1
|
Yang Y, Hyeon H, Joo M, Lee K, Shin E. Small regulatory RNAs as key modulators of antibiotic resistance in pathogenic bacteria. J Microbiol 2025; 63:e2501027. [PMID: 40313153 DOI: 10.71150/jm.2501027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/18/2025] [Indexed: 05/03/2025]
Abstract
The escalating antibiotic resistance crisis poses a significant challenge to global public health, threatening the efficacy of current treatments and driving the emergence of multidrug-resistant pathogens. Among the various factors associated with bacterial antibiotic resistance, small regulatory RNAs (sRNAs) have emerged as pivotal post-transcriptional regulators which orchestrate bacterial adaptation to antibiotic pressure via diverse mechanisms. This review consolidates the current knowledge on sRNA-mediated mechanisms, focusing on drug uptake, drug efflux systems, lipopolysaccharides, cell wall modification, biofilm formation, and mutagenesis. Recent advances in transcriptomics and functional analyses have revealed novel sRNAs and their regulatory networks, expanding our understanding of resistance mechanisms. These findings highlight the potential of targeting sRNA-mediated pathways as an innovative therapeutic strategy to combat antibiotic resistance, and offer promising avenues for managing challenging bacterial infections.
Collapse
Affiliation(s)
- Yubin Yang
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hana Hyeon
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Minju Joo
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Kangseok Lee
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Eunkyoung Shin
- Department of Microbiology, Catholic University of Daegu School of Medicine, Daegu 42472, Republic of Korea
| |
Collapse
|
2
|
Goel K, Saraogi I. Harnessing RNA-Protein Interactions for Therapeutic Interventions. Chem Asian J 2025; 20:e202401117. [PMID: 39714962 DOI: 10.1002/asia.202401117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/15/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
Interactions between RNAs and proteins play a crucial role in various diseases, including viral infections and cancer. Hence, understanding and inhibiting these interactions are important for the development of novel therapeutics. However, the identification of drugs targeting RNA-protein interactions with high specificity and affinity is challenged by our limited molecular understanding of these interactions. Recent focus on structural and biochemical characterization, coupled with high-throughput screening technologies and computational modeling, have accelerated the identification of new RBPs and optimization of potential inhibitors. This review discusses key examples of inhibitors developed over the past decade that effectively disrupt pathogenic RNA-protein interactions. We focus on small molecule and peptide-based inhibitors that have shown promise in disrupting crucial RNA-protein interactions in eukaryotes, prokaryotes, and viruses. We also present the challenges and future directions in this field, emphasizing the need to achieve improved specificity and reduce the off-target effects of the inhibitors. This review aims to contribute to ongoing efforts towards the development of novel therapeutic agents targeting RNA-protein interactions by providing an in-depth analysis of significant developments and emerging trends in this rapidly growing field.
Collapse
Affiliation(s)
- Khushboo Goel
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhauri, Bhopal Bypass Road, Bhopal, Madhya Pradesh, 462066, India
| | - Ishu Saraogi
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhauri, Bhopal Bypass Road, Bhopal, Madhya Pradesh, 462066, India
| |
Collapse
|
3
|
Han R, Qian Y, Zheng C. A novel small RNA regulates Locus of Enterocyte Effacement and site-specific colonization of enterohemorrhagic Escherichia coli O157:H7 in gut. Front Cell Infect Microbiol 2025; 14:1517328. [PMID: 39882344 PMCID: PMC11774850 DOI: 10.3389/fcimb.2024.1517328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/11/2024] [Indexed: 01/31/2025] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a contagious foodborne pathogen that specifically colonizes the human large intestine, which is regulated by different environmental stimuli within the gut. Transcriptional regulation of EHEC virulence and infection has been extensively studied, while the posttranscriptional regulation of these processes by small RNAs (sRNAs) remains not fully understood. Here we present a virulence-regulating pathway in EHEC O157:H7, in which the sRNA EvrS binds to and destabilizes the mRNA of Z2269, a novel transcriptional regulator. In turn, Z2269 indirectly activates the expression of LEE (locus of enterocyte effacement) pathogenicity island through the master regulator Ler. Importantly, the expression of EvrS is modulated by environmental oxygen levels. EvrS also exhibits lower expression in the colon compared to the ileum, influencing the site-specific colonization of EHEC O157:H7 in mice. These results indicate that the oxygen status within the intestine may regulate the expression of EvrS, thereby modulating virulence factors of EHEC and contributing to successful infection in vivo. This study has broader implications for understanding sRNA functions in spatiotemporal virulence control of EHEC and may provide novel strategies to prevent EHEC infections.
Collapse
Affiliation(s)
- Runhua Han
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, China
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Ye Qian
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, China
| | - Chenguang Zheng
- College of Public Health, North China University of Science and Technology, Tangshan, China
| |
Collapse
|
4
|
McJunkin K, Gottesman S. What goes up must come down: off switches for regulatory RNAs. Genes Dev 2024; 38:597-613. [PMID: 39111824 PMCID: PMC11368247 DOI: 10.1101/gad.351934.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Small RNAs base pair with and regulate mRNA translation and stability. For both bacterial small regulatory RNAs and eukaryotic microRNAs, association with partner proteins is critical for the stability and function of the regulatory RNAs. We review the mechanisms for degradation of these RNAs: displacement of the regulatory RNA from its protein partner (in bacteria) or destruction of the protein and its associated microRNAs (in eukaryotes). These mechanisms can allow specific destruction of a regulatory RNA via pairing with a decay trigger RNA or function as global off switches by disrupting the stability or function of the protein partner.
Collapse
Affiliation(s)
- Katherine McJunkin
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases Intramural Research Program, Bethesda, Maryland 20892, USA;
| | - Susan Gottesman
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| |
Collapse
|
5
|
Ye D, Nguyen PT, Bourgault S, Couture M. The heme binding protein ChuX is a regulator of heme degradation by the ChuS protein in Escherichia coli O157:H7. J Inorg Biochem 2024; 256:112575. [PMID: 38678912 DOI: 10.1016/j.jinorgbio.2024.112575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Escherichia coli O157:H7 possesses an 8-gene cluster (chu genes) that contains genes involved in heme transport and processing from the human host. Among the chu genes, four encode cytoplasmic proteins (ChuS, ChuX, ChuY and ChuW). ChuX was previously shown to be a heme binding protein and to assist ChuW in heme degradation under anaerobic conditions. The purpose of this work was to investigate if ChuX works in concert with ChuS, which is a protein able to degrade heme by a non-canonical mechanism and release the iron from the porphyrin under aerobic conditions using hydrogen peroxide as the oxidant. We showed that when the heme-bound ChuX and apo-ChuS protein are mixed, heme is efficiently transferred from ChuX to ChuS. Heme-bound ChuX displayed a peroxidase activity with ABTS and H2O2 but not heme-bound ChuS, which is an efficient test to determine the protein to which heme is bound in the ChuS-ChuX complex. We found that ChuX protects heme from chemical oxidation and that it has no heme degradation activity by itself. Unexpectedly, we found that ChuX inhibits heme degradation by ChuS and stops the reaction at an early intermediate. We determined using surface plasmon resonance that ChuX interacts with ChuS and that it forms a relatively stable complex. These results indicate that ChuX in addition to its heme transfer activity is a regulator of ChuS activity, a function that was not described before for any of the heme carrier protein that delivers heme to heme degradation enzymes.
Collapse
Affiliation(s)
- Danrong Ye
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Quebec City, QC, Canada; Institut de Biologie Intégrative et des Systèmes (IBIS) and PROTEO, Université Laval, Quebec city, QC, Canada; Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO), Montreal, QC, Canada
| | - Phuong Trang Nguyen
- Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO), Montreal, QC, Canada; Departement of Chemistry, Université du Québec à Montréal, Montreal, QC, Canada
| | - Steve Bourgault
- Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO), Montreal, QC, Canada; Departement of Chemistry, Université du Québec à Montréal, Montreal, QC, Canada
| | - Manon Couture
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Quebec City, QC, Canada; Institut de Biologie Intégrative et des Systèmes (IBIS) and PROTEO, Université Laval, Quebec city, QC, Canada; Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO), Montreal, QC, Canada.
| |
Collapse
|
6
|
Saunier M, Fortier LC, Soutourina O. RNA-based regulation in bacteria-phage interactions. Anaerobe 2024; 87:102851. [PMID: 38583547 DOI: 10.1016/j.anaerobe.2024.102851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/24/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Interactions of bacteria with their viruses named bacteriophages or phages shape the bacterial genome evolution and contribute to the diversity of phages. RNAs have emerged as key components of several anti-phage defense systems in bacteria including CRISPR-Cas, toxin-antitoxin and abortive infection. Frequent association with mobile genetic elements and interplay between different anti-phage defense systems are largely discussed. Newly discovered defense systems such as retrons and CBASS include RNA components. RNAs also perform their well-recognized regulatory roles in crossroad of phage-bacteria regulatory networks. Both regulatory and defensive function can be sometimes attributed to the same RNA molecules including CRISPR RNAs. This review presents the recent advances on the role of RNAs in the bacteria-phage interactions with a particular focus on clostridial species including an important human pathogen, Clostridioides difficile.
Collapse
Affiliation(s)
- Marion Saunier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France; Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Louis-Charles Fortier
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Olga Soutourina
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France; Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
7
|
Sprenger M, Siemers M, Krautwurst S, Papenfort K. Small RNAs direct attack and defense mechanisms in a quorum sensing phage and its host. Cell Host Microbe 2024; 32:727-738.e6. [PMID: 38579715 DOI: 10.1016/j.chom.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/02/2024] [Accepted: 03/13/2024] [Indexed: 04/07/2024]
Abstract
Many, if not all, bacteria use quorum sensing (QS) to control collective behaviors, and more recently, QS has also been discovered in bacteriophages (phages). Phages can produce communication molecules of their own, or "listen in" on the host's communication processes, to switch between lytic and lysogenic modes of infection. Here, we study the interaction of Vibrio cholerae with the lysogenic phage VP882, which is activated by the QS molecule DPO. We discover that induction of VP882 results in the binding of phage transcripts to the major RNA chaperone Hfq, which in turn outcompetes and downregulates host-encoded small RNAs (sRNAs). VP882 itself also encodes Hfq-binding sRNAs, and we demonstrate that one of these sRNAs, named VpdS, promotes phage replication by regulating host and phage mRNA levels. We further show that host-encoded sRNAs can antagonize phage replication by downregulating phage mRNA expression and thus might be part of the host's phage defense arsenal.
Collapse
Affiliation(s)
- Marcel Sprenger
- Friedrich Schiller University, Institute of Microbiology, 07745 Jena, Germany
| | - Malte Siemers
- Friedrich Schiller University, Institute of Microbiology, 07745 Jena, Germany; Microverse Cluster, Friedrich Schiller University Jena, 07743 Jena, Germany
| | | | - Kai Papenfort
- Friedrich Schiller University, Institute of Microbiology, 07745 Jena, Germany; Microverse Cluster, Friedrich Schiller University Jena, 07743 Jena, Germany.
| |
Collapse
|
8
|
Wu W, Pang CNI, Mediati DG, Tree JJ. The functional small RNA interactome reveals targets for the vancomycin-responsive sRNA RsaOI in vancomycin-tolerant Staphylococcus aureus. mSystems 2024; 9:e0097123. [PMID: 38534138 PMCID: PMC11019875 DOI: 10.1128/msystems.00971-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
Small RNAs have been found to control a broad range of bacterial phenotypes including tolerance to antibiotics. Vancomycin tolerance in multidrug resistance Staphylococcus aureus is correlated with dysregulation of small RNAs although their contribution to antibiotic tolerance is poorly understood. RNA-RNA interactome profiling techniques are expanding our understanding of sRNA-mRNA interactions in bacteria; however, determining the function of these interactions for hundreds of sRNA-mRNA pairs is a major challenge. At steady-state, protein and mRNA abundances are often highly correlated and lower than expected protein abundance may indicate translational repression of an mRNA. To identify sRNA-mRNA interactions that regulate mRNA translation, we examined the correlation between gene transcript abundance, ribosome occupancy, and protein levels. We used the machine learning technique self-organizing maps (SOMs) to cluster genes with similar transcription and translation patterns and identified a cluster of mRNAs that appeared to be post-transcriptionally repressed. By integrating our clustering with sRNA-mRNA interactome data generated in vancomycin-tolerant S. aureus by RNase III-CLASH, we identified sRNAs that may be mediating translational repression. We have confirmed sRNA-dependant post-transcriptional repression of several mRNAs in this cluster. Two of these interactions are mediated by RsaOI, a sRNA that is highly upregulated by vancomycin. We demonstrate the regulation of HPr and the cell-wall autolysin Atl. These findings suggest that RsaOI coordinates carbon metabolism and cell wall turnover during vancomycin treatment. IMPORTANCE The emergence of multidrug-resistant Staphylococcus aureus (MRSA) is a major public health concern. Current treatment is dependent on the efficacy of last-line antibiotics like vancomycin. The most common cause of vancomycin treatment failure is strains with intermediate resistance or tolerance that arise through the acqusition of a diverse repertoire of point mutations. These strains have been shown to altered small RNA (sRNA) expression in response to antibiotic treatment. Here, we have used a technique termed RNase III-CLASH to capture sRNA interactions with their target mRNAs. To understand the function of these interactions, we have looked at RNA and protein abundance for mRNAs targeted by sRNAs. Messenger RNA and protein levels are generally well correlated and we use deviations from this correlation to infer post-transcriptional regulation and the function of individual sRNA-mRNA interactions. Using this approach we identify mRNA targets of the vancomycin-induced sRNA, RsaOI, that are repressed at the translational level. We find that RsaOI represses the cell wall autolysis Atl and carbon transporter HPr suggestion a link between vancomycin treatment and suppression of cell wall turnover and carbon metabolism.
Collapse
Affiliation(s)
- Winton Wu
- School of Biotechnology and Biomolecular Sciences, Sydney, New South Wales, Australia
| | | | - Daniel G. Mediati
- School of Biotechnology and Biomolecular Sciences, Sydney, New South Wales, Australia
| | - Jai Justin Tree
- School of Biotechnology and Biomolecular Sciences, Sydney, New South Wales, Australia
| |
Collapse
|
9
|
Małecka EM, Woodson SA. RNA compaction and iterative scanning for small RNA targets by the Hfq chaperone. Nat Commun 2024; 15:2069. [PMID: 38453956 PMCID: PMC10920880 DOI: 10.1038/s41467-024-46316-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/18/2024] [Indexed: 03/09/2024] Open
Abstract
RNA-guided enzymes must quickly search a vast sequence space for their targets. This search is aided by chaperones such as Hfq, a protein that mediates regulation by bacterial small RNAs (sRNAs). How RNA binding proteins enhance this search is little known. Using single-molecule Förster resonance energy transfer, we show that E. coli Hfq performs a one-dimensional scan in which compaction of the target RNA delivers sRNAs to sites distant from the location of Hfq recruitment. We also show that Hfq can transfer an sRNA between different target sites in a single mRNA, favoring the most stable duplex. We propose that compaction and segmental transfer, combined with repeated cycles of base pairing, enable the kinetic selection of optimal sRNA targets. Finally, we show that RNA compaction and sRNA transfer require conserved arginine patches. We suggest that arginine patches are a widespread strategy for enabling the movement of RNA across protein surfaces.
Collapse
Affiliation(s)
- Ewelina M Małecka
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St.,5, Baltimore, MD, 21218, USA.
- Laboratory of Single-Molecule Biophysics, International Institute of Molecular and Cell Biology in Warsaw, Trojdena 4, Warsaw, 02-109, Poland.
| | - Sarah A Woodson
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St.,5, Baltimore, MD, 21218, USA.
| |
Collapse
|
10
|
Putzeys L, Wicke L, Brandão A, Boon M, Pires DP, Azeredo J, Vogel J, Lavigne R, Gerovac M. Exploring the transcriptional landscape of phage-host interactions using novel high-throughput approaches. Curr Opin Microbiol 2024; 77:102419. [PMID: 38271748 PMCID: PMC10884466 DOI: 10.1016/j.mib.2023.102419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024]
Abstract
In the last decade, powerful high-throughput sequencing approaches have emerged to analyse microbial transcriptomes at a global scale. However, to date, applications of these approaches to microbial viruses such as phages remain scarce. Tailoring these techniques to virus-infected bacteria promises to obtain a detailed picture of the underexplored RNA biology and molecular processes during infection. In addition, transcriptome study of stress and perturbations induced by phages in their infected bacterial hosts is likely to reveal new fundamental mechanisms of bacterial metabolism and gene regulation. Here, we provide references and blueprints to implement emerging transcriptomic approaches towards addressing transcriptome architecture, RNA-RNA and RNA-protein interactions, RNA modifications, structures and heterogeneity of transcription profiles in infected cells that will provide guides for future directions in phage-centric therapeutic applications and microbial synthetic biology.
Collapse
Affiliation(s)
- Leena Putzeys
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
| | - Laura Wicke
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Leuven, Belgium; Institute for Molecular Infection Biology (IMIB), Medical Faculty, University of Würzburg, Würzburg, Germany
| | - Ana Brandão
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Maarten Boon
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
| | - Diana P Pires
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Joana Azeredo
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Jörg Vogel
- Institute for Molecular Infection Biology (IMIB), Medical Faculty, University of Würzburg, Würzburg, Germany; Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Rob Lavigne
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
| | - Milan Gerovac
- Institute for Molecular Infection Biology (IMIB), Medical Faculty, University of Würzburg, Würzburg, Germany; Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany.
| |
Collapse
|
11
|
Kannaiah S, Goldberger O, Alam N, Barnabas G, Pozniak Y, Nussbaum-Shochat A, Schueler-Furman O, Geiger T, Amster-Choder O. MinD-RNase E interplay controls localization of polar mRNAs in E. coli. EMBO J 2024; 43:637-662. [PMID: 38243117 PMCID: PMC10897333 DOI: 10.1038/s44318-023-00026-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 01/21/2024] Open
Abstract
The E. coli transcriptome at the cell's poles (polar transcriptome) is unique compared to the membrane and cytosol. Several factors have been suggested to mediate mRNA localization to the membrane, but the mechanism underlying polar localization of mRNAs remains unknown. Here, we combined a candidate system approach with proteomics to identify factors that mediate mRNAs localization to the cell poles. We identified the pole-to-pole oscillating protein MinD as an essential factor regulating polar mRNA localization, although it is not able to bind RNA directly. We demonstrate that RNase E, previously shown to interact with MinD, is required for proper localization of polar mRNAs. Using in silico modeling followed by experimental validation, the membrane-binding site in RNase E was found to mediate binding to MinD. Intriguingly, not only does MinD affect RNase E interaction with the membrane, but it also affects its mode of action and dynamics. Polar accumulation of RNase E in ΔminCDE cells resulted in destabilization and depletion of mRNAs from poles. Finally, we show that mislocalization of polar mRNAs may prevent polar localization of their protein products. Taken together, our findings show that the interplay between MinD and RNase E determines the composition of the polar transcriptome, thus assigning previously unknown roles for both proteins.
Collapse
Affiliation(s)
- Shanmugapriya Kannaiah
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, P.O.Box 12272, 91120, Jerusalem, Israel.
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, 63110, USA.
| | - Omer Goldberger
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, P.O.Box 12272, 91120, Jerusalem, Israel
| | - Nawsad Alam
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, P.O.Box 12272, 91120, Jerusalem, Israel
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Georgina Barnabas
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, 6997801, Tel-Aviv, Israel
- Department of Pathology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Yair Pozniak
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, 6997801, Tel-Aviv, Israel
| | - Anat Nussbaum-Shochat
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, P.O.Box 12272, 91120, Jerusalem, Israel
| | - Ora Schueler-Furman
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, P.O.Box 12272, 91120, Jerusalem, Israel
| | - Tamar Geiger
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, 6997801, Tel-Aviv, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, 76100001, Rehovot, Israel
| | - Orna Amster-Choder
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, P.O.Box 12272, 91120, Jerusalem, Israel.
| |
Collapse
|
12
|
Esteban-Serna S, Chu LC, Chauhan M, Raja P, Granneman S. Defining Bacterial RNA-RNA Interactomes Using CLASH. Methods Mol Biol 2024; 2741:307-345. [PMID: 38217661 DOI: 10.1007/978-1-0716-3565-0_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a bacterial pathogen accounting for high mortality rates among infected patients. Transcriptomic regulation by small RNAs (sRNAs) has been shown to regulate networks promoting antibiotic resistance and virulence in S. aureus. Yet, the biological role of most sRNAs during MRSA host infection remains unknown. To fill this gap, in collaboration with the lab of Jai Tree, we performed comprehensive RNA-RNA interactome analyses in MRSA using CLASH under conditions that mimic the host environment. Here we present a detailed version of this optimized CLASH (cross-linking, ligation, and sequencing of hybrids) protocol we recently developed, which has been tailored to explore the RNA interactome in S. aureus as well as other Gram-positive bacteria. Alongside, we introduce a compilation of helpful Python functions for analyzing folding energies of putative RNA-RNA interactions and streamlining sRNA and mRNA seed discovery in CLASH data. In the accompanying computational demonstration, we aim to establish a standardized strategy to evaluate the likelihood that observed chimeras arise from true RNA-RNA interactions.
Collapse
Affiliation(s)
- Sofia Esteban-Serna
- Centre for Engineering Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Liang-Cui Chu
- Centre for Engineering Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Mehak Chauhan
- Centre for Engineering Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Pujitha Raja
- Division of Pathway and Infection Medicine, University of Edinburgh, Edinburgh, UK
| | - Sander Granneman
- Centre for Engineering Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
13
|
Bloch S, Lewandowska N, Wesołowski W, Łukasiak A, Mach P, Nejman-Faleńczyk B, Węgrzyn G. Analysis of Phage Regulatory RNAs: Sequencing Library Construction from the Fraction of Small Prokaryotic RNAs Less Than 50 Nucleotides in Length. Methods Mol Biol 2024; 2741:25-34. [PMID: 38217647 DOI: 10.1007/978-1-0716-3565-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
So far, bacterial regulatory sRNAs of length less than 50 nucleotides have been poorly understood, and a low number of such molecules has been identified. The first microRNA-size functional ribonucleic acid occurring in a bacterial cell has been described only recently, and it was found to be encoded by a bacteriophage. One of the reasons for such a scarcity in this field is the lack of procedures intended for the isolation and selection of molecules of this size from bacterial cells. To meet these difficulties, we describe here the few-step procedure of isolation, purification, selection, and sequencing library preparation that is dedicated to the fraction of very small, bacterial RNA molecules.
Collapse
Affiliation(s)
- Sylwia Bloch
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Natalia Lewandowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Wojciech Wesołowski
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Aleksandra Łukasiak
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Paulina Mach
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | | | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland.
| |
Collapse
|
14
|
Broglia L, Le Rhun A, Charpentier E. Methodologies for bacterial ribonuclease characterization using RNA-seq. FEMS Microbiol Rev 2023; 47:fuad049. [PMID: 37656885 PMCID: PMC10503654 DOI: 10.1093/femsre/fuad049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/06/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023] Open
Abstract
Bacteria adjust gene expression at the post-transcriptional level through an intricate network of small regulatory RNAs and RNA-binding proteins, including ribonucleases (RNases). RNases play an essential role in RNA metabolism, regulating RNA stability, decay, and activation. These enzymes exhibit species-specific effects on gene expression, bacterial physiology, and different strategies of target recognition. Recent advances in high-throughput RNA sequencing (RNA-seq) approaches have provided a better understanding of the roles and modes of action of bacterial RNases. Global studies aiming to identify direct targets of RNases have highlighted the diversity of RNase activity and RNA-based mechanisms of gene expression regulation. Here, we review recent RNA-seq approaches used to study bacterial RNases, with a focus on the methods for identifying direct RNase targets.
Collapse
Affiliation(s)
- Laura Broglia
- Max Planck Unit for the Science of Pathogens, D-10117 Berlin, Germany
- Center for Human Technologies, Istituto Italiano di Tecnologia, 16152 Genova, Italy
| | - Anaïs Le Rhun
- Max Planck Unit for the Science of Pathogens, D-10117 Berlin, Germany
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, F-33000 Bordeaux, France
| | - Emmanuelle Charpentier
- Max Planck Unit for the Science of Pathogens, D-10117 Berlin, Germany
- Institute for Biology, Humboldt University, D-10115 Berlin, Germany
| |
Collapse
|
15
|
Schilder A, Görke B. Role of the 5' end phosphorylation state for small RNA stability and target RNA regulation in bacteria. Nucleic Acids Res 2023; 51:5125-5143. [PMID: 36987877 PMCID: PMC10250213 DOI: 10.1093/nar/gkad226] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/28/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
In enteric bacteria, several small RNAs (sRNAs) including MicC employ endoribonuclease RNase E to stimulate target RNA decay. A current model proposes that interaction of the sRNA 5' monophosphate (5'P) with the N-terminal sensing pocket of RNase E allosterically activates cleavage of the base-paired target in the active site. In vivo evidence supporting this model is lacking. Here, we engineered a genetic tool allowing us to generate 5' monophosphorylated sRNAs of choice in a controllable manner in the cell. Four sRNAs were tested and none performed better in target destabilization when 5' monophosphorylated. MicC retains full activity even when RNase E is defective in 5'P sensing, whereas regulation is lost upon removal of its scaffolding domain. Interestingly, sRNAs MicC and RyhB that originate with a 5' triphosphate group are dramatically destabilized when 5' monophosphorylated, but stable when in 5' triphosphorylated form. In contrast, the processing-derived sRNAs CpxQ and SroC, which carry 5'P groups naturally, are highly stable. Thus, the 5' phosphorylation state determines stability of naturally triphosphorylated sRNAs, but plays no major role for target RNA destabilization in vivo. In contrast, the RNase E C-terminal half is crucial for MicC-mediated ompD decay, suggesting that interaction with Hfq is mandatory.
Collapse
Affiliation(s)
- Alexandra Schilder
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), 1030 Vienna, Austria
- Doctoral School in Microbiology and Environmental Science, University of Vienna, Vienna, Austria
| | - Boris Görke
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), 1030 Vienna, Austria
| |
Collapse
|
16
|
Wu W, Pang CNI, Tree JJ, Mediati DG. Profiling the in vivo RNA interactome associated with the endoribonuclease RNase III in Staphylococcus aureus. Methods Enzymol 2023; 692:299-324. [PMID: 37925184 DOI: 10.1016/bs.mie.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
Regulatory small RNA (sRNA) have been extensively studied in model Gram-negative bacteria, but the functional characterisation of these post-transcriptional gene regulators in Gram-positives remains a major challenge. Our previous work in enterohaemorrhagic E. coli utilised the proximity-dependant ligation technique termed CLASH (UV-crosslinking, ligation, and sequencing of hybrids) for direct high-throughput sequencing of the regulatory sRNA-RNA interactions within the cell. Recently, we adapted the CLASH technique and demonstrated that UV-crosslinking and RNA proximity-dependant ligation can be applied to Staphylococcus aureus, which uncovered the first RNA-RNA interaction network in a Gram-positive bacterium. In this chapter, we describe modifications to the CLASH technique that were developed to capture the RNA interactome associated with the double-stranded endoribonuclease RNase III in two clinical isolates of S. aureus. To briefly summarise our CLASH methodology, regulatory RNA-RNA interactions were first UV-crosslinked in vivo to the RNase III protein and protein-RNA complexes were affinity-purified using the His6-TEV-FLAG tags. Linkers were ligated to RNase III-bound RNA during library preparation and duplexed RNA-RNA species were ligated together to form a single contiguous RNA 'hybrid'. The RNase III-RNA binding sites and RNA-RNA interactions occurring on RNase III (RNA hybrids) were then identified by paired-end sequencing technology. RNase III-CLASH represents a step towards a systems-level understanding of regulatory RNA in Gram-positive bacteria.
Collapse
Affiliation(s)
- Winton Wu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Chi Nam Ignatius Pang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia; Children's Medical Research Institute, Westmead, NSW, Australia
| | - Jai J Tree
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Daniel G Mediati
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
17
|
Narra HP, Alsing J, Sahni A, Montini M, Zafar Y, Sahni SK. A Small Non-Coding RNA Mediates Transcript Stability and Expression of Cytochrome bd Ubiquinol Oxidase Subunit I in Rickettsia conorii. Int J Mol Sci 2023; 24:4008. [PMID: 36835430 PMCID: PMC9960880 DOI: 10.3390/ijms24044008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 02/19/2023] Open
Abstract
Small regulatory RNAs (sRNAs) are now widely recognized for their role in the post-transcriptional regulation of bacterial virulence and growth. We have previously demonstrated the biogenesis and differential expression of several sRNAs in Rickettsia conorii during interactions with the human host and arthropod vector, as well as the in vitro binding of Rickettsia conorii sRNA Rc_sR42 to bicistronic cytochrome bd ubiquinol oxidase subunits I and II (cydAB) mRNA. However, the mechanism of regulation and the effect of sRNA binding on the stability of the cydAB bicistronic transcript and the expression of the cydA and cydB genes are still unknown. In this study, we determined the expression dynamics of Rc_sR42 and its cognate target genes, cydA and cydB, in mouse lung and brain tissues during R. conorii infection in vivo and employed fluorescent and reporter assays to decode the role of sRNA in regulating cognate gene transcripts. Quantitative RT-PCR revealed significant changes in the expression of sRNA and its cognate target gene transcripts during R. conorii infection in vivo, and a greater abundance of these transcripts was observed in the lungs compared to brain tissue. Interestingly, while Rc_sR42 and cydA exhibited similar patterns of change in their expression, indicating the influence of sRNA on the mRNA target, the expression of cydB was independent of sRNA expression. Further, we constructed reporter plasmids of sRNA and cydAB bicistronic mRNA to decipher the role of sRNA on CydA and CydB expression. We observed increased expression of CydA in the presence of sRNA but detected no change in CydB expression in the presence or absence of sRNA. In sum, our results demonstrate that the binding of Rc_sR42 is required for the regulation of cydA but not cydB. Further studies on understanding the influence of this interaction on the mammalian host and tick vector during R. conorii infection are in progress.
Collapse
Affiliation(s)
- Hema P. Narra
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | | | | - Sanjeev K. Sahni
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
18
|
Dunham DT, Angermeyer A, Seed KD. The RNA-RNA interactome between a phage and its satellite virus reveals a small RNA that differentially regulates gene expression across both genomes. Mol Microbiol 2023; 119:515-533. [PMID: 36786209 PMCID: PMC10392615 DOI: 10.1111/mmi.15046] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
Satellite viruses are present across all domains of life, defined as subviral parasites that require infection by another virus for satellite progeny production. Phage satellites exhibit various regulatory mechanisms to manipulate phage gene expression to the benefit of the satellite, redirecting resources from the phage to the satellite, and often inhibiting phage progeny production. While small RNAs (sRNAs) are well documented as regulators of prokaryotic gene expression, they have not been shown to play a regulatory role in satellite-phage conflicts. Vibrio cholerae encodes the phage inducible chromosomal island-like element (PLE), a phage satellite, to defend itself against the lytic phage ICP1. Here, we use Hi-GRIL-seq to identify a complex RNA-RNA interactome between PLE and ICP1. Both inter- and intragenome RNA interactions were detected, headlined by the PLE sRNA, SviR. SviR is involved in regulating both PLE and ICP1 gene expression uniquely, decreasing ICP1 target translation and affecting PLE transcripts. The striking conservation of SviR across all known PLEs suggests the sRNA is deeply rooted in the PLE-ICP1 conflict and implicates sRNAs as unidentified regulators of gene expression in phage-satellite interactions.
Collapse
Affiliation(s)
- Drew T Dunham
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Angus Angermeyer
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Kimberley D Seed
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
19
|
Jia T, Wu P, Liu B, Liu M, Mu H, Liu D, Huang M, Li L, Wei Y, Wang L, Yang Q, Liu Y, Yang B, Huang D, Yang L, Liu B. The phosphate-induced small RNA EsrL promotes E. coli virulence, biofilm formation, and intestinal colonization. Sci Signal 2023; 16:eabm0488. [PMID: 36626577 DOI: 10.1126/scisignal.abm0488] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/08/2022] [Indexed: 01/12/2023]
Abstract
Escherichia coli are part of the normal intestinal microbiome, but some enterohemorrhagic E. coli (EHEC) and enteropathogenic E. coli (EPEC) strains can cause potentially life-threatening gastroenteritis. Virulence factors underlying the ability of EHEC and EPEC to cause disease include those encoded in the locus of the enterocyte effacement (LEE) pathogenicity island. Here, we demonstrated that EsrL, a small RNA present in many E. coli strains, promoted pathogenicity, adhesion, and biofilm formation in EHEC and EPEC. PhoB, the response regulator of the two-component system that controls cellular responses to phosphate, directly repressed esrL expression under low-phosphate conditions. A phosphate-rich environment, similar to that of the human intestine, relieved PhoB-mediated repression of esrL. EsrL interacted with and stabilized the LEE-encoded regulator (ler) transcript, which encodes a transcription factor for LEE genes, leading to increased bacterial adhesion to cultured cells and colonization of the rabbit colon. EsrL also bound to and stabilized the fimC transcript, which encodes a chaperone that is required for the assembly of type 1 pili, resulting in enhanced cell adhesion in pathogenic E. coli and enhanced biofilm formation in pathogenic and nonpathogenic E. coli. Our findings demonstrate that EsrL stimulates the expression of virulence genes in both EHEC and EPEC under phosphate-rich conditions, thus promoting the pathogenicity of EHEC and EPEC in the nutrient-rich gut environment.
Collapse
Affiliation(s)
- Tianyuan Jia
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Pan Wu
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Bin Liu
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
- Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Tianjin, China
| | - Miaomiao Liu
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Huiqian Mu
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Dan Liu
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Min Huang
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Linxing Li
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Yi Wei
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Lu Wang
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Qian Yang
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Yutao Liu
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
- Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Tianjin, China
| | - Bin Yang
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
- Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Tianjin, China
| | - Di Huang
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
- Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Tianjin, China
- Nankai International Advanced Research Institute, Shenzhen, China
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Bin Liu
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
- Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Tianjin, China
- Nankai International Advanced Research Institute, Shenzhen, China
| |
Collapse
|
20
|
Genetically encoded chemical crosslinking of RNA in vivo. Nat Chem 2023; 15:21-32. [PMID: 36202986 PMCID: PMC9840682 DOI: 10.1038/s41557-022-01038-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/08/2022] [Indexed: 01/17/2023]
Abstract
Protein-RNA interactions regulate RNA fate and function, and defects can lead to various disorders. Such interactions have mainly been studied by nucleoside-based UV crosslinking methods, which lack broad in vivo compatibility and the ability to resolve specific amino acids. In this study we genetically encoded latent bioreactive unnatural amino acids into proteins to react with bound RNA by proximity-enabled reactivity and demonstrated genetically encoded chemical crosslinking of proteins with target RNA (GECX-RNA) in vivo. Applying GECX-RNA to the RNA chaperone Hfq in Escherichia coli identified target RNAs with amino acid specificity. Combining GECX-RNA with immunoprecipitation and high-throughput sequencing of an N6-methyladenosine reader protein in mammalian cells allowed the in vivo identification of unknown N6-methyladenosine on RNA with single-nucleotide resolution throughout the transcriptome. GECX-RNA thus affords resolution at the nucleotide and amino acid level for interrogating protein-RNA interactions in vivo. It also enables the precise engineering of covalent linkages between a protein and RNA, which will inspire innovative solutions for RNA-related research and therapeutics.
Collapse
|
21
|
Michaux C, Gerovac M, Hansen EE, Barquist L, Vogel J. Grad-seq analysis of Enterococcus faecalis and Enterococcus faecium provides a global view of RNA and protein complexes in these two opportunistic pathogens. MICROLIFE 2022; 4:uqac027. [PMID: 37223738 PMCID: PMC10117718 DOI: 10.1093/femsml/uqac027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 12/24/2022] [Indexed: 05/25/2023]
Abstract
Enterococcus faecalis and Enterococcus faecium are major nosocomial pathogens. Despite their relevance to public health and their role in the development of bacterial antibiotic resistance, relatively little is known about gene regulation in these species. RNA-protein complexes serve crucial functions in all cellular processes associated with gene expression, including post-transcriptional control mediated by small regulatory RNAs (sRNAs). Here, we present a new resource for the study of enterococcal RNA biology, employing the Grad-seq technique to comprehensively predict complexes formed by RNA and proteins in E. faecalis V583 and E. faecium AUS0004. Analysis of the generated global RNA and protein sedimentation profiles led to the identification of RNA-protein complexes and putative novel sRNAs. Validating our data sets, we observe well-established cellular RNA-protein complexes such as the 6S RNA-RNA polymerase complex, suggesting that 6S RNA-mediated global control of transcription is conserved in enterococci. Focusing on the largely uncharacterized RNA-binding protein KhpB, we use the RIP-seq technique to predict that KhpB interacts with sRNAs, tRNAs, and untranslated regions of mRNAs, and might be involved in the processing of specific tRNAs. Collectively, these datasets provide departure points for in-depth studies of the cellular interactome of enterococci that should facilitate functional discovery in these and related Gram-positive species. Our data are available to the community through a user-friendly Grad-seq browser that allows interactive searches of the sedimentation profiles (https://resources.helmholtz-hiri.de/gradseqef/).
Collapse
Affiliation(s)
- Charlotte Michaux
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Josef-Schneider-Straße, 97080, Würzburg, Germany
| | - Milan Gerovac
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Josef-Schneider-Straße, 97080, Würzburg, Germany
| | - Elisabeth E Hansen
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Josef-Schneider-Straße, 97080, Würzburg, Germany
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Josef-Schneider-Straße, 97080, Würzburg, Germany
- Faculty of Medicine, University of Würzburg, Josef-Schneider-Straße, 97080, Würzburg, Germany
| | - Jörg Vogel
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Josef-Schneider-Straße, 97080, Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Josef-Schneider-Straße, 97080, Würzburg, Germany
- Faculty of Medicine, University of Würzburg, Josef-Schneider-Straße, 97080, Würzburg, Germany
| |
Collapse
|
22
|
Imrat, Labala RK, Behara AK, Jeyaram K. Selective extracellular secretion of small double-stranded RNA by Tetragenococcus halophilus. Funct Integr Genomics 2022; 23:10. [PMID: 36542169 DOI: 10.1007/s10142-022-00934-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022]
Abstract
Small double-stranded RNAs (dsRNAs) abundantly produced by lactic acid bacteria demonstrate immunomodulatory activity and antiviral protective immunity. However, the extracellular secretion of dsRNA from lactic acid bacteria and their compositional and functional differences compared to the intracellular dsRNA is unknown. In this study, we compared the intracellular and secreted extracellular dsRNA of the lactic acid bacteria, Tetragenococcus halophilus, commonly present in fermented foods, by growing in RNA-free and RNase-free media. We used RNA deep sequencing and in-silico analysis to annotate potential regulatory functions for the comparison. A time series sampling of T. halophilus culture demonstrated growth phase-dependent dynamics in extracellular dsRNA secretion with no major change in the intracellular dsRNA profile. The RNA deep sequencing resulted in thousands of diverse dsRNA fragments with 14-21 nucleotides in size from T. halophilus culture. Over 70% of the secreted extracellular dsRNAs were unique in their sequences compared to the intracellular dsRNAs. Furthermore, the extracellular dsRNA abundantly contains sequences that are not T. halophilus genome encoded, not detected intracellularly and showed higher hits on human transcriptome during in-silico analysis, which suggests the presence of extrachromosomal mobile regulatory elements. Further analysis showed significant enrichment of dsRNA target genes of human transcriptome on cancer pathways and transcription process, indicating the extracellular dsRNA of T. halophilus is different not only at the sequence level but also in function. Studying the bacterial extracellular dsRNA is a promising area of future research, particularly for developing postbiotic fermented functional foods and understanding the impact of commensal gut bacteria on human health.
Collapse
Affiliation(s)
- Imrat
- Microbial Resources Division, Institute of Bioresources and Sustainable Development (IBSD), Takyelpat Institutional Area, Imphal, 795001, Manipur, India.,Department of Biotechnology, Gauhati University, Guwahati, 781014, Assam, India
| | - Rajendra Kumar Labala
- Microbial Resources Division, Institute of Bioresources and Sustainable Development (IBSD), Takyelpat Institutional Area, Imphal, 795001, Manipur, India
| | - Abhisek Kumar Behara
- Microbial Resources Division, Institute of Bioresources and Sustainable Development (IBSD), Takyelpat Institutional Area, Imphal, 795001, Manipur, India
| | - Kumaraswamy Jeyaram
- Microbial Resources Division, Institute of Bioresources and Sustainable Development (IBSD), Takyelpat Institutional Area, Imphal, 795001, Manipur, India.,IBSD Regional Centre, Tadong, Gangtok, 737102, Sikkim, India
| |
Collapse
|
23
|
Mahendran G, Jayasinghe OT, Thavakumaran D, Arachchilage GM, Silva GN. Key players in regulatory RNA realm of bacteria. Biochem Biophys Rep 2022; 30:101276. [PMID: 35592614 PMCID: PMC9111926 DOI: 10.1016/j.bbrep.2022.101276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 11/30/2022] Open
Abstract
Precise regulation of gene expression is crucial for living cells to adapt for survival in diverse environmental conditions. Among the common cellular regulatory mechanisms, RNA-based regulators play a key role in all domains of life. Discovery of regulatory RNAs have made a paradigm shift in molecular biology as many regulatory functions of RNA have been identified beyond its canonical roles as messenger, ribosomal and transfer RNA. In the complex regulatory RNA network, riboswitches, small RNAs, and RNA thermometers can be identified as some of the key players. Herein, we review the discovery, mechanism, and potential therapeutic use of these classes of regulatory RNAs mainly found in bacteria. Being highly adaptive organisms that inhabit a broad range of ecological niches, bacteria have adopted tight and rapid-responding gene regulation mechanisms. This review aims to highlight how bacteria utilize versatile RNA structures and sequences to build a sophisticated gene regulation network. The three major classes of prokaryotic ncRNAs and their characterized mechanisms of operation in gene regulation. sRNAs emerging as major players in global gene regulatory networks. Riboswitch mediated gene control mechanisms through on/off switches in response to ligand binding. RNA thermo sensors for temperature-dependent gene expression. Therapeutic importance of ncRNAs and computational approaches involved in the discovery of ncRNAs.
Collapse
Affiliation(s)
- Gowthami Mahendran
- Department of Chemistry, University of Colombo, Colombo, Sri Lanka
- Department of Chemistry and Biochemistry, University of Notre Dame, IN, 46556, USA
| | - Oshadhi T. Jayasinghe
- Department of Chemistry, University of Colombo, Colombo, Sri Lanka
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Dhanushika Thavakumaran
- Department of Chemistry, University of Colombo, Colombo, Sri Lanka
- Department of Chemistry and Biochemistry, University of Notre Dame, IN, 46556, USA
| | - Gayan Mirihana Arachchilage
- Howard Hughes Medical Institute, Yale University, New Haven, CT, 06520-8103, USA
- PTC Therapeutics Inc, South Plainfield, NJ, 07080, USA
| | - Gayathri N. Silva
- Department of Chemistry, University of Colombo, Colombo, Sri Lanka
- Corresponding author.
| |
Collapse
|
24
|
Mediati DG, Wong JL, Gao W, McKellar S, Pang CNI, Wu S, Wu W, Sy B, Monk IR, Biazik JM, Wilkins MR, Howden BP, Stinear TP, Granneman S, Tree JJ. RNase III-CLASH of multi-drug resistant Staphylococcus aureus reveals a regulatory mRNA 3'UTR required for intermediate vancomycin resistance. Nat Commun 2022; 13:3558. [PMID: 35732665 PMCID: PMC9217812 DOI: 10.1038/s41467-022-31177-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/03/2022] [Indexed: 01/13/2023] Open
Abstract
Treatment of methicillin-resistant Staphylococcus aureus infections is dependent on the efficacy of last-line antibiotics including vancomycin. Treatment failure is commonly linked to isolates with intermediate vancomycin resistance (termed VISA). These isolates have accumulated point mutations that collectively reduce vancomycin sensitivity, often by thickening the cell wall. Changes in regulatory small RNA expression have been correlated with antibiotic stress in VISA isolates however the functions of most RNA regulators is unknown. Here we capture RNA-RNA interactions associated with RNase III using CLASH. RNase III-CLASH uncovers hundreds of novel RNA-RNA interactions in vivo allowing functional characterisation of many sRNAs for the first time. Surprisingly, many mRNA-mRNA interactions are recovered and we find that an mRNA encoding a long 3' untranslated region (UTR) (termed vigR 3'UTR) functions as a regulatory 'hub' within the RNA-RNA interaction network. We demonstrate that the vigR 3'UTR promotes expression of folD and the cell wall lytic transglycosylase isaA through direct mRNA-mRNA base-pairing. Deletion of the vigR 3'UTR re-sensitised VISA to glycopeptide treatment and both isaA and vigR 3'UTR deletions impact cell wall thickness. Our results demonstrate the utility of RNase III-CLASH and indicate that S. aureus uses mRNA-mRNA interactions to co-ordinate gene expression more widely than previously appreciated.
Collapse
Affiliation(s)
- Daniel G Mediati
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Julia L Wong
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Wei Gao
- Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Stuart McKellar
- Centre for Systems and Synthetic Biology, University of Edinburgh, Edinburgh, UK
| | - Chi Nam Ignatius Pang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Sylvania Wu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Winton Wu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Brandon Sy
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Ian R Monk
- Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Joanna M Biazik
- Electron Microscopy Unit, University of New South Wales, Kensington, NSW, Australia
| | - Marc R Wilkins
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Benjamin P Howden
- Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Sander Granneman
- Centre for Systems and Synthetic Biology, University of Edinburgh, Edinburgh, UK
| | - Jai J Tree
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
25
|
Chu LC, Arede P, Li W, Urdaneta EC, Ivanova I, McKellar SW, Wills JC, Fröhlich T, von Kriegsheim A, Beckmann BM, Granneman S. The RNA-bound proteome of MRSA reveals post-transcriptional roles for helix-turn-helix DNA-binding and Rossmann-fold proteins. Nat Commun 2022; 13:2883. [PMID: 35610211 PMCID: PMC9130240 DOI: 10.1038/s41467-022-30553-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/06/2022] [Indexed: 01/21/2023] Open
Abstract
RNA-binding proteins play key roles in controlling gene expression in many organisms, but relatively few have been identified and characterised in detail in Gram-positive bacteria. Here, we globally analyse RNA-binding proteins in methicillin-resistant Staphylococcus aureus (MRSA) using two complementary biochemical approaches. We identify hundreds of putative RNA-binding proteins, many containing unconventional RNA-binding domains such as Rossmann-fold domains. Remarkably, more than half of the proteins containing helix-turn-helix (HTH) domains, which are frequently found in prokaryotic transcription factors, bind RNA in vivo. In particular, the CcpA transcription factor, a master regulator of carbon metabolism, uses its HTH domain to bind hundreds of RNAs near intrinsic transcription terminators in vivo. We propose that CcpA, besides acting as a transcription factor, post-transcriptionally regulates the stability of many RNAs.
Collapse
Affiliation(s)
- Liang-Cui Chu
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Pedro Arede
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Wei Li
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Erika C Urdaneta
- IRI Life Sciences, Humboldt University Berlin, 10115, Berlin, Germany
| | - Ivayla Ivanova
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Stuart W McKellar
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Jimi C Wills
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Theresa Fröhlich
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Alexander von Kriegsheim
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | | | - Sander Granneman
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
26
|
Sy BM, Tree JJ. The Small RNA CyaR Activates Translation of the Outer Membrane Haem Receptor chuA in Enterohemorrhagic Escherichia coli. Front Microbiol 2022; 13:821196. [PMID: 35422774 PMCID: PMC9002310 DOI: 10.3389/fmicb.2022.821196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/10/2022] [Indexed: 12/22/2022] Open
Abstract
To sense the transition from environment to host, bacteria use a range of environmental cues to control expression of virulence genes. Iron is tightly sequestered in host tissues and in the human pathogen enterohemorrhagic Escherichia coli (EHEC) iron-limitation induces transcription of the outer membrane haem transporter encoded by chuAS. ChuA expression is post-transcriptionally activated at 37°C by a FourU RNA thermometer ensuring that the haem receptor is only expressed under low iron, high temperature conditions that indicate the host. Here we demonstrate that expression of chuA is also independently regulated by the cAMP-responsive small RNA (sRNA) CyaR and transcriptional terminator Rho. These results indicate that chuAS expression is regulated at the transcription initiation, transcript elongation, and translational level. We speculate that additional sensing of the gluconeogenic environment allows further precision in determining when EHEC is at the gastrointestinal epithelium of the host. With previous studies, it appears that the chuAS transcript is controlled by eight regulatory inputs that control expression through six different transcriptional and post-transcriptional mechanisms. The results highlight the ability of regulatory sRNAs to integrate multiple environmental signals into a layered hierarchy of signal input.
Collapse
Affiliation(s)
- Brandon M Sy
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Jai J Tree
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
27
|
The Role and Targets of the RNA-Binding Protein ProQ in the Gram-Negative Bacterial Pathogen Pasteurella multocida. J Bacteriol 2022; 204:e0059221. [PMID: 35323048 DOI: 10.1128/jb.00592-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Gram-negative pathogen Pasteurella multocida is the causative agent of many important animal diseases. While a number of P. multocida virulence factors have been identified, very little is known about how gene expression and protein production is regulated in this organism. One mechanism by which bacteria regulate transcript abundance and protein production is riboregulation, which involves the interaction of a small RNA (sRNA) with a target mRNA to alter transcript stability and/or translational efficiency. This interaction often requires stabilization by an RNA-binding protein such as ProQ or Hfq. In Escherichia coli and a small number of other species, ProQ has been shown to play a critical role in stabilizing sRNA-mRNA interactions and preferentially binds to the 3' stem-loop regions of the mRNA transcripts, characteristic of intrinsic transcriptional terminators. The aim of this study was to determine the role of ProQ in regulating P. multocida transcript abundance and identify the RNA targets to which it binds. We assessed differentially expressed transcripts in a proQ mutant and identified sites of direct ProQ-RNA interaction using in vivo UV-cross-linking and analysis of cDNA (CRAC). These analyses demonstrated that ProQ binds to, and stabilizes, ProQ-dependent sRNAs and transfer RNAs in P. multocida via adenosine-enriched, highly structured sequences. The binding of ProQ to two RNA molecules was characterized, and these analyses showed that ProQ bound within the coding sequence of the transcript PmVP161_1121, encoding an uncharacterized protein, and within the 3' region of the putative sRNA Prrc13. IMPORTANCE Regulation in P. multocida involving the RNA-binding protein Hfq is required for hyaluronic acid capsule production and virulence. This study further expands our understanding of riboregulation by examining the role of a second RNA-binding protein, ProQ, in transcript regulation and abundance in P. multocida.
Collapse
|
28
|
Jiang L, Yang W, Jiang X, Yao T, Wang L, Yang B. Virulence-related O islands in enterohemorrhagic Escherichia coli O157:H7. Gut Microbes 2022; 13:1992237. [PMID: 34711138 PMCID: PMC8565820 DOI: 10.1080/19490976.2021.1992237] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a principally foodborne pathogen linked to serious diseases, including bloody diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome. Comparative genomics analysis revealed that EHEC O157 contains 177 unique genomic islands, termed O islands, compared with the nonpathogenic E. coli K-12 laboratory strain. These O islands contribute largely to the pathogenicity of EHEC O157:H7 by providing numerous virulence factors, effectors, virulence regulatory proteins, and virulence regulatory sRNAs. The present review aimed to provide a comprehensive understanding of the research progress on the function of O islands, especially focusing on virulence-related O islands.
Collapse
Affiliation(s)
- Lingyan Jiang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
| | - Wen Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
| | - Xinlei Jiang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, P. R. China
| | - Ting Yao
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
| | - Lu Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
| | - Bin Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China,CONTACT Bin Yang TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin300457, P. R. China
| |
Collapse
|
29
|
Matera G, Altuvia Y, Gerovac M, El Mouali Y, Margalit H, Vogel J. Global RNA interactome of Salmonella discovers a 5' UTR sponge for the MicF small RNA that connects membrane permeability to transport capacity. Mol Cell 2022; 82:629-644.e4. [PMID: 35063132 DOI: 10.1016/j.molcel.2021.12.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 10/04/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022]
Abstract
The envelope of Gram-negative bacteria is a vital barrier that must balance protection and nutrient uptake. Small RNAs are crucial regulators of the envelope composition and function. Here, using RIL-seq to capture the Hfq-mediated RNA-RNA interactome in Salmonella enterica, we discover envelope-related riboregulators, including OppX. We show that OppX acts as an RNA sponge of MicF sRNA, a prototypical porin repressor. OppX originates from the 5' UTR of oppABCDF, encoding the major inner-membrane oligopeptide transporter, and sequesters MicF's seed region to derepress the synthesis of the porin OmpF. Intriguingly, OppX operates as a true sponge, storing MicF in an inactive complex without affecting its levels or stability. Conservation of the opp-OppX-MicF-ompF axis in related bacteria suggests that it serves an important mechanism, adjusting envelope porosity to specific transport capacity. These data also highlight the resource value of this Salmonella RNA interactome, which will aid in unraveling RNA-centric regulation in enteric pathogens.
Collapse
Affiliation(s)
- Gianluca Matera
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, D-97080 Würzburg, Germany
| | - Yael Altuvia
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Milan Gerovac
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, D-97080 Würzburg, Germany
| | - Youssef El Mouali
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), D-97080 Würzburg, Germany
| | - Hanah Margalit
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Jörg Vogel
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, D-97080 Würzburg, Germany; Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), D-97080 Würzburg, Germany.
| |
Collapse
|
30
|
Clostridioides difficile - phage relationship the RNA way. Curr Opin Microbiol 2021; 66:1-10. [PMID: 34922145 DOI: 10.1016/j.mib.2021.11.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/06/2021] [Accepted: 11/28/2021] [Indexed: 12/17/2022]
Abstract
Clostridioides difficile (formerly Clostridium difficile)-associated diarrhea is currently the most frequently occurring nosocomial diarrhea worldwide. During its infection cycle this pathogen needs to survive in phage-rich gut communities. Recent data strongly suggest that regulatory RNAs control gene expression in C. difficile and many of these RNAs appear to modulate C. difficile-phage interactions. Of the 200 regulatory RNAs identified by deep sequencing and targeted approaches, many function as antitoxins within type I toxin-antitoxin modules and CRISPR RNAs for anti-phage defenses. In this review, we discuss recent insights into the role of RNAs in modulating interactions between C. difficile and phages in light of intriguing data in other prokaryotes.
Collapse
|
31
|
El Mouali Y, Ponath F, Scharrer V, Wenner N, Hinton JCD, Vogel J. Scanning mutagenesis of RNA-binding protein ProQ reveals a quality control role for the Lon protease. RNA (NEW YORK, N.Y.) 2021; 27:1512-1527. [PMID: 34497069 PMCID: PMC8594473 DOI: 10.1261/rna.078954.121] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 08/24/2021] [Indexed: 05/25/2023]
Abstract
The FinO-domain protein ProQ belongs to a widespread family of RNA-binding proteins (RBPs) involved in gene regulation in bacterial chromosomes and mobile elements. While the cellular RNA targets of ProQ have been established in diverse bacteria, the functionally crucial ProQ residues remain to be identified under physiological conditions. Following our discovery that ProQ deficiency alleviates growth suppression of Salmonella with succinate as the sole carbon source, an experimental evolution approach was devised to exploit this phenotype. By coupling mutational scanning with loss-of-function selection, we identified multiple ProQ residues in both the amino-terminal FinO domain and the variable carboxy-terminal region that are required for ProQ activity. Two carboxy-terminal mutations abrogated ProQ function and mildly impaired binding of a model RNA target. In contrast, several mutations in the FinO domain rendered ProQ both functionally inactive and unable to interact with target RNA in vivo. Alteration of the FinO domain stimulated the rapid turnover of ProQ by Lon-mediated proteolysis, suggesting a quality control mechanism that prevents the accumulation of nonfunctional ProQ molecules. We extend this observation to Hfq, the other major sRNA chaperone of enteric bacteria. The Hfq Y55A mutant protein, defective in RNA-binding and oligomerization, proved to be labile and susceptible to degradation by Lon. Taken together, our findings connect the major AAA+ family protease Lon with RNA-dependent quality control of Hfq and ProQ, the two major sRNA chaperones of Gram-negative bacteria.
Collapse
Affiliation(s)
- Youssef El Mouali
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, D-97080 Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), D-97080 Würzburg, Germany
| | - Falk Ponath
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), D-97080 Würzburg, Germany
| | - Vinzent Scharrer
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, D-97080 Würzburg, Germany
| | - Nicolas Wenner
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, L7 3EA Liverpool, United Kingdom
| | - Jay C D Hinton
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, L7 3EA Liverpool, United Kingdom
| | - Jörg Vogel
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, D-97080 Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), D-97080 Würzburg, Germany
| |
Collapse
|
32
|
Rogovski P, Cadamuro RD, da Silva R, de Souza EB, Bonatto C, Viancelli A, Michelon W, Elmahdy EM, Treichel H, Rodríguez-Lázaro D, Fongaro G. Uses of Bacteriophages as Bacterial Control Tools and Environmental Safety Indicators. Front Microbiol 2021; 12:793135. [PMID: 34917066 PMCID: PMC8670004 DOI: 10.3389/fmicb.2021.793135] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/11/2021] [Indexed: 11/19/2022] Open
Abstract
Bacteriophages are bacterial-specific viruses and the most abundant biological form on Earth. Each bacterial species possesses one or multiple bacteriophages and the specificity of infection makes them a promising alternative for bacterial control and environmental safety, as a biotechnological tool against pathogenic bacteria, including those resistant to antibiotics. This application can be either directly into foods and food-related environments as biocontrol agents of biofilm formation. In addition, bacteriophages are used for microbial source-tracking and as fecal indicators. The present review will focus on the uses of bacteriophages like bacterial control tools, environmental safety indicators as well as on their contribution to bacterial control in human, animal, and environmental health.
Collapse
Affiliation(s)
- Paula Rogovski
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Rafael Dorighello Cadamuro
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Raphael da Silva
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Estêvão Brasiliense de Souza
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Charline Bonatto
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
- Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul (UFFS), Erechim, Brazil
| | | | | | - Elmahdy M. Elmahdy
- Laboratory of Environmental Virology, Environmental Research Division, Department of Water Pollution Research, National Research Centre, Giza, Egypt
| | - Helen Treichel
- Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul (UFFS), Erechim, Brazil
| | - David Rodríguez-Lázaro
- Division of Microbiology, Department of Biotechnology and Food Science, Universidad de Burgos, Burgos, Spain
- Centre for Emerging Pathogens and Global Health, Universidad de Burgos, Burgos, Spain
| | - Gislaine Fongaro
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
33
|
Svensson SL, Sharma CM. RNase III-mediated processing of a trans-acting bacterial sRNA and its cis-encoded antagonist. eLife 2021; 10:69064. [PMID: 34843430 PMCID: PMC8687705 DOI: 10.7554/elife.69064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 11/28/2021] [Indexed: 12/27/2022] Open
Abstract
Bacterial small RNAs (sRNAs) are important post-transcriptional regulators in stress responses and virulence. They can be derived from an expanding list of genomic contexts, such as processing from parental transcripts by RNase E. The role of RNase III in sRNA biogenesis is less well understood despite its well-known roles in rRNA processing, RNA decay, and cleavage of sRNA-mRNA duplexes. Here, we show that RNase III processes a pair of cis-encoded sRNAs (CJnc190 and CJnc180) of the food-borne pathogen Campylobacter jejuni. While CJnc180 processing by RNase III requires CJnc190, RNase III processes CJnc190 independent of CJnc180 via cleavage of an intramolecular duplex. We also show that CJnc190 directly represses translation of the colonization factor PtmG by targeting a G-rich ribosome-binding site, and uncover that CJnc180 is a cis-acting antagonist of CJnc190, indirectly affecting ptmG regulation. Our study highlights a role for RNase III in sRNA biogenesis and adds cis-encoded RNAs to the expanding diversity of transcripts that can antagonize bacterial sRNAs.
Collapse
Affiliation(s)
- Sarah Lauren Svensson
- Department of Molecular Infection Biology II, Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Cynthia Mira Sharma
- Department of Molecular Infection Biology II, Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
34
|
Svensson SL, Sharma CM. Small RNAs that target G-rich sequences are generated by diverse biogenesis pathways in Epsilonproteobacteria. Mol Microbiol 2021; 117:215-233. [PMID: 34818434 DOI: 10.1111/mmi.14850] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 11/30/2022]
Abstract
Bacterial small RNAs (sRNAs) are widespread post-transcriptional regulators controlling bacterial stress responses and virulence. Nevertheless, little is known about how they arise and evolve. Homologues can be difficult to identify beyond the strain level using sequence-based approaches, and similar functionalities can arise by convergent evolution. Here, we found that the virulence-associated CJnc190 sRNA of the foodborne pathogen Campylobacter jejuni resembles the RepG sRNA from the gastric pathogen Helicobacter pylori. However, while both sRNAs bind G-rich sites in their target mRNAs using a C/U-rich loop, they largely differ in their biogenesis. RepG is transcribed from a stand-alone gene and does not require processing, whereas CJnc190 is transcribed from two promoters as precursors that are processed by RNase III and also has a cis-encoded antagonist, CJnc180. By comparing CJnc190 homologues in diverse Campylobacter species, we show that RNase III-dependent processing of CJnc190 appears to be a conserved feature even outside of C. jejuni. We also demonstrate the CJnc180 antisense partner is expressed in C. coli, yet here might be derived from the 3'UTR of the upstream flagella-related gene. Our analysis of G-tract targeting sRNAs in Epsilonproteobacteria demonstrates that similar sRNAs can have markedly different biogenesis pathways.
Collapse
Affiliation(s)
- Sarah L Svensson
- Department of Molecular Infection Biology II, Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Bavaria, 97080, Germany
| | - Cynthia M Sharma
- Department of Molecular Infection Biology II, Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Bavaria, 97080, Germany
| |
Collapse
|
35
|
Małecka EM, Sobańska D, Olejniczak M. Bacterial Chaperone Protein Hfq Facilitates the Annealing of Sponge RNAs to Small Regulatory RNAs. J Mol Biol 2021; 433:167291. [PMID: 34624296 DOI: 10.1016/j.jmb.2021.167291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/15/2021] [Accepted: 09/28/2021] [Indexed: 01/08/2023]
Abstract
Bacterial small RNAs (sRNAs) in association with the chaperone protein Hfq regulate the expression of many target mRNAs. Since sRNAs' action is crucial to engendering a response to changing environmental conditions, their activity needs to be regulated. One such mechanism occurs at the post-transcriptional level and involves sponge RNAs, which sequester sRNAs affecting their regulatory output. Both types of RNAs were identified on Hfq, but it is not known how Hfq interacts with RNA sponges and stimulates their base-pairing with sRNAs. Here, we used biochemical methods to demonstrate that sponge RNAs resemble sRNAs by their structure and their modes of Hfq binding. Hfq facilitates the annealing of AgvB and 3'ETSleuZ sponge RNAs to targeted sRNAs: GcvB and RybB, respectively, and each surface of the protein plays a particular role in the process. Moreover, we found that the efficiency of sponge RNA interactions with sRNAs can be improved; therefore, we propose that natural RNA sponges might not sequester sRNAs optimally.
Collapse
Affiliation(s)
- Ewelina M Małecka
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Daria Sobańska
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland. https://twitter.com/SobanskaD
| | - Mikołaj Olejniczak
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
| |
Collapse
|
36
|
Fitzgerald SF, Lupolova N, Shaaban S, Dallman TJ, Greig D, Allison L, Tongue SC, Evans J, Henry MK, McNeilly TN, Bono JL, Gally DL. Genome structural variation in Escherichia coli O157:H7. Microb Genom 2021; 7. [PMID: 34751643 PMCID: PMC8743559 DOI: 10.1099/mgen.0.000682] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The human zoonotic pathogen Escherichia coli O157:H7 is defined by its extensive prophage repertoire including those that encode Shiga toxin, the factor responsible for inducing life-threatening pathology in humans. As well as introducing genes that can contribute to the virulence of a strain, prophage can enable the generation of large-chromosomal rearrangements (LCRs) by homologous recombination. This work examines the types and frequencies of LCRs across the major lineages of the O157:H7 serotype. We demonstrate that LCRs are a major source of genomic variation across all lineages of E. coli O157:H7 and by using both optical mapping and Oxford Nanopore long-read sequencing prove that LCRs are generated in laboratory cultures started from a single colony and that these variants can be recovered from colonized cattle. LCRs are biased towards the terminus region of the genome and are bounded by specific prophages that share large regions of sequence homology associated with the recombinational activity. RNA transcriptional profiling and phenotyping of specific structural variants indicated that important virulence phenotypes such as Shiga-toxin production, type-3 secretion and motility can be affected by LCRs. In summary, E. coli O157:H7 has acquired multiple prophage regions over time that act to continually produce structural variants of the genome. These findings raise important questions about the significance of this prophage-mediated genome contingency to enhance adaptability between environments.
Collapse
Affiliation(s)
- Stephen F Fitzgerald
- Division of Infection and Immunity, The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Nadejda Lupolova
- Division of Infection and Immunity, The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Sharif Shaaban
- Division of Infection and Immunity, The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Timothy J Dallman
- Gastrointestinal Bacterial Reference Unit, 61 Colindale Avenue, Public Health England, NW9 5EQ London, UK
| | - David Greig
- Gastrointestinal Bacterial Reference Unit, 61 Colindale Avenue, Public Health England, NW9 5EQ London, UK
| | - Lesley Allison
- Scottish E. coli O157/VTEC Reference Laboratory, Department of Laboratory Medicine, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh EH16 4SA, UK
| | - Sue C Tongue
- Epidemiology Research Unit (Inverness), Department of Veterinary and Animal Science, Northern Faculty, Scotland's Rural College (SRUC), Scotland, IV2 5NA, UK
| | - Judith Evans
- Epidemiology Research Unit (Inverness), Department of Veterinary and Animal Science, Northern Faculty, Scotland's Rural College (SRUC), Scotland, IV2 5NA, UK
| | - Madeleine K Henry
- Epidemiology Research Unit (Inverness), Department of Veterinary and Animal Science, Northern Faculty, Scotland's Rural College (SRUC), Scotland, IV2 5NA, UK
| | - Tom N McNeilly
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, EH26 OPZ, UK
| | - James L Bono
- United States Department of Agriculture, Agricultural Research Service, US Meat Animal Research Center, Clay Center, Nebraska, USA
| | - David L Gally
- Division of Infection and Immunity, The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| |
Collapse
|
37
|
Sauder AB, Kendall MM. A pathogen-specific sRNA influences enterohemorrhagic Escherichia coli fitness and virulence in part by direct interaction with the transcript encoding the ethanolamine utilization regulatory factor EutR. Nucleic Acids Res 2021; 49:10988-11004. [PMID: 34591974 PMCID: PMC8565329 DOI: 10.1093/nar/gkab863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 01/07/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 relies on sRNAs to coordinate expression of metabolic and virulence factors to colonize the host. Here, we focus on the sRNA, named MavR (metabolism and virulence regulator), that is conserved among pathogenic Enterobacteriaceae. MavR is constitutively expressed under in vitro conditions that promote EHEC virulence gene expression. Using MS2-affinity purification coupled with RNA sequencing, the eutR transcript was identified as a putative target of MavR. EutR is a transcription factor that promotes expression of genes required for ethanolamine metabolism as well as virulence factors important for host colonization. MavR binds to the eutR coding sequence to protect the eutR transcript from RNase E-mediated degradation. Ultimately, MavR promotes EutR expression and in turn ethanolamine utilization and ethanolamine-dependent growth. RNAseq analyses revealed that MavR also affected expression of genes important for other metabolic pathways, motility, oxidative stress and attaching and effacing lesion formation, which contribute to EHEC colonization of the gastrointestinal tract. In support of the idea that MavR-dependent gene expression affects fitness during infection, deletion of mavR resulted in significant (∼10- to 100-fold) attenuation in colonization of the mammalian intestine. Altogether, these studies reveal an important, extensive, and robust phenotype for a bacterial sRNA in host-pathogen interactions.
Collapse
Affiliation(s)
- Amber B Sauder
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Melissa M Kendall
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| |
Collapse
|
38
|
Pearl Mizrahi S, Elbaz N, Argaman L, Altuvia Y, Katsowich N, Socol Y, Bar A, Rosenshine I, Margalit H. The impact of Hfq-mediated sRNA-mRNA interactome on the virulence of enteropathogenic Escherichia coli. SCIENCE ADVANCES 2021; 7:eabi8228. [PMID: 34705501 PMCID: PMC8550237 DOI: 10.1126/sciadv.abi8228] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Small RNAs (sRNAs) exert their regulation posttranscriptionally by base pairing with their target mRNAs, often in association with the RNA chaperone protein Hfq. Here, integrating RNA-seq–based technologies and bioinformatics, we deciphered the Hfq-mediated sRNA-target interactome of enteropathogenic Escherichia coli (EPEC). The emerging network comprises hundreds of sRNA-mRNA pairs, including mRNAs of virulence-associated genes interacting with known sRNAs encoded within the core genome, as well as with newly found sRNAs encoded within pathogenicity islands. Some of the sRNAs affect multiple virulence genes, suggesting they function as hubs of virulence control. We further analyzed one such sRNA hub, MgrR, and one of its targets identified here, the major virulence-associated chaperon, cesT. We show that MgrR adjusts the level of EPEC cytotoxicity via regulation of CesT expression. Our results reveal an elaborate sRNA-mRNA interactome controlling the pathogenicity of EPEC and reinforce a role for sRNAs in the control of pathogen-host interaction.
Collapse
Affiliation(s)
- Sivan Pearl Mizrahi
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Netanel Elbaz
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Liron Argaman
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Yael Altuvia
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Naama Katsowich
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Yaakov Socol
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Amir Bar
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Ilan Rosenshine
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Hanah Margalit
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| |
Collapse
|
39
|
Smallets S, Kendall MM. Post-transcriptional regulation in attaching and effacing pathogens: integration of environmental cues and the impact on gene expression and host interactions. Curr Opin Microbiol 2021; 63:238-243. [PMID: 34450388 DOI: 10.1016/j.mib.2021.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/04/2021] [Indexed: 11/25/2022]
Abstract
To establish infection, enteric pathogens integrate environmental cues to navigate the gastrointestinal tract and precisely control expression of virulence determinants. Emerging data indicate that post-transcriptional and post-translational gene regulation plays a key role in virulence regulation and pathogen adaptation to the host environment. Here, we highlight recent studies that reveal how physiologically relevant signals initiate post-transcriptional and post-translational regulatory circuits and the impact on virulence gene expression in the attaching and effacing pathogens, enteropathogenic Escherichia coli, enterohemorrhagic E. coli O157:H7, and Citrobacter rodentium.
Collapse
Affiliation(s)
- Sarah Smallets
- Department of Biology, University of Virginia, 485 McCormick Rd., Charlottesville, VA, 22904, USA
| | - Melissa M Kendall
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, 1340 Jefferson Park Ave., Charlottesville, VA, 22908, USA.
| |
Collapse
|
40
|
Felden B, Augagneur Y. Diversity and Versatility in Small RNA-Mediated Regulation in Bacterial Pathogens. Front Microbiol 2021; 12:719977. [PMID: 34447363 PMCID: PMC8383071 DOI: 10.3389/fmicb.2021.719977] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/20/2021] [Indexed: 11/13/2022] Open
Abstract
Bacterial gene expression is under the control of a large set of molecules acting at multiple levels. In addition to the transcription factors (TFs) already known to be involved in global regulation of gene expression, small regulatory RNAs (sRNAs) are emerging as major players in gene regulatory networks, where they allow environmental adaptation and fitness. Developments in high-throughput screening have enabled their detection in the entire bacterial kingdom. These sRNAs influence a plethora of biological processes, including but not limited to outer membrane synthesis, metabolism, TF regulation, transcription termination, virulence, and antibiotic resistance and persistence. Almost always noncoding, they regulate target genes at the post-transcriptional level, usually through base-pair interactions with mRNAs, alone or with the help of dedicated chaperones. There is growing evidence that sRNA-mediated mechanisms of actions are far more diverse than initially thought, and that they go beyond the so-called cis- and trans-encoded classifications. These molecules can be derived and processed from 5' untranslated regions (UTRs), coding or non-coding sequences, and even from 3' UTRs. They usually act within the bacterial cytoplasm, but recent studies showed sRNAs in extracellular vesicles, where they influence host cell interactions. In this review, we highlight the various functions of sRNAs in bacterial pathogens, and focus on the increasing examples of widely diverse regulatory mechanisms that might compel us to reconsider what constitute the sRNA.
Collapse
Affiliation(s)
- Brice Felden
- Inserm, Bacterial Regulatory RNAs and Medicine (BRM) - UMR_S 1230, Rennes, France
| | - Yoann Augagneur
- Inserm, Bacterial Regulatory RNAs and Medicine (BRM) - UMR_S 1230, Rennes, France
| |
Collapse
|
41
|
Sudo N, Lee K, Sekine Y, Ohnishi M, Iyoda S. RNA-binding protein Hfq downregulates locus of enterocyte effacement-encoded regulators independent of small regulatory RNA in enterohemorrhagic Escherichia coli. Mol Microbiol 2021; 117:86-101. [PMID: 34411346 DOI: 10.1111/mmi.14799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 11/25/2022]
Abstract
Enterohemorrhagic Escherichia coli (EHEC) causes severe human diseases worldwide. The type 3 secretion system and effector proteins are essential for EHEC infection, and are encoded by the locus of enterocyte effacement (LEE). RNA-binding protein Hfq is essential for small regulatory RNA (sRNA)-mediated regulation at a posttranscriptional level and full virulence of many pathogenic bacteria. Although two early studies indicated that Hfq represses LEE expression by posttranscriptionally controlling the expression of genes grlRA and/or ler, both of which encode LEE regulators mediating a positive regulatory loop, the detailed molecular mechanism and biological significance remain unclear. Herein, we show that LEE overexpression was caused by defective RNA-binding activity of the Hfq distal face, which posttranscriptionally represses grlA and ler expression. In vitro analyses revealed that the Hfq distal face directly binds near the translational initiation site of grlA and ler mRNAs, and inhibits their translation. Taken together, we conclude that Hfq inhibits grlA and ler translation by binding their mRNAs through the distal face in an sRNA-independent manner. Additionally, we show that Hfq-mediated repression of LEE is critical for normal EHEC growth because all suppressor mutations that restored the growth defect in the hfq mutant abolished hfq deletion-induced overexpression of LEE.
Collapse
Affiliation(s)
- Naoki Sudo
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kenichi Lee
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yasuhiko Sekine
- Department of Life Science, College of Science, Rikkyo University, Tokyo, Japan
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sunao Iyoda
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
42
|
Grützner J, Remes B, Eisenhardt KMH, Scheller D, Kretz J, Madhugiri R, McIntosh M, Klug G. sRNA-mediated RNA processing regulates bacterial cell division. Nucleic Acids Res 2021; 49:7035-7052. [PMID: 34125915 PMCID: PMC8266604 DOI: 10.1093/nar/gkab491] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/17/2021] [Accepted: 05/28/2021] [Indexed: 01/16/2023] Open
Abstract
Tight control of cell division is essential for survival of most organisms. For prokaryotes, the regulatory mechanisms involved in the control of cell division are mostly unknown. We show that the small non-coding sRNA StsR has an important role in controlling cell division and growth in the alpha-proteobacterium Rhodobacter sphaeroides. StsR is strongly induced by stress conditions and in stationary phase by the alternative sigma factors RpoHI/HII, thereby providing a regulatory link between cell division and environmental cues. Compared to the wild type, a mutant lacking StsR enters stationary phase later and more rapidly resumes growth after stationary phase. A target of StsR is UpsM, the most abundant sRNA in the exponential phase. It is derived from partial transcriptional termination within the 5' untranslated region of the mRNA of the division and cell wall (dcw) gene cluster. StsR binds to UpsM as well as to the 5' UTR of the dcw mRNA and the sRNA-sRNA and sRNA-mRNA interactions lead to a conformational change that triggers cleavage by the ribonuclease RNase E, affecting the level of dcw mRNAs and limiting growth. These findings provide interesting new insights into the role of sRNA-mediated regulation of cell division during the adaptation to environmental changes.
Collapse
Affiliation(s)
- Julian Grützner
- Institute of Microbiology and Molecular Biology, University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | - Bernhard Remes
- Institute of Microbiology and Molecular Biology, University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | - Katrin M H Eisenhardt
- Institute of Microbiology and Molecular Biology, University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | - Daniel Scheller
- Institute of Microbiology and Molecular Biology, University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | - Jonas Kretz
- Institute of Microbiology and Molecular Biology, University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | - Ramakanth Madhugiri
- Institute of Medical Virology, University of Giessen, Schubertstr. 81, D-35392 Giessen, Germany
| | - Matthew McIntosh
- Institute of Microbiology and Molecular Biology, University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | - Gabriele Klug
- Institute of Microbiology and Molecular Biology, University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| |
Collapse
|
43
|
A fluorescence-based genetic screen reveals diverse mechanisms silencing small RNA signaling in E. coli. Proc Natl Acad Sci U S A 2021; 118:2106964118. [PMID: 34210798 DOI: 10.1073/pnas.2106964118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
As key players of gene regulation in many bacteria, small regulatory RNAs (sRNAs) associated with the RNA chaperone Hfq shape numerous phenotypic traits, including metabolism, stress response and adaptation, as well as virulence. sRNAs can alter target messenger RNA (mRNA) translation and stability via base pairing. sRNA synthesis is generally under tight transcriptional regulation, but other levels of regulation of sRNA signaling are less well understood. Here we used a fluorescence-based functional screen to identify regulators that can quench sRNA signaling of the iron-responsive sRNA RyhB in Escherichia coli The identified regulators fell into two classes, general regulators (affecting signaling by many sRNAs) and RyhB-specific regulators; we focused on the specific ones here. General regulators include three Hfq-interacting sRNAs, CyaR, ChiX, and McaS, previously found to act through Hfq competition, RNase T, a 3' to 5' exonuclease not previously implicated in sRNA degradation, and YhbS, a putative GCN5-related N-acetyltransferase (GNAT). Two specific regulators were identified. AspX, a 3'end-derived small RNA, specifically represses RyhB signaling via an RNA sponging mechanism. YicC, a previously uncharacterized but widely conserved protein, triggers rapid RyhB degradation via collaboration with the exoribonuclease PNPase. These findings greatly expand our knowledge of regulation of bacterial sRNA signaling and suggest complex regulatory networks for controlling iron homeostasis in bacteria. The fluorescence-based genetic screen system described here is a powerful tool expected to accelerate the discovery of novel regulators of sRNA signaling in many bacteria.
Collapse
|
44
|
Boichis E, Sigal N, Borovok I, Herskovits AA. A Metzincin and TIMP-Like Protein Pair of a Phage Origin Sensitize Listeria monocytogenes to Phage Lysins and Other Cell Wall Targeting Agents. Microorganisms 2021; 9:1323. [PMID: 34207021 PMCID: PMC8235301 DOI: 10.3390/microorganisms9061323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 11/17/2022] Open
Abstract
Infection of mammalian cells by Listeria monocytogenes (Lm) was shown to be facilitated by its phage elements. In a search for additional phage remnants that play a role in Lm's lifecycle, we identified a conserved locus containing two XRE regulators and a pair of genes encoding a secreted metzincin protease and a lipoprotein structurally similar to a TIMP-family metzincin inhibitor. We found that the XRE regulators act as a classic CI/Cro regulatory switch that regulates the expression of the metzincin and TIMP-like genes under intracellular growth conditions. We established that when these genes are expressed, their products alter Lm morphology and increase its sensitivity to phage mediated lysis, thereby enhancing virion release. Expression of these proteins also sensitized the bacteria to cell wall targeting compounds, implying that they modulate the cell wall structure. Our data indicate that these effects are mediated by the cleavage of the TIMP-like protein by the metzincin, and its subsequent release to the extracellular milieu. While the importance of this locus to Lm pathogenicity remains unclear, the observation that this phage-associated protein pair act upon the bacterial cell wall may hold promise in the field of antibiotic potentiation to combat antibiotic resistant bacterial pathogens.
Collapse
Affiliation(s)
| | | | | | - Anat A. Herskovits
- The Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel; (E.B.); (N.S.); (I.B.)
| |
Collapse
|
45
|
Bar A, Argaman L, Altuvia Y, Margalit H. Prediction of Novel Bacterial Small RNAs From RIL-Seq RNA-RNA Interaction Data. Front Microbiol 2021; 12:635070. [PMID: 34093460 PMCID: PMC8175672 DOI: 10.3389/fmicb.2021.635070] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 04/06/2021] [Indexed: 12/27/2022] Open
Abstract
The genomic revolution and subsequent advances in large-scale genomic and transcriptomic technologies highlighted hidden genomic treasures. Among them stand out non-coding small RNAs (sRNAs), shown to play important roles in post-transcriptional regulation of gene expression in both pro- and eukaryotes. Bacterial sRNA-encoding genes were initially identified in intergenic regions, but recent evidence suggest that they can be encoded within other, well-defined, genomic elements. This notion was strongly supported by data generated by RIL-seq, a RNA-seq-based methodology we recently developed for deciphering chaperon-dependent sRNA-target networks in bacteria. Applying RIL-seq to Hfq-bound RNAs in Escherichia coli, we found that ∼64% of the detected RNA pairs involved known sRNAs, suggesting that yet unknown sRNAs may be included in the ∼36% remaining pairs. To determine the latter, we first tested and refined a set of quantitative features derived from RIL-seq data, which distinguish between Hfq-dependent sRNAs and “other RNAs”. We then incorporated these features in a machine learning-based algorithm that predicts novel sRNAs from RIL-seq data, and identified high-scoring candidates encoded in various genomic regions, mostly intergenic regions and 3′ untranslated regions, but also 5′ untranslated regions and coding sequences. Several candidates were further tested and verified by northern blot analysis as Hfq-dependent sRNAs. Our study reinforces the emerging concept that sRNAs are encoded within various genomic elements, and provides a computational framework for the detection of additional sRNAs in Hfq RIL-seq data of E. coli grown under different conditions and of other bacteria manifesting Hfq-mediated sRNA-target interactions.
Collapse
Affiliation(s)
- Amir Bar
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Liron Argaman
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yael Altuvia
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hanah Margalit
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
46
|
Małecka EM, Woodson SA. Stepwise sRNA targeting of structured bacterial mRNAs leads to abortive annealing. Mol Cell 2021; 81:1988-1999.e4. [PMID: 33705712 PMCID: PMC8106647 DOI: 10.1016/j.molcel.2021.02.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/08/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022]
Abstract
Bacterial small RNAs (sRNAs) regulate the expression of hundreds of transcripts via base pairing mediated by the Hfq chaperone protein. sRNAs and the mRNA sites they target are heterogeneous in sequence, length, and secondary structure. To understand how Hfq can flexibly match diverse sRNA and mRNA pairs, we developed a single-molecule Förster resonance energy transfer (smFRET) platform that visualizes the target search on timescales relevant in cells. Here we show that unfolding of target secondary structure on Hfq creates a kinetic energy barrier that determines whether target recognition succeeds or aborts before a stable anti-sense complex is achieved. Premature dissociation of the sRNA can be alleviated by strong RNA-Hfq interactions, explaining why sRNAs have different target recognition profiles. We propose that the diverse sequences and structures of Hfq substrates create an additional layer of information that tunes the efficiency and selectivity of non-coding RNA regulation in bacteria.
Collapse
Affiliation(s)
- Ewelina M Małecka
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sarah A Woodson
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
47
|
Sinha AK, Winther KS. The RelA hydrolase domain acts as a molecular switch for (p)ppGpp synthesis. Commun Biol 2021; 4:434. [PMID: 33790389 PMCID: PMC8012599 DOI: 10.1038/s42003-021-01963-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 03/04/2021] [Indexed: 11/24/2022] Open
Abstract
Bacteria synthesize guanosine tetra- and penta phosphate (commonly referred to as (p)ppGpp) in response to environmental stresses. (p)ppGpp reprograms cell physiology and is essential for stress survival, virulence and antibiotic tolerance. Proteins of the RSH superfamily (RelA/SpoT Homologues) are ubiquitously distributed and hydrolyze or synthesize (p)ppGpp. Structural studies have suggested that the shift between hydrolysis and synthesis is governed by conformational antagonism between the two active sites in RSHs. RelA proteins of γ-proteobacteria exclusively synthesize (p)ppGpp and encode an inactive pseudo-hydrolase domain. Escherichia coli RelA synthesizes (p)ppGpp in response to amino acid starvation with cognate uncharged tRNA at the ribosomal A-site, however, mechanistic details to the regulation of the enzymatic activity remain elusive. Here, we show a role of the enzymatically inactive hydrolase domain in modulating the activity of the synthetase domain of RelA. Using mutagenesis screening and functional studies, we identify a loop region (residues 114–130) in the hydrolase domain, which controls the synthetase activity. We show that a synthetase-inactive loop mutant of RelA is not affected for tRNA binding, but binds the ribosome less efficiently than wild type RelA. Our data support the model that the hydrolase domain acts as a molecular switch to regulate the synthetase activity. Sinha and Winther show that the Escherichia coli RelA inactive hydrolase domain modulates the activity of the synthetase domain. RelA produces (p)ppGpp in γ-proteobacteria; using mutagenesis screening and functional studies, the authors demonstrate that the H loop region in the RelA hydrolase domain acts as a molecular switch to regulate the synthetase domain activity of the enzyme.
Collapse
Affiliation(s)
- Anurag Kumar Sinha
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.,National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | |
Collapse
|
48
|
Rodríguez-Rubio L, Haarmann N, Schwidder M, Muniesa M, Schmidt H. Bacteriophages of Shiga Toxin-Producing Escherichia coli and Their Contribution to Pathogenicity. Pathogens 2021; 10:404. [PMID: 33805526 PMCID: PMC8065619 DOI: 10.3390/pathogens10040404] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 12/25/2022] Open
Abstract
Shiga toxins (Stx) of Shiga toxin-producing Escherichia coli (STEC) are generally encoded in the genome of lambdoid bacteriophages, which spend the most time of their life cycle integrated as prophages in specific sites of the bacterial chromosome. Upon spontaneous induction or induction by chemical or physical stimuli, the stx genes are co-transcribed together with the late phase genes of the prophages. After being assembled in the cytoplasm, and after host cell lysis, mature bacteriophage particles are released into the environment, together with Stx. As members of the group of lambdoid phages, Stx phages share many genetic features with the archetypical temperate phage Lambda, but are heterogeneous in their DNA sequences due to frequent recombination events. In addition to Stx phages, the genome of pathogenic STEC bacteria may contain numerous prophages, which are either cryptic or functional. These prophages may carry foreign genes, some of them related to virulence, besides those necessary for the phage life cycle. Since the production of one or more Stx is considered the major pathogenicity factor of STEC, we aim to highlight the new insights on the contribution of Stx phages and other STEC phages to pathogenicity.
Collapse
Affiliation(s)
- Lorena Rodríguez-Rubio
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Diagonal 643, 08028 Barcelona, Spain; (L.R.-R.); (M.M.)
| | - Nadja Haarmann
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, University of Hohenheim, 70599 Stuttgart, Germany; (N.H.); (M.S.)
| | - Maike Schwidder
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, University of Hohenheim, 70599 Stuttgart, Germany; (N.H.); (M.S.)
| | - Maite Muniesa
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Diagonal 643, 08028 Barcelona, Spain; (L.R.-R.); (M.M.)
| | - Herbert Schmidt
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, University of Hohenheim, 70599 Stuttgart, Germany; (N.H.); (M.S.)
| |
Collapse
|
49
|
Faigenbaum-Romm R, Reich A, Gatt YE, Barsheshet M, Argaman L, Margalit H. Hierarchy in Hfq Chaperon Occupancy of Small RNA Targets Plays a Major Role in Their Regulation. Cell Rep 2021; 30:3127-3138.e6. [PMID: 32130912 PMCID: PMC7059120 DOI: 10.1016/j.celrep.2020.02.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 01/15/2020] [Accepted: 02/04/2020] [Indexed: 11/28/2022] Open
Abstract
Bacterial small RNAs (sRNAs) are posttranscriptional regulators of gene expression that base pair with complementary sequences on target mRNAs, often in association with the chaperone Hfq. Here, using experimentally identified sRNA-target pairs, along with gene expression measurements, we assess basic principles of regulation by sRNAs. We show that the sRNA sequence dictates the target repertoire, as point mutations in the sRNA shift the target set correspondingly. We distinguish two subsets of targets: targets showing changes in expression levels under overexpression of their sRNA regulator and unaffected targets that interact more sporadically with the sRNA. These differences among targets are associated with their Hfq occupancy, rather than with the sRNA-target base-pairing potential. Our results suggest that competition among targets over Hfq binding plays a major role in the regulatory outcome, possibly awarding targets with higher Hfq binding efficiency an advantage in the competition over binding to the sRNA. Basic concepts of regulation by small RNAs are revealed from large-scale data Small changes in the small RNA sequence shift the target repertoire accordingly A regulatory sRNA affects the expression levels of only a subset of its targets Competition among targets over Hfq binding plays a major role in their regulation
Collapse
Affiliation(s)
- Raya Faigenbaum-Romm
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Avichai Reich
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Yair E Gatt
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Meshi Barsheshet
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Liron Argaman
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Hanah Margalit
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel.
| |
Collapse
|
50
|
Jia T, Liu B, Mu H, Qian C, Wang L, Li L, Lu G, Zhu W, Guo X, Yang B, Huang D, Feng L, Liu B. A Novel Small RNA Promotes Motility and Virulence of Enterohemorrhagic Escherichia coli O157:H7 in Response to Ammonium. mBio 2021; 12:e03605-20. [PMID: 33688013 PMCID: PMC8092317 DOI: 10.1128/mbio.03605-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/30/2021] [Indexed: 12/15/2022] Open
Abstract
Enterohemorrhagic Escherichia coli serotype O157:H7 (O157) is a critical, foodborne, human intestinal pathogen that causes severe acute hemorrhagic diarrhea, abdominal cramping, and even death. Small RNAs (sRNAs) are noncoding regulatory molecules that sense environmental changes and trigger various virulence-related signaling pathways; however, few such sRNAs have been identified in O157. Here, we report a novel sRNA, EsrF that senses high ammonium concentrations in the colon and enhances O157 pathogenicity by promoting bacterial motility and adhesion to host cells. Specifically, EsrF was found to directly interact with the 5' untranslated regions of the flagellar biosynthetic gene, flhB, mRNA and increase its abundance, thereby upregulating expression of essential flagellar genes, including flhD, flhC, fliA, and fliC, leading to elevated O157 motility and virulence. Meanwhile, an infant rabbit model of O157 infection showed that deletion of esrF and flhB significantly attenuates O157 pathogenicity. Furthermore, NtrC-the response regulator of the NtrC/B two-component system-was found to exert direct, negative regulation of esrF expression. Meanwhile, high ammonium concentrations in the colon release the inhibitory effect of NtrC on esrF, thereby enhancing its expression and subsequently promoting bacterial colonization in the host colon. Our work reveals a novel, sRNA-centered, virulence-related signaling pathway in O157 that senses high ammonium concentrations. These findings provide novel insights for future research on O157 pathogenesis and targeted treatment strategies.IMPORTANCE The process by which bacteria sense environmental cues to regulate their virulence is complex. Several studies have focused on regulating the expression of the locus of enterocyte effacement pathogenicity island in the typical gut pathogenic bacterium, O157. However, few investigations have addressed the regulation of other virulence factors in response to intestinal signals. In this study, we report our discovery of a novel O157 sRNA, EsrF, and demonstrate that it contributed to bacterial motility and virulence in vitro and in vivo through the regulation of bacterial flagellar synthesis. Furthermore, we show that high ammonium concentrations in the colon induced esrF expression to promote bacterial virulence by releasing the repression of esrF by NtrC. This study highlights the importance of sRNA in regulating the motility and pathogenicity of O157.
Collapse
Affiliation(s)
- Tianyuan Jia
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People’s Republic of China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People’s Republic of China
| | - Bin Liu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People’s Republic of China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People’s Republic of China
- Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People’s Republic of China
| | - Huiqian Mu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People’s Republic of China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People’s Republic of China
| | - Chengqian Qian
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People’s Republic of China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People’s Republic of China
| | - Lu Wang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People’s Republic of China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People’s Republic of China
| | - Linxing Li
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People’s Republic of China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People’s Republic of China
| | - Gege Lu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People’s Republic of China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People’s Republic of China
| | - Wenxuan Zhu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People’s Republic of China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People’s Republic of China
| | - Xi Guo
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People’s Republic of China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People’s Republic of China
- Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People’s Republic of China
| | - Bin Yang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People’s Republic of China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People’s Republic of China
- Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People’s Republic of China
| | - Di Huang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People’s Republic of China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People’s Republic of China
- Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People’s Republic of China
| | - Lu Feng
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People’s Republic of China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People’s Republic of China
- Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People’s Republic of China
| | - Bin Liu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People’s Republic of China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People’s Republic of China
- Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People’s Republic of China
| |
Collapse
|