1
|
Khadka S, Lukas B, Sun CX, Muralimanoharan S, Shanmugasundaram K, Khosh A, Barron L, Schenken C, Stansbury N, Schenken R, Firestein R, Dai Y, Boyer TG. Mediator kinase inhibition drives myometrial stem cell differentiation and the uterine fibroid phenotype through super-enhancer reprogramming. J Mol Med (Berl) 2025; 103:311-326. [PMID: 39904883 PMCID: PMC11880082 DOI: 10.1007/s00109-025-02517-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/12/2024] [Accepted: 01/15/2025] [Indexed: 02/06/2025]
Abstract
Uterine fibroids (UFs) are the most common non-cutaneous tumors in women worldwide. UFs arise from genetic alterations in myometrial stem cells (MM SCs) that trigger their transformation into tumor-initiating cells (UF SCs). Mutations in the RNA polymerase II Mediator subunit MED12 are dominant drivers of UFs, accounting for 70% of these clinically significant lesions. Biochemically, UF driver mutations in MED12 disrupt CDK8/19 kinase activity in Mediator, but how Mediator kinase disruption triggers MM SC transformation remains unknown. Here, we show that pharmacologic inhibition of CDK8/19 in MM SCs removes a barrier to myogenic differentiation down an altered pathway characterized by molecular phenotypes characteristic of UFs, including oncogenic growth and extracellular matrix (ECM) production. These perturbations appear to be induced by transcriptomic changes, arising in part through epigenomic alteration and super-enhancer reprogramming, that broadly recapitulate those found in MED12-mutant UFs. Altogether, these findings provide new insights concerning the biological role of CDK8/19 in MM SC biology and UF formation. KEY MESSAGES: Mediator kinase inhibition in myometrial stem cells (MM SCs) induces spontaneous differentiation. Transcriptional changes upon Mediator kinase inhibition recapitulate those of MED12 mutant uterine fibroids (UFs). Such transcriptional changes are partially mediated by super-enhancer reprogramming. Mediator kinase functions to enforce cell states and its loss induces cellular plasticity.
Collapse
Affiliation(s)
- Subash Khadka
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, TX, USA
| | - Brandon Lukas
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL, USA
| | - Claire Xin Sun
- Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | | | | | - Azad Khosh
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, TX, USA
| | - Lindsey Barron
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, TX, USA
| | - Claire Schenken
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX, USA
| | - Nicholas Stansbury
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX, USA
| | - Robert Schenken
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX, USA
| | - Ron Firestein
- Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Yang Dai
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL, USA
| | - Thomas G Boyer
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, TX, USA.
| |
Collapse
|
2
|
Liu M, Li Y, Yuan X, Rong S, Du J. Novel insights into RNA polymerase II transcription regulation: transcription factors, phase separation, and their roles in cardiovascular diseases. Biochem Cell Biol 2025; 103:1-21. [PMID: 39540550 DOI: 10.1139/bcb-2024-0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Transcription factors (TFs) are specialized proteins that bind DNA in a sequence-specific manner and modulate RNA polymerase II (Pol II) in multiple steps of the transcription process. Phase separation is a spontaneous or driven process that can form membrane-less organelles called condensates. By creating different liquid phases at active transcription sites, the formation of transcription condensates can reduce the water content of the condensate and lower the dielectric constant in biological systems, which in turn alters the structure and function of proteins and nucleic acids in the condensate. In RNA Pol II transcription, phase separation formation shortens the time at which TFs bind to target DNA sites and promotes transcriptional bursting. RNA Pol II transcription is engaged in developing several diseases, such as cardiovascular disease, by regulating different TFs and mediating the occurrence of phase separation. This review aims to summarize the advances in the molecular mechanisms of RNA Pol II transcriptional regulation, in particular the effect of TFs and phase separation. The role of RNA Pol II transcriptional regulation in cardiovascular disease will be elucidated, providing potential therapeutic targets for the management and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Mengmeng Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yingrui Li
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Xin Yuan
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 4000l0, China
| | - Shunkang Rong
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Jianlin Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
3
|
Khadka S, Lukas B, Sun CX, Muralimanoharan S, Shanmugasundaram K, Khosh A, Schenken C, Stansbury N, Schenken R, Firestein R, Dai Y, Boyer T. Mediator kinase inhibition drives myometrial stem cell differentiation and the uterine fibroid phenotype through super-enhancer reprogramming. RESEARCH SQUARE 2024:rs.3.rs-5125876. [PMID: 39764110 PMCID: PMC11702794 DOI: 10.21203/rs.3.rs-5125876/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Uterine fibroids (UFs) are the most common non-cutaneous tumors in women worldwide. UFs arise from genetic alterations in myometrial stem cells (MM SCs) that trigger their transformation into tumor initiating cells (UF SCs). Mutations in the RNA polymerase II Mediator subunit MED12 are dominant drivers of UFs, accounting for 70% of these clinically significant lesions. Biochemically, UF driver mutations in MED12 disrupt CDK8/19 kinase activity in Mediator, but how Mediator kinase disruption triggers MM SC transformation remains unknown. Here, we show that pharmacologic inhibition of CDK8/19 in MM SCs removes a barrier to myogenic differentiation down an altered pathway characterized by molecular phenotypes characteristic of UFs, including oncogenic growth and extracellular matrix (ECM) production. These perturbations appear to be induced by transcriptomic changes, arising in part through epigenomic alteration and super-enhancer reprogramming, that broadly recapitulate those found in MED12-mutant UFs. Altogether these findings provide new insights concerning the biological role of CDK8/19 in MM SC biology and UF formation.
Collapse
Affiliation(s)
- Subash Khadka
- UT Health San Antonio: The University of Texas Health Science Center at San Antonio
| | | | | | | | | | - Azad Khosh
- UT Health San Antonio: The University of Texas Health Science Center at San Antonio
| | - Claire Schenken
- UT Health San Antonio: The University of Texas Health Science Center at San Antonio
| | - Nicholas Stansbury
- UT Health San Antonio: The University of Texas Health Science Center at San Antonio
| | - Robert Schenken
- UT Health San Antonio: The University of Texas Health Science Center at San Antonio
| | | | | | - Thomas Boyer
- UT Health San Antonio: The University of Texas Health Science Center at San Antonio
| |
Collapse
|
4
|
Wagner RE, Arnetzl L, Britto-Borges T, Heit-Mondrzyk A, Bakr A, Sollier E, Gkatza NA, Panten J, Delaunay S, Sohn D, Schmezer P, Odom DT, Müller-Decker K, Plass C, Dieterich C, Lutsik P, Bornelöv S, Frye M. SRSF2 safeguards efficient transcription of DNA damage and repair genes. Cell Rep 2024; 43:114869. [PMID: 39446588 DOI: 10.1016/j.celrep.2024.114869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 09/12/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
The serine-/arginine-rich splicing factor 2 (SRSF2) plays pivotal roles in pre-mRNA processing and gene transcription. Recurrent mutations, particularly a proline-to-histidine substitution at position 95 (P95H), are common in neoplastic diseases. Here, we assess SRSF2's diverse functions in squamous cell carcinoma. We show that SRSF2 deletion or homozygous P95H mutation both cause extensive DNA damage leading to cell-cycle arrest. Mechanistically, SRSF2 regulates efficient bi-directional transcription of DNA replication and repair genes, independent from its function in splicing. Further, SRSF2 haploinsufficiency induces DNA damage without halting the cell cycle. Exposing mouse skin to tumor-promoting carcinogens enhances the clonal expansion of heterozygous Srsf2 P95H epidermal cells but unexpectedly inhibits tumor formation. To survive carcinogen treatment, Srsf2 P95H+/- cells undergo substantial transcriptional rewiring and restore bi-directional gene expression. Thus, our study underscores SRSF2's importance in regulating transcription to orchestrate the cell cycle and the DNA damage response.
Collapse
Affiliation(s)
- Rebecca E Wagner
- Division of Mechanisms Regulating Gene Expression, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69117 Heidelberg, Germany
| | - Leonie Arnetzl
- Division of Mechanisms Regulating Gene Expression, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Thiago Britto-Borges
- Section of Bioinformatics and Systems Cardiology, Department of Internal Medicine III and Klaus Tschira Institute for Integrative Computational Cardiology, Heidelberg University Hospital, 69120 Heidelberg, Germany; German Centre for Cardiovascular Research (DZHK), Partner site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Anke Heit-Mondrzyk
- Division of Mechanisms Regulating Gene Expression, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Ali Bakr
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Etienne Sollier
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | | | - Jasper Panten
- Faculty of Biosciences, Heidelberg University, 69117 Heidelberg, Germany; Division of Regulatory Genomics and Cancer Evolution, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sylvain Delaunay
- Division of Mechanisms Regulating Gene Expression, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Daniela Sohn
- Division of Mechanisms Regulating Gene Expression, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Peter Schmezer
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Duncan T Odom
- Division of Regulatory Genomics and Cancer Evolution, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Karin Müller-Decker
- Division of Mechanisms Regulating Gene Expression, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Christoph Dieterich
- Section of Bioinformatics and Systems Cardiology, Department of Internal Medicine III and Klaus Tschira Institute for Integrative Computational Cardiology, Heidelberg University Hospital, 69120 Heidelberg, Germany; German Centre for Cardiovascular Research (DZHK), Partner site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Pavlo Lutsik
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Susanne Bornelöv
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, CB2 0RE Cambridge, UK
| | - Michaela Frye
- Division of Mechanisms Regulating Gene Expression, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| |
Collapse
|
5
|
Cochran K, Yin M, Mantripragada A, Schreiber J, Marinov GK, Shah SR, Yu H, Lis JT, Kundaje A. Dissecting the cis-regulatory syntax of transcription initiation with deep learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596138. [PMID: 38853896 PMCID: PMC11160661 DOI: 10.1101/2024.05.28.596138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Despite extensive characterization of mammalian Pol II transcription, the DNA sequence determinants of transcription initiation at a third of human promoters and most enhancers remain poorly understood. We trained and interpreted a neural network called ProCapNet that accurately models base-resolution initiation profiles from PRO-cap experiments using local DNA sequence. ProCapNet learns sequence motifs with distinct effects on initiation rates and TSS positioning and uncovers context-specific cryptic initiator elements intertwined within other TF motifs. ProCapNet annotates predictive motifs in nearly all actively transcribed regulatory elements across multiple cell-lines, revealing a shared cis-regulatory logic across promoters and enhancers and a highly epistatic sequence syntax of cooperative and competitive motif interactions. ProCapNet models of steady-state RAMPAGE profiles distill initiation signals on par with models trained directly on PRO-cap profiles. ProCapNet learns a largely cell-type-agnostic cis-regulatory code of initiation complementing sequence drivers of cell-type-specific chromatin state critical for accurate prediction of cell-type-specific transcription initiation.
Collapse
Affiliation(s)
- Kelly Cochran
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | | | | | - Jacob Schreiber
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Sagar R Shah
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Haiyuan Yu
- Department of Computational Biology, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Anshul Kundaje
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| |
Collapse
|
6
|
Zhang H, Cao D, Chen Z, Zhang X, Chen Y, Sessions C, Cruchaga C, Payne P, Li G, Province M, Li F. mosGraphGen: a novel tool to generate multi-omics signaling graphs to facilitate integrative and interpretable graph AI model development. BIOINFORMATICS ADVANCES 2024; 4:vbae151. [PMID: 39506989 PMCID: PMC11540438 DOI: 10.1093/bioadv/vbae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/22/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024]
Abstract
Motivation Multi-omics data, i.e. genomics, epigenomics, transcriptomics, proteomics, characterize cellular complex signaling systems from multi-level and multi-view and provide a holistic view of complex cellular signaling pathways. However, it remains challenging to integrate and interpret multi-omics data for mining critical biomarkers. Graph AI models have been widely used to analyze graph-structure datasets, and are ideal for integrative multi-omics data analysis because they can naturally integrate and represent multi-omics data as a biologically meaningful multi-level signaling graph and interpret multi-omics data via graph node and edge ranking analysis. Nevertheless, it is nontrivial for graph-AI model developers to pre-analyze multi-omics data and convert the data into biologically meaningful graphs, which can be directly fed into graph-AI models. Results To resolve this challenge, we developed mosGraphGen (multi-omics signaling graph generator), generating Multi-omics Signaling graphs (mos-graph) of individual samples by mapping multi-omics data onto a biologically meaningful multi-level background signaling network with data normalization by aggregating measurements and aligning to the reference genome. With mosGraphGen, AI model developers can directly apply and evaluate their models using these mos-graphs. In the results, mosGraphGen was used and illustrated using two widely used multi-omics datasets of The Cancer Genome Atlas (TCGA) and Alzheimer's disease (AD) samples. Availability and implementation The code of mosGraphGen is open-source and publicly available via GitHub: https://github.com/FuhaiLiAiLab/mosGraphGen.
Collapse
Affiliation(s)
- Heming Zhang
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine, Saint Louis, MO 63110-1010, United States
| | - Dekang Cao
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine, Saint Louis, MO 63110-1010, United States
| | - Zirui Chen
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine, Saint Louis, MO 63110-1010, United States
| | - Xiuyuan Zhang
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine, Saint Louis, MO 63110-1010, United States
| | - Yixin Chen
- Department of Computer Science and Engineering, Washington University in St. Louis, Saint Louis, MO 63130, United States
| | - Cole Sessions
- Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO 63110-1010, United States
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110-1010, United States
- Hope Center for Neurological Disorders, Washington University School of Medicine, Saint Louis, MO 63110-1010, United States
- NeuroGenomics and Informatics Center, Washington University School of Medicine, Saint Louis, MO 63110-1010, United States
| | - Philip Payne
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine, Saint Louis, MO 63110-1010, United States
| | - Guangfu Li
- Department of Surgery, School of Medicine, University of Connecticut, Farmington, CT 06030, United States
| | - Michael Province
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110-1010, United States
| | - Fuhai Li
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine, Saint Louis, MO 63110-1010, United States
- Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO 63110-1010, United States
- NeuroGenomics and Informatics Center, Washington University School of Medicine, Saint Louis, MO 63110-1010, United States
| |
Collapse
|
7
|
Zhang H, Cao D, Chen Z, Zhang X, Chen Y, Sessions C, Cruchaga C, Payne P, Li G, Province M, Li F. mosGraphGen: a novel tool to generate multi-omics signaling graphs to facilitate integrative and interpretable graph AI model development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594360. [PMID: 38798349 PMCID: PMC11118290 DOI: 10.1101/2024.05.15.594360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Multi-omics data, i.e., genomics, epigenomics, transcriptomics, proteomics, characterize cellular complex signaling systems from multi-level and multi-view and provide a holistic view of complex cellular signaling pathways. However, it remains challenging to integrate and interpret multi-omics data for mining key disease targets and signaling pathways. Graph AI models have been widely used to analyze graph-structure datasets, and are ideal for integrative multi-omics data analysis because they can naturally integrate and represent multi-omics data as a biologically meaningful multi-level signaling graph and interpret multi-omics data via graph node and edge ranking analysis. However, it is non-trivial for graph-AI model developers to pre-analyze multi-omics data and convert the data into biologically meaningful graphs, which can be directly fed into graph-AI models. To resolve this challenge, we developed mosGraphGen (multi-omics signaling graph generator), generating Multi-omics Signaling graphs (mos-graph) of individual samples by mapping multi-omics data onto a biologically meaningful multi-level background signaling network with data normalization by aggregating measurements and aligning to the reference genome. With mosGraphGen, AI model developers can directly apply and evaluate their models using these mos-graphs. In the results, mosGraphGen was used and illustrated using two widely used multi-omics datasets of TCGA and Alzheimer's disease (AD) samples. The code of mosGraphGen is open-source and publicly available via GitHub: https://github.com/FuhaiLiAiLab/mosGraphGen.
Collapse
Affiliation(s)
- Heming Zhang
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Dekang Cao
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Zirui Chen
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Xiuyuan Zhang
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Yixin Chen
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Cole Sessions
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Philip Payne
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Guangfu Li
- Department of Surgery, School of Medicine, University of Connecticut, CT, 06032, USA
| | - Michael Province
- Division of Statistical Genomics, Department of Genetics, Washington University in St. Louis, St. Louis, MO, USA
| | - Fuhai Li
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
8
|
Yang J, Li J, Miao L, Gao X, Sun W, Linghu S, Ren G, Peng B, Chen S, Liu Z, Wang B, Dong A, Huang D, Yuan J, Dang Y, Lai F. Transcription directionality is licensed by Integrator at active human promoters. Nat Struct Mol Biol 2024; 31:1208-1221. [PMID: 38649617 DOI: 10.1038/s41594-024-01272-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 03/12/2024] [Indexed: 04/25/2024]
Abstract
A universal characteristic of eukaryotic transcription is that the promoter recruits RNA polymerase II (RNAPII) to produce both precursor mRNAs (pre-mRNAs) and short unstable promoter upstream transcripts (PROMPTs) toward the opposite direction. However, how the transcription machinery selects the correct direction to produce pre-mRNAs is largely unknown. Here, through multiple acute auxin-inducible degradation systems, we show that rapid depletion of an RNAPII-binding protein complex, Integrator, results in robust PROMPT accumulation throughout the genome. Interestingly, the accumulation of PROMPTs is compensated by the reduction of pre-mRNA transcripts in actively transcribed genes. Consistently, Integrator depletion alters the distribution of polymerase between the sense and antisense directions, which is marked by increased RNAPII-carboxy-terminal domain Tyr1 phosphorylation at PROMPT regions and a reduced Ser2 phosphorylation level at transcription start sites. Mechanistically, the endonuclease activity of Integrator is critical to suppress PROMPT production. Furthermore, our data indicate that the presence of U1 binding sites on nascent transcripts could counteract the cleavage activity of Integrator. In this process, the absence of robust U1 signal at most PROMPTs allows Integrator to suppress the antisense transcription and shift the transcriptional balance in favor of the sense direction.
Collapse
Affiliation(s)
- Jiao Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, China
- Southwest United Graduate School, Kunming, China
| | - Jingyang Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, China
| | - Langxi Miao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, China
| | - Xu Gao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, China
| | - Wenhao Sun
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, China
| | - Shuo Linghu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, China
| | - Guiping Ren
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, China
| | - Bangya Peng
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, China
| | - Shunkai Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, China
| | - Zhongqi Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, China
| | - Bo Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, China
| | - Ao Dong
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, China
| | - Duo Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, China
| | - Jinrong Yuan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, China
| | - Yunkun Dang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, China.
| | - Fan Lai
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, China.
- Southwest United Graduate School, Kunming, China.
| |
Collapse
|
9
|
McDonald BR, Picard CL, Brabb IM, Savenkova MI, Schmitz RJ, Jacobsen SE, Duttke SH. Enhancers associated with unstable RNAs are rare in plants. NATURE PLANTS 2024; 10:1246-1257. [PMID: 39080503 PMCID: PMC11335568 DOI: 10.1038/s41477-024-01741-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 06/13/2024] [Indexed: 08/07/2024]
Abstract
Unstable transcripts have emerged as markers of active enhancers in vertebrates and shown to be involved in many cellular processes and medical disorders. However, their prevalence and role in plants is largely unexplored. Here, we comprehensively captured all actively initiating (nascent) transcripts across diverse crops and other plants using capped small (cs)RNA sequencing. We discovered that unstable transcripts are rare in plants, unlike in vertebrates, and when present, often originate from promoters. In addition, many 'distal' elements in plants initiate tissue-specific stable transcripts and are likely bona fide promoters of as-yet-unannotated genes or non-coding RNAs, cautioning against using reference genome annotations to infer putative enhancer sites. To investigate enhancer function, we integrated data from self-transcribing active regulatory region (STARR) sequencing. We found that annotated promoters and other regions that initiate stable transcripts, but not those marked by unstable or bidirectional unstable transcripts, showed stronger enhancer activity in this assay. Our findings underscore the blurred line between promoters and enhancers and suggest that cis-regulatory elements can encompass diverse structures and mechanisms in eukaryotes, including humans.
Collapse
Affiliation(s)
- Bayley R McDonald
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Colette L Picard
- Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Ian M Brabb
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Marina I Savenkova
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | | | - Steven E Jacobsen
- Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, USA
- Howard Hughes Medical Institute, University of California at Los Angeles, Los Angeles, CA, USA
| | - Sascha H Duttke
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA.
| |
Collapse
|
10
|
Nemsick S, Hansen AS. Molecular models of bidirectional promoter regulation. Curr Opin Struct Biol 2024; 87:102865. [PMID: 38905929 PMCID: PMC11550790 DOI: 10.1016/j.sbi.2024.102865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/30/2024] [Accepted: 05/27/2024] [Indexed: 06/23/2024]
Abstract
Approximately 11% of human genes are transcribed by a bidirectional promoter (BDP), defined as two genes with <1 kb between their transcription start sites. Despite their evolutionary conservation and enrichment for housekeeping genes and oncogenes, the regulatory role of BDPs remains unclear. BDPs have been suggested to facilitate gene coregulation and/or decrease expression noise. This review discusses these potential regulatory functions through the context of six prospective underlying mechanistic models: a single nucleosome free region, shared transcription factor/regulator binding, cooperative negative supercoiling, bimodal histone marks, joint activation by enhancer(s), and RNA-mediated recruitment of regulators. These molecular mechanisms may act independently and/or cooperatively to facilitate the coregulation and/or decreased expression noise predicted of BDPs.
Collapse
Affiliation(s)
- Sarah Nemsick
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; The Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
| | - Anders S Hansen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; The Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA.
| |
Collapse
|
11
|
McShane A, Narayanan IV, Paulsen MT, Ashaka M, Blinkiewicz H, Yang NT, Magnuson B, Bedi K, Wilson TE, Ljungman M. Characterizing nascent transcription patterns of PROMPTs, eRNAs, and readthrough transcripts in the ENCODE4 deeply profiled cell lines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.09.588612. [PMID: 38645116 PMCID: PMC11030308 DOI: 10.1101/2024.04.09.588612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Arising as co-products of canonical gene expression, transcription-associated lincRNAs, such as promoter upstream transcripts (PROMPTs), enhancer RNAs (eRNAs), and readthrough (RT) transcripts, are often regarded as byproducts of transcription, although they may be important for the expression of nearby genes. We identified regions of nascent expression of these lincRNA in 16 human cell lines using Bru-seq techniques, and found distinctly regulated patterns of PROMPT, eRNA, and RT transcription using the diverse biochemical approaches in the ENCODE4 deeply profiled cell lines collection. Transcription of these lincRNAs was influenced by sequence-specific features and the local or 3D chromatin landscape. However, these sequence and chromatin features do not describe the full spectrum of lincRNA expression variability we identify, highlighting the complexity of their regulation. This may suggest that transcription-associated lincRNAs are not merely byproducts, but rather that the transcript itself, or the act of its transcription, is important for genomic function.
Collapse
|
12
|
Singh AK, Walavalkar K, Tavernari D, Ciriello G, Notani D, Sabarinathan R. Cis-regulatory effect of HPV integration is constrained by host chromatin architecture in cervical cancers. Mol Oncol 2024; 18:1189-1208. [PMID: 38013620 PMCID: PMC11076994 DOI: 10.1002/1878-0261.13559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023] Open
Abstract
Human papillomavirus (HPV) infections are the primary drivers of cervical cancers, and often HPV DNA gets integrated into the host genome. Although the oncogenic impact of HPV encoded genes is relatively well known, the cis-regulatory effect of integrated HPV DNA on host chromatin structure and gene regulation remains less understood. We investigated genome-wide patterns of HPV integrations and associated host gene expression changes in the context of host chromatin states and topologically associating domains (TADs). HPV integrations were significantly enriched in active chromatin regions and depleted in inactive ones. Interestingly, regardless of chromatin state, genomic regions flanking HPV integrations showed transcriptional upregulation. Nevertheless, upregulation (both local and long-range) was mostly confined to TADs with integration, but not affecting adjacent TADs. Few TADs showed recurrent integrations associated with overexpression of oncogenes within them (e.g. MYC, PVT1, TP63 and ERBB2) regardless of proximity. Hi-C and 4C-seq analyses in cervical cancer cell line (HeLa) demonstrated chromatin looping interactions between integrated HPV and MYC/PVT1 regions (~ 500 kb apart), leading to allele-specific overexpression. Based on these, we propose HPV integrations can trigger multimodal oncogenic activation to promote cancer progression.
Collapse
Affiliation(s)
- Anurag Kumar Singh
- National Centre for Biological SciencesTata Institute of Fundamental ResearchBengaluruIndia
| | - Kaivalya Walavalkar
- National Centre for Biological SciencesTata Institute of Fundamental ResearchBengaluruIndia
| | - Daniele Tavernari
- Department of Computational BiologyUniversity of Lausanne (UNIL)Switzerland
- Swiss Cancer Center LemanLausanneSwitzerland
- Swiss Institute for Experimental Cancer Research (ISREC), EPFLLausanneSwitzerland
| | - Giovanni Ciriello
- Department of Computational BiologyUniversity of Lausanne (UNIL)Switzerland
- Swiss Cancer Center LemanLausanneSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Dimple Notani
- National Centre for Biological SciencesTata Institute of Fundamental ResearchBengaluruIndia
| | | |
Collapse
|
13
|
Dudnyk K, Cai D, Shi C, Xu J, Zhou J. Sequence basis of transcription initiation in the human genome. Science 2024; 384:eadj0116. [PMID: 38662817 PMCID: PMC11223672 DOI: 10.1126/science.adj0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 02/28/2024] [Indexed: 05/03/2024]
Abstract
Transcription initiation is a process that is essential to ensuring the proper function of any gene, yet we still lack a unified understanding of sequence patterns and rules that explain most transcription start sites in the human genome. By predicting transcription initiation at base-pair resolution from sequences with a deep learning-inspired explainable model called Puffin, we show that a small set of simple rules can explain transcription initiation at most human promoters. We identify key sequence patterns that contribute to human promoter activity, each activating transcription with distinct position-specific effects. Furthermore, we explain the sequence basis of bidirectional transcription at promoters, identify the links between promoter sequence and gene expression variation across cell types, and explore the conservation of sequence determinants of transcription initiation across mammalian species.
Collapse
Affiliation(s)
- Kseniia Dudnyk
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center; Dallas, Texas, United States of America
| | - Donghong Cai
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center; Dallas, Texas, United States of America
- Center of Excellence for Leukemia Studies (CELS), Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Chenlai Shi
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center; Dallas, Texas, United States of America
| | - Jian Xu
- Center of Excellence for Leukemia Studies (CELS), Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Jian Zhou
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center; Dallas, Texas, United States of America
| |
Collapse
|
14
|
Chen Y, Guo P, Dong Z. The role of histone acetylation in transcriptional regulation and seed development. PLANT PHYSIOLOGY 2024; 194:1962-1979. [PMID: 37979164 DOI: 10.1093/plphys/kiad614] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/09/2023] [Accepted: 10/29/2023] [Indexed: 11/20/2023]
Abstract
Histone acetylation is highly conserved across eukaryotes and has been linked to gene activation since its discovery nearly 60 years ago. Over the past decades, histone acetylation has been evidenced to play crucial roles in plant development and response to various environmental cues. Emerging data indicate that histone acetylation is one of the defining features of "open chromatin," while the role of histone acetylation in transcription remains controversial. In this review, we briefly describe the discovery of histone acetylation, the mechanism of histone acetylation regulating transcription in yeast and mammals, and summarize the research progress of plant histone acetylation. Furthermore, we also emphasize the effect of histone acetylation on seed development and its potential use in plant breeding. A comprehensive knowledge of histone acetylation might provide new and more flexible research perspectives to enhance crop yield and stress resistance.
Collapse
Affiliation(s)
- Yan Chen
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Peiguo Guo
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Zhicheng Dong
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
15
|
Normantovich M, Amitzur A, Offri S, Pashkovsky E, Shnaider Y, Nizan S, Yogev O, Jacob A, Taylor CG, Desbiez C, Whitham SA, Bar-Ziv A, Perl-Treves R. The melon Fom-1-Prv resistance gene pair: Correlated spatial expression and interaction with a viral protein. PLANT DIRECT 2024; 8:e565. [PMID: 38389929 PMCID: PMC10883720 DOI: 10.1002/pld3.565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 02/24/2024]
Abstract
The head-to-head oriented pair of melon resistance genes, Fom-1 and Prv, control resistance to Fusarium oxysporum races 0 and 2 and papaya ringspot virus (PRSV), respectively. They encode, via several RNA splice variants, TIR-NBS-LRR proteins, and Prv has a C-terminal extra domain with a second NBS homologous sequence. In other systems, paired R-proteins were shown to operate by "labor division," with one protein having an extra integrated domain that directly binds the pathogen's Avr factor, and the second protein executing the defense response. We report that the expression of the two genes in two pairs of near-isogenic lines was higher in the resistant isoline and inducible by F. oxysporum race 2 but not by PRSV. The intergenic DNA region separating the coding sequences of the two genes acted as a bi-directional promoter and drove GUS expression in transgenic melon roots and transgenic tobacco plants. Expression of both genes was strong in melon root tips, around the root vascular cylinder, and the phloem and xylem parenchyma of tobacco stems and petioles. The pattern of GUS expression suggests coordinated expression of the two genes. In agreement with the above model, Prv's extra domain was shown to interact with the cylindrical inclusion protein of PRSV both in yeast cells and in planta.
Collapse
Affiliation(s)
- Michael Normantovich
- The Mina and Everard Goodman Faculty of Life Sciences Bar Ilan University Ramat Gan Israel
| | - Arie Amitzur
- The Mina and Everard Goodman Faculty of Life Sciences Bar Ilan University Ramat Gan Israel
| | - Sharon Offri
- The Mina and Everard Goodman Faculty of Life Sciences Bar Ilan University Ramat Gan Israel
| | - Ekaterina Pashkovsky
- The Mina and Everard Goodman Faculty of Life Sciences Bar Ilan University Ramat Gan Israel
| | - Yula Shnaider
- The Mina and Everard Goodman Faculty of Life Sciences Bar Ilan University Ramat Gan Israel
| | - Shahar Nizan
- The Mina and Everard Goodman Faculty of Life Sciences Bar Ilan University Ramat Gan Israel
| | - Ohad Yogev
- The Mina and Everard Goodman Faculty of Life Sciences Bar Ilan University Ramat Gan Israel
| | - Avi Jacob
- The Mina and Everard Goodman Faculty of Life Sciences Bar Ilan University Ramat Gan Israel
| | | | | | - Steven A Whitham
- Department of Plant Pathology and Microbiology Iowa State University Ames Iowa USA
| | - Amalia Bar-Ziv
- The Mina and Everard Goodman Faculty of Life Sciences Bar Ilan University Ramat Gan Israel
| | - Rafael Perl-Treves
- The Mina and Everard Goodman Faculty of Life Sciences Bar Ilan University Ramat Gan Israel
| |
Collapse
|
16
|
Jiang T, Zhou ZM, Ling ZQ, Zhang Q, Wu ZZ, Yang JW, Yang SY, Yang B, Huang LS. Pig H3K4me3, H3K27ac, and gene expression profiles reveal reproductive tissue-specific activity of transposable elements. Zool Res 2024; 45:138-151. [PMID: 38155423 PMCID: PMC10839656 DOI: 10.24272/j.issn.2095-8137.2023.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/04/2023] [Indexed: 12/30/2023] Open
Abstract
Regulatory sequences and transposable elements (TEs) account for a large proportion of the genomic sequences of species; however, their roles in gene transcription, especially tissue-specific expression, remain largely unknown. Pigs serve as an excellent animal model for studying genomic sequence biology due to the extensive diversity among their wild and domesticated populations. Here, we conducted an integrated analysis using H3K27ac ChIP-seq, H3K4me3 ChIP-seq, and RNA-seq data from 10 different tissues of seven fetuses and eight closely related adult pigs. We aimed to annotate the regulatory elements and TEs to elucidate their associations with histone modifications and mRNA expression across different tissues and developmental stages. Based on correlation analysis between mRNA expression and H3K27ac and H3K4me3 peak activity, results indicated that H3K27ac exhibited stronger associations with gene expression than H3K4me3. Furthermore, 1.45% of TEs overlapped with either the H3K27ac or H3K4me3 peaks, with the majority displaying tissue-specific activity. Notably, a TE subfamily (LTR4C_SS), containing binding motifs for SIX1 and SIX4, showed specific enrichment in the H3K27ac peaks of the adult and fetal ovaries. RNA-seq analysis also revealed widespread expression of TEs in the exons or promoters of genes, including 4 688 TE-containing transcripts with distinct development stage-specific and tissue-specific expression. Of note, 1 967 TE-containing transcripts were enriched in the testes. We identified a long terminal repeat (LTR), MLT1F1, acting as a testis-specific alternative promoter in SRPK2 (a cell cycle-related protein kinase) in our pig dataset. This element was also conserved in humans and mice, suggesting either an ancient integration of TEs in genes specifically expressed in the testes or parallel evolutionary patterns. Collectively, our findings demonstrate that TEs are deeply embedded in the genome and exhibit important tissue-specific biological functions, particularly in the reproductive organs.
Collapse
Affiliation(s)
- Tao Jiang
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Zhi-Min Zhou
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Zi-Qi Ling
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Qing Zhang
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Zhong-Zi Wu
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Jia-Wen Yang
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Si-Yu Yang
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Bin Yang
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China. E-mail:
| | - Lu-Sheng Huang
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China. E-mail:
| |
Collapse
|
17
|
Downes N, Niskanen H, Tomas Bosch V, Taipale M, Godiwala M, Väänänen MA, Turunen TA, Aavik E, Laham-Karam N, Ylä-Herttuala S, Kaikkonen MU. Hypoxic regulation of hypoxia inducible factor 1 alpha via antisense transcription. J Biol Chem 2023; 299:105291. [PMID: 37748649 PMCID: PMC10630634 DOI: 10.1016/j.jbc.2023.105291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 09/11/2023] [Accepted: 09/20/2023] [Indexed: 09/27/2023] Open
Abstract
Impaired oxygen homeostasis is a frequently encountered pathophysiological factor in multiple complex diseases, including cardiovascular disease and cancer. While the canonical hypoxia response pathway is well characterized, less is known about the role of noncoding RNAs in this process. Here, we investigated the nascent and steady-state noncoding transcriptional responses in endothelial cells and their potential roles in regulating the hypoxic response. Notably, we identify a novel antisense long noncoding RNA that convergently overlaps the majority of the hypoxia inducible factor 1 alpha (HIF1A) locus, which is expressed across several cell types and elevated in atherosclerotic lesions. The antisense (HIF1A-AS) is produced as a stable, unspliced, and polyadenylated nuclear retained transcript. HIF1A-AS is highly induced in hypoxia by both HIF1A and HIF2A and exhibits anticorrelation with the coding HIF1A transcript and protein expression. We further characterized this functional relationship by CRISPR-mediated bimodal perturbation of the HIF1A-AS promoter. We provide evidence that HIF1A-AS represses the expression of HIF1a in cis by repressing transcriptional elongation and deposition of H3K4me3, and that this mechanism is dependent on the act of antisense transcription itself. Overall, our results indicate a critical regulatory role of antisense mediated transcription in regulation of HIF1A expression and cellular response to hypoxia.
Collapse
Affiliation(s)
- Nicholas Downes
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, North-Savo, Finland
| | - Henri Niskanen
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, North-Savo, Finland
| | - Vanesa Tomas Bosch
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, North-Savo, Finland
| | - Mari Taipale
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, North-Savo, Finland
| | - Mehvash Godiwala
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, North-Savo, Finland
| | - Mari-Anna Väänänen
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, North-Savo, Finland
| | - Tiia A Turunen
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, North-Savo, Finland
| | - Einari Aavik
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, North-Savo, Finland
| | - Nihay Laham-Karam
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, North-Savo, Finland
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, North-Savo, Finland; School of Medicine, University of Eastern Finland, Kuopio, North-Savo, Finland; Heart Center, Kuopio University Hospital, Kuopio, Finland.
| | - Minna U Kaikkonen
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, North-Savo, Finland.
| |
Collapse
|
18
|
Mcdonald BR, Picard C, Brabb IM, Savenkova MI, Schmitz RJ, Jacobsen SE, Duttke SH. Enhancers associated with unstable RNAs are rare in plants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.25.559415. [PMID: 37808859 PMCID: PMC10557634 DOI: 10.1101/2023.09.25.559415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Unstable transcripts have emerged as markers of active enhancers in vertebrates and shown to be involved in many cellular processes and medical disorders. However, their prevalence and role in plants is largely unexplored. Here, we comprehensively captured all actively initiating ("nascent") transcripts across diverse crops and other plants using capped small (cs)RNA-seq. We discovered that unstable transcripts are rare, unlike in vertebrates, and often originate from promoters. Additionally, many "distal" elements in plants initiate tissue-specific stable transcripts and are likely bone fide promoters of yet-unannotated genes or non-coding RNAs, cautioning against using genome annotations to infer "enhancers" or transcript stability. To investigate enhancer function, we integrated STARR-seq data. We found that annotated promoters, and other regions that initiate stable transcripts rather than unstable transcripts, function as stronger enhancers in plants. Our findings underscore the blurred line between promoters and enhancers and suggest that cis-regulatory elements encompass diverse structures and mechanisms in eukaryotes.
Collapse
Affiliation(s)
- Bayley R. Mcdonald
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Colette Picard
- Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Ian M. Brabb
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Marina I. Savenkova
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | | | - Steven E. Jacobsen
- Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, USA
- Howard Hughes Medical Institute, University of California at Los Angeles, Los Angeles, CA, USA
| | - Sascha H. Duttke
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
19
|
Dudnyk K, Shi C, Zhou J. Sequence basis of transcription initiation in human genome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.27.546584. [PMID: 37425823 PMCID: PMC10327147 DOI: 10.1101/2023.06.27.546584] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Transcription initiation is an essential process for ensuring proper function of any gene, however, a unified understanding of sequence patterns and rules that determine transcription initiation sites in human genome remains elusive. By explaining transcription initiation at basepair resolution from sequence with a deep learning-inspired explainable modeling approach, here we show that simple rules can explain the vast majority of human promoters. We identified key sequence patterns that contribute to human promoter function, each activating transcription with a distinct position-specific effect curve that likely reflects its mechanism of promoting transcription initiation. Most of these position-specific effects have not been previously characterized, and we verified them using experimental perturbations of transcription factors and sequences. We revealed the sequence basis of bidirectional transcription at promoters and links between promoter selectivity and gene expression variation across cell types. Additionally, by analyzing 241 mammalian genomes and mouse transcription initiation site data, we showed that the sequence determinants are conserved across mammalian species. Taken together, we provide a unified model of the sequence basis of transcription initiation at the basepair level that is broadly applicable across mammalian species, and shed new light on basic questions related to promoter sequence and function.
Collapse
Affiliation(s)
- Kseniia Dudnyk
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center; Dallas, Texas, United States of America
| | - Chenlai Shi
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center; Dallas, Texas, United States of America
| | - Jian Zhou
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center; Dallas, Texas, United States of America
| |
Collapse
|
20
|
Heucken N, Tang K, Hüsemann L, Heßler N, Müntjes K, Feldbrügge M, Göhre V, Zurbriggen MD. Engineering and Implementation of Synthetic Molecular Tools in the Basidiomycete Fungus Ustilago maydis. J Fungi (Basel) 2023; 9:jof9040480. [PMID: 37108934 PMCID: PMC10140897 DOI: 10.3390/jof9040480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/30/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The basidiomycete Ustilago maydis is a well-characterized model organism for studying pathogen-host interactions and of great interest for a broad spectrum of biotechnological applications. To facilitate research and enable applications, in this study, three luminescence-based and one enzymatic quantitative reporter were implemented and characterized. Several dual-reporter constructs were generated for ratiometric normalization that can be used as a fast-screening platform for reporter gene expression, applicable to in vitro and in vivo detection. Furthermore, synthetic bidirectional promoters that enable bicisitronic expression for gene expression studies and engineering strategies were constructed and implemented. These noninvasive, quantitative reporters and expression tools will significantly widen the application range of biotechnology in U. maydis and enable the in planta detection of fungal infection.
Collapse
Affiliation(s)
- Nicole Heucken
- Institute of Synthetic Biology, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Kun Tang
- Institute of Synthetic Biology, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Lisa Hüsemann
- Institute of Synthetic Biology, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Natascha Heßler
- Institute of Microbiology, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Kira Müntjes
- Institute of Microbiology, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Michael Feldbrügge
- Institute of Microbiology, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Vera Göhre
- Institute of Microbiology, University of Düsseldorf, 40225 Düsseldorf, Germany
- CEPLAS-Cluster of Excellence on Plant Sciences, 40225 Düsseldorf, Germany
| | - Matias D Zurbriggen
- Institute of Synthetic Biology, University of Düsseldorf, 40225 Düsseldorf, Germany
- CEPLAS-Cluster of Excellence on Plant Sciences, 40225 Düsseldorf, Germany
| |
Collapse
|
21
|
Luan J, Vermunt MW, Syrett CM, Coté A, Tome JM, Zhang H, Huang A, Luppino JM, Keller CA, Giardine BM, Zhang S, Dunagin MC, Zhang Z, Joyce EF, Lis JT, Raj A, Hardison RC, Blobel GA. CTCF blocks antisense transcription initiation at divergent promoters. Nat Struct Mol Biol 2022; 29:1136-1144. [PMID: 36369346 DOI: 10.1101/2021.10.30.465508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/29/2022] [Indexed: 05/26/2023]
Abstract
Transcription at most promoters is divergent, initiating at closely spaced oppositely oriented core promoters to produce sense transcripts along with often unstable upstream antisense transcripts (uasTrx). How antisense transcription is regulated and to what extent it is coordinated with sense transcription is not well understood. Here, by combining acute degradation of the multi-functional transcription factor CTCF and nascent transcription measurements, we find that CTCF specifically suppresses antisense but not sense transcription at hundreds of divergent promoters. Primary transcript RNA-FISH shows that CTCF lowers burst fraction but not burst intensity of uasTrx and that co-bursting of sense and antisense transcripts is disfavored. Genome editing, chromatin conformation studies and high-resolution transcript mapping revealed that precisely positioned CTCF directly suppresses the initiation of uasTrx, in a manner independent of its architectural function. In sum, CTCF shapes the transcriptional landscape in part by suppressing upstream antisense transcription.
Collapse
Affiliation(s)
- Jing Luan
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marit W Vermunt
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Camille M Syrett
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Clarion Healthcare, LLC, Boston, MA, USA
| | - Allison Coté
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacob M Tome
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
- Shape Therapeutics Inc, Seattle, WA, USA
| | - Haoyue Zhang
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Anran Huang
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jennifer M Luppino
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Cheryl A Keller
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Belinda M Giardine
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Shiping Zhang
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Margaret C Dunagin
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhe Zhang
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Eric F Joyce
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Arjun Raj
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Gerd A Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
22
|
Luan J, Vermunt MW, Syrett CM, Coté A, Tome JM, Zhang H, Huang A, Luppino JM, Keller CA, Giardine BM, Zhang S, Dunagin MC, Zhang Z, Joyce EF, Lis JT, Raj A, Hardison RC, Blobel GA. CTCF blocks antisense transcription initiation at divergent promoters. Nat Struct Mol Biol 2022; 29:1136-1144. [PMID: 36369346 PMCID: PMC10015438 DOI: 10.1038/s41594-022-00855-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/29/2022] [Indexed: 11/13/2022]
Abstract
Transcription at most promoters is divergent, initiating at closely spaced oppositely oriented core promoters to produce sense transcripts along with often unstable upstream antisense transcripts (uasTrx). How antisense transcription is regulated and to what extent it is coordinated with sense transcription is not well understood. Here, by combining acute degradation of the multi-functional transcription factor CTCF and nascent transcription measurements, we find that CTCF specifically suppresses antisense but not sense transcription at hundreds of divergent promoters. Primary transcript RNA-FISH shows that CTCF lowers burst fraction but not burst intensity of uasTrx and that co-bursting of sense and antisense transcripts is disfavored. Genome editing, chromatin conformation studies and high-resolution transcript mapping revealed that precisely positioned CTCF directly suppresses the initiation of uasTrx, in a manner independent of its architectural function. In sum, CTCF shapes the transcriptional landscape in part by suppressing upstream antisense transcription.
Collapse
Affiliation(s)
- Jing Luan
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marit W Vermunt
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Camille M Syrett
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Clarion Healthcare, LLC, Boston, MA, USA
| | - Allison Coté
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacob M Tome
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
- Shape Therapeutics Inc, Seattle, WA, USA
| | - Haoyue Zhang
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Anran Huang
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jennifer M Luppino
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Cheryl A Keller
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Belinda M Giardine
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Shiping Zhang
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Margaret C Dunagin
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhe Zhang
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Eric F Joyce
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Arjun Raj
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Gerd A Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
23
|
Nuclear microRNAs release paused Pol II via the DDX21-CDK9 complex. Cell Rep 2022; 39:110673. [PMID: 35417682 DOI: 10.1016/j.celrep.2022.110673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/26/2021] [Accepted: 03/22/2022] [Indexed: 11/22/2022] Open
Abstract
RNA activation (RNAa) is an uncharacterized mechanism of transcriptional activation mediated by small RNAs, such as microRNAs (miRNAs). A critical issue in RNAa research is that it is difficult to distinguish between changes in gene expression caused indirectly by post-transcriptional regulation and direct induction of gene expression by RNAa. Therefore, in this study, we seek to identify a key factor involved in RNAa, using the induction of ZMYND10 by miR-34a as a system to evaluate RNAa. We identify the positive transcription elongation factors CDK9 and DDX21, which form a complex with nuclear AGO and TNRC6A, as important transcriptional activators of RNAa. In addition, we find that inhibition of DDX21 suppresses RNAa by miR-34a and other miRNAs without inhibiting post-transcriptional regulation. Our findings reveal a strong connection between RNAa and release of paused Pol II, facilitating RNAa research by making it possible to separately analyze post-transcriptional regulation and RNAa.
Collapse
|
24
|
Duttke SH, Beyhan S, Singh R, Neal S, Viriyakosol S, Fierer J, Kirkland TN, Stajich JE, Benner C, Carlin AF. Decoding Transcription Regulatory Mechanisms Associated with Coccidioides immitis Phase Transition Using Total RNA. mSystems 2022; 7:e0140421. [PMID: 35076277 PMCID: PMC8788335 DOI: 10.1128/msystems.01404-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/04/2022] [Indexed: 01/07/2023] Open
Abstract
New or emerging infectious diseases are commonly caused by pathogens that cannot be readily manipulated or studied under common laboratory conditions. These limitations hinder standard experimental approaches and our abilities to define the fundamental molecular mechanisms underlying pathogenesis. The advance of capped small RNA sequencing (csRNA-seq) now enables genome-wide mapping of actively initiated transcripts from genes and other regulatory transcribed start regions (TSRs) such as enhancers at a precise moment from total RNA. As RNA is nonpathogenic and can be readily isolated from inactivated infectious samples, csRNA-seq can detect acute changes in gene regulation within or in response to a pathogen with remarkable sensitivity under common laboratory conditions. Studying valley fever (coccidioidomycosis), an emerging endemic fungal infection that increasingly impacts livestock, pet, and human health, we show how csRNA-seq can unravel transcriptional programs driving pathogenesis. Performing csRNA-seq on RNA isolated from different stages of the valley fever pathogen Coccidioides immitis revealed alternative promoter usage, connected cis-regulatory domains, and a WOPR family transcription factor, which are known regulators of virulence in other fungi, as being critical for pathogenic growth. We further demonstrate that a C. immitis WOPR homologue, CIMG_02671, activates transcription in a WOPR motif-dependent manner. Collectively, these findings provide novel insights into valley fever pathogenesis and provide a proof of principle for csRNA-seq as a powerful means to determine the genes, regulatory mechanisms, and transcription factors that control the pathogenesis of highly infectious agents. IMPORTANCE Infectious pathogens like airborne viruses or fungal spores are difficult to study; they require high-containment facilities, special equipment, and expertise. As such, establishing approaches such as genome editing or other means to identify the factors and mechanisms underlying caused diseases, and, thus, promising drug targets, is costly and time-intensive. These obstacles particularly hinder the analysis of new, emerging, or rare infectious diseases. We recently developed a method termed capped small RNA sequencing (csRNA-seq) that enables capturing acute changes in active gene expression from total RNA. Prior to csRNA-seq, such an analysis was possible only by using living cells or nuclei, in which pathogens are highly infectious. The process of RNA purification, however, inactivates pathogens and thus enables the analysis of gene expression during disease progression under standard laboratory conditions. As a proof of principle, here, we use csRNA-seq to unravel the gene regulatory programs and factors likely critical for the pathogenesis of valley fever, an emerging endemic fungal infection that increasingly impacts livestock, pet, and human health.
Collapse
Affiliation(s)
- Sascha H. Duttke
- Department of Medicine, Division of Endocrinology, UC San Diego School of Medicine, La Jolla, California, USA
| | - Sinem Beyhan
- Department of Medicine, Division of Infectious Disease, UC San Diego School of Medicine, La Jolla, California, USA
- J. Craig Venter Institute, Department of Infectious Diseases, La Jolla, California, USA
| | - Rajendra Singh
- Department of Medicine, Division of Infectious Disease, UC San Diego School of Medicine, La Jolla, California, USA
| | - Sonya Neal
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Suganya Viriyakosol
- Department of Medicine, Division of Infectious Disease, UC San Diego School of Medicine, La Jolla, California, USA
| | - Joshua Fierer
- Department of Medicine, Division of Infectious Disease, UC San Diego School of Medicine, La Jolla, California, USA
- Infectious Diseases Section, VA Healthcare San Diego, San Diego, California, USA
- Department of Pathology, UC San Diego School of Medicine, La Jolla, California, USA
| | - Theo N. Kirkland
- Department of Medicine, Division of Infectious Disease, UC San Diego School of Medicine, La Jolla, California, USA
- Department of Pathology, UC San Diego School of Medicine, La Jolla, California, USA
| | - Jason E. Stajich
- Department of Microbiology and Plant Pathology, Institute for Integrative Genome Biology, University of California—Riverside, Riverside, California, USA
| | - Christopher Benner
- Department of Medicine, Division of Endocrinology, UC San Diego School of Medicine, La Jolla, California, USA
| | - Aaron F. Carlin
- Department of Medicine, Division of Infectious Disease, UC San Diego School of Medicine, La Jolla, California, USA
| |
Collapse
|
25
|
McGarvey AC, Kopp W, Vučićević D, Mattonet K, Kempfer R, Hirsekorn A, Bilić I, Gil M, Trinks A, Merks AM, Panáková D, Pombo A, Akalin A, Junker JP, Stainier DY, Garfield D, Ohler U, Lacadie SA. Single-cell-resolved dynamics of chromatin architecture delineate cell and regulatory states in zebrafish embryos. CELL GENOMICS 2022; 2:100083. [PMID: 36777038 PMCID: PMC9903790 DOI: 10.1016/j.xgen.2021.100083] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/24/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022]
Abstract
DNA accessibility of cis-regulatory elements (CREs) dictates transcriptional activity and drives cell differentiation during development. While many genes regulating embryonic development have been identified, the underlying CRE dynamics controlling their expression remain largely uncharacterized. To address this, we produced a multimodal resource and genomic regulatory map for the zebrafish community, which integrates single-cell combinatorial indexing assay for transposase-accessible chromatin with high-throughput sequencing (sci-ATAC-seq) with bulk histone PTMs and Hi-C data to achieve a genome-wide classification of the regulatory architecture determining transcriptional activity in the 24-h post-fertilization (hpf) embryo. We characterized the genome-wide chromatin architecture at bulk and single-cell resolution, applying sci-ATAC-seq on whole 24-hpf stage zebrafish embryos, generating accessibility profiles for ∼23,000 single nuclei. We developed a genome segmentation method, ScregSeg (single-cell regulatory landscape segmentation), for defining regulatory programs, and candidate CREs, specific to one or more cell types. We integrated the ScregSeg output with bulk measurements for histone post-translational modifications and 3D genome organization and identified new regulatory principles between chromatin modalities prevalent during zebrafish development. Sci-ATAC-seq profiling of npas4l/cloche mutant embryos identified novel cellular roles for this hematovascular transcriptional master regulator and suggests an intricate mechanism regulating its expression. Our work defines regulatory architecture and principles in the zebrafish embryo and establishes a resource of cell-type-specific genome-wide regulatory annotations and candidate CREs, providing a valuable open resource for genomics, developmental, molecular, and computational biology.
Collapse
Affiliation(s)
- Alison C. McGarvey
- Computational Regulatory Genomics, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, Berlin 10115, Germany,Quantitative Developmental Biology, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin 10115, Germany
| | - Wolfgang Kopp
- Computational Regulatory Genomics, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, Berlin 10115, Germany,Bioinformatics and Omics Data Science Platform, Berlin Institute for Medical Systems Biology, Max Delbrück Centre for Molecular Medicine, Berlin 10115, Germany
| | - Dubravka Vučićević
- Computational Regulatory Genomics, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, Berlin 10115, Germany
| | - Kenny Mattonet
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Rieke Kempfer
- Epigenetic Regulation and Chromatin Architecture, Berlin Institute for Medical Systems Biology, Max Delbrück Centre for Molecular Medicine, Berlin, Germany,Institute for Biology, Humboldt Universität Berlin, Berlin 10115, Germany
| | - Antje Hirsekorn
- Computational Regulatory Genomics, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, Berlin 10115, Germany
| | - Ilija Bilić
- Computational Regulatory Genomics, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, Berlin 10115, Germany
| | - Marine Gil
- Computational Regulatory Genomics, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, Berlin 10115, Germany
| | - Alexandra Trinks
- IRI Life Sciences, Humboldt Universität Berlin, Berlin 10115, Germany
| | - Anne Margarete Merks
- Electrochemical Signaling in Development and Disease, Max Delbrück Centre for Molecular Medicine, Berlin, Germany,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin 13125, Germany
| | - Daniela Panáková
- Electrochemical Signaling in Development and Disease, Max Delbrück Centre for Molecular Medicine, Berlin, Germany,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin 13125, Germany
| | - Ana Pombo
- Epigenetic Regulation and Chromatin Architecture, Berlin Institute for Medical Systems Biology, Max Delbrück Centre for Molecular Medicine, Berlin, Germany,Institute for Biology, Humboldt Universität Berlin, Berlin 10115, Germany
| | - Altuna Akalin
- Bioinformatics and Omics Data Science Platform, Berlin Institute for Medical Systems Biology, Max Delbrück Centre for Molecular Medicine, Berlin 10115, Germany
| | - Jan Philipp Junker
- Quantitative Developmental Biology, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin 10115, Germany
| | - Didier Y.R. Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - David Garfield
- IRI Life Sciences, Humboldt Universität Berlin, Berlin 10115, Germany
| | - Uwe Ohler
- Computational Regulatory Genomics, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, Berlin 10115, Germany,Institute for Biology, Humboldt Universität Berlin, Berlin 10115, Germany,Corresponding author
| | - Scott Allen Lacadie
- Computational Regulatory Genomics, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, Berlin 10115, Germany,Berlin Institute of Health, Berlin 10178, Germany,Corresponding author
| |
Collapse
|
26
|
Bandiera R, Wagner RE, Britto-Borges T, Dieterich C, Dietmann S, Bornelöv S, Frye M. RN7SK small nuclear RNA controls bidirectional transcription of highly expressed gene pairs in skin. Nat Commun 2021; 12:5864. [PMID: 34620876 PMCID: PMC8497571 DOI: 10.1038/s41467-021-26083-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 09/10/2021] [Indexed: 11/16/2022] Open
Abstract
Pausing of RNA polymerase II (Pol II) close to promoters is a common regulatory step in RNA synthesis, and is coordinated by a ribonucleoprotein complex scaffolded by the noncoding RNA RN7SK. The function of RN7SK-regulated gene transcription in adult tissue homoeostasis is currently unknown. Here, we deplete RN7SK during mouse and human epidermal stem cell differentiation. Unexpectedly, loss of this small nuclear RNA specifically reduces transcription of numerous cell cycle regulators leading to cell cycle exit and differentiation. Mechanistically, we show that RN7SK is required for efficient transcription of highly expressed gene pairs with bidirectional promoters, which in the epidermis co-regulated cell cycle and chromosome organization. The reduction in transcription involves impaired splicing and RNA decay, but occurs in the absence of chromatin remodelling at promoters and putative enhancers. Thus, RN7SK is directly required for efficient Pol II transcription of highly transcribed bidirectional gene pairs, and thereby exerts tissue-specific functions, such as maintaining a cycling cell population in the epidermis.
Collapse
Affiliation(s)
- Roberto Bandiera
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Rebecca E Wagner
- German Cancer Research Center-Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Thiago Britto-Borges
- University Hospital Heidelberg, German Center for Cardiovascular Research (DZHK), Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
| | - Christoph Dieterich
- University Hospital Heidelberg, German Center for Cardiovascular Research (DZHK), Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
| | - Sabine Dietmann
- Washington University School of Medicine in St. Louis, 660S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Susanne Bornelöv
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK.
| | - Michaela Frye
- German Cancer Research Center-Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
27
|
Investigating crosstalk between H3K27 acetylation and H3K4 trimethylation in CRISPR/dCas-based epigenome editing and gene activation. Sci Rep 2021; 11:15912. [PMID: 34354157 PMCID: PMC8342468 DOI: 10.1038/s41598-021-95398-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/25/2021] [Indexed: 12/12/2022] Open
Abstract
Epigenome editing methods enable the precise manipulation of epigenetic modifications, such as histone posttranscriptional modifications (PTMs), for uncovering their biological functions. While histone PTMs have been correlated with certain gene expression status, the causalities remain elusive. Histone H3 Lysine 27 acetylation (H3K27ac) and histone H3 Lysine 4 trimethylation (H3K4me3) are both associated with active genes, and located at active promoters and enhancers or around transcriptional start sites (TSSs). Although crosstalk between histone lysine acetylation and H3K4me3 has been reported, relationships between specific epigenetic marks during transcriptional activation remain largely unclear. Here, using clustered regularly interspaced short palindromic repeats (CRISPR)/dCas-based epigenome editing methods, we discovered that the ectopic introduction of H3K27ac in the promoter region lead to H3K4me3 enrichment around TSS and transcriptional activation, while H3K4me3 installation at the promoter cannot induce H3K27ac increase and failed to activate gene expression. Blocking the reading of H3K27ac by BRD proteins using inhibitor JQ1 abolished H3K27ac-induced H3K4me3 installation and downstream gene activation. Furthermore, we uncovered that BRD2, not BRD4, mediated H3K4me3 installation and gene activation upon H3K27ac writing. Our studies revealed the relationships between H3K27ac and H3K4me3 in gene activation process and demonstrated the application of CRISPR/dCas-based epigenome editing methods in elucidating the crosstalk between epigenetic mechanisms.
Collapse
|
28
|
The evolutionary acquisition and mode of functions of promoter-associated non-coding RNAs (pancRNAs) for mammalian development. Essays Biochem 2021; 65:697-708. [PMID: 34328174 DOI: 10.1042/ebc20200143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/13/2021] [Accepted: 07/16/2021] [Indexed: 12/22/2022]
Abstract
Increasing evidence has shown that many long non-coding RNAs (lncRNAs) are involved in gene regulation in a variety of ways such as transcriptional, post-transcriptional and epigenetic regulation. Promoter-associated non-coding RNAs (pancRNAs), which are categorized into the most abundant single-copy lncRNA biotype, play vital regulatory roles in finely tuning cellular specification at the epigenomic level. In short, pancRNAs can directly or indirectly regulate downstream genes to participate in the development of organisms in a cell-specific manner. In this review, we will introduce the evolutionarily acquired characteristics of pancRNAs as determined by comparative epigenomics and elaborate on the research progress on pancRNA-involving processes in mammalian embryonic development, including neural differentiation.
Collapse
|
29
|
Shamie I, Duttke SH, Karottki KJLC, Han CZ, Hansen AH, Hefzi H, Xiong K, Li S, Roth SJ, Tao J, Lee GM, Glass CK, Kildegaard HF, Benner C, Lewis NE. A Chinese hamster transcription start site atlas that enables targeted editing of CHO cells. NAR Genom Bioinform 2021; 3:lqab061. [PMID: 34268494 PMCID: PMC8276764 DOI: 10.1093/nargab/lqab061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/29/2021] [Accepted: 06/14/2021] [Indexed: 01/05/2023] Open
Abstract
Chinese hamster ovary (CHO) cells are widely used for producing biopharmaceuticals, and engineering gene expression in CHO is key to improving drug quality and affordability. However, engineering gene expression or activating silent genes requires accurate annotation of the underlying regulatory elements and transcription start sites (TSSs). Unfortunately, most TSSs in the published Chinese hamster genome sequence were computationally predicted and are frequently inaccurate. Here, we use nascent transcription start site sequencing methods to revise TSS annotations for 15 308 Chinese hamster genes and 3034 non-coding RNAs based on experimental data from CHO-K1 cells and 10 hamster tissues. We further capture tens of thousands of putative transcribed enhancer regions with this method. Our revised TSSs improves upon the RefSeq annotation by revealing core sequence features of gene regulation such as the TATA box and the Initiator and, as exemplified by targeting the glycosyltransferase gene Mgat3, facilitate activating silent genes by CRISPRa. Together, we envision our revised annotation and data will provide a rich resource for the CHO community, improve genome engineering efforts and aid comparative and evolutionary studies.
Collapse
Affiliation(s)
- Isaac Shamie
- Novo Nordisk Foundation Center for Biosustainability at UC San Diego 92093, USA
| | - Sascha H Duttke
- Department of Medicine, University of California, San Diego 92093, USA
| | - Karen J la Cour Karottki
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Denmark
| | - Claudia Z Han
- Department of Cellular and Molecular Medicine, University of California, San Diego 92093, USA
| | - Anders H Hansen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Denmark
| | - Hooman Hefzi
- Novo Nordisk Foundation Center for Biosustainability at UC San Diego 92093, USA
| | - Kai Xiong
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Denmark
| | - Shangzhong Li
- Novo Nordisk Foundation Center for Biosustainability at UC San Diego 92093, USA
| | - Samuel J Roth
- Department of Medicine, University of California, San Diego 92093, USA
| | - Jenhan Tao
- Department of Cellular and Molecular Medicine, University of California, San Diego 92093, USA
| | - Gyun Min Lee
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Denmark
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California, San Diego 92093, USA
| | | | | | - Nathan E Lewis
- Novo Nordisk Foundation Center for Biosustainability at UC San Diego 92093, USA
| |
Collapse
|
30
|
Smith JP, Dutta AB, Sathyan KM, Guertin MJ, Sheffield NC. PEPPRO: quality control and processing of nascent RNA profiling data. Genome Biol 2021; 22:155. [PMID: 33992117 PMCID: PMC8126160 DOI: 10.1186/s13059-021-02349-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/12/2021] [Indexed: 12/18/2022] Open
Abstract
Nascent RNA profiling is growing in popularity; however, there is no standard analysis pipeline to uniformly process the data and assess quality. Here, we introduce PEPPRO, a comprehensive, scalable workflow for GRO-seq, PRO-seq, and ChRO-seq data. PEPPRO produces uniformly processed output files for downstream analysis and assesses adapter abundance, RNA integrity, library complexity, nascent RNA purity, and run-on efficiency. PEPPRO is restartable and fault-tolerant, records copious logs, and provides a web-based project report. PEPPRO can be run locally or using a cluster, providing a portable first step for genomic nascent RNA analysis.
Collapse
Affiliation(s)
- Jason P Smith
- Center for Public Health Genomics, University of Virginia, Charlottesville, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, USA
| | - Arun B Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, USA
| | | | - Michael J Guertin
- Center for Public Health Genomics, University of Virginia, Charlottesville, USA.
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, USA.
| | - Nathan C Sheffield
- Center for Public Health Genomics, University of Virginia, Charlottesville, USA.
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, USA.
- Department of Public Health Sciences, University of Virginia, Charlottesville, USA.
- Department of Biomedical Engineering, University of Virginia, Charlottesville, USA.
| |
Collapse
|
31
|
Roberts BS, Partridge EC, Moyers BA, Agarwal V, Newberry KM, Martin BK, Shendure J, Myers RM, Cooper GM. Genome-wide strand asymmetry in massively parallel reporter activity favors genic strands. Genome Res 2021; 31:866-876. [PMID: 33879525 PMCID: PMC8092006 DOI: 10.1101/gr.270751.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 02/18/2021] [Indexed: 11/24/2022]
Abstract
Massively parallel reporter assays (MPRAs) are useful tools to characterize regulatory elements in human genomes. An aspect of MPRAs that is not typically the focus of analysis is their intrinsic ability to differentiate activity levels for a given sequence element when placed in both of its possible orientations relative to the reporter construct. Here, we describe pervasive strand asymmetry of MPRA signals in data sets from multiple reporter configurations in both published and newly reported data. These effects are reproducible across different cell types and in different treatments within a cell type and are observed both within and outside of annotated regulatory elements. From elements in gene bodies, MPRA strand asymmetry favors the sense strand, suggesting that function related to endogenous transcription is driving the phenomenon. Similarly, we find that within Alu mobile element insertions, strand asymmetry favors the transcribed strand of the ancestral retrotransposon. The effect is consistent across the multiplicity of Alu elements in human genomes and is more pronounced in less diverged Alu elements. We find sequence features driving MPRA strand asymmetry and show its prediction from sequence alone. We see some evidence for RNA stabilization and transcriptional activation mechanisms and hypothesize that the effect is driven by natural selection favoring efficient transcription. Our results indicate that strand asymmetry is a pervasive and reproducible feature in MPRA data. More importantly, the fact that MPRA asymmetry favors naturally transcribed strands suggests that it stems from preserved biological functions that have a substantial, global impact on gene and genome evolution.
Collapse
Affiliation(s)
- Brian S Roberts
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA.,Department of Biological Sciences, The University of Alabama in Huntsville, Huntsville, Alabama 35899, USA
| | | | - Bryan A Moyers
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Vikram Agarwal
- Calico Life Sciences LLC, South San Francisco, California 94080, USA
| | | | - Beth K Martin
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA.,Howard Hughes Medical Institute, Seattle, Washington 98195, USA.,Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, Washington 98195, USA
| | - Richard M Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Gregory M Cooper
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| |
Collapse
|
32
|
Chen X, Qi Y, Wu Z, Wang X, Li J, Zhao D, Hou H, Li Y, Yu Z, Liu W, Wang M, Ren Y, Li Z, Yang H, Xu Y. Structural insights into preinitiation complex assembly on core promoters. Science 2021; 372:science.aba8490. [PMID: 33795473 DOI: 10.1126/science.aba8490] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 02/01/2021] [Accepted: 03/25/2021] [Indexed: 12/24/2022]
Abstract
Transcription factor IID (TFIID) recognizes core promoters and supports preinitiation complex (PIC) assembly for RNA polymerase II (Pol II)-mediated eukaryotic transcription. We determined the structures of human TFIID-based PIC in three stepwise assembly states and revealed two-track PIC assembly: stepwise promoter deposition to Pol II and extensive modular reorganization on track I (on TATA-TFIID-binding element promoters) versus direct promoter deposition on track II (on TATA-only and TATA-less promoters). The two tracks converge at an ~50-subunit holo PIC in identical conformation, whereby TFIID stabilizes PIC organization and supports loading of cyclin-dependent kinase (CDK)-activating kinase (CAK) onto Pol II and CAK-mediated phosphorylation of the Pol II carboxyl-terminal domain. Unexpectedly, TBP of TFIID similarly bends TATA box and TATA-less promoters in PIC. Our study provides structural visualization of stepwise PIC assembly on highly diversified promoters.
Collapse
Affiliation(s)
- Xizi Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yilun Qi
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Zihan Wu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Xinxin Wang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Jiabei Li
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Dan Zhao
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Haifeng Hou
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yan Li
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Zishuo Yu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Weida Liu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Mo Wang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yulei Ren
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Ze Li
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Huirong Yang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yanhui Xu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China. .,The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, China, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China.,Human Phenome Institute, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
33
|
Miko H, Qiu Y, Gaertner B, Sander M, Ohler U. Inferring time series chromatin states for promoter-enhancer pairs based on Hi-C data. BMC Genomics 2021; 22:84. [PMID: 33509077 PMCID: PMC7841892 DOI: 10.1186/s12864-021-07373-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 01/07/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Co-localized combinations of histone modifications ("chromatin states") have been shown to correlate with promoter and enhancer activity. Changes in chromatin states over multiple time points ("chromatin state trajectories") have previously been analyzed at promoter and enhancers separately. With the advent of time series Hi-C data it is now possible to connect promoters and enhancers and to analyze chromatin state trajectories at promoter-enhancer pairs. RESULTS We present TimelessFlex, a framework for investigating chromatin state trajectories at promoters and enhancers and at promoter-enhancer pairs based on Hi-C information. TimelessFlex extends our previous approach Timeless, a Bayesian network for clustering multiple histone modification data sets at promoter and enhancer feature regions. We utilize time series ATAC-seq data measuring open chromatin to define promoters and enhancer candidates. We developed an expectation-maximization algorithm to assign promoters and enhancers to each other based on Hi-C interactions and jointly cluster their feature regions into paired chromatin state trajectories. We find jointly clustered promoter-enhancer pairs showing the same activation patterns on both sides but with a stronger trend at the enhancer side. While the promoter side remains accessible across the time series, the enhancer side becomes dynamically more open towards the gene activation time point. Promoter cluster patterns show strong correlations with gene expression signals, whereas Hi-C signals get only slightly stronger towards activation. The code of the framework is available at https://github.com/henriettemiko/TimelessFlex . CONCLUSIONS TimelessFlex clusters time series histone modifications at promoter-enhancer pairs based on Hi-C and it can identify distinct chromatin states at promoter and enhancer feature regions and their changes over time.
Collapse
Affiliation(s)
- Henriette Miko
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
- Department of Computer Science, Humboldt-Universität zu Berlin, 10117, Berlin, Germany
| | - Yunjiang Qiu
- Ludwig Institute for Cancer Research, La Jolla, CA, 92093, USA
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Bjoern Gaertner
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Maike Sander
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Uwe Ohler
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany.
- Department of Computer Science, Humboldt-Universität zu Berlin, 10117, Berlin, Germany.
- Department of Biology, Humboldt-Universität zu Berlin, 10117, Berlin, Germany.
| |
Collapse
|
34
|
Abstract
Histone acetylation is a ubiquitous hallmark of transcription, but whether the link between histone acetylation and transcription is causal or consequential has not been addressed. Using immunoblot and chromatin immunoprecipitation-sequencing in S. cerevisiae, here we show that the majority of histone acetylation is dependent on transcription. This dependency is partially explained by the requirement of RNA polymerase II (RNAPII) for the interaction of H4 histone acetyltransferases (HATs) with gene bodies. Our data also confirms the targeting of HATs by transcription activators, but interestingly, promoter-bound HATs are unable to acetylate histones in the absence of transcription. Indeed, HAT occupancy alone poorly predicts histone acetylation genome-wide, suggesting that HAT activity is regulated post-recruitment. Consistent with this, we show that histone acetylation increases at nucleosomes predicted to stall RNAPII, supporting the hypothesis that this modification is dependent on nucleosome disruption during transcription. Collectively, these data show that histone acetylation is a consequence of RNAPII promoting both the recruitment and activity of histone acetyltransferases.
Collapse
|
35
|
Lidschreiber K, Jung LA, von der Emde H, Dave K, Taipale J, Cramer P, Lidschreiber M. Transcriptionally active enhancers in human cancer cells. Mol Syst Biol 2021; 17:e9873. [PMID: 33502116 PMCID: PMC7838827 DOI: 10.15252/msb.20209873] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/30/2022] Open
Abstract
The growth of human cancer cells is driven by aberrant enhancer and gene transcription activity. Here, we use transient transcriptome sequencing (TT-seq) to map thousands of transcriptionally active putative enhancers in fourteen human cancer cell lines covering seven types of cancer. These enhancers were associated with cell type-specific gene expression, enriched for genetic variants that predispose to cancer, and included functionally verified enhancers. Enhancer-promoter (E-P) pairing by correlation of transcription activity revealed ~ 40,000 putative E-P pairs, which were depleted for housekeeping genes and enriched for transcription factors, cancer-associated genes, and 3D conformational proximity. The cell type specificity and transcription activity of target genes increased with the number of paired putative enhancers. Our results represent a rich resource for future studies of gene regulation by enhancers and their role in driving cancerous cell growth.
Collapse
Affiliation(s)
- Katja Lidschreiber
- Department of Molecular BiologyMax Planck Institute for Biophysical ChemistryGöttingenGermany
- Department of Biosciences and NutritionKarolinska InstitutetNEOHuddingeSweden
| | - Lisa A Jung
- Department of Biosciences and NutritionKarolinska InstitutetNEOHuddingeSweden
- Department of Cell and Molecular BiologyKarolinska InstitutetBiomedicumSolnaSweden
| | - Henrik von der Emde
- Department of Molecular BiologyMax Planck Institute for Biophysical ChemistryGöttingenGermany
| | - Kashyap Dave
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetBiomedicumSolnaSweden
| | - Jussi Taipale
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetBiomedicumSolnaSweden
- Department of BiochemistryUniversity of CambridgeCambridgeUK
- Genome‐Scale Biology ProgramUniversity of HelsinkiHelsinkiFinland
| | - Patrick Cramer
- Department of Molecular BiologyMax Planck Institute for Biophysical ChemistryGöttingenGermany
- Department of Biosciences and NutritionKarolinska InstitutetNEOHuddingeSweden
| | - Michael Lidschreiber
- Department of Molecular BiologyMax Planck Institute for Biophysical ChemistryGöttingenGermany
- Department of Biosciences and NutritionKarolinska InstitutetNEOHuddingeSweden
| |
Collapse
|
36
|
Al-Husini N, Medler S, Ansari A. Crosstalk of promoter and terminator during RNA polymerase II transcription cycle. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194657. [PMID: 33246184 DOI: 10.1016/j.bbagrm.2020.194657] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/16/2022]
Abstract
The transcription cycle of RNAPII is comprised of three consecutive steps; initiation, elongation and termination. It has been assumed that the initiation and termination steps occur in spatial isolation, essentially as independent events. A growing body of evidence, however, has challenged this dogma. First, factors involved in initiation and termination exhibit both a genetic and a physical interaction during transcription. Second, the initiation and termination factors have been found to occupy both ends of a transcribing gene. Third, physical interaction of initiation and termination factors occupying distal ends of a gene sometime results in the entire terminator region of a genes looping back and contact its cognate promoter, thereby forming a looped gene architecture during transcription. A logical interpretation of these findings is that the initiation and termination steps of transcription do not occur in isolation. There is extensive communication of factors occupying promoter and terminator ends of a gene during transcription cycle. This review entails a discussion of the promoter-terminator crosstalk and its implication in the context of transcription.
Collapse
Affiliation(s)
- Nadra Al-Husini
- Department of Biological Science, Wayne State University, Detroit, MI, United States of America
| | - Scott Medler
- Department of Biological Science, Wayne State University, Detroit, MI, United States of America
| | - Athar Ansari
- Department of Biological Science, Wayne State University, Detroit, MI, United States of America.
| |
Collapse
|
37
|
Identification of the human DPR core promoter element using machine learning. Nature 2020; 585:459-463. [PMID: 32908305 PMCID: PMC7501168 DOI: 10.1038/s41586-020-2689-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 06/16/2020] [Indexed: 01/31/2023]
Abstract
The RNA polymerase II (Pol II) core promoter is the strategic site of convergence of the signals that lead to transcription initiation1-5, but the downstream core promoter in humans has been difficult to decipher1-3. Here, we analyze the human Pol II core promoter and use machine learning to generate predictive models for the downstream core promoter region (DPR) and the TATA box. We developed a method termed HARPE (high-throughput analysis of randomized promoter elements) to create hundreds of thousands of DPR (or TATA box) variants that are each of known transcriptional strength. We then analyzed the HARPE data by support vector regression (SVR) to provide comprehensive models for the sequence motifs, and found that the SVR-based approach is more effective than a consensus-based method for predicting transcriptional activity. These studies revealed that the DPR is a functionally important core promoter element that is widely used in human promoters. Importantly, there appears to be a duality between the DPR and TATA box, as many promoters contain one or the other element. More broadly, these findings show that functional DNA motifs can be identified by machine learning analysis of a comprehensive set of sequence variants.
Collapse
|
38
|
Xia B, Yan Y, Baron M, Wagner F, Barkley D, Chiodin M, Kim SY, Keefe DL, Alukal JP, Boeke JD, Yanai I. Widespread Transcriptional Scanning in the Testis Modulates Gene Evolution Rates. Cell 2020; 180:248-262.e21. [PMID: 31978344 DOI: 10.1016/j.cell.2019.12.015] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 09/04/2019] [Accepted: 12/12/2019] [Indexed: 02/07/2023]
Abstract
The testis expresses the largest number of genes of any mammalian organ, a finding that has long puzzled molecular biologists. Our single-cell transcriptomic data of human and mouse spermatogenesis provide evidence that this widespread transcription maintains DNA sequence integrity in the male germline by correcting DNA damage through a mechanism we term transcriptional scanning. We find that genes expressed during spermatogenesis display lower mutation rates on the transcribed strand and have low diversity in the population. Moreover, this effect is fine-tuned by the level of gene expression during spermatogenesis. The unexpressed genes, which in our model do not benefit from transcriptional scanning, diverge faster over evolutionary timescales and are enriched for sensory and immune-defense functions. Collectively, we propose that transcriptional scanning shapes germline mutation signatures and modulates mutation rates in a gene-specific manner, maintaining DNA sequence integrity for the bulk of genes but allowing for faster evolution in a specific subset.
Collapse
Affiliation(s)
- Bo Xia
- Institute for Computational Medicine, NYU Langone Health, New York, NY 10016, USA; Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
| | - Yun Yan
- Institute for Computational Medicine, NYU Langone Health, New York, NY 10016, USA
| | - Maayan Baron
- Institute for Computational Medicine, NYU Langone Health, New York, NY 10016, USA
| | - Florian Wagner
- Institute for Computational Medicine, NYU Langone Health, New York, NY 10016, USA
| | - Dalia Barkley
- Institute for Computational Medicine, NYU Langone Health, New York, NY 10016, USA
| | - Marta Chiodin
- Institute for Computational Medicine, NYU Langone Health, New York, NY 10016, USA
| | - Sang Y Kim
- Department of Pathology, NYU Langone Health, New York, NY 10016, USA
| | - David L Keefe
- Department of Obstetrics and Gynecology, NYU Langone Health, New York, NY 10016, USA
| | - Joseph P Alukal
- Department of Obstetrics and Gynecology, NYU Langone Health, New York, NY 10016, USA
| | - Jef D Boeke
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA; Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
| | - Itai Yanai
- Institute for Computational Medicine, NYU Langone Health, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA.
| |
Collapse
|
39
|
Qiu C, Jin H, Vvedenskaya I, Llenas JA, Zhao T, Malik I, Visbisky AM, Schwartz SL, Cui P, Čabart P, Han KH, Lai WKM, Metz RP, Johnson CD, Sze SH, Pugh BF, Nickels BE, Kaplan CD. Universal promoter scanning by Pol II during transcription initiation in Saccharomyces cerevisiae. Genome Biol 2020; 21:132. [PMID: 32487207 PMCID: PMC7265651 DOI: 10.1186/s13059-020-02040-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 05/08/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The majority of eukaryotic promoters utilize multiple transcription start sites (TSSs). How multiple TSSs are specified at individual promoters across eukaryotes is not understood for most species. In Saccharomyces cerevisiae, a pre-initiation complex (PIC) comprised of Pol II and conserved general transcription factors (GTFs) assembles and opens DNA upstream of TSSs. Evidence from model promoters indicates that the PIC scans from upstream to downstream to identify TSSs. Prior results suggest that TSS distributions at promoters where scanning occurs shift in a polar fashion upon alteration in Pol II catalytic activity or GTF function. RESULTS To determine the extent of promoter scanning across promoter classes in S. cerevisiae, we perturb Pol II catalytic activity and GTF function and analyze their effects on TSS usage genome-wide. We find that alterations to Pol II, TFIIB, or TFIIF function widely alter the initiation landscape consistent with promoter scanning operating at all yeast promoters, regardless of promoter class. Promoter architecture, however, can determine the extent of promoter sensitivity to altered Pol II activity in ways that are predicted by a scanning model. CONCLUSIONS Our observations coupled with previous data validate key predictions of the scanning model for Pol II initiation in yeast, which we term the shooting gallery. In this model, Pol II catalytic activity and the rate and processivity of Pol II scanning together with promoter sequence determine the distribution of TSSs and their usage.
Collapse
Affiliation(s)
- Chenxi Qiu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA
- Present Address: Department of Medicine, Division of Translational Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Huiyan Jin
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA
| | - Irina Vvedenskaya
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854, USA
- Department of Genetics, Rutgers University, Piscataway, NJ, 08854, USA
| | - Jordi Abante Llenas
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843-3128, USA
- Present Address: Whitaker Biomedical Engineering Institute, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Tingting Zhao
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Indranil Malik
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA
- Present Address: Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alex M Visbisky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Scott L Schwartz
- Genomics and Bioinformatics Service, Texas A&M AgriLife, College Station, TX, 77845, USA
| | - Ping Cui
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA
| | - Pavel Čabart
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA
- Present Address: First Faculty of Medicine, Charles University, BIOCEV, 252 42, Vestec, Czech Republic
| | - Kang Hoo Han
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA, 16802, USA
| | - William K M Lai
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA, 16802, USA
- Present Address: Department of Molecular Biology and Genetics, 458 Biotechnology, Cornell University, New York, 14853, USA
| | - Richard P Metz
- Genomics and Bioinformatics Service, Texas A&M AgriLife, College Station, TX, 77845, USA
| | - Charles D Johnson
- Genomics and Bioinformatics Service, Texas A&M AgriLife, College Station, TX, 77845, USA
| | - Sing-Hoi Sze
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX, 77843-3127, USA
| | - B Franklin Pugh
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA, 16802, USA
- Present Address: Department of Molecular Biology and Genetics, 458 Biotechnology, Cornell University, New York, 14853, USA
| | - Bryce E Nickels
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854, USA
- Department of Genetics, Rutgers University, Piscataway, NJ, 08854, USA
| | - Craig D Kaplan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
40
|
Abstract
RNA polymerase II (Pol II) transcribes all protein-coding genes and many noncoding RNAs in eukaryotic genomes. Although Pol II is a complex, 12-subunit enzyme, it lacks the ability to initiate transcription and cannot consistently transcribe through long DNA sequences. To execute these essential functions, an array of proteins and protein complexes interact with Pol II to regulate its activity. In this review, we detail the structure and mechanism of over a dozen factors that govern Pol II initiation (e.g., TFIID, TFIIH, and Mediator), pausing, and elongation (e.g., DSIF, NELF, PAF, and P-TEFb). The structural basis for Pol II transcription regulation has advanced rapidly in the past decade, largely due to technological innovations in cryoelectron microscopy. Here, we summarize a wealth of structural and functional data that have enabled a deeper understanding of Pol II transcription mechanisms; we also highlight mechanistic questions that remain unanswered or controversial.
Collapse
Affiliation(s)
- Allison C Schier
- Department of Biochemistry, University of Colorado, Boulder, Colorado 80303, USA
| | - Dylan J Taatjes
- Department of Biochemistry, University of Colorado, Boulder, Colorado 80303, USA
| |
Collapse
|
41
|
Cardiello JF, Sanchez GJ, Allen MA, Dowell RD. Lessons from eRNAs: understanding transcriptional regulation through the lens of nascent RNAs. Transcription 2019; 11:3-18. [PMID: 31856658 DOI: 10.1080/21541264.2019.1704128] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nascent transcription assays, such as global run-on sequencing (GRO-seq) and precision run-on sequencing (PRO-seq), have uncovered a myriad of unstable RNAs being actively produced from numerous sites genome-wide. These transcripts provide a more complete and immediate picture of the impact of regulatory events. Transcription factors recruit RNA polymerase II, effectively initiating the process of transcription; repressors inhibit polymerase recruitment. Efficiency of recruitment is dictated by sequence elements in and around the RNA polymerase loading zone. A combination of sequence elements and RNA binding proteins subsequently influence the ultimate stability of the resulting transcript. Some of these transcripts are capable of providing feedback on the process, influencing subsequent transcription. By monitoring RNA polymerase activity, nascent assays provide insights into every step of the regulated process of transcription.
Collapse
Affiliation(s)
| | - Gilson J Sanchez
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Mary A Allen
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Robin D Dowell
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA.,Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, USA
| |
Collapse
|
42
|
Garland W, Jensen TH. Nuclear sorting of RNA. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 11:e1572. [PMID: 31713323 DOI: 10.1002/wrna.1572] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 12/27/2022]
Abstract
The majority of the mammalian genome is transcribed by RNA polymerase II, yielding a vast amount of noncoding RNA (ncRNA) in addition to the standard production of mRNA. The typical nuclear biogenesis of mRNA relies on the tightly controlled coupling of co- and post-transcriptional processing events, which ultimately results in the export of transcripts into the cytoplasm. These processes are subject to surveillance by nuclear RNA decay pathways to prevent the export of aberrant, or otherwise "non-optimal," transcripts. However, unlike mRNA, many long ncRNAs are nuclear retained and those that maintain enduring functions must employ precautions to evade decay. Proper sorting and localization of RNA is therefore an essential activity in eukaryotic cells and the formation of ribonucleoprotein complexes during early stages of RNA synthesis is central to deciding such transcript fate. This review details our current understanding of the pathways and factors that direct RNAs towards a particular destiny and how transcripts combat the adverse conditions of the nucleus. This article is categorized under: RNA Export and Localization > Nuclear Export/Import RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- William Garland
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C., Denmark
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C., Denmark
| |
Collapse
|
43
|
R-Loops Promote Antisense Transcription across the Mammalian Genome. Mol Cell 2019; 76:600-616.e6. [PMID: 31679819 PMCID: PMC6868509 DOI: 10.1016/j.molcel.2019.10.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 08/14/2019] [Accepted: 09/30/2019] [Indexed: 11/25/2022]
Abstract
Widespread antisense long noncoding RNA (lncRNA) overlap with many protein-coding genes in mammals and emanate from gene promoter, enhancer, and termination regions. However, their origin and biological purpose remain unclear. We show that these antisense lncRNA can be generated by R-loops that form when nascent transcript invades the DNA duplex behind elongating RNA polymerase II (Pol II). Biochemically, R-loops act as intrinsic Pol II promoters to induce de novo RNA synthesis. Furthermore, their removal across the human genome by RNase H1 overexpression causes the selective reduction of antisense transcription. Consequently, we predict that R-loops act to facilitate the synthesis of many gene proximal antisense lncRNA. Not only are R-loops widely associated with DNA damage and repair, but we now show that they have the capacity to promote de novo transcript synthesis that may have aided the evolution of gene regulation. R-loops formed within plasmids promote antisense transcription in nuclear extracts TSS of lncRNA and eRNA are often near R-loop structures and sensitive to RNase H1 Preinitiation complexes associated with lncRNA synthesis are R-loop dependent Many mammalian lncRNA derive from R-loop promoter activity
Collapse
|
44
|
Duttke SH, Chang MW, Heinz S, Benner C. Identification and dynamic quantification of regulatory elements using total RNA. Genome Res 2019; 29:1836-1846. [PMID: 31649059 PMCID: PMC6836739 DOI: 10.1101/gr.253492.119] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 09/23/2019] [Indexed: 12/30/2022]
Abstract
The spatial and temporal regulation of transcription initiation is pivotal for controlling gene expression. Here, we introduce capped-small RNA-seq (csRNA-seq), which uses total RNA as starting material to detect transcription start sites (TSSs) of both stable and unstable RNAs at single-nucleotide resolution. csRNA-seq is highly sensitive to acute changes in transcription and identifies an order of magnitude more regulated transcripts than does RNA-seq. Interrogating tissues from species across the eukaryotic kingdoms identified unstable transcripts resembling enhancer RNAs, pri-miRNAs, antisense transcripts, and promoter upstream transcripts in multicellular animals, plants, and fungi spanning 1.6 billion years of evolution. Integration of epigenomic data from these organisms revealed that histone H3 trimethylation (H3K4me3) was largely confined to TSSs of stable transcripts, whereas H3K27ac marked nucleosomes downstream from all active TSSs, suggesting an ancient role for posttranslational histone modifications in transcription. Our findings show that total RNA is sufficient to identify transcribed regulatory elements and capture the dynamics of initiated stable and unstable transcripts at single-nucleotide resolution in eukaryotes.
Collapse
Affiliation(s)
- Sascha H Duttke
- Department of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Max W Chang
- Department of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Sven Heinz
- Department of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Christopher Benner
- Department of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
45
|
Rennie S, Dalby M, Lloret-Llinares M, Bakoulis S, Dalager Vaagensø C, Heick Jensen T, Andersson R. Transcription start site analysis reveals widespread divergent transcription in D. melanogaster and core promoter-encoded enhancer activities. Nucleic Acids Res 2019; 46:5455-5469. [PMID: 29659982 PMCID: PMC6009668 DOI: 10.1093/nar/gky244] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/22/2018] [Indexed: 12/19/2022] Open
Abstract
Mammalian gene promoters and enhancers share many properties. They are composed of a unified promoter architecture of divergent transcripton initiation and gene promoters may exhibit enhancer function. However, it is currently unclear how expression strength of a regulatory element relates to its enhancer strength and if the unifying architecture is conserved across Metazoa. Here we investigate the transcription initiation landscape and its associated RNA decay in Drosophila melanogaster. We find that the majority of active gene-distal enhancers and a considerable fraction of gene promoters are divergently transcribed. We observe quantitative relationships between enhancer potential, expression level and core promoter strength, providing an explanation for indirectly related histone modifications that are reflecting expression levels. Lowly abundant unstable RNAs initiated from weak core promoters are key characteristics of gene-distal developmental enhancers, while the housekeeping enhancer strengths of gene promoters reflect their expression strengths. The seemingly separable layer of regulation by gene promoters with housekeeping enhancer potential is also indicated by chromatin interaction data. Our results suggest a unified promoter architecture of many D. melanogaster regulatory elements, that is universal across Metazoa, whose regulatory functions seem to be related to their core promoter elements.
Collapse
Affiliation(s)
- Sarah Rennie
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Maria Dalby
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Marta Lloret-Llinares
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Allé 3, Building 1130, 8000 Aarhus C, Denmark
| | - Stylianos Bakoulis
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Christian Dalager Vaagensø
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Allé 3, Building 1130, 8000 Aarhus C, Denmark
| | - Robin Andersson
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| |
Collapse
|
46
|
Abstract
Cap Analysis of Gene Expression (CAGE) is one of the most popular 5'-end sequencing methods. In a single experiment, CAGE can be used to locate and quantify the expression of both Transcription Start Sites (TSSs) and enhancers. This is workflow is a case study on how to use the CAGEfightR package to orchestrate analysis of CAGE data within the Bioconductor project. This workflow starts from BigWig-files and covers both basic CAGE analyses such as identifying, quantifying and annotating TSSs and enhancers, advanced analysis such as finding interacting TSS-enhancer pairs and enhancer clusters, to differential expression analysis and alternative TSS usage. R-code, discussion and references are intertwined to help provide guidelines for future CAGE studies of the same kind.
Collapse
Affiliation(s)
- Malte Thodberg
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
- Section for Computational and RNA Biology, University of Copenhagen, Copenhagen, Denmark
| | - Albin Sandelin
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
- Section for Computational and RNA Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
47
|
Liu YT, Xu L, Bennett L, Hooks JC, Liu J, Zhou Q, Liem P, Zheng Y, Skapek SX. Identification of De Novo Enhancers Activated by TGFβ to Drive Expression of CDKN2A and B in HeLa Cells. Mol Cancer Res 2019; 17:1854-1866. [PMID: 31189690 DOI: 10.1158/1541-7786.mcr-19-0289] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/01/2019] [Accepted: 06/07/2019] [Indexed: 02/06/2023]
Abstract
Disruption of the CDKN2A (INK4A/ARF) and B (INK4B) genes, which encode three function-independent tumor suppressors, is one of the most common events in human cancer. Because their relative importance in tumor prevention appears to be species- and context-specific, studying their regulation can shed light on mechanisms by which they are bypassed in malignant transformation. We previously unveiled a new pathway in which TGFβ selectively induces Arf at mouse Cdkn2a in eye development and cultured fibroblasts. As TGFβ signaling is often derailed in cancer development or progression, we investigated its control of CDKN2A/B in human cancer. Computational analyses of sequencing and array data from nearly 11,000 patients with cancer in TCGA showed discordant expression of ARF and INK4A in most cancer subtypes, with gene copy-number loss and promoter methylation involved in only a subset. Using HeLa cells as a model, we found that exogenous TGFβ induced ARF mRNA and protein, and ARF knockdown limited TGFβ-mediated growth suppression. TGFβ-mediated ARF mRNA induction required SMAD2/3, p38MAPK, and SP1, and ARF mRNA was induced without added RNAPII recruitment. Chromatin immunoprecipitation unveiled a remote enhancer element engaged by TGFβ by a mechanism that partially depended on p38MAPK. CRISPR-based editing of this enhancer limited induction of ARF and INK4B by TGFβ, but not by oncogenic RAS. IMPLICATIONS: Our findings reveal new molecular mechanisms by which CDKN2A/B regulation is coupled to external cues, and those findings represent entry points to further explore pharmacologic strategies to restore their expression in cancer.
Collapse
Affiliation(s)
- Yen-Ting Liu
- Division of Hematology/Oncology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Lin Xu
- Division of Hematology/Oncology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas.,Quantitative Biomedical Research Center, Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Lynda Bennett
- Division of Hematology/Oncology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jared C Hooks
- Division of Hematology/Oncology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jing Liu
- Division of Hematology/Oncology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Qinbo Zhou
- Quantitative Biomedical Research Center, Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Priscilla Liem
- Division of Hematology/Oncology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yanbin Zheng
- Division of Hematology/Oncology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Stephen X Skapek
- Division of Hematology/Oncology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas. .,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
48
|
Namba S, Sato K, Kojima S, Ueno T, Yamamoto Y, Tanaka Y, Inoue S, Nagae G, Iinuma H, Hazama S, Ishihara S, Aburatani H, Mano H, Kawazu M. Differential regulation of CpG island methylation within divergent and unidirectional promoters in colorectal cancer. Cancer Sci 2019; 110:1096-1104. [PMID: 30637877 PMCID: PMC6398885 DOI: 10.1111/cas.13937] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/26/2018] [Accepted: 12/28/2018] [Indexed: 12/11/2022] Open
Abstract
The silencing of tumor suppressor genes by promoter CpG island (CGI) methylation is an important cause of oncogenesis. Silencing of MLH1 and BRCA1, two examples of oncogenic events, results from promoter CGI methylation. Interestingly, both MLH1 and BRCA1 have a divergent promoter, from which another gene on the opposite strand is also transcribed. Although studies have shown that divergent transcription is an important factor in transcriptional regulation, little is known about its implication in aberrant promoter methylation in cancer. In this study, we analyzed the methylation status of CGI in divergent promoters using a recently enriched transcriptome database. We measured the extent of CGI methylation in 119 colorectal cancer (CRC) clinical samples (65 microsatellite instability high [MSI‐H] CRC with CGI methylator phenotype, 28 MSI‐H CRC without CGI methylator phenotype and 26 microsatellite stable CRC) and 21 normal colorectal tissues using Infinium MethylationEPIC BeadChip. We found that CGI within divergent promoters are less frequently methylated than CGI within unidirectional promoters in normal cells. In the genome of CRC cells, CGI within unidirectional promoters are more vulnerable to aberrant methylation than CGI within divergent promoters. In addition, we identified three DNA sequence motifs that correlate with methylated CGI. We also showed that methylated CGI are associated with genes whose expression is low in normal cells. Thus, we here provide fundamental observations regarding the methylation of divergent promoters that are essential for the understanding of carcinogenesis and development of cancer prevention strategies.
Collapse
Affiliation(s)
- Shinichi Namba
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Kazuhito Sato
- Department of Surgical Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shinya Kojima
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Toshihide Ueno
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Yoko Yamamoto
- Department of Surgical Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yosuke Tanaka
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Satoshi Inoue
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Genta Nagae
- Genome Science Division, Research Center for Advanced Science and Technologies, The University of Tokyo, Tokyo, Japan
| | - Hisae Iinuma
- Department of Surgery, Teikyo University School of Medicine, Tokyo, Japan
| | - Shoichi Hazama
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Soichiro Ishihara
- Department of Surgical Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technologies, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Mano
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Masahito Kawazu
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
49
|
Wang Z, Chu T, Choate LA, Danko CG. Identification of regulatory elements from nascent transcription using dREG. Genome Res 2019; 29:293-303. [PMID: 30573452 PMCID: PMC6360809 DOI: 10.1101/gr.238279.118] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 12/18/2018] [Indexed: 02/02/2023]
Abstract
Our genomes encode a wealth of transcription initiation regions (TIRs) that can be identified by their distinctive patterns of actively elongating RNA polymerase. We previously introduced dREG to identify TIRs using PRO-seq data. Here, we introduce an efficient new implementation of dREG that uses PRO-seq data to identify both uni- and bidirectionally transcribed TIRs with 70% improvement in accuracy, three- to fourfold higher resolution, and >100-fold increases in computational efficiency. Using a novel strategy to identify TIRs based on their statistical confidence reveals extensive overlap with orthogonal assays, yet also reveals thousands of additional weakly transcribed TIRs that were not identified by H3K27ac ChIP-seq or DNase-seq. Novel TIRs discovered by dREG were often associated with RNA polymerase III initiation, bound by pioneer transcription factors, or located in broad domains marked by repressive chromatin modifications. Our results suggest that transcription initiation can be a powerful tool for expanding the catalog of functional elements.
Collapse
Affiliation(s)
- Zhong Wang
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
| | - Tinyi Chu
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
- Graduate Field of Computational Biology, Cornell University, Ithaca, New York 14853, USA
| | - Lauren A Choate
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
| | - Charles G Danko
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
50
|
Weingarten-Gabbay S, Nir R, Lubliner S, Sharon E, Kalma Y, Weinberger A, Segal E. Systematic interrogation of human promoters. Genome Res 2019; 29:171-183. [PMID: 30622120 PMCID: PMC6360817 DOI: 10.1101/gr.236075.118] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 12/05/2018] [Indexed: 12/19/2022]
Abstract
Despite much research, our understanding of the architecture and cis-regulatory elements of human promoters is still lacking. Here, we devised a high-throughput assay to quantify the activity of approximately 15,000 fully designed sequences that we integrated and expressed from a fixed location within the human genome. We used this method to investigate thousands of native promoters and preinitiation complex (PIC) binding regions followed by in-depth characterization of the sequence motifs underlying promoter activity, including core promoter elements and TF binding sites. We find that core promoters drive transcription mostly unidirectionally and that sequences originating from promoters exhibit stronger activity than those originating from enhancers. By testing multiple synthetic configurations of core promoter elements, we dissect the motifs that positively and negatively regulate transcription as well as the effect of their combinations and distances, including a 10-bp periodicity in the optimal distance between the TATA and the initiator. By comprehensively screening 133 TF binding sites, we find that in contrast to core promoters, TF binding sites maintain similar activity levels in both orientations, supporting a model by which divergent transcription is driven by two distinct unidirectional core promoters sharing bidirectional TF binding sites. Finally, we find a striking agreement between the effect of binding site multiplicity of individual TFs in our assay and their tendency to appear in homotypic clusters throughout the genome. Overall, our study systematically assays the elements that drive expression in core and proximal promoter regions and sheds light on organization principles of regulatory regions in the human genome.
Collapse
Affiliation(s)
- Shira Weingarten-Gabbay
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel.,Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ronit Nir
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel.,Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shai Lubliner
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel.,Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Eilon Sharon
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel.,Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yael Kalma
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel.,Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Adina Weinberger
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel.,Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Eran Segal
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel.,Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|