1
|
Souza PCT, Borges-Araújo L, Brasnett C, Moreira RA, Grünewald F, Park P, Wang L, Razmazma H, Borges-Araújo AC, Cofas-Vargas LF, Monticelli L, Mera-Adasme R, Melo MN, Wu S, Marrink SJ, Poma AB, Thallmair S. GōMartini 3: From large conformational changes in proteins to environmental bias corrections. Nat Commun 2025; 16:4051. [PMID: 40307210 PMCID: PMC12043922 DOI: 10.1038/s41467-025-58719-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 03/26/2025] [Indexed: 05/02/2025] Open
Abstract
Coarse-grained modeling has become an important tool to supplement experimental measurements, allowing access to spatio-temporal scales beyond all-atom based approaches. The GōMartini model combines structure- and physics-based coarse-grained approaches, balancing computational efficiency and accurate representation of protein dynamics with the capabilities of studying proteins in different biological environments. This paper introduces an enhanced GōMartini model, which combines a virtual-site implementation of Gō models with Martini 3. The implementation has been extensively tested by the community since the release of the reparametrized version of Martini. This work demonstrates the capabilities of the model in diverse case studies, ranging from protein-membrane binding to protein-ligand interactions and AFM force profile calculations. The model is also versatile, as it can address recent inaccuracies reported in the Martini protein model. Lastly, the paper discusses the advantages, limitations, and future perspectives of the Martini 3 protein model and its combination with Gō models.
Collapse
Affiliation(s)
- Paulo C T Souza
- Laboratoire de Biologie et Modélisation de la Cellule, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, Lyon, France.
- Centre Blaise Pascal de Simulation et de Modélisation Numérique, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, Lyon, France.
| | - Luís Borges-Araújo
- Laboratoire de Biologie et Modélisation de la Cellule, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, Lyon, France
- Centre Blaise Pascal de Simulation et de Modélisation Numérique, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, Lyon, France
| | - Christopher Brasnett
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, Groningen, The Netherlands
| | - Rodrigo A Moreira
- NEIKER, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Bizkaia, P812, Derio, Spain
| | - Fabian Grünewald
- Heidelberg Institute for Theoretical Studies (HITS), Schloss-Wolfsbrunnenweg 35, Heidelberg, Germany
| | - Peter Park
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, Groningen, The Netherlands
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Liguo Wang
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, Groningen, The Netherlands
| | - Hafez Razmazma
- Molecular Microbiology and Structural Biochemistry, CNRS UMR 5086 and Université Claude Bernard Lyon 1, 7 Passage du Vercors, Lyon, France
- Institut des Biomolecules Max Mousseron, UMR5247, CNRS, Université De Montpellier, ENSCM, 1919 Route de Mende, Montpellier, Cedex, France
| | - Ana C Borges-Araújo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Luis Fernando Cofas-Vargas
- Biosystems and Soft Matter Division, Institute of Fundamental Technological Research, Polish Academy of Sciences, ul. Pawińskiego 5B, 02-106, Warsaw, Poland
| | - Luca Monticelli
- Molecular Microbiology and Structural Biochemistry, CNRS UMR 5086 and Université Claude Bernard Lyon 1, 7 Passage du Vercors, Lyon, France
| | - Raúl Mera-Adasme
- Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Arica, Chile
| | - Manuel N Melo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Sangwook Wu
- PharmCADD, Busan, Republic of Korea
- Department of Physics, Pukyong National University, Busan, Republic of Korea
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, Groningen, The Netherlands.
| | - Adolfo B Poma
- Biosystems and Soft Matter Division, Institute of Fundamental Technological Research, Polish Academy of Sciences, ul. Pawińskiego 5B, 02-106, Warsaw, Poland.
| | - Sebastian Thallmair
- Frankfurt Institute for Advanced Studies, Ruth-Moufang-Straße 1, Frankfurt am Main, Germany.
| |
Collapse
|
2
|
Vali R, Shirvanian K, Farkhondeh T, Aschner M, Samini F, Samarghandian S. A review study on the effect of zinc on oxidative stress-related neurological disorders. J Trace Elem Med Biol 2025; 88:127618. [PMID: 39978164 DOI: 10.1016/j.jtemb.2025.127618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/24/2025] [Accepted: 02/10/2025] [Indexed: 02/22/2025]
Abstract
Zinc plays a main role in maintaining homeostasis and neuronal function. Disorders in zinc homeostasis are connected to several neurological disorders due to inflammation and oxidative stress. This review explores the effect of zinc on neurological disorders through the Nrf2 signaling pathway. The Nrf2 pathway modulates oxidative stress and regulates antioxidant defenses, which is critical in the pathogenesis of neurological diseases. We provide an overview of in vivo and in vitro studies illustrating zinc's neuroprotective effects in conditions such as Alzheimer's disease, spinal cord injury, and stroke. The dual role of zinc, where both excess and deficiency can be detrimental, is highlighted, emphasizing the need for optimal zinc levels. Limitations of current research and future perspectives are also discussed.
Collapse
Affiliation(s)
- Reyhaneh Vali
- Department of Biology, Faculty of Modern Sciences, Tehran Medical Branch, Islamic Azad University, Tehran, Iran.
| | - Kasra Shirvanian
- Department of Biology, Faculty of Sciences, University of Tehran, Iran.
| | - Tahereh Farkhondeh
- Geriatric Health Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Fariborz Samini
- Department of Neurosurgery, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
3
|
Galaz-Araya C, Zuñiga-Núñez D, Salas-Sepúlveda F, Herrera-Morande A, Aspée A, Poblete H, Zamora RA. Theoretical evaluation of a bulky ortho-thioalkyl-azobenzene as an alternative to photocontrol structural cytotoxic effects of metal-free and disulfide oxidized hSOD1 in pathogenesis of ALS. RSC Adv 2025; 15:9018-9026. [PMID: 40129635 PMCID: PMC11931720 DOI: 10.1039/d4ra08972c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/12/2025] [Indexed: 03/26/2025] Open
Abstract
This study presents a novel photopharmacological strategy to mitigate the cytotoxic effects of apo-hSOD1S-S, a misfolded protein implicated in neurodegenerative diseases. Using quantum chemical calculations and molecular dynamics simulations, we demonstrate that ortho-thio-substituted azobenzene photoswitches (ortho-TABPs) can be employed to precisely modulate the dynamics of the crucial electrostatic loop (EL) in apo-hSOD1S-S. We establish that larger ortho-S-alkyl substituents on the ortho-TABP enhance its redox stability, favouring the cis conformation through the modulation of the position of the n → π* transition. This stability is crucial for operation within the reducing cellular environment. Furthermore, we demonstrate the successful and consistent photomodulation of EL conformational dynamics in apo-hSOD1S-S through covalent tethering of an ortho-TABP. This control is achieved by leveraging the thermodynamically stable trans conformation of the photoswitch, which allosterically influences the EL and consequently, the geometry of the Zn-binding site, a critical determinant of apo-hSOD1S-S cytotoxicity. This work paves the way for developing targeted therapies for neurodegenerative diseases by demonstrating the precise and effective photomodulation of apo-hSOD1S-S via rationally designed ortho-TABPs.
Collapse
Affiliation(s)
- Constanza Galaz-Araya
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca 2 Norte 685 Talca Chile
| | - Daniel Zuñiga-Núñez
- Facultad de Química y Biología, Universidad de Santiago de Chile Casilla 40, Correo 33 Santiago Chile
| | - Francisca Salas-Sepúlveda
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca 2 Norte 685 Talca Chile
| | - Alejandra Herrera-Morande
- Departamento de Física y Química, Facultad de Ingeniería, Universidad Autónoma de Chile Av. Pedro de Valdivia 425 Providencia 7500000 Chile
| | - Alexis Aspée
- Facultad de Química y Biología, Universidad de Santiago de Chile Casilla 40, Correo 33 Santiago Chile
| | - Horacio Poblete
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca 2 Norte 685 Talca Chile
| | - Ricardo A Zamora
- Instituto de Investigación Interdisciplinaria (I3), Vicerrectoría Académica, and Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Campus Lircay Talca 3460000 Chile
| |
Collapse
|
4
|
Hernandez-Unzueta I, Telleria-Gonzalez U, Aransay AM, Martin Rodriguez JE, Sanz E, Márquez J. Unravelling the antitumor mechanism of Ocoxin through cancer cell genomics. Front Pharmacol 2025; 16:1540217. [PMID: 40176904 PMCID: PMC11961970 DOI: 10.3389/fphar.2025.1540217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 02/24/2025] [Indexed: 04/05/2025] Open
Abstract
Cancer is one of the leading causes of death worldwide. Many therapies are being used to treat this disease, however, new treatments are now being implemented, since they are not always effective and their secondary effects represent one of the main reasons for cancer patients' loss of life quality during the progression of the disease. In this scenario, Ocoxin is a mixture of plant extracts, amino acids, vitamins and minerals, known for its antioxidant, anti-inflammatory and immunoregulatory properties, which has shown to exert antitumor effects in many cancers. The aim of this study is to elucidate the mechanism of action of the compound in colorectal cancer, triple negative breast cancer, pancreatic cancer and prostate cancer. Analyses performed through RNA sequencing revealed that the main effect of Ocoxin appears to be the alteration of cell metabolism, especially inducing the process of ferroptosis. Nevertheless, the modulation of the cell cycle was also remarkable. Ocoxin altered 13 genes in common in all the four cancers that were not only associated to metabolism and cell cycle but were also involved in the integrated stress response and unfolded protein response, suggesting that the compound causes the induction of cell death through several pathways. Although the mechanisms vary according to the type of cancer, this study highlights the potential of Ocoxin as an adjunctive treatment to improve outcomes in cancer therapy.
Collapse
Affiliation(s)
- Iera Hernandez-Unzueta
- Cell Biology and Histology Department, Faculty of Medicine and Nursing, University of the Basque Country, Leioa, Spain
| | - Uxue Telleria-Gonzalez
- Cell Biology and Histology Department, Faculty of Medicine and Nursing, University of the Basque Country, Leioa, Spain
| | - Ana María Aransay
- Genome Analysis Platform, CIC Biogune, Derio, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | | | | | - Joana Márquez
- Cell Biology and Histology Department, Faculty of Medicine and Nursing, University of the Basque Country, Leioa, Spain
| |
Collapse
|
5
|
Chen L, Shen Q, Liu Y, Zhang Y, Sun L, Ma X, Song N, Xie J. Homeostasis and metabolism of iron and other metal ions in neurodegenerative diseases. Signal Transduct Target Ther 2025; 10:31. [PMID: 39894843 PMCID: PMC11788444 DOI: 10.1038/s41392-024-02071-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/24/2024] [Accepted: 11/12/2024] [Indexed: 02/04/2025] Open
Abstract
As essential micronutrients, metal ions such as iron, manganese, copper, and zinc, are required for a wide range of physiological processes in the brain. However, an imbalance in metal ions, whether excessive or insufficient, is detrimental and can contribute to neuronal death through oxidative stress, ferroptosis, cuproptosis, cell senescence, or neuroinflammation. These processes have been found to be involved in the pathological mechanisms of neurodegenerative diseases. In this review, the research history and milestone events of studying metal ions, including iron, manganese, copper, and zinc in neurodegenerative diseases such as Parkinson's disease (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD), will be introduced. Then, the upstream regulators, downstream effector, and crosstalk of mental ions under both physiologic and pathologic conditions will be summarized. Finally, the therapeutic effects of metal ion chelators, such as clioquinol, quercetin, curcumin, coumarin, and their derivatives for the treatment of neurodegenerative diseases will be discussed. Additionally, the promising results and limitations observed in clinical trials of these metal ion chelators will also be addressed. This review will not only provide a comprehensive understanding of the role of metal ions in disease development but also offer perspectives on their modulation for the prevention or treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Leilei Chen
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Qingqing Shen
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yingjuan Liu
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yunqi Zhang
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Liping Sun
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Xizhen Ma
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Ning Song
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Junxia Xie
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China.
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China.
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China.
| |
Collapse
|
6
|
You Y, Guo Z, Wolter T, Hu Q. Intracellular metal ion-based chemistry for programmed cell death. Chem Soc Rev 2025; 54:1552-1582. [PMID: 39744985 DOI: 10.1039/d4cs00930d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Intracellular metal ions play essential roles in multiple physiological processes, including catalytic action, diverse cellular processes, intracellular signaling, and electron transfer. It is crucial to maintain intracellular metal ion homeostasis which is achieved by the subtle balance of storage and release of metal ions intracellularly along with the influx and efflux of metal ions at the interface of the cell membrane. Dysregulation of intracellular metal ions has been identified as a key mechanism in triggering programmed cell death (PCD). Despite the importance of metal ions in initiating PCD, the molecular mechanisms of intracellular metal ions within these processes are infrequently discussed. An in-depth understanding and review of the role of metal ions in triggering PCD may better uncover novel tools for cancer diagnosis and therapy. Specifically, the essential roles of calcium (Ca2+), iron (Fe2+/3+), copper (Cu+/2+), and zinc (Zn2+) ions in triggering PCD are primarily explored in this review, and other ions like manganese (Mn2+/3+/4+), cobalt (Co2+/3+) and magnesium ions (Mg2+) are briefly discussed. Further, this review elaborates on the underlying chemical mechanisms and summarizes these metal ions triggering PCD in cancer therapy. This review bridges chemistry, immunology, and biology to foster the rational regulation of metal ions to induce PCD for cancer therapy.
Collapse
Affiliation(s)
- Yawen You
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin Madison, Madison, WI 53705, USA.
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Zhaochen Guo
- Department of Biochemistry, College of Agriculture and Life Science, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Tyler Wolter
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin Madison, Madison, WI 53705, USA.
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- Institute for Clinical and Translational Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin Madison, Madison, WI 53705, USA.
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
7
|
Hou G, Chen Y, Lei H, Lu Y, Liu L, Han Z, Sun S, Li J, Cheng L. Bimetallic peroxide nanoparticles induce PANoptosis by disrupting ion homeostasis for enhanced immunotherapy. SCIENCE ADVANCES 2024; 10:eadp7160. [PMID: 39514658 PMCID: PMC11546811 DOI: 10.1126/sciadv.adp7160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024]
Abstract
PANoptosis has recently emerged as a potential approach to improve the immune microenvironment. However, current methods for inducing PANoptosis are limited. Herein, through biological screening, the rational use of the nutrient metal ions Cu2+ and Zn2+ had great potential to induce PANoptosis. Inspired by these findings, we successfully developed hydrazided hyaluronic acid-modified zinc copper oxide (HZCO) nanoparticles as a PANoptosis inducer to potentiate immunotherapy. Bioactive HZCO actively delivered Cu2+ and Zn2+ while disrupting the cellular intrinsic ion metabolism pathway, resulting in double-stranded DNA release and organelle damage in cancer cells. Simultaneously, this process triggered the formation of PANoptosome and the activation of PANoptosis. HZCO-induced PANoptosis inhibited tumor growth and activated potent antitumor immune response, thereby enhancing the effectiveness of anti-programmed cell death 1 therapy. Overall, our work provides an insight into the development of PANoptosis inducers and the design of synergistic immunotherapy strategies.
Collapse
Affiliation(s)
- Guanghui Hou
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Youdong Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Huali Lei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Yujie Lu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
- Institute of State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Lin Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Zhihui Han
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Shumin Sun
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Jingrui Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| |
Collapse
|
8
|
Ahmed AM, Alsubhi AS, Shawosh TS, Almuntashiri M, Alebire AK, Mohammadi FF, Aman AM. Effects of Smoking and Non-Insulin-Dependent Diabetes Mellitus on Blood Trace Element Levels. Cureus 2024; 16:e72618. [PMID: 39610617 PMCID: PMC11604236 DOI: 10.7759/cureus.72618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND The connection between oxidative stress and trace elements is linked to various diseases and their development and consequences. This relationship is complex due to the alterations caused by oxidative stress. METHODS A total of 100 patients with type-2 diabetes mellitus (T2DM) who never smoked, 100 smokers, and 90 diabetes patients who smoked cigarettes (D&S) were compared with 100 healthy subjects. Serum trace elements, glycemic profiles, antioxidants, lipids, and malondialdehyde (MDA) were measured for all participants. RESULTS The results showed a high cholesterol level in D&S subjects (p < 0.01). Zinc (Zn), magnesium (Mg), and chromium (Cr) were reduced in T2DM and D&S patients (p < 0.05). Copper (Cu) and Cr were higher in smokers and D&S (p < 0.01). Mg and Zn were correlated with superoxide dismutase (SOD) and glutathione peroxidase (GPx) in the control group (p < 0.05). Zn was inversely correlated with glucose in T2DM (p < 0.05) and with MDA in smokers and D&S (p < 0.01). In addition, Cu and Cr were correlated with MDA in smokers (p < 0.01). Moreover, potassium (Kalium, K) was correlated with glucose in T2DM (p < 0.01). CONCLUSION Decreased Mg and Zn in patients with diabetes indicate that diabetes may contribute to the decrease of these elements, whereas high levels of Cu and Cr have been associated with increased oxidative stress. This suggests that smoking is a major cause of oxidative stress.
Collapse
Affiliation(s)
- Ahmed M Ahmed
- Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Medina, SAU
| | - Awadh S Alsubhi
- Clinical Laboratory Sciences, Taibah University, Medina, SAU
| | - Turki S Shawosh
- Clinical Laboratory Sciences, Taibah University, Medina, SAU
| | | | | | | | | |
Collapse
|
9
|
Tabuchi R, Momozawa Y, Hayashi Y, Noma H, Ichijo H, Fujisawa T. SoDCoD: a comprehensive database of Cu/Zn superoxide dismutase conformational diversity caused by ALS-linked gene mutations and other perturbations. Database (Oxford) 2024; 2024:0. [PMID: 39126203 PMCID: PMC11315765 DOI: 10.1093/database/baae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/05/2024] [Accepted: 07/09/2024] [Indexed: 08/12/2024]
Abstract
A structural alteration in copper/zinc superoxide dismutase (SOD1) is one of the common features caused by amyotrophic lateral sclerosis (ALS)-linked mutations. Although a large number of SOD1 variants have been reported in ALS patients, the detailed structural properties of each variant are not well summarized. We present SoDCoD, a database of superoxide dismutase conformational diversity, collecting our comprehensive biochemical analyses of the structural changes in SOD1 caused by ALS-linked gene mutations and other perturbations. SoDCoD version 1.0 contains information about the properties of 188 types of SOD1 mutants, including structural changes and their binding to Derlin-1, as well as a set of genes contributing to the proteostasis of mutant-like wild-type SOD1. This database provides valuable insights into the diagnosis and treatment of ALS, particularly by targeting conformational alterations in SOD1. Database URL: https://fujisawagroup.github.io/SoDCoDweb/.
Collapse
Affiliation(s)
- Riko Tabuchi
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yurika Momozawa
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuki Hayashi
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hisashi Noma
- Department of Data Science, The Institute of Statistical Mathematics, 10-3 Midori-cho, Tachikawa, Tokyo 190-8562, Japan
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takao Fujisawa
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
10
|
McAlary L, Nan JR, Shyu C, Sher M, Plotkin SS, Cashman NR. Amyloidogenic regions in beta-strands II and III modulate the aggregation and toxicity of SOD1 in living cells. Open Biol 2024; 14:230418. [PMID: 38835240 DOI: 10.1098/rsob.230418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/16/2024] [Indexed: 06/06/2024] Open
Abstract
Mutations in the protein superoxide dismutase-1 (SOD1) promote its misfolding and aggregation, ultimately causing familial forms of the debilitating neurodegenerative disease amyotrophic lateral sclerosis (ALS). Currently, over 220 (mostly missense) ALS-causing mutations in the SOD1 protein have been identified, indicating that common structural features are responsible for aggregation and toxicity. Using in silico tools, we predicted amyloidogenic regions in the ALS-associated SOD1-G85R mutant, finding seven regions throughout the structure. Introduction of proline residues into β-strands II (I18P) or III (I35P) reduced the aggregation propensity and toxicity of SOD1-G85R in cells, significantly more so than proline mutations in other amyloidogenic regions. The I18P and I35P mutations also reduced the capability of SOD1-G85R to template onto previously formed non-proline mutant SOD1 aggregates as measured by fluorescence recovery after photobleaching. Finally, we found that, while the I18P and I35P mutants are less structurally stable than SOD1-G85R, the proline mutants are less aggregation-prone during proteasome inhibition, and less toxic to cells overall. Our research highlights the importance of a previously underappreciated SOD1 amyloidogenic region in β-strand II (15QGIINF20) to the aggregation and toxicity of SOD1 in ALS mutants, and suggests that β-strands II and III may be good targets for the development of SOD1-associated ALS therapies.
Collapse
Affiliation(s)
- Luke McAlary
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
| | - Jeremy R Nan
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Clay Shyu
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Mine Sher
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Steven S Plotkin
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
- Genome Sciences and Technology Program, University of British Columbia, Vancouver, BC, Canada
| | - Neil R Cashman
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
11
|
Tokuda E, Sakashita Y, Tokoro N, Date A, Kosuge Y, Miyasaka T. MS785-MS27 Reactive Misfolded/Non-Native Zn-Deficient SOD1 Species Exhibit Cytotoxicity and Adopt Heterozygous Conformations in Motor Neurons. Int J Mol Sci 2024; 25:5603. [PMID: 38891791 PMCID: PMC11171496 DOI: 10.3390/ijms25115603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/11/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Misfolding of superoxide dismutase-1 (SOD1) is a pathological hallmark of amyotrophic lateral sclerosis (ALS) with SOD1 mutations. The development of antibodies specific for misfolded SOD1 deepens our understanding of how the protein participates in ALS pathogenesis. Since the term "misfolding" refers to various disordered conformers other than the natively folded one, which misfolded species are recognized by specific antibodies should be determined. Here, we molecularly characterized the recognition by MS785-MS27, an antibody cocktail experimentally confirmed to recognize over 100 ALS-linked SOD1 mutants. Indirect ELISA revealed that the antibody cocktail recognized Zn-deficient wild-type and mutated SOD1 species. It also recognized conformation-disordered wild-type and mutated SOD1 species, such as unfolded and oligomeric forms, but had less affinity for the aggregated form. Antibody-reactive SOD1 exhibited cytotoxicity to a motor neuron cell model, which was blocked by Zn treatment with Zn-deficient SOD1. Immunohistochemistry revealed antibody-reactive SOD1 mainly in spinal motor neurons of SOD1G93A mice throughout the disease course, and the distribution after symptomatic stages differed from that of other misfolded SOD1 species. This suggests that misfolded/non-native SOD1 species exist as heterogeneous populations. In conclusion, MS785-MS27 recognizes various conformation-disordered SOD1 species lacking the Zn ion.
Collapse
Affiliation(s)
- Eiichi Tokuda
- Laboratory of Clinical Medicine, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi 274-8555, Chiba, Japan
| | - Yume Sakashita
- Laboratory of Clinical Medicine, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi 274-8555, Chiba, Japan
| | - Naoya Tokoro
- Laboratory of Clinical Medicine, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi 274-8555, Chiba, Japan
| | - Ayano Date
- Laboratory of Clinical Medicine, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi 274-8555, Chiba, Japan
| | - Yasuhiro Kosuge
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi 274-8555, Chiba, Japan;
| | - Tomohiro Miyasaka
- Laboratory of Physiology and Anatomy, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi 274-8555, Chiba, Japan;
| |
Collapse
|
12
|
Nguyen L. Updates on Disease Mechanisms and Therapeutics for Amyotrophic Lateral Sclerosis. Cells 2024; 13:888. [PMID: 38891021 PMCID: PMC11172142 DOI: 10.3390/cells13110888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS), or Lou Gehrig's disease, is a motor neuron disease. In ALS, upper and lower motor neurons in the brain and spinal cord progressively degenerate during the course of the disease, leading to the loss of the voluntary movement of the arms and legs. Since its first description in 1869 by a French neurologist Jean-Martin Charcot, the scientific discoveries on ALS have increased our understanding of ALS genetics, pathology and mechanisms and provided novel therapeutic strategies. The goal of this review article is to provide a comprehensive summary of the recent findings on ALS mechanisms and related therapeutic strategies to the scientific audience. Several highlighted ALS research topics discussed in this article include the 2023 FDA approved drug for SOD1 ALS, the updated C9orf72 GGGGCC repeat-expansion-related mechanisms and therapeutic targets, TDP-43-mediated cryptic splicing and disease markers and diagnostic and therapeutic options offered by these recent discoveries.
Collapse
Affiliation(s)
- Lien Nguyen
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
13
|
Tyczyńska M, Hunek G, Szczasny M, Brachet A, Januszewski J, Forma A, Portincasa P, Flieger J, Baj J. Supplementation of Micro- and Macronutrients-A Role of Nutritional Status in Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2024; 25:4916. [PMID: 38732128 PMCID: PMC11085010 DOI: 10.3390/ijms25094916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a condition in which the pathological cumulation of fat with coexisting inflammation and damage of hepatic cells leads to progressive dysfunctions of the liver. Except for the commonly well-known major causes of NAFLD such as obesity, dyslipidemia, insulin resistance, or diabetes, an unbalanced diet and imbalanced nutritional status should also be taken into consideration. In this narrative review, we summarized the current knowledge regarding the micro- and macronutrient status of patients suffering from NAFLD considering various diets and supplementation of chosen supplements. We aimed to summarize the knowledge indicating which nutritional impairments may be associated with the onset and progression of NAFLD at the same time evaluating the potential therapy targets that could facilitate the healing process. Except for the above-mentioned objectives, one of the most important aspects of this review was to highlight the possible strategies for taking care of NAFLD patients taking into account the challenges and opportunities associated with the micronutrient status of the patients. The current research indicates that a supplementation of chosen vitamins (e.g., vitamin A, B complex, C, or D) as well as chosen elements such as zinc may alleviate the symptoms of NAFLD. However, there is still a lack of sufficient data regarding healthy ranges of dosages; thus, further research is of high importance in this matter.
Collapse
Affiliation(s)
- Magdalena Tyczyńska
- Department of Correct, Clinical and Imaging Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland;
| | - Gabriela Hunek
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (G.H.); (A.B.)
| | - Martyna Szczasny
- Chair and Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (M.S.); (J.J.)
| | - Adam Brachet
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (G.H.); (A.B.)
| | - Jacek Januszewski
- Chair and Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (M.S.); (J.J.)
| | - Alicja Forma
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (G.H.); (A.B.)
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy;
| | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland;
| | - Jacek Baj
- Chair and Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (M.S.); (J.J.)
| |
Collapse
|
14
|
Abstract
This review provides a concise overview of the cellular and clinical aspects of the role of zinc, an essential micronutrient, in human physiology and discusses zinc-related pathological states. Zinc cannot be stored in significant amounts, so regular dietary intake is essential. ZIP4 and/or ZnT5B transport dietary zinc ions from the duodenum into the enterocyte, ZnT1 transports zinc ions from the enterocyte into the circulation, and ZnT5B (bidirectional zinc transporter) facilitates endogenous zinc secretion into the intestinal lumen. Putative promoters of zinc absorption that increase its bioavailability include amino acids released from protein digestion and citrate, whereas dietary phytates, casein and calcium can reduce zinc bioavailability. In circulation, 70% of zinc is bound to albumin, and the majority in the body is found in skeletal muscle and bone. Zinc excretion is via faeces (predominantly), urine, sweat, menstrual flow and semen. Excessive zinc intake can inhibit the absorption of copper and iron, leading to copper deficiency and anaemia, respectively. Zinc toxicity can adversely affect the lipid profile and immune system, and its treatment depends on the mode of zinc acquisition. Acquired zinc deficiency usually presents later in life alongside risk factors like malabsorption syndromes, but medications like diuretics and angiotensin-receptor blockers can also cause zinc deficiency. Inherited zinc deficiency condition acrodermatitis enteropathica, which occurs due to mutation in the SLC39A4 gene (encoding ZIP4), presents from birth. Treatment involves zinc supplementation via zinc gluconate, zinc sulphate or zinc chloride. Notably, oral zinc supplementation may decrease the absorption of drugs like ciprofloxacin, doxycycline and risedronate.
Collapse
Affiliation(s)
- Lucy I Stiles
- Faculty of Life Sciences and Medicine, GKT School of Medical Education, King's College London, London, UK
| | - Kevin Ferrao
- Faculty of Life Sciences and Medicine, GKT School of Medical Education, King's College London, London, UK
| | - Kosha J Mehta
- Faculty of Life Sciences and Medicine, Centre for Education, King's College London, London, UK.
| |
Collapse
|
15
|
Fan YG, Wu TY, Zhao LX, Jia RJ, Ren H, Hou WJ, Wang ZY. From zinc homeostasis to disease progression: Unveiling the neurodegenerative puzzle. Pharmacol Res 2024; 199:107039. [PMID: 38123108 DOI: 10.1016/j.phrs.2023.107039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/16/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
Zinc is a crucial trace element in the human body, playing a role in various physiological processes such as oxidative stress, neurotransmission, protein synthesis, and DNA repair. The zinc transporters (ZnTs) family members are responsible for exporting intracellular zinc, while Zrt- and Irt-like proteins (ZIPs) are involved in importing extracellular zinc. These processes are essential for maintaining cellular zinc homeostasis. Imbalances in zinc metabolism have been linked to the development of neurodegenerative diseases. Disruptions in zinc levels can impact the survival and activity of neurons, thereby contributing to the progression of neurodegenerative diseases through mechanisms like cell apoptosis regulation, protein phase separation, ferroptosis, oxidative stress, and neuroinflammation. Therefore, conducting a systematic review of the regulatory network of zinc and investigating the relationship between zinc dysmetabolism and neurodegenerative diseases can enhance our understanding of the pathogenesis of these diseases. Additionally, it may offer new insights and approaches for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yong-Gang Fan
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China.
| | - Ting-Yao Wu
- First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Ling-Xiao Zhao
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Rong-Jun Jia
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Hang Ren
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Wen-Jia Hou
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Zhan-You Wang
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China.
| |
Collapse
|
16
|
Kurita H, Hirasawa N, Yabe S, Okuda A, Murakami T, Ohuchi K, Ogata A, Yoshioka H, Kakita A, Hozumi I, Inden M. MicroRNA-5572 Is Associated with Endoplasmic Reticulum Stress Responses in Low Zinc Treated and SOD1 G85R-Transfected HEK293 Cells. Biol Pharm Bull 2024; 47:1717-1725. [PMID: 39462586 DOI: 10.1248/bpb.b24-00418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fetal neurodegenerative disease. The mechanism of sporadic ALS onset remains unclarified in detail. Disruption of zinc homeostasis could be related to sporadic ALS. Previously, we first reported miR-5572 as a microRNA (miRNA) among those identified in the spinal cords of patients with sporadic ALS. However, since its function in ALS remained unknown, this study further examined the role of miR-5572 in low-zinc status and ALS model cells which transfected with causative gene, Cu/Zn superoxide dismutase 1 (SOD1) G85R mutant vector. The miR-5572 level was increased by low-zinc condition accompanied by increase of endoplasmic reticulum (ER) stress. In addition, increase of miR-5572 enhanced the cellular toxicity induced by low-zinc treatment. The expression of miR-5572 was also increased, which was accompanied by an increase of ER stress markers associated with SOD1 aggregation formation. Cell death and ER stress makers levels induced by tunicamycin treatment were further increased in miR-5572 mimic-transfected cells. This study showed that miR-5572 exacerbated ER stress toxicity associated with low-zinc status and mutant SOD1 aggregates in ALS.
Collapse
Affiliation(s)
- Hisaka Kurita
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University
| | - Naoki Hirasawa
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University
| | - Saori Yabe
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University
| | - Ayu Okuda
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University
| | - Takanori Murakami
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University
| | - Kazuki Ohuchi
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University
| | - Aya Ogata
- Department of Pharmacy, Faculty of Pharmacy, Gifu University of Medical Science
| | - Hiroki Yoshioka
- Department of Pharmacy, Faculty of Pharmacy, Gifu University of Medical Science
- Department of Hygiene, School of Medicine, Kitasato University
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University
| | - Isao Hozumi
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University
| | - Masatoshi Inden
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University
| |
Collapse
|
17
|
Hayashi Y, Takatori S, Warsame WY, Tomita T, Fujisawa T, Ichijo H. TOLLIP acts as a cargo adaptor to promote lysosomal degradation of aberrant ER membrane proteins. EMBO J 2023; 42:e114272. [PMID: 37929762 PMCID: PMC10690474 DOI: 10.15252/embj.2023114272] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023] Open
Abstract
Endoplasmic reticulum (ER) proteostasis is maintained by various catabolic pathways. Lysosomes clear entire ER portions by ER-phagy, while proteasomes selectively clear misfolded or surplus aberrant proteins by ER-associated degradation (ERAD). Recently, lysosomes have also been implicated in the selective clearance of aberrant ER proteins, but the molecular basis remains unclear. Here, we show that the phosphatidylinositol-3-phosphate (PI3P)-binding protein TOLLIP promotes selective lysosomal degradation of aberrant membrane proteins, including an artificial substrate and motoneuron disease-causing mutants of VAPB and Seipin. These cargos are recognized by TOLLIP through its misfolding-sensing intrinsically disordered region (IDR) and ubiquitin-binding CUE domain. In contrast to ER-phagy receptors, which clear both native and aberrant proteins by ER-phagy, TOLLIP selectively clears aberrant cargos by coupling them with the PI3P-dependent lysosomal trafficking without promoting bulk ER turnover. Moreover, TOLLIP depletion augments ER stress after ERAD inhibition, indicating that TOLLIP and ERAD cooperatively safeguard ER proteostasis. Our study identifies TOLLIP as a unique type of cargo-specific adaptor dedicated to the clearance of aberrant ER cargos and provides insights into molecular mechanisms underlying lysosome-mediated quality control of membrane proteins.
Collapse
Affiliation(s)
- Yuki Hayashi
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| | - Sho Takatori
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| | | | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| | - Takao Fujisawa
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| |
Collapse
|
18
|
Awonuga AO, Camp OG, Abu-Soud HM. A review of nitric oxide and oxidative stress in typical ovulatory women and in the pathogenesis of ovulatory dysfunction in PCOS. Reprod Biol Endocrinol 2023; 21:111. [PMID: 37996893 PMCID: PMC10666387 DOI: 10.1186/s12958-023-01159-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/05/2023] [Indexed: 11/25/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a heterogeneous functional endocrine disorder associated with a low-grade, chronic inflammatory state. Patients with PCOS present an increased risk of metabolic comorbidities and often menstrual dysregulation and infertility due to anovulation and/or poor oocyte quality. Multiple mechanisms including oxidative stress and low-grade inflammation are believed to be responsible for oocyte deterioration; however, the influence of nitric oxide (NO) insufficiency in oocyte quality and ovulatory dysfunction in PCOS is still a matter for debate. Higher production of superoxide (O2•-) mediated DNA damage and impaired antioxidant defense have been implicated as contributory factors for the development of PCOS, with reported alteration in superoxide dismutase (SOD) function, an imbalanced zinc/copper ratio, and increased catalase activity. These events may result in decreased hydrogen peroxide (H2O2) accumulation with increased lipid peroxidation events. A decrease in NO, potentially due to increased activity of NO synthase (NOS) inhibitors such as asymmetric dimethylarginine (ADMA), and imbalance in the distribution of reactive oxygen species (ROS), such as decreased H2O2 and increased O2•-, may offset the physiological processes surrounding follicular development, oocyte maturation, and ovulation contributing to the reproductive dysfunction in patients with PCOS. Thus, this proposal aims to evaluate the specific roles of NO, oxidative stress, ROS, and enzymatic and nonenzymatic elements in the pathogenesis of PCOS ovarian dysfunction, including oligo- anovulation and oocyte quality, with the intent to inspire better application of therapeutic options. The authors believe more consideration into the specific roles of oxidative stress, ROS, and enzymatic and nonenzymatic elements may allow for a more thorough understanding of PCOS. Future efforts elaborating on the role of NO in the preoptic nucleus to determine its influence on GnRH firing and follicle-stimulating hormone/Luteinizing hormone (FSH/LH) production with ovulation would be of benefit in PCOS. Consequently, treatment with an ADMA inhibitor or NO donor may prove beneficial to PCOS patients experiencing reproductive dysfunction and infertility.
Collapse
Affiliation(s)
- Awoniyi O Awonuga
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E. Hancock Detroit, Detroit, MI, 48201, USA.
| | - Olivia G Camp
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E. Hancock Detroit, Detroit, MI, 48201, USA
| | - Husam M Abu-Soud
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E. Hancock Detroit, Detroit, MI, 48201, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Department of Microbiology, Immunology and Biochemistry, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| |
Collapse
|
19
|
Lim L, Kang J, Song J. Extreme diversity of 12 cations in folding ALS-linked hSOD1 unveils novel hSOD1-dependent mechanisms for Fe 2+/Cu 2+-induced cytotoxicity. Sci Rep 2023; 13:19868. [PMID: 37964005 PMCID: PMC10645853 DOI: 10.1038/s41598-023-47338-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/12/2023] [Indexed: 11/16/2023] Open
Abstract
153-Residue copper-zinc superoxide dismutase 1 (hSOD1) is the first gene whose mutation was linked to FALS. To date, > 180 ALS-causing mutations have been identified within hSOD1, yet the underlying mechanism still remains mysterious. Mature hSOD1 is exceptionally stable constrained by a disulfide bridge to adopt a Greek-key β-barrel fold that accommodates copper/zinc cofactors. Conversely, nascent hSOD1 is unfolded and susceptible to aggregation and amyloid formation, requiring Zn2+ to initiate folding to a coexistence of folded and unfolded states. Recent studies demonstrate mutations that disrupt Zn2+-binding correlate with their ability to form toxic aggregates. Therefore, to decode the role of cations in hSOD1 folding provides not only mechanistic insights, but may bear therapeutic implications for hSOD1-linked ALS. Here by NMR, we visualized the effect of 12 cations: 8 essential for humans (Na+, K+, Ca2+, Zn2+, Mg2+, Mn2+, Cu2+, Fe2+), 3 mimicking zinc (Ni2+, Cd2+, Co2+), and environmentally abundant Al3+. Surprisingly, most cations, including Zn2+-mimics, showed negligible binding or induction for folding of nascent hSOD1. Cu2+ exhibited extensive binding to the unfolded state but led to severe aggregation. Unexpectedly, for the first time Fe2+ was deciphered to have Zn2+-like folding-inducing capacity. Zn2+ was unable to induce folding of H80S/D83S-hSOD1, while Fe2+ could. In contrast, Zn2+ could trigger folding of G93A-hSOD1, but Fe2+ failed. Notably, pre-existing Fe2+ disrupted the Zn2+-induced folding of G93A-hSOD1. Comparing with the ATP-induced folded state, our findings delineate that hSOD1 maturation requires: (1) intrinsic folding capacity encoded by the sequence; (2) specific Zn2+-coordination; (3) disulfide formation and Cu-load catalyzed by hCCS. This study unveils a previously-unknown interplay of cations in governing the initial folding of hSOD1, emphasizing the pivotal role of Zn2+ in hSOD1-related ALS and implying new hSOD1-dependent mechanisms for Cu2+/Fe2+-induced cytotoxicity, likely relevant to aging and other diseases.
Collapse
Affiliation(s)
- Liangzhong Lim
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 119260, Republic of Singapore
| | - Jian Kang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 119260, Republic of Singapore
| | - Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 119260, Republic of Singapore.
| |
Collapse
|
20
|
Guan T, Zhou T, Zhang X, Guo Y, Yang C, Lin J, Zhang JV, Cheng Y, Marzban H, Wang YT, Kong J. Selective removal of misfolded SOD1 delays disease onset in a mouse model of amyotrophic lateral sclerosis. Cell Mol Life Sci 2023; 80:304. [PMID: 37752364 PMCID: PMC11072549 DOI: 10.1007/s00018-023-04956-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/26/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease. There is no cure currently. The discovery that mutations in the gene SOD1 are a cause of ALS marks a breakthrough in the search for effective treatments for ALS. SOD1 is an antioxidant that is highly expressed in motor neurons. Human SOD1 is prone to aberrant modifications. Familial ALS-linked SOD1 variants are particularly susceptible to aberrant modifications. Once modified, SOD1 undergoes conformational changes and becomes misfolded. This study aims to determine the effect of selective removal of misfolded SOD1 on the pathogenesis of ALS. METHODS Based on the chaperone-mediated protein degradation pathway, we designed a fusion peptide named CT4 and tested its efficiency in knocking down intracellularly misfolded SOD1 and its efficacy in modifying the pathogenesis of ALS. RESULTS Expression of the plasmid carrying the CT4 sequence in human HEK cells resulted in robust removal of misfolded SOD1 induced by serum deprivation. Co-transfection of the CT4 and the G93A-hSOD1 plasmids at various ratios demonstrated a dose-dependent knockdown efficiency on G93A-hSOD1, which could be further increased when misfolding of SOD1 was enhanced by serum deprivation. Application of the full-length CT4 peptide to primary cultures of neurons expressing the G93A variant of human SOD1 revealed a time course of the degradation of misfolded SOD1; misfolded SOD1 started to decrease by 2 h after the application of CT4 and disappeared by 7 h. Intravenous administration of the CT4 peptide at 10 mg/kg to the G93A-hSOD1 reduced human SOD1 in spinal cord tissue by 68% in 24 h and 54% in 48 h in presymptomatic ALS mice. Intraperitoneal administration of the CT4 peptide starting from 60 days of age significantly delayed the onset of ALS and prolonged the lifespan of the G93A-hSOD1 mice. CONCLUSIONS The CT4 peptide directs the degradation of misfolded SOD1 in high efficiency and specificity. Selective removal of misfolded SOD1 significantly delays the onset of ALS, demonstrating that misfolded SOD1 is the toxic form of SOD1 that causes motor neuron death. The study proves that selective removal of misfolded SOD1 is a promising treatment for ALS.
Collapse
Affiliation(s)
- Teng Guan
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Ting Zhou
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
- Department of Pharmacy, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaosha Zhang
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Ying Guo
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
- Department of Forensic Medicine, Hebei North University, Zhangjiakou, China
| | - Chaoxian Yang
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
- Department of Neurobiology, Southwest Medical University, Luzhou, China
| | - Justin Lin
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Jiasi Vicky Zhang
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Yongquan Cheng
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Hassan Marzban
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Yu Tian Wang
- Brain Research Centre and Department of Medicine, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Jiming Kong
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada.
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada.
| |
Collapse
|
21
|
Kang J, Lim L, Song J. ATP induces folding of ALS-causing C71G-hPFN1 and nascent hSOD1. Commun Chem 2023; 6:186. [PMID: 37670116 PMCID: PMC10480188 DOI: 10.1038/s42004-023-00997-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/24/2023] [Indexed: 09/07/2023] Open
Abstract
ALS-causing C71G-hPFN1 coexists in both folded and unfolded states, while nascent hSOD1 is unfolded. So far, the mechanisms underlying their ALS-triggering potential remain enigmatic. Here we show by NMR that ATP completely converts C71G-hPFN1 into the folded state at a 1:2 ratio, while inducing nascent hSOD1 into two co-existing states at a 1:8 ratio. Surprisingly, the inducing capacity of ATP comes from its triphosphate, but free triphosphate triggers aggregation. The inducing capacity ranks as: ATP = ATPP = PPP > ADP = AMP-PNP = AMP-PCP = PP, while AMP, adenosine, P, and NaCl show no conversion. Mechanistically, ATP and triphosphate appear to enhance the intrinsic folding capacity encoded in the sequences, as unveiled by comparing conformations and dynamics of ATP- and Zn2+-induced hSOD1 folded states. Our study provides a mechanism for the finding that some single-cell organisms employ polyphosphates as primordial chaperones, and sheds light on the enigma of age-related onset of familial ALS and risk increase of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jian Kang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore, 119260, Singapore
| | - Liangzhong Lim
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore, 119260, Singapore
| | - Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore, 119260, Singapore.
| |
Collapse
|
22
|
Amagai Y, Yamada M, Kowada T, Watanabe T, Du Y, Liu R, Naramoto S, Watanabe S, Kyozuka J, Anelli T, Tempio T, Sitia R, Mizukami S, Inaba K. Zinc homeostasis governed by Golgi-resident ZnT family members regulates ERp44-mediated proteostasis at the ER-Golgi interface. Nat Commun 2023; 14:2683. [PMID: 37160917 PMCID: PMC10170084 DOI: 10.1038/s41467-023-38397-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/01/2023] [Indexed: 05/11/2023] Open
Abstract
Many secretory enzymes acquire essential zinc ions (Zn2+) in the Golgi complex. ERp44, a chaperone operating in the early secretory pathway, also binds Zn2+ to regulate its client binding and release for the control of protein traffic and homeostasis. Notably, three membrane transporter complexes, ZnT4, ZnT5/ZnT6 and ZnT7, import Zn2+ into the Golgi lumen in exchange with protons. To identify their specific roles, we here perform quantitative Zn2+ imaging using super-resolution microscopy and Zn2+-probes targeted in specific Golgi subregions. Systematic ZnT-knockdowns reveal that ZnT4, ZnT5/ZnT6 and ZnT7 regulate labile Zn2+ concentration at the distal, medial, and proximal Golgi, respectively, consistent with their localization. Time-course imaging of cells undergoing synchronized secretory protein traffic and functional assays demonstrates that ZnT-mediated Zn2+ fluxes tune the localization, trafficking, and client-retrieval activity of ERp44. Altogether, this study provides deep mechanistic insights into how ZnTs control Zn2+ homeostasis and ERp44-mediated proteostasis along the early secretory pathway.
Collapse
Affiliation(s)
- Yuta Amagai
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi, 980-8577, Japan
| | - Momo Yamada
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Toshiyuki Kowada
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi, 980-8577, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Miyagi, 980-8578, Japan
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8577, Japan
| | - Tomomi Watanabe
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8577, Japan
| | - Yuyin Du
- Department of Chemistry, Faculty of Science, Tohoku University, 6-3 Aramaki-aza-Aoba, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Rong Liu
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8577, Japan
| | - Satoshi Naramoto
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8577, Japan
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Japan
| | - Satoshi Watanabe
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi, 980-8577, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Miyagi, 980-8578, Japan
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8577, Japan
| | - Junko Kyozuka
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8577, Japan
| | - Tiziana Anelli
- Division of Genetics and Cell Biology, Vita-Salute University, IRCCS Ospedale San Raffaele, 20132, Milan, Italy
| | - Tiziana Tempio
- Division of Genetics and Cell Biology, Vita-Salute University, IRCCS Ospedale San Raffaele, 20132, Milan, Italy
| | - Roberto Sitia
- Division of Genetics and Cell Biology, Vita-Salute University, IRCCS Ospedale San Raffaele, 20132, Milan, Italy
| | - Shin Mizukami
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi, 980-8577, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Miyagi, 980-8578, Japan
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8577, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Agency for Medical Research and Development (AMED), Chiyoda, Tokyo, Japan
| | - Kenji Inaba
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi, 980-8577, Japan.
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Miyagi, 980-8578, Japan.
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8577, Japan.
- Core Research for Evolutional Science and Technology (CREST), Japan Agency for Medical Research and Development (AMED), Chiyoda, Tokyo, Japan.
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
23
|
Lubna S, Ahmad R. Clinical and biochemical understanding of Zinc interaction during liver diseases: A paradigm shift. J Trace Elem Med Biol 2023; 77:127130. [PMID: 36641955 DOI: 10.1016/j.jtemb.2023.127130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/01/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
Zinc (Zn) is an essential and the second most abundant trace element after Iron. It can apply antioxidant, anti-inflammatory, and anti-apoptotic activity. It is assumed to be indispensable for cell division, cellular differentiation and cell signalling. Zinc is essential for proper liver function which is also the site of its metabolism. Depleted Zn concentrations have been observed in both acute and chronic hepatic diseases. It is reported that Zn deficiency or abnormal Zn metabolism during majority of liver diseases is attributed to deficient dietary intake of Zn, augmented disposal of Zn in the urine, activation of certain Zn transporters, and expression of hepatic metallothionein. Undoubtedly, Zn is involved in generating many diseases but how and whether it plays role from acute to fulminant stage of all chronic liver diseases remains to be cleared. Here, we will discuss the role of Zn in development of different diseases specifically the involvement of Zn to understand the aetiology and intricate mechanism of dynamic liver diseases.
Collapse
Affiliation(s)
- Shiba Lubna
- Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202001, India
| | - Riaz Ahmad
- Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202001, India.
| |
Collapse
|
24
|
Raghu R, Kurlak LO, Lee ED, Mistry HD. The differential placental expression of ERp44 and pre-eclampsia; association with placental zinc, the ERAP1 and the renin-angiotensin-system. Placenta 2023; 134:9-14. [PMID: 36848863 PMCID: PMC10682376 DOI: 10.1016/j.placenta.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/06/2023] [Accepted: 02/21/2023] [Indexed: 02/23/2023]
Abstract
INTRODUCTION Endoplasmic reticulum resident protein 44 (ERp44) is a zinc-metalloprotein, regulating Endoplasmic reticulum aminopeptidase 1 (ERAP1) and Angiotensin II (Ang II). We explored placental ERp44 expression and components of the renin-angiotensin-system (RAS) in pre-eclampsia (PE), correlating these to ERAP1 expression and placental zinc concentrations. METHODS Placental tissue, taken at time of delivery in normotensive women or women with PE (n = 12/group), were analysed for ERp44, AT1R, AT2R and AT4R by qPCR. Protein ERp44 expression was measured by immunohistochemistry and compared to previously measured ERAP1 expression. Placental zinc was measured by inductively-coupled-mass-spectrometry. RESULTS ERp44 gene/protein expression were increased in PE (P < 0.05). AT1R expression was increased (P = 0.02) but AT4R decreased (P = 0.01) in PE, compared to normotensive controls. A positive association between ERp44 and AT2R expression was observed in all groups. ERp44 was negatively correlated with ERAP1 protein expression in all samples. Placental zinc concentrations were lower in women with PE (P = 0.001) and negatively associated with ERp44 gene expression. DISCUSSION Increased placental ERp44 could further reduce ERAP1 release in PE, potentially preventing release of Ang IV and thus lowering levels of Ang IV which consequently diminishes the possibility of counterbalancing the activity of vasoconstrictive, Ang II. The lower placental zinc may contribute to dysfunction of the ERp44/ERAP1 complex, exacerbating the hypertension in PE.
Collapse
Affiliation(s)
| | - Lesia O Kurlak
- Stroke Trials Unit (School of Medicine), University of Nottingham, Nottingham, UK.
| | - Eun D Lee
- Virginia Commonwealth University School of Medicine, Richmond, USA.
| | - Hiten D Mistry
- Division of Women and Children's Health, School of Life Course and Population Sciences, King's College London, London, UK.
| |
Collapse
|
25
|
Dong N, Liu WY. Regulatory mechanism of downregulation of SOD1 expression on cardiomyocyte function. Sleep Breath 2023; 27:399-410. [PMID: 35307768 DOI: 10.1007/s11325-022-02595-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Many diseases are clinically related to oxidative stress. Obstructive sleep apnea (OSA) is a common disease with oxidative stress in clinical practice, which is mostly associated with cardio-cerebrovascular diseases. It has been shown that the level of oxidative stress increases and the level of antioxidant copper zinc superoxide dismutase (SOD1) decreases in intermittent hypoxia (IH). SOD1 is one of the key antioxidant enzymes in organisms, and it can also be used as a signal transmission controller. Its abnormal expression further affects organ functions, but the specific mechanism is not yet fully clear. METHODS We downregulated the SOD1 gene in H9C2 cell line, using high-throughput RNA sequencing (RNA-seq) to find differentially expressed genes (DEGs) related to cardiomyocyte function by using GO and KEGG databases to annotate, enrich and analyze the metabolic pathways of DEGs. RESULTS Through the analysis of these functional gene changes, we can understand the regulation of SOD1 downregulation on cardiomyocyte function. The results found 213 DEGs, of which 135 genes were upregulated and 78 genes were downregulated. The upregulated DEGs were mainly enriched in biological processes such as transcriptional regulation and metabolism. The expression levels of EGR1 and NR1D1 exceeded 1 in the samples. EGR1 was reported to be involved in oxidative stress and cardiac hypertrophy, and NR1D1 played an important regulatory role in regulating inflammatory responses and reducing ROS production. The biological processes involved in downregulated DEGs mainly involve metabolism and redox processes. Among them, SCD1 and CCL2 genes were highly expressed among the genes involved in the redox process involved in SOD1. SCD1 is an important player in the regulation of cardiometabolic processes; downregulation of CCL2 reduces atherosclerosis. We found that the TNF signaling pathway, NOD-like receptor signaling pathway, and chemokine signaling pathway, which were enriched in KEGG analysis, were all associated with inflammation, and the CXCL1 and CCL7 genes are all related to inflammation. CONCLUSION The gene and signaling pathways involved in oxidative stress and inflammatory response process regulated by SOD1 were demonstrated. SOD1 may affect the function of the heart by affecting myocardial contraction, inflammation, lipid metabolism, and other pathways. It is inferred that they may also play a role in the process of OSA-related myocardial injury, which is worthy of attention and further study.
Collapse
Affiliation(s)
- Na Dong
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China.,Department of Respiratory and Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Wei-Ying Liu
- Department of Respiratory and Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
26
|
Zhao Y, Wang P, Liu T, Yang Y, Guo J, He Y, Xi J. Zn 2+ protect cardiac H9c2 cells from endoplasmic reticulum stress by preventing mPTP opening through MCU. Cell Signal 2022; 100:110467. [PMID: 36126793 DOI: 10.1016/j.cellsig.2022.110467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/30/2022] [Accepted: 09/08/2022] [Indexed: 12/15/2022]
Abstract
Zn2+ regulates endoplasmic reticulum stress (ERS) and is essential for myocardial protection through gating the mitochondrial permeability transition pore (mPTP). However, the underlining mechanism of the mPTP opening remains uncertain. Cells under sustained ERS induce unfolded protein responses (UPR) and cell apoptosis. Glucose regulatory protein 78 (GRP 78) and glucose regulatory protein 94 (GRP 94) are marker proteins of ERS and regulate the onset of apoptosis through the endoplasmic reticulum signaling pathway. We found tunicamycin (TM) treatment activates ERS and significantly increases intracellular Ca2+ and mitochondrial reactive oxygen species (ROS) levels in H9c2 cardiomyocyte cells. Zn2+ markedly decreased protein level of GRP 78/94 and suppressed intracellular Ca2+ and ROS elevation. Mitochondrial calcium uniporter (MCU) is an important Ca2+ transporter protein, through which Zn2+ enter mitochondria. MCU inhibitor ruthenium red (RR) or siRNA significantly reversed the Zinc effect on GRP 78, mitochondrial Ca2+ and ROS. Additionally, Zn2+ prevented TM-induced mPTP opening and decreased mitochondrial Ca2+ concentration, which were blocked through inhibiting or knockdown MCU with siRNA. In summary, our study suggests that Zn2+ protected cardiac ERS by elevating Ca2+ and closing mPTP through MCU.
Collapse
Affiliation(s)
- Yang Zhao
- Basic School of Medicine, Hebei Key Laboratory for Chronic Diseases, North China University of Science and Technology, Tangshan 063000, China
| | - Pei Wang
- School of Public Health, North China University of Science and Technology, Tangshan 063000, China
| | - Tianyu Liu
- Clinic School of Medicine, Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, North China University of Science and Technology, Tangshan 063000, China
| | - Ying Yang
- Basic School of Medicine, Hebei Key Laboratory for Chronic Diseases, North China University of Science and Technology, Tangshan 063000, China
| | - Jiabao Guo
- Clinic School of Medicine, Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, North China University of Science and Technology, Tangshan 063000, China
| | - Yonggui He
- Affiliated Hospital, North China University of Science and Technology, Tangshan 063000, China.
| | - Jinkun Xi
- Clinic School of Medicine, Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, North China University of Science and Technology, Tangshan 063000, China.
| |
Collapse
|
27
|
da Silva GB, Yamauchi MA, Bagatini MD. Oxidative stress in Hashimoto's thyroiditis: possible adjuvant therapies to attenuate deleterious effects. Mol Cell Biochem 2022; 478:949-966. [PMID: 36168075 DOI: 10.1007/s11010-022-04564-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 09/15/2022] [Indexed: 11/30/2022]
Abstract
A number of studies have shown that oxidative stress is related to the pathogenesis of several immunological diseases, such as Hashimoto's thyroiditis (HT), although there is no plausible mechanism to explain it. Thus, we aimed at hypothesizing and providing some possible mechanisms linking oxidative stress to autoimmunity aspects and its implications for HT, as well as adjuvant therapeutic proposals to mitigate the deleterious effects. Our hypothesis is that deficient eating habits, autoimmune regulator gene predisposing gene, dysbiosis and molecular mimicry, unfolded proteins and stress in the endoplasmic reticulum, and thymus involution appear to be the main potential factors leading to HT oxidative stress. Likewise, we show that the use of minerals selenium and zinc, vitamins D and C, as well as probiotics, can be interesting adjuvant therapies for the control of oxidative damage and poor prognosis of HT. Further clinical trials are needed to understand the real beneficial and side effects of these supplements.
Collapse
Affiliation(s)
- Gilnei Bruno da Silva
- Post Graduate Program in Biomedical Sciences, Universidade Federal da Fronteira Sul, Chapecó, Santa Catarina, 89815-899, Brazil
| | - Milena Ayumi Yamauchi
- Post Graduate Program in Biomedical Sciences, Universidade Federal da Fronteira Sul, Chapecó, Santa Catarina, 89815-899, Brazil
| | - Margarete Dulce Bagatini
- Post Graduate Program in Biomedical Sciences, Universidade Federal da Fronteira Sul, Chapecó, Santa Catarina, 89815-899, Brazil.
| |
Collapse
|
28
|
Arya D, Balasinor N, Singh D. Varicocele associated male infertility: cellular and molecular perspectives of pathophysiology. Andrology 2022; 10:1463-1483. [PMID: 36040837 DOI: 10.1111/andr.13278] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Varicocele is a common risk factor associated with reduced male fertility potential. The current understanding of varicocele pathophysiology does not completely explain the clinical manifestation of infertility. The present treatment options such as antioxidant supplementation and varicocelectomy only helps ∼35% of men to achieve spontaneous pregnancy. OBJECTIVE This review aims to summarize the available knowledge on cellular and molecular alterations implicated to varicocele associated male infertility and also highlights the new knowledge generated by 'Omics' technologies. MATERIALS AND METHODS PubMed, MEDLINE, Cochrane and Google Scholar databases are searched using different combinations of keywords (varicocele, infertile/fertile men with varicocele, cellular changes, molecular mechanisms, proteome, epigenome, transcriptome and metabolome). A total of 229 relevant human and animal studies published till 2021 were included in this review. RESULTS Current understanding advocates oxidative stress (OS) as a major contributory factor to the varicocele associated male infertility. Excessive OS causes alteration in testicular microenvironment and sperm DNA fragmentation which further contributes to infertility. Molecular and omics studies have identified several promising biomarkers such as AAMP, SPINT1, MKI67 (genetic markers), sperm quality and function related protein markers, global sperm DNA methylation level (epigenetic marker), Hspa2, Protamine, Gadd7, Dynlt1 and Beclin1 (mRNA markers), PRDX2, HSPA, APOA2, YKL40 (seminal protein markers), total choline and PHGDH (metabolic markers). DISCUSSION Mature spermatozoa harbours a plethora of molecular information in form of proteome, epigenome and transcriptome; which could provide very important clues regarding pathophysiology of varicocele associated infertility. Recent molecular and omics studies in infertile men with varicocele have identified several promising biomarkers. Upon further validation with larger and well-defined studies, some of these biomarkers could aid in varicocele management. CONCLUSION The present evidences suggest inclusion of OS and sperm DNA fragmentation tests could be useful to the diagnostic workup for men with varicocele. Furthermore, including precise molecular markers may assist in diagnostics and prognostics of varicocele associated male infertility. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Deepshikha Arya
- Department of Neuroendocrinology, ICMR- National Institute for Research in Reproductive and Child Health, Parel, Mumbai, 400012, India
| | - Nafisa Balasinor
- Department of Neuroendocrinology, ICMR- National Institute for Research in Reproductive and Child Health, Parel, Mumbai, 400012, India
| | - Dipty Singh
- Department of Neuroendocrinology, ICMR- National Institute for Research in Reproductive and Child Health, Parel, Mumbai, 400012, India
| |
Collapse
|
29
|
Willekens J, Runnels LW. Impact of Zinc Transport Mechanisms on Embryonic and Brain Development. Nutrients 2022; 14:2526. [PMID: 35745255 PMCID: PMC9231024 DOI: 10.3390/nu14122526] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 12/04/2022] Open
Abstract
The trace element zinc (Zn) binds to over ten percent of proteins in eukaryotic cells. Zn flexible chemistry allows it to regulate the activity of hundreds of enzymes and influence scores of metabolic processes in cells throughout the body. Deficiency of Zn in humans has a profound effect on development and in adults later in life, particularly in the brain, where Zn deficiency is linked to several neurological disorders. In this review, we will summarize the importance of Zn during development through a description of the outcomes of both genetic and early dietary Zn deficiency, focusing on the pathological consequences on the whole body and brain. The epidemiology and the symptomology of Zn deficiency in humans will be described, including the most studied inherited Zn deficiency disease, Acrodermatitis enteropathica. In addition, we will give an overview of the different forms and animal models of Zn deficiency, as well as the 24 Zn transporters, distributed into two families: the ZIPs and the ZnTs, which control the balance of Zn throughout the body. Lastly, we will describe the TRPM7 ion channel, which was recently shown to contribute to intestinal Zn absorption and has its own significant impact on early embryonic development.
Collapse
Affiliation(s)
| | - Loren W. Runnels
- Department of Pharmacology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA;
| |
Collapse
|
30
|
Hussain A, Jiang W, Wang X, Shahid S, Saba N, Ahmad M, Dar A, Masood SU, Imran M, Mustafa A. Mechanistic Impact of Zinc Deficiency in Human Development. Front Nutr 2022; 9:717064. [PMID: 35356730 PMCID: PMC8959901 DOI: 10.3389/fnut.2022.717064] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 01/31/2022] [Indexed: 12/15/2022] Open
Abstract
Zinc (Zn) deficiency in humans is an emerging global health issue affecting approximately two billion people across the globe. The situation prevails due to the intake of Zn deficient grains and vegetables worldwide. Clinical identification of Zn deficiency in humans remains problematic because the symptoms do not appear until impair the vital organs, such as the gastrointestinal track, central nervous system, immune system, skeletal, and nervous system. Lower Zn body levels are also responsible for multiple physiological disorders, such as apoptosis, organs destruction, DNA injuries, and oxidative damage to the cellular components through reactive oxygen species (ROS). The oxidative damage causes chronic inflammation lead toward several chronic diseases, such as heart diseases, cancers, alcohol-related malady, muscular contraction, and neuro-pathogenesis. The present review focused on the physiological and growth-related changes in humans under Zn deficient conditions, mechanisms adopted by the human body under Zn deficiency for the proper functioning of the body systems, and the importance of nutritional and nutraceutical approaches to overcome Zn deficiency in humans and concluded that the biofortified food is the best source of Zn as compared to the chemical supplementation to avoid their negative impacts on human.
Collapse
Affiliation(s)
- Azhar Hussain
- Department of Soil Science, The Islamia Diversity of Bahawalpur, Bahawalpur, Pakistan
| | - Wenting Jiang
- College of Life Sciences, Yan'an University, Yan'an, China
| | - Xiukang Wang
- College of Life Sciences, Yan'an University, Yan'an, China
| | - Shumaila Shahid
- Department of Soil Science, The Islamia Diversity of Bahawalpur, Bahawalpur, Pakistan
| | - Noreena Saba
- Qaid-e-Azam Medical College, Bahawal Victoria Hospital, Bahawalpur, Pakistan
| | - Maqshoof Ahmad
- Department of Soil Science, The Islamia Diversity of Bahawalpur, Bahawalpur, Pakistan
| | - Abubakar Dar
- Department of Soil Science, The Islamia Diversity of Bahawalpur, Bahawalpur, Pakistan
| | - Syed Usama Masood
- Clinical Fellow Pediatric Nephrology, Children Hospital and Institute of Child Health Multan, Multan, Pakistan
| | | | - Adnan Mustafa
- Faculty of Chemistry, Institute of Chemistry and Technology of Environmental Protection, Brno University of Technology, Brno, Czechia
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition (FA), Mendel University, Brno, Czechia
- Institute of Environmental Studies, Charles University Prague, Prague, Czechia
| |
Collapse
|
31
|
Edamatsu H. Zinc ions negatively regulate proapoptotic signaling in cells expressing oncogenic mutant Ras. Biometals 2022; 35:349-362. [PMID: 35212861 DOI: 10.1007/s10534-022-00376-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/16/2022] [Indexed: 12/13/2022]
Abstract
Mutational activation of the Ras family of proto-oncogenes promotes cell survival and proliferation. Studies using cells cultured in vitro have shown that ectopic expression of constitutively active Ras suppresses apoptosis induced by serum deprivation. However, in some cellular contexts, constitutively active Ras exerts the opposite effects, including apoptosis of serum-starved embryonic fibroblasts. Such observations first came over two decades ago, but the molecular mechanisms by which mutant Ras increases the susceptibility of cells to serum deprivation leading to apoptosis are still not fully understood. To revisit this issue, I investigate the effects of serum depletion and mutant Ras expression on intracellular signaling and transcriptome of cells carrying an inducible allele of constitutively active mutant Hras (HrasG12V). I identify zinc ions (Zn2+) as a serum factor that suppresses proapoptotic signaling in cells expressing HrasG12V. Mechanistically, HrasG12V expression along with Zn2+ deficiency activates c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK), which are required for caspase-3 activation involved in the induction of cell death. Transcriptome analyses suggest that HrasG12V induces the unfolded protein response (UPR). Further analyses of intracellular signaling biomolecules related to the UPR indicate that HrasG12V activates inositol-requiring protein 1 (IRE1), which synergizes with Zn2+ deficiency to activate JNK and p38 MAPK signaling. These results provide insights into a role of Zn2+ that counteracts proapoptotic signaling activated by mutationally activated Ras.
Collapse
Affiliation(s)
- Hironori Edamatsu
- Department of Biology, Juntendo University School of Medicine, 1-1 Hirakagakuendai, Inzai, Chiba, 270-1695, Japan.
| |
Collapse
|
32
|
Zhao H, Liu D, Yan Q, Bian X, Yu J, Wang J, Cheng X, Xu Z. Endoplasmic Reticulum Stress/Ca 2+-Calmodulin-Dependent Protein Kinase/Signal Transducer and Activator of Transcription 3 Pathway Plays a Role in the Regulation of Cellular Zinc Deficiency in Myocardial Ischemia/Reperfusion Injury. Front Physiol 2022; 12:736920. [PMID: 35069232 PMCID: PMC8766834 DOI: 10.3389/fphys.2021.736920] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Zinc homeostasis has been known to play a role in myocardial ischemia/reperfusion (I/R) injury, but the precise molecular mechanisms regulating the expression of ZIP transporters during reperfusion are still unclear. The aim of this study was to determine whether ER Stress/CaMKII/STAT3 pathway plays a role in the regulation of cellular zinc homeostasis. Zinc deficiency increased mRNA and protein expressions of the ER stress relevant markers Chop and Bip, and STAT3 phosphorylation in H9c2 or HL-1 cells, an effect that was abolished by ZnCl2. ER calcium concentration [(Ca2+)ER] was decreased and cytosolic calcium concentration [(Ca2+)I] was increased at the condition of normoxia or ischemia/reperfusion, indicating that zinc deficiency triggers ER stress and Ca2+ leak. Further studies showed that upregulation of STAT3 phosphorylation was reversed by Ca2+ chelator, indicating that intracellular Ca2+ is important for zinc deficiency-induced STAT3 activation. In support, zinc deficiency enhanced ryanodine receptors (RyR), a channel in the ER that mediate Ca2+ release, and Ca2+-calmodulin-dependent protein kinase (CaMKII) phosphorylation, implying that zinc deficiency provoked Ca2+ leak from ER via RyR and p-CaMKII is involved in STAT3 activation. Moreover, inhibition of STAT3 activation blocked zinc deficiency induced ZIP9 expression, and resulted in increased Zn2+ loss in cardiomyocytes, further confirming that STAT3 activation during reperfusion promotes the expression of ZIP9 zinc transporter to correct the imbalance in zinc homeostasis. In addition, suppressed STAT3 activation aggravated reperfusion injury. These data suggest that the ER Stress/CaMKII/STAT3 axis may be an endogenous protective mechanism, which increases the resistance of the heart to I/R.
Collapse
Affiliation(s)
- Huanhuan Zhao
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Dan Liu
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Qiumei Yan
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Xiyun Bian
- Central Laboratory, Tianjin, China.,Tianjin Key Laboratory of Epigenetics for Organ Development in Preterm Infants, The Fifth Central Hospital of Tianjin, Tianjin, China
| | - Jing Yu
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Jingjing Wang
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Xinxin Cheng
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Zhelong Xu
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
33
|
Fujishiro H, Kambe T. Manganese transport in mammals by zinc transporter family proteins, ZNT and ZIP. J Pharmacol Sci 2021; 148:125-133. [PMID: 34924116 DOI: 10.1016/j.jphs.2021.10.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/07/2021] [Accepted: 10/07/2021] [Indexed: 12/14/2022] Open
Abstract
Manganese (Mn) is an essential trace element required for various biological processes. However, excess Mn causes serious side effects in humans, including parkinsonism. Thus, elucidation of Mn homeostasis at the systemic, cellular, and molecular levels is important. Many metal transporters and channels can be involved in the transport and homeostasis of Mn, and an increasing body of evidence shows that several zinc (Zn) transporters belonging to the ZIP and ZNT families, specifically, ZNT10, ZIP8, and ZIP14, play pivotal roles in Mn metabolism. Mutations in the genes encoding these transporter proteins are associated with congenital disorders related to dysregulated Mn homeostasis in humans. Moreover, single nucleotide polymorphisms of ZIP8 are associated with multiple clinical phenotypes. In this review, we discuss the recent literature on the structural and biochemical features of ZNT10, ZIP8, and ZIP14, including transport mechanisms, regulation of expression, and pathophysiological functions. Because a disturbance in Mn homeostasis is closely associated with a variety of phenotypes and risk of human diseases, these transporters constitute a significant target for drug development. An understanding of the roles of these key transporters in Mn metabolism should provide new insights into pharmacological applications of their inhibitors and enhancers in human diseases.
Collapse
Affiliation(s)
- Hitomi Fujishiro
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan.
| | - Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan.
| |
Collapse
|
34
|
Cheng Y, Chen H. Aberrance of Zinc Metalloenzymes-Induced Human Diseases and Its Potential Mechanisms. Nutrients 2021; 13:nu13124456. [PMID: 34960004 PMCID: PMC8707169 DOI: 10.3390/nu13124456] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022] Open
Abstract
Zinc, an essential micronutrient in the human body, is a component in over 300 enzymes and participates in regulating enzymatic activity. Zinc metalloenzymes play a crucial role in physiological processes including antioxidant, anti-inflammatory, and immune responses, as well as apoptosis. Aberrant enzyme activity can lead to various human diseases. In this review, we summarize zinc homeostasis, the roles of zinc in zinc metalloenzymes, the physiological processes of zinc metalloenzymes, and aberrant zinc metalloenzymes in human diseases. In addition, potential mechanisms of action are also discussed. This comprehensive understanding of the mechanisms of action of the regulatory functions of zinc in enzyme activity could inform novel zinc-micronutrient-supply strategies for the treatment of diseases.
Collapse
Affiliation(s)
- Yunqi Cheng
- Queen Mary School, Medical College, Nanchang University, Nanchang 330006, China;
- Department of Histology and Embryology, Medical College, Nanchang University, Nanchang 330006, China
| | - Hongping Chen
- Department of Histology and Embryology, Medical College, Nanchang University, Nanchang 330006, China
- Correspondence:
| |
Collapse
|
35
|
Barbara M, Mindikoglu AL. The role of zinc in the prevention and treatment of nonalcoholic fatty liver disease. Metabol Open 2021; 11:100105. [PMID: 34337376 PMCID: PMC8318982 DOI: 10.1016/j.metop.2021.100105] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 01/18/2023] Open
Abstract
The zinc element is an essential nutrient for human health. Zinc is involved in the glucose, lipid, and protein metabolism and antioxidant processes in biological pathways. Zinc deficiency can lead to several chronic liver diseases. Nonalcoholic fatty liver disease (NAFLD) is one of the most common liver diseases where zinc deficiency plays a critical role in pathogenesis. Human and animal studies showed that both NAFLD risk factors (i.e., insulin resistance, diabetes mellitus, dyslipidemia, obesity, hypertension) and NAFLD itself are associated with decreased blood levels of zinc. Additionally, endoplasmic reticulum stress and inflammation due to unfolded protein response, inadequate dietary zinc intake, and decreased zinc absorption from the gastrointestinal tract can result in zinc deficiency leading to NAFLD. Herein, we reviewed the mechanistic links between zinc deficiency and NAFLD development and the role of zinc in the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Mary Barbara
- Margaret M. and Albert B. Alkek Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, USA
- Michael E. DeBakey Department of Surgery, Division of Abdominal Transplantation, Baylor College of Medicine, Houston, TX, USA
| | - Ayse L. Mindikoglu
- Margaret M. and Albert B. Alkek Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, USA
- Michael E. DeBakey Department of Surgery, Division of Abdominal Transplantation, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
36
|
Gonzalez-Vazquez A, Aguilar-Peralta AK, Tomas-Sanchez C, Blanco-Alvarez VM, Martinez-Fong D, Gonzalez-Barrios JA, Treviño S, Millán-Perez Peña L, Alatriste V, Soto-Rodriguez G, Brambila E, Leon-Chavez BA. Taurine Increases Zinc Preconditioning-Induced Prevention of Nitrosative Stress, Metabolic Alterations, and Motor Deficits in Young Rats following Intrauterine Ischemia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6696538. [PMID: 34040692 PMCID: PMC8121588 DOI: 10.1155/2021/6696538] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/12/2021] [Accepted: 04/19/2021] [Indexed: 12/19/2022]
Abstract
Oxygen deprivation in newborns leads to hypoxic-ischemic encephalopathy, whose hallmarks are oxidative/nitrosative stress, energetic metabolism alterations, nutrient deficiency, and motor behavior disability. Zinc and taurine are known to protect against hypoxic-ischemic brain damage in adults and neonates. However, the combined effect of prophylactic zinc administration and therapeutic taurine treatment on intrauterine ischemia- (IUI-) induced cerebral damage remains unknown. The present work evaluated this issue in male pups subjected to transient IUI (10 min) at E17 and whose mothers received zinc from E1 to E16 and taurine from E17 to postnatal day 15 (PND15) via drinking water. We assessed motor alterations, nitrosative stress, lipid peroxidation, and the antioxidant system comprised of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). Enzymes of neuronal energetic pathways, such as aspartate aminotransferase (AST), alanine aminotransferase (ALT), and lactate dehydrogenase (LDH), were also evaluated. The hierarchization score of the protective effect of pharmacological strategies (HSPEPS) was used to select the most effective treatment. Compared with the IUI group, zinc, alone or combined with taurine, improved motor behavior and reduced nitrosative stress by increasing SOD, CAT, and GPx activities and decreasing the GSSG/GSH ratio in the cerebral cortex and hippocampus. Taurine alone increased the AST/ALT, LDH/ALT, and AST/LDH ratios in the cerebral cortex, showing improvement of the neural bioenergetics system. This result suggests that taurine improves pyruvate, lactate, and glutamate metabolism, thus decreasing IUI-caused cerebral damage and relieving motor behavior impairment. Our results showed that taurine alone or in combination with zinc provides neuroprotection in the IUI rat model.
Collapse
Affiliation(s)
- Alejandro Gonzalez-Vazquez
- Facultad de Ciencias Químicas, Benemérita, Universidad Autónoma de Puebla, 14 sur y Av. San Claudio, Puebla, 72570 Puebla, Mexico
| | - Ana-Karina Aguilar-Peralta
- Facultad de Ciencias Químicas, Benemérita, Universidad Autónoma de Puebla, 14 sur y Av. San Claudio, Puebla, 72570 Puebla, Mexico
| | - Constantino Tomas-Sanchez
- Facultad de Ciencias Químicas, Benemérita, Universidad Autónoma de Puebla, 14 sur y Av. San Claudio, Puebla, 72570 Puebla, Mexico
| | - Victor-Manuel Blanco-Alvarez
- Facultad de enfermería, Benemérita Universidad Autónoma de Puebla, 27 sur 1304, Col. Volcanes, Puebla, 72410 Puebla, Mexico
- Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, 13 sur 2702, Col. Volcanes, Puebla, 72410 Puebla, Mexico
| | - Daniel Martinez-Fong
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, 07000 México, DF, Mexico
| | - Juan-Antonio Gonzalez-Barrios
- Laboratorio de Medicina Genómica, Hospital Regional 1° de Octubre, ISSSTE, Avenida, Instituto Politécnico Nacional #1669, 07760 México DF, Mexico
| | - Samuel Treviño
- Facultad de Ciencias Químicas, Benemérita, Universidad Autónoma de Puebla, 14 sur y Av. San Claudio, Puebla, 72570 Puebla, Mexico
| | - Lourdes Millán-Perez Peña
- Centro de Química, ICUAP, Benemérita Universidad Autónoma de Puebla, 14 sur y Av. San Claudio, Puebla, 72570 Puebla, Mexico
| | - Victorino Alatriste
- Facultad de Ciencias Químicas, Benemérita, Universidad Autónoma de Puebla, 14 sur y Av. San Claudio, Puebla, 72570 Puebla, Mexico
| | - Guadalupe Soto-Rodriguez
- Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, 13 sur 2702, Col. Volcanes, Puebla, 72410 Puebla, Mexico
| | - Eduardo Brambila
- Facultad de Ciencias Químicas, Benemérita, Universidad Autónoma de Puebla, 14 sur y Av. San Claudio, Puebla, 72570 Puebla, Mexico
| | - Bertha Alicia Leon-Chavez
- Facultad de Ciencias Químicas, Benemérita, Universidad Autónoma de Puebla, 14 sur y Av. San Claudio, Puebla, 72570 Puebla, Mexico
| |
Collapse
|
37
|
A Metal-Free, Disulfide Oxidized Form of Superoxide Dismutase 1 as a Primary Misfolded Species with Prion-Like Properties in the Extracellular Environments Surrounding Motor Neuron-Like Cells. Int J Mol Sci 2021; 22:ijms22084155. [PMID: 33923808 PMCID: PMC8074096 DOI: 10.3390/ijms22084155] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 11/16/2022] Open
Abstract
Superoxide dismutase 1 (SOD1) is a metalloenzyme with high structural stability, but a lack of Cu and Zn ions decreases its stability and enhances the likelihood of misfolding, which is a pathological hallmark of amyotrophic lateral sclerosis (ALS). A growing body of evidence has demonstrated that misfolded SOD1 has prion-like properties such as transmissibility between cells and intracellular propagation of misfolding of natively folded SOD1. Recently, we found that SOD1 is misfolded in the cerebrospinal fluid of sporadic ALS patients, providing a route by which misfolded SOD1 spreads via the extracellular environment of the central nervous system. Unlike intracellular misfolded SOD1, it is unknown which extracellular misfolded species is most relevant to prion-like properties. Here, we determined a conformational feature of extracellular misfolded SOD1 that is linked to prion-like properties. Using culture media from motor neuron-like cells, NSC-34, extracellular misfolded wild-type, and four ALS-causing SOD1 mutants were characterized as a metal-free, disulfide oxidized form of SOD1 (apo-SOD1S-S). Extracellular misfolded apo-SOD1S-S exhibited cell-to-cell transmission from the culture medium to recipient cells as well as intracellular propagation of SOD1 misfolding in recipient cells. Furthermore, culture medium containing misfolded apo-SOD1S-S exerted cytotoxicity to motor neuron-like cells, which was blocked by removal of misfolded apo-SOD1S-S from the medium. We conclude that misfolded apo-SOD1S-S is a primary extracellular species that is linked to prion-like properties.
Collapse
|
38
|
Han Y, Sanford L, Simpson DM, Dowell RD, Palmer AE. Remodeling of Zn 2+ homeostasis upon differentiation of mammary epithelial cells. Metallomics 2021; 12:346-362. [PMID: 31950952 DOI: 10.1039/c9mt00301k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Zinc is the second most abundant transition metal in humans and an essential nutrient required for growth and development of newborns. During lactation, mammary epithelial cells differentiate into a secretory phenotype, uptake zinc from blood circulation, and export it into mother's milk. At the cellular level, many zinc-dependent cellular processes, such as transcription, metabolism of nutrients, and proliferation are involved in the differentiation of mammary epithelial cells. Using mouse mammary epithelial cells as a model system, we investigated the remodeling of zinc homeostasis during differentiation induced by treatment with the lactogenic hormones cortisol and prolactin. RNA-Seq at different stages of differentiation revealed changes in global gene expression, including genes encoding zinc-dependent proteins and regulators of zinc homeostasis. Increases in mRNA levels of three zinc homeostasis genes, Slc39a14 (ZIP14) and metallothioneins (MTs) I and II were induced by cortisol but not by prolactin. The cortisol-induced increase was partially mediated by the nuclear glucocorticoid receptor signaling pathway. An increase in the cytosolic labile Zn2+ pool was also detected in lactating mammary cells, consistent with upregulation of MTs. We found that the zinc transporter ZIP14 was important for the expression of a major milk protein, whey acid protein (WAP), as knockdown of ZIP14 dramatically decreased WAP mRNA levels. In summary, our study demonstrated remodeling of zinc homeostasis upon differentiation of mammary epithelial cells resulting in changes in cytosolic Zn2+ and differential expression of zinc homeostasis genes, and these changes are important for establishing the lactation phenotype.
Collapse
Affiliation(s)
- Yu Han
- Department of Biochemistry, University of Colorado Boulder, 3415 Colorado Ave., Boulder, CO 80303, USA. and BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Lynn Sanford
- Department of Biochemistry, University of Colorado Boulder, 3415 Colorado Ave., Boulder, CO 80303, USA. and BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - David M Simpson
- Department of Biochemistry, University of Colorado Boulder, 3415 Colorado Ave., Boulder, CO 80303, USA. and BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Robin D Dowell
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA and Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Amy E Palmer
- Department of Biochemistry, University of Colorado Boulder, 3415 Colorado Ave., Boulder, CO 80303, USA. and BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| |
Collapse
|
39
|
Kambe T, Taylor KM, Fu D. Zinc transporters and their functional integration in mammalian cells. J Biol Chem 2021; 296:100320. [PMID: 33485965 PMCID: PMC7949119 DOI: 10.1016/j.jbc.2021.100320] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 12/14/2022] Open
Abstract
Zinc is a ubiquitous biological metal in all living organisms. The spatiotemporal zinc dynamics in cells provide crucial cellular signaling opportunities, but also challenges for intracellular zinc homeostasis with broad disease implications. Zinc transporters play a central role in regulating cellular zinc balance and subcellular zinc distributions. The discoveries of two complementary families of mammalian zinc transporters (ZnTs and ZIPs) in the mid-1990s spurred much speculation on their metal selectivity and cellular functions. After two decades of research, we have arrived at a biochemical description of zinc transport. However, in vitro functions are fundamentally different from those in living cells, where mammalian zinc transporters are directed to specific subcellular locations, engaged in dedicated macromolecular machineries, and connected with diverse cellular processes. Hence, the molecular functions of individual zinc transporters are reshaped and deeply integrated in cells to promote the utilization of zinc chemistry to perform enzymatic reactions, tune cellular responsiveness to pathophysiologic signals, and safeguard cellular homeostasis. At present, the underlying mechanisms driving the functional integration of mammalian zinc transporters are largely unknown. This knowledge gap has motivated a shift of the research focus from in vitro studies of purified zinc transporters to in cell studies of mammalian zinc transporters in the context of their subcellular locations and protein interactions. In this review, we will outline how knowledge of zinc transporters has been accumulated from in-test-tube to in-cell studies, highlighting new insights and paradigm shifts in our understanding of the molecular and cellular basis of mammalian zinc transporter functions.
Collapse
Affiliation(s)
- Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Kathryn M Taylor
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| | - Dax Fu
- Department of Physiology, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|
40
|
Bakavayev S, Argueti S, Venkatachalam N, Yehezkel G, Stavsky A, Barak Z, Israelson A, Engel S. Exposure of β6/β7-Loop in Zn/Cu Superoxide Dismutase (SOD1) Is Coupled to Metal Loss and Is Transiently Reversible During Misfolding. ACS Chem Neurosci 2021; 12:49-62. [PMID: 33326235 DOI: 10.1021/acschemneuro.0c00524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Upon losing its structural integrity (misfolding), SOD1 acquires neurotoxic properties to become a pathogenic protein in ALS, a neurodegenerative disease targeting motor neurons; understanding the mechanism of misfolding may enable new treatment strategies for ALS. Here, we reported a monoclonal antibody, SE21, targeting the β6/β7-loop region of SOD1. The exposure of this region is coupled to metal loss and is entirely reversible during the early stages of misfolding. By using SE21 mAb, we demonstrated that, in apo-SOD1 incubated under the misfolding-promoting conditions, the reversible phase, during which SOD1 is capable of restoring its nativelike conformation in the presence of metals, is followed by an irreversible structural transition, autocatalytic in nature, which takes place prior to the onset of SOD1 aggregation and results in the formation of atypical apo-SOD1 that is unable to bind metals. The reversible phase defines a window of opportunity for pharmacological intervention using metal mimetics that stabilize SOD1 structure in its nativelike conformation to attenuate the spreading of the misfolding signal and disease progression by preventing the exposure of pathogenic SOD1 epitopes. Phenotypically similar apo-SOD1 species with impaired metal binding properties may also be produced via oxidation of Cys111, underscoring the diversity of SOD1 misfolding pathways.
Collapse
Affiliation(s)
- Shamchal Bakavayev
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Shirel Argueti
- Department of Physiology and Cell Biology, Faculty of Health Sciences and The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Nachiyappan Venkatachalam
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Galit Yehezkel
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Alexandra Stavsky
- Department of Physiology and Cell Biology, Faculty of Health Sciences and The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Zeev Barak
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Adrian Israelson
- Department of Physiology and Cell Biology, Faculty of Health Sciences and The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Stanislav Engel
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
41
|
Razi M, Tavalaee M, Sarrafzadeh-Rezaei F, Moazamian A, Gharagozloo P, Drevet JR, Nasr-Eshafani MH. Varicocoele and oxidative stress: New perspectives from animal and human studies. Andrology 2020; 9:546-558. [PMID: 33145958 DOI: 10.1111/andr.12940] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/31/2020] [Accepted: 11/01/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Varicocoele (VCL), one of the main causes of male subfertility, negatively affects testicular function. Due to limited access to human testicular tissue, animal model studies have been used to evaluate molecular and, recently, epigenetic changes attributed to pathophysiology induced by VCL. OBJECTIVES This review aims to provide an update on the latest findings regarding the link between VCL-induced biochemical stress and molecular changes in germ cells and spermatozoa. Endocrine and antioxidant status, testicular chaperone-specific hemostasis failure, altered testicular ion balance, metabolic disorders, and altered carbon cycling during spermatogenesis are among the many features that will be presented. DISCUSSION Literature review coupled with our own findings suggests that ionic imbalance, hypoxia, hyperthermia, and altered blood flow could lead to severe chronic oxidative and nitrosative stress in patients with VCL leading to defective spermatogenesis and impairment of the integrity of all sperm cell components and compartments down to the epigenetic information they carry. CONCLUSION Since oxidative stress is an important feature of the reproductive pathology of VCL, therapeutic strategies such as the administration of appropriate antioxidants could be undertaken as a complementary non-invasive treatment line.
Collapse
Affiliation(s)
- Mazdak Razi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Marziyeh Tavalaee
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Farshid Sarrafzadeh-Rezaei
- Department of Surgery and Diagnostic Imaging, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | | | | | - Joël R Drevet
- Faculty of Medicine, GReD Institute, INSERM U1103, CNRS UMR6293, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Mohammad-Hossein Nasr-Eshafani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
42
|
Arakawa Y, Itoh S, Fukazawa Y, Ishiguchi H, Kohmoto J, Hironishi M, Ito H, Kihira T. Association between oxidative stress and microRNA expression pattern of ALS patients in the high-incidence area of the Kii Peninsula. Brain Res 2020; 1746:147035. [PMID: 32739158 DOI: 10.1016/j.brainres.2020.147035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/30/2020] [Accepted: 07/26/2020] [Indexed: 11/29/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive degenerative disorder of the upper and lower motor neuron systems. The high incidence of ALS in the southern part of the Kii Peninsula of Japan (K-ALS) was reported in the 1960s, but it has gradually decreased to the worldwide average. Although causes of the high incidence of ALS in this area are unknown, our previous studies suggested that environmental factors, including essential mineral deficiency and increased metal-induced oxidative stress, play a role in its development. Recently, it has been reported that microRNAs (miRNA) contribute to the degeneration of nervous system such as ALS. The aim of this study is to explore specific miRNAs in K-ALS and evaluate relationships between oxidative stress. We comprehensively analyzed serum miRNAs and examined urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG), serum Cu/Zn superoxide dismutase (SOD) and serum Nɛ-hexanoyl lysin (HEL) as oxidative stress markers in the patients with K-ALS, sporadic ALS (S-ALS), residents in this area (K-residents) and controls from another area. The expression levels of miR-92a-3p and miR-486-5p in the patients with K-ALS were significantly higher than those in controls. The HEL levels were significantly higher in the patients with K-ALS than in those with S-ALS and controls. The expression levels of miR-92a-3p and miR-486-5p were not correlated with the levels of HEL. A set of high levels of miR-92a-3p, miR-486-5p and serum HEL may be a useful biomarker for K-ALS in the Kii Peninsula. The findings should be further studied by a large number of subjects.
Collapse
Affiliation(s)
- Yuya Arakawa
- Ehime Prefectural University of Health Sciences, Japan; Kansai University of Health Sciences, Japan.
| | | | | | - Hiroshi Ishiguchi
- Wakayama Medical University, Japan; Shingu Municipal Medical Center, Japan
| | | | | | | | | |
Collapse
|
43
|
Patti F, Fiore M, Chisari CG, D'Amico E, Lo Fermo S, Toscano S, Copat C, Ferrante M, Zappia M. CSF neurotoxic metals/metalloids levels in amyotrophic lateral sclerosis patients: comparison between bulbar and spinal onset. ENVIRONMENTAL RESEARCH 2020; 188:109820. [PMID: 32615355 DOI: 10.1016/j.envres.2020.109820] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder of the central nervous system (CNS) that causes progressive and irreversible damage in motor neurons. Different causal hypotheses include genetic, viral, traumatic and environmental mechanisms, such as exposure to heavy metals. The aim of this study was to compare metal/metalloid levels in cerebro-spinal fluid of ALS subtypes (spinal vs bulbar clinical onset). MATERIAL AND METHODS This observational study consecutively screened all ALS patients referring to the Neurology Clinic of the University of Catania (Italy). Inductively coupled plasma mass spectrometry (ICP-MS) was used to quantify magnesium (Mg), cuprum (Cu), selenium (Se), iron (Fe), manganese (Mn), vanadium (V), zinc (Zn), alluminium (Al), arsenic (As), cobalt (Co), nickel (Ni), mercury (Hg), lead (Pb), cadmium (Cd) and palladium (Pd) levels. RESULTS Thirty-seven patients were enrolled (62.2% females), median age of 65 years (IQR: 59-71 years). Thirty-one (83.8%) patients had a spinal onset and 6 (16.2%) a bulbar onset. Se and As levels were higher compared to the reference values (RV) both in spinal and bulbar onset, while Cu was higher than RV only in bulbar onset. Moreover, Cu (129.8 μg/L vs 29.8 μg/L), Fe (54.5 μg/L vs 33.3 μg/L), Mn (3.4 μg/L vs 1.8 μg/L), Zn (46.1 μg/L vs 35.7 μg/L), Al (12.2 μg/L vs 6.7 μg/L), Ni (2.80 μg/L vs 1.40 μg/L), and Pb (0.60 μg/L vs 0.30 μg/L) levels were higher in bulbar than in spinal onset, conversely As was slightly higher in spinal than in bulbar onset (1.40 μg/L vs 1.10 μg/L). Overall, Cu (129 μg/L vs 31 μg/L), Fe (92.2 μg/L vs 32.9 μg/L), Mn (3.35 μg/L vs 1.80 μg/L), Zn (56.5 μg/L vs 35.2 μg/L), Al (14.45 μg/L vs 6.70 μg/L), and Cd (0.40 μg/L vs 0.08 μg/L) levels were higher in patients with disease duration less than 19 months. CONCLUSION Our results supported the hypothesis that metals/metalloids with neurotoxic effects could be involved in the etiology of ALS, showing higher levels of Cu, Se and As. Relevant differences in Cu and Mn levels were found between bulbar and spinal onset patients.
Collapse
Affiliation(s)
- Francesco Patti
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", section of Neuroscience, University of Catania, 95123, Catania, Italy.
| | - Maria Fiore
- Environmental and Food Hygiene Laboratory (LIAA), Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, 95123, Catania, Italy
| | - Clara G Chisari
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", section of Neuroscience, University of Catania, 95123, Catania, Italy
| | - Emanuele D'Amico
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", section of Neuroscience, University of Catania, 95123, Catania, Italy
| | - Salvatore Lo Fermo
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", section of Neuroscience, University of Catania, 95123, Catania, Italy
| | - Simona Toscano
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", section of Neuroscience, University of Catania, 95123, Catania, Italy
| | - Chiara Copat
- Environmental and Food Hygiene Laboratory (LIAA), Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, 95123, Catania, Italy
| | - Margherita Ferrante
- Environmental and Food Hygiene Laboratory (LIAA), Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, 95123, Catania, Italy
| | - Mario Zappia
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", section of Neuroscience, University of Catania, 95123, Catania, Italy
| |
Collapse
|
44
|
Pro-Oxidant Activity of an ALS-Linked SOD1 Mutant in Zn-Deficient Form. Molecules 2020; 25:molecules25163600. [PMID: 32784718 PMCID: PMC7464938 DOI: 10.3390/molecules25163600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/30/2020] [Accepted: 08/05/2020] [Indexed: 11/17/2022] Open
Abstract
Cu, Zn superoxide dismutase (SOD1) is a representative antioxidant enzyme that catalyzes dismutation of reactive oxygen species in cells. However, (E,E)-SOD1 mutants in which both copper and zinc ions were deleted exhibit pro-oxidant activity, contrary to their antioxidant nature, at physiological temperatures, following denaturation and subsequent recombination of Cu2+. This oxidative property is likely related to the pathogenesis of amyotrophic lateral sclerosis (ALS); however, the mechanism by which Cu2+ re-binds to the denatured (E,E)-SOD1 has not been elucidated, since the concentration of free copper ions in cells is almost zero. In this study, we prepared the (Cu,E) form in which only a zinc ion was deleted using ALS-linked mutant H43R (His43→Arg) and found that (Cu,E)-H43R showed an increase in the pro-oxidant activity even at physiological temperature. The increase in the pro-oxidant activity of (Cu,E)-H43R was also observed in solution mimicking intracellular environment and at high temperature. These results suggest that the zinc-deficient (Cu,E) form can contribute to oxidative stress in cells, and that the formation of (E,E)-SOD1 together with the subsequent Cu2+ rebinding is not necessary for the acquisition of the pro-oxidant activity.
Collapse
|
45
|
Homma K, Takahashi H, Tsuburaya N, Naguro I, Fujisawa T, Ichijo H. Genome-wide siRNA screening reveals that DCAF4-mediated ubiquitination of optineurin stimulates autophagic degradation of Cu,Zn-superoxide dismutase. J Biol Chem 2020; 295:3148-3158. [PMID: 32014991 DOI: 10.1074/jbc.ra119.010239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 01/26/2020] [Indexed: 12/12/2022] Open
Abstract
Cu, Zn superoxide dismutase (SOD1) is one of the genes implicated in the devastating neurodegenerative disorder amyotrophic lateral sclerosis (ALS). Although the precise mechanisms of SOD1 mutant (SOD1mut)-induced motoneuron toxicity are still unclear, defects in SOD1 proteostasis are known to have a critical role in ALS pathogenesis. We previously reported that the SOD1mut adopts a conformation that exposes a Derlin-1-binding region (DBR) and that DBR-exposed SOD1 interacts with Derlin-1, leading to motoneuron death. We also found that an environmental change, i.e. zinc depletion, induces a conformational change in WT SOD1 (SOD1WT) to the DBR-exposed conformation, suggesting the presence of an equilibrium state between the DBR-masked and DBR-exposed states even with SOD1WT Here, we conducted a high-throughput screening based on time-resolved FRET to further investigate the SOD1WT conformational change, and we used a genome-wide siRNA screen to search for regulators of SOD1 proteostasis. This screen yielded 30 candidate genes that maintained an absence of the DBR-exposed SOD1WT conformation. Among these genes was one encoding DDB1- and CUL4-associated factor 4 (DCAF4), a substrate receptor of the E3 ubiquitin-protein ligase complex. Of note, we found that DCAF4 mediates the ubiquitination of an ALS-associated protein and autophagy receptor, optineurin (OPTN), and facilitates autophagic degradation of DBR-exposed SOD1. In summary, our screen identifies DCAF4 as being required for proper proteostasis of DBR-exposed SOD1, which may have potential relevance for the development of therapies for managing ALS.
Collapse
Affiliation(s)
- Kengo Homma
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
| | - Hiromitsu Takahashi
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Naomi Tsuburaya
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Isao Naguro
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takao Fujisawa
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
46
|
Pascua AM, Nikoloff N, Carranza AC, Anchordoquy JP, Quintana S, Barbisán G, Díaz S, Anchordoquy JM, Furnus CC. Reproductive hormones influence zinc homeostasis in the bovine cumulus-oocyte complex: Impact on intracellular zinc concentration and transporters gene expression. Theriogenology 2020; 146:48-57. [PMID: 32036060 DOI: 10.1016/j.theriogenology.2020.01.054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/01/2019] [Accepted: 01/28/2020] [Indexed: 12/19/2022]
Abstract
Zinc (Zn) is a vital trace element for the body and its bioavailability influences numerous reproductive events. However, the mechanisms that regulate Zn homeostasis in the cumulus-oocyte complex (COC) are yet to be elucidated. The aim of this study was to investigate the role of estradiol 17-beta (E2), FSH and LH in Zn homeostasis regulation in bovine COC matured in vitro and Zn transporters gene expression. For this purpose, intracellular Zn levels in oocytes and cumulus cells (CC) were assessed using a Zn-specific fluorescent indicator. In addition, gene expression and sequencing of six Zn transporters (Slc39a6, Slc39a8, Slc39a14, Slc30a3, Slc30a7 and Slc30a9) were assessed. Our results demonstrated that the simultaneous presence of E2, FSH, and LH during oocyte maturation altered intracellular zinc levels and transporters expression in both oocytes and CC. Transporter's gene expression was different in oocytes and CC, possibly due to cell-specific changes in Zn levels during maturation. The interaction effects of Zn with hormonal treatments influenced the results. This study emphasizes that Slc39a6 is highly sensitive to hormone induction. Overall, the hormonal modulation of Zn homeostasis in the COC was evidenced. Also, a preponderant role of FSH as a modulator of Zn intracellular levels and transporter gene expression is suggested.
Collapse
Affiliation(s)
- Ana M Pascua
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N Dulout"(UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, calles 60 y 118, B1904AMA La Plata, Buenos Aires, Argentina
| | - Noelia Nikoloff
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N Dulout"(UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, calles 60 y 118, B1904AMA La Plata, Buenos Aires, Argentina
| | - Ana C Carranza
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N Dulout"(UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, calles 60 y 118, B1904AMA La Plata, Buenos Aires, Argentina
| | - Juan P Anchordoquy
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N Dulout"(UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, calles 60 y 118, B1904AMA La Plata, Buenos Aires, Argentina
| | - Silvina Quintana
- CIAS - Centro de Investigación en Abejas Sociales, Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350 (7600), Mar del Plata, Buenos Aires, Argentina
| | - Gisela Barbisán
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N Dulout"(UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, calles 60 y 118, B1904AMA La Plata, Buenos Aires, Argentina
| | - Silvina Díaz
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N Dulout"(UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, calles 60 y 118, B1904AMA La Plata, Buenos Aires, Argentina
| | - Juan M Anchordoquy
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N Dulout"(UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, calles 60 y 118, B1904AMA La Plata, Buenos Aires, Argentina
| | - Cecilia C Furnus
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N Dulout"(UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, calles 60 y 118, B1904AMA La Plata, Buenos Aires, Argentina; Cátedra de Citología, Histología y Embriología "A" Facultad de Ciencias Médicas, Universidad Nacional de La Plata, calle 60 y 120 s/n, CP 1900, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
47
|
Thokala S, Bodiga VL, Kudle MR, Bodiga S. Comparative Response of Cardiomyocyte ZIPs and ZnTs to Extracellular Zinc and TPEN. Biol Trace Elem Res 2019; 192:297-307. [PMID: 30778755 DOI: 10.1007/s12011-019-01671-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 02/07/2019] [Indexed: 12/19/2022]
Abstract
Intracellular zinc concentrations are tightly regulated by the coordinated regulation of ZIPs and ZnTs. Very little is known about the regulation of these transporters in cardiomyocytes, in response to extracellular zinc. Adult rat cardiomyocytes express ZnTs 1, 2, 5, and 9, in addition to ZIPs 1, 2, 3, 6, 7, 9, 10, 11, 13, and 14. We have determined the intracellular free zinc levels using Zinpyr-1 fluorescence and studied response of ZIP and ZnT mRNA by real-time PCR to the changes in extracellular zinc and TPEN in adult rat ventricular myocytes. TPEN downregulated ZnT1, ZnT2, and ZIP11 mRNAs but upregulated ZnT5, ZIP2, ZIP7, ZIP10, ZIP13, and ZIP14 mRNAs. Zinc supplementation upregulated ZnT1, ZnT2 mRNA but downregulated ZnT5, ZIP1, ZIP2, ZIP3, ZIP7, ZIP9, and ZIP10 mRNA. The negative regulation of ZIPs by zinc excess can be explained in terms of zinc homeostasis as these transporters may act to protect cells from zinc over accumulation by reducing zinc influx when the extracellular concentration of zinc is high. Similarly, the ZnT expression appears to be regulated to avoid loss of zinc from the intracellular milieu, under zinc-deficient conditions.
Collapse
Affiliation(s)
- Sandhya Thokala
- Department of Biochemistry, Kakatiya University, Vidyaranyapuri, Warangal Urban, Telangana, India
| | - Vijaya Lakshmi Bodiga
- Department of Biochemistry and Molecular Biology, Institute of Genetics and Hospital for Genetic Diseases, Osmania University, Begumpet, Hyderabad, Telangana, India
| | - Madhukar Rao Kudle
- Department of Biochemistry, Kakatiya University, Vidyaranyapuri, Warangal Urban, Telangana, India
| | - Sreedhar Bodiga
- Department of Biochemistry, Kakatiya University, Vidyaranyapuri, Warangal Urban, Telangana, India.
| |
Collapse
|
48
|
Merriman C, Fu D. Down-regulation of the islet-specific zinc transporter-8 (ZnT8) protects human insulinoma cells against inflammatory stress. J Biol Chem 2019; 294:16992-17006. [PMID: 31591269 DOI: 10.1074/jbc.ra119.010937] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/04/2019] [Indexed: 12/31/2022] Open
Abstract
Zinc transporter-8 (ZnT8) primarily functions as a zinc-sequestrating transporter in the insulin-secretory granules (ISGs) of pancreatic β-cells. Loss-of-function mutations in ZnT8 are associated with protection against type-2 diabetes (T2D), but the protective mechanism is unclear. Here, we developed an in-cell ZnT8 assay to track endogenous ZnT8 responses to metabolic and inflammatory stresses applied to human insulinoma EndoC-βH1 cells. Unexpectedly, high glucose and free fatty acids did not alter cellular ZnT8 levels, but proinflammatory cytokines acutely, reversibly, and gradually down-regulated ZnT8. Approximately 50% of the cellular ZnT8 was localized to the endoplasmic reticulum (ER), which was the primary target of the cytokine-mediated ZnT8 down-regulation. Transcriptome profiling of cytokine-exposed β-cells revealed an adaptive unfolded protein response (UPR) including a marked immunoproteasome activation that coordinately degraded ZnT8 and insulin over a 1,000-fold cytokine concentration range. RNAi-mediated ZnT8 knockdown protected cells against cytokine cytotoxicity, whereas inhibiting immunoproteasomes blocked cytokine-induced ZnT8 degradation and triggered a transition of the adaptive UPR to cell apoptosis. Hence, cytokine-induced down-regulation of the ER ZnT8 level promotes adaptive UPR, acting as a protective mechanism that decongests the ER burden of ZnT8 to protect β-cells from proapoptotic UPR during chronic low-grade inflammation.
Collapse
Affiliation(s)
- Chengfeng Merriman
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Dax Fu
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
49
|
Kar M, Khan NA, Panwar A, Bais SS, Basak S, Goel R, Sopory S, Medigeshi GR. Zinc Chelation Specifically Inhibits Early Stages of Dengue Virus Replication by Activation of NF-κB and Induction of Antiviral Response in Epithelial Cells. Front Immunol 2019; 10:2347. [PMID: 31632411 PMCID: PMC6779808 DOI: 10.3389/fimmu.2019.02347] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 09/17/2019] [Indexed: 12/18/2022] Open
Abstract
Zinc is an essential micronutrient which regulates diverse physiological functions and has been shown to play a crucial role in viral infections. Zinc has a necessary role in the replication of many viruses, however, antiviral action of zinc has also been demonstrated in in vitro infection models most likely through induction of host antiviral responses. Therefore, depending on the host machinery that the virus employs at different stages of infection, zinc may either facilitate, or inhibit virus infection. In this study, we show that zinc plays divergent roles in rotavirus and dengue virus infections in epithelial cells. Dengue virus infection did not perturb the epithelial barrier functions despite the release of virus from the basolateral surface whereas rotavirus infection led to disruption of epithelial junctions. In rotavirus infection, zinc supplementation post-infection did not block barrier disruption suggesting that zinc does not affect rotavirus life-cycle or protects epithelial barriers post-infection suggesting the involvement of cellular pathways in the beneficial effect of zinc supplementation in enteric infections. Zinc depletion by N,N,N',N'-tetrakis(2-pyridinylmethyl)-1,2-ethanediamine (TPEN) inhibited dengue virus and Japanese encephalitis virus (JEV) infection but had no effect on rotavirus. Time-of-addition experiments suggested that zinc chelation affected both early and late stages of dengue virus infectious cycle and zinc chelation abrogated dengue virus RNA replication. We show that transient zinc chelation induces ER stress and antiviral response by activating NF-kappaB leading to induction of interferon signaling. These results suggest that modulation of zinc homeostasis during virus infection could be a component of host antiviral response and altering zinc homeostasis may act as a potent antiviral strategy against flaviviruses.
Collapse
Affiliation(s)
- Meenakshi Kar
- Clinical and Cellular Virology Lab, Translational Health Science and Technology Institute, Faridabad, India
| | - Naseem Ahmed Khan
- Clinical and Cellular Virology Lab, Translational Health Science and Technology Institute, Faridabad, India
| | - Aleksha Panwar
- Clinical and Cellular Virology Lab, Translational Health Science and Technology Institute, Faridabad, India
| | - Sachendra S Bais
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi, India
| | - Soumen Basak
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi, India
| | - Renu Goel
- Drug Discovery Research Centre, Translational Health Science and Technology Institute, Faridabad, India
| | - Shailaja Sopory
- Pediatric Biology Centre, Translational Health Science and Technology Institute, Faridabad, India
| | - Guruprasad R Medigeshi
- Clinical and Cellular Virology Lab, Translational Health Science and Technology Institute, Faridabad, India
| |
Collapse
|
50
|
Different Actions of Intracellular Zinc Transporters ZIP7 and ZIP13 Are Essential for Dermal Development. Int J Mol Sci 2019; 20:ijms20163941. [PMID: 31412620 PMCID: PMC6719138 DOI: 10.3390/ijms20163941] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 12/15/2022] Open
Abstract
Two mesenchymal zinc transporters, ZIP7 and ZIP13, play critical roles in dermal development. ZIP7 and ZIP13 are the closest among the conserved mammalian zinc transporters. However, whether their functions are complementary remains a controversial issue. In the present study, we found that the expression of ZIP13, but not ZIP7, is elevated by transforming growth factor beta (TGF-β) treatment, indicating that TGF-β-mediated ZIP13 amplification is crucial for collagen production during dermal development. Genome-wide gene expression analysis revealed that ~26% of genes are dependent on either ZIP7 or ZIP13, which is greater than the ~17% of genes dependent on both of them. ZIP7 depletion induces endoplasmic reticulum (ER) stress in mesenchymal stem cells, resulting in significant inhibition of fibrogenic differentiation. However, ZIP13 depletion does not induce ER stress. Though both ZIP7 and ZIP13 contain traditional ER signal peptides for their intracellular localization, their distributions are distinct. When ZIP7 and ZIP13 are coexpressed, their localizations are distinct; ZIP7 is located on the ER, but ZIP13 is located on both the ER and Golgi, indicating that only ZIP13 is a zinc gatekeeper on the Golgi. Our data illustrate that the different actions of ZIP7 and ZIP13 are crucial for dermal development.
Collapse
|