1
|
Duan X, Hu J, Zhang Y, Zhao X, Yang M, Sun T, Liu S, Chen X, Feng J, Li W, Yang Z, Zhang Y, Lin X, Liu D, Meng Y, Yang G, Lin Q, Zhang G, Lei H, Yi Z, Liu Y, Liang X, Wu Y, Diao W, Li Z, Liang H, Zhan M, Sun HW, Li XY, Lu L. RIG-I is an intracellular checkpoint that limits CD8 + T-cell antitumour immunity. EMBO Mol Med 2024; 16:3005-3025. [PMID: 39322862 PMCID: PMC11555380 DOI: 10.1038/s44321-024-00136-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/27/2024] Open
Abstract
Retinoic acid-inducible gene I (RIG-I) is a pattern recognition receptor involved in innate immunity, but its role in adaptive immunity, specifically in the context of CD8+ T-cell antitumour immunity, remains unclear. Here, we demonstrate that RIG-I is upregulated in tumour-infiltrating CD8+ T cells, where it functions as an intracellular checkpoint to negatively regulate CD8+ T-cell function and limit antitumour immunity. Mechanistically, the upregulation of RIG-I in CD8+ T cells is induced by activated T cells, and directly inhibits the AKT/glycolysis signalling pathway. In addition, knocking out RIG-I enhances the efficacy of adoptively transferred T cells against solid tumours, and inhibiting RIG-I enhances the response to PD-1 blockade. Overall, our study identifies RIG-I as an intracellular checkpoint and a potential target for alleviating inhibitory constraints on T cells in cancer immunotherapy, either alone or in combination with an immune checkpoint inhibitor.
Collapse
Affiliation(s)
- Xiaobing Duan
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, 519000, China.
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China.
| | - Jiali Hu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, 519000, China
| | - Yuncong Zhang
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, 519000, China
| | - Xiaoguang Zhao
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, 519000, China
| | - Mingqi Yang
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, 519000, China
| | - Taoping Sun
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, 519000, China
| | - Siya Liu
- The Third People's Hospital of Zhuhai, Zhuhai, 519000, China
| | - Xin Chen
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China
| | - Juan Feng
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China
| | - Wenting Li
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, 519000, China
| | - Ze Yang
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, 519000, China
| | - Yitian Zhang
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, 519000, China
| | - Xiaowen Lin
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, 519000, China
| | - Dingjie Liu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, 519000, China
| | - Ya Meng
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, 519000, China
| | - Guang Yang
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, 519000, China
| | - Qiuping Lin
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, 519000, China
| | - Guihai Zhang
- Department of Oncology, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, 519000, China
| | - Haihong Lei
- Department of Radiation Oncology, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, 519000, China
| | - Zhengsheng Yi
- Department of Radiation Oncology, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, 519000, China
| | - Yanyan Liu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, 519000, China
| | - Xiaobing Liang
- Guangdong Huixin Life Science Co., Ltd., Zhuhai, 519000, China
| | - Yujuan Wu
- Zhuhai Central Blood Station, Zhuhai, 519000, China
| | - Wenqing Diao
- Zhuhai Central Blood Station, Zhuhai, 519000, China
| | - Zesong Li
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumours, Shenzhen Key Laboratory of Genitourinary Tumour, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China
| | - Haihai Liang
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, 519000, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Meixiao Zhan
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, 519000, China
- Guangzhou First Pepople's Hospital, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Hong-Wei Sun
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, 519000, China.
| | - Xian-Yang Li
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, 519000, China.
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, 519000, China.
- Guangzhou First Pepople's Hospital, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Seok JK, Yang G, Jee JI, Kang HC, Cho YY, Lee HS, Lee JY. Hepatocyte-specific RIG-I loss attenuates metabolic dysfunction-associated steatotic liver disease in mice via changes in mitochondrial respiration and metabolite profiles. Toxicol Res 2024; 40:683-695. [PMID: 39345739 PMCID: PMC11436585 DOI: 10.1007/s43188-024-00264-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024] Open
Abstract
Pattern recognition receptor (PRR)-mediated inflammation is an important determinant of the initiation and progression of metabolic diseases such as metabolic dysfunction-associated steatotic liver disease (MASLD). In this study, we investigated whether RIG-I is involved in hepatic metabolic reprogramming in a high-fat diet (HFD)-induced MASLD model in hepatocyte-specific RIG-I-KO (RIG-I∆hep) mice. Our study revealed that hepatic deficiency of RIG-I improved HFD-induced metabolic imbalances, including glucose impairment and insulin resistance. Hepatic steatosis and liver triglyceride levels were reduced in RIG-I-deficient hepatocytes in HFD-induced MASLD mice, and this was accompanied by the reduced expression of lipogenesis genes, such as PPARγ, Dga2, and Pck1. Hepatic RIG-I deficiency alters whole-body metabolic rates in the HFD-induced MASLD model; there is higher energy consumption in RIG-I∆hep mice. Deletion of RIG-I activated glycolysis and tricarboxylic acid (TCA) cycle-related metabolites in hepatocytes from both HFD-induced MASLD mice and methionine-choline-deficient diet (MCD)-fed mice. RIG-I deficiency enhanced AMPK activation and mitochondrial function in hepatocytes from HFD-induced MASLD mice. These findings indicate that deletion of RIG-I can activate cellular metabolism in hepatocytes by switching on both glycolysis and mitochondrial respiration, resulting in metabolic changes induced by a HFD and stimulation of mitochondrial activity. In summary, RIG-I may be a key regulator of cellular metabolism that influences the development of metabolic diseases such as MASLD. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-024-00264-x.
Collapse
Affiliation(s)
- Jin Kyung Seok
- College of Pharmacy, The Catholic University of Korea, Bucheon, 14662 Republic of Korea
| | - Gabsik Yang
- Department of Pharmacology, College of Korean Medicine, Woosuk University, Jeonbuk, 55338 Republic of Korea
| | - Jung In Jee
- College of Pharmacy, The Catholic University of Korea, Bucheon, 14662 Republic of Korea
| | - Han Chang Kang
- College of Pharmacy, The Catholic University of Korea, Bucheon, 14662 Republic of Korea
| | - Yong-Yeon Cho
- College of Pharmacy, The Catholic University of Korea, Bucheon, 14662 Republic of Korea
| | - Hye Suk Lee
- College of Pharmacy, The Catholic University of Korea, Bucheon, 14662 Republic of Korea
| | - Joo Young Lee
- College of Pharmacy, The Catholic University of Korea, Bucheon, 14662 Republic of Korea
| |
Collapse
|
3
|
Fan J, Li Z, Pei L, Hou Y. Post-transcriptional regulation of DEAD-box RNA helicases in hematopoietic malignancies. Genes Dis 2024; 11:101252. [PMID: 38993792 PMCID: PMC11237855 DOI: 10.1016/j.gendis.2024.101252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 02/01/2024] [Accepted: 02/11/2024] [Indexed: 07/13/2024] Open
Abstract
Hematopoiesis represents a meticulously regulated and dynamic biological process. Genetic aberrations affecting blood cells, induced by various factors, frequently give rise to hematological tumors. These instances are often accompanied by a multitude of abnormal post-transcriptional regulatory events, including RNA alternative splicing, RNA localization, RNA degradation, and storage. Notably, post-transcriptional regulation plays a pivotal role in preserving hematopoietic homeostasis. The DEAD-Box RNA helicase genes emerge as crucial post-transcriptional regulatory factors, intricately involved in sustaining normal hematopoiesis through diverse mechanisms such as RNA alternative splicing, RNA modification, and ribosome assembly. This review consolidates the existing knowledge on the role of DEAD-box RNA helicases in regulating normal hematopoiesis and underscores the pathogenicity of mutant DEAD-Box RNA helicases in malignant hematopoiesis. Emphasis is placed on elucidating both the positive and negative contributions of DEAD-box RNA helicases within the hematopoietic system.
Collapse
Affiliation(s)
- Jiankun Fan
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Zhigang Li
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Li Pei
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yu Hou
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
4
|
Liu J, Luo S, Wang G, Hu X, Chen G, Xu Q. Molecular Cloning, Tissue Distribution and Antiviral Immune Response of Duck Src. Genes (Basel) 2024; 15:1044. [PMID: 39202404 PMCID: PMC11353579 DOI: 10.3390/genes15081044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
As a founding member of the Src family of kinases, Src has been confirmed to participate in the regulation of immune responses, integrin signaling, and motility. Ducks are usually asymptomatic carriers of RNA viruses such as Newcastle disease virus and avian influenza virus, which can be deadly to chickens. The beneficial role of Src in modulating the immune response remains largely unknown in ducks. Here, we characterized the duck Src and found that it contains a 192-base-pair 5' untranslated region, a 1602-base-pair coding region, and a 2541-base-pair 3' untranslated region, encoding 533 amino acid residues. Additionally, duSrc transcripts were significantly activated in duck tissues infected by Newcastle disease virus compared to controls. The duSrc transcripts were notably widespread in all tissues examined, and the expression level was higher in liver, blood, lung, pancreas, and thymus. Moreover, we found the expression levels of IFN-β, NF-κB, IRF3, and Src were significantly increased in DEFs after infection with 5'ppp dsRNA, but there was no significant difference before and after treatment in DF1 cells. Furthermore, overexpression of duSrc followed by stimulation with 5'ppp dsRNA led to an elevation of IFN-β levels. The SH3 and PTKc domains of duSrc contributed to promoting the activity of IFN-β and NF-κB in DEFs stimulated by 5'ppp dsRNA.
Collapse
Affiliation(s)
| | | | | | | | | | - Qi Xu
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (J.L.); (S.L.); (X.H.); (G.C.)
| |
Collapse
|
5
|
Hu A, Sun L, Lin H, Liao Y, Yang H, Mao Y. Harnessing innate immune pathways for therapeutic advancement in cancer. Signal Transduct Target Ther 2024; 9:68. [PMID: 38523155 PMCID: PMC10961329 DOI: 10.1038/s41392-024-01765-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 03/26/2024] Open
Abstract
The innate immune pathway is receiving increasing attention in cancer therapy. This pathway is ubiquitous across various cell types, not only in innate immune cells but also in adaptive immune cells, tumor cells, and stromal cells. Agonists targeting the innate immune pathway have shown profound changes in the tumor microenvironment (TME) and improved tumor prognosis in preclinical studies. However, to date, the clinical success of drugs targeting the innate immune pathway remains limited. Interestingly, recent studies have shown that activation of the innate immune pathway can paradoxically promote tumor progression. The uncertainty surrounding the therapeutic effectiveness of targeted drugs for the innate immune pathway is a critical issue that needs immediate investigation. In this review, we observe that the role of the innate immune pathway demonstrates heterogeneity, linked to the tumor development stage, pathway status, and specific cell types. We propose that within the TME, the innate immune pathway exhibits multidimensional diversity. This diversity is fundamentally rooted in cellular heterogeneity and is manifested as a variety of signaling networks. The pro-tumor effect of innate immune pathway activation essentially reflects the suppression of classical pathways and the activation of potential pro-tumor alternative pathways. Refining our understanding of the tumor's innate immune pathway network and employing appropriate targeting strategies can enhance our ability to harness the anti-tumor potential of the innate immune pathway and ultimately bridge the gap from preclinical to clinical application.
Collapse
Affiliation(s)
- Ankang Hu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Li Sun
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Hao Lin
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Yuheng Liao
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Key Laboratory of Metabolism and Molecular Medicine (Ministry of Education), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, P.R. China
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China.
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
| |
Collapse
|
6
|
Reghu G, Vemula PK, Bhat SG, Narayanan S. Harnessing the innate immune system by revolutionizing macrophage-mediated cancer immunotherapy. J Biosci 2024; 49:63. [PMID: 38864238 PMCID: PMC11286319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 06/13/2024]
Abstract
Immunotherapy is a promising and safer alternative to conventional cancer therapies. It involves adaptive T-cell therapy, cancer vaccines, monoclonal antibodies, immune checkpoint blockade (ICB), and chimeric antigen receptor (CAR) based therapies. However, most of these modalities encounter restrictions in solid tumours owing to a dense, highly hypoxic and immune-suppressive microenvironment as well as the heterogeneity of tumour antigens. The elevated intra-tumoural pressure and mutational rates within fastgrowing solid tumours present challenges in efficient drug targeting and delivery. The tumour microenvironment is a dynamic niche infiltrated by a variety of immune cells, most of which are macrophages. Since they form a part of the innate immune system, targeting macrophages has become a plausible immunotherapeutic approach. In this review, we discuss several versatile approaches (both at pre-clinical and clinical stages) such as the direct killing of tumour-associated macrophages, reprogramming pro-tumour macrophages to anti-tumour phenotypes, inhibition of macrophage recruitment into the tumour microenvironment, novel CAR macrophages, and genetically engineered macrophages that have been devised thus far. These strategies comprise a strong and adaptable macrophage-toolkit in the ongoing fight against cancer and by understanding their significance, we may unlock the full potential of these immune cells in cancer therapy.
Collapse
Affiliation(s)
- Gayatri Reghu
- Department of Biotechnology, Cochin University of Science and Technology, Kochi 682 022, India
| | | | | | | |
Collapse
|
7
|
Jiang Y, Zhang H, Wang J, Chen J, Guo Z, Liu Y, Hua H. Exploiting RIG-I-like receptor pathway for cancer immunotherapy. J Hematol Oncol 2023; 16:8. [PMID: 36755342 PMCID: PMC9906624 DOI: 10.1186/s13045-023-01405-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
RIG-I-like receptors (RLRs) are intracellular pattern recognition receptors that detect viral or bacterial infection and induce host innate immune responses. The RLRs family comprises retinoic acid-inducible gene 1 (RIG-I), melanoma differentiation-associated gene 5 (MDA5) and laboratory of genetics and physiology 2 (LGP2) that have distinctive features. These receptors not only recognize RNA intermediates from viruses and bacteria, but also interact with endogenous RNA such as the mislocalized mitochondrial RNA, the aberrantly reactivated repetitive or transposable elements in the human genome. Evasion of RLRs-mediated immune response may lead to sustained infection, defective host immunity and carcinogenesis. Therapeutic targeting RLRs may not only provoke anti-infection effects, but also induce anticancer immunity or sensitize "immune-cold" tumors to immune checkpoint blockade. In this review, we summarize the current knowledge of RLRs signaling and discuss the rationale for therapeutic targeting RLRs in cancer. We describe how RLRs can be activated by synthetic RNA, oncolytic viruses, viral mimicry and radio-chemotherapy, and how the RNA agonists of RLRs can be systemically delivered in vivo. The integration of RLRs agonism with RNA interference or CAR-T cells provides new dimensions that complement cancer immunotherapy. Moreover, we update the progress of recent clinical trials for cancer therapy involving RLRs activation and immune modulation. Further studies of the mechanisms underlying RLRs signaling will shed new light on the development of cancer therapeutics. Manipulation of RLRs signaling represents an opportunity for clinically relevant cancer therapy. Addressing the challenges in this field will help develop future generations of cancer immunotherapy.
Collapse
Affiliation(s)
- Yangfu Jiang
- Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Hongying Zhang
- Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiao Wang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jinzhu Chen
- Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zeyu Guo
- Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yongliang Liu
- Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hui Hua
- Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
8
|
Lewis AH, Bridges CS, Moorshead DN, Chen TJ, Du W, Zorman B, Sumazin P, Puppi M, Lacorazza HD. Krüppel-like Factor 4 Supports the Expansion of Leukemia Stem Cells in MLL-AF9-driven Acute Myeloid Leukemia. Stem Cells 2022; 40:736-750. [PMID: 35535819 PMCID: PMC9406610 DOI: 10.1093/stmcls/sxac033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 04/27/2022] [Indexed: 11/13/2022]
Abstract
Acute myeloid leukemia (AML) is an aggressive malignancy of the bone marrow with 5-year overall survival of less than 10% in patients over the age of 65. Limited progress has been made in the patient outcome because of the inability to selectively eradicate the leukemic stem cells (LSC) driving the refractory and relapsed disease. Herein, we investigated the role of the reprogramming factor KLF4 in AML because of its critical role in the self-renewal and stemness of embryonic and cancer stem cells. Using a conditional Cre-lox Klf4 deletion system and the MLL-AF9 retroviral mouse model, we demonstrated that loss-of-KLF4 does not significantly affect the induction of leukemia but markedly decreased the frequency of LSCs evaluated in limiting-dose transplantation studies. Loss of KLF4 in leukemic granulocyte-macrophage progenitors (L-GMP), a population enriched for AML LSCs, showed lessened clonogenicity and percentage in the G2/M phase of the cell cycle. RNAseq analysis of purified L-GMPs revealed decreased expression of stemness genes and MLL-target genes and upregulation of the RNA sensing helicase DDX58. However, silencing of DDX58 in KLF4 knockout leukemia indicated that DDX58 is not mediating this phenotype. CRISPR/Cas9 deletion of KLF4 in MOLM13 cell line and AML patient-derived xenograft cells showed impaired expansion in vitro and in vivo associated with a defective G2/M checkpoint. Collectively, our data suggest a mechanism in which KLF4 promotes leukemia progression by establishing a gene expression profile in AML LSCs supporting cell division and stemness.
Collapse
Affiliation(s)
- Andrew Henry Lewis
- Department of Pathology & Immunology, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX, USA
| | - Cory Seth Bridges
- Department of Pathology & Immunology, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX, USA
| | - David Neal Moorshead
- Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Taylor J Chen
- Department of Pathology & Immunology, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX, USA
| | - Wa Du
- Department of Pathology & Immunology, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX, USA
| | - Barry Zorman
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Pavel Sumazin
- Present address: Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
| | - Monica Puppi
- Department of Pathology & Immunology, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX, USA
| | - H Daniel Lacorazza
- Department of Pathology & Immunology, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX, USA
| |
Collapse
|
9
|
Méndez-Ferrer S. RIG-Ing out BMSCs for hematopoietic recovery after transplantation. Blood 2022; 139:3107-3109. [PMID: 35616989 DOI: 10.1182/blood.2022016099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/07/2022] [Indexed: 11/20/2022] Open
|
10
|
The RIG-I-NRF2 axis regulates the mesenchymal stromal niche for bone marrow transplantation. Blood 2022; 139:3204-3221. [PMID: 35259210 DOI: 10.1182/blood.2021013048] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 02/18/2022] [Indexed: 11/20/2022] Open
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) support bone formation and constitute the stromal niche in regulating hematopoietic stem cells (HSCs). Stromal niche dysfunction affects HSC engraftment during transplantation; however, the underlying mechanisms remain elusive. In the present study, we found that all-trans retinoic acid (ATRA) and inflammation stress upregulated retinoic acid-inducible gene I (RIG-I) in BMSCs. Excess RIG-I expression damaged the clonogenicity, bone-forming ability of BMSCs and, particularly, their stromal niche function that supports HSC expansion in vitro and engraftment in vivo. Mechanistically, RIG-I elevation promoted the degradation of NRF2, a checkpoint for antioxidant cellular response, by altering the RIG-I-Trim25-Keap1-NRF2 complex, leading to reactive oxygen species (ROS) accumulation and BMSC damage. Genetic inhibition of RIG-I sustained NRF2 protein levels and reduced ROS levels in ATRA-treated BMSCs, thus preserving their clonogenicity, bone-forming ability, and stromal niche function in supporting HSC engraftment in mice. More importantly, RIG-I inhibition recovered the ATRA-treated stromal niche function, to enhance HSC engraftment and emergency myelopoiesis for innate immunity against the bacterium Listeria monocytogenes during transplantation. Overall, we identified a non-canonical role of RIG-I in the regulation of the stromal niche for HSC transplantation.
Collapse
|
11
|
Abstract
Purpose of Review Hematopoietic stem cells (HSCs) are formed embryonically during a dynamic developmental process and later reside in adult hematopoietic organs in a quiescent state. In response to their changing environment, HSCs have evolved diverse mechanisms to cope with intrinsic and extrinsic challenges. This review intends to discuss how HSCs and other stem cells co-opted DNA and RNA innate immune pathways to fine-tune developmental processes. Recent Findings Innate immune receptors for nucleic acids like the RIG-I-like family receptors and members of DNA sensing pathways are expressed in HSCs and other stem cells. Even though the “classic” role of these receptors is recognition of foreign DNA or RNA from pathogens, it was recently shown that cellular transposable element (TE) RNA or R-loops activate such receptors, serving as endogenous triggers of inflammatory signaling that can shape HSC formation during development and regeneration. Summary Endogenous TEs and R-loops activate RNA and DNA sensors, which trigger distinct inflammatory signals to fine-tune stem cell decisions. This phenomenon could have broad implications for diverse somatic stem cells, for a variety of diseases and during aging.
Collapse
|
12
|
Tsuchiya H, Shiota G. Clinical and Biological Implications of Cancer Stem Cells in Hepatocellular Carcinoma. Yonago Acta Med 2021; 64:1-11. [PMID: 33642898 DOI: 10.33160/yam.2021.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor with poor prognosis, and is one of the leading causes of cancer-related deaths worldwide. Recently, the development of therapeutic drugs via novel mechanisms of action, involving molecular-targeted drugs and immune checkpoint inhibitors, has progressed in the field of HCC. However, the recurrence rate remains high, and further improvement of the prognosis of patients with HCC is urgently needed. Cancer stem cells (CSCs) are a promising target for further development of novel anti-cancer drugs because they are reportedly involved in tumor initiation, maintenance, recurrence, and resistance to conventional therapies. Although several studies have already been conducted, the functions and roles of CSCs in the development and progression of tumors remain to be elucidated. In this review article, we will clarify the fundamental knowledge of CSCs necessary for the understanding of CSCs and will outline so-far identified markers specific to liver CSCs and the pathological and therapeutic implications of CSCs in HCC.
Collapse
Affiliation(s)
- Hiroyuki Tsuchiya
- Division of Medical Genetics and Regenerative Medicine, Department of Genomic Medicine and Regenerative Therapy, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Goshi Shiota
- Division of Medical Genetics and Regenerative Medicine, Department of Genomic Medicine and Regenerative Therapy, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| |
Collapse
|
13
|
Lefkopoulos S, Polyzou A, Derecka M, Bergo V, Clapes T, Cauchy P, Jerez-Longres C, Onishi-Seebacher M, Yin N, Martagon-Calderón NA, Potts KS, Klaeylé L, Liu F, Bowman TV, Jenuwein T, Mione MC, Trompouki E. Repetitive Elements Trigger RIG-I-like Receptor Signaling that Regulates the Emergence of Hematopoietic Stem and Progenitor Cells. Immunity 2020; 53:934-951.e9. [DOI: 10.1016/j.immuni.2020.10.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 06/23/2020] [Accepted: 09/30/2020] [Indexed: 02/06/2023]
|
14
|
Iurescia S, Fioretti D, Rinaldi M. The Innate Immune Signalling Pathways: Turning RIG-I Sensor Activation Against Cancer. Cancers (Basel) 2020; 12:E3158. [PMID: 33121210 PMCID: PMC7693898 DOI: 10.3390/cancers12113158] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023] Open
Abstract
Over the last 15 years, the ability to harness a patient's own immune system has led to significant progress in cancer therapy. For instance, immunotherapeutic strategies, including checkpoint inhibitors or adoptive cell therapy using chimeric antigen receptor T-cell (CAR-T), are specifically aimed at enhancing adaptive anti-tumour immunity. Several research groups demonstrated that adaptive anti-tumour immunity is highly sustained by innate immune responses. Host innate immunity provides the first line of defence and mediates recognition of danger signals through pattern recognition receptors (PRRs), such as cytosolic sensors of pathogen-associated molecular patterns (PAMPs) and damage-associated molecular pattern (DAMP) signals. The retinoic acid-inducible gene I (RIG-I) is a cytosolic RNA helicase, which detects viral double-strand RNA and, once activated, triggers signalling pathways, converging on the production of type I interferons, proinflammatory cytokines, and programmed cell death. Approaches aimed at activating RIG-I within cancers are being explored as novel therapeutic treatments to generate an inflammatory tumour microenvironment and to facilitate cytotoxic T-cell cross-priming and infiltration. Here, we provide an overview of studies regarding the role of RIG-I signalling in the tumour microenvironment, and the most recent preclinical studies that employ RIG-I agonists. Lastly, we present a selection of clinical trials designed to prove the antitumour role of RIG I and that may result in improved therapeutic outcomes for cancer patients.
Collapse
Affiliation(s)
- Sandra Iurescia
- Institute of Translational Pharmacology (IFT), Department of Biomedical Science, National Research Council (CNR), 00133 Rome, Italy;
| | | | - Monica Rinaldi
- Institute of Translational Pharmacology (IFT), Department of Biomedical Science, National Research Council (CNR), 00133 Rome, Italy;
| |
Collapse
|
15
|
Wu SF, Xia L, Shi XD, Dai YJ, Zhang WN, Zhao JM, Zhang W, Weng XQ, Lu J, Le HY, Tao SC, Zhu J, Chen Z, Wang YY, Chen S. RIG-I regulates myeloid differentiation by promoting TRIM25-mediated ISGylation. Proc Natl Acad Sci U S A 2020; 117:14395-14404. [PMID: 32513696 PMCID: PMC7322067 DOI: 10.1073/pnas.1918596117] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Retinoic acid-inducible gene I (RIG-I) is up-regulated during granulocytic differentiation of acute promyelocytic leukemia (APL) cells induced by all-trans retinoic acid (ATRA). It has been reported that RIG-I recognizes virus-specific 5'-ppp-double-stranded RNA (dsRNA) and activates the type I interferons signaling pathways in innate immunity. However, the functions of RIG-I in hematopoiesis remain unclear, especially regarding its possible interaction with endogenous RNAs and the associated pathways that could contribute to the cellular differentiation and maturation. Herein, we identified a number of RIG-I-binding endogenous RNAs in APL cells following ATRA treatment, including the tripartite motif-containing protein 25 (TRIM25) messenger RNA (mRNA). TRIM25 encodes the protein known as an E3 ligase for ubiquitin/interferon (IFN)-induced 15-kDa protein (ISG15) that is involved in RIG-I-mediated antiviral signaling. We show that RIG-I could bind TRIM25 mRNA via its helicase domain and C-terminal regulatory domain, enhancing the stability of TRIM25 transcripts. RIG-I could increase the transcriptional expression of TRIM25 by caspase recruitment domain (CARD) domain through an IFN-stimulated response element. In addition, RIG-I activated other key genes in the ISGylation pathway by activating signal transducer and activator of transcription 1 (STAT1), including the modifier ISG15 and several enzymes responsible for the conjugation of ISG15 to protein substrates. RIG-I cooperated with STAT1/2 and interferon regulatory factor 1 (IRF1) to promote the activation of the ISGylation pathway. The integrity of ISGylation in ATRA or RIG-I-induced cell differentiation was essential given that knockdown of TRIM25 or ISG15 resulted in significant inhibition of this process. Our results provide insight into the role of the RIG-I-TRIM25-ISGylation axis in myeloid differentiation.
Collapse
Affiliation(s)
- Song-Fang Wu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine at Shanghai, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li Xia
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine at Shanghai, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiao-Dong Shi
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine at Shanghai, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yu-Jun Dai
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine at Shanghai, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wei-Na Zhang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine at Shanghai, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jun-Mei Zhao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine at Shanghai, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wu Zhang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine at Shanghai, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiang-Qin Weng
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine at Shanghai, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jing Lu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine at Shanghai, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Huang-Ying Le
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sheng-Ce Tao
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiang Zhu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine at Shanghai, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhu Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine at Shanghai, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yue-Ying Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine at Shanghai, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - Saijuan Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine at Shanghai, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
16
|
Zhao J, Jiang X, Yan L, Lin J, Guo H, Yu S, Ye B, Zhu J, Zhang W. Retinoic acid inducible gene-I slows down cellular senescence through negatively regulating the integrin β3/p38 MAPK pathway. Cell Cycle 2019; 18:3378-3392. [PMID: 31595820 PMCID: PMC6927694 DOI: 10.1080/15384101.2019.1677074] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/09/2019] [Accepted: 09/24/2019] [Indexed: 02/08/2023] Open
Abstract
Retinoic acid inducible gene-I (Rig-I) has been well documented as a cytosolic pattern recognition receptor that can sense viral RNA ligands to initiate the interferon-mediated antiviral immunity. However, little is known about the biological behaviors of Rig-I devoid of viral infection. Herein, we investigated the roles of Rig-I in the regulation of cellular senescence. In comparison to wild-type counterparts, Rig-I-/- mice displayed the accelerated loss of hair, less responsiveness to gentle physical stimuli and shorten survival time. Likewise, Rig-I deficiency rendered mouse embryonic fibroblasts (MEFs) more susceptible to the serial passages-associated replicative senescence. By performing a transcriptome analysis, we identified integrins at the intersections of biological pathways affected by Rig-I. Among these, integrin β3 was negatively regulated by Rig-I, and significantly upregulated with the occurrence of senescence. Gene silencing of Itgb3 (encoding integrin β3) retarded the progression of cellular senescence in both WT and Rig-I-/- MEFs. Notably, this effect was more prominent in Rig-I-/- MEFs. Furthermore, p38 MAPK was a key downstream molecule for integrin β3-mediated senescence, and overactivated in senescent Rig-I-/- MEFs. Taken together, Rig-I deficiency contributes to cellular senescence through amplifying integrin β3/p38 MAPK signaling. Our findings provide the evidence that Rig-I is a key regulator of cellular senescence, which will be helpful in better understanding its function without viral infection.Abbreviations: Rig-I: retinoic acid inducible gene-I; SASP: senescence-associated secretory phenotype; ECM: extracellular matrix; Itgb3: integrin beta 3; PRR: pattern recognition receptor; MEFs: mouse embryonic fibroblasts; Il-1β: interleukin-1 beta; Il-6: interleukin-6; Il-8: interleukin-8; Cxcl1: chemokine (C-X-C motif) ligand 1; Ccl2: chemokine (C-C motif) ligand 2; WT, wild type; BM: bone marrow; MAPK: mitogen-activated protein kinase; ERK: extracellular signal-regulated kinases; JNK: Jun N-terminal kinases; SA-β-gal: senescence-associated β-galactosidase; qPCR: quantitative reverse-transcription PCR; PBS: phosphate-buffered saline.
Collapse
Affiliation(s)
- Junmei Zhao
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology and Collaborative Innovation Center of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
- Department of Hematology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xinyi Jiang
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology and Collaborative Innovation Center of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Li Yan
- Department of Hematology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Jian Lin
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology and Collaborative Innovation Center of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
- School of Life Sciences and Biotechnology, Shanghai Jiao-Tong University, Shanghai, China
| | - Hezhou Guo
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology and Collaborative Innovation Center of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
- School of Life Sciences and Biotechnology, Shanghai Jiao-Tong University, Shanghai, China
| | - Shanhe Yu
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology and Collaborative Innovation Center of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Baixin Ye
- Department of Hematology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Jiang Zhu
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology and Collaborative Innovation Center of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
- School of Life Sciences and Biotechnology, Shanghai Jiao-Tong University, Shanghai, China
| | - Wu Zhang
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology and Collaborative Innovation Center of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
RIG-I-based immunotherapy enhances survival in preclinical AML models and sensitizes AML cells to checkpoint blockade. Leukemia 2019; 34:1017-1026. [PMID: 31740809 PMCID: PMC7214254 DOI: 10.1038/s41375-019-0639-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 10/14/2019] [Accepted: 11/03/2019] [Indexed: 01/22/2023]
Abstract
Retinoic acid-inducible gene-I (RIG-I) is a cytoplasmic immune receptor sensing viral RNA. It triggers the release of type I interferons (IFN) and proinflammatory cytokines inducing an adaptive cellular immune response. We investigated the therapeutic potential of systemic RIG-I activation by short 5′-triphosphate-modified RNA (ppp-RNA) for the treatment of acute myeloid leukemia (AML) in the syngeneic murine C1498 AML tumor model. ppp-RNA treatment significantly reduced tumor burden, delayed disease onset and led to complete remission including immunological memory formation in a substantial proportion of animals. Therapy-induced tumor rejection was dependent on CD4+ and CD8+ T cells, but not on NK or B cells, and relied on intact IFN and mitochondrial antiviral signaling protein (MAVS) signaling in the host. Interestingly, ppp-RNA treatment induced programmed death ligand 1 (PD-L1) expression on AML cells and established therapeutic sensitivity to anti-PD-1 checkpoint blockade in vivo. In immune-reconstituted humanized mice, ppp-RNA treatment reduced the number of patient-derived xenografted (PDX) AML cells in blood and bone marrow while concomitantly enhancing CD3+ T cell counts in the respective tissues. Due to its ability to establish a state of full remission and immunological memory, our findings show that ppp-RNA treatment is a promising strategy for the immunotherapy of AML.
Collapse
|
18
|
Zhong M, Zhong C, Cui W, Wang G, Zheng G, Li L, Zhang J, Ren R, Gao H, Wang T, Li X, Che J, Gohda E. Induction of tolerogenic dendritic cells by activated TGF-β/Akt/Smad2 signaling in RIG-I-deficient stemness-high human liver cancer cells. BMC Cancer 2019; 19:439. [PMID: 31088527 PMCID: PMC6515680 DOI: 10.1186/s12885-019-5670-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 05/02/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Dendritic cells (DCs) alter their role from being immunostimulatory to immunosuppressive at advanced stages of tumor progression, but the influence of cancer stem cells (CSCs) and their secreted factors on generation and phenotypic change of DCs is unknown. Retinoic acid-inducible gene I (RIG-I) plays a role in regulation of other cellular processes including leukemic stemness besides its antiviral function. METHODS Short hairpin RNA-mediated gene silencing was employed to generate stable RIG-I-knocked-down human hepatocellular carcinoma (HCC) cell lines. Expression levels of genes and proteins in spheres of those HCC cells were determined by quantitative real-time PCR and Western bot, respectively. Levels of secreted cytokines were measured by ELISA. The surface molecule expression levels of DCs were analyzed using flow cytometry. The ability of DCs to induce proliferation of T cells was assessed by a mixed lymphocyte reaction (MLR) assay. RESULTS RIG-I-knocked-down HCC cells showed upregulated expression of stem cell marker genes, enhanced secretion of factors suppressing in vitro generation of DCs into the conditioned medium (CM), and induction of a phenotype of tumor-infiltrating DCs (TIDCs) with low levels of DC markers in their tumors in nude mice. Those DCs and TIDCs showed reduced MLR, indicating RIG-I deficiency-induced immunotolerance. The RIG-I-deficient HCC cells secreted more TGF-β1 than did reference cells. The tumors formed after injection of RIG-I-deficient HCC cells had higher TGF-β1 contents than did tumors derived from control cells. DC generation and MLR suppressed by the CM of RIG-I-deficient HCC cells were restored by an anti-TGF-β1 antibody. TGF-β1-induced phosphorylation of Smad2 and Akt was enhanced in RIG-I-deficient HCC spheres, knockdown of AKT gene expression abolishing the augmentation of TGF-β1-induced Smad2 phosphorylation. Akt and p-Akt were co-immunoprecipitated with Smad2 in cytoplasmic proteins of RIG-I-deficient spheres but not in those of control spheres, the amounts of co-immunoprecipitated Akt and p-Akt being increased by TGF-β stimulation. CONCLUSIONS Our results demonstrate that RIG-I deficiency in HCC cells induced their stemness, enhanced secretion and signaling of TGF-β1, tolerogenic TIDCs and less generation of DCs, and the results suggest involvement of TGF-β1 in those RIG-I deficiency-induced tolerogenic changes and involvement of CSCs in DC-mediated immunotolerance.
Collapse
Affiliation(s)
- Ming Zhong
- Institute of Tumor Pharmacology, Jining Medical College, Xueyuan Road 669, Rizhao, 276826 China
| | - Cheng Zhong
- Division of Stem Cell Dynamics, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Wen Cui
- Institute of Tumor Pharmacology, Jining Medical College, Xueyuan Road 669, Rizhao, 276826 China
| | - Guanghui Wang
- Institute of Tumor Pharmacology, Jining Medical College, Xueyuan Road 669, Rizhao, 276826 China
| | - Gongpu Zheng
- Institute of Tumor Pharmacology, Jining Medical College, Xueyuan Road 669, Rizhao, 276826 China
| | - Li Li
- Institute of Tumor Pharmacology, Jining Medical College, Xueyuan Road 669, Rizhao, 276826 China
| | - Jing Zhang
- Institute of Tumor Pharmacology, Jining Medical College, Xueyuan Road 669, Rizhao, 276826 China
| | - Rujing Ren
- Institute of Tumor Pharmacology, Jining Medical College, Xueyuan Road 669, Rizhao, 276826 China
| | - Huijei Gao
- Institute of Tumor Pharmacology, Jining Medical College, Xueyuan Road 669, Rizhao, 276826 China
| | | | - Xin Li
- People’s Hospital of Rizhao, Rizhao, China
| | - Jiantu Che
- S&V Biological Science and Technology Co., Ltd., Beijing, China
| | - Eiichi Gohda
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
19
|
Galloway A, Cowling VH. mRNA cap regulation in mammalian cell function and fate. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2019; 1862:270-279. [PMID: 30312682 PMCID: PMC6414751 DOI: 10.1016/j.bbagrm.2018.09.011] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/13/2018] [Accepted: 09/30/2018] [Indexed: 12/17/2022]
Abstract
In this review we explore the regulation of mRNA cap formation and its impact on mammalian cells. The mRNA cap is a highly methylated modification of the 5' end of RNA pol II-transcribed RNA. It protects RNA from degradation, recruits complexes involved in RNA processing, export and translation initiation, and marks cellular mRNA as "self" to avoid recognition by the innate immune system. The mRNA cap can be viewed as a unique mark which selects RNA pol II transcripts for specific processing and translation. Over recent years, examples of regulation of mRNA cap formation have emerged, induced by oncogenes, developmental pathways and during the cell cycle. These signalling pathways regulate the rate and extent of mRNA cap formation, resulting in changes in gene expression, cell physiology and cell function.
Collapse
Affiliation(s)
- Alison Galloway
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Victoria H Cowling
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
20
|
Jacobson ME, Wang-Bishop L, Becker KW, Wilson JT. Delivery of 5'-triphosphate RNA with endosomolytic nanoparticles potently activates RIG-I to improve cancer immunotherapy. Biomater Sci 2019; 7:547-559. [PMID: 30379158 DOI: 10.1039/c8bm01064a] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
RNA agonists of the retinoic acid gene I (RIG-I) pathway have recently emerged as a promising class of cancer immunotherapeutics, but their efficacy is hindered by drug delivery barriers, including nuclease degradation, poor intracellular uptake, and minimal access to the cytosol where RIG-I is localized. Here, we explore the application of pH-responsive, endosomolytic polymer nanoparticles (NPs) to enhance the cytosolic delivery and immunostimulatory activity of synthetic 5' triphosphate, short, double-stranded RNA (3pRNA), a ligand for RIG-I. Delivery of 3pRNA with pH-responsive NPs with an active endosomal escape mechanism, but not control carriers lacking endosomolytic activity, significantly increased the activity of 3pRNA in dendritic cells, macrophages, and cancer cell lines. In a CT26 colon cancer model, activation of RIG-I via NP delivery of 3pRNA induced immunogenic cell death, triggered expression of type I interferon and pro-inflammatory cytokines, and increased CD8+ T cell infiltration into the tumor microenvironment. Consequently, intratumoral (IT) delivery of NPs loaded with 3pRNA inhibited CT26 tumor growth and enhanced the therapeutic efficacy of anti-PD-1 immune checkpoint blockade, resulting in a 30% complete response rate and generation of immunological memory that protected against tumor rechallenge. Collectively, these studies demonstrate that pH-responsive NPs can be harnessed to strongly enhance the immunostimulatory activity and therapeutic efficacy of 3pRNA and establish endosomal escape as a critical parameter in the design of carriers for immunotherapeutic targeting of the RIG-I pathway.
Collapse
Affiliation(s)
- Max E Jacobson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA.
| | | | | | | |
Collapse
|
21
|
Tzeng YDT, Liu PF, Li JY, Liu LF, Kuo SY, Hsieh CW, Lee CH, Wu CH, Hsiao M, Chang HT, Shu CW. Kinome-Wide siRNA Screening Identifies Src-Enhanced Resistance of Chemotherapeutic Drugs in Triple-Negative Breast Cancer Cells. Front Pharmacol 2018; 9:1285. [PMID: 30473665 PMCID: PMC6238227 DOI: 10.3389/fphar.2018.01285] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/22/2018] [Indexed: 12/24/2022] Open
Abstract
Background: Chemotherapy is the main treatment for triple-negative breast cancer (TNBC), which lack molecular markers for diagnosis and therapy. Cancer cells activate chemoresistant pathways and lead to therapeutic failure for patients with TNBC. Several kinases have been identified as chemoresistant genes. However, the involvement of kinases in the chemoresistance in TNBC cells is not fully understood. Methods: We employed a kinome siRNA library to screen whether targeting any kinases could increase the chemosensitivity of TNBC cell lines. The effects of kinase on cell viability in various breast cancer cells were validated with ATP level and colony formation. Protein expression and phosphorylation were determined by immunoblotting. The Cancer Genome Atlas (TCGA) dataset was collected to analyze the correlation of Src expression with prognosis of TNBC patients. Results: Primary screening and validation for the initial hits showed that Src kinase was a potential doxorubicin-resistant kinase in the TNBC cell lines MDA-MB-231 and Hs578T. Both siRNA against Src and the Src inhibitor dasatinib enhanced the cytotoxic effects of doxorubicin in TNBC cells. Moreover, phosphorylation of AKT and signal transducer and activator of transcription 3 (STAT3), downstream effectors of Src, were accordingly decreased in Src-silenced or -inhibited TNBC cells. Additionally, TCGA data analysis indicated that Src expression levels in tumor tissues were higher than those in tumor-adjacent normal tissues in patients with TNBC. High co-expression level of Src and STAT3 was also significantly correlated with poor prognosis in patients. Conclusion: Our results showed that Src-STAT3 axis might be involved in chemoresistance of TNBC cells.
Collapse
Affiliation(s)
- Yen-Dun Tony Tzeng
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Pei-Feng Liu
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Department of Nursing, Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan
| | - Ju-Yueh Li
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Li-Feng Liu
- School of Medicine for International Students, I-Shou University, Kaohsiung, Taiwan.,Institute of Biological Science & Technology, I-Shou University, Kaohsiung, Taiwan
| | - Soong-Yu Kuo
- Department of Biotechnology, Fooyin University, Kaohsiung, Taiwan
| | - Chiao-Wei Hsieh
- Institute of Biological Science & Technology, I-Shou University, Kaohsiung, Taiwan
| | - Cheng-Hsin Lee
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Chih-Hsuan Wu
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.,Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hong-Tai Chang
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Chih-Wen Shu
- School of Medicine for International Students, I-Shou University, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
22
|
Li XY, Das I, Lepletier A, Addala V, Bald T, Stannard K, Barkauskas D, Liu J, Aguilera AR, Takeda K, Braun M, Nakamura K, Jacquelin S, Lane SW, Teng MW, Dougall WC, Smyth MJ. CD155 loss enhances tumor suppression via combined host and tumor-intrinsic mechanisms. J Clin Invest 2018; 128:2613-2625. [PMID: 29757192 DOI: 10.1172/jci98769] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/16/2018] [Indexed: 12/20/2022] Open
Abstract
Critical immune-suppressive pathways beyond programmed death 1 (PD-1) and programmed death ligand 1 (PD-L1) require greater attention. Nectins and nectin-like molecules might be promising targets for immunotherapy, since they play critical roles in cell proliferation and migration and exert immunomodulatory functions in pathophysiological conditions. Here, we show CD155 expression in both malignant cells and tumor-infiltrating myeloid cells in humans and mice. Cd155-/- mice displayed reduced tumor growth and metastasis via DNAM-1 upregulation and enhanced effector function of CD8+ T and NK cells, respectively. CD155-deleted tumor cells also displayed slower tumor growth and reduced metastases, demonstrating the importance of a tumor-intrinsic role of CD155. CD155 absence on host and tumor cells exerted an even greater inhibition of tumor growth and metastasis. Blockade of PD-1 or both PD-1 and CTLA4 was more effective in settings in which CD155 was limiting, suggesting the clinical potential of cotargeting PD-L1 and CD155 function.
Collapse
Affiliation(s)
- Xian-Yang Li
- Immunology in Cancer and Infection Laboratory and
| | - Indrajit Das
- Immunology in Cancer and Infection Laboratory and
| | | | - Venkateswar Addala
- Medical Genomics, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Tobias Bald
- Immunology in Cancer and Infection Laboratory and
| | | | | | - Jing Liu
- Immunology in Cancer and Infection Laboratory and
| | | | - Kazuyoshi Takeda
- Division of Cell Biology, Biomedical Research Center and Department of Biofunctional Microbiota, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | | | | | - Sebastien Jacquelin
- Gordon and Jessie Gilmour Leukaemia Research Laboratory, Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Steven W Lane
- Gordon and Jessie Gilmour Leukaemia Research Laboratory, Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,The Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia.,School of Medicine, The University of Queensland, Herston, Queensland, Australia
| | - Michele Wl Teng
- School of Medicine, The University of Queensland, Herston, Queensland, Australia.,Cancer Immunoregulation and Immunotherapy and
| | - William C Dougall
- Immunology in Cancer and Infection Laboratory and.,Immuno-oncology Discovery, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Mark J Smyth
- Immunology in Cancer and Infection Laboratory and.,School of Medicine, The University of Queensland, Herston, Queensland, Australia
| |
Collapse
|
23
|
Deng Y, Guo T, Li J, Guo L, Gu P, Fan X. Repair of Calvarial Bone Defect Using Jarid1a-Knockdown Bone Mesenchymal Stem Cells in Rats. Tissue Eng Part A 2018; 24:711-718. [PMID: 28903624 DOI: 10.1089/ten.tea.2017.0168] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Yuan Deng
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Tao Guo
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Jipeng Li
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Li Guo
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Ping Gu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
24
|
Foster BM, Zaidi D, Young TR, Mobley ME, Kerr BA. CD117/c-kit in Cancer Stem Cell-Mediated Progression and Therapeutic Resistance. Biomedicines 2018. [PMID: 29518044 PMCID: PMC5874688 DOI: 10.3390/biomedicines6010031] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Metastasis is the primary cause of cancer patient morbidity and mortality, but due to persisting gaps in our knowledge, it remains untreatable. Metastases often occur as patient tumors progress or recur after initial therapy. Tumor recurrence at the primary site may be driven by a cancer stem-like cell or tumor progenitor cell, while recurrence at a secondary site is driven by metastatic cancer stem cells or metastasis-initiating cells. Ongoing efforts are aimed at identifying and characterizing these stem-like cells driving recurrence and metastasis. One potential marker for the cancer stem-like cell subpopulation is CD117/c-kit, a tyrosine kinase receptor associated with cancer progression and normal stem cell maintenance. Further, activation of CD117 by its ligand stem cell factor (SCF; kit ligand) in the progenitor cell niche stimulates several signaling pathways driving proliferation, survival, and migration. This review examines evidence that the SCF/CD117 signaling axis may contribute to the control of cancer progression through the regulation of stemness and resistance to tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Brittni M Foster
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | - Danish Zaidi
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | - Tyler R Young
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | - Mary E Mobley
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | - Bethany A Kerr
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, USA.
| |
Collapse
|
25
|
Xu S, Wang P, You Z, Meng H, Mu G, Bai X, Zhang G, Zhang J, Pang D. The long non-coding RNA EPB41L4A-AS2 inhibits tumor proliferation and is associated with favorable prognoses in breast cancer and other solid tumors. Oncotarget 2018; 7:20704-17. [PMID: 26980733 PMCID: PMC4991486 DOI: 10.18632/oncotarget.8007] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/18/2016] [Indexed: 02/01/2023] Open
Abstract
EPB41L4A-AS2 is a novel long non-coding RNA of unknown function. In this study, we investigated the expression of EPB41L4A-AS2 in breast cancer tissues and evaluated its relationship with the clinicopathological features and prognosis of patients with breast cancer. This entailed conducting a meta-analysis and prognosis validation study using two cohorts from the Gene Expression Omnibus (GEO). In addition, we assessed EPB41L4A-AS2 expression and its relationship with the clinicopathological features of renal and lung cancers using the Cancer Genome Atlas cohort and a GEO dataset. We also clarified the role of EPB41L4A-AS2 expression in mediating cancer cell proliferation in breast, renal, and lung cancer cell lines transfected with an EPB41L4A-AS2 expression vector. We found that high EPB41L4A-AS2 expression is associated with favorable disease outcomes. Gene ontology enrichment analysis revealed that EPB41L4A-AS2 may be involved in processes associated with tumor biology. Finally, overexpression of EPB41L4A-AS2 inhibited tumor cell proliferation in breast, renal, and lung cancer cell lines. Our clinical and in vitro results suggest that EPB41L4A-AS2 inhibits solid tumor formation and that evaluation of this long non-coding RNA may have prognostic value in the clinical management of such malignancies.
Collapse
Affiliation(s)
- Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Peiyuan Wang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Zilong You
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hongxue Meng
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Guannan Mu
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xianan Bai
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Guangwen Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jinfeng Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China.,Heilongjiang Academy of Medical Sciences, Harbin, China
| |
Collapse
|
26
|
Ma H, Jin S, Yang W, Zhou G, Zhao M, Fang S, Zhang Z, Hu J. Interferon-alpha enhances the antitumour activity of EGFR-targeted therapies by upregulating RIG-I in head and neck squamous cell carcinoma. Br J Cancer 2018; 118:509-521. [PMID: 29348488 PMCID: PMC5830595 DOI: 10.1038/bjc.2017.442] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/10/2017] [Accepted: 11/10/2017] [Indexed: 01/20/2023] Open
Abstract
Background: The epidermal growth factor receptor (EGFR)-targeted therapies have been tested in the clinic as treatments for head and neck squamous cell carcinoma (HNSCC). Owing to intrinsic or acquired resistance, EGFR-targeted therapies often lead to a low response rate and treatment failure. Interferon-alpha (IFNα) is a chemosensitising agent and multi-functional cytokine with a tumour inhibitory effect. However, the synergic effect of IFNα and EGFR-targeted therapies (erlotinib and nimotuzumab) and their mechanisms in HNSCC remain unclear. Methods: The interactions between IFNα, erlotinib, and nimotuzumab were evaluated in vitro in HNSCC cells. The synergistic effect of IFNα (20 000 IU per day, s.c.), erlotinib (50 mg kg−1 per day, i.g.) and nimotuzumab (10 mg kg−1 per day, i.p.) was further confirmed in vivo using HNSCC xenografts in nude mice. The upregulation of retinoic-acid inducible gene I (RIG-I) induced by IFNα and EGFR-targeted therapies and its mechanism were detected in vitro and in vivo. Results: IFNα enhances the antitumour effects of erlotinib and nimotuzumab on HNSCC cells both in vitro and in vivo. Importantly, both IFNα and EGFR-targeted therapies promote the expression of RIG-I by activating signal transducers and activators of transcription 1 (STAT1) in HNSCC cells. RIG-I knockdown reduced the sensitivity of HN4 and HN30 cells to IFNα, erlotinib, and nimotuzumab. Moreover, IFNα transcriptionally induced RIG-I expression in HNSCC cells through STAT1. Conclusions: IFNα enhances the effect of EGFR-targeted therapies by upregulating RIG-I, and its expression may represent a predictor of the effectiveness of a combination treatment including IFNα in HNSCC.
Collapse
Affiliation(s)
- Hailong Ma
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Shufang Jin
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Wenyi Yang
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Ge Zhou
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mei Zhao
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sijie Fang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Zhiyuan Zhang
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Jingzhou Hu
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| |
Collapse
|
27
|
Liu Z, Dou C, Yao B, Xu M, Ding L, Wang Y, Jia Y, Li Q, Zhang H, Tu K, Song T, Liu Q. Ftx non coding RNA-derived miR-545 promotes cell proliferation by targeting RIG-I in hepatocellular carcinoma. Oncotarget 2018; 7:25350-65. [PMID: 26992218 PMCID: PMC5041909 DOI: 10.18632/oncotarget.8129] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/02/2016] [Indexed: 12/21/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the third cause of cancer-related death worldwide. Accumulating studies have demonstrated that aberrant expression of several lncRNAs was found to be involved in the hepatocarcinogenesis. In this study, a lncRNA Ftx was chosen to investigate its effects on HCC cells, and clarify the possible mechanism. We demonstrated that the lncRNA Ftx and Ftx-derived miR-545 were up-regulated in both HCC tissues and cells. MiR-545 was positively correlated with lncRNA Ftx expression. Notably, clinical association analysis revealed that the high expression of lncRNA Ftx and miR-545 was associated with poor prognostic features, and conferred a reduced 5-year overall survival (OS) and disease-free survival (DFS) of HCC patients. We found that miR-545 was a pivotal mediator in Ftx-induced promotion of HCC cell growth. Subsequently, we identified RIG-I as a direct target of miR-545. The expression of RIG-I was downregulated in HCC tissues and was inversely correlated with miR-545 expression. Our data revealed that ectopic expression of RIG-I abrogated the effects of lncRNA Ftx or miR-545 on HCC cells. LncRNA Ftx/miR-545-mediated downregulation of RIG-I led to increased Akt phosphorylation in vitro and in vivo. Inhibition of Akt phosphorylation abolished the effects of lncRNA Ftx/miR-545 on HCC cells. In conclusion, our study demonstrates that the novel pathway lncRNA Ftx/miR-545/RIG-I promotes HCC development by activating PI3K/Akt signaling, and it may serve as a novel prognostic biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Zhikui Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Changwei Dou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Bowen Yao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Meng Xu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Linglong Ding
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yufeng Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yuli Jia
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qing Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hongyong Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Tao Song
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | | |
Collapse
|
28
|
Zhao L, Li X, Song N, Li A, Hou K, Qu X, Che X, Liu Y. Src promotes EGF-induced epithelial-to-mesenchymal transition and migration in gastric cancer cells by upregulating ZEB1 and ZEB2 through AKT. Cell Biol Int 2017; 42:294-302. [PMID: 29052277 DOI: 10.1002/cbin.10894] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 10/14/2017] [Indexed: 02/06/2023]
Abstract
Epithelial-to-mesenchymal transition (EMT) plays important roles in the migration, invasion, and metastasis of cancer cells. However, the role of Src in epidermal growth factor (EGF)-induced EMT and migration in gastric cancer cells remains to be clarified. In the current study, the effect of Src on EGF-stimulated EMT and migration was explored in gastric cancer cells. EGF induced EMT in gastric cancer cells and increased their migratory ability, which was accompanied by the phosphorylation of Src. PP2, the Src inhibitor, markedly suppressed EGF-mediated EMT and migration in gastric cancer cells. Additionally, EGF-stimulated upregulation of zinc finger E-box binding homeobox 1 (ZEB1) and zinc finger E-box binding homeobox 2 (ZEB2) was significantly repressed by PP2. Further analysis showed that EGF-stimulated phosphorylation of protein kinase B (AKT) was almost completely abolished by PP2, whereas that of extracellular signal-regulated kinase (ERK), signal transducer and activator of transcription 3 (STAT3) was only mildly suppressed. Moreover, LY294002, the AKT inhibitor, significantly inhibited EGF-induced upregulation of ZEB1 and ZEB2 as well as EMT and migration stimulated by EGF in gastric cancer cells. However, neither ERK inhibitor nor STAT3 inhibitor repressed EGF-induced EMT-related changes. Taken together, these results suggest that Src promotes EGF-stimulated EMT and migration by upregulation of ZEB1 and ZEB2 through AKT signaling pathway in gastric cancer cells.
Collapse
Affiliation(s)
- Lei Zhao
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, P.R. China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, P.R. China
| | - Xin Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, P.R. China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, P.R. China
| | - Na Song
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, P.R. China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, P.R. China
| | - Aodi Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, P.R. China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, P.R. China
| | - Kezuo Hou
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, P.R. China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, P.R. China
| | - Xiujuan Qu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, P.R. China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, P.R. China
| | - Xiaofang Che
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, P.R. China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, P.R. China
| | - Yunpeng Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, P.R. China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, P.R. China
| |
Collapse
|
29
|
Chen L, Cui YB, Si YL, Su WD, Wang XC, Pang H, Qiu LJ. Lentivirus‑mediated RIG‑I knockdown relieves cell proliferation inhibition, cell cycle arrest and apoptosis in ATRA‑induced NB4 cells via the AKT‑FOXO3A signaling pathway in vitro. Mol Med Rep 2017; 16:2556-2562. [PMID: 28656276 PMCID: PMC5547964 DOI: 10.3892/mmr.2017.6858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 03/16/2017] [Indexed: 11/06/2022] Open
Abstract
Retinoic acid inducible gene I (RIG‑I) is upregulated during all‑trans retinoic acid (ATRA)‑induced terminal granulocytic differentiation of NB4 acute promyelocytic leukemia (APL) cells. However, the function and mechanism of RIG‑I in NB4 cells remains to be fully elucidated. In the present study, lentivirus‑mediated RIG‑I‑knockdown was used to investigate the proliferation, cell cycle and apoptotic processes of ATRA‑induced NB4 cells in vitro using an MTT assay and flow cytometry, respectively. The roles of RIG‑I and the AKT‑FOXO3A signaling pathway were investigated using western blot analysis. The results showed that the ATRA‑induced expression of RIG‑I was specifically and effectively knocked down at the mRNA and protein levels by lentivirus mediated RIG‑I short hairpin RNA. In addition, silencing of RIG‑I reduced the ATRA‑induced inhibition of NB4 cell proliferation, cell cycle arrest and apoptosis. Further investigations indicated that with ATRA‑induced expression of RIG‑I, levels of phosphorylated (p)AKT‑Thr308 and pForkhead Box (FOX) O3A‑Thr32 were decreased, the expression levels of cell cycle arrest protein p27 and the apoptotic protein, tumor necrosis factor‑related apoptosis‑inducing ligand (TRAIL), directly transcribed by FOXO3A were increased. By contrast, following the knockdown of ATRA‑induced expression of RIG‑I, the levels of pAKT‑Thr308 and pFOXO3A‑Thr32 were increased, and the protein expression levels of p27 and TRAIL were decreased. Taken together, these results showed that the knockdown of RIG‑I reduced the inhibition of cell proliferation, cell cycle arrest and apoptosis in the ATRA‑induced NB4 cells via the AKT‑FOXO3A signaling pathway.
Collapse
MESH Headings
- Apoptosis
- Cell Cycle Checkpoints
- Cell Line, Tumor
- Cell Proliferation
- DEAD Box Protein 58/genetics
- DEAD Box Protein 58/metabolism
- Forkhead Box Protein O3/metabolism
- Gene Expression Regulation, Leukemic
- Gene Knockdown Techniques
- Humans
- Lentivirus/genetics
- Leukemia, Promyelocytic, Acute/chemically induced
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/metabolism
- Leukemia, Promyelocytic, Acute/pathology
- Proto-Oncogene Proteins c-akt/metabolism
- Receptors, Immunologic
- Signal Transduction
- Tretinoin/adverse effects
Collapse
Affiliation(s)
- Lei Chen
- Department of Clinical Laboratory, Tianjin Fourth Central Hospital, Tianjin 300140, P.R. China
| | - Ya-Bin Cui
- Department of Clinical Laboratory, Tianjin Fourth Central Hospital, Tianjin 300140, P.R. China
| | - Yu-Ling Si
- Department of Hematology, Tianjin Fourth Central Hospital, Tianjin 300140, P.R. China
| | - Wei-Dong Su
- Department of Clinical Laboratory, Tianjin Fourth Central Hospital, Tianjin 300140, P.R. China
| | - Xin-Chao Wang
- Department of Hematology, Tianjin Fourth Central Hospital, Tianjin 300140, P.R. China
| | - Hua Pang
- Department of Hematology, Tianjin Fourth Central Hospital, Tianjin 300140, P.R. China
| | - Li-Jun Qiu
- Department of Clinical Laboratory, Tianjin Fourth Central Hospital, Tianjin 300140, P.R. China
| |
Collapse
|
30
|
Xu XX, Wan H, Nie L, Shao T, Xiang LX, Shao JZ. RIG-I: a multifunctional protein beyond a pattern recognition receptor. Protein Cell 2017; 9:246-253. [PMID: 28593618 PMCID: PMC5829270 DOI: 10.1007/s13238-017-0431-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 05/16/2017] [Indexed: 12/21/2022] Open
Abstract
It was widely known that retinoic acid inducible gene I (RIG-I) functions as a cytosolic pattern recognition receptor that initiates innate antiviral immunity by detecting exogenous viral RNAs. However, recent studies showed that RIG-I participates in other various cellular activities by sensing endogenous RNAs under different circumstances. For example, RIG-I facilitates the therapy resistance and expansion of breast cancer cells and promotes T cell-independent B cell activation through interferon signaling activation by recognizing non-coding RNAs and endogenous retroviruses in certain situations. While in hepatocellular carcinoma and acute myeloid leukemia, RIG-I acts as a tumor suppressor through either augmenting STAT1 activation by competitively binding STAT1 against its negative regulator SHP1 or inhibiting AKT-mTOR signaling pathway by directly interacting with Src respectively. These new findings suggest that RIG-I plays more diverse roles in various cellular life activities, such as cell proliferation and differentiation, than previously known. Taken together, the function of RIG-I exceeds far beyond that of a pattern recognition receptor.
Collapse
Affiliation(s)
- Xiao-Xiao Xu
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Han Wan
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Li Nie
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Tong Shao
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Li-Xin Xiang
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Jian-Zhong Shao
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China. .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China.
| |
Collapse
|
31
|
Yang H, Guo HZ, Li XY, Lin J, Zhang W, Zhao JM, Zhang HX, Chen SJ, Chen Z, Zhu J. Viral RNA-Unprimed Rig-I Restrains Stat3 Activation in the Modulation of Regulatory T Cell/Th17 Cell Balance. THE JOURNAL OF IMMUNOLOGY 2017; 199:119-128. [PMID: 28550197 DOI: 10.4049/jimmunol.1700366] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 04/21/2017] [Indexed: 01/11/2023]
Abstract
Innate immunity activation by viral RNA-primed retinoid acid inducible gene-I (Rig-I) in CD4+ T cells antagonizes TGFβ signaling to suppress the differentiation of regulatory T cells (Tregs). However, how viral RNA-unliganded Rig-I (apo-Rig-I) modulates Treg generation remains unclear. In this article, we show that, in the absence of viral infection, Treg differentiation of Rig-I-/- CD4+ T cells was compromised, in the presence of increased generation of Th17 cells and overactivation of Stat3, a critical regulator tilting the Treg/Th17 cell balance. Mechanistically, apo-Rig-I physically associates with Stat3, thereby inhibiting Jak1's association with Stat3 while facilitating Shp2's association to inhibit p-Stat3 levels. Interestingly, inhibition of Stat3 ameliorates the Treg/Th17 imbalance and the colitis observed in Rig-I-/- mice. Collectively, these results uncover an independent functional contribution of the apo-Rig-I/Stat3 interaction in the maintenance of Treg/Th17 cell balance.
Collapse
Affiliation(s)
- Hui Yang
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology and Collaborative Innovation Center of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - He-Zhou Guo
- School of Life Sciences and Biotechnology, Shanghai Jiao-Tong University, Shanghai 200240, People's Republic of China; and
| | - Xian-Yang Li
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology and Collaborative Innovation Center of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Jian Lin
- School of Life Sciences and Biotechnology, Shanghai Jiao-Tong University, Shanghai 200240, People's Republic of China; and
| | - Wu Zhang
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology and Collaborative Innovation Center of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Jun-Mei Zhao
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology and Collaborative Innovation Center of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Hong-Xin Zhang
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology and Collaborative Innovation Center of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Sai-Juan Chen
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology and Collaborative Innovation Center of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, People's Republic of China.,Collaborative Innovation Center of Systems Biomedicine, Shanghai 200025, People's Republic of China
| | - Zhu Chen
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology and Collaborative Innovation Center of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, People's Republic of China.,Collaborative Innovation Center of Systems Biomedicine, Shanghai 200025, People's Republic of China
| | - Jiang Zhu
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology and Collaborative Innovation Center of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, People's Republic of China; .,School of Life Sciences and Biotechnology, Shanghai Jiao-Tong University, Shanghai 200240, People's Republic of China; and.,Collaborative Innovation Center of Systems Biomedicine, Shanghai 200025, People's Republic of China
| |
Collapse
|
32
|
The innate immune signaling in cancer and cardiometabolic diseases: Friends or foes? Cancer Lett 2017; 387:46-60. [DOI: 10.1016/j.canlet.2016.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 06/03/2016] [Accepted: 06/05/2016] [Indexed: 12/16/2022]
|
33
|
Ghildiyal R, Sen E. Concerted action of histone methyltransferases G9a and PRMT-1 regulates PGC-1α-RIG-I axis in IFNγ treated glioma cells. Cytokine 2017; 89:185-193. [PMID: 26725954 DOI: 10.1016/j.cyto.2015.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/03/2015] [Accepted: 12/10/2015] [Indexed: 12/22/2022]
Abstract
IFNγ induced de-differentiation markers are negatively regulated by retinoic acid inducible gene (RIG-I) in glioma cells. In addition to RIG-I, IFNγ treatment increased H3K9me2; histone methyltransferases (HMTs) G9a and protein arginine methyltransferase-1 (PRMT-1) levels. While G9a inhibition further increased IFNγ induced RIG-I, PRMT-1 inhibition abrogated IFNγ elevated RIG-I levels. IFNγ induced Sp1 and NFκB served as negative regulators of RIG-I, with decreased occupancy of Sp1 and NFκB observed on the RIG-I promoter. A diminished H3K9Me2 enrichment was observed at the NFκB but not at Sp-1 binding site. IFNγ induced PPAR gamma coactivator-1 alpha (PGC-1α) positively regulated RIG-I; with PRMT-1 and G9a affecting PGC-1α in a counter-regulatory manner. These findings demonstrate how concerted action of HMTs aid PGC-1α driven RIG-I for the sustenance of glioma cells in a de-differentiated state.
Collapse
Affiliation(s)
- Ruchi Ghildiyal
- National Brain Research Centre, Manesar 122 051, Haryana, India
| | - Ellora Sen
- National Brain Research Centre, Manesar 122 051, Haryana, India.
| |
Collapse
|
34
|
Oh SJ, Noh KH, Lee YH, Hong SO, Song KH, Lee HJ, Kim S, Kim TM, Jeon JH, Seo JH, Kim DW, Kim TW. Targeting stemness is an effective strategy to control EML4-ALK+ non-small cell lung cancer cells. Oncotarget 2016; 6:40255-67. [PMID: 26517679 PMCID: PMC4741893 DOI: 10.18632/oncotarget.5434] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/09/2015] [Indexed: 12/11/2022] Open
Abstract
The fusion between anaplastic lymphoma kinase (ALK) and echinoderm microtubule-associated protein-like 4 (EML4) is a causative factor in a unique subset of patients with non-small cell lung carcinoma (NSCLC). Although the inhibitor crizotinib, as it blocks the kinase activity of the resulting EML4-ALK fusion protein, displays remarkable initial responses, a fraction of NSCLC cases eventually become resistant to crizotinib by acquiring mutations in the ALK domain or activating bypass pathways via EGFR, KIT, or KRAS. Cancer stem cell (CSC) theory provides a plausible explanation for acquisition of tumorigenesis and resistance. However, the question as to whether EML4-ALK-driven tumorigenesis is linked with the stem-like property and whether the stemness is an effective target in controlling EML4-ALK+ NSCLC including crizotinib-resistant NSCLC cells has not been addressed. Here, we report that stem-like properties stem from ALK activity in EML4-ALK+ NSCLC cells. Notably, treatment with rapamycin, a CSC targeting agent, attenuates stem-like phenotypes of the EML4-ALK+ cells, which increased capability of tumor formation and higher expression of stemness-associated molecules such as ALDH, NANOG, and OCT4. Importantly, combinational treatment with rapamycin and crizotinib leads to synergistic anti-tumor effects on EML4-ALK+ NSCLC cells as well as on those resistant to crizotinib. Thus, we provide a proof of principle that targeting stemness would be a novel strategy to control intractable EML4-ALK+ NSCLC.
Collapse
Affiliation(s)
- Se Jin Oh
- Laboratory of Infection and Immunology, Graduate School of Medicine, Korea University, Seoul, Korea.,Department of Biochemistry & Molecular Biology, College of Medicine, Korea University, Seoul, Korea
| | - Kyung Hee Noh
- Laboratory of Infection and Immunology, Graduate School of Medicine, Korea University, Seoul, Korea.,Department of Biochemistry & Molecular Biology, College of Medicine, Korea University, Seoul, Korea
| | - Young-Ho Lee
- Laboratory of Infection and Immunology, Graduate School of Medicine, Korea University, Seoul, Korea.,Department of Biochemistry & Molecular Biology, College of Medicine, Korea University, Seoul, Korea
| | - Soon-Oh Hong
- Laboratory of Infection and Immunology, Graduate School of Medicine, Korea University, Seoul, Korea.,Department of Biochemistry & Molecular Biology, College of Medicine, Korea University, Seoul, Korea.,Division of Oncology, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Korea
| | - Kwon-Ho Song
- Laboratory of Infection and Immunology, Graduate School of Medicine, Korea University, Seoul, Korea.,Department of Biochemistry & Molecular Biology, College of Medicine, Korea University, Seoul, Korea
| | - Hyo-Jung Lee
- Laboratory of Infection and Immunology, Graduate School of Medicine, Korea University, Seoul, Korea.,Department of Biochemistry & Molecular Biology, College of Medicine, Korea University, Seoul, Korea
| | - Soyeon Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Tae Min Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Ju-Hong Jeon
- Department of Physiology, Seoul National University, College of Medicine, Seoul, Korea
| | - Jae Hong Seo
- Division of Oncology, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Korea
| | - Dong-Wan Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Tae Woo Kim
- Laboratory of Infection and Immunology, Graduate School of Medicine, Korea University, Seoul, Korea.,Department of Biochemistry & Molecular Biology, College of Medicine, Korea University, Seoul, Korea
| |
Collapse
|
35
|
RIG-I inhibits pancreatic β cell proliferation through competitive binding of activated Src. Sci Rep 2016; 6:28914. [PMID: 27349479 PMCID: PMC4923948 DOI: 10.1038/srep28914] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 06/10/2016] [Indexed: 02/06/2023] Open
Abstract
Nutrition is a necessary condition for cell proliferation, including pancreatic β cells; however, over-nutrition, and the resulting obesity and glucolipotoxicity, is a risk factor for the development of Type 2 diabetes mellitus (DM), and causes inhibition of pancreatic β-cells proliferation and their loss of compensation for insulin resistance. Here, we showed that Retinoic acid (RA)-inducible gene I (RIG-I) responds to nutrient signals and induces loss of β cell mass through G1 cell cycle arrest. Risk factors for type 2 diabetes (e.g., glucolipotoxicity, TNF-α and LPS) activate Src in pancreatic β cells. Elevated RIG-I modulated the interaction of activated Src and STAT3 by competitive binding to STAT3. Elevated RIG-I downregulated the transcription of SKP2, and increased the stability and abundance of P27 protein in a STAT3-dependent manner, which was associated with inhibition of β cell growth elicited by Src. These results supported a role for RIG-I in β cell mass loss under conditions of metabolic surplus and suggested that RIG-I-induced blocking of Src/STAT3 signalling might be involved in G1 phase cycle arrest through the Skp2/P27 pathway in pancreatic β cells.
Collapse
|
36
|
Wang JH, Zhang L, Ma YW, Xiao J, Zhang Y, Liu M, Tang H. microRNA-34a-Upregulated Retinoic Acid-Inducible Gene-I Promotes Apoptosis and Delays Cell Cycle Transition in Cervical Cancer Cells. DNA Cell Biol 2016; 35:267-79. [PMID: 26910120 DOI: 10.1089/dna.2015.3130] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The function of retinoic acid-inducible gene-I (RIG-I) in viral replication is well documented, but its function in carcinogenesis and malignancies as well as relationship with microRNAs (miRNAs) remain poorly understood. miR-34a is an antioncogene in multiple tumors. In our study, RIG-I and miR-34a suppressed cell growth, proliferation, migration, and invasion in cervical cancer cells in vitro. miR-34a was validated as a new regulator of RIG-I by binding to its 3' untranslated region and upregulating its expression level. Furthermore, we revealed that RIG-I and miR-34a enhanced apoptosis, delayed the G1/S/G2 transition of the cell cycle, and inhibited the epithelial-mesenchymal transition process to modulate malignancies in cervical cancer cells. Phenotypic rescue experiments indicated that RIG-I mediates the effects of miR-34a in HeLa and C33A cells. These findings provide new insights into the mechanisms that underlie carcinogenesis and may provide new biomarkers for the diagnosis and therapy of cervical cancer.
Collapse
Affiliation(s)
- Jing-Hua Wang
- Tianjin Life Science Research Center and Basic Medical School, Tianjin Medical University , Tianjin, China
| | - Le Zhang
- Tianjin Life Science Research Center and Basic Medical School, Tianjin Medical University , Tianjin, China
| | - Yu-Wei Ma
- Tianjin Life Science Research Center and Basic Medical School, Tianjin Medical University , Tianjin, China
| | - Jing Xiao
- Tianjin Life Science Research Center and Basic Medical School, Tianjin Medical University , Tianjin, China
| | - Yi Zhang
- Tianjin Life Science Research Center and Basic Medical School, Tianjin Medical University , Tianjin, China
| | - Min Liu
- Tianjin Life Science Research Center and Basic Medical School, Tianjin Medical University , Tianjin, China
| | - Hua Tang
- Tianjin Life Science Research Center and Basic Medical School, Tianjin Medical University , Tianjin, China
| |
Collapse
|
37
|
Chen WC, Yuan JS, Xing Y, Mitchell A, Mbong N, Popescu AC, McLeod J, Gerhard G, Kennedy JA, Bogdanoski G, Lauriault S, Perdu S, Merkulova Y, Minden MD, Hogge DE, Guidos C, Dick JE, Wang JCY. An Integrated Analysis of Heterogeneous Drug Responses in Acute Myeloid Leukemia That Enables the Discovery of Predictive Biomarkers. Cancer Res 2016; 76:1214-24. [PMID: 26833125 DOI: 10.1158/0008-5472.can-15-2743] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/17/2015] [Indexed: 11/16/2022]
Abstract
Many promising new cancer drugs proceed through preclinical testing and early-phase trials only to fail in late-stage clinical testing. Thus, improved models that better predict survival outcomes and enable the development of biomarkers are needed to identify patients most likely to respond to and benefit from therapy. Here, we describe a comprehensive approach in which we incorporated biobanking, xenografting, and multiplexed phospho-flow (PF) cytometric profiling to study drug response and identify predictive biomarkers in acute myeloid leukemia (AML) patients. To test the efficacy of our approach, we evaluated the investigational JAK2 inhibitor fedratinib (FED) in 64 patient samples. FED robustly reduced leukemia in mouse xenograft models in 59% of cases and was also effective in limiting the protumorigenic activity of leukemia stem cells as shown by serial transplantation assays. In parallel, PF profiling identified FED-mediated reduction in phospho-STAT5 (pSTAT5) levels as a predictive biomarker of in vivo drug response with high specificity (92%) and strong positive predictive value (93%). Unexpectedly, another JAK inhibitor, ruxolitinib (RUX), was ineffective in 8 of 10 FED-responsive samples. Notably, this outcome could be predicted by the status of pSTAT5 signaling, which was unaffected by RUX treatment. Consistent with this observed discrepancy, PF analysis revealed that FED exerted its effects through multiple JAK2-independent mechanisms. Collectively, this work establishes an integrated approach for testing novel anticancer agents that captures the inherent variability of response caused by disease heterogeneity and in parallel, facilitates the identification of predictive biomarkers that can help stratify patients into appropriate clinical trials.
Collapse
Affiliation(s)
- Weihsu C Chen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Julie S Yuan
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Yan Xing
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Amanda Mitchell
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Nathan Mbong
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Andreea C Popescu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jessica McLeod
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Gitte Gerhard
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - James A Kennedy
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada. Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Goce Bogdanoski
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Stevan Lauriault
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Sofie Perdu
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Yulia Merkulova
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Mark D Minden
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada. Department of Medicine, University of Toronto, Toronto, Ontario, Canada. Division of Medical Oncology and Hematology, University Health Network, Toronto, Ontario, Canada. Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Donna E Hogge
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Cynthia Guidos
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada. Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - John E Dick
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada. Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jean C Y Wang
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada. Department of Medicine, University of Toronto, Toronto, Ontario, Canada. Division of Medical Oncology and Hematology, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
38
|
Chowdhari S, Saini N. Gene expression profiling reveals the role of RIG1 like receptor signaling in p53 dependent apoptosis induced by PUVA in keratinocytes. Cell Signal 2016; 28:25-33. [PMID: 26518362 DOI: 10.1016/j.cellsig.2015.10.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/24/2015] [Indexed: 02/06/2023]
Abstract
Photochemotherapy using 8-methoxypsoralen in combination with UVA radiation (PUVA) is an effective treatment for various skin dermatosis including psoriasis however its molecular mechanism is not clear. Previously we demonstrated that PUVA differentially regulates miRNA expression profile with a significant up-regulation of hsa-miR-4516. To study in detail the molecular mechanism of PUVA in keratinocytes, we investigated the genome wide transcriptomic changes using Illumina whole genome gene expression beadchip. Microarray analysis revealed 1932 differentially expressed gene and their Insilico analysis revealed Retinoic Acid Inducible Gene-I (RIG-1) signaling, apoptosis and p53 pathway to be associated with PUVA induced effects. We demonstrate that miR-4516 mediated down-regulation of UBE2N promotes p53 nuclear translocation and pro-apoptotic activity of PUVA is independent of IRF3 but is mediated by the RIG-I in a p53 and NFκB dependent manner. Additionally, PUVA inactivated the AKT/mTOR pathway in concert with inhibition of autophagy and suppressed cell migration. Taken together this study broadens our understanding about the mechanism of action of PUVA providing possible new strategy targeting proapoptotic function of RIG-1, a regulator of innate immune response or p53 for psoriasis therapy.
Collapse
Affiliation(s)
- Shruti Chowdhari
- Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi -110007, India
| | - Neeru Saini
- Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi -110007, India.
| |
Collapse
|
39
|
Iskender B, Izgi K, Hizar E, Jauch J, Arslanhan A, Yuksek EH, Canatan H. Inhibition of epithelial-mesenchymal transition in bladder cancer cells via modulation of mTOR signalling. Tumour Biol 2015; 37:8281-91. [PMID: 26718217 DOI: 10.1007/s13277-015-4695-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 12/16/2015] [Indexed: 11/30/2022] Open
Abstract
Mounting evidence suggests that signalling cross-talk plays a significant role in the regulation of epithelial-mesenchymal transition (EMT) in cancer cells. However, the complex network regulating the EMT in different cancer types has not been fully described yet which affects the development of novel therapeutic strategies. In the present study, we investigated the signalling pathways involved in EMT of bladder cancer cells and demonstrated the effects of two novel agents in the regulation of EMT. Myrtucommulone-A (MC-A) and thymoquinone (TQ) have been shown to possess anti-cancer properties. However, their targets in the regulation of cancer cell behavior are not well defined. Here, we defined the effects of two putative anti-cancer agents on bladder cancer cell migration and their possible intracellular targets in the regulation of EMT. Our results suggest that MC-A or TQ treatment affected N-cadherin, Snail, Slug, and β-catenin expressions and effectively attenuated mTOR activity. The downstream components in mTOR signalling were also affected. MC-A treatment resulted in the concomitant inhibition of extracellular matrix-regulated protein kinases 1 and 2 (ERK 1/2), p38 mitogen-activated protein kinase (MAPK) and Src activity. On the other hand, TQ treatment increased Src activity while exerting no effect on ERK 1/2 or p38 MAPK activity. Given the stronger inhibition of EMT-related markers in MC-A-treated samples, we concluded that this effect might be due to collective inhibition of multiple signalling pathways which result in a decrease in their cross-talk in bladder cancer cells. Overall, the data in this study proposes novel action mechanisms for MC-A or TQ in bladder cancer cells and highlights the potential use of these active compounds in the regulation of EMT.
Collapse
Affiliation(s)
- Banu Iskender
- Department of Medical Biology, Faculty of Medicine, Erciyes University, 38039, Melikgazi, Kayseri, Turkey. .,Betul-Ziya Eren Genome and Stem Cell Centre, Erciyes University, 38039, Melikgazi, Kayseri, Turkey.
| | - Kenan Izgi
- Department of Medical Biochemistry, Faculty of Medicine, Erciyes University, 38039, Melikgazi, Kayseri, Turkey.,Betul-Ziya Eren Genome and Stem Cell Centre, Erciyes University, 38039, Melikgazi, Kayseri, Turkey
| | - Esra Hizar
- Department of Medical Biology, Faculty of Medicine, Erciyes University, 38039, Melikgazi, Kayseri, Turkey.,Betul-Ziya Eren Genome and Stem Cell Centre, Erciyes University, 38039, Melikgazi, Kayseri, Turkey
| | - Johann Jauch
- Universität des Saarlandes, Organische Chemie II, Geb. C4.2, 66123, Saarbrücken, Germany
| | - Aslihan Arslanhan
- Department of Medical Biochemistry, Faculty of Medicine, Erciyes University, 38039, Melikgazi, Kayseri, Turkey.,Betul-Ziya Eren Genome and Stem Cell Centre, Erciyes University, 38039, Melikgazi, Kayseri, Turkey
| | - Esra Hilal Yuksek
- Department of Medical Biochemistry, Faculty of Medicine, Erciyes University, 38039, Melikgazi, Kayseri, Turkey.,Betul-Ziya Eren Genome and Stem Cell Centre, Erciyes University, 38039, Melikgazi, Kayseri, Turkey
| | - Halit Canatan
- Department of Medical Biology, Faculty of Medicine, Erciyes University, 38039, Melikgazi, Kayseri, Turkey.,Betul-Ziya Eren Genome and Stem Cell Centre, Erciyes University, 38039, Melikgazi, Kayseri, Turkey
| |
Collapse
|
40
|
Mi JQ, Chen SJ, Zhou GB, Yan XJ, Chen Z. Synergistic targeted therapy for acute promyelocytic leukaemia: a model of translational research in human cancer. J Intern Med 2015; 278:627-42. [PMID: 26058416 DOI: 10.1111/joim.12376] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Acute promyelocytic leukaemia (APL), the M3 subtype of acute myeloid leukaemia, was once a lethal disease, yet nowadays the majority of patients with APL can be successfully cured by molecularly targeted therapy. This dramatic improvement in the survival rate is an example of the advantage of modern medicine. APL is characterized by a balanced reciprocal chromosomal translocation fusing the promyelocytic leukaemia (PML) gene on chromosome 15 with the retinoic acid receptor α (RARα) gene on chromosome 17. It has been found that all-trans-retinoic acid (ATRA) or arsenic trioxide (ATO) alone exerts therapeutic effect on APL patients with the PML-RARα fusion gene, and the combination of both drugs can act synergistically to further enhance the cure rate of the patients. Here, we provide an insight into the pathogenesis of APL and the mechanisms underlying the respective roles of ATRA and ATO. In addition, treatments that lead to more effective differentiation and apoptosis of APL cells, including leukaemia-initiating cells, and more thorough eradication of the disease will be discussed. Moreover, as a model of translational research, the development of a cure for APL has followed a bidirectional approach of 'bench to bedside' and 'bedside to bench', which can serve as a valuable example for the diagnosis and treatment of other malignancies.
Collapse
Affiliation(s)
- J-Q Mi
- State Key Laboratory for Medical Genomics and Department of Hematology, Shanghai Institute of Hematology, Collaborative Innovation Center of Systems Biomedicine, Pôle Sino-Français des Sciences du Vivant et Genomique, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - S-J Chen
- State Key Laboratory for Medical Genomics and Department of Hematology, Shanghai Institute of Hematology, Collaborative Innovation Center of Systems Biomedicine, Pôle Sino-Français des Sciences du Vivant et Genomique, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - G-B Zhou
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - X-J Yan
- Department of Hematology, the First Hospital of China Medical University, Shenyang, China
| | - Z Chen
- State Key Laboratory for Medical Genomics and Department of Hematology, Shanghai Institute of Hematology, Collaborative Innovation Center of Systems Biomedicine, Pôle Sino-Français des Sciences du Vivant et Genomique, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
41
|
Han K, Xu X, Xu Z, Chen G, Zeng Y, Zhang Z, Cao B, Kong Y, Tang X, Mao X. SC06, a novel small molecule compound, displays preclinical activity against multiple myeloma by disrupting the mTOR signaling pathway. Sci Rep 2015; 5:12809. [PMID: 26329846 PMCID: PMC4556980 DOI: 10.1038/srep12809] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 07/08/2015] [Indexed: 12/30/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) is extensively involved in multiple myeloma (MM) pathophysiology. In the present study, we reported a novel small molecule SC06 that induced MM cell apoptosis and delayed MM xenograft growth in vivo. Oral administration of SC06 to mice bearing human MM xenografts resulted in significant inhibition of tumor growth at doses that were well tolerated. Mechanistic studies revealed that SC06 selectively inhibited the mTOR signaling pathway but had no effects on other associated kinases, such as AKT, ERK, p38, c-Src and JNK. Further studies showed that SC06-decreased mTOR activation was associated with the downregulation of Raptor, a key component of the mTORC1 complex. SC06 also suppressed the phosphorylation of 4E-BP1 and P70S6K, two typical substrates in the mTORC1 signaling pathway. Notably, expression of Raptor, phosphorylation of mTOR and phosphorylated 4E-BP1 was also decreased in the tumor tissues from SC06-treated mice, which was consistent with the cellular studies. Therefore, given the potency and low toxicity, SC06 could be developed as a potential anti-MM drug candidate by disrupting the mTOR signaling.
Collapse
Affiliation(s)
- Kunkun Han
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-psycho-diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Xin Xu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-psycho-diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Zhuan Xu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Guodong Chen
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-psycho-diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Yuanying Zeng
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-psycho-diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Zubin Zhang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-psycho-diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Biyin Cao
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-psycho-diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Yan Kong
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaowen Tang
- Department of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xinliang Mao
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-psycho-diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, China
| |
Collapse
|
42
|
Chen B, Xu X, Luo J, Wang H, Zhou S. Rapamycin Enhances the Anti-Cancer Effect of Dasatinib by Suppressing Src/PI3K/mTOR Pathway in NSCLC Cells. PLoS One 2015; 10:e0129663. [PMID: 26061184 PMCID: PMC4465694 DOI: 10.1371/journal.pone.0129663] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/11/2015] [Indexed: 01/06/2023] Open
Abstract
Src and the mammalian target of rapamycin (mTOR) signaling are commonly activated in non-small cell lung cancer (NSCLC) and hence potential targets for chemotherapy. Although the combined use of Src inhibitor Dasatinib with other chemotherapeutic agents has shown superior efficacy for cancer treatment, the mechanisms that lead to enhanced sensitivity of Dasatinib are not completely understood. In this study, we found that Rapamycin dramatically enhanced Dasatinib-induced cell growth inhibition and cell cycle G1 arrest in human lung adenocarcinoma A549 cells without affecting apoptosis. The synergistic effects were consistently correlated with the up-regulation of cyclin-dependent kinases inhibitor proteins, including p16, p19, p21, and p27, as well as the repression of Cdk4 expression and nuclear translocation. Mechanistic investigations demonstrated that FoxO1/FoxO3a and p70S6K/4E-BP1, the molecules at downstream of Src-PI3K-Akt and mTOR signaling, were significantly suppressed by the combined use of Dasatinib and Rapamycin. Restraining Src and mTOR with small interfering RNA in A549 cells further confirmed that the Src/PI3K/mTOR Pathway played a crucial role in enhancing the anticancer effect of Dasatinib. In addition, this finding was also validated by a series of assays using another two NSCLC cell lines, NCI-H1706 and NCI-H460. Conclusively, our results suggested that the combinatory application of Src and mTOR inhibitors might be a promising therapeutic strategy for NSCLC treatment.
Collapse
Affiliation(s)
- Bin Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Shanghai, China
- School of Medicine Cancer Institute, Tongji University, Shanghai, China
| | - Xin Xu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Shanghai, China
- School of Medicine Cancer Institute, Tongji University, Shanghai, China
| | - Jie Luo
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Shanghai, China
- School of Medicine Cancer Institute, Tongji University, Shanghai, China
| | - Heyong Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Shanghai, China
- School of Medicine Cancer Institute, Tongji University, Shanghai, China
| | - Songwen Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Shanghai, China
- School of Medicine Cancer Institute, Tongji University, Shanghai, China
- * E-mail:
| |
Collapse
|
43
|
Nie L, Zhang YS, Dong WR, Xiang LX, Shao JZ. Involvement of zebrafish RIG-I in NF-κB and IFN signaling pathways: insights into functional conservation of RIG-I in antiviral innate immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 48:95-101. [PMID: 25265425 DOI: 10.1016/j.dci.2014.09.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/22/2014] [Accepted: 09/23/2014] [Indexed: 06/03/2023]
Abstract
The retinoic acid-inducible gene I (RIG-I) is a critical sensor for host recognition of RNA virus infection and initiation of antiviral signaling pathways in mammals. However, data on the occurrence and functions of this molecule in lower vertebrates are limited. In this study, we characterized an RIG-I homolog (DrRIG-I) from zebrafish. Structurally, this DrRIG-I shares a number of conserved functional domains/motifs with its mammalian counterparts, namely, caspase activation and recruitment domain, DExD/H box, a helicase domain, and a C-terminal domain. Functionally, stimulation with DrRIG-I CARD in zebrafish embryos significantly activated the NF-κB and IFN signaling pathways, leading to the expression of TNF-α, IL-8 and IFN-induced Mx, ISG15, and viperin. However, knockdown of TRIM25 (a pivotal activator for RIG-I receptors) significantly suppressed the induced activation of IFN signaling. Results suggested the functional conservation of RIG-I receptors in the NF-κB and IFN signaling pathways between teleosts and mammals, providing a perspective into the evolutionary history of RIG-I-mediated antiviral innate immunity.
Collapse
Affiliation(s)
- Li Nie
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, China
| | - Ying-sheng Zhang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, China
| | - Wei-ren Dong
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, China
| | - Li-xin Xiang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, China.
| | - Jian-zhong Shao
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, China.
| |
Collapse
|
44
|
Li XY, Guo HZ, Zhu J. Tumor suppressor activity of RIG-I. Mol Cell Oncol 2014; 1:e968016. [PMID: 27308362 PMCID: PMC4905202 DOI: 10.4161/23723548.2014.968016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/07/2014] [Accepted: 08/18/2014] [Indexed: 11/19/2022]
Abstract
Retinoic acid inducible gene-I (RIG-I), named for the observation that its mRNA expression is highly upregulated in the progression of all-trans retinoic acid (ATRA)-induced maturation of acute promyelocytic leukemia (APL) cells, has been well documented as a pivotal virus-associated molecular pattern recognition receptor (PRR) responsible for triggering innate immunity. Upon recognizing viral RNA ligands, RIG-I experiences a series of programmed conformational changes and modifications that unleash its activity through the formation of complexes with various binding partners. Such partners include the mitochondria membrane-anchored protein IPS-1 (also named MAVS/VISA/Cardif) that activates both the IRF3/7 and NF-κB pathways. These partnerships and resulting pathway activations underlie the synthesis of type I interferon and other inflammatory factors. Recent studies have demonstrated that RIG-I is also involved in the regulation of basic cellular processes outside of innate immunity against viral infections, such as hematopoietic proliferation and differentiation, maintenance of leukemic stemness, and tumorigenesis of hepatocellular carcinoma. In this review, we will highlight recent studies leading up to the recognition that RIG-I performs an essential function as a tumor suppressor and try to reconcile this activity of RIG-I with its well-known role in protecting cells against viral infection.
Collapse
Affiliation(s)
- Xian-Yang Li
- State Key Laboratory for Medical Genomics and Shanghai Institute of Hematology and Collaborative Innovation Center of Hematology; Rui-Jin Hospital; Shanghai Jiao-Tong University School of Medicine Shanghai, People's Republic of China; Department of Laboratory Medicine; Shanghai First People's Hospital; Shanghai Jiao-Tong University; Shanghai, People's Republic of China
| | - He-Zhou Guo
- State Key Laboratory for Medical Genomics and Shanghai Institute of Hematology and Collaborative Innovation Center of Hematology; Rui-Jin Hospital; Shanghai Jiao-Tong University School of Medicine Shanghai, People's Republic of China
| | - Jiang Zhu
- State Key Laboratory for Medical Genomics and Shanghai Institute of Hematology and Collaborative Innovation Center of Hematology; Rui-Jin Hospital; Shanghai Jiao-Tong University School of Medicine Shanghai, People's Republic of China
| |
Collapse
|
45
|
Functional role of autophagy-mediated proteome remodeling in cell survival signaling and innate immunity. Mol Cell 2014; 55:916-930. [PMID: 25175026 DOI: 10.1016/j.molcel.2014.07.019] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 06/27/2014] [Accepted: 07/24/2014] [Indexed: 12/19/2022]
Abstract
Ras-driven cancer cells upregulate basal autophagy that degrades and recycles intracellular proteins and organelles. Autophagy-mediated proteome degradation provides free amino acids to support metabolism and macromolecular synthesis, which confers a survival advantage in starvation and promotes tumorigenesis. While the degradation of isolated protein substrates by autophagy has been implicated in controlling cellular function, the extent and specificity by which autophagy remodels the cellular proteome and the underlying functional consequences were unknown. Here we compared the global proteome of autophagy-functional and -deficient Ras-driven cancer cells, finding that autophagy affects the majority of the proteome yet is highly selective. While levels of vesicle trafficking proteins important for autophagy are preserved during starvation-induced autophagy, deleterious inflammatory response pathway components are eliminated even under basal conditions, preventing cytokine-induced paracrine cell death. This reveals the global, functional impact of autophagy-mediated proteome remodeling on cell survival and identifies critical autophagy substrates that mediate this process.
Collapse
|