1
|
Nagel M, Taatjes DJ. Regulation of RNA polymerase II transcription through re-initiation and bursting. Mol Cell 2025; 85:1907-1919. [PMID: 40378829 DOI: 10.1016/j.molcel.2025.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/13/2025] [Accepted: 04/07/2025] [Indexed: 05/19/2025]
Abstract
The regulation of RNA polymerase II (RNAPII) activity requires orchestrated responses among genomic regulatory sequences and an expansive set of proteins and protein complexes. Despite intense study over five decades, mechanistic insights continue to emerge. Within the past 10 years, live-cell imaging and single-cell transcriptomics experiments have yielded new information about enhancer-promoter communication, transcription factor dynamics, and the kinetics of RNAPII transcription activation. These insights have established RNAPII re-initiation and bursting as a common regulatory phenomenon with widespread implications for gene regulation in health and disease. Here, we summarize regulatory strategies that help control RNAPII bursting in eukaryotic cells, which is defined as short periods of active transcription followed by longer periods of inactivity. We focus on RNAPII re-initiation (i.e., a "burst" of two or more polymerases that initiate from the same promoter), with an emphasis on molecular mechanisms, open questions, and controversies surrounding this distinct regulatory stage.
Collapse
Affiliation(s)
- Michael Nagel
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - Dylan J Taatjes
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA.
| |
Collapse
|
2
|
Verhagen PGA, Hansen MMK. Exploring the central dogma through the lens of gene expression noise. J Mol Biol 2025:169202. [PMID: 40354878 DOI: 10.1016/j.jmb.2025.169202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/30/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
Over the past two decades, cell-to-cell heterogeneity has garnered increasing attention due to its critical role in both developmental and pathological processes. This growing interest has been driven, in part, by the advancements in live-cell and single-molecule imaging techniques. These techniques have provided mechanistic insights into how processes, transcription in particular, contribute to gene expression noise and, ultimately, cell-to-cell heterogeneity. More recently, however, research has expanded to explore how downstream steps in the central dogma influence gene expression noise. In this review, we mostly examine the impact of transcriptional processes on the generation of gene expression noise but also discuss how post-transcriptional mechanisms modulate noise and its propagation to the protein level. This evaluation emphasizes the need for further investigation into how processes beyond transcription shape gene expression noise, highlighting unanswered questions that remain in the field.
Collapse
Affiliation(s)
- Pieter G A Verhagen
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands; Oncode Institute, Nijmegen, The Netherlands
| | - Maike M K Hansen
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands; Oncode Institute, Nijmegen, The Netherlands.
| |
Collapse
|
3
|
Irastorza-Azcarate I, Kukalev A, Kempfer R, Thieme CJ, Mastrobuoni G, Markowski J, Loof G, Sparks TM, Brookes E, Natarajan KN, Sauer S, Fisher AG, Nicodemi M, Ren B, Schwarz RF, Kempa S, Pombo A. Extensive folding variability between homologous chromosomes in mammalian cells. Mol Syst Biol 2025:10.1038/s44320-025-00107-3. [PMID: 40329044 DOI: 10.1038/s44320-025-00107-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 03/31/2025] [Accepted: 04/10/2025] [Indexed: 05/08/2025] Open
Abstract
Genetic variation and 3D chromatin structure have major roles in gene regulation. Due to challenges in mapping chromatin conformation with haplotype-specific resolution, the effects of genetic sequence variation on 3D genome structure and gene expression imbalance remain understudied. Here, we applied Genome Architecture Mapping (GAM) to a hybrid mouse embryonic stem cell (mESC) line with high density of single-nucleotide polymorphisms (SNPs). GAM resolved haplotype-specific 3D genome structures with high sensitivity, revealing extensive allelic differences in chromatin compartments, topologically associating domains (TADs), long-range enhancer-promoter contacts, and CTCF loops. Architectural differences often coincide with allele-specific differences in gene expression, and with Polycomb occupancy. We show that histone genes are expressed with allelic imbalance in mESCs, and are involved in haplotype-specific chromatin contacts marked by H3K27me3. Conditional knockouts of Polycomb enzymatic subunits, Ezh2 or Ring1, show that one-third of ASE genes, including histone genes, is regulated through Polycomb repression. Our work reveals highly distinct 3D folding structures between homologous chromosomes, and highlights their intricate connections with allelic gene expression.
Collapse
Affiliation(s)
- Ibai Irastorza-Azcarate
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, 10115, Berlin, Germany.
| | - Alexander Kukalev
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, 10115, Berlin, Germany
| | - Rieke Kempfer
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, 10115, Berlin, Germany
- Humboldt-Universität zu Berlin, Berlin, Germany
- Sophia Genetics SA, A-One Park, Rolle, 1180, Switzerland
| | - Christoph J Thieme
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, 10115, Berlin, Germany
| | - Guido Mastrobuoni
- Max-Delbrück Centre for Molecular Medicine, Berlin Institute for Medical Systems Biology, Proteomics and Metabolomic Platform, 10115, Berlin, Germany
| | - Julia Markowski
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, 10115, Berlin, Germany
- Humboldt-Universität zu Berlin, Berlin, Germany
- Max-Delbrück Centre for Molecular Medicine, Berlin Institute for Medical Systems Biology, Evolutionary and Cancer Genomics Group, 10115, Berlin, Germany
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Gesa Loof
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, 10115, Berlin, Germany
- Humboldt-Universität zu Berlin, Berlin, Germany
- Aix Marseille Univ, CNRS, IBDM (UMR 7288), Turing Centre for Living Systems, Marseille, France
| | - Thomas M Sparks
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, 10115, Berlin, Germany
| | - Emily Brookes
- MRC Laboratory of Medical Sciences, Imperial College London, London, W12 0NN, UK
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Kedar Nath Natarajan
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, 10115, Berlin, Germany
- MRC Laboratory of Medical Sciences, Imperial College London, London, W12 0NN, UK
- DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Stephan Sauer
- MRC Laboratory of Medical Sciences, Imperial College London, London, W12 0NN, UK
- Regeneron Ireland DAC, Dublin 2, D02 HH27, Ireland
| | - Amanda G Fisher
- MRC Laboratory of Medical Sciences, Imperial College London, London, W12 0NN, UK
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Mario Nicodemi
- Dipartimento di Fisica, Università di Napoli "Federico II", and INFN, Napoli, Italy
| | - Bing Ren
- Center for Epigenomics and Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Roland F Schwarz
- Max-Delbrück Centre for Molecular Medicine, Berlin Institute for Medical Systems Biology, Evolutionary and Cancer Genomics Group, 10115, Berlin, Germany
- Institute for Computational Cancer Biology (ICCB), Center for Integrated Oncology (CIO), Cancer Research Center Cologne Essen (CCCE), Cologne, Germany
- BIFOLD-Berlin Institute for the Foundations of Learning and Data, Berlin, Germany
| | - Stefan Kempa
- Max-Delbrück Centre for Molecular Medicine, Berlin Institute for Medical Systems Biology, Proteomics and Metabolomic Platform, 10115, Berlin, Germany
| | - Ana Pombo
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, 10115, Berlin, Germany.
- Humboldt-Universität zu Berlin, Berlin, Germany.
- MRC Laboratory of Medical Sciences, Imperial College London, London, W12 0NN, UK.
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA.
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
4
|
Senapati S, Irshad IU, Sharma AK, Kumar H. Predicting gene expression changes from chromatin structure modification. NPJ Syst Biol Appl 2025; 11:34. [PMID: 40234426 PMCID: PMC12000410 DOI: 10.1038/s41540-025-00510-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 03/27/2025] [Indexed: 04/17/2025] Open
Abstract
Spatial organization of chromatin plays a critical role in gene transcription, but connecting population-averaged HiC data to functional outcomes remains a challenge. We present a computational framework linking HiC contact map to gene transcription. Utilizing a bead-spring polymer model informed by HiC contact maps, we generate an ensemble of 3D conformations for a given genomic locus. These conformations are then coupled to gene transcription levels through a Markov chain model, with transition rates derived from molecular dynamics simulations. The efficacy of this framework is demonstrated by simulating the perturbation of a CTCF-mediated TAD boundary, impacting the expression of sox9 and kcnj2. Our model quantitatively reproduces experimentally observed changes in gene expression, revealing that the increased kcnj2 transcription is a consequence of enhancers within the sox9 TAD becoming accessible upon boundary disruption. Quantifying enhancer impact, our model can also identify functional enhancers. This framework enhances our understanding of the relationship between chromosome spatial architecture and gene regulation.
Collapse
Affiliation(s)
- Swayamshree Senapati
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Odisha, 752050, India
| | - Inayat Ullah Irshad
- Department of Physics, Indian Institute of Technology Jammu, Jammu, 181221, India
| | - Ajeet K Sharma
- Department of Physics, Indian Institute of Technology Jammu, Jammu, 181221, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology Jammu, Jammu, 181221, India
| | - Hemant Kumar
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Odisha, 752050, India.
| |
Collapse
|
5
|
Kojima ML, Hoppe C, Giraldez AJ. The maternal-to-zygotic transition: reprogramming of the cytoplasm and nucleus. Nat Rev Genet 2025; 26:245-267. [PMID: 39587307 PMCID: PMC11928286 DOI: 10.1038/s41576-024-00792-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2024] [Indexed: 11/27/2024]
Abstract
A fertilized egg is initially transcriptionally silent and relies on maternally provided factors to initiate development. For embryonic development to proceed, the oocyte-inherited cytoplasm and the nuclear chromatin need to be reprogrammed to create a permissive environment for zygotic genome activation (ZGA). During this maternal-to-zygotic transition (MZT), which is conserved in metazoans, transient totipotency is induced and zygotic transcription is initiated to form the blueprint for future development. Recent technological advances have enhanced our understanding of MZT regulation, revealing common themes across species and leading to new fundamental insights about transcription, mRNA decay and translation.
Collapse
Affiliation(s)
- Mina L Kojima
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Caroline Hoppe
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Antonio J Giraldez
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
6
|
Sood V, Holewinski R, Andresson T, Larson DR, Misteli T. Identification of molecular determinants of gene-specific bursting patterns by high-throughput imaging screens. Mol Cell 2025; 85:913-928.e8. [PMID: 39978338 PMCID: PMC11890955 DOI: 10.1016/j.molcel.2025.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 12/06/2024] [Accepted: 01/21/2025] [Indexed: 02/22/2025]
Abstract
Stochastic transcriptional bursting is a universal property of active genes. While different genes exhibit distinct bursting patterns, the molecular mechanisms that govern gene-specific stochastic bursting are largely unknown. We have developed a high-throughput-imaging-based screening strategy to identify cellular factors that determine the bursting patterns of native genes in human cells. We identify protein acetylation as a prominent effector of burst frequency and burst size acting via decreasing off-times and gene-specific changes in the on-time. These effects are not correlated with promoter acetylation. Instead, we demonstrate acetylation of the Integrator complex as a key determinant of gene bursting that alters Integrator interactions with transcription elongation and RNA processing factors but without affecting pausing. Our results suggest a prominent role for non-histone acetylation of a transcription cofactors as a mechanism for modulation of bursting via a far-downstream checkpoint.
Collapse
Affiliation(s)
- Varun Sood
- National Cancer Institute, Bethesda, MD, USA
| | - Ronald Holewinski
- Protein Characterization Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Thorkell Andresson
- Protein Characterization Laboratory, National Cancer Institute, Frederick, MD, USA
| | | | - Tom Misteli
- National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
7
|
Ventura-Gomes A, Carmo-Fonseca M. The spatial choreography of mRNA biosynthesis. J Cell Sci 2025; 138:JCS263504. [PMID: 40019352 DOI: 10.1242/jcs.263504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025] Open
Abstract
Properly timed gene expression is essential for all aspects of organismal physiology. Despite significant progress, our understanding of the complex mechanisms governing the dynamics of gene regulation in response to internal and external signals remains incomplete. Over the past decade, advances in technologies like light and cryo-electron microscopy (Cryo-EM), cryo-electron tomography (Cryo-ET) and high-throughput sequencing have spurred new insights into traditional paradigms of gene expression. In this Review, we delve into recent concepts addressing 'where' and 'when' gene transcription and RNA splicing occur within cells, emphasizing the dynamic spatial and temporal organization of the cell nucleus.
Collapse
Affiliation(s)
- André Ventura-Gomes
- Gulbenkian Institute for Molecular Medicine, Av. Professor Egas Moniz, 1649-028 Lisbon, Portugal
- Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisbon, Portugal
| | - Maria Carmo-Fonseca
- Gulbenkian Institute for Molecular Medicine, Av. Professor Egas Moniz, 1649-028 Lisbon, Portugal
- Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisbon, Portugal
| |
Collapse
|
8
|
Chu SN, Soupene E, Sharma D, Sinha R, McCreary T, Hernandez B, Shen H, Wienert B, Bowman C, Yin H, Lesch BJ, Jia K, Romero KA, Kostamo Z, Zhang Y, Tran T, Cordero M, Homma S, Hampton JP, Gardner JM, Conklin BR, MacKenzie TC, Sheehan VA, Porteus MH, Cromer MK. Dual α-globin-truncated erythropoietin receptor knockin restores hemoglobin production in α-thalassemia-derived erythroid cells. Cell Rep 2025; 44:115141. [PMID: 39754719 PMCID: PMC11837859 DOI: 10.1016/j.celrep.2024.115141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 11/21/2024] [Accepted: 12/11/2024] [Indexed: 01/06/2025] Open
Abstract
The most severe form of α-thalassemia results from loss of all four copies of α-globin. Postnatally, patients face challenges similar to β-thalassemia, including severe anemia and erythrotoxicity due to the imbalance of β-globin and α-globin chains. Despite progress in genome editing treatments for β-thalassemia, there is no analogous curative option for α-thalassemia. To address this, we designed a Cas9/AAV6-mediated genome editing strategy that integrates a functional α-globin gene into the β-globin locus in α-thalassemia patient-derived hematopoietic stem and progenitor cells (HSPCs). Incorporation of a truncated erythropoietin receptor transgene into the α-globin integration cassette significantly increased erythropoietic output from edited HSPCs and led to the most robust production of α-globin, and consequently hemoglobin tetramers. By directing edited HSPCs toward increased production of clinically relevant erythroid cells, this approach has the potential to mitigate the limitations of current treatments for the hemoglobinopathies, including low genome editing and low engraftment rates.
Collapse
Affiliation(s)
- Simon N Chu
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Eli & Edythe Broad Center for Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Eric Soupene
- Department of Pediatrics, University of California, San Francisco, Oakland, CA 94609, USA
| | - Devesh Sharma
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Eli & Edythe Broad Center for Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Roshani Sinha
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Eli & Edythe Broad Center for Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Travis McCreary
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Eli & Edythe Broad Center for Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Britney Hernandez
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Huifeng Shen
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30329, USA
| | | | - Chance Bowman
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Eli & Edythe Broad Center for Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering & Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Han Yin
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Benjamin J Lesch
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Eli & Edythe Broad Center for Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering & Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kun Jia
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Eli & Edythe Broad Center for Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kathleen A Romero
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Zachary Kostamo
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Yankai Zhang
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Tammy Tran
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Eli & Edythe Broad Center for Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Marco Cordero
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Eli & Edythe Broad Center for Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Shota Homma
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Jessica P Hampton
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - James M Gardner
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Bruce R Conklin
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Tippi C MacKenzie
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Eli & Edythe Broad Center for Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Vivien A Sheehan
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Matthew H Porteus
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - M Kyle Cromer
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Eli & Edythe Broad Center for Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering & Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
9
|
Gambi G, Boccalatte F, Rodriguez Hernaez J, Lin Z, Nadorp B, Polyzos A, Tan J, Avrampou K, Inghirami G, Kentsis A, Apostolou E, Aifantis I, Tsirigos A. 3D chromatin hubs as regulatory units of identity and survival in human acute leukemia. Mol Cell 2025; 85:42-60.e7. [PMID: 39719705 PMCID: PMC11934262 DOI: 10.1016/j.molcel.2024.11.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 09/23/2024] [Accepted: 11/27/2024] [Indexed: 12/26/2024]
Abstract
Cancer progression involves genetic and epigenetic changes that disrupt chromatin 3D organization, affecting enhancer-promoter interactions and promoting growth. Here, we provide an integrative approach, combining chromatin conformation, accessibility, and transcription analysis, validated by in silico and CRISPR-interference screens, to identify relevant 3D topologies in pediatric T cell leukemia (T-ALL and ETP-ALL). We characterize 3D hubs as regulatory centers for oncogenes and disease markers, linking them to biological processes like cell division, inflammation, and stress response. Single-cell mapping reveals heterogeneous gene activation in discrete epigenetic clones, aiding in patient stratification for relapse risk after chemotherapy. Finally, we identify MYB as a 3D hub regulator in leukemia cells and show that the targeting of key regulators leads to hub dissolution, thereby providing a novel and effective anti-leukemic strategy. Overall, our work demonstrates the relevance of studying oncogenic 3D hubs to better understand cancer biology and tumor heterogeneity and to propose novel therapeutic strategies.
Collapse
Affiliation(s)
- Giovanni Gambi
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA; Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Francesco Boccalatte
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA; Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA; Candiolo Cancer Institute, FPO-IRCCS, Candiolo, TO, Italy.
| | - Javier Rodriguez Hernaez
- Division of Precision Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA; Applied Bioinformatics Laboratories, Office of Science and Research, New York University Grossman School of Medicine, New York, NY, USA
| | - Ziyan Lin
- Division of Precision Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA; Applied Bioinformatics Laboratories, Office of Science and Research, New York University Grossman School of Medicine, New York, NY, USA
| | - Bettina Nadorp
- Division of Precision Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA; Applied Bioinformatics Laboratories, Office of Science and Research, New York University Grossman School of Medicine, New York, NY, USA
| | - Alexander Polyzos
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Jimin Tan
- Division of Precision Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA; Applied Bioinformatics Laboratories, Office of Science and Research, New York University Grossman School of Medicine, New York, NY, USA
| | - Kleopatra Avrampou
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA; Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Alex Kentsis
- Molecular Pharmacology Program, Sloan Kettering Institute and Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Departments of Pediatrics, Pharmacology, Physiology & Biophysics, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Effie Apostolou
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Iannis Aifantis
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA; Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA.
| | - Aristotelis Tsirigos
- Division of Precision Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA; Applied Bioinformatics Laboratories, Office of Science and Research, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
10
|
He X, Sun Y, Ma H. ParSite is a multicolor DNA labeling system that allows for simultaneous imaging of triple genomic loci in living cells. PLoS Biol 2025; 23:e3003009. [PMID: 39854604 PMCID: PMC11798528 DOI: 10.1371/journal.pbio.3003009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 02/05/2025] [Accepted: 01/09/2025] [Indexed: 01/26/2025] Open
Abstract
The organization of the human genome in space and time is critical for transcriptional regulation and cell fate determination. However, robust methods for tracking genome organization or genomic interactions over time in living cells are lacking. Here, we developed a multicolor DNA labeling system, ParSite, to simultaneously track triple genomic loci in the U2OS cells. The tricolor ParSite system is derived from the T. thermophilus ParB/ParSc (TtParB/ParSc) system by rational design. We mutated the interface between TtParB and ParSc and generated a new pair of TtParBm and ParSm for genomic DNA labeling. The insertions of 16 base-pair palindromic ParSc and ParSm into genomic loci allow dual-color DNA imaging in living cells. A pair of genomic loci labeled by ParSite could be colocalized with p53-binding protein 1 (53BP1) in response to CRISPR/Cas9-mediated double-strand breaks (DSBs). The ParSite permits tracking promoter and terminator dynamics of the APP gene, which spans 290 kilobases in length. Intriguingly, the hybrid ParS (ParSh) of half-ParSc and half-ParSm enables for the visualization of a third locus independent of ParSc or ParSm. We simultaneously labeled 3 loci with a genomic distance of 36, 89, and 352 kilobases downstream the C3 repeat locus, respectively. In sum, the ParSite is a robust DNA labeling system for tracking multiple genomic loci in space and time in living cells.
Collapse
Affiliation(s)
- Xiaohui He
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yadong Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Hanhui Ma
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
11
|
Taylor T, Zhu HV, Moorthy SD, Khader N, Mitchell JA. The cells are all-right: Regulation of the Lefty genes by separate enhancers in mouse embryonic stem cells. PLoS Genet 2024; 20:e1011513. [PMID: 39671433 DOI: 10.1371/journal.pgen.1011513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/27/2024] [Accepted: 11/26/2024] [Indexed: 12/15/2024] Open
Abstract
Enhancers play a critical role in regulating precise gene expression patterns essential for development and cellular identity; however, how gene-enhancer specificity is encoded within the genome is not clearly defined. To investigate how this specificity arises within topologically associated domains (TAD), we performed allele-specific genome editing of sequences surrounding the Lefty1 and Lefty2 paralogs in mouse embryonic stem cells. The Lefty genes arose from a tandem duplication event and these genes interact with each other in chromosome conformation capture assays which place these genes within the same TAD. Despite their physical proximity, we demonstrate that these genes are primarily regulated by separate enhancer elements. Through CRISPR-Cas9 mediated deletions to remove the intervening chromatin between the Lefty genes, we reveal a distance-dependent dosage effect of the Lefty2 enhancer on Lefty1 expression. These findings indicate a role for chromatin distance in insulating gene expression domains in the Lefty locus in the absence of architectural insulation.
Collapse
Affiliation(s)
- Tiegh Taylor
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Hongyu Vicky Zhu
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Sakthi D Moorthy
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Nawrah Khader
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Jennifer A Mitchell
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
12
|
Biswas K, Dey S, Singh A. Sequestration of gene products by decoys enhances precision in the timing of intracellular events. Sci Rep 2024; 14:27199. [PMID: 39516495 PMCID: PMC11549397 DOI: 10.1038/s41598-024-75505-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Expressed gene products often interact ubiquitously with binding sites at nucleic acids and macromolecular complexes, known as decoys. The binding of transcription factors (TFs) to decoys can be crucial in controlling the stochastic dynamics of gene expression. Here, we explore the impact of decoys on the timing of intracellular events, as captured by the time taken for the levels of a given TF to reach a critical threshold level, known as the first passage time (FPT). Although nonlinearity introduced by binding makes exact mathematical analysis challenging, employing suitable approximations and reformulating FPT in terms of an alternative variable, we analytically assess the impact of decoys. The stability of the decoy-bound TFs against degradation impacts FPT statistics crucially. Decoys reduce noise in FPT, and stable decoy-bound TFs offer greater timing precision with less expression cost than their unstable counterparts. Interestingly, when both bound and free TFs decay at the same rate, decoy binding does not directly alter FPT noise. We verify these results by performing exact stochastic simulations. These results have important implications for the precise temporal scheduling of events involved in the functioning of biomolecular clocks, development processes, cell-cycle control, and cell-size homeostasis.
Collapse
Affiliation(s)
- Kuheli Biswas
- Department of Chemical Engineering, Network Biology Research Lab, Technion, Israel Institute of Technology, Haifa, Israel.
| | - Supravat Dey
- Department of Physics and Department Computer Science and Engineering, SRM University - AP, Amaravati, Andhra Pradesh, 522240, India.
| | - Abhyudai Singh
- Department of Electrical and Computer Engineering, Biomedical Engineering, Mathematical Sciences, Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
13
|
Bohrer CH, Fursova NA, Larson DR. Enhancers: A Focus on Synthetic Biology and Correlated Gene Expression. ACS Synth Biol 2024; 13:3093-3108. [PMID: 39276360 DOI: 10.1021/acssynbio.4c00244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Enhancers are central for the regulation of metazoan transcription but have proven difficult to study, primarily due to a myriad of interdependent variables shaping their activity. Consequently, synthetic biology has emerged as the main approach for dissecting mechanisms of enhancer function. We start by reviewing simple but highly parallel reporter assays, which have been successful in quantifying the complexity of the activator/coactivator mechanisms at enhancers. We then describe studies that examine how enhancers function in the genomic context and in combination with other enhancers, revealing that they activate genes through a variety of different mechanisms, working together as a system. Here, we primarily focus on synthetic reporter genes that can quantify the dynamics of enhancer biology through time. We end by considering the consequences of having many genes and enhancers within a 'local environment', which we believe leads to correlated gene expression and likely reports on the general principles of enhancer biology.
Collapse
Affiliation(s)
- Christopher H Bohrer
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Nadezda A Fursova
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Daniel R Larson
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
14
|
Ramsköld D, Hendriks GJ, Larsson AJM, Mayr JV, Ziegenhain C, Hagemann-Jensen M, Hartmanis L, Sandberg R. Single-cell new RNA sequencing reveals principles of transcription at the resolution of individual bursts. Nat Cell Biol 2024; 26:1725-1733. [PMID: 39198695 PMCID: PMC11469958 DOI: 10.1038/s41556-024-01486-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/15/2024] [Indexed: 09/01/2024]
Abstract
Analyses of transcriptional bursting from single-cell RNA-sequencing data have revealed patterns of variation and regulation in the kinetic parameters that could be inferred. Here we profiled newly transcribed (4-thiouridine-labelled) RNA across 10,000 individual primary mouse fibroblasts to more broadly infer bursting kinetics and coordination. We demonstrate that inference from new RNA profiles could separate the kinetic parameters that together specify the burst size, and that the synthesis rate (and not the transcriptional off rate) controls the burst size. Importantly, transcriptome-wide inference of transcriptional on and off rates provided conclusive evidence that RNA polymerase II transcribes genes in bursts. Recent reports identified examples of transcriptional co-bursting, yet no global analyses have been performed. The deep new RNA profiles we generated with allelic resolution demonstrated that co-bursting rarely appears more frequently than expected by chance, except for certain gene pairs, notably paralogues located in close genomic proximity. Altogether, new RNA single-cell profiling critically improves the inference of transcriptional bursting and provides strong evidence for independent transcriptional bursting of mammalian genes.
Collapse
Affiliation(s)
- Daniel Ramsköld
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Gert-Jan Hendriks
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Anton J M Larsson
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Juliane V Mayr
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Christoph Ziegenhain
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | | | - Leonard Hartmanis
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Rickard Sandberg
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
15
|
Herbert A. A Compendium of G-Flipon Biological Functions That Have Experimental Validation. Int J Mol Sci 2024; 25:10299. [PMID: 39408629 PMCID: PMC11477331 DOI: 10.3390/ijms251910299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/20/2024] Open
Abstract
As with all new fields of discovery, work on the biological role of G-quadruplexes (GQs) has produced a number of results that at first glance are quite baffling, sometimes because they do not fit well together, but mostly because they are different from commonly held expectations. Like other classes of flipons, those that form G-quadruplexes have a repeat sequence motif that enables the fold. The canonical DNA motif (G3N1-7)3G3, where N is any nucleotide and G is guanine, is a feature that is under active selection in avian and mammalian genomes. The involvement of G-flipons in genome maintenance traces back to the invertebrate Caenorhabditis elegans and to ancient DNA repair pathways. The role of GQs in transcription is supported by the observation that yeast Rap1 protein binds both B-DNA, in a sequence-specific manner, and GQs, in a structure-specific manner, through the same helix. Other sequence-specific transcription factors (TFs) also engage both conformations to actuate cellular transactions. Noncoding RNAs can also modulate GQ formation in a sequence-specific manner and engage the same cellular machinery as localized by TFs, linking the ancient RNA world with the modern protein world. The coevolution of noncoding RNAs and sequence-specific proteins is supported by studies of early embryonic development, where the transient formation of G-quadruplexes coordinates the epigenetic specification of cell fate.
Collapse
Affiliation(s)
- Alan Herbert
- Discovery, InsideOutBio, 42 8th Street, Unit 3412, Charlestown, MA 02129, USA
| |
Collapse
|
16
|
Zhang Q, Cao W, Wang J, Yin Y, Sun R, Tian Z, Hu Y, Tan Y, Zhang BG. Transcriptional bursting dynamics in gene expression. Front Genet 2024; 15:1451461. [PMID: 39346775 PMCID: PMC11437526 DOI: 10.3389/fgene.2024.1451461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/30/2024] [Indexed: 10/01/2024] Open
Abstract
Gene transcription is a stochastic process that occurs in all organisms. Transcriptional bursting, a critical molecular dynamics mechanism, creates significant heterogeneity in mRNA and protein levels. This heterogeneity drives cellular phenotypic diversity. Currently, the lack of a comprehensive quantitative model limits the research on transcriptional bursting. This review examines various gene expression models and compares their strengths and weaknesses to guide researchers in selecting the most suitable model for their research context. We also provide a detailed summary of the key metrics related to transcriptional bursting. We compared the temporal dynamics of transcriptional bursting across species and the molecular mechanisms influencing these bursts, and highlighted the spatiotemporal patterns of gene expression differences by utilizing metrics such as burst size and burst frequency. We summarized the strategies for modeling gene expression from both biostatistical and biochemical reaction network perspectives. Single-cell sequencing data and integrated multiomics approaches drive our exploration of cutting-edge trends in transcriptional bursting mechanisms. Moreover, we examined classical methods for parameter estimation that help capture dynamic parameters in gene expression data, assessing their merits and limitations to facilitate optimal parameter estimation. Our comprehensive summary and review of the current transcriptional burst dynamics theories provide deeper insights for promoting research on the nature of cell processes, cell fate determination, and cancer diagnosis.
Collapse
Affiliation(s)
- Qiuyu Zhang
- Research Center of Nonlinear Sciences, School of Mathematical & Physical Sciences, Wuhan Textile University, Wu Han, China
| | - Wenjie Cao
- School of Mathematics, Sun Yat-sen University, Guangzhou, China
| | - Jiaqi Wang
- Research Center of Nonlinear Sciences, School of Mathematical & Physical Sciences, Wuhan Textile University, Wu Han, China
| | - Yihao Yin
- Research Center of Nonlinear Sciences, School of Mathematical & Physical Sciences, Wuhan Textile University, Wu Han, China
| | - Rui Sun
- Research Center of Nonlinear Sciences, School of Mathematical & Physical Sciences, Wuhan Textile University, Wu Han, China
| | - Zunyi Tian
- Research Center of Nonlinear Sciences, School of Mathematical & Physical Sciences, Wuhan Textile University, Wu Han, China
| | - Yuhan Hu
- Research Center of Nonlinear Sciences, School of Mathematical & Physical Sciences, Wuhan Textile University, Wu Han, China
| | - Yalan Tan
- School of Bioengineering & Health, Wuhan Textile University, Wu Han, China
| | - Ben-Gong Zhang
- Research Center of Nonlinear Sciences, School of Mathematical & Physical Sciences, Wuhan Textile University, Wu Han, China
| |
Collapse
|
17
|
Hebenstreit D, Karmakar P. Transcriptional bursting: from fundamentals to novel insights. Biochem Soc Trans 2024; 52:1695-1702. [PMID: 39119657 PMCID: PMC11668302 DOI: 10.1042/bst20231286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/12/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
Transcription occurs as irregular bursts in a very wide range of systems, including numerous different species and many genes within these. In this review, we examine the underlying theories, discuss how these relate to experimental measurements, and explore some of the discrepancies that have emerged among various studies. Finally, we consider more recent works that integrate novel concepts, such as the involvement of biomolecular condensates in enhancer-promoter interactions and their effects on the dynamics of transcriptional bursting.
Collapse
Affiliation(s)
| | - Pradip Karmakar
- School of Life Sciences, University of Warwick, CV4 7AL Coventry, U.K
| |
Collapse
|
18
|
Schofield JA, Hahn S. Transcriptional noise, gene activation, and roles of SAGA and Mediator Tail measured using nucleotide recoding single-cell RNA-seq. Cell Rep 2024; 43:114593. [PMID: 39102335 PMCID: PMC11405135 DOI: 10.1016/j.celrep.2024.114593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/29/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024] Open
Abstract
We describe a time-resolved nascent single-cell RNA sequencing (RNA-seq) approach that measures gene-specific transcriptional noise and the fraction of active genes in S. cerevisiae. Most genes are expressed with near-constitutive behavior, while a subset of genes show high mRNA variance suggestive of transcription bursting. Transcriptional noise is highest in the cofactor/coactivator-redundant (CR) gene class (dependent on both SAGA and TFIID) and strongest in TATA-containing CR genes. Using this approach, we also find that histone gene transcription switches from a low-level, low-noise constitutive mode during M and M/G1 to an activated state in S phase that shows both an increase in the fraction of active promoters and a switch to a noisy and bursty transcription mode. Rapid depletion of cofactors SAGA and MED Tail indicates that both factors play an important role in stimulating the fraction of active promoters at CR genes, with a more modest role in transcriptional noise.
Collapse
Affiliation(s)
| | - Steven Hahn
- Fred Hutchinson Cancer Center, Seattle, WA 98109, USA.
| |
Collapse
|
19
|
Ealo T, Sanchez-Gaya V, Respuela P, Muñoz-San Martín M, Martin-Batista E, Haro E, Rada-Iglesias A. Cooperative insulation of regulatory domains by CTCF-dependent physical insulation and promoter competition. Nat Commun 2024; 15:7258. [PMID: 39179577 PMCID: PMC11344162 DOI: 10.1038/s41467-024-51602-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 08/10/2024] [Indexed: 08/26/2024] Open
Abstract
The specificity of gene expression during development requires the insulation of regulatory domains to avoid inappropriate enhancer-gene interactions. In vertebrates, this insulator function is mostly attributed to clusters of CTCF sites located at topologically associating domain (TAD) boundaries. However, TAD boundaries allow some physical crosstalk across regulatory domains, which is at odds with the specific and precise expression of developmental genes. Here we show that developmental genes and nearby clusters of CTCF sites cooperatively foster the robust insulation of regulatory domains. By genetically dissecting a couple of representative loci in mouse embryonic stem cells, we show that CTCF sites prevent undesirable enhancer-gene contacts (i.e. physical insulation), while developmental genes preferentially contribute to regulatory insulation through non-structural mechanisms involving promoter competition rather than enhancer blocking. Overall, our work provides important insights into the insulation of regulatory domains, which in turn might help interpreting the pathological consequences of certain structural variants.
Collapse
Affiliation(s)
- Thais Ealo
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/Universidad de Cantabria, Santander, Spain
| | - Victor Sanchez-Gaya
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/Universidad de Cantabria, Santander, Spain.
| | - Patricia Respuela
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/Universidad de Cantabria, Santander, Spain
| | - María Muñoz-San Martín
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/Universidad de Cantabria, Santander, Spain
- Service of Neurology, University Hospital Marqués de Valdecilla, Universidad de Cantabria and IDIVAL, Santander, Spain
| | | | - Endika Haro
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/Universidad de Cantabria, Santander, Spain.
| | - Alvaro Rada-Iglesias
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/Universidad de Cantabria, Santander, Spain.
| |
Collapse
|
20
|
Kimura Y, Ono Y, Katayama K, Imoto S. IVEA: an integrative variational Bayesian inference method for predicting enhancer-gene regulatory interactions. BIOINFORMATICS ADVANCES 2024; 4:vbae118. [PMID: 39193566 PMCID: PMC11349192 DOI: 10.1093/bioadv/vbae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/26/2024] [Accepted: 08/18/2024] [Indexed: 08/29/2024]
Abstract
Motivation Enhancers play critical roles in cell-type-specific transcriptional control. Despite the identification of thousands of candidate enhancers, unravelling their regulatory relationships with their target genes remains challenging. Therefore, computational approaches are needed to accurately infer enhancer-gene regulatory relationships. Results In this study, we propose a new method, IVEA, that predicts enhancer-gene regulatory interactions by estimating promoter and enhancer activities. Its statistical model is based on the gene regulatory mechanism of transcriptional bursting, which is characterized by burst size and frequency controlled by promoters and enhancers, respectively. Using transcriptional readouts, chromatin accessibility, and chromatin contact data as inputs, promoter and enhancer activities were estimated using variational Bayesian inference, and the contribution of each enhancer-promoter pair to target gene transcription was calculated. Our analysis demonstrates that the proposed method can achieve high prediction accuracy and provide biologically relevant enhancer-gene regulatory interactions. Availability and implementation The IVEA code is available on GitHub at https://github.com/yasumasak/ivea. The publicly available datasets used in this study are described in Supplementary Table S4.
Collapse
Affiliation(s)
- Yasumasa Kimura
- DX Drug Discovery Department, Daiichi Sankyo RD Novare Co., Ltd., Edogawa-ku, Tokyo 134-8630, Japan
- Division of Health Medical Intelligence, Human Genome Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
- Research Function Research Innovation Planning Department, Daiichi Sankyo Co., Ltd., Edogawa-ku, Tokyo 134-8630, Japan
| | - Yoshimasa Ono
- DX Drug Discovery Department, Daiichi Sankyo RD Novare Co., Ltd., Edogawa-ku, Tokyo 134-8630, Japan
| | - Kotoe Katayama
- Division of Health Medical Intelligence, Human Genome Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Seiya Imoto
- Division of Health Medical Intelligence, Human Genome Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
21
|
Trzaskoma P, Jung S, Pękowska A, Bohrer CH, Wang X, Naz F, Dell’Orso S, Dubois WD, Olivera A, Vartak SV, Zhao Y, Nayak S, Overmiller A, Morasso MI, Sartorelli V, Larson DR, Chow CC, Casellas R, O’Shea JJ. 3D chromatin architecture, BRD4, and Mediator have distinct roles in regulating genome-wide transcriptional bursting and gene network. SCIENCE ADVANCES 2024; 10:eadl4893. [PMID: 39121214 PMCID: PMC11313860 DOI: 10.1126/sciadv.adl4893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 07/08/2024] [Indexed: 08/11/2024]
Abstract
Discontinuous transcription is evolutionarily conserved and a fundamental feature of gene regulation; yet, the exact mechanisms underlying transcriptional bursting are unresolved. Analyses of bursting transcriptome-wide have focused on the role of cis-regulatory elements, but other factors that regulate this process remain elusive. We applied mathematical modeling to single-cell RNA sequencing data to infer bursting dynamics transcriptome-wide under multiple conditions to identify possible molecular mechanisms. We found that Mediator complex subunit 26 (MED26) primarily regulates frequency, MYC regulates burst size, while cohesin and Bromodomain-containing protein 4 (BRD4) can modulate both. Despite comparable effects on RNA levels among these perturbations, acute depletion of MED26 had the most profound impact on the entire gene regulatory network, acting downstream of chromatin spatial architecture and without affecting TATA box-binding protein (TBP) recruitment. These results indicate that later steps in the initiation of transcriptional bursts are primary nodes for integrating gene networks in single cells.
Collapse
Affiliation(s)
- Pawel Trzaskoma
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - SeolKyoung Jung
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Aleksandra Pękowska
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | | | - Xiang Wang
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Faiza Naz
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Stefania Dell’Orso
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Wendy D. Dubois
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ana Olivera
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Supriya V. Vartak
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yongbing Zhao
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Subhashree Nayak
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Andrew Overmiller
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Maria I. Morasso
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Vittorio Sartorelli
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Daniel R. Larson
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Carson C. Chow
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rafael Casellas
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John J. O’Shea
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
22
|
Guckelberger P, Doughty BR, Munson G, Rao SSP, Tan Y, Cai XS, Fulco CP, Nasser J, Mualim KS, Bergman DT, Ray J, Jagoda E, Munger CJ, Gschwind AR, Sheth MU, Tan AS, Pulido SG, Mitra N, Weisz D, Shamim MS, Durand NC, Mahajan R, Khan R, Steinmetz LM, Kanemaki MT, Lander ES, Meissner A, Aiden EL, Engreitz JM. Cohesin-mediated 3D contacts tune enhancer-promoter regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.12.603288. [PMID: 39026740 PMCID: PMC11257546 DOI: 10.1101/2024.07.12.603288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Enhancers are key drivers of gene regulation thought to act via 3D physical interactions with the promoters of their target genes. However, genome-wide depletions of architectural proteins such as cohesin result in only limited changes in gene expression, despite a loss of contact domains and loops. Consequently, the role of cohesin and 3D contacts in enhancer function remains debated. Here, we developed CRISPRi of regulatory elements upon degron operation (CRUDO), a novel approach to measure how changes in contact frequency impact enhancer effects on target genes by perturbing enhancers with CRISPRi and measuring gene expression in the presence or absence of cohesin. We systematically perturbed all 1,039 candidate enhancers near five cohesin-dependent genes and identified 34 enhancer-gene regulatory interactions. Of 26 regulatory interactions with sufficient statistical power to evaluate cohesin dependence, 18 show cohesin-dependent effects. A decrease in enhancer-promoter contact frequency upon removal of cohesin is frequently accompanied by a decrease in the regulatory effect of the enhancer on gene expression, consistent with a contact-based model for enhancer function. However, changes in contact frequency and regulatory effects on gene expression vary as a function of distance, with distal enhancers (e.g., >50Kb) experiencing much larger changes than proximal ones (e.g., <50Kb). Because most enhancers are located close to their target genes, these observations can explain how only a small subset of genes - those with strong distal enhancers - are sensitive to cohesin. Together, our results illuminate how 3D contacts, influenced by both cohesin and genomic distance, tune enhancer effects on gene expression.
Collapse
|
23
|
Kabaria SR, Bae Y, Ehmann ME, Beitz AM, Lende-Dorn BA, Peterman EL, Love KS, Ploessl DS, Galloway KE. Programmable promoter editing for precise control of transgene expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.19.599813. [PMID: 38948694 PMCID: PMC11212971 DOI: 10.1101/2024.06.19.599813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Subtle changes in gene expression direct cells to distinct cellular states. Identifying and controlling dose-dependent transgenes require tools for precisely titrating expression. To this end, we developed a highly modular, extensible framework called DIAL for building editable promoters that allow for fine-scale, heritable changes in transgene expression. Using DIAL, we increase expression by recombinase-mediated excision of spacers between the binding sites of a synthetic zinc finger transcription factor and the core promoter. By nesting varying numbers and lengths of spacers, DIAL generates a tunable range of unimodal setpoints from a single promoter. Through small-molecule control of transcription factors and recombinases, DIAL supports temporally defined, user-guided control of transgene expression that is extensible to additional transcription factors. Lentiviral delivery of DIAL generates multiple setpoints in primary cells and iPSCs. As promoter editing generates stable states, DIAL setpoints are heritable, facilitating mapping of transgene levels to phenotypes. The DIAL framework opens new opportunities for tailoring transgene expression and improving the predictability and performance of gene circuits across diverse applications.
Collapse
Affiliation(s)
- Sneha R. Kabaria
- Department of Chemical Engineering, MIT, Cambridge, MA 02139, USA
| | - Yunbeen Bae
- Department of Chemical Engineering, MIT, Cambridge, MA 02139, USA
| | - Mary E. Ehmann
- Department of Chemical Engineering, MIT, Cambridge, MA 02139, USA
| | - Adam M. Beitz
- Department of Chemical Engineering, MIT, Cambridge, MA 02139, USA
| | | | - Emma L. Peterman
- Department of Chemical Engineering, MIT, Cambridge, MA 02139, USA
| | - Kasey S. Love
- Department of Biological Engineering, MIT, Cambridge, MA 02139, USA
| | - Deon S. Ploessl
- Department of Chemical Engineering, MIT, Cambridge, MA 02139, USA
| | - Kate E. Galloway
- Department of Chemical Engineering, MIT, Cambridge, MA 02139, USA
| |
Collapse
|
24
|
Chen PT, Levo M, Zoller B, Gregor T. Gene activity fully predicts transcriptional bursting dynamics. ARXIV 2024:arXiv:2304.08770v3. [PMID: 37131882 PMCID: PMC10153294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Transcription commonly occurs in bursts, with alternating productive (ON) and quiescent (OFF) periods, governing mRNA production rates. Yet, how transcription is regulated through bursting dynamics remains unresolved. Here, we conduct real-time measurements of endogenous transcriptional bursting with single-mRNA sensitivity. Leveraging the diverse transcriptional activities in early fly embryos, we uncover stringent relationships between bursting parameters. Specifically, we find that the durations of ON and OFF periods are linked. Regardless of the developmental stage or body-axis position, gene activity levels predict individual alleles' average ON and OFF periods. Lowly transcribing alleles predominantly modulate OFF periods (burst frequency), while highly transcribing alleles primarily tune ON periods (burst size). These relationships persist even under perturbations of cis-regulatory elements or trans-factors and account for bursting dynamics measured in other species. Our results suggest a novel mechanistic constraint governing bursting dynamics rather than a modular control of distinct parameters by distinct regulatory processes.
Collapse
Affiliation(s)
- Po-Ta Chen
- Joseph Henry Laboratories of Physics & Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Michal Levo
- Joseph Henry Laboratories of Physics & Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Benjamin Zoller
- Joseph Henry Laboratories of Physics & Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Stem Cell and Developmental Biology, CNRS UMR3738 Paris Cité, Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France
| | - Thomas Gregor
- Joseph Henry Laboratories of Physics & Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Stem Cell and Developmental Biology, CNRS UMR3738 Paris Cité, Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France
| |
Collapse
|
25
|
Callan-Sidat A, Zewdu E, Cavallaro M, Liu J, Hebenstreit D. N-terminal tagging of RNA Polymerase II shapes transcriptomes more than C-terminal alterations. iScience 2024; 27:109914. [PMID: 38799575 PMCID: PMC11126984 DOI: 10.1016/j.isci.2024.109914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 02/14/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024] Open
Abstract
RNA polymerase II (Pol II) has a C-terminal domain (CTD) that is unstructured, consisting of a large number of heptad repeats, and whose precise function remains unclear. Here, we investigate how altering the CTD's length and fusing it with protein tags affects transcriptional output on a genome-wide scale in mammalian cells at single-cell resolution. While transcription generally appears to occur in burst-like fashion, where RNA is predominantly made during short bursts of activity that are interspersed with periods of transcriptional silence, the CTD's role in shaping these dynamics seems gene-dependent; global patterns of bursting appear mostly robust to CTD alterations. Introducing protein tags with defined structures to the N terminus cause transcriptome-wide effects, however. We find the type of tag to dominate characteristics of the resulting transcriptomes. This is possibly due to Pol II-interacting factors, including non-coding RNAs, whose expression correlates with the tags. Proteins involved in liquid-liquid phase separation appear prominently.
Collapse
Affiliation(s)
- Adam Callan-Sidat
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Emmanuel Zewdu
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Massimo Cavallaro
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
- School of Computing and Mathematical Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Juntai Liu
- Department of Physics, University of Warwick, Coventry CV4 7AL, UK
| | | |
Collapse
|
26
|
Sood V, Holewinski R, Andresson T, Larson DR, Misteli T. Identification of molecular determinants of gene-specific bursting patterns by high-throughput imaging screens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.08.597999. [PMID: 38903099 PMCID: PMC11188098 DOI: 10.1101/2024.06.08.597999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Stochastic transcriptional bursting is a universal property of active genes. While different genes exhibit distinct bursting patterns, the molecular mechanisms for gene-specific stochastic bursting are largely unknown. We have developed and applied a high-throughput-imaging based screening strategy to identify cellular factors and molecular mechanisms that determine the bursting behavior of human genes. Focusing on epigenetic regulators, we find that protein acetylation is a strong acute modulator of burst frequency, burst size and heterogeneity of bursting. Acetylation globally affects the Off-time of genes but has gene-specific effects on the On-time. Yet, these effects are not strongly linked to promoter acetylation, which do not correlate with bursting properties, and forced promoter acetylation has variable effects on bursting. Instead, we demonstrate acetylation of the Integrator complex as a key determinant of gene bursting. Specifically, we find that elevated Integrator acetylation decreases bursting frequency. Taken together our results suggest a prominent role of non-histone proteins in determining gene bursting properties, and they identify histone-independent acetylation of a transcription cofactor as an allosteric modulator of bursting via a far-downstream bursting checkpoint.
Collapse
Affiliation(s)
- Varun Sood
- National Cancer Institute, Bethesda, MD, USA
| | - Ronald Holewinski
- Protein Characterization Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Thorkell Andresson
- Protein Characterization Laboratory, National Cancer Institute, Frederick, MD, USA
| | | | - Tom Misteli
- National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
27
|
Breimann L, Bahry E, Zouinkhi M, Kolyvanov K, Street LA, Preibisch S, Ercan S. Analysis of developmental gene expression using smFISH and in silico staging of C. elegans embryos. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594414. [PMID: 38798598 PMCID: PMC11118362 DOI: 10.1101/2024.05.15.594414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Regulation of transcription during embryogenesis is key to development and differentiation. To study transcript expression throughout Caenorhabditis elegans embryogenesis at single-molecule resolution, we developed a high-throughput single-molecule fluorescence in situ hybridization (smFISH) method that relies on computational methods to developmentally stage embryos and quantify individual mRNA molecules in single embryos. We applied our system to sdc-2, a zygotically transcribed gene essential for hermaphrodite development and dosage compensation. We found that sdc-2 is rapidly activated during early embryogenesis by increasing both the number of mRNAs produced per transcription site and the frequency of sites engaged in transcription. Knockdown of sdc-2 and dpy-27, a subunit of the dosage compensation complex (DCC), increased the number of active transcription sites for the X chromosomal gene dpy-23 but not the autosomal gene mdh-1, suggesting that the DCC reduces the frequency of dpy-23 transcription. The temporal resolution from in silico staging of embryos showed that the deletion of a single DCC recruitment element near the dpy-23 gene causes higher dpy-23 mRNA expression after the start of dosage compensation, which could not be resolved using mRNAseq from mixed-stage embryos. In summary, we have established a computational approach to quantify temporal regulation of transcription throughout C. elegans embryogenesis and demonstrated its potential to provide new insights into developmental gene regulation.
Collapse
Affiliation(s)
- Laura Breimann
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Ella Bahry
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Helmholtz Imaging, Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany
| | - Marwan Zouinkhi
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Klim Kolyvanov
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Lena Annika Street
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Stephan Preibisch
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Sevinç Ercan
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, USA
| |
Collapse
|
28
|
Irastorza-Azcarate I, Kukalev A, Kempfer R, Thieme CJ, Mastrobuoni G, Markowski J, Loof G, Sparks TM, Brookes E, Natarajan KN, Sauer S, Fisher AG, Nicodemi M, Ren B, Schwarz RF, Kempa S, Pombo A. Extensive folding variability between homologous chromosomes in mammalian cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.591087. [PMID: 38766012 PMCID: PMC11100664 DOI: 10.1101/2024.05.08.591087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Genetic variation and 3D chromatin structure have major roles in gene regulation. Due to challenges in mapping chromatin conformation with haplotype-specific resolution, the effects of genetic sequence variation on 3D genome structure and gene expression imbalance remain understudied. Here, we applied Genome Architecture Mapping (GAM) to a hybrid mouse embryonic stem cell (mESC) line with high density of single nucleotide polymorphisms (SNPs). GAM resolved haplotype-specific 3D genome structures with high sensitivity, revealing extensive allelic differences in chromatin compartments, topologically associating domains (TADs), long-range enhancer-promoter contacts, and CTCF loops. Architectural differences often coincide with allele-specific differences in gene expression, mediated by Polycomb repression. We show that histone genes are expressed with allelic imbalance in mESCs, are involved in haplotype-specific chromatin contact marked by H3K27me3, and are targets of Polycomb repression through conditional knockouts of Ezh2 or Ring1b. Our work reveals highly distinct 3D folding structures between homologous chromosomes, and highlights their intricate connections with allelic gene expression.
Collapse
|
29
|
Wu K, Dhillon N, Bajor A, Abrahamsson S, Kamakaka RT. Yeast heterochromatin stably silences only weak regulatory elements by altering burst duration. Cell Rep 2024; 43:113983. [PMID: 38517895 PMCID: PMC11141299 DOI: 10.1016/j.celrep.2024.113983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/25/2023] [Accepted: 03/06/2024] [Indexed: 03/24/2024] Open
Abstract
Transcriptional silencing in Saccharomyces cerevisiae involves the generation of a chromatin state that stably represses transcription. Using multiple reporter assays, a diverse set of upstream activating sequence enhancers and core promoters were investigated for their susceptibility to silencing. We show that heterochromatin stably silences only weak and stress-induced regulatory elements but is unable to stably repress housekeeping gene regulatory elements, and the partial repression of these elements did not result in bistable expression states. Permutation analysis of enhancers and promoters indicates that both elements are targets of repression. Chromatin remodelers help specific regulatory elements to resist repression, most probably by altering nucleosome mobility and changing transcription burst duration. The strong enhancers/promoters can be repressed if silencer-bound Sir1 is increased. Together, our data suggest that the heterochromatic locus has been optimized to stably silence the weak mating-type gene regulatory elements but not strong housekeeping gene regulatory sequences.
Collapse
Affiliation(s)
- Kenneth Wu
- Department of MCD Biology, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Namrita Dhillon
- Department of MCD Biology, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Antone Bajor
- Electrical Engineering Department, Baskin School of Engineering, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Sara Abrahamsson
- Electrical Engineering Department, Baskin School of Engineering, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Rohinton T Kamakaka
- Department of MCD Biology, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA.
| |
Collapse
|
30
|
Pina C. Contributions of transcriptional noise to leukaemia evolution: KAT2A as a case-study. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230052. [PMID: 38432321 PMCID: PMC10909511 DOI: 10.1098/rstb.2023.0052] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/04/2023] [Indexed: 03/05/2024] Open
Abstract
Transcriptional noise is proposed to participate in cell fate changes, but contributions to mammalian cell differentiation systems, including cancer, remain associative. Cancer evolution is driven by genetic variability, with modulatory or contributory participation of epigenetic variants. Accumulation of epigenetic variants enhances transcriptional noise, which can facilitate cancer cell fate transitions. Acute myeloid leukaemia (AML) is an aggressive cancer with strong epigenetic dependencies, characterized by blocked differentiation. It constitutes an attractive model to probe links between transcriptional noise and malignant cell fate regulation. Gcn5/KAT2A is a classical epigenetic transcriptional noise regulator. Its loss increases transcriptional noise and modifies cell fates in stem and AML cells. By reviewing the analysis of KAT2A-depleted pre-leukaemia and leukaemia models, I discuss that the net result of transcriptional noise is diversification of cell fates secondary to alternative transcriptional programmes. Cellular diversification can enable or hinder AML progression, respectively, by differentiation of cell types responsive to mutations, or by maladaptation of leukaemia stem cells. KAT2A-dependent noise-responsive genes participate in ribosome biogenesis and KAT2A loss destabilizes translational activity. I discuss putative contributions of perturbed translation to AML biology, and propose KAT2A loss as a model for mechanistic integration of transcriptional and translational control of noise and fate decisions. This article is part of a discussion meeting issue 'Causes and consequences of stochastic processes in development and disease'.
Collapse
Affiliation(s)
- Cristina Pina
- College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, London, UB8 3PH, United Kingdom
- CenGEM – Centre for Genome Engineering and Maintenance, Brunel University London, Kingston Lane, Uxbridge, London, UB8 3PH, United Kingdom
| |
Collapse
|
31
|
Rengifo Rojas C, Cercy J, Perillous S, Gonthier-Guéret C, Montibus B, Maupetit-Méhouas S, Espinadel A, Dupré M, Hong CC, Hata K, Nakabayashi K, Plagge A, Bouschet T, Arnaud P, Vaillant I, Court F. Biallelic non-productive enhancer-promoter interactions precede imprinted expression of Kcnk9 during mouse neural commitment. HGG ADVANCES 2024; 5:100271. [PMID: 38297831 PMCID: PMC10869267 DOI: 10.1016/j.xhgg.2024.100271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/18/2023] [Accepted: 01/23/2024] [Indexed: 02/02/2024] Open
Abstract
It is only partially understood how constitutive allelic methylation at imprinting control regions (ICRs) interacts with other regulation levels to drive timely parental allele-specific expression along large imprinted domains. The Peg13-Kcnk9 domain is an imprinted domain with important brain functions. To gain insights into its regulation during neural commitment, we performed an integrative analysis of its allele-specific epigenetic, transcriptomic, and cis-spatial organization using a mouse stem cell-based corticogenesis model that recapitulates the control of imprinted gene expression during neurodevelopment. We found that, despite an allelic higher-order chromatin structure associated with the paternally CTCF-bound Peg13 ICR, enhancer-Kcnk9 promoter contacts occurred on both alleles, although they were productive only on the maternal allele. This observation challenges the canonical model in which CTCF binding isolates the enhancer and its target gene on either side and suggests a more nuanced role for allelic CTCF binding at some ICRs.
Collapse
Affiliation(s)
- Cecilia Rengifo Rojas
- Genetics, Reproduction and Development Institute (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Jil Cercy
- Genetics, Reproduction and Development Institute (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Sophie Perillous
- Genetics, Reproduction and Development Institute (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Céline Gonthier-Guéret
- Genetics, Reproduction and Development Institute (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Bertille Montibus
- Genetics, Reproduction and Development Institute (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Stéphanie Maupetit-Méhouas
- Genetics, Reproduction and Development Institute (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Astrid Espinadel
- Genetics, Reproduction and Development Institute (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Marylou Dupré
- Genetics, Reproduction and Development Institute (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Charles C Hong
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan; Department of Human Molecular Genetics, Gunma University Graduate School of Medicine 3-39-22 Showa, Maebashi, Gunma 371-8511, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Antonius Plagge
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Tristan Bouschet
- Institut de Génomique Fonctionnelle, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Philippe Arnaud
- Genetics, Reproduction and Development Institute (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, France.
| | - Isabelle Vaillant
- Genetics, Reproduction and Development Institute (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, France.
| | - Franck Court
- Genetics, Reproduction and Development Institute (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, France.
| |
Collapse
|
32
|
Ayyamperumal P, Naik HC, Naskar AJ, Bammidi LS, Gayen S. Epigenomic states contribute to coordinated allelic transcriptional bursting in iPSC reprogramming. Life Sci Alliance 2024; 7:e202302337. [PMID: 38320809 PMCID: PMC10847334 DOI: 10.26508/lsa.202302337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Two alleles of a gene can be transcribed independently or coordinatedly, which can lead to temporal expression heterogeneity with potentially distinct impacts on cell fate. Here, we profiled genome-wide allelic transcriptional burst kinetics during the reprogramming of MEF to induced pluripotent stem cells. We show that the degree of coordination of allelic bursting differs among genes, and alleles of many reprogramming-related genes burst in a highly coordinated fashion. Notably, we show that the chromatin accessibility of the two alleles of highly coordinated genes is similar, unlike the semi-coordinated or independent genes, suggesting the degree of coordination of allelic bursting is linked to allelic chromatin accessibility. Consistently, we show that many transcription factors have differential binding affinity between alleles of semi-coordinated or independent genes. We show that highly coordinated genes are enriched with chromatin accessibility regulators such as H3K4me3, H3K4me1, H3K36me3, H3K27ac, histone variant H3.3, and BRD4. Finally, we demonstrate that enhancer elements are highly enriched in highly coordinated genes. Our study demonstrates that epigenomic states contribute to coordinated allelic bursting to fine-tune gene expression during induced pluripotent stem cell reprogramming.
Collapse
Affiliation(s)
- Parichitran Ayyamperumal
- Chromatin, RNA and Genome (CRG) Laboratory, Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, India
| | - Hemant Chandru Naik
- Chromatin, RNA and Genome (CRG) Laboratory, Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, India
| | - Amlan Jyoti Naskar
- Chromatin, RNA and Genome (CRG) Laboratory, Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, India
| | - Lakshmi Sowjanya Bammidi
- Chromatin, RNA and Genome (CRG) Laboratory, Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, India
| | - Srimonta Gayen
- Chromatin, RNA and Genome (CRG) Laboratory, Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, India
| |
Collapse
|
33
|
Friedman MJ, Wagner T, Lee H, Rosenfeld MG, Oh S. Enhancer-promoter specificity in gene transcription: molecular mechanisms and disease associations. Exp Mol Med 2024; 56:772-787. [PMID: 38658702 PMCID: PMC11058250 DOI: 10.1038/s12276-024-01233-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 04/26/2024] Open
Abstract
Although often located at a distance from their target gene promoters, enhancers are the primary genomic determinants of temporal and spatial transcriptional specificity in metazoans. Since the discovery of the first enhancer element in simian virus 40, there has been substantial interest in unraveling the mechanism(s) by which enhancers communicate with their partner promoters to ensure proper gene expression. These research efforts have benefited considerably from the application of increasingly sophisticated sequencing- and imaging-based approaches in conjunction with innovative (epi)genome-editing technologies; however, despite various proposed models, the principles of enhancer-promoter interaction have still not been fully elucidated. In this review, we provide an overview of recent progress in the eukaryotic gene transcription field pertaining to enhancer-promoter specificity. A better understanding of the mechanistic basis of lineage- and context-dependent enhancer-promoter engagement, along with the continued identification of functional enhancers, will provide key insights into the spatiotemporal control of gene expression that can reveal therapeutic opportunities for a range of enhancer-related diseases.
Collapse
Affiliation(s)
- Meyer J Friedman
- Department and School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Tobias Wagner
- Department and School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Haram Lee
- College of Pharmacy Korea University, 2511 Sejong-ro, Sejong, 30019, Republic of Korea
| | - Michael G Rosenfeld
- Department and School of Medicine, University of California, San Diego, La Jolla, CA, USA.
| | - Soohwan Oh
- College of Pharmacy Korea University, 2511 Sejong-ro, Sejong, 30019, Republic of Korea.
| |
Collapse
|
34
|
Wang Z, Zhang Z, Luo S, Zhou T, Zhang J. Power-law behavior of transcriptional bursting regulated by enhancer-promoter communication. Genome Res 2024; 34:106-118. [PMID: 38171575 PMCID: PMC10903953 DOI: 10.1101/gr.278631.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024]
Abstract
Revealing how transcriptional bursting kinetics are genomically encoded is challenging because genome structures are stochastic at the organization level and are suggestively linked to gene transcription. To address this challenge, we develop a generic theoretical framework that integrates chromatin dynamics, enhancer-promoter (E-P) communication, and gene-state switching to study transcriptional bursting. The theory predicts that power law can be a general rule to quantitatively describe bursting modulations by E-P spatial communication. Specifically, burst frequency and burst size are up-regulated by E-P communication strength, following power laws with positive exponents. Analysis of the scaling exponents further reveals that burst frequency is preferentially regulated. Bursting kinetics are down-regulated by E-P genomic distance with negative power-law exponents, and this negative modulation desensitizes at large distances. The mutual information between burst frequency (or burst size) and E-P spatial distance further reveals essential characteristics of the information transfer from E-P communication to transcriptional bursting kinetics. These findings, which are in agreement with experimental observations, not only reveal fundamental principles of E-P communication in transcriptional bursting but also are essential for understanding cellular decision-making.
Collapse
Affiliation(s)
- Zihao Wang
- Guangdong Province Key Laboratory of Computational Science, Sun Yat-sen University, Guangzhou 510275, P.R. China
- School of Mathematics, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Zhenquan Zhang
- Guangdong Province Key Laboratory of Computational Science, Sun Yat-sen University, Guangzhou 510275, P.R. China
- School of Mathematics, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Songhao Luo
- Guangdong Province Key Laboratory of Computational Science, Sun Yat-sen University, Guangzhou 510275, P.R. China
- School of Mathematics, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Tianshou Zhou
- Guangdong Province Key Laboratory of Computational Science, Sun Yat-sen University, Guangzhou 510275, P.R. China;
- School of Mathematics, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Jiajun Zhang
- Guangdong Province Key Laboratory of Computational Science, Sun Yat-sen University, Guangzhou 510275, P.R. China;
- School of Mathematics, Sun Yat-sen University, Guangzhou 510275, P.R. China
| |
Collapse
|
35
|
Meeussen JVW, Lenstra TL. Time will tell: comparing timescales to gain insight into transcriptional bursting. Trends Genet 2024; 40:160-174. [PMID: 38216391 PMCID: PMC10860890 DOI: 10.1016/j.tig.2023.11.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 01/14/2024]
Abstract
Recent imaging studies have captured the dynamics of regulatory events of transcription inside living cells. These events include transcription factor (TF) DNA binding, chromatin remodeling and modification, enhancer-promoter (E-P) proximity, cluster formation, and preinitiation complex (PIC) assembly. Together, these molecular events culminate in stochastic bursts of RNA synthesis, but their kinetic relationship remains largely unclear. In this review, we compare the timescales of upstream regulatory steps (input) with the kinetics of transcriptional bursting (output) to generate mechanistic models of transcription dynamics in single cells. We highlight open questions and potential technical advances to guide future endeavors toward a quantitative and kinetic understanding of transcription regulation.
Collapse
Affiliation(s)
- Joseph V W Meeussen
- Division of Gene Regulation, The Netherlands Cancer Institute, Oncode Institute, Amsterdam 1066CX, The Netherlands
| | - Tineke L Lenstra
- Division of Gene Regulation, The Netherlands Cancer Institute, Oncode Institute, Amsterdam 1066CX, The Netherlands.
| |
Collapse
|
36
|
Qian H, Zhu M, Tan X, Zhang Y, Liu X, Yang L. Super-enhancers and the super-enhancer reader BRD4: tumorigenic factors and therapeutic targets. Cell Death Discov 2023; 9:470. [PMID: 38135679 PMCID: PMC10746725 DOI: 10.1038/s41420-023-01775-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/02/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Transcriptional super-enhancers and the BET bromodomain protein BRD4 are emerging as critical drivers of tumorigenesis and therapeutic targets. Characterized by substantial accumulation of histone H3 lysine 27 acetylation (H3K27ac) signals at the loci of cell identity genes and critical oncogenes, super-enhancers are recognized, bound and activated by BRD4, resulting in considerable oncogene over-expression, malignant transformation, cancer cell proliferation, survival, tumor initiation and progression. Small molecule compound BRD4 BD1 and BD2 bromodomain inhibitors block BRD4 binding to super-enhancers, suppress oncogene transcription and expression, reduce cancer cell proliferation and survival, and repress tumor progression in a variety of cancer types. Like other targeted therapy agents, BRD4 inhibitors show moderate anticancer effects on their own, and exert synergistic anticancer effects in vitro and in preclinical models, when combined with other anticancer agents including CDK7 inhibitors, CBP/p300 inhibitors and histone deacetylase inhibitors. More recently, BRD4 BD2 bromodomain selective inhibitors, proteolysis-targeting chimera (PROTAC) BRD4 protein degraders, and dual BRD4 and CBP/p300 bromodomain co-inhibitors have been developed and shown better anticancer efficacy and/or safety profile. Importantly, more than a dozen BRD4 inhibitors have entered clinical trials in patients with cancer of various organ origins. In summary, super-enhancers and their reader BRD4 are critical tumorigenic drivers, and BRD4 BD1 and BD2 bromodomain inhibitors, BRD4 BD2 bromodomain selective inhibitors, PROTAC BRD4 protein degraders, and dual BRD4 and CBP/p300 bromodomain co-inhibitors are promising novel anticancer agents for clinical translation.
Collapse
Affiliation(s)
- Haihong Qian
- Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China
| | - Min Zhu
- Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China
| | - Xinyu Tan
- Department of Dentistry, Kunming Medical University, Kunming, 650032, China
| | - Yixing Zhang
- Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China
| | - Xiangning Liu
- Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China
| | - Li Yang
- Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China.
| |
Collapse
|
37
|
Wang Z, Luo S, Zhang Z, Zhou T, Zhang J. 4D nucleome equation predicts gene expression controlled by long-range enhancer-promoter interaction. PLoS Comput Biol 2023; 19:e1011722. [PMID: 38109463 PMCID: PMC10760824 DOI: 10.1371/journal.pcbi.1011722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 01/02/2024] [Accepted: 11/28/2023] [Indexed: 12/20/2023] Open
Abstract
Recent experimental evidence strongly supports that three-dimensional (3D) long-range enhancer-promoter (E-P) interactions have important influences on gene-expression dynamics, but it is unclear how the interaction information is translated into gene expression over time (4D). To address this question, we developed a general theoretical framework (named as a 4D nucleome equation), which integrates E-P interactions on chromatin and biochemical reactions of gene transcription. With this equation, we first present the distribution of mRNA counts as a function of the E-P genomic distance and then reveal a power-law scaling of the expression level in this distance. Interestingly, we find that long-range E-P interactions can induce bimodal and trimodal mRNA distributions. The 4D nucleome equation also allows for model selection and parameter inference. When this equation is applied to the mouse embryonic stem cell smRNA-FISH data and the E-P genomic-distance data, the predicted E-P contact probability and mRNA distribution are in good agreement with experimental results. Further statistical inference indicates that the E-P interactions prefer to modulate the mRNA level by controlling promoter activation and transcription initiation rates. Our model and results provide quantitative insights into both spatiotemporal gene-expression determinants (i.e., long-range E-P interactions) and cellular fates during development.
Collapse
Affiliation(s)
- Zihao Wang
- Guangdong Province Key Laboratory of Computational, Sun Yat-sen University, Guangzhou, People’s Republic of China
- School of Mathematics, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Songhao Luo
- Guangdong Province Key Laboratory of Computational, Sun Yat-sen University, Guangzhou, People’s Republic of China
- School of Mathematics, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Zhenquan Zhang
- Guangdong Province Key Laboratory of Computational, Sun Yat-sen University, Guangzhou, People’s Republic of China
- School of Mathematics, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Tianshou Zhou
- Guangdong Province Key Laboratory of Computational, Sun Yat-sen University, Guangzhou, People’s Republic of China
- School of Mathematics, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Jiajun Zhang
- Guangdong Province Key Laboratory of Computational, Sun Yat-sen University, Guangzhou, People’s Republic of China
- School of Mathematics, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
38
|
Adhikary R, Roy A, Jolly MK, Das D. Effects of microRNA-mediated negative feedback on gene expression noise. Biophys J 2023; 122:4220-4240. [PMID: 37803829 PMCID: PMC10645566 DOI: 10.1016/j.bpj.2023.09.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/19/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression post-transcriptionally in eukaryotes by binding with target mRNAs and preventing translation. miRNA-mediated feedback motifs are ubiquitous in various genetic networks that control cellular decision making. A key question is how such a feedback mechanism may affect gene expression noise. To answer this, we have developed a mathematical model to study the effects of a miRNA-dependent negative-feedback loop on mean expression and noise in target mRNAs. Combining analytics and simulations, we show the existence of an expression threshold demarcating repressed and expressed regimes in agreement with earlier studies. The steady-state mRNA distributions are bimodal near the threshold, where copy numbers of mRNAs and miRNAs exhibit enhanced anticorrelated fluctuations. Moreover, variation of negative-feedback strength shifts the threshold locations and modulates the noise profiles. Notably, the miRNA-mRNA binding affinity and feedback strength collectively shape the bimodality. We also compare our model with a direct auto-repression motif, where a gene produces its own repressor. Auto-repression fails to produce bimodal mRNA distributions as found in miRNA-based indirect repression, suggesting the crucial role of miRNAs in creating phenotypic diversity. Together, we demonstrate how miRNA-dependent negative feedback modifies the expression threshold and leads to a broader parameter regime of bimodality compared to the no-feedback case.
Collapse
Affiliation(s)
- Raunak Adhikary
- Department of Biological Sciences, Indian Institute of Science Education And Research Kolkata Mohanpur, Nadia, West Bengal, India
| | - Arnab Roy
- Department of Biological Sciences, Indian Institute of Science Education And Research Kolkata Mohanpur, Nadia, West Bengal, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Dipjyoti Das
- Department of Biological Sciences, Indian Institute of Science Education And Research Kolkata Mohanpur, Nadia, West Bengal, India.
| |
Collapse
|
39
|
Zhu Y, Rosenfeld MG, Suh Y. Ultrafine mapping of chromosome conformation at hundred basepair resolution reveals regulatory genome architecture. Proc Natl Acad Sci U S A 2023; 120:e2313285120. [PMID: 37922325 PMCID: PMC10636305 DOI: 10.1073/pnas.2313285120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/27/2023] [Indexed: 11/05/2023] Open
Abstract
The resolution limit of chromatin conformation capture methodologies (3Cs) has restrained their application in detection of fine-level chromatin structure mediated by cis-regulatory elements (CREs). Here, we report two 3C-derived methods, Tri-4C and Tri-HiC, which utilize multirestriction enzyme digestions for ultrafine mapping of targeted and genome-wide chromatin interaction, respectively, at up to one hundred basepair resolution. Tri-4C identified CRE loop interaction networks and quantitatively revealed their alterations underlying dynamic gene control. Tri-HiC uncovered global fine-gauge regulatory interaction networks, identifying >20-fold more enhancer:promoter (E:P) loops than in situ Hi-C. In addition to vastly improved identification of subkilobase-sized E:P loops, Tri-HiC also uncovered interaction stripes and contact domain insulation from promoters and enhancers, revealing their loop extrusion behaviors resembling the topologically associating domain boundaries. Tri-4C and Tri-HiC provide robust approaches to achieve the high-resolution interactome maps required for characterizing fine-gauge regulatory chromatin interactions in analysis of development, homeostasis, and disease.
Collapse
Affiliation(s)
- Yizhou Zhu
- Department of Obstetrics and Gynecology, Columbia University, New York, NY10032
| | - Michael G. Rosenfeld
- Department of Medicine, University of California San Diego, La Jolla, CA92093
- Department of Genetics and Development, Columbia University, New York, NY10032
| | - Yousin Suh
- Department of Obstetrics and Gynecology, Columbia University, New York, NY10032
- Department of Genetics and Development, Columbia University, New York, NY10032
| |
Collapse
|
40
|
Luo X, Li Q, Tang Y, Liu Y, Zou Q, Zheng J, Zhang Y, Xu L. Predicting active enhancers with DNA methylation and histone modification. BMC Bioinformatics 2023; 24:414. [PMID: 37919681 PMCID: PMC10621108 DOI: 10.1186/s12859-023-05547-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/27/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Enhancers play a crucial role in gene regulation, and some active enhancers produce noncoding RNAs known as enhancer RNAs (eRNAs) bi-directionally. The most commonly used method for detecting eRNAs is CAGE-seq, but the instability of eRNAs in vivo leads to data noise in sequencing results. Unfortunately, there is currently a lack of research focused on the noise inherent in CAGE-seq data, and few approaches have been developed for predicting eRNAs. Bridging this gap and developing widely applicable eRNA prediction models is of utmost importance. RESULTS In this study, we proposed a method to reduce false positives in the identification of eRNAs by adjusting the statistical distribution of expression levels. We also developed eRNA prediction models using joint gene expressions, DNA methylation, and histone modification. These models achieved impressive performance with an AUC value of approximately 0.95 for intra-cell prediction and 0.9 for cross-cell prediction. CONCLUSIONS Our method effectively attenuates the noise generated by stochastic RNA production, resulting in more accurate detection of eRNAs. Furthermore, our eRNA prediction model exhibited significant accuracy in both intra-cell and cross-cell validation, highlighting its robustness and potential application in various cellular contexts.
Collapse
Affiliation(s)
- Ximei Luo
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- School of Electronic and Communication Engineering, Shenzhen Polytechnic University, Shenzhen, Guangdong, China
| | - Qun Li
- Department of Pain, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yifan Tang
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yan Liu
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang, China
| | - Jie Zheng
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Ying Zhang
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Lei Xu
- School of Electronic and Communication Engineering, Shenzhen Polytechnic University, Shenzhen, Guangdong, China.
| |
Collapse
|
41
|
Wu R, Zhou B, Wang W, Liu F. Regulatory Mechanisms for Transcriptional Bursting Revealed by an Event-Based Model. RESEARCH (WASHINGTON, D.C.) 2023; 6:0253. [PMID: 39290237 PMCID: PMC11407585 DOI: 10.34133/research.0253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/01/2023] [Indexed: 09/19/2024]
Abstract
Gene transcription often occurs in discrete bursts, and it can be difficult to deduce the underlying regulatory mechanisms for transcriptional bursting with limited experimental data. Here, we categorize numerous states of single eukaryotic genes and identify 6 essential transcriptional events, each comprising a series of state transitions; transcriptional bursting is characterized as a sequence of 4 events, capable of being organized in various configurations, in addition to the beginning and ending events. By associating transcriptional kinetics with mean durations and recurrence probabilities of the events, we unravel how transcriptional bursting is modulated by various regulators including transcription factors. Through analytical derivation and numerical simulation, this study reveals key state transitions contributing to transcriptional sensitivity and specificity, typical characteristics of burst profiles, global constraints on intrinsic transcriptional noise, major regulatory modes in individual genes and across the genome, and requirements for fast gene induction upon stimulation. It is illustrated how biochemical reactions on different time scales are modulated to separately shape the durations and ordering of the events. Our results suggest that transcriptional patterns are essentially controlled by a shared set of transcriptional events occurring under specific promoter architectures and regulatory modes, the number of which is actually limited.
Collapse
Affiliation(s)
- Renjie Wu
- National Laboratory of Solid State Microstructures, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Bangyan Zhou
- National Laboratory of Solid State Microstructures, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Wei Wang
- National Laboratory of Solid State Microstructures, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
- Institute for Brain Sciences, Nanjing University, Nanjing 210093, P. R. China
| | - Feng Liu
- National Laboratory of Solid State Microstructures, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
- Institute for Brain Sciences, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
42
|
Amarasinghe HE, Zhang P, Whalley JP, Allcock A, Migliorini G, Brown AC, Scozzafava G, Knight JC. Mapping the epigenomic landscape of human monocytes following innate immune activation reveals context-specific mechanisms driving endotoxin tolerance. BMC Genomics 2023; 24:595. [PMID: 37805492 PMCID: PMC10559536 DOI: 10.1186/s12864-023-09663-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 09/08/2023] [Indexed: 10/09/2023] Open
Abstract
BACKGROUND Monocytes are key mediators of innate immunity to infection, undergoing profound and dynamic changes in epigenetic state and immune function which are broadly protective but may be dysregulated in disease. Here, we aimed to advance understanding of epigenetic regulation following innate immune activation, acutely and in endotoxin tolerant states. METHODS We exposed human primary monocytes from healthy donors (n = 6) to interferon-γ or differing combinations of endotoxin (lipopolysaccharide), including acute response (2 h) and two models of endotoxin tolerance: repeated stimulations (6 + 6 h) and prolonged exposure to endotoxin (24 h). Another subset of monocytes was left untreated (naïve). We identified context-specific regulatory elements based on epigenetic signatures for chromatin accessibility (ATAC-seq) and regulatory non-coding RNAs from total RNA sequencing. RESULTS We present an atlas of differential gene expression for endotoxin and interferon response, identifying widespread context specific changes. Across assayed states, only 24-29% of genes showing differential exon usage are also differential at the gene level. Overall, 19.9% (6,884 of 34,616) of repeatedly observed ATAC peaks were differential in at least one condition, the majority upregulated on stimulation and located in distal regions (64.1% vs 45.9% of non-differential peaks) within which sequences were less conserved than non-differential peaks. We identified enhancer-derived RNA signatures specific to different monocyte states that correlated with chromatin accessibility changes. The endotoxin tolerance models showed distinct chromatin accessibility and transcriptomic signatures, with integrated analysis identifying genes and pathways involved in the inflammatory response, detoxification, metabolism and wound healing. We leveraged eQTL mapping for the same monocyte activation states to link potential enhancers with specific genes, identifying 1,946 unique differential ATAC peaks with 1,340 expression associated genes. We further use this to inform understanding of reported GWAS, for example involving FCHO1 and coronary artery disease. CONCLUSION This study reports context-specific regulatory elements based on transcriptomic profiling and epigenetic signatures for enhancer-derived RNAs and chromatin accessibility in immune tolerant monocyte states, and demonstrates the informativeness of linking such elements and eQTL to inform future mechanistic studies aimed at defining therapeutic targets of immunosuppression and diseases.
Collapse
Affiliation(s)
- Harindra E Amarasinghe
- Wellcome Centre for Human Genetics, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7BN, UK.
| | - Ping Zhang
- Wellcome Centre for Human Genetics, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7BN, UK
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, OX3 7BN, UK
| | - Justin P Whalley
- Wellcome Centre for Human Genetics, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Alice Allcock
- Wellcome Centre for Human Genetics, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Gabriele Migliorini
- Wellcome Centre for Human Genetics, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Andrew C Brown
- Wellcome Centre for Human Genetics, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Giuseppe Scozzafava
- Wellcome Centre for Human Genetics, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Julian C Knight
- Wellcome Centre for Human Genetics, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7BN, UK.
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, OX3 7BN, UK.
| |
Collapse
|
43
|
Wu K, Dhillon N, Bajor A, Abrahamson S, Kamakaka RT. Yeast Heterochromatin Only Stably Silences Weak Regulatory Elements by Altering Burst Duration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.05.561072. [PMID: 37873261 PMCID: PMC10592971 DOI: 10.1101/2023.10.05.561072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The interplay between nucleosomes and transcription factors leads to programs of gene expression. Transcriptional silencing involves the generation of a chromatin state that represses transcription and is faithfully propagated through DNA replication and cell division. Using multiple reporter assays, including directly visualizing transcription in single cells, we investigated a diverse set of UAS enhancers and core promoters for their susceptibility to heterochromatic gene silencing. These results show that heterochromatin only stably silences weak and stress induced regulatory elements but is unable to stably repress housekeeping gene regulatory elements and the partial repression did not result in bistable expression states. Permutation analysis of different UAS enhancers and core promoters indicate that both elements function together to determine the susceptibility of regulatory sequences to repression. Specific histone modifiers and chromatin remodellers function in an enhancer specific manner to aid these elements to resist repression suggesting that Sir proteins likely function in part by reducing nucleosome mobility. We also show that the strong housekeeping regulatory elements can be repressed if silencer bound Sir1 is increased, suggesting that Sir1 is a limiting component in silencing. Together, our data suggest that the heterochromatic locus has been optimized to stably silence the weak mating type gene regulatory elements but not strong housekeeping gene regulatory sequences which could help explain why these genes are often found at the boundaries of silenced domains.
Collapse
Affiliation(s)
- Kenneth Wu
- Department of MCD Biology, 1156 High Street, University of California, Santa Cruz, CA 95064 USA
| | - Namrita Dhillon
- Department of MCD Biology, 1156 High Street, University of California, Santa Cruz, CA 95064 USA
| | - Antone Bajor
- Electrical Engineering Department, Baskin School of Engineering, 1156 High Street, University of California, Santa Cruz, CA 95064 USA
| | - Sara Abrahamson
- Electrical Engineering Department, Baskin School of Engineering, 1156 High Street, University of California, Santa Cruz, CA 95064 USA
| | - Rohinton T. Kamakaka
- Department of MCD Biology, 1156 High Street, University of California, Santa Cruz, CA 95064 USA
| |
Collapse
|
44
|
Ramalingam V, Yu X, Slaughter BD, Unruh JR, Brennan KJ, Onyshchenko A, Lange JJ, Natarajan M, Buck M, Zeitlinger J. Lola-I is a promoter pioneer factor that establishes de novo Pol II pausing during development. Nat Commun 2023; 14:5862. [PMID: 37735176 PMCID: PMC10514308 DOI: 10.1038/s41467-023-41408-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/30/2023] [Indexed: 09/23/2023] Open
Abstract
While the accessibility of enhancers is dynamically regulated during development, promoters tend to be constitutively accessible and poised for activation by paused Pol II. By studying Lola-I, a Drosophila zinc finger transcription factor, we show here that the promoter state can also be subject to developmental regulation independently of gene activation. Lola-I is ubiquitously expressed at the end of embryogenesis and causes its target promoters to become accessible and acquire paused Pol II throughout the embryo. This promoter transition is required but not sufficient for tissue-specific target gene activation. Lola-I mediates this function by depleting promoter nucleosomes, similar to the action of pioneer factors at enhancers. These results uncover a level of regulation for promoters that is normally found at enhancers and reveal a mechanism for the de novo establishment of paused Pol II at promoters.
Collapse
Affiliation(s)
- Vivekanandan Ramalingam
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center----, Kansas City, KS, USA
- Department of Genetics, Stanford University, Palo Alto, CA, USA
| | - Xinyang Yu
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, USA
| | | | - Jay R Unruh
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | | | - Jeffrey J Lange
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | - Michael Buck
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, USA
- Department of Biomedical Informatics, Jacobs School of Medicine & Biomedical Sciences, Buffalo, NY, USA
| | - Julia Zeitlinger
- Stowers Institute for Medical Research, Kansas City, MO, USA.
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center----, Kansas City, KS, USA.
| |
Collapse
|
45
|
Alexander KA, Yu R, Skuli N, Coffey NJ, Nguyen S, Faunce C, Huang H, Dardani IP, Good AL, Lim J, Li C, Biddle N, Joyce EF, Raj A, Lee D, Keith B, Simon MC, Berger SL. Nuclear speckles regulate HIF-2α programs and correlate with patient survival in kidney cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.14.557228. [PMID: 37745397 PMCID: PMC10515914 DOI: 10.1101/2023.09.14.557228] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Nuclear speckles are membrane-less bodies within the cell nucleus enriched in RNA biogenesis, processing, and export factors. In this study we investigated speckle phenotype variation in human cancer, finding a reproducible speckle signature, based on RNA expression of speckle-resident proteins, across >20 cancer types. Of these, clear cell renal cell carcinoma (ccRCC) exhibited a clear correlation between the presence of this speckle expression signature, imaging-based speckle phenotype, and clinical outcomes. ccRCC is typified by hyperactivation of the HIF-2α transcription factor, and we demonstrate here that HIF-2α drives physical association of a select subset of its target genes with nuclear speckles. Disruption of HIF-2α-driven speckle association via deletion of its speckle targeting motifs (STMs)-defined in this study-led to defective induction of speckle-associating HIF-2α target genes without impacting non-speckle-associating HIF-2α target genes. We further identify the RNA export complex, TREX, as being specifically altered in speckle signature, and knockdown of key TREX component, ALYREF, also compromises speckle-associated gene expression. By integrating tissue culture functional studies with tumor genomic and imaging analysis, we show that HIF-2α gene regulatory programs are impacted by specific manipulation of speckle phenotype and by abrogation of speckle targeting abilities of HIF-2α. These findings suggest that, in ccRCC, a key biological function of nuclear speckles is to modulate expression of a specific subset of HIF-2α-regulated target genes that, in turn, influence patient outcomes. We also identify STMs in other transcription factors, suggesting that DNA-speckle targeting may be a general mechanism of gene regulation.
Collapse
Affiliation(s)
- Katherine A. Alexander
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ruofan Yu
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Nicolas Skuli
- Department of Cell and Developmental Biology, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Stem Cell and Xenograft Core, Department of Medicine – Division of Hematology and Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nathan J. Coffey
- Department of Cell and Developmental Biology, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Son Nguyen
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christine Faunce
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Hua Huang
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ian P. Dardani
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Austin L. Good
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joan Lim
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Catherine Li
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Nicholas Biddle
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Eric F. Joyce
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Arjun Raj
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel Lee
- Division of Urology, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Brian Keith
- Department of Cell and Developmental Biology, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - M. Celeste Simon
- Department of Cell and Developmental Biology, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shelley L. Berger
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
46
|
Lyu J, Chen C. LAST-seq: single-cell RNA sequencing by direct amplification of single-stranded RNA without prior reverse transcription and second-strand synthesis. Genome Biol 2023; 24:184. [PMID: 37559123 PMCID: PMC10413806 DOI: 10.1186/s13059-023-03025-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 07/28/2023] [Indexed: 08/11/2023] Open
Abstract
Existing single-cell RNA sequencing (scRNA-seq) methods rely on reverse transcription (RT) and second-strand synthesis (SSS) to convert single-stranded RNA into double-stranded DNA prior to amplification, with the limited RT/SSS efficiency compromising RNA detectability. Here, we develop a new scRNA-seq method, Linearly Amplified Single-stranded-RNA-derived Transcriptome sequencing (LAST-seq), which directly amplifies the original single-stranded RNA molecules without prior RT/SSS. LAST-seq offers a high single-molecule capture efficiency and a low level of technical noise for single-cell transcriptome analyses. Using LAST-seq, we characterize transcriptional bursting kinetics in human cells, revealing a role of topologically associating domains in transcription regulation.
Collapse
Affiliation(s)
- Jun Lyu
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chongyi Chen
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
47
|
Senapati S, Irshad IU, Sharma AK, Kumar H. Fundamental insights into the correlation between chromosome configuration and transcription. Phys Biol 2023; 20:051002. [PMID: 37467757 DOI: 10.1088/1478-3975/ace8e5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/19/2023] [Indexed: 07/21/2023]
Abstract
Eukaryotic chromosomes exhibit a hierarchical organization that spans a spectrum of length scales, ranging from sub-regions known as loops, which typically comprise hundreds of base pairs, to much larger chromosome territories that can encompass a few mega base pairs. Chromosome conformation capture experiments that involve high-throughput sequencing methods combined with microscopy techniques have enabled a new understanding of inter- and intra-chromosomal interactions with unprecedented details. This information also provides mechanistic insights on the relationship between genome architecture and gene expression. In this article, we review the recent findings on three-dimensional interactions among chromosomes at the compartment, topologically associating domain, and loop levels and the impact of these interactions on the transcription process. We also discuss current understanding of various biophysical processes involved in multi-layer structural organization of chromosomes. Then, we discuss the relationships between gene expression and genome structure from perturbative genome-wide association studies. Furthermore, for a better understanding of how chromosome architecture and function are linked, we emphasize the role of epigenetic modifications in the regulation of gene expression. Such an understanding of the relationship between genome architecture and gene expression can provide a new perspective on the range of potential future discoveries and therapeutic research.
Collapse
Affiliation(s)
- Swayamshree Senapati
- School of Basic Sciences, Indian Institute of Technology, Bhubaneswar, Argul, Odisha 752050, India
| | - Inayat Ullah Irshad
- Department of Physics, Indian Institute of Technology, Jammu, Jammu 181221, India
| | - Ajeet K Sharma
- Department of Physics, Indian Institute of Technology, Jammu, Jammu 181221, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology Jammu, Jammu 181221, India
| | - Hemant Kumar
- School of Basic Sciences, Indian Institute of Technology, Bhubaneswar, Argul, Odisha 752050, India
| |
Collapse
|
48
|
Fukaya T. Enhancer dynamics: Unraveling the mechanism of transcriptional bursting. SCIENCE ADVANCES 2023; 9:eadj3366. [PMID: 37531441 PMCID: PMC10396287 DOI: 10.1126/sciadv.adj3366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Transcriptional bursting is a prevalent feature of gene expression. The transient assembly of transcription factor clusters at regulatory DNAs is critical to control bursting dynamics.
Collapse
Affiliation(s)
- Takashi Fukaya
- Laboratory of Transcription Dynamics, Research Center for Biological Visualization, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| |
Collapse
|
49
|
Piel FB, Rees DC, DeBaun MR, Nnodu O, Ranque B, Thompson AA, Ware RE, Abboud MR, Abraham A, Ambrose EE, Andemariam B, Colah R, Colombatti R, Conran N, Costa FF, Cronin RM, de Montalembert M, Elion J, Esrick E, Greenway AL, Idris IM, Issom DZ, Jain D, Jordan LC, Kaplan ZS, King AA, Lloyd-Puryear M, Oppong SA, Sharma A, Sung L, Tshilolo L, Wilkie DJ, Ohene-Frempong K. Defining global strategies to improve outcomes in sickle cell disease: a Lancet Haematology Commission. Lancet Haematol 2023; 10:e633-e686. [PMID: 37451304 PMCID: PMC11459696 DOI: 10.1016/s2352-3026(23)00096-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/31/2023] [Accepted: 04/12/2023] [Indexed: 07/18/2023]
Abstract
All over the world, people with sickle cell disease (an inherited condition) have premature deaths and preventable severe chronic complications, which considerably affect their quality of life, career progression, and financial status. In addition, these people are often affected by stigmatisation or structural racism, which can contribute to stress and poor mental health. Inequalities affecting people with sickle cell disease are also reflected in the distribution of the disease—mainly in sub-Saharan Africa, India, and the Caribbean—whereas interventions, clinical trials, and funding are mostly available in North America, Europe, and the Middle East. Although some of these characteristics also affect people with other genetic diseases, the fate of people with sickle cell disease seems to be particularly unfair. Simple, effective interventions to reduce the mortality and morbidity associated with sickle cell disease are available. The main obstacle preventing better outcomes in this condition, which is a neglected disease, is associated with inequalities impacting the patient populations. The aim of this Commission is to highlight the problems associated with sickle cell disease and to identify achievable goals to improve outcomes both in the short and long term. The ambition for the management of people with sickle cell disease is that curative treatments become available to every person with the condition. Although this would have seemed unrealistic a decade ago, developments in gene therapy make this potentially achievable, albeit in the distant future. Until these curative technologies are fully developed and become widely available, health-care professionals (with the support of policy makers, funders, etc) should make sure that a minimum standard of care (including screening, prophylaxis against infection, acute medical care, safe blood transfusion, and hydroxyurea) is available to all patients. In considering what needs to be achieved to reduce the global burden of sickle cell disease and improve the quality of life of patients, this Commission focuses on five key areas: the epidemiology of sickle cell disease (Section 1 ); screening and prevention (Section 2 ); established and emerging treatments for the management of the disease (Section 3 ); cellular therapies with curative potential (Section 4 ); and training and education needs (Section 5 ). As clinicians, researchers, and patients, our objective to reduce the global burden of sickle cell disease aligns with wider public health aims to reduce inequalities, improve health for all, and develop personalised treatment options. We have observed in the past few years some long-awaited momentum following the development of innovative point-of-care testing devices, new approved drugs, and emerging curative options. Reducing the burden of sickle cell disease will require substantial financial and political commitment, but it will impact the lives of millions of patients and families worldwide and the lessons learned in achieving this goal would unarguably benefit society as a whole.
Collapse
Affiliation(s)
- Frédéric B Piel
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK.
| | - David C Rees
- Department of Paediatric Haematology, King's College London, King's College Hospital, London, UK
| | - Michael R DeBaun
- Department of Pediatrics, Vanderbilt-Meharry Center of Excellence for Sickle Cell Disease, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Obiageli Nnodu
- Department of Haematology and Blood Transfusion, College of Health Sciences and Centre of Excellence for Sickle Cell Disease Research and Training, University of Abuja, Abuja, Nigeria
| | - Brigitte Ranque
- Department of Internal Medicine, Georges Pompidou European Hospital, Assistance Publique-Hopitaux de Paris Centre, University of Paris Cité, Paris, France
| | - Alexis A Thompson
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Russell E Ware
- Division of Hematology and Global Health Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Miguel R Abboud
- Department of Pediatrics and Adolescent Medicine, and Sickle Cell Program, American University of Beirut, Beirut, Lebanon
| | - Allistair Abraham
- Division of Blood and Marrow Transplantation, Children's National Hospital, Washington, DC, USA
| | - Emmanuela E Ambrose
- Department of Paediatrics and Child Health, Bugando Medical Centre, Mwanza, Tanzania
| | - Biree Andemariam
- New England Sickle Cell Institute, University of Connecticut Health, Connecticut, USA
| | - Roshan Colah
- Department of Haematogenetics, Indian Council of Medical Research National Institute of Immunohaematology, Mumbai, India
| | - Raffaella Colombatti
- Pediatric Oncology Hematology Unit, Department of Women's and Children's Health, University of Padua, Padua, Italy
| | - Nicola Conran
- Department of Clinical Medicine, School of Medical Sciences, Center of Hematology and Hemotherapy (Hemocentro), University of Campinas-UNICAMP, Campinas, Brazil
| | - Fernando F Costa
- Department of Clinical Medicine, School of Medical Sciences, Center of Hematology and Hemotherapy (Hemocentro), University of Campinas-UNICAMP, Campinas, Brazil
| | - Robert M Cronin
- Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Mariane de Montalembert
- Department of Pediatrics, Necker-Enfants Malades Hospital, Assistance Publique-Hopitaux de Paris Centre, Paris, France
| | - Jacques Elion
- Paris Cité University and University of the Antilles, Inserm, BIGR, Paris, France
| | - Erica Esrick
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Anthea L Greenway
- Department Clinical Haematology, Royal Children's Hospital, Parkville and Department Haematology, Monash Health, Clayton, VIC, Australia
| | - Ibrahim M Idris
- Department of Hematology, Aminu Kano Teaching Hospital/Bayero University Kano, Kano, Nigeria
| | - David-Zacharie Issom
- Department of Business Information Systems, School of Management, HES-SO University of Applied Sciences and Arts of Western Switzerland, Geneva, Switzerland
| | - Dipty Jain
- Department of Paediatrics, Government Medical College, Nagpur, India
| | - Lori C Jordan
- Department of Pediatrics, Division of Pediatric Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Zane S Kaplan
- Department of Clinical Haematology, Monash Health and Monash University, Melbourne, VIC, Australia
| | - Allison A King
- Departments of Pediatrics and Internal Medicine, Divisions of Pediatric Hematology and Oncology and Hematology, Washington University School of Medicine, St Louis, MO, USA
| | - Michele Lloyd-Puryear
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Samuel A Oppong
- Department of Obstetrics and Gynecology, University of Ghana Medical School, Accra, Ghana
| | - Akshay Sharma
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Lillian Sung
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Leon Tshilolo
- Institute of Biomedical Research/CEFA Monkole Hospital Centre and Official University of Mbuji-Mayi, Mbuji-Mayi, Democratic Republic of the Congo
| | - Diana J Wilkie
- Department of Biobehavioral Nursing Science, College of Nursing, University of Florida, Gainesville, FL, USA
| | - Kwaku Ohene-Frempong
- Division of Hematology, Children's Hospital of Philadelphia, Pennsylvania, USA; Sickle Cell Foundation of Ghana, Kumasi, Ghana
| |
Collapse
|
50
|
van Staalduinen J, van Staveren T, Grosveld F, Wendt KS. Live-cell imaging of chromatin contacts opens a new window into chromatin dynamics. Epigenetics Chromatin 2023; 16:27. [PMID: 37349773 PMCID: PMC10288748 DOI: 10.1186/s13072-023-00503-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/15/2023] [Indexed: 06/24/2023] Open
Abstract
Our understanding of the organization of the chromatin fiber within the cell nucleus has made great progress in the last few years. High-resolution techniques based on next-generation sequencing as well as optical imaging that can investigate chromatin conformations down to the single cell level have revealed that chromatin structure is highly heterogeneous at the level of the individual allele. While TAD boundaries and enhancer-promoter pairs emerge as hotspots of 3D proximity, the spatiotemporal dynamics of these different types of chromatin contacts remain largely unexplored. Investigation of chromatin contacts in live single cells is necessary to close this knowledge gap and further enhance the current models of 3D genome organization and enhancer-promoter communication. In this review, we first discuss the potential of single locus labeling to study architectural and enhancer-promoter contacts and provide an overview of the available single locus labeling techniques such as FROS, TALE, CRISPR-dCas9 and ANCHOR, and discuss the latest developments and applications of these systems.
Collapse
Affiliation(s)
- Jente van Staalduinen
- Department of Cell Biology, Erasmus MC, Dr. Molewaterplein 50, 3015 GE, Rotterdam, The Netherlands
| | - Thomas van Staveren
- Department of Cell Biology, Erasmus MC, Dr. Molewaterplein 50, 3015 GE, Rotterdam, The Netherlands
| | - Frank Grosveld
- Department of Cell Biology, Erasmus MC, Dr. Molewaterplein 50, 3015 GE, Rotterdam, The Netherlands
| | - Kerstin S Wendt
- Department of Cell Biology, Erasmus MC, Dr. Molewaterplein 50, 3015 GE, Rotterdam, The Netherlands.
| |
Collapse
|