1
|
Hu Y, Xu W, Chen L. Post-translational modifications and the reprogramming of tumor metabolism. Discov Oncol 2025; 16:929. [PMID: 40418495 DOI: 10.1007/s12672-025-02674-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 05/12/2025] [Indexed: 05/27/2025] Open
Abstract
Metabolic reprogramming occurs alongside tumor development. As cancers advance from precancerous lesions to locally invasive tumors and then to metastatic tumors, metabolic patterns exhibit distinct changes, including mutations in metabolic enzymes and modifications in the activity of metabolic regulatory proteins. Alterations in metabolic patterns can influence tumor evolution, either establishing or alleviating metabolic burdens and facilitating cancer growth. To fully understand how metabolic reprogramming helps tumors grow and find the metabolic activities that are most useful for treating tumors, we need to have a deeper understanding of how metabolic patterns are controlled as tumors grow. Post-translational modifications (PTMs), a critical mechanism in the regulation of protein function, can influence protein activity, stability, and interactions in several ways. In tumor cells, PTMs-mediated metabolic reprogramming is a crucial mechanism for adapting to the challenging microenvironment and sustaining fast growth. This article will deeply explore the intricate regulatory mechanism of PTMs on metabolic reprogramming and its role in tumor progression, with the expectation of providing new theoretical basis and potential targets for tumor treatment.
Collapse
Affiliation(s)
- Yuqing Hu
- Central Laboratory and Precision Medicine Center, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, Zhejiang Province, China
- Jinhua Key Laboratory of Cancer Nutrition and Metabolism Research, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, Zhejiang Province, China
| | - Wenxia Xu
- Central Laboratory and Precision Medicine Center, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, Zhejiang Province, China.
- Jinhua Key Laboratory of Cancer Nutrition and Metabolism Research, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, Zhejiang Province, China.
| | - Lin Chen
- Central Laboratory and Precision Medicine Center, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, Zhejiang Province, China.
- Jinhua Key Laboratory of Cancer Nutrition and Metabolism Research, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, Zhejiang Province, China.
| |
Collapse
|
2
|
Ferrero G, Cardamone MD, Luca F, Bourk E, Ricci L, Liu W, Gao Y, Burrone G, Muhammad A, Chan S, Smith E, Fan TYC, Cutrupi S, Garcia-Bassets I, De Bortoli M, Rosenfeld MG, Perissi V. Nonproteolytic ubiquitination regulates chromatin occupancy by the NCoR/SMRT/HDAC3 corepressor complex in MCF-7 breast cancer cells. Proc Natl Acad Sci U S A 2025; 122:e2502805122. [PMID: 40305047 PMCID: PMC12067245 DOI: 10.1073/pnas.2502805122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
Tight regulation of gene expression is achieved through the coordinated action of transcription factors and cofactors that often can act as both repressors and activators in response to regulatory signals, with their activity modulated by context-specific signal transduction pathways that also impinge on their transient and cyclical recruitment to chromatin. However, the mechanisms underlying the intricate interplay between the regulatory strategies controlling cofactors' activity and localization across subcellar domains remain poorly understood. Here, we investigated the role of G-Protein Pathway Suppressor 2 (GPS2), a transcriptional cofactor critical for maintaining cellular homeostasis via regulation of mitochondrial biogenesis, stress response, lipid metabolism, insulin signaling, and inflammation, in MCF-7 breast cancer cells. By integration of biochemical assays with genome-wide RNA sequencing and Chromatin immunoprecipitation-Seq analyses, we show that nuclear GPS2 is required for licensing histone deacetylase 3 recruitment to chromatin via restricted ubiquitination by tumor necrosis factor receptor-associated factor 6 (TRAF6), an E3 ubiquitin ligase previously shown to regulate the switch from repressive to activating functions of the nuclear receptor corepressor (NCoR)/silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) complex and here unexpectedly found to translocate to the nucleus in response to IL-1β stimulation. Nuclear TRAF6 is recruited to chromatin via direct interaction with the corepressors NCoR/SMRT, and TRAF6-mediated ubiquitination of TGF-beta activated kinase 1 (MAP3K7) binding protein 2 (TAB2), a facultative component of the NCoR/SMRT complex, contributes to corepressor clearance from target regulatory regions. Together, these results reveal an exquisite mechanism for coordinating the local regulation of cofactor activity with proinflammatory signaling pathways.
Collapse
Affiliation(s)
- Giulio Ferrero
- Department of Clinical and Biological Science, University of Torino, Orbassano (Torino)10043, Italy
| | - Maria Dafne Cardamone
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA02118
| | - Francesca Luca
- Department of Clinical and Biological Science, University of Torino, Orbassano (Torino)10043, Italy
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA02118
| | - Eliot Bourk
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA92037
| | - Laura Ricci
- Department of Clinical and Biological Science, University of Torino, Orbassano (Torino)10043, Italy
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA92037
| | - Wen Liu
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA92037
| | - Yuan Gao
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA02118
| | - Giulia Burrone
- Department of Clinical and Biological Science, University of Torino, Orbassano (Torino)10043, Italy
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA02118
- Department of Computer Science, University of Torino, Torino10149, Italy
| | - Akhirah Muhammad
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA02118
| | - Stefanie Chan
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA02118
| | - Emma Smith
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA02118
| | - Ting-Yu Claire Fan
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA02118
| | - Santina Cutrupi
- Department of Clinical and Biological Science, University of Torino, Orbassano (Torino)10043, Italy
| | - Ivan Garcia-Bassets
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA92037
| | - Michele De Bortoli
- Department of Clinical and Biological Science, University of Torino, Orbassano (Torino)10043, Italy
| | - Michael G. Rosenfeld
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA92037
| | - Valentina Perissi
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA02118
| |
Collapse
|
3
|
Wu X, Zhang Z, Li J, Zong J, Yuan L, Shu L, Cheong LY, Huang X, Jiang M, Ping Z, Xu A, Hoo RL. Chchd10: A Novel Metabolic Sensor Modulating Adipose Tissue Homeostasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408763. [PMID: 39985288 PMCID: PMC12005791 DOI: 10.1002/advs.202408763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/30/2024] [Indexed: 02/24/2025]
Abstract
Dysregulation of adipose tissue (AT) homeostasis in obesity contributes to metabolic stress and disorders. Here, we identified that Coiled-coil-helix-coiled-coil-helix domain containing 10 (Chchd10) is a novel regulator of AT remodeling upon excess energy intake. Chchd10 is significantly reduced in the white adipose tissue (WAT) of mice in response to high-fat diet (HFD) feeding. AT-Chchd10 deficiency accelerates adipogenesis predominantly in subcutaneous AT of mice to store excess energy in response to short-term HFD feeding while upregulates glutathione S-transferase A4 (GSTA4) to facilitate 4-HNE clearance mainly in visceral AT to prevent protein carbonylation-induced cell dysfunction after long-term HFD feeding. Hence, Chchd10 deficiency attenuates diet-induced obesity and related metabolic disorders in mice. Mechanistically, Chchd10 deficiency enhances adipogenesis and GSTA4 expression by activating TDP43/Raptor/p62/Keap1/NRF2 axis. Notably, the beneficial effect of Chchd10 deficiency is eliminated in hypertrophic adipocytes, where p62 is strikingly reduced. Collectively, Chchd10 is a metabolic sensor maintaining AT homeostasis, and the loss of p62 in adipose tissue under obese conditions impairs Chchd10-mediated AT remodeling.
Collapse
Affiliation(s)
- Xiaoping Wu
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong SARChina
- Department of Pharmacology and PharmacyThe University of Hong KongHong Kong SARChina
| | - Zixuan Zhang
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong SARChina
- Department of Pharmacology and PharmacyThe University of Hong KongHong Kong SARChina
| | - Jingjing Li
- Department of Rehabilitation SciencesFaculty of Health and Social SciencesHong Kong Polytechnic UniversityHong Kong SARChina
| | - Jiuyu Zong
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong SARChina
- Department of Pharmacology and PharmacyThe University of Hong KongHong Kong SARChina
| | - Lufengzi Yuan
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong SARChina
- Department of Pharmacology and PharmacyThe University of Hong KongHong Kong SARChina
| | - Lingling Shu
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong SARChina
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerDepartment of Hematological OncologySun Yat‐sen University Cancer CenterChina
- Department of MedicineThe University of Hong KongHong Kong SARChina
| | - Lai Yee Cheong
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong SARChina
- Department of MedicineThe University of Hong KongHong Kong SARChina
| | - Xiaowen Huang
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong SARChina
- Department of Pharmacology and PharmacyThe University of Hong KongHong Kong SARChina
| | - Mengxue Jiang
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong SARChina
- Department of Pharmacology and PharmacyThe University of Hong KongHong Kong SARChina
| | - Zhihui Ping
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong SARChina
- Department of Pharmacology and PharmacyThe University of Hong KongHong Kong SARChina
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong SARChina
- Department of MedicineThe University of Hong KongHong Kong SARChina
| | - Ruby L.C. Hoo
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong SARChina
- Department of Pharmacology and PharmacyThe University of Hong KongHong Kong SARChina
| |
Collapse
|
4
|
Yang X, Cao X, Zhu Q. p62/SQSTM1 in cancer: phenomena, mechanisms, and regulation in DNA damage repair. Cancer Metastasis Rev 2025; 44:33. [PMID: 39954143 PMCID: PMC11829845 DOI: 10.1007/s10555-025-10250-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/06/2025] [Indexed: 02/17/2025]
Abstract
The multidomain protein cargo adaptor p62, also known as sequestosome 1, serves as a shuttling factor and adaptor for the degradation of substrates via the proteasome and autophagy pathways. Regarding its structure, p62 is composed of several functional domains, including the N-terminal Phox1 and Bem1p domains, a ZZ-type zinc finger domain, a LIM protein-binding domain that contains the tumor necrosis factor receptor-associated factor 6 (TRAF6) binding region, two nuclear localization signals (NLS 1/2), a nuclear export signal (NES), the LC3-interacting region (LIR), a Kelch-like ECH-associated protein 1 (KEAP1)-interacting region, and a ubiquitin-associated (UBA) domain. Recent studies have highlighted the critical role of p62 in the development and progression of various malignancies. Overexpression and/or impaired degradation of p62 are linked to the initiation and progression of numerous cancers. While p62 is primarily localized in the cytosol and often considered a cytoplasmic protein, most of the existing literature focuses on its cytoplasmic functions, leaving its nuclear roles less explored. However, an increasing body of research has uncovered p62's involvement in the cellular response to DNA damage. In this review, we summarize the current understanding of p62's molecular functions in malignancies, with particular emphasis on its role in DNA damage repair, highlighting the latest advances in this field.
Collapse
Affiliation(s)
- Xiaojuan Yang
- Liver Digital Transformation Research Laboratory, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xunjie Cao
- Division of Abdominal Tumor Multimodality Treatment, Department of General Surgery, West China Hospital, Sichuan University, Cancer Center, Chengdu, 610041, China
| | - Qing Zhu
- Division of Abdominal Tumor Multimodality Treatment, Department of General Surgery, West China Hospital, Sichuan University, Cancer Center, Chengdu, 610041, China.
| |
Collapse
|
5
|
Rivera-Correa J, Gupta S, Ricker E, Flores-Castro D, Jenkins D, Vulcano S, Phalke SP, Pannellini T, Miele MM, Li Z, Zamponi N, Kim YB, Chinenov Y, Giannopoulou E, Cerchietti L, Pernis AB. ROCK1 promotes B cell differentiation and proteostasis under stress through the heme-regulated proteins, BACH2 and HRI. JCI Insight 2025; 10:e180507. [PMID: 39903532 PMCID: PMC11949073 DOI: 10.1172/jci.insight.180507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 01/28/2025] [Indexed: 02/06/2025] Open
Abstract
The mechanisms utilized by differentiating B cells to withstand highly damaging conditions generated during severe infections, like the massive hemolysis that accompanies malaria, are poorly understood. Here, we demonstrate that ROCK1 regulates B cell differentiation in hostile environments replete with pathogen-associated molecular patterns (PAMPs) and high levels of heme by controlling 2 key heme-regulated molecules, BACH2 and heme-regulated eIF2α kinase (HRI). ROCK1 phosphorylates BACH2 and protects it from heme-driven degradation. As B cells differentiate, furthermore, ROCK1 restrains their pro-inflammatory potential and helps them handle the heightened stress imparted by the presence of PAMPs and heme by controlling HRI, a key regulator of the integrated stress response and cytosolic proteotoxicity. ROCK1 controls the interplay of HRI with HSP90 and limits the recruitment of HRI and HSP90 to unique p62/SQSTM1 complexes that also contain critical kinases like mTOR complex 1 and TBK1, and proteins involved in RNA metabolism, oxidative damage, and proteostasis like TDP-43. Thus, ROCK1 helps B cells cope with intense pathogen-driven destruction by coordinating the activity of key controllers of B cell differentiation and stress responses. These ROCK1-dependent mechanisms may be widely employed by cells to handle severe environmental stresses, and these findings may be relevant for immune-mediated and age-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Juan Rivera-Correa
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
- Biological Sciences Department, New York City College of Technology, City University of New York, Brooklyn, New York, USA
| | - Sanjay Gupta
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Edd Ricker
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Danny Flores-Castro
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Daniel Jenkins
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Stephen Vulcano
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Swati P. Phalke
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Tania Pannellini
- Research Division and Precision Medicine Laboratory, Hospital for Special Surgery, New York, New York, USA
| | - Matthew M. Miele
- Microchemistry & Proteomics Core at Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Zhuoning Li
- Microchemistry & Proteomics Core at Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Nahuel Zamponi
- Hematology and Oncology Division, Weill Cornell Medicine, New York, New York, USA
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Yurii Chinenov
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Eugenia Giannopoulou
- Biological Sciences Department, New York City College of Technology, City University of New York, Brooklyn, New York, USA
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Leandro Cerchietti
- Hematology and Oncology Division, Weill Cornell Medicine, New York, New York, USA
| | - Alessandra B. Pernis
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
- Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
6
|
Awan AB, Osman MJA, Khan OM. Ubiquitination Enzymes in Cancer, Cancer Immune Evasion, and Potential Therapeutic Opportunities. Cells 2025; 14:69. [PMID: 39851497 PMCID: PMC11763706 DOI: 10.3390/cells14020069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/16/2024] [Accepted: 12/24/2024] [Indexed: 01/26/2025] Open
Abstract
Ubiquitination is cells' second most abundant posttranslational protein modification after phosphorylation. The ubiquitin-proteasome system (UPS) is critical in maintaining essential life processes such as cell cycle control, DNA damage repair, and apoptosis. Mutations in ubiquitination pathway genes are strongly linked to the development and spread of multiple cancers since several of the UPS family members possess oncogenic or tumor suppressor activities. This comprehensive review delves into understanding the ubiquitin code, shedding light on its role in cancer cell biology and immune evasion. Furthermore, we highlighted recent advances in the field for targeting the UPS pathway members for effective therapeutic intervention against human cancers. We also discussed the recent update on small-molecule inhibitors and PROTACs and their progress in preclinical and clinical trials.
Collapse
Affiliation(s)
- Aiman B. Awan
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar; (A.B.A.); (M.J.A.O.)
| | - Maryiam Jama Ali Osman
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar; (A.B.A.); (M.J.A.O.)
- Research Branch, Sidra Medicine, Doha P.O. Box 34110, Qatar
| | - Omar M. Khan
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar; (A.B.A.); (M.J.A.O.)
| |
Collapse
|
7
|
Chen J, Ou Y, Liu Y. Reply to: Amino acids and KLHL22 do not activate mTORC1 via DEPDC5 degradation. Nature 2025; 637:E15-E17. [PMID: 39780003 DOI: 10.1038/s41586-024-07975-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Affiliation(s)
- Jie Chen
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Yuhui Ou
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Ying Liu
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China.
| |
Collapse
|
8
|
Gao J, Lin M, Qing J, Li H, Zeng X, Yuan W, Li T, He S. HSP70 promotes amino acid-dependent mTORC1 signaling by mediating CHIP-induced NPRL2 ubiquitination and degradation. FASEB J 2024; 38:e70147. [PMID: 39495541 DOI: 10.1096/fj.202401352r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/21/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
Mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of cell growth and its dysregulation leads to a variety of human diseases. Although NPRL2, an essential component of the GATOR1 complex, is reported to effectively suppress amino acid-induced mTORC1 activation, the regulation of NPRL2 protein stability is unclear. In this study, we show that chaperon-associated ubiquitin ligase CHIP interacts with NPRL2 and promotes its polyubiquitination and proteasomal degradation. Moreover, HSP70 mediates CHIP-induced ubiquitination and degradation of NPRL2. Consistently, overexpression of HSP70 enhances whereas HSP70 depletion inhibits amino acid-induced mTORC1 activation. Accordingly, knockdown of HSP70 promotes basal autophagic flux, and inhibits cell growth and proliferation. Taken together, these results demonstrated that HSP70 is a novel activator of mTORC1 through mediating CHIP-induced ubiquitination and degradation of NPRL2.
Collapse
Affiliation(s)
- Jianfang Gao
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, School of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Mingjun Lin
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, School of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Jina Qing
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, School of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Hongxia Li
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, School of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Xiao Zeng
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, School of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Wuzhou Yuan
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, School of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Tingting Li
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, School of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Shanping He
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, School of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
9
|
Wu Y, Chen Y, Tian X, Shao G, Lin Q, Sun A. Ubiquitination regulates autophagy in cancer: simple modifications, promising targets. J Transl Med 2024; 22:985. [PMID: 39482684 PMCID: PMC11526641 DOI: 10.1186/s12967-024-05565-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/02/2024] [Indexed: 11/03/2024] Open
Abstract
Autophagy is an important lysosomal degradation process that digests and recycles bio-molecules, protein or lipid aggregates, organelles, and invaded pathogens. Autophagy plays crucial roles in regulation of metabolic and oxidative stress and multiple pathological processes. In cancer, the role of autophagy is dual and paradoxical. Ubiquitination has been identified as a key regulator of autophagy that can influence various steps in the autophagic process, with autophagy-related proteins being targeted for ubiquitination, thus impacting cancer progression and the effectiveness of therapeutic interventions. This review will concentrate on mechanisms underlying autophagy, ubiquitination, and their interactions in cancer, as well as explore the use of drugs that target the ubiquitin-proteasome system (UPS) and ubiquitination process in autophagy as part of cancer therapy.
Collapse
Affiliation(s)
- Yihui Wu
- Institute of Urinary System Diseases, The Affiliated People's Hospital, Jiangsu University, 8 Dianli Road, Zhenjiang, 212002, China
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Yifei Chen
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Xianyan Tian
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Genbao Shao
- Institute of Urinary System Diseases, The Affiliated People's Hospital, Jiangsu University, 8 Dianli Road, Zhenjiang, 212002, China
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Qiong Lin
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Aiqin Sun
- Institute of Urinary System Diseases, The Affiliated People's Hospital, Jiangsu University, 8 Dianli Road, Zhenjiang, 212002, China.
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
10
|
Li X, Cheng K, Shang MD, Yang Y, Hu B, Wang X, Wei XD, Han YC, Zhang XG, Dong MH, Yang ZL, Wang JQ. MARCH1 negatively regulates TBK1-mTOR signaling pathway by ubiquitinating TBK1. BMC Cancer 2024; 24:902. [PMID: 39061024 PMCID: PMC11282859 DOI: 10.1186/s12885-024-12667-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 07/22/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND TBK1 positively regulates the growth factor-mediated mTOR signaling pathway by phosphorylating mTOR. However, it remains unclear how the TBK1-mTOR signaling pathway is regulated. Considering that STING not only interacts with TBK1 but also with MARCH1, we speculated that MARCH1 might regulate the mTOR signaling pathway by targeting TBK1. The aim of this study was to determine whether MARCH1 regulates the mTOR signaling pathway by targeting TBK1. METHODS The co-immunoprecipitation (Co-IP) assay was used to verify the interaction between MARCH1 with STING or TBK1. The ubiquitination of STING or TBK1 was analyzed using denatured co-immunoprecipitation. The level of proteins detected in the co-immunoprecipitation or denatured co-immunoprecipitation samples were determined by Western blotting. Stable knocked-down cells were constructed by infecting lentivirus bearing the related shRNA sequences. Scratch wound healing and clonogenic cell survival assays were used to detect the migration and proliferation of breast cancer cells. RESULTS We showed that MARCH1 played an important role in growth factor-induced the TBK1- mTOR signaling pathway. MARCH1 overexpression attenuated the growth factor-induced activation of mTOR signaling pathway, whereas its deficiency resulted in the opposite effect. Mechanistically, MARCH1 interacted with and promoted the K63-linked ubiquitination of TBK1. This ubiquitination of TBK1 then attenuated its interaction with mTOR, thereby inhibiting the growth factor-induced mTOR signaling pathway. Importantly, faster proliferation induced by MARCH1 deficiency was weakened by mTOR, STING, or TBK1 inhibition. CONCLUSION MARCH1 suppressed growth factors mediated the mTOR signaling pathway by targeting the STING-TBK1-mTOR axis.
Collapse
Affiliation(s)
- Xiao Li
- The Second Clinical Medical College , Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Kai Cheng
- The Second Clinical Medical College , Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Meng-Di Shang
- Peninsular Cancer Research Center, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Yong Yang
- The First School of Clinical Medicine, Binzhou Medical University, Binzhou, Shandong, 256603, P.R. China
| | - Bin Hu
- The First School of Clinical Medicine, Binzhou Medical University, Binzhou, Shandong, 256603, P.R. China
| | - Xi Wang
- School of Basic Medical, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Xiao-Dan Wei
- School of Basic Medical, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Yan-Chun Han
- School of Basic Medical, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Xiao-Gang Zhang
- School of Rehabilitation Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Meng-Hua Dong
- School of Basic Medical, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China.
| | - Zhen-Lin Yang
- The First School of Clinical Medicine, Binzhou Medical University, Binzhou, Shandong, 256603, P.R. China.
| | - Jiu-Qiang Wang
- Peninsular Cancer Research Center, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China.
| |
Collapse
|
11
|
Grigoreva TA, Novikova DS, Melino G, Barlev NA, Tribulovich VG. Ubiquitin recruiting chimera: more than just a PROTAC. Biol Direct 2024; 19:55. [PMID: 38978100 PMCID: PMC11232244 DOI: 10.1186/s13062-024-00497-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024] Open
Abstract
Ubiquitinylation of protein substrates results in various but distinct biological consequences, among which ubiquitin-mediated degradation is most well studied for its therapeutic application. Accordingly, artificially targeted ubiquitin-dependent degradation of various proteins has evolved into the therapeutically relevant PROTAC technology. This tethered ubiquitinylation of various targets coupled with a broad assortment of modifying E3 ubiquitin ligases has been made possible by rational design of bi-specific chimeric molecules that bring these proteins in proximity. However, forced ubiquitinylation inflicted by the binary warheads of a chimeric PROTAC molecule should not necessarily result in protein degradation but can be used to modulate other cellular functions. In this respect it should be noted that the ubiquitinylation of a diverse set of proteins is known to control their transport, transcriptional activity, and protein-protein interactions. This review provides examples of potential PROTAC usage based on non-degradable ubiquitinylation.
Collapse
Affiliation(s)
- Tatyana A Grigoreva
- Laboratory of Molecular Pharmacology, St. Petersburg State Institute of Technology (Technical University), St. Petersburg, 190013, Russia.
| | - Daria S Novikova
- Laboratory of Molecular Pharmacology, St. Petersburg State Institute of Technology (Technical University), St. Petersburg, 190013, Russia
| | - Gerry Melino
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Nick A Barlev
- Institute of Cytology RAS, Saint-Petersburg, 194064, Russia
- Department of Biomedical Studies, School of Medicine, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Vyacheslav G Tribulovich
- Laboratory of Molecular Pharmacology, St. Petersburg State Institute of Technology (Technical University), St. Petersburg, 190013, Russia.
| |
Collapse
|
12
|
Guallar-Garrido S, Soldati T. Exploring host-pathogen interactions in the Dictyostelium discoideum-Mycobacterium marinum infection model of tuberculosis. Dis Model Mech 2024; 17:dmm050698. [PMID: 39037280 PMCID: PMC11552500 DOI: 10.1242/dmm.050698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024] Open
Abstract
Mycobacterium tuberculosis is a pathogenic mycobacterium that causes tuberculosis. Tuberculosis is a significant global health concern that poses numerous clinical challenges, particularly in terms of finding effective treatments for patients. Throughout evolution, host immune cells have developed cell-autonomous defence strategies to restrain and eliminate mycobacteria. Concurrently, mycobacteria have evolved an array of virulence factors to counteract these host defences, resulting in a dynamic interaction between host and pathogen. Here, we review recent findings, including those arising from the use of the amoeba Dictyostelium discoideum as a model to investigate key mycobacterial infection pathways. D. discoideum serves as a scalable and genetically tractable model for human phagocytes, providing valuable insights into the intricate mechanisms of host-pathogen interactions. We also highlight certain similarities between M. tuberculosis and Mycobacterium marinum, and the use of M. marinum to more safely investigate mycobacteria in D. discoideum.
Collapse
Affiliation(s)
- Sandra Guallar-Garrido
- Department of Biochemistry, Faculty of Science, University of Geneva, 30 quai Ernest-Ansermet, Science II, 1211 Geneva-4, Switzerland
| | - Thierry Soldati
- Department of Biochemistry, Faculty of Science, University of Geneva, 30 quai Ernest-Ansermet, Science II, 1211 Geneva-4, Switzerland
| |
Collapse
|
13
|
Krause M, Samolej J, Yakimovich A, Kriston-Vizi J, Huttunen M, Lara-Reyna S, Frickel EM, Mercer J. Vaccinia virus subverts xenophagy through phosphorylation and nuclear targeting of p62. J Cell Biol 2024; 223:e202104129. [PMID: 38709216 PMCID: PMC11076808 DOI: 10.1083/jcb.202104129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 11/13/2023] [Accepted: 02/12/2024] [Indexed: 05/07/2024] Open
Abstract
Autophagy is an essential degradation program required for cell homeostasis. Among its functions is the engulfment and destruction of cytosolic pathogens, termed xenophagy. Not surprisingly, many pathogens use various strategies to circumvent or co-opt autophagic degradation. For poxviruses, it is known that infection activates autophagy, which however is not required for successful replication. Even though these complex viruses replicate exclusively in the cytoplasm, autophagy-mediated control of poxvirus infection has not been extensively explored. Using the prototypic poxvirus, vaccinia virus (VACV), we show that overexpression of the xenophagy receptors p62, NDP52, and Tax1Bp1 restricts poxvirus infection. While NDP52 and Tax1Bp1 were degraded, p62 initially targeted cytoplasmic virions before being shunted to the nucleus. Nuclear translocation of p62 was dependent upon p62 NLS2 and correlated with VACV kinase mediated phosphorylation of p62 T269/S272. This suggests that VACV targets p62 during the early stages of infection to avoid destruction and further implies that poxviruses exhibit multi-layered control of autophagy to facilitate cytoplasmic replication.
Collapse
Affiliation(s)
- Melanie Krause
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Jerzy Samolej
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - Artur Yakimovich
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Janos Kriston-Vizi
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Moona Huttunen
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - Samuel Lara-Reyna
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - Eva-Maria Frickel
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - Jason Mercer
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
14
|
Berg MJ, Veeranna, Rosa CM, Kumar A, Mohan PS, Stavrides P, Marchionini DM, Yang DS, Nixon RA. Pathobiology of the autophagy-lysosomal pathway in the Huntington's disease brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596470. [PMID: 38854113 PMCID: PMC11160756 DOI: 10.1101/2024.05.29.596470] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Accumulated levels of mutant huntingtin protein (mHTT) and its fragments are considered contributors to the pathogenesis of Huntington's disease (HD). Although lowering mHTT by stimulating autophagy has been considered a possible therapeutic strategy, the role and competence of autophagy-lysosomal pathway (ALP) during HD progression in the human disease remains largely unknown. Here, we used multiplex confocal and ultrastructural immunocytochemical analyses of ALP functional markers in relation to mHTT aggresome pathology in striatum and the less affected cortex of HD brains staged from HD2 to HD4 by Vonsattel neuropathological criteria compared to controls. Immunolabeling revealed the localization of HTT/mHTT in ALP vesicular compartments labeled by autophagy-related adaptor proteins p62/SQSTM1 and ubiquitin, and cathepsin D (CTSD) as well as HTT-positive inclusions. Although comparatively normal at HD2, neurons at later HD stages exhibited progressive enlargement and clustering of CTSD-immunoreactive autolysosomes/lysosomes and, ultrastructurally, autophagic vacuole/lipofuscin granules accumulated progressively, more prominently in striatum than cortex. These changes were accompanied by rises in levels of HTT/mHTT and p62/SQSTM1, particularly their fragments, in striatum but not in the cortex, and by increases of LAMP1 and LAMP2 RNA and LAMP1 protein. Importantly, no blockage in autophagosome formation and autophagosome-lysosome fusion was detected, thus pinpointing autophagy substrate clearance deficits as a basis for autophagic flux declines. The findings collectively suggest that upregulated lysosomal biogenesis and preserved proteolysis maintain autophagic clearance in early-stage HD, but failure at advanced stages contributes to progressive HTT build-up and potential neurotoxicity. These findings support the prospect that ALP stimulation applied at early disease stages, when clearance machinery is fully competent, may have therapeutic benefits in HD patients.
Collapse
|
15
|
Li Y, Liu J, Yao D, Guo Z, Jiang X, Zhang C, Qu L, Liu Y, Hu Y, Gao L, Wang Y, Xu Y. Elevated aerobic glycolysis driven by p62-mTOR axis promotes arsenic-induced oncogenic phenotypes in human mammary epithelial cells. Arch Toxicol 2024; 98:1369-1381. [PMID: 38485781 DOI: 10.1007/s00204-024-03709-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/15/2024] [Indexed: 03/27/2024]
Abstract
Chronic arsenic exposure is considered to increase the risk of breast cancer. p62 is a multifunctional adaptor protein that controls myriad cellular processes and is overexpressed in breast cancer tissues. Although previous studies have indicated the involvement of p62 accumulation in arsenic tumorigenesis, the underlying mechanism remains obscure. Here, we found that 0.1 µM or 0.5 µM arsenite exposure for 24 weeks induced oncogenic phenotypes in human mammary epithelial cells. Elevated aerobic glycolysis, cell proliferation capacity, and activation of p62-mTOR pathway, as indicated by increased protein levels of p62, phosphorylated-mTOR (p-mTOR) and hypoxia-inducible factor 1α (HIF1α), were observed in chronically arsenite-exposed cells, and of note in advance of the onset of oncogenic phenotypes. Moreover, p62 silencing inhibited acquisition of oncogenic phenotypes in arsenite-exposed cells. The protein levels of p-mTOR and HIF1α, as well as aerobic glycolysis and cell proliferation, were suppressed by p62 knockdown. In addition, re-activation of p‑mTOR reversed the inhibitory effects of p62 knockdown. Collectively, our data suggest that p62 exerts an oncogenic role via mTORC1 activation and acts as a key player in glucose metabolism during arsenite-induced malignant transformation, which provides a new mechanistic clue for the arsenite carcinogenesis.
Collapse
Affiliation(s)
- Yongfang Li
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, People's Republic of China
- School of Public Health, China Medical University, Shenyang, People's Republic of China
- Key Laboratory of Toxic and Biological Effects of Arsenic (China Medical University), Liaoning Province, Shenyang, People's Republic of China
| | - Jiao Liu
- School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Dianqi Yao
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, People's Republic of China
- School of Public Health, China Medical University, Shenyang, People's Republic of China
- Key Laboratory of Toxic and Biological Effects of Arsenic (China Medical University), Liaoning Province, Shenyang, People's Republic of China
| | - Zijun Guo
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, People's Republic of China
- School of Public Health, China Medical University, Shenyang, People's Republic of China
- Key Laboratory of Toxic and Biological Effects of Arsenic (China Medical University), Liaoning Province, Shenyang, People's Republic of China
| | - Xuheng Jiang
- School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Chengwen Zhang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, People's Republic of China
- School of Public Health, China Medical University, Shenyang, People's Republic of China
- Key Laboratory of Toxic and Biological Effects of Arsenic (China Medical University), Liaoning Province, Shenyang, People's Republic of China
| | - Litong Qu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, People's Republic of China
- School of Public Health, China Medical University, Shenyang, People's Republic of China
- Key Laboratory of Toxic and Biological Effects of Arsenic (China Medical University), Liaoning Province, Shenyang, People's Republic of China
| | - Yuyan Liu
- Department of Clinical Epidemiology, the Fourth Affiliated Hospital, China Medical University, Shenyang, People's Republic of China
| | - Yuxin Hu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, People's Republic of China
- School of Public Health, China Medical University, Shenyang, People's Republic of China
- Key Laboratory of Toxic and Biological Effects of Arsenic (China Medical University), Liaoning Province, Shenyang, People's Republic of China
| | - Lanyue Gao
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, People's Republic of China
- School of Public Health, China Medical University, Shenyang, People's Republic of China
- Key Laboratory of Toxic and Biological Effects of Arsenic (China Medical University), Liaoning Province, Shenyang, People's Republic of China
| | - Yi Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, People's Republic of China
- School of Public Health, China Medical University, Shenyang, People's Republic of China
- Key Laboratory of Toxic and Biological Effects of Arsenic (China Medical University), Liaoning Province, Shenyang, People's Republic of China
| | - Yuanyuan Xu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, People's Republic of China.
- School of Public Health, China Medical University, Shenyang, People's Republic of China.
- Key Laboratory of Toxic and Biological Effects of Arsenic (China Medical University), Liaoning Province, Shenyang, People's Republic of China.
| |
Collapse
|
16
|
Park SLL, Ramírez-Jarquín UN, Shahani N, Rivera O, Sharma M, Joshi PS, Hansalia A, Dagar S, McManus FP, Thibault P, Subramaniam S. SUMO modifies GβL and mediates mTOR signaling. J Biol Chem 2024; 300:105778. [PMID: 38395307 PMCID: PMC10982569 DOI: 10.1016/j.jbc.2024.105778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/25/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
The mechanistic target of rapamycin (mTOR) signaling is influenced by multiple regulatory proteins and post-translational modifications; however, underlying mechanisms remain unclear. Here, we report a novel role of small ubiquitin-like modifier (SUMO) in mTOR complex assembly and activity. By investigating the SUMOylation status of core mTOR components, we observed that the regulatory subunit, GβL (G protein β-subunit-like protein, also known as mLST8), is modified by SUMO1, 2, and 3 isoforms. Using mutagenesis and mass spectrometry, we identified that GβL is SUMOylated at lysine sites K86, K215, K245, K261, and K305. We found that SUMO depletion reduces mTOR-Raptor (regulatory protein associated with mTOR) and mTOR-Rictor (rapamycin-insensitive companion of mTOR) complex formation and diminishes nutrient-induced mTOR signaling. Reconstitution with WT GβL but not SUMOylation-defective KR mutant GβL promotes mTOR signaling in GβL-depleted cells. Taken together, we report for the very first time that SUMO modifies GβL, influences the assembly of mTOR protein complexes, and regulates mTOR activity.
Collapse
Affiliation(s)
| | | | - Neelam Shahani
- Department of Neuroscience, The Wertheim UF Scripps Institute, Jupiter, Florida, USA
| | - Oscar Rivera
- Department of Neuroscience, The Wertheim UF Scripps Institute, Jupiter, Florida, USA
| | - Manish Sharma
- Department of Neuroscience, The Wertheim UF Scripps Institute, Jupiter, Florida, USA
| | | | - Aayushi Hansalia
- Department of Neuroscience, The Wertheim UF Scripps Institute, Jupiter, Florida, USA
| | - Sunayana Dagar
- Department of Neuroscience, The Wertheim UF Scripps Institute, Jupiter, Florida, USA
| | - Francis P McManus
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada; Department of Chemistry, Université de Montréal, Montréal, Quebec, Canada
| | - Srinivasa Subramaniam
- Department of Neuroscience, The Wertheim UF Scripps Institute, Jupiter, Florida, USA; The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, California, USA; Norman Fixel Institute for Neurological Diseases, Gainesville, Florida, USA.
| |
Collapse
|
17
|
Lee YH, Yoon AR, Yun CO, Chung KC. Dual-specificity kinase DYRK3 phosphorylates p62 at the Thr-269 residue and promotes melanoma progression. J Biol Chem 2024; 300:107206. [PMID: 38519031 PMCID: PMC11021969 DOI: 10.1016/j.jbc.2024.107206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/03/2024] [Accepted: 03/12/2024] [Indexed: 03/24/2024] Open
Abstract
Melanoma is a type of skin cancer that originates in melanin-producing melanocytes. It is considered a multifactorial disease caused by both genetic and environmental factors, such as UV radiation. Dual-specificity tyrosine-phosphorylation-regulated kinase (DYRK) phosphorylates many substrates involved in signaling pathways, cell survival, cell cycle control, differentiation, and neuronal development. However, little is known about the cellular function of DYRK3, one of the five members of the DYRK family. Interestingly, it was observed that the expression of DYRK3, as well as p62 (a multifunctional signaling protein), is highly enhanced in most melanoma cell lines. This study aimed to investigate whether DYRK3 interacts with p62, and how this affects melanoma progression, particularly in melanoma cell lines. We found that DYRK3 directly phosphorylates p62 at the Ser-207 and Thr-269 residue. Phosphorylation at Thr-269 of p62 by DYRK3 increased the interaction of p62 with tumor necrosis factor receptor-associated factor 6 (TRAF6), an already known activator of mammalian target of rapamycin complex 1 (mTORC1) in the mTOR-involved signaling pathways. Moreover, the phosphorylation of p62 at Thr-269 promoted the activation of mTORC1. We also found that DYRK3-mediated phosphorylation of p62 at Thr-269 enhanced the growth of melanoma cell lines and melanoma progression. Conversely, DYRK3 knockdown or blockade of p62-T269 phosphorylation inhibited melanoma growth, colony formation, and cell migration. In conclusion, we demonstrated that DYRK3 phosphorylates p62, positively modulating the p62-TRAF6-mTORC1 pathway in melanoma cells. This finding suggests that DYRK3 suppression may be a novel therapy for preventing melanoma progression by regulating the mTORC1 pathway.
Collapse
Affiliation(s)
- Ye Hyung Lee
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - A-Rum Yoon
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, South Korea
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, South Korea
| | - Kwang Chul Chung
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea.
| |
Collapse
|
18
|
Di Gregorio J, Di Giuseppe L, Terreri S, Rossi M, Battafarano G, Pagliarosi O, Flati V, Del Fattore A. Protein Stability Regulation in Osteosarcoma: The Ubiquitin-like Modifications and Glycosylation as Mediators of Tumor Growth and as Targets for Therapy. Cells 2024; 13:537. [PMID: 38534381 PMCID: PMC10969184 DOI: 10.3390/cells13060537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/11/2024] [Accepted: 03/16/2024] [Indexed: 03/28/2024] Open
Abstract
The identification of new therapeutic targets and the development of innovative therapeutic approaches are the most important challenges for osteosarcoma treatment. In fact, despite being relatively rare, recurrence and metastatic potential, particularly to the lungs, make osteosarcoma a deadly form of cancer. In fact, although current treatments, including surgery and chemotherapy, have improved survival rates, the disease's recurrence and metastasis are still unresolved complications. Insights for analyzing the still unclear molecular mechanisms of osteosarcoma development, and for finding new therapeutic targets, may arise from the study of post-translational protein modifications. Indeed, they can influence and alter protein structure, stability and function, and cellular interactions. Among all the post-translational modifications, ubiquitin-like modifications (ubiquitination, deubiquitination, SUMOylation, and NEDDylation), as well as glycosylation, are the most important for regulating protein stability, which is frequently altered in cancers including osteosarcoma. This review summarizes the relevance of ubiquitin-like modifications and glycosylation in osteosarcoma progression, providing an overview of protein stability regulation, as well as highlighting the molecular mediators of these processes in the context of osteosarcoma and their possible targeting for much-needed novel therapy.
Collapse
Affiliation(s)
- Jacopo Di Gregorio
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Laura Di Giuseppe
- Department of Clinical, Internal, Anaesthesiological and Cardiovascular Sciences, Sapienza University, 00185 Rome, Italy;
| | - Sara Terreri
- Bone Physiopathology Research Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.T.); (M.R.); (G.B.); (O.P.); (A.D.F.)
| | - Michela Rossi
- Bone Physiopathology Research Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.T.); (M.R.); (G.B.); (O.P.); (A.D.F.)
| | - Giulia Battafarano
- Bone Physiopathology Research Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.T.); (M.R.); (G.B.); (O.P.); (A.D.F.)
| | - Olivia Pagliarosi
- Bone Physiopathology Research Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.T.); (M.R.); (G.B.); (O.P.); (A.D.F.)
| | - Vincenzo Flati
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Andrea Del Fattore
- Bone Physiopathology Research Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.T.); (M.R.); (G.B.); (O.P.); (A.D.F.)
| |
Collapse
|
19
|
Zhao L, Gao N, Peng X, Chen L, Meng T, Jiang C, Jin J, Zhang J, Duan Q, Tian H, Weng L, Wang X, Tan X, Li Y, Qin H, Yuan J, Ge X, Deng L, Wang P. TRAF4-Mediated LAMTOR1 Ubiquitination Promotes mTORC1 Activation and Inhibits the Inflammation-Induced Colorectal Cancer Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2301164. [PMID: 38229144 DOI: 10.1002/advs.202301164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 11/28/2023] [Indexed: 01/18/2024]
Abstract
Mechanistic target of rapamycin complex 1 (mTORC1) is a conserved serine/threonine kinase that integrates various environmental signals to regulate cell growth and metabolism. mTORC1 activation requires tethering to lysosomes by the Ragulator-Rag complex. However, the dynamic regulation of the interaction between Ragulator and Rag guanosine triphosphatase (GTPase) remains unclear. In this study, that LAMTOR1, an essential component of Ragulator, is dynamically ubiquitinated depending on amino acid abundance is reported. It is found that the E3 ligase TRAF4 directly interacts with LAMTOR1 and catalyzes the K63-linked polyubiquitination of LAMTOR1 at K151. Ubiquitination of LAMTOR1 by TRAF4 promoted its binding to Rag GTPases and enhanced mTORC1 activation, K151R knock-in or TRAF4 knock-out blocks amino acid-induced mTORC1 activation and accelerates the development of inflammation-induced colon cancer. This study revealed that TRAF4-mediated LAMTOR1 ubiquitination is a regulatory mechanism for mTORC1 activation and provides a therapeutic target for diseases involving mTORC1 dysregulation.
Collapse
Affiliation(s)
- Linlin Zhao
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Ni Gao
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Xiaoping Peng
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Lei Chen
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Tong Meng
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200940, P. R. China
| | - Cong Jiang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Jiali Jin
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Jiawen Zhang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Qiuhui Duan
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Hongling Tian
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Linjun Weng
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Xinbo Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Xiao Tan
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Yaxu Li
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Huanlong Qin
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200092, P. R. China
- Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, 200092, P. R. China
| | - Jian Yuan
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, 200092, P. R. China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, P. R. China
| | - Xin Ge
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Lu Deng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, 200092, P. R. China
| |
Collapse
|
20
|
Wang Y, Engel T, Teng X. Post-translational regulation of the mTORC1 pathway: A switch that regulates metabolism-related gene expression. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195005. [PMID: 38242428 DOI: 10.1016/j.bbagrm.2024.195005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/15/2023] [Accepted: 01/03/2024] [Indexed: 01/21/2024]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) is a kinase complex that plays a crucial role in coordinating cell growth in response to various signals, including amino acids, growth factors, oxygen, and ATP. Activation of mTORC1 promotes cell growth and anabolism, while its suppression leads to catabolism and inhibition of cell growth, enabling cells to withstand nutrient scarcity and stress. Dysregulation of mTORC1 activity is associated with numerous diseases, such as cancer, metabolic disorders, and neurodegenerative conditions. This review focuses on how post-translational modifications, particularly phosphorylation and ubiquitination, modulate mTORC1 signaling pathway and their consequential implications for pathogenesis. Understanding the impact of phosphorylation and ubiquitination on the mTORC1 signaling pathway provides valuable insights into the regulation of cellular growth and potential therapeutic targets for related diseases.
Collapse
Affiliation(s)
- Yitao Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China; Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Xinchen Teng
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
21
|
Abudu YP, Kournoutis A, Brenne HB, Lamark T, Johansen T. MORG1 limits mTORC1 signaling by inhibiting Rag GTPases. Mol Cell 2024; 84:552-569.e11. [PMID: 38103557 DOI: 10.1016/j.molcel.2023.11.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 10/02/2023] [Accepted: 11/17/2023] [Indexed: 12/19/2023]
Abstract
Autophagy, an important quality control and recycling process vital for cellular homeostasis, is tightly regulated. The mTORC1 signaling pathway regulates autophagy under conditions of nutrient availability and scarcity. However, how mTORC1 activity is fine-tuned during nutrient availability to allow basal autophagy is unclear. Here, we report that the WD-domain repeat protein MORG1 facilitates basal constitutive autophagy by inhibiting mTORC1 signaling through Rag GTPases. Mechanistically, MORG1 interacts with active Rag GTPase complex inhibiting the Rag GTPase-mediated recruitment of mTORC1 to the lysosome. MORG1 depletion in HeLa cells increases mTORC1 activity and decreases autophagy. The autophagy receptor p62/SQSTM1 binds to MORG1, but MORG1 is not an autophagy substrate. However, p62/SQSTM1 binding to MORG1 upon re-addition of amino acids following amino acid's depletion precludes MORG1 from inhibiting the Rag GTPases, allowing mTORC1 activation. MORG1 depletion increases cell proliferation and migration. Low expression of MORG1 correlates with poor survival in several important cancers.
Collapse
Affiliation(s)
- Yakubu Princely Abudu
- Autophagy Research Group, Department of Medical Biology, University of Tromsø-The Arctic University of Norway, Tromsø, Norway; Nanoscopy Group, Department of Physics and Technology, University of Tromsø-The Arctic University of Norway, Tromsø, Norway.
| | - Athanasios Kournoutis
- Autophagy Research Group, Department of Medical Biology, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Hanne Britt Brenne
- Autophagy Research Group, Department of Medical Biology, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Trond Lamark
- Autophagy Research Group, Department of Medical Biology, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Terje Johansen
- Autophagy Research Group, Department of Medical Biology, University of Tromsø-The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
22
|
Basu B, Kal S, Karmakar S, Basu M, Ghosh MK. E3 ubiquitin ligases in lung cancer: Emerging insights and therapeutic opportunities. Life Sci 2024; 336:122333. [PMID: 38061537 DOI: 10.1016/j.lfs.2023.122333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023]
Abstract
Aim In this review, we have attempted to provide the readers with an updated account of the role of a family of proteins known as E3 ligases in different aspects of lung cancer progression, along with insights into the deregulation of expression of these proteins during lung cancer. A detailed account of the therapeutic strategies involving E3 ligases that have been developed or currently under development has also been provided in this review. MATERIALS AND METHODS: The review article employs extensive literature search, along with differential gene expression analysis of lung cancer associated E3 ligases using the DESeq2 package in R, and the Gene Expression Profiling Interactive Analysis (GEPIA) database (http://gepia.cancer-pku.cn/). Protein expression analysis of CPTAC lung cancer samples was carried out using the UALCAN webtool (https://ualcan.path.uab.edu/index.html). Assessment of patient overall survival (OS) in response to high and low expression of selected E3 ligases was performed using the online Kaplan-Meier plotter (https://kmplot.com/analysis/index.php?p=background). KEY FINDINGS: SIGNIFICANCE: The review provides an in-depth understanding of the role of E3 ligases in lung cancer progression and an up-to-date account of the different therapeutic strategies targeting oncogenic E3 ligases for improved lung cancer management.
Collapse
Affiliation(s)
- Bhaskar Basu
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Satadeepa Kal
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Subhajit Karmakar
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, South 24 Parganas, PIN -743372, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
23
|
Li T, Lei Z, Wei L, Yang K, Shen J, Hu L. Tumor Necrosis Factor Receptor-Associated Factor 6 and Human Cancer: A Systematic Review of Mechanistic Insights, Functional Roles, and Therapeutic Potential. J Cancer 2024; 15:560-576. [PMID: 38169510 PMCID: PMC10758021 DOI: 10.7150/jca.90059] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024] Open
Abstract
Cancer imposes a substantial burden and its incidence is persistently increasing in recent years. Cancer treatment has been difficult due to its inherently complex nature. The tumor microenvironment (TME) includes a complex interplay of cellular and noncellular constituents surrounding neoplastic cells, intricately contributing to the tumor initiation and progression. This critical aspect of tumors involves a complex interplay among cancer, stromal, and inflammatory cells, forming an inflammatory TME that promotes tumorigenesis across all stages. Tumor necrosis factor receptor-associated factor 6 (TRAF6) is implicated in modulating various critical processes linked to tumor pathogenesis, including but not limited to the regulation of tumor cell proliferation, invasion, migration, and survival. Furthermore, TRAF6 prominently contributes to various immune and inflammatory pathways. The TRAF6-mediated activation of nuclear factor (NF)-κB in immune cells governs the production of proinflammatory cytokines. These cytokines sustain inflammation and stimulate tumor growth by activating NF-κB in tumor cells. In this review, we discuss various types of tumors, including gastrointestinal cancers, urogenital cancers, breast cancer, lung cancer, head and neck squamous cell carcinoma, uterine fibroids, and glioma. Employing a rigorous and systematic approach, we comprehensively evaluate the functional repertoire and potential roles of TRAF6 in various cancer types, thus highlighting TRAF6 as a compelling and emerging therapeutic target worthy of further investigation and development.
Collapse
Affiliation(s)
- Tingting Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou 215123, China
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Zhe Lei
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou 215006 Jiangsu, China
| | - Lin Wei
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Jinhong Shen
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai Jiaotong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200233, China
| | - Lin Hu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou 215123, China
| |
Collapse
|
24
|
Wang W, Yang Y, Shi Y, Xiang T, Xie J. E3 ubiquitin ligase STUB1 affects the mTORC1 pathway through p62 and participates in regulating the differentiation of follicular helper T cells in rheumatoid arthritis. Clin Immunol 2023; 255:109736. [PMID: 37604355 DOI: 10.1016/j.clim.2023.109736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 08/23/2023]
Abstract
OBJECTIVE The abnormal expansion of Tfh cells plays a key role in chronic inflammation of RA joint. We speculated that STUB1 is an important regulatory factor in promoting the differentiation of Tfh cells in RA. CONTENT AND METHODS The proportion of Tfh cells and the level of STUB1 in Tfh cells was measured. CD4+T cells were isolated from PBMCs of RA patients, and the percentage of Tfh cells was detected after up- or down-regulating the expression of STUB1. The levels of mTORC1 pathway activator p-mTOR and p-S6K were measured by Western blot. The ubiquitination of p62 by STUB1 and its ubiquitination type as well as the activation of mTORC1 was detected in vitro, and the activation of the mTORC1 and the differentiation of Tfh cells was detected in STUB1-upregulated CD4+ T cells with overexpressed p62. RESULTS The level of STUB1 is elevated in Tfh cells of patients. Up-regulation of STUB1 can promote the differentiation of Tfh cells. STUB1 promotes the degradation of p62 via K48-linked ubiquitination and promotes the activation of mTORC1. Overexpression of p62 can reverse the promoting effect of STUB1 on the differentiation of Tfh cells and the activation of mTORC1. CONCLUSION STUB1 can promote the differentiation of Tfh cells in RA by mediating the activation of mTORC1 pathway through ubiquitination of p62.
Collapse
Affiliation(s)
- Wen Wang
- Department of Rheumatology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yachen Yang
- Department of Rheumatology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yujia Shi
- Department of Rheumatology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ting Xiang
- Department of Rheumatology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jianmin Xie
- Department of Rheumatology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
25
|
Fallone L, Walzer T, Marçais A. Signaling Pathways Leading to mTOR Activation Downstream Cytokine Receptors in Lymphocytes in Health and Disease. Int J Mol Sci 2023; 24:12736. [PMID: 37628917 PMCID: PMC10454121 DOI: 10.3390/ijms241612736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
CD8+ T cells and Natural Killer (NK) cells are cytotoxic lymphocytes important in the response to intracellular pathogens and cancer. Their activity depends on the integration of a large set of intracellular and environmental cues, including antigenic signals, cytokine stimulation and nutrient availability. This integration is achieved by signaling hubs, such as the mechanistic target of rapamycin (mTOR). mTOR is a conserved protein kinase that controls cellular growth and metabolism in eukaryotic cells and, therefore, is essential for lymphocyte development and maturation. However, our current understanding of mTOR signaling comes mostly from studies performed in transformed cell lines, which constitute a poor model for comprehending metabolic pathway regulation. Therefore, it is only quite recently that the regulation of mTOR in primary cells has been assessed. Here, we review the signaling pathways leading to mTOR activation in CD8+ T and NK cells, focusing on activation by cytokines. We also discuss how this knowledge can contribute to immunotherapy development, particularly for cancer treatment.
Collapse
Affiliation(s)
| | | | - Antoine Marçais
- CIRI—Centre International de Recherche en Infectiologie (Team Lyacts), Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France; (L.F.); (T.W.)
| |
Collapse
|
26
|
Ning B, Hang S, Zhang W, Mao C, Li D. An update on the bridging factors connecting autophagy and Nrf2 antioxidant pathway. Front Cell Dev Biol 2023; 11:1232241. [PMID: 37621776 PMCID: PMC10445655 DOI: 10.3389/fcell.2023.1232241] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Macroautophagy/autophagy is a lysosome-dependent catabolic pathway for the degradation of intracellular proteins and organelles. Autophagy dysfunction is related to many diseases, including lysosomal storage diseases, cancer, neurodegenerative diseases, cardiomyopathy, and chronic metabolic diseases, in which increased reactive oxygen species (ROS) levels are also observed. ROS can randomly oxidize proteins, lipids, and DNA, causing oxidative stress and damage. Cells have developed various antioxidant pathways to reduce excessive ROS and maintain redox homeostasis. Treatment targeting only one aspect of diseases with autophagy dysfunction and oxidative stress shows very limited effects. Herein, identifying the bridging factors that can regulate both autophagy and antioxidant pathways is beneficial for dual-target therapies. This review intends to provide insights into the current identified bridging factors that connect autophagy and Nrf2 antioxidant pathway, as well as their tight interconnection with each other. These factors could be potential dual-purpose targets for the treatment of diseases implicated in both autophagy dysfunction and oxidative stress.
Collapse
Affiliation(s)
- Baike Ning
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Shuqi Hang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Wenhe Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Caiwen Mao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Dan Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
27
|
Nita M, Grzybowski A. Antioxidative Role of Heterophagy, Autophagy, and Mitophagy in the Retina and Their Association with the Age-Related Macular Degeneration (AMD) Etiopathogenesis. Antioxidants (Basel) 2023; 12:1368. [PMID: 37507908 PMCID: PMC10376332 DOI: 10.3390/antiox12071368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/09/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Age-related macular degeneration (AMD), an oxidative stress-linked neurodegenerative disease, leads to irreversible damage of the central retina and severe visual impairment. Advanced age and the long-standing influence of oxidative stress and oxidative cellular damage play crucial roles in AMD etiopathogenesis. Many authors emphasize the role of heterophagy, autophagy, and mitophagy in maintaining homeostasis in the retina. Relevantly modifying the activity of both macroautophagy and mitophagy pathways represents one of the new therapeutic strategies in AMD. Our review provides an overview of the antioxidative roles of heterophagy, autophagy, and mitophagy and presents associations between dysregulations of these molecular mechanisms and AMD etiopathogenesis. The authors performed an extensive analysis of the literature, employing PubMed and Google Scholar, complying with the 2013-2023 period, and using the following keywords: age-related macular degeneration, RPE cells, reactive oxygen species, oxidative stress, heterophagy, autophagy, and mitophagy. Heterophagy, autophagy, and mitophagy play antioxidative roles in the retina; however, they become sluggish and dysregulated with age and contribute to AMD development and progression. In the retina, antioxidative roles also play in RPE cells, NFE2L2 and PGC-1α proteins, NFE2L2/PGC-1α/ARE signaling cascade, Nrf2 factor, p62/SQSTM1/Keap1-Nrf2/ARE pathway, circulating miRNAs, and Yttrium oxide nanoparticles performed experimentally in animal studies.
Collapse
Affiliation(s)
- Małgorzata Nita
- Domestic and Specialized Medicine Centre "Dilmed", 40-231 Katowice, Poland
| | - Andrzej Grzybowski
- Institute for Research in Ophthalmology, Foundation for Ophthalmology Development, Gorczyczewskiego 2/3, 61-553 Poznań, Poland
| |
Collapse
|
28
|
Lee CS, Hwang G, Nam YW, Hwang CH, Song J. IKK-mediated TRAF6 and RIPK1 interaction stifles cell death complex assembly leading to the suppression of TNF-α-induced cell death. Cell Death Differ 2023; 30:1575-1584. [PMID: 37085671 PMCID: PMC10244383 DOI: 10.1038/s41418-023-01161-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/23/2023] Open
Abstract
Tumor necrosis factor α (TNF-α) is a pro-inflammatory cytokine capable of inducing extrinsic apoptosis and necroptosis. Tumor necrosis factor receptor-associated factor 6 (TRAF6), an E3 ligase, is a member of the TRAF family of proteins, which mediates inflammatory signals by activating nuclear factor kappa B (NFкB) and mitogen-activated protein kinase (MAPK). Although the functions of TRAF6 have been identified, its role in TNF-α-induced cell death remains poorly understood. Here, we report that TRAF6 is a negative modulator of TNF-α-induced cell death but does not affect TNF-α-induced NFκB activation. TRAF6 deficiency accelerates both TNF-α-induced apoptosis and necroptosis; however, the acceleration can be reversed by reconstituting TRAF6 or TRAF6C70A, suggesting that E3 ligase activity is not required for this activity. Mechanistically, TRAF6 directly interacts with RIPK1 during TNF-α-induced cell death signaling, which prevents RIPK1 from interacting with components of the cell death complex such as itself, FADD or RIPK3. These processes suppress the assembly of the death complex. Notably, IKK was required for TRAF6 to interact with RIPK1. In vivo, Traf6-/- embryos exhibited higher levels of cell death in the liver but could be rescued by the simultaneous knockout of Tnf. Finally, TRAF6 knockdown xenografts were highly sensitive to necroptotic stimuli. We concluded that TRAF6 suppresses TNF-α-induced cell death in coordination with IKK complexes in vivo and in vitro by suppressing the assembly of cell death complex.
Collapse
Affiliation(s)
- Choong-Sil Lee
- Integrated OMICS for Biomedical Science, Yonsei University, Seoul, 03722, Korea
| | - Gyuho Hwang
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Young Woo Nam
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Chi Hyun Hwang
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Jaewhan Song
- Integrated OMICS for Biomedical Science, Yonsei University, Seoul, 03722, Korea.
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea.
| |
Collapse
|
29
|
Wang J, Xiang Y, Fan M, Fang S, Hua Q. The Ubiquitin-Proteasome System in Tumor Metabolism. Cancers (Basel) 2023; 15:cancers15082385. [PMID: 37190313 DOI: 10.3390/cancers15082385] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Metabolic reprogramming, which is considered a hallmark of cancer, can maintain the homeostasis of the tumor environment and promote the proliferation, survival, and metastasis of cancer cells. For instance, increased glucose uptake and high glucose consumption, known as the "Warburg effect," play an essential part in tumor metabolic reprogramming. In addition, fatty acids are harnessed to satisfy the increased requirement for the phospholipid components of biological membranes and energy. Moreover, the anabolism/catabolism of amino acids, such as glutamine, cystine, and serine, provides nitrogen donors for biosynthesis processes, development of the tumor inflammatory environment, and signal transduction. The ubiquitin-proteasome system (UPS) has been widely reported to be involved in various cellular biological activities. A potential role of UPS in the metabolic regulation of tumor cells has also been reported, but the specific regulatory mechanism has not been elucidated. Here, we review the role of ubiquitination and deubiquitination modification on major metabolic enzymes and important signaling pathways in tumor metabolism to inspire new strategies for the clinical treatment of cancer.
Collapse
Affiliation(s)
- Jie Wang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yuandi Xiang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Mengqi Fan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Shizhen Fang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qingquan Hua
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
30
|
Liang X, Yao J, Cui D, Zheng W, Liu Y, Lou G, Ye B, Shui L, Sun Y, Zhao Y, Zheng M. The TRAF2-p62 axis promotes proliferation and survival of liver cancer by activating mTORC1 pathway. Cell Death Differ 2023:10.1038/s41418-023-01164-7. [PMID: 37081115 DOI: 10.1038/s41418-023-01164-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/22/2023] Open
Abstract
TRAF2 (Tumor necrosis factor receptor-associated factor 2) is a dual function protein, acting as an adaptor protein and a ubiquitin E3 ligase, which plays an essential role in mediating the TNFα-NFκB signal pathway. Dysregulated expression of TRAF2 has been reported in a variety of human cancers. Whether and how TRAF2 regulates the growth of liver cancer cells remains elusive. The goal of this study is to investigate potential dysregulation of TRAF2 and its biological function in liver cancer, and to elucidate the underlying mechanism, leading to validation of TRAF2 as an attractive liver cancer target. Here, we reported TRAF2 is up-regulated in human liver cancer cell lines and tissues, and high TRAF2 expression is associated with a poor prognosis of HCC patients. Proteomics profiling along with Co-immunoprecipitation analysis revealed that p62 is a new substrate of TRAF2, which is subjected to TRAF2-induced polyubiquitination via the K63 linkage at the K420 residue. A strong negative correlation was found between the protein levels of p62 and TRAF2 in human HCC samples. TRAF2 depletion inhibited growth and survival of liver cancer cells both in vitro and in vivo by causing p62 accumulation, which is partially rescued by simultaneous p62 knockdown. Mechanistically, TRAF2-mediated p62 polyubiquitylation activates the mTORC1 by forming the p62-mTORC1-Rag complex, which facilitates the lysosome localization of mTORC1. TRAF2 depletion inhibited mTORC1 activity through the disruption of interaction between p62 and the mTORC1 complex. In conclusion, our study provides the proof-of-concept evidence that TRAF2 is a valid target for liver cancer.
Collapse
Affiliation(s)
- Xue Liang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China
| | - Jiping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China
| | - Danrui Cui
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Weiyang Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China
| | - Yanning Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China
| | - Guohua Lou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China
| | - Bingjue Ye
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China
| | - Liyan Shui
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China
| | - Yi Sun
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
- Cancer Institute of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Yongchao Zhao
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China.
| | - Min Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China.
| |
Collapse
|
31
|
Romano PS, Akematsu T, Besteiro S, Bindschedler A, Carruthers VB, Chahine Z, Coppens I, Descoteaux A, Alberto Duque TL, He CY, Heussler V, Le Roch KG, Li FJ, de Menezes JPB, Menna-Barreto RFS, Mottram JC, Schmuckli-Maurer J, Turk B, Tavares Veras PS, Salassa BN, Vanrell MC. Autophagy in protists and their hosts: When, how and why? AUTOPHAGY REPORTS 2023; 2:2149211. [PMID: 37064813 PMCID: PMC10104450 DOI: 10.1080/27694127.2022.2149211] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/15/2022] [Indexed: 03/12/2023]
Abstract
Pathogenic protists are a group of organisms responsible for causing a variety of human diseases including malaria, sleeping sickness, Chagas disease, leishmaniasis, and toxoplasmosis, among others. These diseases, which affect more than one billion people globally, mainly the poorest populations, are characterized by severe chronic stages and the lack of effective antiparasitic treatment. Parasitic protists display complex life-cycles and go through different cellular transformations in order to adapt to the different hosts they live in. Autophagy, a highly conserved cellular degradation process, has emerged as a key mechanism required for these differentiation processes, as well as other functions that are crucial to parasite fitness. In contrast to yeasts and mammals, protist autophagy is characterized by a modest number of conserved autophagy-related proteins (ATGs) that, even though, can drive the autophagosome formation and degradation. In addition, during their intracellular cycle, the interaction of these pathogens with the host autophagy system plays a crucial role resulting in a beneficial or harmful effect that is important for the outcome of the infection. In this review, we summarize the current state of knowledge on autophagy and other related mechanisms in pathogenic protists and their hosts. We sought to emphasize when, how, and why this process takes place, and the effects it may have on the parasitic cycle. A better understanding of the significance of autophagy for the protist life-cycle will potentially be helpful to design novel anti-parasitic strategies.
Collapse
Affiliation(s)
- Patricia Silvia Romano
- Laboratorio de Biología de Trypanosoma cruzi y de la célula hospedadora. Instituto de Histología y Embriología de Mendoza. Universidad Nacional de Cuyo. (IHEM-CONICET-UNCUYO). Facultad de Ciencias Médicas. Universidad Nacional de Cuyo. Av. Libertador 80 (5500), Mendoza, Argentina
| | - Takahiko Akematsu
- Department of Biosciences, College of Humanities and Sciences, Nihon University, Tokyo, Japan
| | | | | | - Vern B Carruthers
- Department of Microbiology and Immunology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Zeinab Chahine
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, USA
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology. Department of Molecular Microbiology and Immunology. Johns Hopkins Malaria Research Institute. Johns Hopkins University Bloomberg School of Public Health. Baltimore 21205, MD, USA
| | - Albert Descoteaux
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, QC
| | - Thabata Lopes Alberto Duque
- Autophagy Inflammation and Metabolism Center, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Cynthia Y He
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Volker Heussler
- Institute of Cell Biology.University of Bern. Baltzerstr. 4 3012 Bern
| | - Karine G Le Roch
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, USA
| | - Feng-Jun Li
- Department of Biological Sciences, National University of Singapore, Singapore
| | | | | | - Jeremy C Mottram
- York Biomedical Research Institute, Department of Biology, University of York, York, UK
| | | | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Patricia Sampaio Tavares Veras
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia
- National Institute of Science and Technology of Tropical Diseases - National Council for Scientific Research and Development (CNPq)
| | - Betiana Nebai Salassa
- Laboratorio de Biología de Trypanosoma cruzi y de la célula hospedadora. Instituto de Histología y Embriología de Mendoza. Universidad Nacional de Cuyo. (IHEM-CONICET-UNCUYO). Facultad de Ciencias Médicas. Universidad Nacional de Cuyo. Av. Libertador 80 (5500), Mendoza, Argentina
| | - María Cristina Vanrell
- Laboratorio de Biología de Trypanosoma cruzi y de la célula hospedadora. Instituto de Histología y Embriología de Mendoza. Universidad Nacional de Cuyo. (IHEM-CONICET-UNCUYO). Facultad de Ciencias Médicas. Universidad Nacional de Cuyo. Av. Libertador 80 (5500), Mendoza, Argentina
| |
Collapse
|
32
|
Paccosi E, Balzerano A, Proietti-De-Santis L. Interfering with the Ubiquitin-Mediated Regulation of Akt as a Strategy for Cancer Treatment. Int J Mol Sci 2023; 24:ijms24032809. [PMID: 36769122 PMCID: PMC9917864 DOI: 10.3390/ijms24032809] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The serine/threonine kinase Akt modulates the functions of numerous substrates, many of them being involved in cell proliferation and growth, metabolism, angiogenesis, resistance to hypoxia and migration. Akt is frequently deregulated in many types of human cancers, its overexpression or abnormal activation being associated with the increased proliferation and survival of cancer cells. A promising avenue for turning off the functionality of Akt is to either interfere with the K63-linked ubiquitination that is necessary for Akt membrane recruitment and activation or increase the K48-linked polyubiquitination that aims to target Akt to the proteasome for its degradation. Recent evidence indicates that targeting the ubiquitin proteasome system is effective for certain cancer treatments. In this review, the functions and roles of Akt in human cancer will be discussed, with a main focus on molecules and compounds that target various elements of the ubiquitination processes that regulate the activation and inactivation of Akt. Moreover, their possible and attractive implications for cancer therapy will be discussed.
Collapse
|
33
|
Tan CT, Soh NJH, Chang HC, Yu VC. p62/SQSTM1 in liver diseases: the usual suspect with multifarious identities. FEBS J 2023; 290:892-912. [PMID: 34882306 DOI: 10.1111/febs.16317] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/23/2021] [Accepted: 12/08/2021] [Indexed: 12/18/2022]
Abstract
p62/Sequestosome-1 (SQSTM1) is a selective autophagy receptor that recruits and delivers intracellular substrates for bulk clearance through the autophagy lysosomal pathway. Interestingly, p62 also serves as a signaling scaffold to participate in the regulation of multiple physiological processes, including oxidative stress response, metabolism, inflammation, and programmed cell death. Perturbation of p62 activity has been frequently found to be associated with the pathogenesis of many liver diseases. p62 has been identified as a critical component of protein aggregates in the forms of Mallory-Denk bodies (MDBs) or intracellular hyaline bodies (IHBs), which are known to be frequently detected in biopsy samples from alcoholic steatohepatitis (ASH), non-alcoholic steatohepatitis (NASH), and hepatocellular carcinoma (HCC) patients. Importantly, abundance of these p62 inclusion bodies is increasingly recognized as a biomarker for NASH and HCC. Although the level of p62 bodies seems to predict the progression and prognosis of these liver diseases, understanding of the underlying mechanisms by which p62 regulates and contributes to the development and progression of these diseases remains incomplete. In this review, we will focus on the function and regulation of p62, and its pathophysiological roles in the liver, by critically reviewing the findings from preclinical models that recapitulate the pathogenesis and manifestation of these liver diseases in humans. In addition, we will also explore the suitability of p62 as a predictive biomarker and a potential therapeutic target for the treatment of liver diseases, including NASH and HCC, as well as recent development of small-molecule compounds for targeting the p62 signaling axis.
Collapse
Affiliation(s)
- Chong Teik Tan
- Department of Pharmacy, National University of Singapore, Singapore
| | | | - Hao-Chun Chang
- Department of Pharmacy, National University of Singapore, Singapore
| | - Victor C Yu
- Department of Pharmacy, National University of Singapore, Singapore
| |
Collapse
|
34
|
Patra S, Patil S, Klionsky DJ, Bhutia SK. Lysosome signaling in cell survival and programmed cell death for cellular homeostasis. J Cell Physiol 2023; 238:287-305. [PMID: 36502521 DOI: 10.1002/jcp.30928] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/06/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022]
Abstract
Recent developments in lysosome biology have transformed our view of lysosomes from static garbage disposals that can also act as suicide bags to decidedly dynamic multirole adaptive operators of cellular homeostasis. Lysosome-governed signaling pathways, proteins, and transcription factors equilibrate the rate of catabolism and anabolism (autophagy to lysosomal biogenesis and metabolite pool maintenance) by sensing cellular metabolic status. Lysosomes also interact with other organelles by establishing contact sites through which they exchange cellular contents. Lysosomal function is critically assessed by lysosomal positioning and motility for cellular adaptation. In this setting, mechanistic target of rapamycin kinase (MTOR) is the chief architect of lysosomal signaling to control cellular homeostasis. Notably, lysosomes can orchestrate explicit cell death mechanisms, such as autophagic cell death and lysosomal membrane permeabilization-associated regulated necrotic cell death, to maintain cellular homeostasis. These lines of evidence emphasize that the lysosomes serve as a central signaling hub for cellular homeostasis.
Collapse
Affiliation(s)
- Srimanta Patra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Shankargouda Patil
- Division of Oral Pathology, Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Daniel J Klionsky
- Department of Molecular, Cellular and Developmental Biology, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Sujit K Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| |
Collapse
|
35
|
Yin Y, Zhou Y, Yang X, Xu Z, Yang B, Luo P, Yan H, He Q. The participation of non-canonical autophagic proteins in the autophagy process and their potential as therapeutic targets. Expert Opin Ther Targets 2023; 27:71-86. [PMID: 36735300 DOI: 10.1080/14728222.2023.2177151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Autophagy is a conserved catabolic process that helps recycle intracellular components to maintain homeostasis. The completion of autophagy requires the synergistic effect of multiple canonical autophagic proteins. Defects in autophagy machinery have been reported to promote diseases, rendering autophagy a bone fide health-modifying agent. However, the clinical implication of canonical pan-autophagic activators or inhibitors has often led to undesirable side effects, making it urgent to find a safer autophagy-related therapeutic target. The discovery of non-canonical autophagic proteins has been found to specifically affect the development of diseases without causing a universal impact on autophagy and has shed light on finding a safer way to utilize autophagy in the therapeutic context. AREAS COVERED This review summarizes recently discovered non-canonical autophagic proteins, how these proteins influence autophagy, and their potential therapeutic role in the disease due to their interaction with autophagy. EXPERT OPINION Several therapies have been studied thus far and continued research is needed to identify the potential that non-canonical autophagic proteins have for treating certain diseases. In the meantime, continue to uncover new non-canonical autophagic proteins and examine which are likely to have therapeutic implications.
Collapse
Affiliation(s)
- Yiming Yin
- College of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yourong Zhou
- College of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaochun Yang
- College of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhifei Xu
- College of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Peihua Luo
- College of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang, China.,Department of Pharmacology and Toxicology, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hao Yan
- College of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qiaojun He
- College of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang, China.,Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
36
|
Sap KA, Geijtenbeek KW, Schipper-Krom S, Guler AT, Reits EA. Ubiquitin-modifying enzymes in Huntington's disease. Front Mol Biosci 2023; 10:1107323. [PMID: 36926679 PMCID: PMC10013475 DOI: 10.3389/fmolb.2023.1107323] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/16/2023] [Indexed: 02/10/2023] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by a CAG repeat expansion in the N-terminus of the HTT gene. The CAG repeat expansion translates into a polyglutamine expansion in the mutant HTT (mHTT) protein, resulting in intracellular aggregation and neurotoxicity. Lowering the mHTT protein by reducing synthesis or improving degradation would delay or prevent the onset of HD, and the ubiquitin-proteasome system (UPS) could be an important pathway to clear the mHTT proteins prior to aggregation. The UPS is not impaired in HD, and proteasomes can degrade mHTT entirely when HTT is targeted for degradation. However, the mHTT protein is differently ubiquitinated when compared to wild-type HTT (wtHTT), suggesting that the polyQ expansion affects interaction with (de) ubiquitinating enzymes and subsequent targeting for degradation. The soluble mHTT protein is associated with several ubiquitin-modifying enzymes, and various ubiquitin-modifying enzymes have been identified that are linked to Huntington's disease, either by improving mHTT turnover or affecting overall homeostasis. Here we describe their potential mechanism of action toward improved mHTT targeting towards the proteostasis machinery.
Collapse
Affiliation(s)
- Karen A Sap
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Karlijne W Geijtenbeek
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Sabine Schipper-Krom
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Arzu Tugce Guler
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Eric A Reits
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
37
|
Fang J, Dong C, Xiong S. Mycobacterium tuberculosis Rv0790c inhibits the cellular autophagy at its early stage and facilitates mycobacterial survival. Front Cell Infect Microbiol 2022; 12:1014897. [DOI: 10.3389/fcimb.2022.1014897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
Rv0790c is predicted to be a conserved hypothetical protein encoded by Mycobacterium tuberculosis (Mtb). However, its function in Mtb infection remains largely unknown. In this study, we found that Rv0790c promoted bacillary survival of M. smegmatis (Ms), both in vitro and in vivo. The bacillary burden of Ms exogenously expressing Rv0790c increased, whereas in Rv0790c-knockouts the bacillary burden decreased in infected macrophages. Multiple cellular processes were analyzed to explore the underlying mechanisms. We found that neither inflammatory regulation nor apoptotic induction were responsible for the promotion of bacillary survival mediated by Rv0790c. Interestingly, we found that Rv0790c facilitates mycobacterial survival through cellular autophagy at its early stage. Immunoprecipitation assay of autophagy initiation-related proteins indicated that Rv0790c interacted with mTOR and enhanced its activity, as evidenced by the increased phosphorylation level of mTOR downstream substrates, ULK-1, at Ser757 and P70S6K, at Thr389. Our study uncovers a novel autophagy suppressor encoded by mycobacterial Rv0790c, which inhibits the early stage of cellular autophagy induction upon Mtb infection and takes an important role in maintaining intracellular mycobacterial survival. It may aid in understanding the mechanism of Mtb evasion of host cellular degradation, as well as hold the potential to develop new targets for the prevention and treatment of tuberculosis.
Collapse
|
38
|
Zhang Y, Qi J, Yan D, Deng Y, Zhang J, Luo Q. HNE Induces the Hyperexpression of MUC5AC in Chronic Rhinosinusitis With Nasal Polyps by Activating the TRAF6/Autophagy Regulatory Axis. Am J Rhinol Allergy 2022; 36:816-826. [PMID: 35915986 DOI: 10.1177/19458924221116939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Hypersecretion of mucin 5AC (MUC5AC) is a prominent feature of chronic rhinosinusitis with nasal polyps (CRSwNP) and autophagy plays a pivotal role in this process. TNF receptor-associated factor 6 (TRAF6) functions as a signal transducer in many inflammation diseases, whereas the correlation between TRAF6 and autophagy in CRSwNP remains unclear. OBJECTIVE To investigate the role of TRAF6 in the human neutrophil elastase (HNE)-induced autophagy and mucin MUC5AC over-expression in CRSwNP. METHODS Tissue specimens were obtained from control subjects and patients with CRSwNP. The relationships between HNE, TRAF6, autophagy, and MUC5AC were investigated. The effect of TRAF6 on HNE-mediated autophagy and hypersecretion of MUC5AC was assessed by in-vitro culture of HNECs treated with human recombinant HNE. RESULTS Patients with CRSwNP had more protein expression of HNE, MUC5AC, TRAF6, and light chain (LC3B), and increased levels of Beclin-1(BECN1) and autophagy-related gene 5 (ATG5) in mRNA level. Treatment of nasal epithelial cells with recombinant HNE induced the upregulation of TRAF6, autophagy, and MUC5AC. Alternatively, si-TRAF6 or autophagy inhibitor treatment mitigates the hyperexpression of MUC5AC before incubating with recombinant HNE. CONCLUSION HNE promotes autophagy through TRAF6, resulting in hyperexpression of MUC5AC in CRSwNP.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Otolaryngology-Head and Neck Surgery, 117970the First Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Jing Qi
- Department of Otolaryngology-Head and Neck Surgery, 117970the First Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Danqing Yan
- Department of Otolaryngology-Head and Neck Surgery, 117970the First Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Yangquan Deng
- Department of Otolaryngology-Head and Neck Surgery, 117970the First Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Jian Zhang
- Department of Otolaryngology-Head and Neck Surgery, 117970the First Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Qing Luo
- Department of Otolaryngology-Head and Neck Surgery, 117970the First Affiliated Hospital of Nanchang University, Nanchang, PR China
| |
Collapse
|
39
|
Sun D, Xu J, Zhang W, Song C, Gao C, He Y, Shang Y. Negative regulator NLRC3: Its potential role and regulatory mechanism in immune response and immune-related diseases. Front Immunol 2022; 13:1012459. [PMID: 36341336 PMCID: PMC9630602 DOI: 10.3389/fimmu.2022.1012459] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
Abstract
NLRC3 is a member of the pattern recognition receptors nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) family, and plays a pivotal regulatory role in modulating the activation of immune cells. In macrophages, NLRC3 inhibits the activation of the NF-κB signaling pathway, the STING/TBK1 signaling pathway, and the formation of the inflammasome. In the context of T cells immune response, NLRC3 prevents the activation of T cells by regulating the function of dendritic cells and directly influencing the function of T cells. Different from other pattern recognition receptors, NLRC3 is more closely associated with regulatory activity than pathogens recognition, it influences the fates of cells, for example, prevents proliferation, promotes apoptosis and inhibits pyroptosis. These cellular functions regulated by NLRC3 are involved in the development processes of a variety of diseases, such as infectious disease, sterile inflammatory diseases, and cancer. However, its characteristics, function and regulatory mechanism in immune response and immune-related diseases have not been addressed fully. In this review, we elaborate the potential roles of NLRC3 from several different levels, include molecular mechanism, cellular functions in the immune-related diseases.
Collapse
Affiliation(s)
- Deyi Sun
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiqian Xu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jiqian Xu, ; You Shang,
| | - Wanying Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaoying Song
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenggang Gao
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yajun He
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jiqian Xu, ; You Shang,
| |
Collapse
|
40
|
Role of K63-linked ubiquitination in cancer. Cell Death Dis 2022; 8:410. [PMID: 36202787 PMCID: PMC9537175 DOI: 10.1038/s41420-022-01204-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/16/2022] [Accepted: 09/26/2022] [Indexed: 11/08/2022]
Abstract
Ubiquitination is a critical type of post-translational modifications, of which K63-linked ubiquitination regulates interaction, translocation, and activation of proteins. In recent years, emerging evidence suggest involvement of K63-linked ubiquitination in multiple signaling pathways and various human diseases including cancer. Increasing number of studies indicated that K63-linked ubiquitination controls initiation, development, invasion, metastasis, and therapy of diverse cancers. Here, we summarized molecular mechanisms of K63-linked ubiquitination dictating different biological activities of tumor and highlighted novel opportunities for future therapy targeting certain regulation of K63-linked ubiquitination in tumor.
Collapse
|
41
|
Dao TP, Yang Y, Presti MF, Cosgrove MS, Hopkins JB, Ma W, Loh SN, Castañeda CA. Mechanistic insights into enhancement or inhibition of phase separation by different polyubiquitin chains. EMBO Rep 2022; 23:e55056. [PMID: 35762418 PMCID: PMC9346500 DOI: 10.15252/embr.202255056] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 12/03/2022] Open
Abstract
Ubiquitin‐binding shuttle UBQLN2 mediates crosstalk between proteasomal degradation and autophagy, likely via interactions with K48‐ and K63‐linked polyubiquitin chains, respectively. UBQLN2 comprises self‐associating regions that drive its homotypic liquid–liquid phase separation (LLPS). Specific interactions between one of these regions and ubiquitin inhibit UBQLN2 LLPS. Here, we show that, unlike ubiquitin, the effects of multivalent polyubiquitin chains on UBQLN2 LLPS are highly dependent on chain types. Specifically, K11‐Ub4 and K48‐Ub4 chains generally inhibit UBQLN2 LLPS, whereas K63‐Ub4, M1‐Ub4 chains, and a designed tetrameric ubiquitin construct significantly enhance LLPS. We demonstrate that these opposing effects stem from differences in chain conformations but not in affinities between chains and UBQLN2. Chains with extended conformations and increased accessibility to the ubiquitin‐binding surface promote UBQLN2 LLPS by enabling a switch between homotypic to partially heterotypic LLPS that is driven by both UBQLN2 self‐interactions and interactions between multiple UBQLN2 units with each polyubiquitin chain. Our study provides mechanistic insights into how the structural and conformational properties of polyubiquitin chains contribute to heterotypic LLPS with ubiquitin‐binding shuttles and adaptors.
Collapse
Affiliation(s)
- Thuy P Dao
- Departments of Biology and Chemistry Syracuse University Syracuse NY USA
| | - Yiran Yang
- Department of Chemistry Syracuse University Syracuse NY USA
| | - Maria F Presti
- Department of Biochemistry and Molecular Biology SUNY Upstate Medical University Syracuse NY USA
| | - Michael S Cosgrove
- Department of Biochemistry and Molecular Biology SUNY Upstate Medical University Syracuse NY USA
| | - Jesse B Hopkins
- The Biophysics Collaborative Access Team (BioCAT), Department of Biological Sciences Illinois Institute of Technology Chicago IL USA
| | - Weikang Ma
- The Biophysics Collaborative Access Team (BioCAT), Department of Biological Sciences Illinois Institute of Technology Chicago IL USA
| | - Stewart N Loh
- Department of Biochemistry and Molecular Biology SUNY Upstate Medical University Syracuse NY USA
| | - Carlos A Castañeda
- Departments of Biology and Chemistry Syracuse University Syracuse NY USA
- Interdisciplinary Neuroscience Program Syracuse University Syracuse NY USA
| |
Collapse
|
42
|
Cangelosi AL, Puszynska AM, Roberts JM, Armani A, Nguyen TP, Spinelli JB, Kunchok T, Wang B, Chan SH, Lewis CA, Comb WC, Bell GW, Helman A, Sabatini DM. Zonated leucine sensing by Sestrin-mTORC1 in the liver controls the response to dietary leucine. Science 2022; 377:47-56. [PMID: 35771919 PMCID: PMC10049859 DOI: 10.1126/science.abi9547] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) kinase controls growth in response to nutrients, including the amino acid leucine. In cultured cells, mTORC1 senses leucine through the leucine-binding Sestrin proteins, but the physiological functions and distribution of Sestrin-mediated leucine sensing in mammals are unknown. We find that mice lacking Sestrin1 and Sestrin2 cannot inhibit mTORC1 upon dietary leucine deprivation and suffer a rapid loss of white adipose tissue (WAT) and muscle. The WAT loss is driven by aberrant mTORC1 activity and fibroblast growth factor 21 (FGF21) production in the liver. Sestrin expression in the liver lobule is zonated, accounting for zone-specific regulation of mTORC1 activity and FGF21 induction by leucine. These results establish the mammalian Sestrins as physiological leucine sensors and reveal a spatial organization to nutrient sensing by the mTORC1 pathway.
Collapse
Affiliation(s)
- Andrew L. Cangelosi
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anna M. Puszynska
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Justin M. Roberts
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Andrea Armani
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Thao P. Nguyen
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jessica B. Spinelli
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tenzin Kunchok
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Brianna Wang
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Sze Ham Chan
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Caroline A. Lewis
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - William C. Comb
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - George W. Bell
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Aharon Helman
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - David M. Sabatini
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
43
|
Hou L, Du J, Ren Q, Zhu L, Zhao X, Kong X, Gu W, Wang L, Meng Q. Ubiquitin-modified proteome analysis of Eriocheir sinensis hemocytes during Spiroplasma eriocheiris infection. FISH & SHELLFISH IMMUNOLOGY 2022; 125:109-119. [PMID: 35500876 DOI: 10.1016/j.fsi.2022.04.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
Spiroplasma eriocheiris, the pathogen of Eriocheir sinensis tremor disease (TD), has bring a huge economic loss to China aquaculture. The hemocytes of crab as the first target cells of S. eriocheiris, but the interactive relationship between the E. sinensis and this pathogen not particularly clear. The present study is the first time to analysis the role of protein ubiquitination in the process of E. sinensis hemocytes response S. eriocheiris infection. By applying label-free quantitative liquid chromatography with tandem mass spectrometry proteomics, 950 lysine ubiquitination sites and 803 ubiquitination peptides on 458 proteins were identified, of which 48 ubiquitination sites on 40 proteins were quantified as significantly changed after the S. eriocheiris infection. Bioinformatics analysis of ubiquitination different proteins suggested many biological process and pathways were participated in the interaction between S. eriocheiris and host cell, such as ubiquitin system, endocytosis, prophenoloxidase system (proPO system), cell apoptosis, glycolysis. Our study can enhance our understanding of interaction between the crab and S. eriocheiris, and also provides basis to study the role of protein ubiquitination in other crustacean innate immune system.
Collapse
Affiliation(s)
- Libo Hou
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Jie Du
- Animal Husbandry and Veterinary College, Jiangsu Vocational College of Agriculture and Forestry, Jurong, Jiangsu, 212400, China
| | - Qiulin Ren
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Lei Zhu
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Xianliang Zhao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Xianghui Kong
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Wei Gu
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, 210046, China
| | - Li Wang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China.
| | - Qingguo Meng
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, 210046, China.
| |
Collapse
|
44
|
Phalke S, Rivera-Correa J, Jenkins D, Flores Castro D, Giannopoulou E, Pernis AB. Molecular mechanisms controlling age-associated B cells in autoimmunity. Immunol Rev 2022; 307:79-100. [PMID: 35102602 DOI: 10.1111/imr.13068] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/11/2022]
Abstract
Age-associated B cells (ABCs) have emerged as critical components of immune responses. Their inappropriate expansion and differentiation have increasingly been linked to the pathogenesis of autoimmune disorders, aging-associated diseases, and infections. ABCs exhibit a distinctive phenotype and, in addition to classical B cell markers, often express the transcription factor T-bet and myeloid markers like CD11c; hence, these cells are also commonly known as CD11c+ T-bet+ B cells. Formation of ABCs is promoted by distinctive combinations of innate and adaptive signals. In addition to producing antibodies, these cells display antigen-presenting and proinflammatory capabilities. It is becoming increasingly appreciated that the ABC compartment exhibits a high degree of heterogeneity, plasticity, and sex-specific regulation and that ABCs can differentiate into effector progeny via several routes particularly in autoimmune settings. In this review, we will discuss the initial insights that have been obtained on the molecular machinery that controls ABCs and we will highlight some of the unique aspects of this control system that may enable ABCs to fulfill their distinctive role in immune responses. Given the expanding array of autoimmune disorders and pathophysiological settings in which ABCs are being implicated, a deeper understanding of this machinery could have important and broad therapeutic implications for the successful, albeit daunting, task of targeting these cells.
Collapse
Affiliation(s)
- Swati Phalke
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Juan Rivera-Correa
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Daniel Jenkins
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Danny Flores Castro
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Evgenia Giannopoulou
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York, USA
- Biological Sciences Department, New York City College of Technology, City University of New York, Brooklyn, New York, USA
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Alessandra B Pernis
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
- Department of Medicine, Weill Cornell Medicine, New York, New York, USA
- Immunology & Microbial Pathogenesis, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
45
|
Zheng L, Wei F, Li G. The crosstalk between bacteria and host autophagy: host defense or bacteria offense. J Microbiol 2022; 60:451-460. [DOI: 10.1007/s12275-022-2009-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/18/2022] [Accepted: 03/29/2022] [Indexed: 12/26/2022]
|
46
|
Wang H, Yang L, Liu M, Luo J. Protein post-translational modifications in the regulation of cancer hallmarks. Cancer Gene Ther 2022; 30:529-547. [PMID: 35393571 DOI: 10.1038/s41417-022-00464-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/28/2022] [Accepted: 03/18/2022] [Indexed: 12/12/2022]
Abstract
Posttranslational modifications (PTMs) of proteins, the major mechanism of protein function regulation, play important roles in regulating a variety of cellular physiological and pathological processes. Although the classical PTMs, such as phosphorylation, acetylation, ubiquitination and methylation, have been well studied, the emergence of many new modifications, such as succinylation, hydroxybutyrylation, and lactylation, introduces a new layer to protein regulation, leaving much more to be explored and wide application prospects. In this review, we will provide a broad overview of the significant roles of PTMs in regulating human cancer hallmarks through selecting a diverse set of examples, and update the current advances in the therapeutic implications of these PTMs in human cancer.
Collapse
Affiliation(s)
- Haiying Wang
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China.
| | - Liqian Yang
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Minghui Liu
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, 100191, Beijing, China
| | - Jianyuan Luo
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China. .,Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, 100191, Beijing, China.
| |
Collapse
|
47
|
S-Nitrosylation of p62 Inhibits Autophagic Flux to Promote α-Synuclein Secretion and Spread in Parkinson's Disease and Lewy Body Dementia. J Neurosci 2022; 42:3011-3024. [PMID: 35169022 PMCID: PMC8985870 DOI: 10.1523/jneurosci.1508-21.2022] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 11/21/2022] Open
Abstract
Dysregulation of autophagic pathways leads to accumulation of abnormal proteins and damaged organelles in many neurodegenerative disorders, including Parkinson's disease (PD) and Lewy body dementia (LBD). Autophagy-related dysfunction may also trigger secretion and spread of misfolded proteins, such as α-synuclein (α-syn), the major misfolded protein found in PD/LBD. However, the mechanism underlying these phenomena remains largely unknown. Here, we used cell-based models, including human induced pluripotent stem cell-derived neurons, CRISPR/Cas9 technology, and male transgenic PD/LBD mice, plus vetting in human postmortem brains (both male and female). We provide mechanistic insight into this pathologic pathway. We find that aberrant S-nitrosylation of the autophagic adaptor protein p62 causes inhibition of autophagic flux and intracellular buildup of misfolded proteins, with consequent secretion resulting in cell-to-cell spread. Thus, our data show that pathologic protein S-nitrosylation of p62 represents a critical factor not only for autophagic inhibition and demise of individual neurons, but also for α-syn release and spread of disease throughout the nervous system.SIGNIFICANCE STATEMENT In Parkinson's disease and Lewy body dementia, dysfunctional autophagy contributes to accumulation and spread of aggregated α-synuclein. Here, we provide evidence that protein S-nitrosylation of p62 inhibits autophagic flux, contributing to α-synuclein aggregation and spread.
Collapse
|
48
|
Gundelfinger ED, Karpova A, Pielot R, Garner CC, Kreutz MR. Organization of Presynaptic Autophagy-Related Processes. Front Synaptic Neurosci 2022; 14:829354. [PMID: 35368245 PMCID: PMC8968026 DOI: 10.3389/fnsyn.2022.829354] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
Brain synapses pose special challenges on the quality control of their protein machineries as they are far away from the neuronal soma, display a high potential for plastic adaptation and have a high energy demand to fulfill their physiological tasks. This applies in particular to the presynaptic part where neurotransmitter is released from synaptic vesicles, which in turn have to be recycled and refilled in a complex membrane trafficking cycle. Pathways to remove outdated and damaged proteins include the ubiquitin-proteasome system acting in the cytoplasm as well as membrane-associated endolysosomal and the autophagy systems. Here we focus on the latter systems and review what is known about the spatial organization of autophagy and endolysomal processes within the presynapse. We provide an inventory of which components of these degradative systems were found to be present in presynaptic boutons and where they might be anchored to the presynaptic apparatus. We identify three presynaptic structures reported to interact with known constituents of membrane-based protein-degradation pathways and therefore may serve as docking stations. These are (i) scaffolding proteins of the cytomatrix at the active zone, such as Bassoon or Clarinet, (ii) the endocytic machinery localized mainly at the peri-active zone, and (iii) synaptic vesicles. Finally, we sketch scenarios, how presynaptic autophagic cargos are tagged and recruited and which cellular mechanisms may govern membrane-associated protein turnover in the presynapse.
Collapse
Affiliation(s)
- Eckart D. Gundelfinger
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Institute of Pharmacology and Toxicology, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Anna Karpova
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Rainer Pielot
- Institute of Pharmacology and Toxicology, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Craig C. Garner
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Michael R. Kreutz
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- Center for Molecular Neurobiology (ZMNH), University Hospital Hamburg-Eppendorf, Hamburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| |
Collapse
|
49
|
Ubiquitination-Proteasome System (UPS) and Autophagy Two Main Protein Degradation Machineries in Response to Cell Stress. Cells 2022; 11:cells11050851. [PMID: 35269473 PMCID: PMC8909305 DOI: 10.3390/cells11050851] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 02/07/2023] Open
Abstract
In response to environmental stimuli, cells make a series of adaptive changes to combat the injury, repair the damage, and increase the tolerance to the stress. However, once the damage is too serious to repair, the cells will undergo apoptosis to protect the overall cells through suicidal behavior. Upon external stimulation, some intracellular proteins turn into unfolded or misfolded protein, exposing their hydrophobic regions to form protein aggregation, which may ultimately produce serious damage to the cells. Ubiquitin plays an important role in the degradation of these unnatural proteins by tagging with ubiquitin chains in the ubiquitin-proteasome or autophagy system. If the two processes fail to eliminate the abnormal protein aggregates, the cells will move to apoptosis and death. Dysregulation of ubiquitin-proteasome system (UPS) and autophagy may result in the development of numerous diseases. This review focuses on the molecular mechanisms of UPS and autophagy in clearance of intracellular protein aggregates, and the relationship between dysregulation of ubiquitin network and diseases.
Collapse
|
50
|
Pattarabanjird T, Marshall M, Upadhye A, Srikakulapu P, Garmey J, Haider A, Taylor AM, Lutgens E, McNamara CA. B-1b Cells Possess Unique bHLH-Driven P62-Dependent Self-Renewal and Atheroprotection. Circ Res 2022; 130:981-993. [PMID: 35209718 PMCID: PMC9075598 DOI: 10.1161/circresaha.121.320436] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND B1a and B1b lymphocytes produce IgM that inactivates oxidation-specific epitopes (IgMOSE) on LDL (low-density lipoprotein) and protects against atherosclerosis. Loss of ID3 (inhibitor of differentiation 3) in B cells selectively promotes B1b but not B1a cell numbers, leading to higher IgMOSE production and reduction in atherosclerotic plaque formation. Yet, the mechanism underlying this regulation remains unexplored. METHODS Bulk RNA sequencing was utilized to identify differentially expressed genes in B1a and B1b cells from Id3KO and Id3WT mice. CRISPR/Cas9 and lentiviral genome editing coupled with adoptive transfer were used to identify key Id3-dependent signaling pathways regulating B1b cell proliferation and the impact on atherosclerosis. Biospecimens from humans with advanced coronary artery disease imaging were analyzed to translate murine findings to human subjects with coronary artery disease. RESULTS Through RNA sequencing, P62 was found to be enriched in Id3KO B1b cells. Further in vitro characterization reveals a novel role for P62 in mediating BAFF (B-cell activating factor)-induced B1b cell proliferation through interacting with TRAF6 and activating NF-κB (nuclear factor kappa B), leading to subsequent C-MYC upregulation. Promoter-reporter assays reveal that Id3 inhibits the E2A protein from activating the P62 promoter. Mice adoptively transferred with B1 cells overexpressing P62 exhibited an increase in B1b cell number and IgMOSE levels and were protected against atherosclerosis. Consistent with murine mechanistic findings, P62 expression in human B1 cells was significantly higher in subjects harboring a function-impairing SNP (rs11574) in the ID3 gene and directly correlated with plasma IgMOSE levels. CONCLUSIONS This study unveils a novel role for P62 in driving BAFF-induced B1b cell proliferation and IgMOSE production to attenuate diet-induced atherosclerosis. Results identify a direct role for Id3 in antagonizing E2A from activating the p62 promoter. Moreover, analysis of putative human B1 cells also implicates these pathways in coronary artery disease subjects, suggesting P62 as a new immunomodulatory target for treating atherosclerosis.
Collapse
Affiliation(s)
- Tanyaporn Pattarabanjird
- Carter Immunology Center, University of Virginia, Charlottesville, Virginia, United States
- Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, United States
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States
| | - Melissa Marshall
- Carter Immunology Center, University of Virginia, Charlottesville, Virginia, United States
- Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, United States
| | - Aditi Upadhye
- Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, United States
| | - Prasad Srikakulapu
- Carter Immunology Center, University of Virginia, Charlottesville, Virginia, United States
- Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, United States
| | - James Garmey
- Carter Immunology Center, University of Virginia, Charlottesville, Virginia, United States
- Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, United States
| | - Antony Haider
- Carter Immunology Center, University of Virginia, Charlottesville, Virginia, United States
- Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, United States
| | - Angela M. Taylor
- Division of Cardiovascular Medicine, Department of Medicine, University of Virginia, Charlottesville, Virginia, United States
| | - Esther Lutgens
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität, Munich, Germany; and German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Coleen A. McNamara
- Carter Immunology Center, University of Virginia, Charlottesville, Virginia, United States
- Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, United States
- Division of Cardiovascular Medicine, Department of Medicine, University of Virginia, Charlottesville, Virginia, United States
- Correspondence: Corresponding Author, , Phone: 434-243-5854, Address: 345 Crispell Dr. Charlottesville, VA 22908
| |
Collapse
|