Molecular Cell Biology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Live Cell Super-resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama, Japan
| | - Tomoaki Mizuno
- Laboratory of Molecular Cell Biology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kenji Irie
- Laboratory of Molecular Cell Biology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
14
|
Chakraborty S, Mishra J, Roy A, Niharika, Manna S, Baral T, Nandi P, Patra S, Patra SK. Liquid-liquid phase separation in subcellular assemblages and signaling pathways: Chromatin modifications induced gene regulation for cellular physiology and functions including carcinogenesis. Biochimie 2024; 223:74-97. [PMID: 38723938 DOI: 10.1016/j.biochi.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/08/2024] [Accepted: 05/04/2024] [Indexed: 05/24/2024]
Abstract
Liquid-liquid phase separation (LLPS) describes many biochemical processes, including hydrogel formation, in the integrity of macromolecular assemblages and existence of membraneless organelles, including ribosome, nucleolus, nuclear speckles, paraspeckles, promyelocytic leukemia (PML) bodies, Cajal bodies (all exert crucial roles in cellular physiology), and evidence are emerging day by day. Also, phase separation is well documented in generation of plasma membrane subdomains and interplay between membranous and membraneless organelles. Intrinsically disordered regions (IDRs) of biopolymers/proteins are the most critical sticking regions that aggravate the formation of such condensates. Remarkably, phase separated condensates are also involved in epigenetic regulation of gene expression, chromatin remodeling, and heterochromatinization. Epigenetic marks on DNA and histones cooperate with RNA-binding proteins through their IDRs to trigger LLPS for facilitating transcription. How phase separation coalesces mutant oncoproteins, orchestrate tumor suppressor genes expression, and facilitated cancer-associated signaling pathways are unravelling. That autophagosome formation and DYRK3-mediated cancer stem cell modification also depend on phase separation is deciphered in part. In view of this, and to linchpin insight into the subcellular membraneless organelle assembly, gene activation and biological reactions catalyzed by enzymes, and the downstream physiological functions, and how all these events are precisely facilitated by LLPS inducing organelle function, epigenetic modulation of gene expression in this scenario, and how it goes awry in cancer progression are summarized and presented in this article.
Collapse
Affiliation(s)
- Subhajit Chakraborty
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Jagdish Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Ankan Roy
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Niharika
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Soumen Manna
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Tirthankar Baral
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Piyasa Nandi
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Subhajit Patra
- Department of Chemical Engineering, Maulana Azad National Institute of Technology, Bhopal, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India.
| |
Collapse
|
15
|
Costa RG, Conceição A, Matos CA, Nóbrega C. The polyglutamine protein ATXN2: from its molecular functions to its involvement in disease. Cell Death Dis 2024; 15:415. [PMID: 38877004 PMCID: PMC11178924 DOI: 10.1038/s41419-024-06812-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024]
Abstract
A CAG repeat sequence in the ATXN2 gene encodes a polyglutamine (polyQ) tract within the ataxin-2 (ATXN2) protein, showcasing a complex landscape of functions that have been progressively unveiled over recent decades. Despite significant progresses in the field, a comprehensive overview of the mechanisms governed by ATXN2 remains elusive. This multifaceted protein emerges as a key player in RNA metabolism, stress granules dynamics, endocytosis, calcium signaling, and the regulation of the circadian rhythm. The CAG overexpansion within the ATXN2 gene produces a protein with an extended poly(Q) tract, inducing consequential alterations in conformational dynamics which confer a toxic gain and/or partial loss of function. Although overexpanded ATXN2 is predominantly linked to spinocerebellar ataxia type 2 (SCA2), intermediate expansions are also implicated in amyotrophic lateral sclerosis (ALS) and parkinsonism. While the molecular intricacies await full elucidation, SCA2 presents ATXN2-associated pathological features, encompassing autophagy impairment, RNA-mediated toxicity, heightened oxidative stress, and disruption of calcium homeostasis. Presently, SCA2 remains incurable, with patients reliant on symptomatic and supportive treatments. In the pursuit of therapeutic solutions, various studies have explored avenues ranging from pharmacological drugs to advanced therapies, including cell or gene-based approaches. These endeavours aim to address the root causes or counteract distinct pathological features of SCA2. This review is intended to provide an updated compendium of ATXN2 functions, delineate the associated pathological mechanisms, and present current perspectives on the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Rafael G Costa
- Algarve Biomedical Center Research Institute (ABC-RI), Faro, Portugal.
- PhD program in Biomedical Sciences, Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve (UAlg), Faro, Portugal.
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve (UAlg), Faro, Portugal.
| | - André Conceição
- Algarve Biomedical Center Research Institute (ABC-RI), Faro, Portugal
- PhD program in Biomedical Sciences, Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve (UAlg), Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve (UAlg), Faro, Portugal
- Center for Neuroscience and Cell Biology (CNC), Coimbra, Portugal
- Champalimaud Research Program, Champalimaud Center for the Unknown, Lisbon, Portugal
| | - Carlos A Matos
- Algarve Biomedical Center Research Institute (ABC-RI), Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve (UAlg), Faro, Portugal
| | - Clévio Nóbrega
- Algarve Biomedical Center Research Institute (ABC-RI), Faro, Portugal.
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve (UAlg), Faro, Portugal.
| |
Collapse
|
16
|
Chakraborty S, Nandi P, Mishra J, Niharika, Roy A, Manna S, Baral T, Mishra P, Mishra PK, Patra SK. Molecular mechanisms in regulation of autophagy and apoptosis in view of epigenetic regulation of genes and involvement of liquid-liquid phase separation. Cancer Lett 2024; 587:216779. [PMID: 38458592 DOI: 10.1016/j.canlet.2024.216779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
Cellular physiology is critically regulated by multiple signaling nexuses, among which cell death mechanisms play crucial roles in controlling the homeostatic landscape at the tissue level within an organism. Apoptosis, also known as programmed cell death, can be induced by external and internal stimuli directing the cells to commit suicide in unfavourable conditions. In contrast, stress conditions like nutrient deprivation, infection and hypoxia trigger autophagy, which is lysosome-mediated processing of damaged cellular organelle for recycling of the degraded products, including amino acids. Apparently, apoptosis and autophagy both are catabolic and tumor-suppressive pathways; apoptosis is essential during development and cancer cell death, while autophagy promotes cell survival under stress. Moreover, autophagy plays dual role during cancer development and progression by facilitating the survival of cancer cells under stressed conditions and inducing death in extreme adversity. Despite having two different molecular mechanisms, both apoptosis and autophagy are interconnected by several crosslinking intermediates. Epigenetic modifications, such as DNA methylation, post-translational modification of histone tails, and miRNA play a pivotal role in regulating genes involved in both autophagy and apoptosis. Both autophagic and apoptotic genes can undergo various epigenetic modifications and promote or inhibit these processes under normal and cancerous conditions. Epigenetic modifiers are uniquely important in controlling the signaling pathways regulating autophagy and apoptosis. Therefore, these epigenetic modifiers of both autophagic and apoptotic genes can act as novel therapeutic targets against cancers. Additionally, liquid-liquid phase separation (LLPS) also modulates the aggregation of misfolded proteins and provokes autophagy in the cytosolic environment. This review deals with the molecular mechanisms of both autophagy and apoptosis including crosstalk between them; emphasizing epigenetic regulation, involvement of LLPS therein, and possible therapeutic approaches against cancers.
Collapse
Affiliation(s)
- Subhajit Chakraborty
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Piyasa Nandi
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Jagdish Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Niharika
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Ankan Roy
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Soumen Manna
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Tirthankar Baral
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Prahallad Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bypass Road, Bhauri, Bhopal, 462 030, MP, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India.
| |
Collapse
|
17
|
Liu YJ, Wang JY, Zhang XL, Jiang LL, Hu HY. Ataxin-2 sequesters Raptor into aggregates and impairs cellular mTORC1 signaling. FEBS J 2024; 291:1795-1812. [PMID: 38308810 DOI: 10.1111/febs.17081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/28/2023] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
Ataxin-2 (Atx2) is a polyglutamine (polyQ) protein, in which abnormal expansion of the polyQ tract can trigger protein aggregation and consequently cause spinocerebellar ataxia type 2 (SCA2), but the mechanism underlying how Atx2 aggregation leads to proteinopathy remains elusive. Here, we investigate the molecular mechanism and cellular consequences of Atx2 aggregation by molecular cell biology approaches. We have revealed that either normal or polyQ-expanded Atx2 can sequester Raptor, a component of mammalian target of rapamycin complex 1 (mTORC1), into aggregates based on their specific interaction. Further research indicates that the polyQ tract and the N-terminal region (residues 1-784) of Atx2 are responsible for the specific sequestration. Moreover, this sequestration leads to suppression of the mTORC1 activity as represented by down-regulation of phosphorylated P70S6K, which can be reversed by overexpression of Raptor. As mTORC1 is a key regulator of autophagy, Atx2 aggregation and sequestration also induces autophagy by upregulating LC3-II and reducing phosphorylated ULK1 levels. This study proposes that Atx2 sequesters Raptor into aggregates, thereby impairing cellular mTORC1 signaling and inducing autophagy, and will be beneficial for a better understanding of the pathogenesis of SCA2 and other polyQ diseases.
Collapse
Affiliation(s)
- Ya-Jun Liu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jian-Yang Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiang-Le Zhang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lei-Lei Jiang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Hong-Yu Hu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
18
|
Caligaris M, De Virgilio C. Proxies introduce bias in decoding TORC1 activity. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001170. [PMID: 38605723 PMCID: PMC11007552 DOI: 10.17912/micropub.biology.001170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024]
Abstract
The eukaryotic TORC1 kinase integrates and links nutritional, energy, and hormonal signals to cell growth and homeostasis, and its deregulation is associated with human diseases including neurodegeneration, cancer, and metabolic syndrome. Quantification of TORC1 activities in various genetic settings and defined physiological conditions generally relies on the assessment of the phosphorylation level of residues in TORC1 targets. Here we show that two commonly used TORC1 effectors in yeast, namely Sch9 and Rps6, exhibit distinct phosphorylation patterns in response to rapamycin treatment or changes in nitrogen availability, indicating that the choice of TORC1 proxies introduces a bias in decoding TORC1 activity.
Collapse
Affiliation(s)
- Marco Caligaris
- Department of Biology, University of Fribourg, Fribourg, Fribourg, Switzerland
| | - Claudio De Virgilio
- Department of Biology, University of Fribourg, Fribourg, Fribourg, Switzerland
| |
Collapse
|
19
|
Wang J, Abbas M, Huang Y, Wang J, Li Y. Redox-responsive peptide-based complex coacervates as delivery vehicles with controlled release of proteinous drugs. Commun Chem 2023; 6:243. [PMID: 37935871 PMCID: PMC10630460 DOI: 10.1038/s42004-023-01044-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023] Open
Abstract
Proteinous drugs are highly promising therapeutics to treat various diseases. However, they suffer from limited circulation times and severe off-target side effects. Inspired by active membraneless organelles capable of dynamic recruitment and releasing of specific proteins, here, we present the design of coacervates as therapeutic protocells, made from small metabolites (anionic molecules) and simple arginine-rich peptides (cationic motif) through liquid-liquid phase separation. These complex coacervates demonstrate that their assembly and disassembly can be regulated by redox chemistry, which helps to control the release of the therapeutic protein. A model proteinous drugs, tissue plasminogen activator (tPA), can rapidly compartmentalize inside the complex coacervates, and the coacervates formed from peptides conjugated with arginine-glycine-aspartic acid (RGD) motif (a fibrinogen-derived peptide sequence), show selective binding to the thrombus site and thus enhance on-target efficacy of tPA. Furthermore, the burst release of tPA can be controlled by the redox-induced dissolution of the coacervates. Our proof-of-principle complex coacervate system provides insights into the sequestration and release of proteinous drugs from advanced drug delivery systems and represents a step toward the construction of synthetic therapeutic protocells for biomedical applications.
Collapse
Affiliation(s)
- Jiahua Wang
- Department of Radiology, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| | - Manzar Abbas
- Department of Chemistry, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, UAE
- Advanced Materials Chemistry Center (AMCC), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, UAE
| | - Yu Huang
- Department of Radiology, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| | - Junyou Wang
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuehua Li
- Department of Radiology, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| |
Collapse
|
20
|
Jiang T, Qi X, Lin R, Jiang J, Wen J, Deng Y. T-2 toxin and deoxynivalenol (DON) exert distinct effects on stress granule formation depending on altered activity of SIRT1. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115028. [PMID: 37216862 DOI: 10.1016/j.ecoenv.2023.115028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/24/2023]
Abstract
The T-2 toxin and deoxynivalenol (DON), as the most concerned members of trichothecenes, induce cellular stress responses and various toxic effects. Stress granules (SGs) are rapidly formed in response to stress and play an important role in the cellular stress response. However, it is not known whether T-2 toxin and DON induce SG formation. In this study, we found that T-2 toxin induces SG formation, while DON surprisingly suppresses SG formation. Meanwhile, we discovered that SIRT1 co-localized with SGs and regulated SG formation by controlling the acetylation level of the SG nucleator G3BP1. Upon T-2 toxin, the acetylation level of G3BP1 increased, but the opposite change was observed upon DON. Importantly, T-2 toxin and DON affect the activity of SIRT1 via changing NAD+ level in a different manner, though the mechanism remains to be clarified. These findings suggest that the distinct effects of T-2 toxin and DON on SG formation are caused by changes in the activity of SIRT1. Furthermore, we found that SGs increase the cell toxicity of T-2 toxin and DON. In conclusion, our results reveal the molecular regulation mechanism of TRIs on SG formation and provide novel insights into the toxicological mechanisms of TRIs.
Collapse
Affiliation(s)
- Tianqing Jiang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Xueying Qi
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Ruqin Lin
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Jun Jiang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Jikai Wen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, Guangdong, PR China.
| | - Yiqun Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, Guangdong, PR China.
| |
Collapse
|
21
|
van de Poll F, Sutter BM, Acoba MG, Caballero D, Jahangiri S, Yang YS, Lee CD, Tu BP. Pbp1 associates with Puf3 and promotes translation of its target mRNAs involved in mitochondrial biogenesis. PLoS Genet 2023; 19:e1010774. [PMID: 37216416 PMCID: PMC10237644 DOI: 10.1371/journal.pgen.1010774] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/02/2023] [Accepted: 05/07/2023] [Indexed: 05/24/2023] Open
Abstract
Pbp1 (poly(A)-binding protein-binding protein 1) is a cytoplasmic stress granule marker that is capable of forming condensates that function in the negative regulation of TORC1 signaling under respiratory conditions. Polyglutamine expansions in its mammalian ortholog ataxin-2 lead to spinocerebellar dysfunction due to toxic protein aggregation. Here, we show that loss of Pbp1 in S. cerevisiae leads to decreased amounts of mRNAs and mitochondrial proteins which are targets of Puf3, a member of the PUF (Pumilio and FBF) family of RNA-binding proteins. We found that Pbp1 supports the translation of Puf3-target mRNAs in respiratory conditions, such as those involved in the assembly of cytochrome c oxidase and subunits of mitochondrial ribosomes. We further show that Pbp1 and Puf3 interact through their respective low complexity domains, which is required for Puf3-target mRNA translation. Our findings reveal a key role for Pbp1-containing assemblies in enabling the translation of mRNAs critical for mitochondrial biogenesis and respiration. They may further explain prior associations of Pbp1/ataxin-2 with RNA, stress granule biology, mitochondrial function, and neuronal health.
Collapse
Affiliation(s)
- Floortje van de Poll
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Benjamin M. Sutter
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Michelle Grace Acoba
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Daniel Caballero
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Samira Jahangiri
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Yu-San Yang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Chien-Der Lee
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Benjamin P. Tu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
22
|
Che X, Wu J, Liu H, Su J, Chen X. Cellular liquid-liquid phase separation: Concept, functions, regulations, and detections. J Cell Physiol 2023; 238:847-865. [PMID: 36870067 DOI: 10.1002/jcp.30980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/05/2022] [Accepted: 02/08/2023] [Indexed: 03/06/2023]
Abstract
Liquid-liquid phase separation is a multicomponent system separated into phases with different compositions and structures. It has been identified and explored in organisms after being introduced from the thermodynamic field. Condensate, the product of phase separation, exists in different scales of cellular structures, such as nucleolus, stress granules, and other organelles in nuclei or cytoplasm. And also play critical roles in different cellular behaviors. Here, we review the concept, thermodynamical and biochemical principles of phase separation. We summarized the main functions including the adjustment of biochemical reaction rates, the regulation of macromolecule folding state, subcellular structural support, the mediation of subcellular location, and intimately linked to different kinds of diseases, such as cancer and neurodegeneration. Advanced detection methods to investigate phase separation are collected and analyzed. We conclude with the discussion of anxiety of phase separation, and thought about how progress can be made to develop precise detection methods and disclose the potential application of condensates.
Collapse
Affiliation(s)
- Xuanlin Che
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China.,Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
| | - Jiajun Wu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Hua Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Juan Su
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China.,Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China.,Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
| |
Collapse
|
23
|
Chew PY, Joseph JA, Collepardo-Guevara R, Reinhardt A. Thermodynamic origins of two-component multiphase condensates of proteins. Chem Sci 2023; 14:1820-1836. [PMID: 36819870 PMCID: PMC9931050 DOI: 10.1039/d2sc05873a] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023] Open
Abstract
Intracellular condensates are highly multi-component systems in which complex phase behaviour can ensue, including the formation of architectures comprising multiple immiscible condensed phases. Relying solely on physical intuition to manipulate such condensates is difficult because of the complexity of their composition, and systematically learning the underlying rules experimentally would be extremely costly. We address this challenge by developing a computational approach to design pairs of protein sequences that result in well-separated multilayered condensates and elucidate the molecular origins of these compartments. Our method couples a genetic algorithm to a residue-resolution coarse-grained protein model. We demonstrate that we can design protein partners to form multiphase condensates containing naturally occurring proteins, such as the low-complexity domain of hnRNPA1 and its mutants, and show how homo- and heterotypic interactions must differ between proteins to result in multiphasicity. We also show that in some cases the specific pattern of amino-acid residues plays an important role. Our findings have wide-ranging implications for understanding and controlling the organisation, functions and material properties of biomolecular condensates.
Collapse
Affiliation(s)
- Pin Yu Chew
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| | - Jerelle A Joseph
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
- Department of Physics, University of Cambridge Cambridge CB3 0HE UK
- Department of Genetics, University of Cambridge Cambridge CB2 3EH UK
| | - Rosana Collepardo-Guevara
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
- Department of Physics, University of Cambridge Cambridge CB3 0HE UK
- Department of Genetics, University of Cambridge Cambridge CB2 3EH UK
| | - Aleks Reinhardt
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| |
Collapse
|
24
|
Shimasawa M, Sakamaki JI, Maeda T, Mizushima N. The pH-sensing Rim101 pathway regulates cell size in budding yeast. J Biol Chem 2023; 299:102973. [PMID: 36738789 PMCID: PMC10011510 DOI: 10.1016/j.jbc.2023.102973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Although cell size regulation is crucial for cellular functions in a variety of organisms from bacteria to humans, the underlying mechanisms remain elusive. Here, we identify Rim21, a component of the pH-sensing Rim101 pathway, as a positive regulator of cell size through a flow cytometry-based genome-wide screen of Saccharomyces cerevisiae deletion mutants. We found that mutants defective in the Rim101 pathway were consistently smaller than wildtype cells in the log and stationary phases. We show that the expression of the active form of Rim101 increased the size of wildtype cells. Furthermore, the size of wildtype cells increased in response to external alkalization. Microscopic observation revealed that this cell size increase was associated with changes in both vacuolar and cytoplasmic volume. We also found that these volume changes were dependent on Rim21 and Rim101. In addition, a mutant lacking Vph1, a component of V-ATPase that is transcriptionally regulated by Rim101, was also smaller than wildtype cells, with no increase in size in response to alkalization. We demonstrate that the loss of Vph1 suppressed the Rim101-induced increase in cell size under physiological pH conditions. Taken together, our results suggest that the cell size of budding yeast is regulated by the Rim101-V-ATPase axis under physiological conditions as well as in response to alkaline stresses.
Collapse
Affiliation(s)
- Masaru Shimasawa
- Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jun-Ichi Sakamaki
- Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tatsuya Maeda
- Department of Biology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
25
|
Abstract
The capacity of cells to organize complex biochemical reactions in intracellular space is a fundamental organizational principle of life. Key to this organization is the compartmentalization of the cytoplasm into distinct organelles, which is frequently achieved through intracellular membranes. Recent evidence, however, has added a new layer of flexibility to cellular compartmentalization. As such, in response to specific stimuli, liquid-liquid phase separations can lead to the rapid rearrangements of the cytoplasm to form membraneless organelles. Stress granules (SGs) are one such type of organelle that form specifically when cells are faced with stress stimuli, to aid cells in coping with stress. Inherently, altered SG formation has been linked to the pathogenesis of diseases associated with stress and inflammatory conditions, including cancer. Exciting discoveries have indicated an intimate link between SGs and tumorigenesis. Several pro-tumorigenic signaling molecules including the RAS oncogene, mTOR, and histone deacetylase 6 (HDAC6) have been shown to upregulate SG formation. Based on these studies, SGs have emerged as structures that can integrate oncogenic signaling and tumor-associated stress stimuli to enhance cancer cell fitness. In addition, growing evidence over the past decade suggests that SGs function not only to regulate the switch between survival and cell death, but also contribute to cancer cell proliferation, invasion, metastasis, and drug resistance. Although much remains to be learned about the role of SGs in tumorigenesis, these studies highlight SGs as a key regulatory hub in cancer and a promising therapeutic target.
Collapse
Affiliation(s)
- Min-Seok Song
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Elda Grabocka
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
26
|
Ragon M, Bertheau L, Dumont J, Bellanger T, Grosselin M, Basu M, Pourcelot E, Horrigue W, Denimal E, Marin A, Vaucher B, Berland A, Lepoivre C, Dupont S, Beney L, Davey H, Guyot S. The Yin-Yang of the Green Fluorescent Protein: Impact on Saccharomyces cerevisiae stress resistance. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 238:112603. [PMID: 36459911 DOI: 10.1016/j.jphotobiol.2022.112603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/09/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
Although fluorescent proteins are widely used as biomarkers (Yin), no study focuses on their influence on the microbial stress response. Here, the Green Fluorescent Protein (GFP) was fused to two proteins of interest in Saccharomyces cerevisiae. Pab1p and Sur7p, respectively involved in stress granules structure and in Can1 membrane domains. These were chosen since questions remain regarding the understanding of the behavior of S. cerevisiae facing different heat kinetics or oxidative stresses. The main results showed that Pab1p-GFP fluorescent mutant displayed a higher resistance than that of the wild type under a heat shock. Moreover, fluorescent mutants exposed to oxidative stresses displayed changes in the cultivability compared to the wild type strain. In silico approaches showed that the presence of the GFP did not influence the structure and so the functionality of the tagged proteins meaning that changes in yeast resistance were certainly related to GFP ROS-scavenging ability (Yang).
Collapse
Affiliation(s)
- Mélanie Ragon
- Univ. Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, F-21000 Dijon, France
| | - Lucie Bertheau
- Univ. Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, F-21000 Dijon, France
| | - Jennifer Dumont
- Univ. Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, F-21000 Dijon, France
| | - Tiffany Bellanger
- Univ. Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, F-21000 Dijon, France
| | - Marie Grosselin
- Univ. Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, F-21000 Dijon, France
| | - Mohini Basu
- Univ. Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, F-21000 Dijon, France
| | - Eléonore Pourcelot
- Univ. Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, F-21000 Dijon, France
| | - Walid Horrigue
- UMR Agroécologie Équipe Biocom, INRAE Dijon, Institut Agro, 26 Bd Dr Petitjean, 21000 Dijon, France
| | - Emmanuel Denimal
- Institut Agro Dijon, Direction Scientifique, Appui à la Recherche, 26 Bd Dr Petitjean, 21000 Dijon, France
| | - Ambroise Marin
- Plateau Technique d'IMagerie Spectroscopique (PIMS), DImaCell Platform Université de Bourgogne - INRAE, Dijon, France
| | - Basile Vaucher
- Univ. Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, F-21000 Dijon, France
| | - Antoine Berland
- Univ. Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, F-21000 Dijon, France
| | - Corentin Lepoivre
- Univ. Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, F-21000 Dijon, France
| | - Sébastien Dupont
- Univ. Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, F-21000 Dijon, France
| | - Laurent Beney
- Univ. Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, F-21000 Dijon, France
| | - Hazel Davey
- Department of Life Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Stéphane Guyot
- Univ. Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, F-21000 Dijon, France.
| |
Collapse
|
27
|
Nabariya DK, Heinz A, Derksen S, Krauß S. Intracellular and intercellular transport of RNA organelles in CXG repeat disorders: The strength of weak ties. Front Mol Biosci 2022; 9:1000932. [PMID: 36589236 PMCID: PMC9800848 DOI: 10.3389/fmolb.2022.1000932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
RNA is a vital biomolecule, the function of which is tightly spatiotemporally regulated. RNA organelles are biological structures that either membrane-less or surrounded by membrane. They are produced by the all the cells and indulge in vital cellular mechanisms. They include the intracellular RNA granules and the extracellular exosomes. RNA granules play an essential role in intracellular regulation of RNA localization, stability and translation. Aberrant regulation of RNA is connected to disease development. For example, in microsatellite diseases such as CXG repeat expansion disorders, the mutant CXG repeat RNA's localization and function are affected. RNA is not only transported intracellularly but can also be transported between cells via exosomes. The loading of the exosomes is regulated by RNA-protein complexes, and recent studies show that cytosolic RNA granules and exosomes share common content. Intracellular RNA granules and exosome loading may therefore be related. Exosomes can also transfer pathogenic molecules of CXG diseases from cell to cell, thereby driving disease progression. Both intracellular RNA granules and extracellular RNA vesicles may serve as a source for diagnostic and treatment strategies. In therapeutic approaches, pharmaceutical agents may be loaded into exosomes which then transport them to the desired cells/tissues. This is a promising target specific treatment strategy with few side effects. With respect to diagnostics, disease-specific content of exosomes, e.g., RNA-signatures, can serve as attractive biomarker of central nervous system diseases detecting early physiological disturbances, even before symptoms of neurodegeneration appear and irreparable damage to the nervous system occurs. In this review, we summarize the known function of cytoplasmic RNA granules and extracellular vesicles, as well as their role and dysfunction in CXG repeat expansion disorders. We also provide a summary of established protocols for the isolation and characterization of both cytoplasmic and extracellular RNA organelles.
Collapse
Affiliation(s)
| | | | | | - Sybille Krauß
- Human Biology/Neurobiology, Institute of Biology, Faculty IV, School of Science and Technology, University of Siegen, Siegen, Germany
| |
Collapse
|
28
|
Hu HY, Liu YJ. Sequestration of cellular native factors by biomolecular assemblies: Physiological or pathological? BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119360. [PMID: 36087810 DOI: 10.1016/j.bbamcr.2022.119360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
In addition to native-state structures, biomolecules often form condensed supramolecular assemblies or cellular membraneless organelles that are critical for cell life. These biomolecular assemblies, generally including liquid-like droplets (condensates) and amyloid-like aggregates, can sequester or recruit their interacting partners, so as to either modulate various cellular behaviors or even cause disorders. This review article summarizes recent advances in the sequestration of native factors by biomolecular assemblies and discusses their potential consequences on cellular function, homeostasis, and disease pathology.
Collapse
Affiliation(s)
- Hong-Yu Hu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, PR China.
| | - Ya-Jun Liu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
29
|
Martin JL, Dawson SJ, Gale JE. An emerging role for stress granules in neurodegenerative disease and hearing loss. Hear Res 2022; 426:108634. [PMID: 36384053 DOI: 10.1016/j.heares.2022.108634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 09/20/2022] [Accepted: 10/11/2022] [Indexed: 11/04/2022]
Abstract
Stress granules (SGs) are membrane-less cytosolic assemblies that form in response to stress (e.g., heat, oxidative stress, hypoxia, viral infection and UV). Composed of mRNA, RNA binding proteins and signalling proteins, SGs minimise stress-related damage and promote cell survival. Recent research has shown that the stress granule response is vital to the cochlea's response to stress. However, emerging evidence suggests stress granule dysfunction plays a key role in the pathophysiology of multiple neurodegenerative diseases, several of which present with hearing loss as a symptom. Hearing loss has been identified as the largest potentially modifiable risk factor for dementia. The underlying reason for the link between hearing loss and dementia remains to be established. However, several possible mechanisms have been proposed including a common pathological mechanism. Here we will review the role of SGs in the pathophysiology of neurodegenerative diseases and explore possible links and emerging evidence that they may play an important role in maintenance of hearing and may be a common mechanism underlying age-related hearing loss and dementia.
Collapse
Affiliation(s)
- Jack L Martin
- UCL Ear Institute, 332 Gray's Inn Road, London WC1X 8EE, UK
| | - Sally J Dawson
- UCL Ear Institute, 332 Gray's Inn Road, London WC1X 8EE, UK.
| | - Jonathan E Gale
- UCL Ear Institute, 332 Gray's Inn Road, London WC1X 8EE, UK.
| |
Collapse
|
30
|
Ren J, Zhang Z, Zong Z, Zhang L, Zhou F. Emerging Implications of Phase Separation in Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202855. [PMID: 36117111 PMCID: PMC9631093 DOI: 10.1002/advs.202202855] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/26/2022] [Indexed: 05/19/2023]
Abstract
In eukaryotic cells, biological activities are executed in distinct cellular compartments or organelles. Canonical organelles with membrane-bound structures are well understood. Cells also inherently contain versatile membrane-less organelles (MLOs) that feature liquid or gel-like bodies. A biophysical process termed liquid-liquid phase separation (LLPS) elucidates how MLOs form through dynamic biomolecule assembly. LLPS-related molecules often have multivalency, which is essential for low-affinity inter- or intra-molecule interactions to trigger phase separation. Accumulating evidence shows that LLPS concentrates and organizes desired molecules or segregates unneeded molecules in cells. Thus, MLOs have tunable functional specificity in response to environmental stimuli and metabolic processes. Aberrant LLPS is widely associated with several hallmarks of cancer, including sustained proliferative signaling, growth suppressor evasion, cell death resistance, telomere maintenance, DNA damage repair, etc. Insights into the molecular mechanisms of LLPS provide new insights into cancer therapeutics. Here, the current understanding of the emerging concepts of LLPS and its involvement in cancer are comprehensively reviewed.
Collapse
Affiliation(s)
- Jiang Ren
- School of MedicineZhejiang University City CollegeHangzhou215123China
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033China
| | - Zhenyu Zhang
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450003China
| | - Zhi Zong
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Long Zhang
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
- International Biomed‐X Research Center, Second Affiliated Hospital of Zhejiang University School of MedicineZhejiang UniversityHangzhouChina
- Cancer CenterZhejiang UniversityHangzhou215123China
| | - Fangfang Zhou
- School of MedicineZhejiang University City CollegeHangzhou215123China
- Institutes of Biology and Medical SciencesSoochow UniversitySuzhou215123China
| |
Collapse
|
31
|
Palozzi JM, Jeedigunta SP, Minenkova AV, Monteiro VL, Thompson ZS, Lieber T, Hurd TR. Mitochondrial DNA quality control in the female germline requires a unique programmed mitophagy. Cell Metab 2022; 34:1809-1823.e6. [PMID: 36323236 DOI: 10.1016/j.cmet.2022.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/22/2022] [Accepted: 10/06/2022] [Indexed: 11/07/2022]
Abstract
Mitochondria have their own DNA (mtDNA), which is susceptible to the accumulation of disease-causing mutations. To prevent deleterious mutations from being inherited, the female germline has evolved a conserved quality control mechanism that remains poorly understood. Here, through a large-scale screen, we uncover a unique programmed germline mitophagy (PGM) that is essential for mtDNA quality control. We find that PGM is developmentally triggered as germ cells enter meiosis by inhibition of the target of rapamycin complex 1 (TORC1). We identify a role for the RNA-binding protein Ataxin-2 (Atx2) in coordinating the timing of PGM with meiosis. We show that PGM requires the mitophagy receptor BNIP3, mitochondrial fission and translation factors, and members of the Atg1 complex, but not the mitophagy factors PINK1 and Parkin. Additionally, we report several factors that are critical for germline mtDNA quality control and show that pharmacological manipulation of one of these factors promotes mtDNA quality control.
Collapse
Affiliation(s)
- Jonathan M Palozzi
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Swathi P Jeedigunta
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Anastasia V Minenkova
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Vernon L Monteiro
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Zoe S Thompson
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Toby Lieber
- HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Thomas R Hurd
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada.
| |
Collapse
|
32
|
Jia X, Zhang S, Tan S, Du B, He M, Qin H, Chen J, Duan X, Luo J, Chen F, Ouyang L, Wang J, Chen G, Yu B, Zhang G, Zhang Z, Lyu Y, Huang Y, Jiao J, Chen JY(H, Swoboda KJ, Agolini E, Novelli A, Leoni C, Zampino G, Cappuccio G, Brunetti-Pierri N, Gerard B, Ginglinger E, Richer J, McMillan H, White-Brown A, Hoekzema K, Bernier RA, Kurtz-Nelson EC, Earl RK, Meddens C, Alders M, Fuchs M, Caumes R, Brunelle P, Smol T, Kuehl R, Day-Salvatore DL, Monaghan KG, Morrow MM, Eichler EE, Hu Z, Yuan L, Tan J, Xia K, Shen Y, Guo H. De novo variants in genes regulating stress granule assembly associate with neurodevelopmental disorders. SCIENCE ADVANCES 2022; 8:eabo7112. [PMID: 35977029 PMCID: PMC9385150 DOI: 10.1126/sciadv.abo7112] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 07/06/2022] [Indexed: 05/25/2023]
Abstract
Stress granules (SGs) are cytoplasmic assemblies in response to a variety of stressors. We report a new neurodevelopmental disorder (NDD) with common features of language problems, intellectual disability, and behavioral issues caused by de novo likely gene-disruptive variants in UBAP2L, which encodes an essential regulator of SG assembly. Ubap2l haploinsufficiency in mouse led to social and cognitive impairments accompanied by disrupted neurogenesis and reduced SG formation during early brain development. On the basis of data from 40,853 individuals with NDDs, we report a nominally significant excess of de novo variants within 29 genes that are not implicated in NDDs, including 3 essential genes (G3BP1, G3BP2, and UBAP2L) in the core SG interaction network. We validated that NDD-related de novo variants in newly implicated and known NDD genes, such as CAPRIN1, disrupt the interaction of the core SG network and interfere with SG formation. Together, our findings suggest the common SG pathology in NDDs.
Collapse
Affiliation(s)
- Xiangbin Jia
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
| | - Shujie Zhang
- Genetic and Metabolic Central Laboratory, Birth Defects Prevention and Control Institute of Guangxi Zhuang Autonomous Region, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, China
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Senwei Tan
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
| | - Bing Du
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
| | - Mei He
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
- NHC Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Hunan, China
| | - Haisong Qin
- Genetic and Metabolic Central Laboratory, Birth Defects Prevention and Control Institute of Guangxi Zhuang Autonomous Region, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, China
| | - Jia Chen
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
| | - Xinyu Duan
- Department of Pediatrics, Daping Hospital, Army Medical University, Chongqing, China
| | - Jingsi Luo
- Genetic and Metabolic Central Laboratory, Birth Defects Prevention and Control Institute of Guangxi Zhuang Autonomous Region, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, China
| | - Fei Chen
- Genetic and Metabolic Central Laboratory, Birth Defects Prevention and Control Institute of Guangxi Zhuang Autonomous Region, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, China
| | - Luping Ouyang
- Genetic and Metabolic Central Laboratory, Birth Defects Prevention and Control Institute of Guangxi Zhuang Autonomous Region, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, China
| | - Jian Wang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Guodong Chen
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
| | - Bin Yu
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
| | - Ge Zhang
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
| | - Zimin Zhang
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
| | - Yongqing Lyu
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
| | - Yi Huang
- Mental Health Center, West China Hospital of Sichuan University, Chengdu 610000, China
| | - Jian Jiao
- Mental Health Center, West China Hospital of Sichuan University, Chengdu 610000, China
| | - Jin Yun (Helen) Chen
- Massachusetts General Hospital Neurogenetics Unit, Department of Neurology, Massachusetts General Brigham, Boston, MA 02114, USA
| | - Kathryn J. Swoboda
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Bambino Gesù Children’s Hospital, IRCCS, Rome 00165, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Bambino Gesù Children’s Hospital, IRCCS, Rome 00165, Italy
| | - Chiara Leoni
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome 00168, Italy
| | - Giuseppe Zampino
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome 00168, Italy
- Faculty of Medicine and Surgery, Catholic University of the Sacred Heart, Rome 00168, Italy
- Fondazione Policlinico Universitario Agostino Gemelli Dipartimento Scienze della Salute della Donna e del Bambino, Rome, Italy
- Università Cattolica S. Cuore, Dipartimento Scienze della Vita e Sanità Pubblica, Rome, Italy
| | - Gerarda Cappuccio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Department of Translational Medicine, Federico II University, Naples, Italy
| | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Department of Translational Medicine, Federico II University, Naples, Italy
| | - Benedicte Gerard
- Institut de Génétique Médicale d’Alsace (IGMA), Laboratoire de Diagnostic Génétique, Hôpitaux universitaires de Strasbourg, Strasbourg, Alsace, France
| | | | - Julie Richer
- Department of Medical Genetics, Children’s Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Hugh McMillan
- Department of Pediatrics, Neurology and Neurosurgery, Montreal Children’s Hospital, McGill University, Montreal, Canada
| | - Alexandre White-Brown
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Raphael A. Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
| | | | - Rachel K. Earl
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
| | - Claartje Meddens
- Amsterdam University Medical Center, Department of Clinical Genetics, Amsterdam, Netherlands
- University Medical Center Utrecht, Department of Paediatrics, Utrecht, Netherlands
| | - Marielle Alders
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | | | - Roseline Caumes
- CHU Lille, Clinique de Génétique, Guy Fontaine, F-59000 Lille, France
| | - Perrine Brunelle
- Institut de Génétique Médicale, Université de Lille, ULR7364 RADEME, CHU Lille, F-59000 Lille, France
| | - Thomas Smol
- Institut de Génétique Médicale, Université de Lille, ULR7364 RADEME, CHU Lille, F-59000 Lille, France
| | - Ryan Kuehl
- Department of Medical Genetics and Genomic Medicine, Saint Peter’s University Hospital, New Brunswick, NJ 08901, USA
| | - Debra-Lynn Day-Salvatore
- Department of Medical Genetics and Genomic Medicine, Saint Peter’s University Hospital, New Brunswick, NJ 08901, USA
| | | | | | - Evan E. Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Zhengmao Hu
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
| | - Ling Yuan
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
| | - Jieqiong Tan
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
| | - Kun Xia
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
- CAS Center for Excellence in Brain Science and Intelligences Technology (CEBSIT), Chinese Academy of Sciences, Shanghai 200000, China
- Hengyang Medical School, University of South China, Hengyang, China
| | - Yiping Shen
- Genetic and Metabolic Central Laboratory, Birth Defects Prevention and Control Institute of Guangxi Zhuang Autonomous Region, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, China
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hui Guo
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Changsha, Hunan 410078, China
| |
Collapse
|
33
|
Yu H, Chen Q, Pan Y. A bibliometric and emerging trend analysis on stress granules from 2011 to 2020: A systematic review and bibliometrics analysis. Medicine (Baltimore) 2022; 101:e29200. [PMID: 35866775 PMCID: PMC9302325 DOI: 10.1097/md.0000000000029200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Stress granules (SGs) are the dense granules formed in the cytoplasm of eukaryotic cells in response to stress stimuli, such as endoplasmic reticulum stress, heat shock, hypoxia, and arsenate exposure. Although SGs have been attracting a lot of research attention, there is still a lack of systematic analysis of SGs in the literature. METHODS By analyzing the literature published in the Web of Science database using the R software, we extracted all the information related to SGs from the literature and cited references. The following information was included: publications per year, overall citations, top 10 countries, top 10 authors, co-author collaborations, top 10 institutions, critical areas, and top 10 cited research articles. RESULTS A total of 4052 articles related to SGs were selected and screened. These documents have been cited a total of 110,553 times, with an H-index of 126 and an average of 27.28 citations per article. The authors of the literature included in this study were from 89 different countries/regions. The United States and China had the highest number of publications and ranking institutions. CONCLUSIONS This article presents essential insights on the characteristics and influence of SGs, demonstrating their indispensable role in immune regulation and other fields.
Collapse
Affiliation(s)
- Haiyang Yu
- Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui Province, China
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui Province, China
| | - Qinhao Chen
- Wannan Medical College, Wuhu, Anhui Province, China
| | - Yueyin Pan
- Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui Province, China
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui Province, China
- *Correspondence: Yueyin Pan, Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui Province, China (e-mail: )
| |
Collapse
|
34
|
Jin X, Zhou M, Chen S, Li D, Cao X, Liu B. Effects of pH alterations on stress- and aging-induced protein phase separation. Cell Mol Life Sci 2022; 79:380. [PMID: 35750966 PMCID: PMC9232405 DOI: 10.1007/s00018-022-04393-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/26/2022] [Accepted: 05/21/2022] [Indexed: 01/18/2023]
Abstract
Upon stress challenges, proteins/RNAs undergo liquid–liquid phase separation (LLPS) to fine-tune cell physiology and metabolism to help cells adapt to adverse environments. The formation of LLPS has been recently linked with intracellular pH, and maintaining proper intracellular pH homeostasis is known to be essential for the survival of organisms. However, organisms are constantly exposed to diverse stresses, which are accompanied by alterations in the intracellular pH. Aging processes and human diseases are also intimately linked with intracellular pH alterations. In this review, we summarize stress-, aging-, and cancer-associated pH changes together with the mechanisms by which cells regulate cytosolic pH homeostasis. How critical cell components undergo LLPS in response to pH alterations is also discussed, along with the functional roles of intracellular pH fluctuation in the regulation of LLPS. Further studies investigating the interplay of pH with other stressors in LLPS regulation and identifying protein responses to different pH levels will provide an in-depth understanding of the mechanisms underlying pH-driven LLPS in cell adaptation. Moreover, deciphering aging and disease-associated pH changes that influence LLPS condensate formation could lead to a deeper understanding of the functional roles of biomolecular condensates in aging and aging-related diseases.
Collapse
Affiliation(s)
- Xuejiao Jin
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Min Zhou
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Shuxin Chen
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Danqi Li
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Xiuling Cao
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China.
| | - Beidong Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China. .,Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 413 90, Goteborg, Sweden. .,Center for Large-Scale Cell-Based Screening, Faculty of Science, University of Gothenburg, Medicinaregatan 9C, 413 90, Goteborg, Sweden.
| |
Collapse
|
35
|
Krause LJ, Herrera MG, Winklhofer KF. The Role of Ubiquitin in Regulating Stress Granule Dynamics. Front Physiol 2022; 13:910759. [PMID: 35694405 PMCID: PMC9174786 DOI: 10.3389/fphys.2022.910759] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022] Open
Abstract
Stress granules (SGs) are dynamic, reversible biomolecular condensates, which assemble in the cytoplasm of eukaryotic cells under various stress conditions. Formation of SGs typically occurs upon stress-induced translational arrest and polysome disassembly. The increase in cytoplasmic mRNAs triggers the formation of a protein-RNA network that undergoes liquid-liquid phase separation when a critical interaction threshold has been reached. This adaptive stress response allows a transient shutdown of several cellular processes until the stress is removed. During the recovery from stress, SGs disassemble to re-establish cellular activities. Persistent stress and disease-related mutations in SG components favor the formation of aberrant SGs that are impaired in disassembly and prone to aggregation. Recently, posttranslational modifications of SG components have been identified as major regulators of SG dynamics. Here, we summarize new insights into the role of ubiquitination in affecting SG dynamics and clearance and discuss implications for neurodegenerative diseases linked to aberrant SG formation.
Collapse
Affiliation(s)
- Laura J. Krause
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
- RESOLV Cluster of Excellence, Ruhr University Bochum, Bochum, Germany
| | - Maria G. Herrera
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Konstanze F. Winklhofer
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
- RESOLV Cluster of Excellence, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
36
|
Houghton OH, Mizielinska S, Gomez-Suaga P. The Interplay Between Autophagy and RNA Homeostasis: Implications for Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Front Cell Dev Biol 2022; 10:838402. [PMID: 35573690 PMCID: PMC9096704 DOI: 10.3389/fcell.2022.838402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/14/2022] [Indexed: 01/18/2023] Open
Abstract
Amyotrophic lateral sclerosis and frontotemporal dementia are neurodegenerative disorders that lie on a disease spectrum, sharing genetic causes and pathology, and both without effective therapeutics. Two pathways that have been shown to play major roles in disease pathogenesis are autophagy and RNA homeostasis. Intriguingly, there is an increasing body of evidence suggesting a critical interplay between these pathways. Autophagy is a multi-stage process for bulk and selective clearance of malfunctional cellular components, with many layers of regulation. Although the majority of autophagy research focuses on protein degradation, it can also mediate RNA catabolism. ALS/FTD-associated proteins are involved in many stages of autophagy and autophagy-mediated RNA degradation, particularly converging on the clearance of persistent pathological stress granules. In this review, we will summarise the progress in understanding the autophagy-RNA homeostasis interplay and how that knowledge contributes to our understanding of the pathobiology of ALS/FTD.
Collapse
Affiliation(s)
- O H Houghton
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom.,UK Dementia Research Institute at King's College London, London, United Kingdom
| | - S Mizielinska
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom.,UK Dementia Research Institute at King's College London, London, United Kingdom
| | - P Gomez-Suaga
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom.,Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| |
Collapse
|
37
|
Hernández-Elvira M, Sunnerhagen P. Post-transcriptional regulation during stress. FEMS Yeast Res 2022; 22:6585650. [PMID: 35561747 PMCID: PMC9246287 DOI: 10.1093/femsyr/foac025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/25/2022] [Accepted: 05/10/2022] [Indexed: 11/12/2022] Open
Abstract
To remain competitive, cells exposed to stress of varying duration, rapidity of onset, and intensity, have to balance their expenditure on growth and proliferation versus stress protection. To a large degree dependent on the time scale of stress exposure, the different levels of gene expression control: transcriptional, post-transcriptional and post-translational, will be engaged in stress responses. The post-transcriptional level is appropriate for minute-scale responses to transient stress, and for recovery upon return to normal conditions. The turnover rate, translational activity, covalent modifications, and subcellular localisation of RNA species are regulated under stress by multiple cellular pathways. The interplay between these pathways is required to achieve the appropriate signalling intensity and prevent undue triggering of stress-activated pathways at low stress levels, avoid overshoot, and down-regulate the response in a timely fashion. As much of our understanding of post-transcriptional regulation has been gained in yeast, this review is written with a yeast bias, but attempts to generalise to other eukaryotes. It summarises aspects of how post-transcriptional events in eukaryotes mitigate short-term environmental stresses, and how different pathways interact to optimise the stress response under shifting external conditions.
Collapse
Affiliation(s)
- Mariana Hernández-Elvira
- Department of Chemistry and Molecular Biology, Lundberg Laboratory, University of Gothenburg, P.O. Box 462, S-405 30 Göteborg, Sweden
| | - Per Sunnerhagen
- Department of Chemistry and Molecular Biology, Lundberg Laboratory, University of Gothenburg, P.O. Box 462, S-405 30 Göteborg, Sweden
| |
Collapse
|
38
|
Altas B, Romanowski AJ, Bunce GW, Poulopoulos A. Neuronal mTOR Outposts: Implications for Translation, Signaling, and Plasticity. Front Cell Neurosci 2022; 16:853634. [PMID: 35465614 PMCID: PMC9021820 DOI: 10.3389/fncel.2022.853634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
The kinase mTOR is a signaling hub for pathways that regulate cellular growth. In neurons, the subcellular localization of mTOR takes on increased significance. Here, we review findings on the localization of mTOR in axons and offer a perspective on how these may impact our understanding of nervous system development, function, and disease. We propose a model where mTOR accumulates in local foci we term mTOR outposts, which can be found in processes distant from a neuron’s cell body. In this model, pathways that funnel through mTOR are gated by local outposts to spatially select and amplify local signaling. The presence or absence of mTOR outposts in a segment of axon or dendrite may determine whether regional mTOR-dependent signals, such as nutrient and growth factor signaling, register toward neuron-wide responses. In this perspective, we present the emerging evidence for mTOR outposts in neurons, their putative roles as spatial gatekeepers of signaling inputs, and the implications of the mTOR outpost model for neuronal protein synthesis, signal transduction, and synaptic plasticity.
Collapse
|
39
|
Romero AM, García-Martínez J, Pérez-Ortín JE, Martínez-Pastor MT, Puig S. Changes in mRNA stability play an important role in the adaptation of yeast cells to iron deprivation. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194800. [PMID: 35218933 DOI: 10.1016/j.bbagrm.2022.194800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Eukaryotic cells rely on iron as an indispensable cofactor for multiple biological functions including mitochondrial respiration and protein synthesis. The budding yeast Saccharomyces cerevisiae utilizes both transcriptional and posttranscriptional mechanisms to couple mRNA levels to the requirements of iron deprivation. Thus, in response to iron deficiency, transcription factors Aft1 and Aft2 activate the expression of genes implicated in iron acquisition and mobilization, whereas two mRNA-binding proteins, Cth1 and Cth2, posttranscriptionally control iron metabolism. By using a genome-wide approach, we describe here a global stabilization of mRNAs, including transcripts encoding ribosomal proteins (RPs), when iron bioavailability diminishes. mRNA decay assays indicate that the mRNA-binding protein Pub1 contributes to RP transcript stabilization during adaptation to iron limitation. In fact, Pub1 becomes critical for growth and translational repression in low-iron conditions. Remarkably, we observe that pub1Δ cells also exhibit an increase in the transcription of RP genes that evidences the crosstalk between transcription and degradation mechanisms to maintain the appropriate mRNA balance under iron deficiency conditions.
Collapse
Affiliation(s)
- Antonia María Romero
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Agustín Escardino 7, E-46980 Paterna, Valencia, Spain.
| | - José García-Martínez
- Departamento de Genética, Universitat de València, Ave. Doctor Moliner 50, E-46100 Burjassot, Valencia, Spain; Instituto de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Ave. Doctor Moliner 50, E-46100 Burjassot, Valencia, Spain
| | - José Enrique Pérez-Ortín
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Ave. Doctor Moliner 50, E-46100 Burjassot, Valencia, Spain; Departamento de Bioquímica y Biología Molecular, Universitat de València, Ave. Doctor Moliner 50, E-46100 Burjassot, Valencia, Spain
| | - María Teresa Martínez-Pastor
- Departamento de Bioquímica y Biología Molecular, Universitat de València, Ave. Doctor Moliner 50, E-46100 Burjassot, Valencia, Spain
| | - Sergi Puig
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Agustín Escardino 7, E-46980 Paterna, Valencia, Spain.
| |
Collapse
|
40
|
Sundberg CA, Lakk M, Paul S, Figueroa KP, Scoles DR, Pulst SM, Križaj D. The RNA-binding protein and stress granule component ATAXIN-2 is expressed in mouse and human tissues associated with glaucoma pathogenesis. J Comp Neurol 2022; 530:537-552. [PMID: 34350994 PMCID: PMC8716417 DOI: 10.1002/cne.25228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/06/2021] [Indexed: 02/03/2023]
Abstract
Polyglutamine repeat expansions in the Ataxin-2 (ATXN2) gene were first implicated in Spinocerebellar Ataxia Type 2, a disease associated with degeneration of motor neurons and Purkinje cells. Recent studies linked single nucleotide polymorphisms in the gene to elevated intraocular pressure in primary open angle glaucoma (POAG); yet, the localization of ATXN2 across glaucoma-relevant tissues of the vertebrate eye has not been thoroughly examined. This study characterizes ATXN2 expression in the mouse and human retina, and anterior eye, using an antibody validated in ATXN2-/- retinas. ATXN2-ir was localized to cytosolic sub compartments in retinal ganglion cell (RGC) somata and proximal dendrites in addition to GABAergic, glycinergic, and cholinergic amacrine cells in the inner plexiform layer (IPL) and displaced amacrine cells. Human, but not mouse retinas showed modest immunolabeling of bipolar cells. ATXN2 immunofluorescence was prominent in the trabecular meshwork and pigmented and nonpigmented cells of the ciliary body, with analyses of primary human trabecular meshwork cells confirming the finding. The expression of ATXN2 in key POAG-relevant ocular tissues supports the potential role in autophagy and stress granule formation in response to ocular hypertension.
Collapse
Affiliation(s)
- Chad A. Sundberg
- Department of Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, Utah, USA
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Monika Lakk
- Department of Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Sharan Paul
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Karla P. Figueroa
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Daniel R. Scoles
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Stefan M. Pulst
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - David Križaj
- Department of Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, Utah, USA
- Department of Bioengineering, University of Utah, Salt Lake City, Utah, USA
- Department of Neurobiology & Anatomy, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
41
|
Hirai H, Takemata N, Tamura M, Ohta K. OUP accepted manuscript. Nucleic Acids Res 2022; 50:3727-3744. [PMID: 35348762 PMCID: PMC9023297 DOI: 10.1093/nar/gkac175] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 03/01/2022] [Accepted: 03/05/2022] [Indexed: 11/16/2022] Open
Abstract
During the cellular adaptation to nutrient starvation, cells temporarily decelerate translation processes including ribosomal biogenesis. However, the mechanisms repressing robust gene expression from the ribosomal gene cluster (rDNA) are unclear. Here, we demonstrate that fission yeast cells facing glucose starvation assemble facultative heterochromatin in rDNA leading to its transcriptional repression. Glucose starvation induces quick dissociation of the ATF/CREB-family protein Atf1 from rDNA, where in turn the histone chaperone FACT is recruited to promote H3K9 methylation and heterochromatinization. We also identify the histone acetyltransferase Gcn5 as a repressor of rDNA heterochromatinization in glucose-rich conditions, and this protein dissociates from rDNA upon glucose starvation. Facultative heterochromatin formation in rDNA requires histone deacetylases Clr3 and both the RNAi-dependent and -independent gene silencing pathways. This is essential in adaptation to starvation since mutants lacking heterochromatin formation in rDNA lead to untimely cell death during glucose starvation.
Collapse
Affiliation(s)
- Hayato Hirai
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Tokyo 153-8902, Japan
| | - Naomichi Takemata
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Tokyo 153-8902, Japan
| | - Miki Tamura
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Tokyo 153-8902, Japan
| | - Kunihiro Ohta
- To whom correspondence should be addressed. Tel: +81 3 5465 8834;
| |
Collapse
|
42
|
Nedelsky NB, Taylor JP. Pathological phase transitions in ALS-FTD impair dynamic RNA-protein granules. RNA (NEW YORK, N.Y.) 2022; 28:97-113. [PMID: 34706979 PMCID: PMC8675280 DOI: 10.1261/rna.079001.121] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The genetics of human disease serves as a robust and unbiased source of insight into human biology, both revealing fundamental cellular processes and exposing the vulnerabilities associated with their dysfunction. Over the last decade, the genetics of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) have epitomized this concept, as studies of ALS-FTD-causing mutations have yielded fundamental discoveries regarding the role of biomolecular condensation in organizing cellular contents while implicating disturbances in condensate dynamics as central drivers of neurodegeneration. Here we review this genetic evidence, highlight its intersection with patient pathology, and discuss how studies in model systems have revealed a role for aberrant condensation in neuronal dysfunction and death. We detail how multiple, distinct types of disease-causing mutations promote pathological phase transitions that disturb the dynamics and function of ribonucleoprotein (RNP) granules. Dysfunction of RNP granules causes pleiotropic defects in RNA metabolism and can drive the evolution of these structures to end-stage pathological inclusions characteristic of ALS-FTD. We propose that aberrant phase transitions of these complex condensates in cells provide a parsimonious explanation for the widespread cellular abnormalities observed in ALS as well as certain histopathological features that characterize late-stage disease.
Collapse
Affiliation(s)
- Natalia B Nedelsky
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - J Paul Taylor
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| |
Collapse
|
43
|
Carey SB, Bolger TA. Translational control by helicases during cellular stress. Methods Enzymol 2022; 673:103-140. [DOI: 10.1016/bs.mie.2022.03.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
44
|
Pluripotency transcription factors at the focus: the phase separation paradigm in stem cells. Biochem Soc Trans 2021; 49:2871-2878. [PMID: 34812855 DOI: 10.1042/bst20210856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 12/13/2022]
Abstract
The transcription factors (TFs) OCT4, SOX2 and NANOG are key players of the gene regulatory network of pluripotent stem cells. Evidence accumulated in recent years shows that even small imbalances in the expression levels or relative concentrations of these TFs affect both, the maintenance of pluripotency and cell fate decisions. In addition, many components of the transcriptional machinery including RNA polymerases, cofactors and TFs such as those required for pluripotency, do not distribute homogeneously in the nucleus but concentrate in multiple foci influencing the delivery of these molecules to their DNA-targets. How cells control strict levels of available pluripotency TFs in this heterogeneous space and the biological role of these foci remain elusive. In recent years, a wealth of evidence led to propose that many of the nuclear compartments are formed through a liquid-liquid phase separation process. This new paradigm early penetrated the stem cells field since many key players of the pluripotency circuitry seem to phase-separate. Overall, the formation of liquid compartments may modulate the kinetics of biochemical reactions and consequently regulate many nuclear processes. Here, we review the state-of-the-art knowledge of compartmentalization in the cell nucleus and the relevance of this process for transcriptional regulation, particularly in pluripotent stem cells. We also highlight the recent advances and new ideas in the field showing how compartmentalization may affect pluripotency preservation and cell fate decisions.
Collapse
|
45
|
Schlarmann P, Ikeda A, Funato K. Membrane Contact Sites in Yeast: Control Hubs of Sphingolipid Homeostasis. MEMBRANES 2021; 11:971. [PMID: 34940472 PMCID: PMC8707754 DOI: 10.3390/membranes11120971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 01/02/2023]
Abstract
Sphingolipids are the most diverse class of membrane lipids, in terms of their structure and function. Structurally simple sphingolipid precursors, such as ceramides, act as intracellular signaling molecules in various processes, including apoptosis, whereas mature and complex forms of sphingolipids are important structural components of the plasma membrane. Supplying complex sphingolipids to the plasma membrane, according to need, while keeping pro-apoptotic ceramides in check is an intricate task for the cell and requires mechanisms that tightly control sphingolipid synthesis, breakdown, and storage. As each of these processes takes place in different organelles, recent studies, using the budding yeast Saccharomyces cerevisiae, have investigated the role of membrane contact sites as hubs that integrate inter-organellar sphingolipid transport and regulation. In this review, we provide a detailed overview of the findings of these studies and put them into the context of established regulatory mechanisms of sphingolipid homeostasis. We have focused on the role of membrane contact sites in sphingolipid metabolism and ceramide transport, as well as the mechanisms that prevent toxic ceramide accumulation.
Collapse
Affiliation(s)
| | | | - Kouichi Funato
- Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama 1-4-4, Higashi-Hiroshima 739-8528, Japan; (P.S.); (A.I.)
| |
Collapse
|
46
|
Grousl T, Vojtova J, Hasek J, Vomastek T. Yeast stress granules at a glance. Yeast 2021; 39:247-261. [PMID: 34791685 DOI: 10.1002/yea.3681] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/15/2021] [Accepted: 11/12/2021] [Indexed: 11/10/2022] Open
Abstract
The formation of stress granules (SGs), membrane-less organelles that are composed of mainly messenger ribonucleoprotein assemblies, is the result of a conserved evolutionary strategy to cellular stress. During their formation, which is triggered by robust environmental stress, SGs sequester translationally inactive mRNA molecules, which are either forwarded for further processing elsewhere or stored during a period of stress within SGs. Removal of mRNA molecules from active translation and their sequestration in SGs allows preferential translation of stress response transcripts. By affecting the specificity of mRNA translation, mRNA localization and stability, SGs are involved in the overall cellular reprogramming during periods of environmental stress and viral infection. Over the past two decades, we have learned which processes drive SGs assembly, how their composition varies under stress, and how they co-exist with other subcellular organelles. Yeast as a model has been instrumental in our understanding of SG biology. Despite the specific differences between the SGs of yeast and mammals, yeast have been shown to be a valuable tool to the study of SGs in translation-related stress response. This review summarizes the data surrounding SGs that are formed under different stress conditions in Saccharomyces cerevisiae and other yeast species. It offers a comprehensive and up-to-date view on these still somewhat mysterious entities.
Collapse
Affiliation(s)
- Tomas Grousl
- Laboratory of Cell Signalling, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jana Vojtova
- Laboratory of Cell Reproduction, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiri Hasek
- Laboratory of Cell Reproduction, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tomas Vomastek
- Laboratory of Cell Signalling, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
47
|
Amen T, Guihur A, Zelent C, Ursache R, Wilting J, Kaganovich D. Resveratrol and related stilbene derivatives induce stress granules with distinct clearance kinetics. Mol Biol Cell 2021; 32:ar18. [PMID: 34432484 PMCID: PMC8693967 DOI: 10.1091/mbc.e21-02-0066] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Stress granules (SGs) are ribonucleoprotein functional condensates that form under stress conditions in all eukaryotic cells. Although their stress-survival function is far from clear, SGs have been implicated in the regulation of many vital cellular pathways. Consequently, SG dysfunction is thought to be a mechanistic point of origin for many neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS). Additionally, SGs are thought to play a role in pathogenic pathways as diverse as viral infection and chemotherapy resistance. There is a growing consensus on the hypothesis that understanding the mechanistic regulation of SG physical properties is essential to understanding their function. Although the internal dynamics and condensation mechanisms of SGs have been broadly investigated, there have been fewer investigations into the timing of SG formation and clearance in live cells. Because the lifetime of SG persistence can be a key factor in their function and tendency toward pathological dysregulation, SG clearance mechanisms deserve particular attention. Here we show that resveratrol and its analogues piceatannol, pterostilbene, and 3,4,5,4'-tetramethoxystilbene induce G3BP-dependent SG formation with atypically rapid clearance kinetics. Resveratrol binds to G3BP, thereby reducing its protein-protein association valency. We suggest that altering G3BP valency is a pathway for the formation of uniquely transient SGs.
Collapse
Affiliation(s)
- Triana Amen
- Department of Experimental Neurodegeneration, University Medical Center Göttingen, 37073, Goettingen, Germany
| | - Anthony Guihur
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, Switzerland
| | - Christina Zelent
- Department of Anatomy and Cell Biology, University Medical Center Göttingen, 37073, Goettingen, Germany
| | - Robertas Ursache
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, Switzerland
| | - Jörg Wilting
- Department of Anatomy and Cell Biology, University Medical Center Göttingen, 37073, Goettingen, Germany
| | - Daniel Kaganovich
- Department of Experimental Neurodegeneration, University Medical Center Göttingen, 37073, Goettingen, Germany.,1Base Pharmaceuticals, Boston, MA, 02129, USA
| |
Collapse
|
48
|
Rehbein U, Prentzell MT, Cadena Sandoval M, Heberle AM, Henske EP, Opitz CA, Thedieck K. The TSC Complex-mTORC1 Axis: From Lysosomes to Stress Granules and Back. Front Cell Dev Biol 2021; 9:751892. [PMID: 34778262 PMCID: PMC8586448 DOI: 10.3389/fcell.2021.751892] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022] Open
Abstract
The tuberous sclerosis protein complex (TSC complex) is a key integrator of metabolic signals and cellular stress. In response to nutrient shortage and stresses, the TSC complex inhibits the mechanistic target of rapamycin complex 1 (mTORC1) at the lysosomes. mTORC1 is also inhibited by stress granules (SGs), RNA-protein assemblies that dissociate mTORC1. The mechanisms of lysosome and SG recruitment of mTORC1 are well studied. In contrast, molecular details on lysosomal recruitment of the TSC complex have emerged only recently. The TSC complex subunit 1 (TSC1) binds lysosomes via phosphatidylinositol-3,5-bisphosphate [PI(3,5)P2]. The SG assembly factors 1 and 2 (G3BP1/2) have an unexpected lysosomal function in recruiting TSC2 when SGs are absent. In addition, high density lipoprotein binding protein (HDLBP, also named Vigilin) recruits TSC2 to SGs under stress. In this mini-review, we integrate the molecular mechanisms of lysosome and SG recruitment of the TSC complex. We discuss their interplay in the context of cell proliferation and migration in cancer and in the clinical manifestations of tuberous sclerosis complex disease (TSC) and lymphangioleiomyomatosis (LAM).
Collapse
Affiliation(s)
- Ulrike Rehbein
- Laboratory for Metabolic Signaling, Institute of Biochemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Mirja Tamara Prentzell
- Brain Cancer Metabolism Group, German Consortium of Translational Cancer Research (DKTK) & German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Bioscience, Heidelberg University, Heidelberg, Germany
| | - Marti Cadena Sandoval
- Laboratory for Metabolic Signaling, Institute of Biochemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
- Section Systems Medicine of Metabolism and Signaling, Department of Pediatrics, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Alexander Martin Heberle
- Laboratory for Metabolic Signaling, Institute of Biochemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
- Section Systems Medicine of Metabolism and Signaling, Department of Pediatrics, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Elizabeth P. Henske
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Christiane A. Opitz
- Brain Cancer Metabolism Group, German Consortium of Translational Cancer Research (DKTK) & German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Kathrin Thedieck
- Laboratory for Metabolic Signaling, Institute of Biochemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
- Section Systems Medicine of Metabolism and Signaling, Department of Pediatrics, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
- Department for Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|
49
|
Guan M, Garabedian MV, Leutenegger M, Schuster BS, Good MC, Hammer DA. Incorporation and Assembly of a Light-Emitting Enzymatic Reaction into Model Protein Condensates. Biochemistry 2021; 60:3137-3151. [PMID: 34648259 PMCID: PMC9322593 DOI: 10.1021/acs.biochem.1c00373] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Eukaryotic cells partition enzymes and other cellular components into distinct subcellular compartments to generate specialized biochemical niches. A subclass of these compartments form in the absence of lipid membranes, via liquid-liquid phase separation of proteins to form biomolecular condensates or "membraneless organelles" such as nucleoli, stress granules, and P-bodies. Because of their propensity to form compartments from simple starting materials, membraneless organelles are an attractive target for engineering new functionalities in both living cells and protocells. In this work, we demonstrate incorporation of a novel enzymatic activity in protein coacervates with the light-generating enzyme, NanoLuc, to produce bioluminescence. Using condensates comprised of the disordered RGG domain of Caenorhabditis elegans LAF-1, we functionalized condensates with enzymatic activity in vitro and show that enzyme localization to coacervates enhances assembly and activity of split enzymes. To build condensates that function as light-emitting reactors, we designed a NanoLuc enzyme flanked by RGG domains. The resulting condensates concentrated NanoLuc by 10-fold over bulk solution and displayed significantly increased reaction rates. We further show that condensate viscosity impacts light emission due to diffusion-limited behavior. Because our model condensates have low viscosities, we predict NanoLuc diffusion-limited behavior in most other condensates and thus propose the condensate-Nanoluc system as a potential strategy for high-throughput screening of condensate targeting drugs. By splitting the NanoLuc enzyme into its constituent components, we demonstrate that NanoLuc activity can be reconstituted via co-condensation. In addition, we demonstrate control of the spatial localization of the enzyme within condensates by targettng NanoLuc to the surface of in vitro condensates. Collectively, this work demonstrates that membraneless organelles can be endowed with localized enzymatic activity and that this activity can be spatially and temporally controlled via biochemical reconstitution and design of protein surfactants.
Collapse
Affiliation(s)
- Muyang Guan
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Mikael V. Garabedian
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Marcel Leutenegger
- Max Planck Institute for Biophysical Chemistry, Department of NanoBiophotonics, Am Faßberg 11, 37077 Göttingen, Germany
| | - Benjamin S. Schuster
- Department of Chemical and Biochemical Engineering, Rutgers University, New Brunswick, New Jersey 08854, United States
| | - Matthew C. Good
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Daniel A. Hammer
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
50
|
Cadena Sandoval M, Heberle AM, Rehbein U, Barile C, Ramos Pittol JM, Thedieck K. mTORC1 Crosstalk With Stress Granules in Aging and Age-Related Diseases. FRONTIERS IN AGING 2021; 2:761333. [PMID: 35822040 PMCID: PMC9261333 DOI: 10.3389/fragi.2021.761333] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) kinase is a master regulator of metabolism and aging. A complex signaling network converges on mTORC1 and integrates growth factor, nutrient and stress signals. Aging is a dynamic process characterized by declining cellular survival, renewal, and fertility. Stressors elicited by aging hallmarks such as mitochondrial malfunction, loss of proteostasis, genomic instability and telomere shortening impinge on mTORC1 thereby contributing to age-related processes. Stress granules (SGs) constitute a cytoplasmic non-membranous compartment formed by RNA-protein aggregates, which control RNA metabolism, signaling, and survival under stress. Increasing evidence reveals complex crosstalk between the mTORC1 network and SGs. In this review, we cover stressors elicited by aging hallmarks that impinge on mTORC1 and SGs. We discuss their interplay, and we highlight possible links in the context of aging and age-related diseases.
Collapse
Affiliation(s)
- Marti Cadena Sandoval
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
- Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Alexander Martin Heberle
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
- Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Ulrike Rehbein
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Cecilia Barile
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - José Miguel Ramos Pittol
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Kathrin Thedieck
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
- Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department for Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- *Correspondence: Kathrin Thedieck, , ,
| |
Collapse
|