1
|
Kim SY, Tang M, Chih SY, Sallavanti J, Gao Y, Qiu Z, Wang HG, Li W. Involvement of p38 MAPK and MAPKAPK2 in promoting cell death and the inflammatory response to ischemic stress associated with necrotic glioblastoma. Cell Death Dis 2025; 16:12. [PMID: 39805854 PMCID: PMC11729867 DOI: 10.1038/s41419-025-07335-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/09/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025]
Abstract
The association of necrosis in tumors with poor prognosis implies a potential tumor-promoting role. However, the mechanisms underlying cell death in this context and how damaged tissue contributes to tumor progression remain unclear. Here, we identified p38 mitogen-activated protein kinases (p38 MAPK, a.k.a. p38) as a key player in promoting cell death and the inflammatory response to ischemic stress associated with necrotic tumors. We found that glioblastoma (GBM) cells expressing patient-derived Kirsten rat sarcoma (KRAS) or phosphoinositide-3-kinase (PI3K) active mutants showed enhanced cell death under ischemia-mimetic conditions in vitro and were more likely to develop into necrotic tumors in vivo. Cell death in both settings depended on p38, which is also required for tumor progression driven by KRAS or PI3K. Under ischemia-mimetic conditions, GBM cells undergo reactive oxygen species (ROS)-dependent cell death. Gene expression in these cells recapitulated multiple features observed in peri-necrotic tumors from patient GBM. Further studies showed the involvement of a positive feedback loop between the p38-MAPK-activated protein kinase 2 (MAPKAPK2, a.k.a. MK2) signaling axis and the unfolded protein response signaling components activating transcription factor 4 (ATF4) and inositol-requiring enzyme 1 (IRE1α) in driving ischemic tumor cell death. This signaling cascade was further potentiated by RAS or PI3K activation under ischemic conditions, contributing to the inflammatory gene expression response. Therefore, our study suggests that p38 could be targeted to relieve the inflammatory response in necrotic tumors and inhibit GBM progression.
Collapse
Affiliation(s)
- Soo Yeon Kim
- Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
| | - Miaolu Tang
- Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
| | - Stephen Y Chih
- Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
- Medical Scientist Training Program, Penn State College of Medicine, Hershey, PA, USA
| | - Jessica Sallavanti
- Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
| | - Yan Gao
- Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
| | - Zhiqiang Qiu
- Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
| | - Hong-Gang Wang
- Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
- Penn State Cancer Institute, Penn State College of Medicine, Hershey, PA, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| | - Wei Li
- Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA.
- Penn State Cancer Institute, Penn State College of Medicine, Hershey, PA, USA.
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, USA.
| |
Collapse
|
2
|
Hou A, Xu X, Zhang Y, He H, Feng Y, Fan W, Tan R, Gong L, Chen J. Excessive fatty acids activate PRMT5/MDM2/Drosha pathway to regulate miRNA biogenesis and lipid metabolism. Liver Int 2024; 44:1634-1650. [PMID: 38517158 DOI: 10.1111/liv.15906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/26/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Excessive fatty acids in the liver lead to the accumulation of lipotoxic lipids and then cellular stress to further evoke the related disease, like non-alcoholic fatty liver disease (NAFLD). As reported, fatty acid stimulation can cause some specific miRNA dysregulation, which caused us to investigate the relationship between miRNA biogenesis and fatty acid overload. METHODS Gene expression omnibus (GEO) dataset analysis, miRNA-seq, miRNA cleavage assay, RT-qPCR, western blotting, immunofluorescence and co-immunoprecipitation (co-IP) were used to reveal the change of miRNAs under pathological status and explore the relevant mechanism. High fat, high fructose, high cholesterol (HFHFrHC) diet-fed mice transfected with AAV2/8-shDrosha or AAV2/8-shPRMT5 were established to investigate the in vivo effects of Drosha or PRMT5 on NAFLD phenotype. RESULTS We discovered that the cleavage of miRNAs was inhibited by analysing miRNA contents and detecting some representative pri-miRNAs in multiple mouse and cell models, which was further verified by the reduction of the Microprocessor activity in the presence of palmitic acid (PA). In vitro, PA could induce Drosha, the core RNase III in the Microprocessor complex, degrading through the proteasome-mediated pathway, while in vivo, knockdown of Drosha significantly promoted NAFLD to develop to a more serious stage. Mechanistically, our results demonstrated that PA can increase the methyltransferase activity of PRMT5 to degrade Drosha through MDM2, a ubiquitin E3 ligase for Drosha. The above results indicated that PRMT5 may be a critical regulator in lipid metabolism during NAFLD, which was confirmed by the knocking down of PRMT5 improved aberrant lipid metabolism in vitro and in vivo. CONCLUSIONS We first demonstrated the relationship between miRNA dosage and NAFLD and proved that PA can activate the PRMT5-MDM2-Drosha signalling pathway to regulate miRNA biogenesis.
Collapse
Affiliation(s)
- Aijun Hou
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoding Xu
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Zhang
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Hongxiu He
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yihan Feng
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Wenhui Fan
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Rongrong Tan
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Likun Gong
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Chen
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Tadesse K, Benhamou RI. Targeting MicroRNAs with Small Molecules. Noncoding RNA 2024; 10:17. [PMID: 38525736 PMCID: PMC10961812 DOI: 10.3390/ncrna10020017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/07/2024] [Accepted: 03/10/2024] [Indexed: 03/26/2024] Open
Abstract
MicroRNAs (miRs) have been implicated in numerous diseases, presenting an attractive target for the development of novel therapeutics. The various regulatory roles of miRs in cellular processes underscore the need for precise strategies. Recent advances in RNA research offer hope by enabling the identification of small molecules capable of selectively targeting specific disease-associated miRs. This understanding paves the way for developing small molecules that can modulate the activity of disease-associated miRs. Herein, we discuss the progress made in the field of drug discovery processes, transforming the landscape of miR-targeted therapeutics by small molecules. By leveraging various approaches, researchers can systematically identify compounds to modulate miR function, providing a more potent intervention either by inhibiting or degrading miRs. The implementation of these multidisciplinary approaches bears the potential to revolutionize treatments for diverse diseases, signifying a significant stride towards the targeting of miRs by precision medicine.
Collapse
Affiliation(s)
| | - Raphael I. Benhamou
- The Institute for Drug Research of the School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| |
Collapse
|
4
|
Noguchi S, Ohkura S, Negishi Y, Tozawa S, Takizawa T, Morita R, Takahashi H, Ohkuchi A, Takizawa T. Cytoplasmic and nuclear DROSHA in human villous trophoblasts. J Reprod Immunol 2024; 162:104189. [PMID: 38241848 DOI: 10.1016/j.jri.2023.104189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 01/21/2024]
Abstract
In villous trophoblasts, DROSHA is a key ribonuclease III enzyme that processes pri-microRNAs (pri-miRNAs) into pre-miRNAs at the placenta-specific, chromosome 19 miRNA cluster (C19MC) locus. However, little is known of its other functions. We performed formaldehyde crosslinking, immunoprecipitation, and sequencing (fCLIP-seq) analysis of terminal chorionic villi to identify DROSHA-binding RNAs in villous trophoblasts. In villous trophoblasts, DROSHA predominantly generated placenta-specific C19MC pre-miRNAs, including antiviral C19MC pre-miRNAs. The fCLIP-seq analysis also identified non-miRNA transcripts with hairpin structures potentially capable of binding to DROSHA (e.g., SNORD100 and VTRNA1-1). Moreover, in vivo immunohistochemical analysis revealed DROSHA in the cytoplasm of villous trophoblasts. DROSHA was abundant in the cytoplasm of villous trophoblasts, particularly in the apical region of syncytiotrophoblast, in the full-term placenta. Furthermore, in BeWo trophoblasts infected with Sindbis virus (SINV), DROSHA translocated to the cytoplasm and recognized the genomic RNA of SINV. Therefore, in trophoblasts, DROSHA not only regulates RNA metabolism, including the biogenesis of placenta-specific miRNAs, but also recognizes viral RNAs. After SINV infection, BeWo DROSHA-binding VTRNA1-1 was significantly upregulated, and cellular VTRNA1-1 was significantly downregulated, suggesting that DROSHA soaks up VTRNA1-1 in response to viral infection. These results suggest that the DROSHA-mediated recognition of RNAs defends against viral infection in villous trophoblasts. Our data provide insight into the antiviral functions of DROSHA in villous trophoblasts of the human placenta.
Collapse
Affiliation(s)
- Syunya Noguchi
- Department of Molecular Medicine and Anatomy, Nippon Medical School, Tokyo 113-8602, Japan
| | - Sadayuki Ohkura
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Yasuyuki Negishi
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Shohei Tozawa
- Department of Molecular Medicine and Anatomy, Nippon Medical School, Tokyo 113-8602, Japan; Department of Obstetrics and Gynecology, Jichi Medical University, Tochigi 329-0498, Japan
| | - Takami Takizawa
- Department of Molecular Medicine and Anatomy, Nippon Medical School, Tokyo 113-8602, Japan
| | - Rimpei Morita
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Hironori Takahashi
- Department of Obstetrics and Gynecology, Jichi Medical University, Tochigi 329-0498, Japan
| | - Akihide Ohkuchi
- Department of Obstetrics and Gynecology, Jichi Medical University, Tochigi 329-0498, Japan
| | - Toshihiro Takizawa
- Department of Molecular Medicine and Anatomy, Nippon Medical School, Tokyo 113-8602, Japan.
| |
Collapse
|
5
|
Singh K, Sharma D, Bhagat PK, Tayyeba S, Noryang S, Sinha AK. Phosphorylation of AGO1a by MAP kinases is required for miRNA mediated resistance against Xanthomonas oryzae pv. oryzae infection in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 340:111967. [PMID: 38154578 DOI: 10.1016/j.plantsci.2023.111967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/15/2023] [Accepted: 12/23/2023] [Indexed: 12/30/2023]
Abstract
Bacterial leaf blight is a devastating disease caused by Xanthomonas oryzae pv. oryzae (Xoo) which causes severe crop loss in rice. The molecular mechanism that initiates defense against such pathogens remains unexplored. Reports have suggested crucial role of several miRNAs in regulating immune responses in plants. Argonaute (AGO) proteins have been implicated in imparting immunity against pathogens by using small RNAs as guide molecules. Here, we show that phosphorylation of rice AGO1a by MAP kinases is required for miRNA expression regulation during Xoo infection. AGO1a is induced in response to pathogen infection and is under the control of SA signaling pathway. The pathogen responsive MAP kinases MPK3, MPK4 and MPK6, interact with AGO1a in planta and can phosphorylate the protein in vitro. Overexpression of AGO1a extends disease resistance against Xoo in rice and leads to a higher accumulation of miRNAs. Conversely, overexpression of a non phosphorylatable mutant protein aggravates disease susceptibility and remarkably suppresses the miRNA expression levels. At a molecular level, phosphorylation of AGO1a by MAP kinase is required for increased accumulation of miRNAs during pathogen challenge. Taken together, the data suggests that OsAGO1a is a direct phosphorylation target of MAP kinases and this phosphorylation is crucial for its role in imparting disease resistance.
Collapse
Affiliation(s)
- Kirti Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Deepika Sharma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Prakash Kumar Bhagat
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India; School of Biological and Biomedical Sciences, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Sumaira Tayyeba
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India; Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, USA
| | - Stanzin Noryang
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India; Biochemistry Department, Elizer Joldan Memorial College, UT Ladakh 194101, India
| | - Alok Krishna Sinha
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
6
|
Chen K, Li M, Tang Y, Lu Z. Mitochondrial reactive oxygen species initiate gasdermin D-mediated pyroptosis and contribute to paraquat-induced nephrotoxicity. Chem Biol Interact 2024; 390:110873. [PMID: 38237652 DOI: 10.1016/j.cbi.2024.110873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/06/2024] [Accepted: 01/14/2024] [Indexed: 01/22/2024]
Abstract
Paraquat (PQ)-induced acute kidney injury (AKI) progresses rapidly and is associated with high mortality rates; however, no specific antidote for PQ has been identified. Poor understanding of toxicological mechanisms underlying PQ has hindered the development of suitable treatments to combat PQ exposure. Gasdermin D (GSDMD), a key executor of pyroptosis, has recently been shown to enhance nephrotoxicity in drug-induced AKI. To explore the role of pyroptosis in PQ-induced AKI, the plasma membrane damage of the cells was detected by LDH release assay. Western blot was performed to detect the cleavage of GSDMD. RNA sequencing analysis was performed to explore the mechanism of PQ induced nephrotoxicity. Herein, we demonstrated that PQ could induce pyroptosis in HK-2 cells and nephridial tissues. Mechanistically, PQ initiated GSDMD cleavage, and GSDMD knockout attenuated PQ-induced nephrotoxicity in vivo. Further analysis revealed that the accumulation of mitochondrial reactive oxygen species (ROS) induced p38 activation, contributing to PQ-induced pyroptosis. Furthermore, mitoquinone, a mitochondria-targeted antioxidant, reduced mitochondrial ROS levels and inhibited pyroptosis. Collectively, these findings provide insights into the role of GSDMD-dependent pyroptosis as a novel mechanism of PQ-induced AKI.
Collapse
Affiliation(s)
- Kaiyuan Chen
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, 325000, China
| | - Mengxuan Li
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, 325000, China
| | - Yahui Tang
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, 325000, China.
| | - Zhongqiu Lu
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, 325000, China.
| |
Collapse
|
7
|
Huang L, Xia L, Nie T, Cui B, Lu J, Lu F, Fan F, Ren D, Lu Y, Gao G, Yang Q. Maintaining Drosha expression with Cdk5 inhibitors as a potential therapeutic strategy for early intervention after TBI. Exp Mol Med 2024; 56:210-219. [PMID: 38200156 PMCID: PMC10834983 DOI: 10.1038/s12276-023-01152-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/23/2023] [Accepted: 10/26/2023] [Indexed: 01/12/2024] Open
Abstract
Traumatic brain injury (TBI) is a major cause of death and disability in adults. The pathological process of TBI involves a multifactorial cascade in which kinases have been proven contribute to interactions between relevant factors and amplification of signaling cascades. Cyclin-dependent kinase 5 (Cdk5) is a promising kinase that has been implicated in various brain disorders, including TBI. However, the mechanism by which Cdk5 induces neuronal damage remains unclear. Here, we show for the first time that Drosha, a key enzyme in microRNA biogenesis, is a pivotal substrate of abnormally activated Cdk5. Cdk5-mediated phosphorylation decreases Drosha expression and exacerbates nerve injury in TBI. We proved that maintaining Drosha expression via the administration of repurposed Cdk5 inhibitors that were previously studied in clinical trials is a promising approach for the early treatment of TBI. Together, our work identifies Drosha as a novel target for neuroprotective strategies after TBI and suggests Cdk5-mediated regulation of Drosha expression as a potential therapeutic strategy for early TBI intervention.
Collapse
Affiliation(s)
- Lu Huang
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
- Department of Anesthesiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Li Xia
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Tiejian Nie
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Bozhou Cui
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Jianjun Lu
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Fangfang Lu
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Feiyan Fan
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Dongni Ren
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Yuan Lu
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Guodong Gao
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Qian Yang
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China.
| |
Collapse
|
8
|
Paudel B, Jeong SY, Martinez CP, Rickman A, Haluck-Kangas A, Bartom ET, Fredriksen K, Affaneh A, Kessler JA, Mazzulli JR, Murmann AE, Rogalski E, Geula C, Ferreira A, Heckmann BL, Green DR, Sadleir KR, Vassar R, Peter ME. Death Induced by Survival gene Elimination (DISE) correlates with neurotoxicity in Alzheimer's disease and aging. Nat Commun 2024; 15:264. [PMID: 38238311 PMCID: PMC10796375 DOI: 10.1038/s41467-023-44465-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 12/13/2023] [Indexed: 01/22/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by progressive neurodegeneration, but the specific events that cause cell death remain poorly understood. Death Induced by Survival gene Elimination (DISE) is a cell death mechanism mediated by short (s) RNAs acting through the RNA-induced silencing complex (RISC). DISE is thus a form of RNA interference, in which G-rich 6mer seed sequences in the sRNAs (position 2-7) target hundreds of C-rich 6mer seed matches in genes essential for cell survival, resulting in the activation of cell death pathways. Here, using Argonaute precipitation and RNAseq (Ago-RP-Seq), we analyze RISC-bound sRNAs to quantify 6mer seed toxicity in several model systems. In mouse AD models and aging brain, in induced pluripotent stem cell-derived neurons from AD patients, and in cells exposed to Aβ42 oligomers, RISC-bound sRNAs show a shift to more toxic 6mer seeds compared to controls. In contrast, in brains of "SuperAgers", humans over age 80 who have superior memory performance, RISC-bound sRNAs are shifted to more nontoxic 6mer seeds. Cells depleted of nontoxic sRNAs are sensitized to Aβ42-induced cell death, and reintroducing nontoxic RNAs is protective. Altogether, the correlation between DISE and Aβ42 toxicity suggests that increasing the levels of nontoxic miRNAs in the brain or blocking the activity of toxic RISC-bound sRNAs could ameliorate neurodegeneration.
Collapse
Affiliation(s)
- Bidur Paudel
- Department of Medicine/Division Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Si-Yeon Jeong
- Department of Medicine/Division Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Ministry of Food and Drug Safety, Pharmaceutical Safety Bureau, Pharmaceutical Policy Division 187, Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Carolina Pena Martinez
- USF Health Byrd Alzheimer's Center and Neuroscience Institute; Department of Molecular Medicine, Morsani College of Medicine, Tampa, FL, 33613, USA
| | - Alexis Rickman
- USF Health Byrd Alzheimer's Center and Neuroscience Institute; Department of Molecular Medicine, Morsani College of Medicine, Tampa, FL, 33613, USA
| | - Ashley Haluck-Kangas
- Department of Medicine/Division Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Elizabeth T Bartom
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Preventive Medicine/Division of Biostatistics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Kristina Fredriksen
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Amira Affaneh
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - John A Kessler
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Joseph R Mazzulli
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Andrea E Murmann
- Department of Medicine/Division Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Emily Rogalski
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Healthy Aging & Alzheimer's Research Care (HAARC) Center, Department of Neurology, The University of Chicago, Chicago, IL, 60637, USA
| | - Changiz Geula
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Adriana Ferreira
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Bradlee L Heckmann
- USF Health Byrd Alzheimer's Center and Neuroscience Institute; Department of Molecular Medicine, Morsani College of Medicine, Tampa, FL, 33613, USA
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Katherine R Sadleir
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Robert Vassar
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Marcus E Peter
- Department of Medicine/Division Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
9
|
Wei X, Tang J, Lin C, Jiang X. Review: Non-canonical role of Drosha ribonuclease III. Int J Biol Macromol 2023; 253:127202. [PMID: 37793530 DOI: 10.1016/j.ijbiomac.2023.127202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/06/2023]
Abstract
The typical function of Drosha is participating in cleaving pri-miRNA, the initial step of miRNA biogenesis, in the nucleus. Since Drosha has a double-stranded RNA-binding domain and two RNase III domains, when it binds and/or cleaves other RNA species other than pri-miRNA, Drosha is able to induce a variety of novel biological effects. Moreover, by interacting with other protein, Drosha is able to modify the function of other protein complexes. Recently, diverse non-classical functions of Drosha have been demonstrated, such as promoting DNA damage repair, transcriptional activation and inhibition, pre-mRNA splicing regulation, mRNA destabilization, and virus-host interaction. In this review, we describe these newly discovered functions of Drosha in order to present a panoramic picture of the novel biological processes that Drosha is involved in.
Collapse
Affiliation(s)
- Xuanshuo Wei
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Jin Tang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Chuwen Lin
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Xuan Jiang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China.
| |
Collapse
|
10
|
Kour S, Fortuna T, Anderson EN, Mawrie D, Bilstein J, Sivasubramanian R, Ward C, Roy R, Rajasundaram D, Sterneckert J, Pandey UB. Drosha-dependent microRNAs modulate FUS-mediated neurodegeneration in vivo. Nucleic Acids Res 2023; 51:11258-11276. [PMID: 37791873 PMCID: PMC10639082 DOI: 10.1093/nar/gkad774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/03/2023] [Accepted: 09/12/2023] [Indexed: 10/05/2023] Open
Abstract
Mutations in the Fused in Sarcoma (FUS) gene cause the familial and progressive form of amyotrophic lateral sclerosis (ALS). FUS is a nuclear RNA-binding protein involved in RNA processing and the biogenesis of a specific set of microRNAs. Here we report that Drosha and two previously uncharacterized Drosha-dependent miRNAs are strong modulators of FUS expression and prevent the cytoplasmic segregation of insoluble mutant FUS in vivo. We demonstrate that depletion of Drosha mitigates FUS-mediated degeneration, survival and motor defects in Drosophila. Mutant FUS strongly interacts with Drosha and causes its cytoplasmic mis-localization into the insoluble FUS inclusions. Reduction in Drosha levels increases the solubility of mutant FUS. Interestingly, we found two Drosha dependent microRNAs, miR-378i and miR-6832-5p, which differentially regulate the expression, solubility and cytoplasmic aggregation of mutant FUS in iPSC neurons and mammalian cells. More importantly, we report different modes of action of these miRNAs against mutant FUS. Whereas miR-378i may regulate mutant FUS inclusions by preventing G3BP-mediated stress granule formation, miR-6832-5p may affect FUS expression via other proteins or pathways. Overall, our research reveals a possible association between ALS-linked FUS mutations and the Drosha-dependent miRNA regulatory circuit, as well as a useful perspective on potential ALS treatment via microRNAs.
Collapse
Affiliation(s)
- Sukhleen Kour
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Tyler Fortuna
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Eric N Anderson
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Darilang Mawrie
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Jessica Bilstein
- Center for Regenerative Therapies TU Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, 01307, Germany
| | - Ramakrishnan Sivasubramanian
- Center for Regenerative Therapies TU Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, 01307, Germany
| | - Caroline Ward
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Rishit Roy
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Dhivyaa Rajasundaram
- Department of Pediatrics, Division of Health Informatics, Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Jared Sterneckert
- Center for Regenerative Therapies TU Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, 01307, Germany
- Medical Faculty Carl Gustav Carus of TU Dresden, Dresden, 01307, Germany
| | - Udai Bhan Pandey
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
- Children's Neuroscience Institute, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| |
Collapse
|
11
|
Zhao G, Zhang H, Zhang Y, Zhao N, Mao J, Shang P, Gao K, Meng Y, Tao Y, Wang A, Chen Z, Guo C. Oncoprotein SET dynamically regulates cellular stress response through nucleocytoplasmic transport in breast cancer. Cell Biol Toxicol 2023; 39:1795-1814. [PMID: 36534342 DOI: 10.1007/s10565-022-09784-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
SETβ is the predominant isoform of oncoprotein SE translocation (SET) in various breast cancer cell lines. Interactome-transcriptome analysis has shown that SETβ is intimately associated with cellular stress response. Among various exogenous stimuli, formaldehyde (FA) causes distinct biological effects in a dose-dependent manner. In response to FA at different concentrations, SET dynamically shuttles between the nucleus and cytoplasm, performing diverse biofunctions to restore homeostasis. At a low concentration, FA acts as an epidermal growth factor (EGF) and activates the HER2 receptor and downstream signaling pathways in HER2+ breast cancer cells, resulting in enhanced cell proliferation. Nucleocytoplasmic transport of SETβ is controlled by the PI3K/PKCα/CK2α axis and depletion or blockade of the transport of SETβ suppresses EGF-induced activation of AKT and ERK. SETβ also inhibits not only stress-induced activation of p38 MAPK signaling pathway, but also assembly of stress granules by hindering formation of the G3BP1-RNA complex. Our findings suggest that SET functions as an important regulator which modulates cellular stress signaling pathways dynamically.
Collapse
Affiliation(s)
- Guomeng Zhao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Hongying Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yanchao Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Na Zhao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Jinlei Mao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Pengzhao Shang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Kun Gao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yao Meng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yuhang Tao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Anlei Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Ziyi Chen
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China.
| | - Changying Guo
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China.
| |
Collapse
|
12
|
Son S, Kim B, Yang J, Kim VN. Role of the proline-rich disordered domain of DROSHA in intronic microRNA processing. Genes Dev 2023; 37:383-397. [PMID: 37236670 PMCID: PMC10270192 DOI: 10.1101/gad.350275.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/24/2023] [Indexed: 05/28/2023]
Abstract
DROSHA serves as a gatekeeper of the microRNA (miRNA) pathway by processing primary transcripts (pri-miRNAs). While the functions of structured domains of DROSHA have been well documented, the contribution of N-terminal proline-rich disordered domain (PRD) remains elusive. Here we show that the PRD promotes the processing of miRNA hairpins located within introns. We identified a DROSHA isoform (p140) lacking the PRD, which is produced by proteolytic cleavage. Small RNA sequencing revealed that p140 is significantly impaired in the maturation of intronic miRNAs. Consistently, our minigene constructs demonstrated that PRD enhances the processing of intronic hairpins, but not those in exons. Splice site mutations did not affect the PRD's enhancing effect on intronic constructs, suggesting that the PRD acts independently of splicing reaction by interacting with sequences residing within introns. The N-terminal regions from zebrafish and Xenopus DROSHA can replace the human counterpart, indicating functional conservation despite poor sequence alignment. Moreover, we found that rapidly evolving intronic miRNAs are generally more dependent on PRD than conserved ones, suggesting a role of PRD in miRNA evolution. Our study reveals a new layer of miRNA regulation mediated by a low-complexity disordered domain that senses the genomic contexts of miRNA loci.
Collapse
Affiliation(s)
- Soomin Son
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Baekgyu Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Jihye Yang
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - V Narry Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea;
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
13
|
Kondkar AA, Azad TA, Sultan T, Osman EA, Almobarak FA, Lobo GP, Al-Obeidan SA. The 3' UTR polymorphisms rs3742330 in DICER1 and rs10719 in DROSHA genes are not associated with primary open-angle and angle-closure glaucoma: As case-control study. PLoS One 2023; 18:e0284852. [PMID: 37099569 PMCID: PMC10132650 DOI: 10.1371/journal.pone.0284852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/10/2023] [Indexed: 04/27/2023] Open
Abstract
AIM In a retrospective and exploratory case-control study, we examined the genetic association of two common polymorphisms in the 3' untranslated region (UTR) of DICER1 (rs3742330) and DROSHA (rs10719) genes in primary open-angle glaucoma (POAG) and primary angle-closure glaucoma (PACG), and its related clinical phenotypes in a Saudi cohort. METHODS DNA genotyping was performed using TaqMan real-time PCR assays in 500 participants, including 152 POAG, 102 PACG, and 246 non-glaucomatous controls. Statistical analyses were performed to examine the association(s). RESULTS Allele and genotype frequency of rs3742330 and rs10719 did not vary significantly in POAG and PACG compared to controls. No significant deviation was observed from Hardy-Weinberg Equilibrium (p > 0.05). Gender stratification revealed no significant allelic/genotype association with glaucoma types. Also, these polymorphisms showed no significant genotype effect on clinical markers such as intraocular pressure, cup/disc ratio, and the number of antiglaucoma medications. Logistic regression showed no effect of age, sex, rs3742330, and rs10719 genotypes on the risk of disease outcome. We also examined a combined allelic effect of rs3742330 (A>G) and rs10719 (A>G). However, none of the allelic combinations significantly affected POAG and PACG. CONCLUSIONS The 3' UTR polymorphisms rs3742330 and rs10719 of DICER1 and DROSHA genes are not associated with POAG and PACG or its related glaucoma indices in this Middle-Eastern cohort of Saudi Arab ethnicity. However, there is a need to validate the results on a broader population and other ethnicities.
Collapse
Affiliation(s)
- Altaf A. Kondkar
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Glaucoma Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| | - Taif A. Azad
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Tahira Sultan
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Essam A. Osman
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Faisal A. Almobarak
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Glaucoma Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Glenn P. Lobo
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, United States of America
| | - Saleh A. Al-Obeidan
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Glaucoma Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
14
|
Wang L, Yan X, Li Y, Wang Z, Chhajed S, Shang B, Wang Z, Choi SW, Zhao H, Chen S, Zhang X. PRP4KA phosphorylates SERRATE for degradation via 20 S proteasome to fine-tune miRNA production in Arabidopsis. SCIENCE ADVANCES 2022; 8:eabm8435. [PMID: 35333566 PMCID: PMC8956257 DOI: 10.1126/sciadv.abm8435] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/02/2022] [Indexed: 05/13/2023]
Abstract
Phosphorylation can quickly switch on/off protein functions. Here, we reported pre-mRNA processing 4 kinase A (PRP4KA), and its paralogs interact with Serrate (SE), a key factor in RNA processing. PRP4KA phosphorylates at least five residues of SE in vitro and in vivo. Hypophosphorylated, but not hyperphosphorylated, SE variants could readily rescue se phenotypes in vivo. Moreover, hypophosphorylated SE variants had stronger binding affinity to microprocessor component HYL1 and were more resistant to degradation by 20S proteasome than hyperphosphorylated counterparts. Knockdown of the kinases enhanced the accumulation of hypophosphorylated SE. However, the excessive SE interfered with the assembly and function of SE-scaffolded macromolecule complexes, causing the se-like defects in the mutant and wild-type backgrounds. Thus, phosphorylation of SE via PRP4KA can quickly clear accumulated SE to secure its proper amount. This study provides new insight into how protein phosphorylation regulates miRNA metabolism through controlling homeostasis of SE accumulation in plants.
Collapse
Affiliation(s)
- Lin Wang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
- Laboratory of Bio-interactions and Crop Health, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Xingxing Yan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Yanjun Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Zhiye Wang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shweta Chhajed
- Department of Biology, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Baoshuan Shang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Zhen Wang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Suk Won Choi
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Hongwei Zhao
- Laboratory of Bio-interactions and Crop Health, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Sixue Chen
- Department of Biology, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Xiuren Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
15
|
Francisco S, Martinho V, Ferreira M, Reis A, Moura G, Soares AR, Santos MAS. The Role of MicroRNAs in Proteostasis Decline and Protein Aggregation during Brain and Skeletal Muscle Aging. Int J Mol Sci 2022; 23:ijms23063232. [PMID: 35328652 PMCID: PMC8955204 DOI: 10.3390/ijms23063232] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/08/2022] [Accepted: 03/13/2022] [Indexed: 01/14/2023] Open
Abstract
Aging can be defined as the progressive deterioration of cellular, tissue, and organismal function over time. Alterations in protein homeostasis, also known as proteostasis, are a hallmark of aging that lead to proteome imbalances and protein aggregation, phenomena that also occur in age-related diseases. Among the various proteostasis regulators, microRNAs (miRNAs) have been reported to play important roles in the post-transcriptional control of genes involved in maintaining proteostasis during the lifespan in several organismal tissues. In this review, we consolidate recently published reports that demonstrate how miRNAs regulate fundamental proteostasis-related processes relevant to tissue aging, with emphasis on the two most studied tissues, brain tissue and skeletal muscle. We also explore an emerging perspective on the role of miRNA regulatory networks in age-related protein aggregation, a known hallmark of aging and age-related diseases, to elucidate potential miRNA candidates for anti-aging diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Stephany Francisco
- Institute of Biomedicine—iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (S.F.); (V.M.); (M.F.); (A.R.); (G.M.)
| | - Vera Martinho
- Institute of Biomedicine—iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (S.F.); (V.M.); (M.F.); (A.R.); (G.M.)
| | - Margarida Ferreira
- Institute of Biomedicine—iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (S.F.); (V.M.); (M.F.); (A.R.); (G.M.)
| | - Andreia Reis
- Institute of Biomedicine—iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (S.F.); (V.M.); (M.F.); (A.R.); (G.M.)
| | - Gabriela Moura
- Institute of Biomedicine—iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (S.F.); (V.M.); (M.F.); (A.R.); (G.M.)
| | - Ana Raquel Soares
- Institute of Biomedicine—iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (S.F.); (V.M.); (M.F.); (A.R.); (G.M.)
- Correspondence: (A.R.S.); (M.A.S.S.)
| | - Manuel A. S. Santos
- Institute of Biomedicine—iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (S.F.); (V.M.); (M.F.); (A.R.); (G.M.)
- Multidisciplinary Institute of Aging, MIA-Portugal, Faculty of Medicine, University of Coimbra, Rua Largo 2, 3º, 3000-370 Coimbra, Portugal
- Correspondence: (A.R.S.); (M.A.S.S.)
| |
Collapse
|
16
|
Hadj-Moussa H, Hawkins LJ, Storey KB. Role of MicroRNAs in Extreme Animal Survival Strategies. Methods Mol Biol 2022; 2257:311-347. [PMID: 34432286 DOI: 10.1007/978-1-0716-1170-8_16] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The critical role microRNAs play in modulating global functions is emerging, both in the maintenance of homeostatic mechanisms and in the adaptation to diverse environmental stresses. When stressed, cells must divert metabolic requirements toward immediate survival and eventual recovery and the unique features of miRNAs, such as their relatively ATP-inexpensive biogenesis costs, and the quick and reversible nature of their action, renders them excellent "master controllers" for rapid responses. Many animal survival strategies for dealing with extreme environmental pressures involve prolonged retreats into states of suspended animation to extend the time that they can survive on their limited internal fuel reserves until conditions improve. The ability to retreat into such hypometabolic states is only possible by coupling the global suppression of nonessential energy-expensive functions with an activation of prosurvival networks, a process in which miRNAs are now known to play a major role. In this chapter, we discuss the activation, expression, biogenesis, and unique attributes of miRNA regulation required to facilitate profound metabolic rate depression and implement stress-specific metabolic adaptations. We examine the role of miRNA in strategies of biochemical adaptation including mammalian hibernation, freeze tolerance, freeze avoidance, anoxia and hypoxia survival, estivation, and dehydration tolerance. By comparing these seemingly different adaptive programs in traditional and exotic animal models, we highlight both unique and conserved miRNA-meditated mechanisms for survival. Additional topics discussed include transcription factor networks, temperature dependent miRNA-targeting, and novel species-specific and stress-specific miRNAs.
Collapse
Affiliation(s)
| | - Liam J Hawkins
- Department of Biology, Carleton University, Ottawa, ON, Canada
| | | |
Collapse
|
17
|
Abou Zeid LY, Shanmugapriya S, Rumney RL, Mosser DD. Caspase-mediated cleavage of miRNA processing proteins Drosha, DGCR8, Dicer, and TRBP2 in heat-shocked cells and its inhibition by HSP70 overexpression. Cell Stress Chaperones 2022; 27:11-25. [PMID: 34719748 PMCID: PMC8821752 DOI: 10.1007/s12192-021-01242-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/21/2021] [Accepted: 10/01/2021] [Indexed: 10/19/2022] Open
Abstract
Cells respond to stress through adaptive mechanisms that limit cellular damage and prevent cell death. MicroRNAs act as regulators of stress responses and stress can impact the functioning of miRNA biogenesis pathways. We were interested in the effect that severe proteotoxic stress capable of inducing apoptosis may have on miRNA biogenesis and the impact of the molecular chaperone protein HSP70 under these conditions. We found that the miRNA processing enzymes Drosha and Dicer and their accessory proteins DGCR8 and TRBP2 are cleaved by caspases in apoptotic cells. Overexpression of HSP70 prevented caspase activation and the degradation of these processing proteins. Caspase cleavage of TRBP2 was mapped to amino acid 234 which separates the two dsRNA-binding domains from the C-terminal Dicer interacting domain. Overexpression of TRBP2 was found to increase miRNA maturation, while expression of either of the fragments generated by caspase cleavage impaired maturation. These results indicate that inactivation of miRNA biogenesis is a critical feature of apoptosis and that cleavage of TRBP2, rather than simply a loss of function, serves to create positive acting inhibitors of pre-miRNA maturation.
Collapse
Affiliation(s)
- Lina Y Abou Zeid
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | | | - Rebecca L Rumney
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Dick D Mosser
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
18
|
Xu H, Liu X, Li W, Xi Y, Su P, Meng B, Shao X, Tang B, Yang Q, Mao Z. p38 MAPK-mediated loss of nuclear RNase III enzyme Drosha underlies amyloid beta-induced neuronal stress in Alzheimer's disease. Aging Cell 2021; 20:e13434. [PMID: 34528746 PMCID: PMC8521488 DOI: 10.1111/acel.13434] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/26/2021] [Accepted: 07/03/2021] [Indexed: 12/30/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs ubiquitously expressed in the brain and regulate gene expression at the post‐transcriptional level. The nuclear RNase III enzyme Drosha initiates the maturation process of miRNAs in the nucleus. Strong evidence suggests that dysregulation of miRNAs is involved in many neurological disorders including Alzheimer's disease (AD). Dysfunction of miRNA biogenesis components may be involved in the processes of those diseases. However, the role of Drosha in AD remains unknown. By using immunohistochemistry, biochemistry, and subcellular fractionation methods, we show here that the level of Drosha protein was significantly lower in the postmortem brain of human AD patients as well as in the transgenic rat model of AD. Interestingly, Drosha level was specifically reduced in neurons of the cortex and hippocampus but not in the cerebellum in the AD brain samples. In primary cortical neurons, amyloid‐beta (Aβ) oligomers caused a p38 MAPK‐dependent phosphorylation of Drosha, leading to its redistribution from the nucleus to the cytoplasm and a decrease in its level. This loss of Drosha function preceded Aβ‐induced neuronal death. Importantly, inhibition of p38 MAPK activity or overexpression of Drosha protected neurons from Aβ oligomers‐induced apoptosis. Taken together, these results establish a role for p38 MAPK‐Drosha pathway in modulating neuronal viability under Aβ oligomers stress condition and implicate loss of Drosha as a key molecular change in the pathogenesis of AD.
Collapse
Affiliation(s)
- Haidong Xu
- Department of Pharmacology and Chemical Biology Emory University School of Medicine Atlanta Georgia USA
| | - Xiaolei Liu
- Department of Pharmacology and Chemical Biology Emory University School of Medicine Atlanta Georgia USA
| | - Wenming Li
- Department of Pharmacology and Chemical Biology Emory University School of Medicine Atlanta Georgia USA
| | - Ye Xi
- Department of Pharmacology and Chemical Biology Emory University School of Medicine Atlanta Georgia USA
| | - Peng Su
- Department of Pharmacology and Chemical Biology Emory University School of Medicine Atlanta Georgia USA
| | - Bo Meng
- Department of Pharmacology and Chemical Biology Emory University School of Medicine Atlanta Georgia USA
| | - Xiaoyun Shao
- Department of Pharmacology and Chemical Biology Emory University School of Medicine Atlanta Georgia USA
| | - Beisha Tang
- Department of Neurology Xiangya Hospital Central South University Changsha China
| | - Qian Yang
- Department of Neurosurgery Tangdu Hospital The Fourth Military Medical University Xi'an China
| | - Zixu Mao
- Department of Pharmacology and Chemical Biology Emory University School of Medicine Atlanta Georgia USA
- Department of Neurology Emory University School of Medicine Atlanta Georgia USA
| |
Collapse
|
19
|
Ammal Kaidery N, Ahuja M, Sharma SM, Thomas B. An Emerging Role of miRNAs in Neurodegenerative Diseases: Mechanisms and Perspectives on miR146a. Antioxid Redox Signal 2021; 35:580-594. [PMID: 33403895 PMCID: PMC8388248 DOI: 10.1089/ars.2020.8256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Significance: Advancements in and access to health care have led to unprecedented improvements in the quality of life and increased lifespan of human beings in the past century. However, aging is a significant risk factor for neurodegenerative diseases (NDs). Hence, improved life expectancy has led to an increased incidence of NDs. Despite intense research, effective treatments for NDs remain elusive. The future of neurotherapeutics development depends on effective disease modification strategies centered on carefully scrutinized targets. Recent Advances: As a promising new direction, recent evidence has demonstrated that epigenetic processes modify diverse biochemical pathways, including those related to NDs. Small non-coding RNAs, known as microRNAs (miRNAs), are components of the epigenetic system that alter the expression of target genes at the post-transcriptional level. Critical Issues: miRNAs are expressed abundantly in the central nervous system and are critical for the normal functioning and survival of neurons. Here, we review recent advances in elucidating miRNAs' roles in NDs and discuss their potential as therapeutic targets. In particular, neuroinflammation is a major pathological hallmark of NDs and miR146a is a crucial regulator of inflammation. Future Directions: Finally, we explore the possibilities of developing miR146a as a potential biomarker and therapeutic target where additional research may help facilitate the detection and amelioration of neuroinflammation in NDs. Antioxid. Redox Signal. 35, 580-594.
Collapse
Affiliation(s)
- Navneet Ammal Kaidery
- Darby Children's Research Institute, Departments of Medical University of South Carolina, Charleston, South Carolina, USA.,Pediatrics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Manuj Ahuja
- Darby Children's Research Institute, Departments of Medical University of South Carolina, Charleston, South Carolina, USA.,Pediatrics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Sudarshana M Sharma
- Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA.,Hollings Cancer Center, and Departments of Medical University of South Carolina, Charleston, South Carolina, USA
| | - Bobby Thomas
- Darby Children's Research Institute, Departments of Medical University of South Carolina, Charleston, South Carolina, USA.,Pediatrics, Medical University of South Carolina, Charleston, South Carolina, USA.,Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA.,Drug Discovery, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
20
|
Monaghan TM, Seekatz AM, Markham NO, Yau TO, Hatziapostolou M, Jilani T, Christodoulou N, Roach B, Birli E, Pomenya O, Louie T, Lacy DB, Kim P, Lee C, Kao D, Polytarchou C. Fecal Microbiota Transplantation for Recurrent Clostridioides difficile Infection Associates With Functional Alterations in Circulating microRNAs. Gastroenterology 2021; 161:255-270.e4. [PMID: 33844988 PMCID: PMC8579492 DOI: 10.1053/j.gastro.2021.03.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 03/20/2021] [Accepted: 03/23/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS The molecular mechanisms underlying successful fecal microbiota transplantation (FMT) for recurrent Clostridioides difficile infection (rCDI) remain poorly understood. The primary objective of this study was to characterize alterations in microRNAs (miRs) following FMT for rCDI. METHODS Sera from 2 prospective multicenter randomized controlled trials were analyzed for miRNA levels with the use of the Nanostring nCounter platform and quantitative reverse-transcription (RT) polymerase chain reaction (PCR). In addition, rCDI-FMT and toxin-treated animals and ex vivo human colonoids were used to compare intestinal tissue and circulating miRs. miR inflammatory gene targets in colonic epithelial and peripheral blood mononuclear cells were evaluated by quantitative PCR (qPCR) and 3'UTR reporter assays. Colonic epithelial cells were used for mechanistic, cytoskeleton, cell growth, and apoptosis studies. RESULTS miRNA profiling revealed up-regulation of 64 circulating miRs 4 and 12 weeks after FMT compared with screening, of which the top 6 were validated in the discovery cohort by means of RT-qPCR. In a murine model of relapsing-CDI, RT-qPCR analyses of sera and cecal RNA extracts demonstrated suppression of these miRs, an effect reversed by FMT. In mouse colon and human colonoids, C difficile toxin B (TcdB) mediated the suppressive effects of CDI on miRs. CDI dysregulated DROSHA, an effect reversed by FMT. Correlation analyses, qPCR ,and 3'UTR reporter assays revealed that miR-23a, miR-150, miR-26b, and miR-28 target directly the 3'UTRs of IL12B, IL18, FGF21, and TNFRSF9, respectively. miR-23a and miR-150 demonstrated cytoprotective effects against TcdB. CONCLUSIONS These results provide novel and provocative evidence that modulation of the gut microbiome via FMT induces alterations in circulating and intestinal tissue miRs. These findings contribute to a greater understanding of the molecular mechanisms underlying FMT and identify new potential targets for therapeutic intervention in rCDI.
Collapse
Affiliation(s)
- Tanya M Monaghan
- National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom; Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom.
| | - Anna M Seekatz
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Nicholas O Markham
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Tung On Yau
- Department of Biosciences, John van Geest Cancer Research Centre, Centre for Health Aging and Understanding Disease, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Maria Hatziapostolou
- Department of Biosciences, John van Geest Cancer Research Centre, Centre for Health Aging and Understanding Disease, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Tahseen Jilani
- Advanced Data Analysis Centre, School of Computer Science, University of Nottingham, Nottingham, United Kingdom
| | - Niki Christodoulou
- Department of Biosciences, John van Geest Cancer Research Centre, Centre for Health Aging and Understanding Disease, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Brandi Roach
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Eleni Birli
- Department of Biosciences, John van Geest Cancer Research Centre, Centre for Health Aging and Understanding Disease, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Odette Pomenya
- Department of Biosciences, John van Geest Cancer Research Centre, Centre for Health Aging and Understanding Disease, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Thomas Louie
- Department of Microbiology and infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - D Borden Lacy
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Peter Kim
- Department of Mathematics and Statistics, University of Guelph, Ontario, Canada
| | - Christine Lee
- Vancouver Island Health Authority, Victoria, British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dina Kao
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.
| | - Christos Polytarchou
- Department of Biosciences, John van Geest Cancer Research Centre, Centre for Health Aging and Understanding Disease, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom.
| |
Collapse
|
21
|
Souza VDGPD, Souza GTD, Lemos DRD, Guimarães JMDO, Quintão CCR, Munk M, Saraiva NZ, Camargo LSDA. Heat shock during in vitro maturation of bovine oocytes disturbs bta-miR-19b and DROSHA transcripts abundance after in vitro fertilization. Reprod Domest Anim 2021; 56:1128-1136. [PMID: 34021645 DOI: 10.1111/rda.13956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 05/18/2021] [Indexed: 11/28/2022]
Abstract
While microRNAs (miRNAs) are a class of non-coding RNAs important for embryo development, the relationship between them and heat stress during oocyte maturation has not yet been established. This study investigated the effect of heat shock during in vitro maturation (IVM) on the abundance of bta-miR-20a, -27b, -103, -21-5p, -19b, -1246 miRNAs and DROSHA and DICER1 mRNAs, previously reported for being involved in oocyte maturation, response to heat stress and miRNA biogenesis. Oocytes were exposed for 12h to heat shock during IVM, fertilized in vitro and the presumptive zygotes cultured for eight days. The relative quantification of miRNAs and mRNAs was performed by real-time PCR in vitro-matured oocytes and 8-cell stage embryos. Progression of meiosis, embryonic development and apoptotic indices was also evaluated. Heat shock compromised (p < .05) oocyte nuclear maturation, cleavage and embryo development, with a higher (p < .05) embryonic apoptotic index than the control group. The abundance of bta-miR-19b increased (p < .05) whereas the abundance of DROSHA transcripts decreased (p < .05) in embryos derived from heat-shocked oocytes. In conclusion, heat shock during IVM influences the abundance of bta-miR-19b and DROSHA in pre-implantation embryos, indicating a persistent effect of heat shock that can be associated with impaired embryo development.
Collapse
Affiliation(s)
- Vanessa das Graças Pereira de Souza
- Reproduction and Biotechnology Laboratory, Brazilian Agricultural Research Corporation (Embrapa), Juiz de Fora, Minas Gerais, Brazil.,Biology Department, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Gustavo Torres de Souza
- Reproduction and Biotechnology Laboratory, Brazilian Agricultural Research Corporation (Embrapa), Juiz de Fora, Minas Gerais, Brazil.,Biology Department, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Diana Rangel de Lemos
- Reproduction and Biotechnology Laboratory, Brazilian Agricultural Research Corporation (Embrapa), Juiz de Fora, Minas Gerais, Brazil.,Federal University of Viçosa, UFV, Viçosa, Minas Gerais, Brazil
| | - Judith Maria de Oliveira Guimarães
- Reproduction and Biotechnology Laboratory, Brazilian Agricultural Research Corporation (Embrapa), Juiz de Fora, Minas Gerais, Brazil.,Biology Department, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | | | - Michele Munk
- Biology Department, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Naiara Zoccal Saraiva
- Reproduction and Biotechnology Laboratory, Brazilian Agricultural Research Corporation (Embrapa), Juiz de Fora, Minas Gerais, Brazil
| | - Luiz Sérgio de Almeida Camargo
- Reproduction and Biotechnology Laboratory, Brazilian Agricultural Research Corporation (Embrapa), Juiz de Fora, Minas Gerais, Brazil
| |
Collapse
|
22
|
Wang SS, Liao X, Liu F, Zhang Q, Qiu JJ, Fu SH. miR-132 mediates cell permeability and migration by targeting occludin in high-glucose -induced ARPE-19 cells. Endocr J 2021; 68:531-541. [PMID: 33563844 DOI: 10.1507/endocrj.ej20-0277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
This study investigated the effects and mechanisms of miR-132 related to the permeability and mobility of human retinal pigment epithelium ARPE-19 cells in high-glucose (HG) condition. ARPE-19 cells were cultured in normal and HG condition and identified by immunofluorescence staining. Cell viability was assessed by the MTT assay, cell permeability was assessed by the FITC-dextran assay and cell mobility was assessed by the wound healing assay. Different miRNA and mRNA expression levels were determined by quantitative real-time polymerase chain reaction (RT-qPCR). The expression of tight junction-related proteins was determined by Western blot assay and immunofluorescence. The interaction between occludin and miR-132 was confirmed by a dual-luciferase reporter assay. We revealed that HG-treated ARPE-19 cells exhibited significantly increased miR-132 expression, decreased expression of the tight-junction markers including occludin and E-cadherin, and increased cell mobility and permeability. Occludin is a direct target of miR-132, which could regulate cell viability, mobility and permeability under HG condition through the JAK/STAT3 signaling pathway. These are the first data to suggest that miR-132 may contribute to the progression of diabetic retinopathy (DR) and that targeting the effect of miR-132 on occudin and the JAK/STAT3 pathway could represent a novel effective DR-treatment strategy.
Collapse
Affiliation(s)
- Shan-Shan Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P. R. China
| | - Xing Liao
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P. R. China
| | - Fei Liu
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P. R. China
| | - Qian Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P. R. China
| | - Jing-Jing Qiu
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P. R. China
| | - Shu-Hua Fu
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P. R. China
| |
Collapse
|
23
|
Lee J, Lee M, Lee K. Trans-acting regulators of ribonuclease activity. J Microbiol 2021; 59:341-359. [PMID: 33779951 DOI: 10.1007/s12275-021-0650-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 12/16/2022]
Abstract
RNA metabolism needs to be tightly regulated in response to changes in cellular physiology. Ribonucleases (RNases) play an essential role in almost all aspects of RNA metabolism, including processing, degradation, and recycling of RNA molecules. Thus, living systems have evolved to regulate RNase activity at multiple levels, including transcription, post-transcription, post-translation, and cellular localization. In addition, various trans-acting regulators of RNase activity have been discovered in recent years. This review focuses on the physiological roles and underlying mechanisms of trans-acting regulators of RNase activity.
Collapse
Affiliation(s)
- Jaejin Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Minho Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Kangseok Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
24
|
Jiang X, Prabhakar A, Van der Voorn SM, Ghatpande P, Celona B, Venkataramanan S, Calviello L, Lin C, Wang W, Black BL, Floor SN, Lagna G, Hata A. Control of ribosomal protein synthesis by the Microprocessor complex. Sci Signal 2021; 14:eabd2639. [PMID: 33622983 PMCID: PMC8012103 DOI: 10.1126/scisignal.abd2639] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ribosome biogenesis in eukaryotes requires the coordinated production and assembly of 80 ribosomal proteins and four ribosomal RNAs (rRNAs), and its rate must be synchronized with cellular growth. Here, we showed that the Microprocessor complex, which mediates the first step of microRNA processing, potentiated the transcription of ribosomal protein genes by eliminating DNA/RNA hybrids known as R-loops. Nutrient deprivation triggered the nuclear export of Drosha, a key component of the Microprocessor complex, and its subsequent degradation by the E3 ubiquitin ligase Nedd4, thereby reducing ribosomal protein production and protein synthesis. In mouse erythroid progenitors, conditional deletion of Drosha led to the reduced production of ribosomal proteins, translational inhibition of the mRNA encoding the erythroid transcription factor Gata1, and impaired erythropoiesis. This phenotype mirrored the clinical presentation of human "ribosomopathies." Thus, the Microprocessor complex plays a pivotal role in synchronizing protein synthesis capacity with cellular growth rate and is a potential drug target for anemias caused by ribosomal insufficiency.
Collapse
Affiliation(s)
- Xuan Jiang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Amit Prabhakar
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Stephanie M Van der Voorn
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, 3584 CM, Netherlands
| | - Prajakta Ghatpande
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Barbara Celona
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Srivats Venkataramanan
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lorenzo Calviello
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Chuwen Lin
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Wanpeng Wang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Brian L Black
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA
| | - Stephen N Floor
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Giorgio Lagna
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Akiko Hata
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA.
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
25
|
Lee J, Lee M, Lee K. Trans-acting regulators of ribonuclease activity. J Microbiol 2021:10.1007/s12275-021-0650-3. [PMID: 33565052 DOI: 10.1007/s12275-021-0650-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 11/29/2022]
Abstract
RNA metabolism needs to be tightly regulated in response to changes in cellular physiology. Ribonucleases (RNases) play an essential role in almost all aspects of RNA metabolism, including processing, degradation, and recycling of RNA molecules. Thus, living systems have evolved to regulate RNase activity at multiple levels, including transcription, post-transcription, post-translation, and cellular localization. In addition, various trans-acting regulators of RNase activity have been discovered in recent years. This review focuses on the physiological roles and underlying mechanisms of trans-acting regulators of RNase activity.
Collapse
Affiliation(s)
- Jaejin Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Minho Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Kangseok Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
26
|
Canovas B, Nebreda AR. Diversity and versatility of p38 kinase signalling in health and disease. Nat Rev Mol Cell Biol 2021; 22:346-366. [PMID: 33504982 PMCID: PMC7838852 DOI: 10.1038/s41580-020-00322-w] [Citation(s) in RCA: 357] [Impact Index Per Article: 89.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2020] [Indexed: 02/06/2023]
Abstract
The ability of cells to deal with different types of stressful situations in a precise and coordinated manner is key for survival and involves various signalling networks. Over the past 25 years, p38 kinases — in particular, p38α — have been implicated in the cellular response to stress at many levels. These span from environmental and intracellular stresses, such as hyperosmolarity, oxidative stress or DNA damage, to physiological situations that involve important cellular changes such as differentiation. Given that p38α controls a plethora of functions, dysregulation of this pathway has been linked to diseases such as inflammation, immune disorders or cancer, suggesting the possibility that targeting p38α could be of therapeutic interest. In this Review, we discuss the organization of this signalling pathway focusing on the diversity of p38α substrates, their mechanisms and their links to particular cellular functions. We then address how the different cellular responses can be generated depending on the signal received and the cell type, and highlight the roles of this kinase in human physiology and in pathological contexts. p38α — the best-characterized member of the p38 kinase family — is a key mediator of cellular stress responses. p38α is activated by a plethora of signals and functions through a multitude of substrates to regulate different cellular behaviours. Understanding context-dependent p38α signalling provides important insights into p38α roles in physiology and pathology.
Collapse
Affiliation(s)
- Begoña Canovas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Angel R Nebreda
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain. .,ICREA, Barcelona, Spain.
| |
Collapse
|
27
|
Fofanov MV, Prokopov DY, Kuhl H, Schartl M, Trifonov VA. Evolution of MicroRNA Biogenesis Genes in the Sterlet ( Acipenser ruthenus) and Other Polyploid Vertebrates. Int J Mol Sci 2020; 21:E9562. [PMID: 33334059 PMCID: PMC7765534 DOI: 10.3390/ijms21249562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 01/14/2023] Open
Abstract
MicroRNAs play a crucial role in eukaryotic gene regulation. For a long time, only little was known about microRNA-based gene regulatory mechanisms in polyploid animal genomes due to difficulties of polyploid genome assembly. However, in recent years, several polyploid genomes of fish, amphibian, and even invertebrate species have been sequenced and assembled. Here we investigated several key microRNA-associated genes in the recently sequenced sterlet (Acipenser ruthenus) genome, whose lineage has undergone a whole genome duplication around 180 MYA. We show that two paralogs of drosha, dgcr8, xpo1, and xpo5 as well as most ago genes have been retained after the acipenserid-specific whole genome duplication, while ago1 and ago3 genes have lost one paralog. While most diploid vertebrates possess only a single copy of dicer1, we strikingly found four paralogs of this gene in the sterlet genome, derived from a tandem segmental duplication that occurred prior to the last whole genome duplication. ago1,3,4 and exportins1,5 look to be prone to additional segment duplications producing up to four-five paralog copies in ray-finned fishes. We demonstrate for the first time exon microsatellite amplification in the acipenserid drosha2 gene, resulting in a highly variable protein product, which may indicate sub- or neofunctionalization. Paralogous copies of most microRNA metabolism genes exhibit different expression profiles in various tissues and remain functional despite the rediploidization process. Subfunctionalization of microRNA processing gene paralogs may be beneficial for different pathways of microRNA metabolism. Genetic variability of microRNA processing genes may represent a substrate for natural selection, and, by increasing genetic plasticity, could facilitate adaptations to changing environments.
Collapse
Affiliation(s)
- Mikhail V. Fofanov
- Institute of Molecular and Cellular Biology SB RAS, Lavrentiev Ave. 8/2, 630090 Novosibirsk, Russia;
- Department of Natural Sciences, Novosibirsk State University, Pirogova 2, 630090 Novosibirsk, Russia
| | - Dmitry Yu. Prokopov
- Institute of Molecular and Cellular Biology SB RAS, Lavrentiev Ave. 8/2, 630090 Novosibirsk, Russia;
| | - Heiner Kuhl
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301 and 310, 12587 Berlin, Germany;
| | - Manfred Schartl
- Developmental Biochemistry, Biocenter, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany;
- Xiphophorus Genetic Stock Center, Texas State University, 601 University Drive, 419 Centennial Hall, San Marcos, TX 78666-4616, USA
| | - Vladimir A. Trifonov
- Institute of Molecular and Cellular Biology SB RAS, Lavrentiev Ave. 8/2, 630090 Novosibirsk, Russia;
- Department of Natural Sciences, Novosibirsk State University, Pirogova 2, 630090 Novosibirsk, Russia
| |
Collapse
|
28
|
Annese T, Tamma R, De Giorgis M, Ribatti D. microRNAs Biogenesis, Functions and Role in Tumor Angiogenesis. Front Oncol 2020; 10:581007. [PMID: 33330058 PMCID: PMC7729128 DOI: 10.3389/fonc.2020.581007] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/27/2020] [Indexed: 12/19/2022] Open
Abstract
microRNAs (miRNAs) are small non-coding RNA molecules, evolutionary conserved. They target more than one mRNAs, thus influencing multiple molecular pathways, but also mRNAs may bind to a variety of miRNAs, either simultaneously or in a context-dependent manner. miRNAs biogenesis, including miRNA transcription, processing by Drosha and Dicer, transportation, RISC biding, and miRNA decay, are finely controlled in space and time. miRNAs are critical regulators in various biological processes, such as differentiation, proliferation, apoptosis, and development in both health and disease. Their dysregulation is involved in tumor initiation and progression. In tumors, they can act as onco-miRNAs or oncosuppressor-miRNA participating in distinct cellular pathways, and the same miRNA can perform both activities depending on the context. In tumor progression, the angiogenic switch is fundamental. miRNAs derived from tumor cells, endothelial cells, and cells of the surrounding microenvironment regulate tumor angiogenesis, acting as pro-angiomiR or anti-angiomiR. In this review, we described miRNA biogenesis and function, and we update the non-classical aspects of them. The most recent role in the nucleus, as transcriptional gene regulators and the different mechanisms by which they could be dysregulated, in tumor initiation and progression, are treated. In particular, we describe the role of miRNAs in sprouting angiogenesis, vessel co-option, and vasculogenic mimicry. The role of miRNAs in lymphoma angiogenesis is also discussed despite the scarcity of data. The information presented in this review reveals the need to do much more to discover the complete miRNA network regulating angiogenesis, not only using high-throughput computational analysis approaches but also morphological ones.
Collapse
Affiliation(s)
- Tiziana Annese
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Michelina De Giorgis
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| |
Collapse
|
29
|
Han J, Wu J, Silke J. An overview of mammalian p38 mitogen-activated protein kinases, central regulators of cell stress and receptor signaling. F1000Res 2020; 9. [PMID: 32612808 PMCID: PMC7324945 DOI: 10.12688/f1000research.22092.1] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/18/2020] [Indexed: 12/19/2022] Open
Abstract
The p38 family is a highly evolutionarily conserved group of mitogen-activated protein kinases (MAPKs) that is involved in and helps co-ordinate cellular responses to nearly all stressful stimuli. This review provides a succinct summary of multiple aspects of the biology, role, and substrates of the mammalian family of p38 kinases. Since p38 activity is implicated in inflammatory and other diseases, we also discuss the clinical implications and pharmaceutical approaches to inhibit p38.
Collapse
Affiliation(s)
- Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jianfeng Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - John Silke
- The Walter and Eliza Hall Institute, IG Royal Parade, Parkville, Victoria, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3050, Australia
| |
Collapse
|
30
|
DROSHA-Dependent miRNA and AIM2 Inflammasome Activation in Idiopathic Pulmonary Fibrosis. Int J Mol Sci 2020; 21:ijms21051668. [PMID: 32121297 PMCID: PMC7084700 DOI: 10.3390/ijms21051668] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/23/2020] [Accepted: 02/27/2020] [Indexed: 12/11/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease. Chronic lung inflammation is linked to the pathogenesis of IPF. DROSHA, a class 2 ribonuclease III enzyme, has an important role in the biogenesis of microRNA (miRNA). The function of miRNAs has been identified in the regulation of the target gene or protein related to inflammatory responses via degradation of mRNA or inhibition of translation. The absent-in-melanoma-2 (AIM2) inflammasome is critical for inflammatory responses against cytosolic double stranded DNA (dsDNA) from pathogen-associated molecular patterns (PAMPs) and self-DNA from danger-associated molecular patterns (DAMPs). The AIM2 inflammasome senses double strand DNA (dsDNA) and interacts with the adaptor apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), which recruits pro-caspase-1 and regulates the maturation and secretion of interleukin (IL)-1β and IL-18. A recent study showed that inflammasome activation contributes to lung inflammation and fibrogenesis during IPF. In the current review, we discuss recent advances in our understanding of the DROSHA-miRNA-AIM2 inflammasome axis in the pathogenesis of IPF.
Collapse
|
31
|
Dou J, Su P, Xu C, Wen Z, Mao Z, Li W. Targeting Hsc70-based autophagy to eliminate amyloid β oligomers. Biochem Biophys Res Commun 2020; 524:923-928. [PMID: 32057360 DOI: 10.1016/j.bbrc.2020.02.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 02/04/2020] [Indexed: 12/13/2022]
Abstract
Amyloid β (Aβ) oligomers may be a real culprit in the pathogenesis of Alzheimer's disease (AD); therefore, the elimination of these toxic oligomers may be of great significance for AD therapy. Autophagy is the catabolic process by which lysosomes degrade cytosolic components, and heat shock cognate 70 kDa protein (Hsc70) binds to proteins with their KFERQ-like motifs [also known as chaperone-mediated autophagy (CMA) motifs] and carries them to lysosomes through CMA or late endosomes through endosomal microautophagy (eMI) for degradation. In this study, our strategy is to make the pathological Aβ become one selective and suitable substrate for CMA and eMI (termed as Hsc70-based autophagy) by tagging its oligomers with multiple CMA motifs. First, we design and synthesize Aβ oligomer binding peptides with three CMA motifs. Second, we determine that the peptide can help Aβ oligomers enter endosomes and lysosomes, which can be further enhanced by ketone. More importantly, we find that the peptide can dramatically reduce Aβ oligomers in induced pluripotent stem cell (iPSC) cortical neurons derived from AD patient fibroblasts and protect primary cultured cortical neurons against the Aβ oligomer-induced neurotoxicity. In conclusion, we demonstrate that the peptide targeting Hsc70-based autophagy can effectively eliminate Aβ oligomers and have superior neuroprotective activity.
Collapse
Affiliation(s)
- Juan Dou
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Peng Su
- Department of Pharmacology and Chemical Biology, Atlanta, GA, 30322, USA
| | - Chongchong Xu
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Zhexing Wen
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Zixu Mao
- Department of Pharmacology and Chemical Biology, Atlanta, GA, 30322, USA.
| | - Wenming Li
- Department of Pharmacology and Chemical Biology, Atlanta, GA, 30322, USA.
| |
Collapse
|
32
|
Spadotto V, Giambruno R, Massignani E, Mihailovich M, Maniaci M, Patuzzo F, Ghini F, Nicassio F, Bonaldi T. PRMT1-mediated methylation of the microprocessor-associated proteins regulates microRNA biogenesis. Nucleic Acids Res 2020; 48:96-115. [PMID: 31777917 PMCID: PMC6943135 DOI: 10.1093/nar/gkz1051] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 10/04/2019] [Accepted: 11/22/2019] [Indexed: 12/17/2022] Open
Abstract
MicroRNA (miRNA) biogenesis is a tightly controlled multi-step process operated in the nucleus by the activity of the Microprocessor and its associated proteins. Through high resolution mass spectrometry (MS)- proteomics we discovered that this complex is extensively methylated, with 84 methylated sites associated to 19 out of its 24 subunits. The majority of the modifications occurs on arginine (R) residues (61), leading to 81 methylation events, while 30 lysine (K)-methylation events occurs on 23 sites of the complex. Interestingly, both depletion and pharmacological inhibition of the Type-I Protein Arginine Methyltransferases (PRMTs) lead to a widespread change in the methylation state of the complex and induce global decrease of miRNA expression, as a consequence of the impairment of the pri-to-pre-miRNA processing step. In particular, we show that the reduced methylation of the Microprocessor subunit ILF3 is linked to its diminished binding to the pri-miRNAs miR-15a/16, miR-17-92, miR-301a and miR-331. Our study uncovers a previously uncharacterized role of R-methylation in the regulation of miRNA biogenesis in mammalian cells.
Collapse
Affiliation(s)
- Valeria Spadotto
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Roberto Giambruno
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Enrico Massignani
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Marija Mihailovich
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Marianna Maniaci
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Francesca Patuzzo
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Francesco Ghini
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia, Milan, Italy
| | - Francesco Nicassio
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia, Milan, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
33
|
Song Q, Dou J, Mao Z, Wen Z, Li W. Mechanisms Underlying Dysregulation of miR-132 in Alzheimer's Disease. BIOMEDICAL JOURNAL OF SCIENTIFIC & TECHNICAL RESEARCH 2019; 22:17018-17020. [PMID: 35308096 PMCID: PMC8932946 DOI: 10.26717/bjstr.2019.22.003824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Qiaoyun Song
- Department of Pharmacology and Chemical biology, Emory University School of Medicine, USA
- Department of Reproductive Genetics, Hebei General Hospital, PR China
| | - Juan Dou
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, USA
| | - Zixu Mao
- Department of Pharmacology and Chemical biology, Emory University School of Medicine, USA
| | - Zhexing Wen
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, USA
| | - Wenming Li
- Department of Pharmacology and Chemical biology, Emory University School of Medicine, USA
| |
Collapse
|
34
|
Burger K, Ketley RF, Gullerova M. Beyond the Trinity of ATM, ATR, and DNA-PK: Multiple Kinases Shape the DNA Damage Response in Concert With RNA Metabolism. Front Mol Biosci 2019; 6:61. [PMID: 31428617 PMCID: PMC6688092 DOI: 10.3389/fmolb.2019.00061] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/11/2019] [Indexed: 12/22/2022] Open
Abstract
Our genome is constantly exposed to endogenous and exogenous sources of DNA damage resulting in various alterations of the genetic code. DNA double-strand breaks (DSBs) are considered one of the most cytotoxic lesions. Several types of repair pathways act to repair DNA damage and maintain genome stability. In the canonical DNA damage response (DDR) DSBs are recognized by the sensing kinases Ataxia-telangiectasia mutated (ATM), Ataxia-telangiectasia and Rad3-related (ATR), and DNA-dependent protein kinase (DNA-PK), which initiate a cascade of kinase-dependent amplification steps known as DSB signaling. Recent evidence suggests that efficient recognition and repair of DSBs relies on the transcription and processing of non-coding (nc)RNA molecules by RNA polymerase II (RNAPII) and the RNA interference (RNAi) factors Drosha and Dicer. Multiple kinases influence the phosphorylation status of both the RNAPII carboxy-terminal domain (CTD) and Dicer in order to regulate RNA-dependent DSBs repair. The importance of kinase signaling and RNA processing in the DDR is highlighted by the regulation of p53-binding protein (53BP1), a key regulator of DSB repair pathway choice between homologous recombination (HR) and non-homologous end joining (NHEJ). Additionally, emerging evidence suggests that RNA metabolic enzymes also play a role in the repair of other types of DNA damage, including the DDR to ultraviolet radiation (UVR). RNAi factors are also substrates for mitogen-activated protein kinase (MAPK) signaling and mediate the turnover of ncRNA during nucleotide excision repair (NER) in response to UVR. Here, we review kinase-dependent phosphorylation events on RNAPII, Drosha and Dicer, and 53BP1 that modulate the key steps of the DDR to DSBs and UVR, suggesting an intimate link between the DDR and RNA metabolism.
Collapse
Affiliation(s)
| | | | - Monika Gullerova
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
35
|
Randriamboavonjy V, Kyselova A, Fleming I. Redox Regulation of Calpains: Consequences on Vascular Function. Antioxid Redox Signal 2019; 30:1011-1026. [PMID: 30266074 DOI: 10.1089/ars.2018.7607] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SIGNIFICANCE Calpains (CAPNs) are a family of calcium-activated cysteine proteases. The ubiquitous isoforms CAPN1 and CAPN2 have been involved in the maintenance of vascular integrity, but uncontrolled CAPN activation plays a role in the pathogenesis of vascular diseases. Recent Advances: It is well accepted that chronic and acute overproduction of reactive oxygen species (ROS) is associated with the development of vascular diseases. There is increasing evidence that ROS can also affect the CAPN activity, suggesting CAPN as a potential link between oxidative stress and vascular disease. CRITICAL ISSUES The physiopathological relevance of ROS in regulating the CAPN activity is not fully understood but seems to involve direct effects on CAPNs, redox modifications of CAPN substrates, as well as indirect effect on CAPNs via changes in Ca2+ levels. Finally, CAPNs can also stimulate ROS production; however, data showing in which context ROS are the causes or the consequences of CAPN activation are missing. FUTURE DIRECTIONS Detailed characterization of the molecular mechanisms underlying the regulation of the different members of the CAPN system by specific ROS would help understanding the pathophysiological role of CAPN in the modulation of the vascular function. Moreover, given that CAPNs have been found in different cellular compartments such as mitochondria and nucleus as well as in the extracellular space, identification of new CAPN targets as well as their functional consequences would add new insights in the function of these enigmatic proteases.
Collapse
Affiliation(s)
- Voahanginirina Randriamboavonjy
- 1 Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,2 German Center of Cardiovascular Research (DZHK), Partner Site Rhein-Main, Frankfurt am Main, Germany
| | - Anastasia Kyselova
- 1 Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,2 German Center of Cardiovascular Research (DZHK), Partner Site Rhein-Main, Frankfurt am Main, Germany
| | - Ingrid Fleming
- 1 Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,2 German Center of Cardiovascular Research (DZHK), Partner Site Rhein-Main, Frankfurt am Main, Germany
| |
Collapse
|
36
|
Ogórek B, Lam HC, Khabibullin D, Liu HJ, Nijmeh J, Triboulet R, Kwiatkowski DJ, Gregory RI, Henske EP. TSC2 regulates microRNA biogenesis via mTORC1 and GSK3β. Hum Mol Genet 2019; 27:1654-1663. [PMID: 29509898 DOI: 10.1093/hmg/ddy073] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 02/26/2018] [Indexed: 12/21/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is an autosomal dominant disease caused by germline inactivating mutations of TSC1 or TSC2. In TSC-associated tumors of the brain, heart, skin, kidney and lung, inactivation of both alleles of TSC1 or TSC2 leads to hyperactivation of the mTORC1 pathway. The TSC/mTORC1 pathway is a key regulator of cellular processes related to growth, proliferation and autophagy. We and others have previously found that mTORC1 regulates microRNA biogenesis, but the mechanisms are not fully understood. Microprocessor, a multi-protein complex including the nuclease Drosha, processes the primary miR transcript. Using a dual-luciferase reporter, we found that inhibition of mTORC1 or downregulation of Raptor decreased Microprocessor activity, while loss of TSC2 led to a striking increase (∼5-fold) in Microprocessor activity. To determine the global impact of TSC2 on microRNAs we quantitatively analyzed 752 microRNAs in Tsc2-expressing and Tsc2-deficient cells. Out of 259 microRNAs expressed in both cell lines, 137 were significantly upregulated and 24 were significantly downregulated in Tsc2-deficient cells, consistent with the increased Microprocessor activity. Microprocessor activity is known to be regulated in part by GSK3β. We found that total GSK3β levels were higher in Tsc2-deficient cells, and the increase in Microprocessor activity associated with Tsc2 loss was reversed by three different GSK3β inhibitors. Furthermore, mTOR inhibition increased the levels of phospho-GSK3β (S9), which negatively affects Microprocessor activity. Taken together these data reveal that TSC2 regulates microRNA biogenesis and Microprocessor activity via GSK3β.
Collapse
Affiliation(s)
- Barbara Ogórek
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Hilaire C Lam
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Damir Khabibullin
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Heng-Jia Liu
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Julie Nijmeh
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Robinson Triboulet
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - David J Kwiatkowski
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Richard I Gregory
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Elizabeth P Henske
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
37
|
FOXG1 Regulates PRKAR2B Transcriptionally and Posttranscriptionally via miR200 in the Adult Hippocampus. Mol Neurobiol 2018; 56:5188-5201. [PMID: 30539330 PMCID: PMC6647430 DOI: 10.1007/s12035-018-1444-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 11/30/2018] [Indexed: 02/04/2023]
Abstract
Rett syndrome is a complex neurodevelopmental disorder that is mainly caused by mutations in MECP2. However, mutations in FOXG1 cause a less frequent form of atypical Rett syndrome, called FOXG1 syndrome. FOXG1 is a key transcription factor crucial for forebrain development, where it maintains the balance between progenitor proliferation and neuronal differentiation. Using genome-wide small RNA sequencing and quantitative proteomics, we identified that FOXG1 affects the biogenesis of miR200b/a/429 and interacts with the ATP-dependent RNA helicase, DDX5/p68. Both FOXG1 and DDX5 associate with the microprocessor complex, whereby DDX5 recruits FOXG1 to DROSHA. RNA-Seq analyses of Foxg1cre/+ hippocampi and N2a cells overexpressing miR200 family members identified cAMP-dependent protein kinase type II-beta regulatory subunit (PRKAR2B) as a target of miR200 in neural cells. PRKAR2B inhibits postsynaptic functions by attenuating protein kinase A (PKA) activity; thus, increased PRKAR2B levels may contribute to neuronal dysfunctions in FOXG1 syndrome. Our data suggest that FOXG1 regulates PRKAR2B expression both on transcriptional and posttranscriptional levels.
Collapse
|
38
|
Cao J, Zhuang Y, Zhang J, Zhang Z, Yuan S, Zhang P, Li H, Li X, Shen H, Wang Z, Chen G. Leucine-rich repeat kinase 2 aggravates secondary brain injury induced by intracerebral hemorrhage in rats by regulating the P38 MAPK/Drosha pathway. Neurobiol Dis 2018; 119:53-64. [DOI: 10.1016/j.nbd.2018.07.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/03/2018] [Accepted: 07/20/2018] [Indexed: 12/28/2022] Open
|
39
|
de Lima RMT, Dos Reis AC, de Menezes AAPM, Santos JVDO, Filho JWGDO, Ferreira JRDO, de Alencar MVOB, da Mata AMOF, Khan IN, Islam A, Uddin SJ, Ali ES, Islam MT, Tripathi S, Mishra SK, Mubarak MS, Melo-Cavalcante AADC. Protective and therapeutic potential of ginger (Zingiber officinale) extract and [6]-gingerol in cancer: A comprehensive review. Phytother Res 2018; 32:1885-1907. [PMID: 30009484 DOI: 10.1002/ptr.6134] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/31/2018] [Accepted: 06/05/2018] [Indexed: 12/21/2022]
Abstract
Natural dietary agents have attracted considerable attention due to their role in promoting health and reducing the risk of diseases including cancer. Ginger, one of the most ancient known spices, contains bioactive compounds with several health benefits. [6]-Gingerol constitutes the most pharmacologically active among such compounds. The aim of the present work was to review the literature pertaining to the use of ginger extract and [6]-gingerol against tumorigenic and oxidative and inflammatory processes associated with cancer, along with the underlying mechanisms of action involved in signaling pathways. This will shed some light on the protective or therapeutic role of ginger derivatives in oxidative and inflammatory regulations during metabolic disturbance and on the antiproliferative and anticancer properties. Data collected from experimental (in vitro or in vivo) and clinical studies discussed in this review indicate that ginger extract and [6]-gingerol exert their action through important mediators and pathways of cell signaling, including Bax/Bcl2, p38/MAPK, Nrf2, p65/NF-κB, TNF-α, ERK1/2, SAPK/JNK, ROS/NF-κB/COX-2, caspases-3, -9, and p53. This suggests that ginger derivatives, in the form of an extract or isolated compounds, exhibit relevant antiproliferative, antitumor, invasive, and anti-inflammatory activities.
Collapse
Affiliation(s)
- Rosália Maria Tôrres de Lima
- Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Biotechnology, Federal University of Piauí, Teresina, Brazil
- Laboratory of Genetical Toxicology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil
| | - Antonielly Campinho Dos Reis
- Laboratory of Genetical Toxicology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil
| | - Ag-Anne Pereira Melo de Menezes
- Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Biotechnology, Federal University of Piauí, Teresina, Brazil
- Laboratory of Genetical Toxicology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil
| | - José Victor de Oliveira Santos
- Laboratory of Genetical Toxicology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil
| | - José Williams Gomes de Oliveira Filho
- Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Biotechnology, Federal University of Piauí, Teresina, Brazil
- Laboratory of Genetical Toxicology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil
| | - José Roberto de Oliveira Ferreira
- Laboratory of Experimental Cancerology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil
| | - Marcus Vinícius Oliveira Barros de Alencar
- Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Biotechnology, Federal University of Piauí, Teresina, Brazil
- Laboratory of Genetical Toxicology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil
| | - Ana Maria Oliveira Ferreira da Mata
- Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Biotechnology, Federal University of Piauí, Teresina, Brazil
- Laboratory of Genetical Toxicology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil
| | - Ishaq N Khan
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Amirul Islam
- Pharmacy Discipline, School of Life Sciences, Khulna University, Khulna, Bangladesh
| | - Shaikh Jamal Uddin
- Pharmacy Discipline, School of Life Sciences, Khulna University, Khulna, Bangladesh
| | - Eunüs S Ali
- Gaco Pharmaceuticals and Research Laboratory, Dhaka-1000, Bangladesh; College of Medicine and Public Health, Flinders University, Bedford Park, Australia
| | - Muhammad Torequl Islam
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Swati Tripathi
- Amity Institute of Microbial Technology, Amity University, Noida, India
| | - Siddhartha Kumar Mishra
- Cancer Biology Laboratory, School of Biological Sciences (Zoology), Dr. Harisingh Gour Central University, Sagar, India
| | | | - Ana Amélia de Carvalho Melo-Cavalcante
- Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Biotechnology, Federal University of Piauí, Teresina, Brazil
- Laboratory of Genetical Toxicology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil
| |
Collapse
|
40
|
Treiber T, Treiber N, Meister G. Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat Rev Mol Cell Biol 2018; 20:5-20. [DOI: 10.1038/s41580-018-0059-1] [Citation(s) in RCA: 628] [Impact Index Per Article: 89.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
41
|
Identification of virus-encoded microRNAs in divergent Papillomaviruses. PLoS Pathog 2018; 14:e1007156. [PMID: 30048533 PMCID: PMC6062147 DOI: 10.1371/journal.ppat.1007156] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/15/2018] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are small RNAs that regulate diverse biological processes including multiple aspects of the host-pathogen interface. Consequently, miRNAs are commonly encoded by viruses that undergo long-term persistent infection. Papillomaviruses (PVs) are capable of undergoing persistent infection, but as yet, no widely-accepted PV-encoded miRNAs have been described. The incomplete understanding of PV-encoded miRNAs is due in part to lack of tractable laboratory models for most PV types. To overcome this, we have developed miRNA Discovery by forced Genome Expression (miDGE), a new wet bench approach to miRNA identification that screens numerous pathogen genomes in parallel. Using miDGE, we screened over 73 different PV genomes for the ability to code for miRNAs. Our results show that most PVs are unlikely to code for miRNAs and we conclusively demonstrate a lack of PV miRNA expression in cancers associated with infections of several high risk HPVs. However, we identified five different high-confidence or highly probable miRNAs encoded by four different PVs (Human PVs 17, 37, 41 and a Fringilla coelebs PV (FcPV1)). Extensive in vitro assays confirm the validity of these miRNAs in cell culture and two FcPV1 miRNAs are further confirmed to be expressed in vivo in a natural host. We show that miRNAs from two PVs (HPV41 & FcPV1) are able to regulate viral transcripts corresponding to the early region of the PV genome. Combined, these findings identify the first canonical PV miRNAs and support that miRNAs of either host or viral origin are important regulators of the PV life cycle.
Collapse
|
42
|
Loss of Drosha underlies dopaminergic neuron toxicity in models of Parkinson's disease. Cell Death Dis 2018; 9:693. [PMID: 29880811 PMCID: PMC5992196 DOI: 10.1038/s41419-018-0716-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/26/2018] [Accepted: 05/17/2018] [Indexed: 01/06/2023]
Abstract
MiRNAs, a group of powerful modulator of gene expression, participate in multiple cellular processes under physiological and pathological conditions. Emerging evidence shows that Drosha, which controls the initial step in canonical miRNA biogenesis, is involved in modulating cell survival and death in models of several diseases. However, the role of Drosha in Parkinson’s disease (PD) has not been well established. Here, we show that the level of Drosha decreases in 6-OHDA-induced cellular and animal models of PD. 6-OHDA induced a p38 MAPK-dependent phosphorylation of Drosha. This triggered Drosha degradation. Enhancing the level of Drosha protected the dopaminergic (DA) neurons from 6-OHDA-induced toxicity in both in vitro and in vivo models of PD and alleviated the motor deficits of PD mice. These findings reveal that Drosha plays a critical role in the survival of DA neurons and suggest that stress-induced destabilization of Drosha may be part of the pathological process in PD.
Collapse
|
43
|
Neuronal activity regulates DROSHA via autophagy in spinal muscular atrophy. Sci Rep 2018; 8:7907. [PMID: 29784949 PMCID: PMC5962575 DOI: 10.1038/s41598-018-26347-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 05/10/2018] [Indexed: 02/06/2023] Open
Abstract
Dysregulated miRNA expression and mutation of genes involved in miRNA biogenesis have been reported in motor neuron diseases including spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS). Therefore, identifying molecular mechanisms governing miRNA expression is important to understand these diseases. Here, we report that expression of DROSHA, which is a critical enzyme in the microprocessor complex and essential for miRNA biogenesis, is reduced in motor neurons from an SMA mouse model. We show that DROSHA is degraded by neuronal activity induced autophagy machinery, which is also dysregulated in SMA. Blocking neuronal activity or the autophagy-lysosome pathway restores DROSHA levels in SMA motor neurons. Moreover, reducing DROSHA levels enhances axonal growth. As impaired axonal growth is a well described phenotype of SMA motor neurons, these data suggest that DROSHA reduction by autophagy may mitigate the phenotype of SMA. In summary, these findings suggest that autophagy regulates RNA metabolism and neuronal growth via the DROSHA/miRNA pathway and this pathway is dysregulated in SMA.
Collapse
|
44
|
Rui Q, Ni H, Gao F, Dang B, Li D, Gao R, Chen G. LRRK2 Contributes to Secondary Brain Injury Through a p38/Drosha Signaling Pathway After Traumatic Brain Injury in Rats. Front Cell Neurosci 2018; 12:51. [PMID: 29545743 PMCID: PMC5837969 DOI: 10.3389/fncel.2018.00051] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/15/2018] [Indexed: 12/12/2022] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is widely expressed in the brain and exerts neurotoxicity in Parkinson's disease. The p38/Drosha signaling activation has been reported to increase cell death under stress. This study was designed to investigate the potential role and mechanism of LRRK2 in secondary brain injury after traumatic brain injury (TBI). A total of 130 male Sprague-Dawley rats were examined using a weight-drop model of TBI. The rats received the specific LRRK2 inhibitor PF-06447475 or LRRK2 pDNA alone or in combination with Drosha pDNA. Real-time PCR, western blot, immunofluorescence, neuronal apoptosis, brain water content, and neurological score analyses were conducted. Our results showed that after TBI, endogenous LRRK2 expression and p38 phosphorylation were increased, whereas Drosha expression was inhibited. Administration of the LRRK2 inhibitor PF-06447475 significantly reduced neuronal apoptosis, brain water content, and blood-brain barrier permeability 12 h after TBI and ameliorated neurological deficits 72 h after TBI, which was concomitant with decreased p38 phosphorylation and increased Drosha expression. Conversely, LRRK2 overexpression induced the opposite effect. Moreover, the neurotoxic effects of LRRK2 on TBI were also eliminated by Drosha overexpression. Altogether, these findings demonstrate the importance of TBI-induced LRRK2 upregulation during the induction of post-traumatic neurological injury, which may be partially mediated through a p38/Drosha signaling pathway.
Collapse
Affiliation(s)
- Qin Rui
- Department of Laboratory, The First People’s Hospital of Zhangjiagang, Suzhou, China
| | - Haibo Ni
- Department of Neurosurgery, The First People’s Hospital of Zhangjiagang, Suzhou, China
| | - Fan Gao
- Department of Rehabilitation, Zhangjiagang Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Baoqi Dang
- Department of Rehabilitation, Zhangjiagang Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Di Li
- Department of Translational Medicine Center, The First People’s Hospital of Zhangjiagang, Suzhou, China
| | - Rong Gao
- Department of Laboratory, The First People’s Hospital of Zhangjiagang, Suzhou, China
| | - Gang Chen
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
45
|
Kucherenko MM, Shcherbata HR. miRNA targeting and alternative splicing in the stress response - events hosted by membrane-less compartments. J Cell Sci 2018; 131:131/4/jcs202002. [PMID: 29444950 DOI: 10.1242/jcs.202002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Stress can be temporary or chronic, and mild or acute. Depending on its extent and severity, cells either alter their metabolism, and adopt a new state, or die. Fluctuations in environmental conditions occur frequently, and such stress disturbs cellular homeostasis, but in general, stresses are reversible and last only a short time. There is increasing evidence that regulation of gene expression in response to temporal stress happens post-transcriptionally in specialized subcellular membrane-less compartments called ribonucleoprotein (RNP) granules. RNP granules assemble through a concentration-dependent liquid-liquid phase separation of RNA-binding proteins that contain low-complexity sequence domains (LCDs). Interestingly, many factors that regulate microRNA (miRNA) biogenesis and alternative splicing are RNA-binding proteins that contain LCDs and localize to stress-induced liquid-like compartments. Consequently, gene silencing through miRNAs and alternative splicing of pre-mRNAs are emerging as crucial post-transcriptional mechanisms that function on a genome-wide scale to regulate the cellular stress response. In this Review, we describe the interplay between these two post-transcriptional processes that occur in liquid-like compartments as an adaptive cellular response to stress.
Collapse
Affiliation(s)
- Mariya M Kucherenko
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Goettingen, Germany
| | - Halyna R Shcherbata
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Goettingen, Germany
| |
Collapse
|
46
|
Olejniczak M, Kotowska-Zimmer A, Krzyzosiak W. Stress-induced changes in miRNA biogenesis and functioning. Cell Mol Life Sci 2018; 75:177-191. [PMID: 28717872 PMCID: PMC5756259 DOI: 10.1007/s00018-017-2591-0] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/30/2017] [Accepted: 07/11/2017] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are small, noncoding RNAs that play key roles in the regulation of cellular homeostasis in eukaryotic organisms. There is emerging evidence that some of these processes are influenced by various forms of cellular stresses, including DNA damage, pathogen invasion or chronic stress associated with diseases. Many reports over the last decade demonstrate examples of stress-induced miRNA deregulation at the level of transcription, processing, subcellular localization and functioning. Moreover, core miRNA biogenesis proteins and their interactions with partners can be selectively regulated in response to stress signaling. However, little is known about the role of isomiRs and the interactions of miRNA with non-canonical targets in the context of the stress response. In this review, we summarize the current knowledge on miRNA functions under various stresses, including chronic stress and miRNA deregulation in the pathogenesis of age-associated neurodegenerative disorders.
Collapse
Affiliation(s)
- Marta Olejniczak
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland.
| | - Anna Kotowska-Zimmer
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Wlodzimierz Krzyzosiak
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland.
| |
Collapse
|
47
|
Chew CL, Conos SA, Unal B, Tergaonkar V. Noncoding RNAs: Master Regulators of Inflammatory Signaling. Trends Mol Med 2017; 24:66-84. [PMID: 29246760 DOI: 10.1016/j.molmed.2017.11.003] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 12/15/2022]
Abstract
Inflammatory signaling underlies many diseases, from arthritis to cancer. Our understanding of inflammation has thus far been limited to the world of proteins, because we are only just beginning to understand the role that noncoding RNAs (ncRNA) might play. It is now clear that ncRNA do not constitute transcriptional 'noise' but instead harbor physiological functions in controlling signaling pathways. In this review, we cover the newly discovered mechanisms and functions of ncRNAs in the regulation of inflammatory signaling. We also describe advances in experimental techniques allowing this field of research to take root. These findings have opened new avenues for putative therapeutic intervention in inflammatory diseases, which may be seen translated into clinical outcomes in the future.
Collapse
Affiliation(s)
- Chen Li Chew
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore; These authors contributed equally
| | - Stephanie Ana Conos
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore; These authors contributed equally
| | - Bilal Unal
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore
| | - Vinay Tergaonkar
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore; Cancer Science Institute of Singapore, Singapore 117599, Singapore; Centre for Cancer Biology (University of South Australia and SA Pathology), Adelaide, SA 5000, Australia.
| |
Collapse
|
48
|
Abstract
DROSHA is the catalytic subunit of the Microprocessor complex, which initiates microRNA (miRNA) maturation in the nucleus by recognizing and cleaving hairpin precursors embedded in primary transcripts. However, accumulating evidence suggests that not all hairpin substrates of DROSHA are associated with the generation of functional small RNAs. By targeting those hairpins, DROSHA regulates diverse aspects of RNA metabolism across the transcriptome, serves as a line of defense against the expression of potentially deleterious elements, and permits cell fate determination and differentiation. DROSHA is also versatile in the way that it executes these noncanonical functions, occasionally depending on its RNA-binding activity rather than its catalytic activity. Herein, we discuss the functional and mechanistic diversity of DROSHA beyond the miRNA biogenesis pathway in light of recent findings.
Collapse
Affiliation(s)
- Dooyoung Lee
- a Department of Agricultural Biotechnology , Seoul National University , Seoul , Republic of Korea
| | - Chanseok Shin
- a Department of Agricultural Biotechnology , Seoul National University , Seoul , Republic of Korea.,b Research Institute of Agriculture and Life Sciences, and Plant Genomics and Breeding Institute , Seoul National University , Seoul , Republic of Korea
| |
Collapse
|
49
|
|
50
|
Abstract
MicroRNAs (miRNAs or miRs) are small 19-22 nucleotide long, noncoding, single-stranded, and multifunctional RNAs that regulate a diverse assortment of gene and protein functions that impact on a vast network of pathways. Lin-4, a noncoding transcript discovered in 1993 and named miRNA, initiated the exploration of research into these intriguing molecules identified in almost all organisms. miRNAs interfere with translation or posttranscriptional regulation of their target gene and regulate multiple biological actions exerted by these target genes. In cancer, they function as both oncogenes and tumor suppressor genes displaying differential activity in various cellular contexts. Although the role of miRNAs on target gene functions has been extensively investigated, less is currently known about the upstream regulatory molecules that regulate miRNAs. This chapter focuses on the factors and processes involved in miRNA regulation.
Collapse
Affiliation(s)
- Anjan K Pradhan
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Luni Emdad
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Swadesh K Das
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Devanand Sarkar
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|