1
|
Nair A, Khanna J, Kler J, Ragesh R, Sengupta K. Nuclear envelope and chromatin choreography direct cellular differentiation. Nucleus 2025; 16:2449520. [PMID: 39943681 PMCID: PMC11834525 DOI: 10.1080/19491034.2024.2449520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/28/2024] [Accepted: 12/30/2024] [Indexed: 02/20/2025] Open
Abstract
The nuclear envelope plays an indispensable role in the spatiotemporal organization of chromatin and transcriptional regulation during the intricate process of cell differentiation. This review outlines the distinct regulatory networks between nuclear envelope proteins, transcription factors and epigenetic modifications in controlling the expression of cell lineage-specific genes during differentiation. Nuclear lamina with its associated nuclear envelope proteins organize heterochromatin via Lamina-Associated Domains (LADs), proximal to the nuclear periphery. Since nuclear lamina is mechanosensitive, we critically examine the impact of extracellular forces on differentiation outcomes. The nuclear envelope is spanned by nuclear pore complexes which, in addition to their central role in transport, are associated with chromatin organization. Furthermore, mutations in the nuclear envelope proteins disrupt differentiation, resulting in developmental disorders. Investigating the underlying nuclear envelope controlled regulatory mechanisms of chromatin remodelling during lineage commitment will accelerate our fundamental understanding of developmental biology and regenerative medicine.
Collapse
Affiliation(s)
- Anjitha Nair
- Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research (IISER) Pune, Maharashtra, India
| | - Jayati Khanna
- Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research (IISER) Pune, Maharashtra, India
| | - Jashan Kler
- Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research (IISER) Pune, Maharashtra, India
| | - Rohith Ragesh
- Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research (IISER) Pune, Maharashtra, India
| | - Kundan Sengupta
- Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research (IISER) Pune, Maharashtra, India
| |
Collapse
|
2
|
Marano N, Holaska JM. The role of inner nuclear membrane protein emerin in myogenesis. FASEB J 2025; 39:e70514. [PMID: 40178931 PMCID: PMC11967984 DOI: 10.1096/fj.202500323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 03/25/2025] [Indexed: 04/05/2025]
Abstract
Emerin, a ubiquitously expressed inner nuclear membrane protein, plays a central role in maintaining nuclear structure and genomic organization, and in regulating gene expression and cellular signaling pathways. These functions are critical for proper myogenic differentiation and are closely linked to the pathology of Emery-Dreifuss muscular dystrophy 1 (EDMD1), a laminopathy caused by mutations in the EMD gene. Emerin, along with other nuclear lamina proteins, modulates chromatin organization, cell signaling, gene expression, and cellular mechanotransduction, processes essential for muscle development and homeostasis. Loss of emerin function disrupts chromatin localization, causes dysregulated gene expression, and alters nucleoskeletal organization, resulting in impaired myogenic differentiation. Recent findings suggest that emerin tethers repressive chromatin at the nuclear envelope, a process essential for robust myogenesis. This review provides an in-depth discussion of emerin's multifaceted roles in nuclear organization, gene regulation, and cellular signaling, highlighting its importance in myogenic differentiation and disease progression.
Collapse
Affiliation(s)
- Nicholas Marano
- Department of Biomedical SciencesCooper Medical School of Rowan UniversityCamdenNew JerseyUSA
- Rowan‐Virtua School of Translational Biomedical Engineering and SciencesStratfordNew JerseyUSA
| | - James M. Holaska
- Department of Biomedical SciencesCooper Medical School of Rowan UniversityCamdenNew JerseyUSA
- Rowan‐Virtua School of Translational Biomedical Engineering and SciencesStratfordNew JerseyUSA
| |
Collapse
|
3
|
Paldi F, Cavalli G. 3D genome folding in epigenetic regulation and cellular memory. Trends Cell Biol 2025:S0962-8924(25)00065-0. [PMID: 40221344 DOI: 10.1016/j.tcb.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/07/2025] [Accepted: 03/11/2025] [Indexed: 04/14/2025]
Abstract
The 3D folding of the genome is tightly linked to its epigenetic state which maintains gene expression programmes. Although the relationship between gene expression and genome organisation is highly context dependent, 3D genome organisation is emerging as a novel epigenetic layer to reinforce and stabilise transcriptional states. Whether regulatory information carried in genome folding could be transmitted through mitosis is an area of active investigation. In this review, we discuss the relationship between epigenetic state and nuclear organisation, as well as the interplay between transcriptional regulation and epigenetic genome folding. We also consider the architectural remodelling of nuclei as cells enter and exit mitosis, and evaluate the potential of the 3D genome to contribute to cellular memory.
Collapse
Affiliation(s)
- Flora Paldi
- Institute of Human Genetics, CNRS and University of Montpellier, Montpellier, France
| | - Giacomo Cavalli
- Institute of Human Genetics, CNRS and University of Montpellier, Montpellier, France.
| |
Collapse
|
4
|
Georgiou K, Sarigol F, Nimpf T, Knapp C, Filipczak D, Foisner R, Naetar N. MyoD1 localization at the nuclear periphery is mediated by association of WFS1 with active enhancers. Nat Commun 2025; 16:2614. [PMID: 40097443 PMCID: PMC11914251 DOI: 10.1038/s41467-025-57758-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 02/27/2025] [Indexed: 03/19/2025] Open
Abstract
Spatial organization of the mammalian genome influences gene expression and cell identity. While association of genes with the nuclear periphery is commonly linked to transcriptional repression, also active, expressed genes can localize at the nuclear periphery. The transcriptionally active MyoD1 gene, a master regulator of myogenesis, exhibits peripheral localization in proliferating myoblasts, yet the underlying mechanisms remain elusive. Here, we generate a reporter cell line to demonstrate that peripheral association of the MyoD1 locus is independent of mechanisms involved in heterochromatin anchoring. Instead, we identify the nuclear envelope transmembrane protein WFS1 that tethers MyoD1 to the nuclear periphery. WFS1 primarily associates with active distal enhancer elements upstream of MyoD1, and with a subset of enhancers genome-wide, which are enriched in active histone marks and linked to expressed myogenic genes. Overall, our data identify a mechanism involved in tethering regulatory elements of active genes to the nuclear periphery.
Collapse
Affiliation(s)
- Konstantina Georgiou
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Max Perutz Labs, Medical University of Vienna, Vienna, Austria
- Vienna BioCenter PhD Program, a Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Fatih Sarigol
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Max Perutz Labs, Medical University of Vienna, Vienna, Austria
| | - Tobias Nimpf
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Max Perutz Labs, Medical University of Vienna, Vienna, Austria
| | - Christian Knapp
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Max Perutz Labs, Medical University of Vienna, Vienna, Austria
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Daria Filipczak
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Max Perutz Labs, Medical University of Vienna, Vienna, Austria
- Vienna BioCenter PhD Program, a Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Roland Foisner
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria.
- Max Perutz Labs, Medical University of Vienna, Vienna, Austria.
| | - Nana Naetar
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria.
- Max Perutz Labs, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
5
|
Shin GS, Jo AR, Kim J, Kim JY, Kim CH, An MJ, Lee HM, Park Y, Hwangbo Y, Kim JW. Lamin B1 regulates RNA splicing factor expression by modulating the spatial positioning and chromatin interactions of the ETS1 gene locus. Anim Cells Syst (Seoul) 2025; 29:149-162. [PMID: 39968360 PMCID: PMC11834782 DOI: 10.1080/19768354.2025.2465325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/22/2025] [Accepted: 01/30/2025] [Indexed: 02/20/2025] Open
Abstract
Lamin B1, a crucial component of the nuclear lamina, plays a pivotal role in chromatin organization and transcriptional regulation in eukaryotic cells. While recent studies have highlighted the connection between Lamin B1 and RNA splicing regulation, the precise molecular mechanisms remain elusive. In this study, we demonstrate that Lamin B1 depletion leads to a global reduction in splicing factor expression, as evidenced by analysis of multiple RNA-seq datasets. Motif analysis suggests that members of the ETS transcription factor family likely bind to the promoter regions of these splicing factors. Further analysis using transcription factor databases and ChIP-seq data identified ETS1 as a key regulator of splicing factor expression. Hi-C sequencing revealed that the loss of Lamin B1 disrupts inter-LAD chromatin interactions near the ETS1 gene locus, resulting in its downregulation. These findings suggest that Lamin B1 indirectly regulates RNA splicing by sustaining proper ETS1 expression, uncovering a novel link between nuclear architecture, gene regulation, and RNA splicing.
Collapse
Affiliation(s)
- Geun-Seup Shin
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Ah-Ra Jo
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Jinho Kim
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Ji-Young Kim
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Chul-Hong Kim
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Mi-Jin An
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Hyun-Min Lee
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Yuna Park
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Yujeong Hwangbo
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Jung-Woong Kim
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Sun C, Zhao Y, Guo L, Qiu J, Peng Q. The interplay between histone modifications and nuclear lamina in genome regulation. J Genet Genomics 2025; 52:24-38. [PMID: 39426590 DOI: 10.1016/j.jgg.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
Gene expression is regulated by chromatin architecture and epigenetic remodeling in cell homeostasis and pathologies. Histone modifications act as the key factors to modulate the chromatin accessibility. Different histone modifications are strongly associated with the localization of chromatin. Heterochromatin primarily localizes at the nuclear periphery, where it interacts with lamina proteins to suppress gene expression. In this review, we summarize the potential bridges that have regulatory functions of histone modifications in chromatin organization and transcriptional regulation at the nuclear periphery. We use lamina-associated domains (LADs) as examples to elucidate the biological roles of the interactions between histone modifications and nuclear lamina in cell differentiation and development. In the end, we highlight the technologies that are currently used to identify and visualize histone modifications and LADs, which could provide spatiotemporal information for understanding their regulatory functions in gene expression and discovering new targets for diseases.
Collapse
Affiliation(s)
- Chang Sun
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China; Faculty of Medicine and Health Sciences, Barcelona University, Barcelona, Spain
| | - Yanjing Zhao
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China; Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Liping Guo
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Juhui Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| | - Qin Peng
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| |
Collapse
|
7
|
Manzo SG, Mazouzi A, Leemans C, van Schaik T, Neyazi N, van Ruiten MS, Rowland BD, Brummelkamp TR, van Steensel B. Chromatin protein complexes involved in gene repression in lamina-associated domains. EMBO J 2024; 43:5260-5287. [PMID: 39322756 PMCID: PMC11535540 DOI: 10.1038/s44318-024-00214-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/27/2024] Open
Abstract
Lamina-associated domains (LADs) are large chromatin regions that are associated with the nuclear lamina (NL) and form a repressive environment for transcription. The molecular players that mediate gene repression in LADs are currently unknown. Here, we performed FACS-based whole-genome genetic screens in human cells using LAD-integrated fluorescent reporters to identify such regulators. Surprisingly, the screen identified very few NL proteins, but revealed roles for dozens of known chromatin regulators. Among these are the negative elongation factor (NELF) complex and interacting factors involved in RNA polymerase pausing, suggesting that regulation of transcription elongation is a mechanism to repress transcription in LADs. Furthermore, the chromatin remodeler complex BAF and the activation complex Mediator can work both as activators and repressors in LADs, depending on the local context and possibly by rewiring heterochromatin. Our data indicate that the fundamental regulators of transcription and chromatin remodeling, rather than interaction with NL proteins, play a major role in transcription regulation within LADs.
Collapse
Affiliation(s)
- Stefano G Manzo
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Amsterdam, the Netherlands
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Abdelghani Mazouzi
- Oncode Institute, Amsterdam, the Netherlands
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Christ Leemans
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Amsterdam, the Netherlands
| | - Tom van Schaik
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Amsterdam, the Netherlands
| | - Nadia Neyazi
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Amsterdam, the Netherlands
| | - Marjon S van Ruiten
- Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Benjamin D Rowland
- Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Thijn R Brummelkamp
- Oncode Institute, Amsterdam, the Netherlands
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Bas van Steensel
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands.
- Oncode Institute, Amsterdam, the Netherlands.
- Division of Molecular Genetics, Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
8
|
Ferraioli S, Sarigol F, Prakash C, Filipczak D, Foisner R, Naetar N. LAP2alpha facilitates myogenic gene expression by preventing nucleoplasmic lamin A/C from spreading to active chromatin regions. Nucleic Acids Res 2024; 52:11500-11518. [PMID: 39228367 PMCID: PMC11514464 DOI: 10.1093/nar/gkae752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024] Open
Abstract
A-type lamins form a filamentous meshwork beneath the nuclear membrane that anchors large heterochromatic genomic regions at the nuclear periphery. A-type lamins also exist as a dynamic, non-filamentous pool in the nuclear interior, where they interact with lamin-associated polypeptide 2 alpha (LAP2α). Both proteins associate with largely overlapping euchromatic genomic regions in the nucleoplasm, but the functional significance of this interaction is poorly understood. Here, we report that LAP2α relocates towards regions containing myogenic genes in the early stages of muscle differentiation, possibly facilitating efficient gene regulation, while lamins A and C mostly associate with genomic regions away from these genes. Strikingly, upon depletion of LAP2α, A-type lamins spread across active chromatin and accumulate at regions of active H3K27ac and H3K4me3 histone marks in the vicinity of myogenic genes whose expression is impaired in the absence of LAP2α. Reorganization of A-type lamins on chromatin is accompanied by depletion of the active chromatin mark H3K27ac and a significantly impaired myogenic differentiation. Thus, the interplay of LAP2α and A-type lamins is crucial for proper positioning of intranuclear lamin A/C on chromatin to allow efficient myogenic differentiation.
Collapse
Affiliation(s)
- Simona Ferraioli
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, 1030 Vienna, Austria
- Medical University of Vienna, Max Perutz Labs, Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, 1030 Vienna, Austria
| | - Fatih Sarigol
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, 1030 Vienna, Austria
- Medical University of Vienna, Max Perutz Labs, Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, 1030 Vienna, Austria
| | - Celine Prakash
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, 1030 Vienna, Austria
- Center for Integrative Bioinformatics Vienna, University of Vienna, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
| | - Daria Filipczak
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, 1030 Vienna, Austria
- Medical University of Vienna, Max Perutz Labs, Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, 1030 Vienna, Austria
- Vienna BioCenter PhD Program, a Doctoral School of the University of Vienna and Medical University of Vienna, A-1030 Vienna, Austria
| | - Roland Foisner
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, 1030 Vienna, Austria
- Medical University of Vienna, Max Perutz Labs, Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, 1030 Vienna, Austria
| | - Nana Naetar
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, 1030 Vienna, Austria
- Medical University of Vienna, Max Perutz Labs, Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, 1030 Vienna, Austria
| |
Collapse
|
9
|
Gu H, Xu K, Yu Z, Ren Z, Chen F, Zhou C, Zeng W, Ren H, Yin Y, Bi Y. N 6-Methyladenosine RNA Modification Regulates the Differential Muscle Development in Large White and Ningxiang Pigs. Cells 2024; 13:1744. [PMID: 39451261 PMCID: PMC11506082 DOI: 10.3390/cells13201744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/12/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024] Open
Abstract
N6-methyladenosine (m6A) is the most common modification in eukaryotic RNAs. Growing research indicates that m6A methylation is crucial for a multitude of biological processes. However, research on the m6A modifications in the regulation of porcine muscle growth is lacking. In this study, we identified differentially expressed genes in the neonatal period of muscle development between Large White (LW) and NingXiang (NX) pigs and further reported m6A methylation patterns via MeRIP-seq. We found that m6A modification regulates muscle cell development, myofibrils, cell cycle, and phosphatase regulator activity during the neonatal phase of muscle development. Interestingly, differentially expressed genes in LW and NX pigs were mainly enriched in pathways involved in protein synthesis. Furthermore, we performed a conjoint analysis of MeRIP-seq and RNA-seq data and identified 27 differentially expressed and m6A-modified genes. Notably, a typical muscle-specific envelope transmembrane protein, WFS1, was differentially regulated by m6A modifications in LW and NX pigs. We further revealed that the m6A modification accelerated the degradation of WFS1 in a YTHDF2-dependent manner. Noteworthy, we identified a single nucleotide polymorphism (C21551T) within the last exon of WFS1 that resulted in variable m6A methylation, contributing to the differing WFS1 expression levels observed in LW and NX pigs. Our study conducted a comprehensive analysis of the m6A modification on NX and LW pigs during the neonatal period of muscle development, and elucidated the mechanism by which m6A regulates the differential expression of WFS1 in the two breeds.
Collapse
Affiliation(s)
- Hao Gu
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Sciences and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (H.G.); (Z.Y.); (Z.R.); (F.C.); (C.Z.); (W.Z.); (H.R.)
| | - Kang Xu
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China;
| | - Zhao Yu
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Sciences and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (H.G.); (Z.Y.); (Z.R.); (F.C.); (C.Z.); (W.Z.); (H.R.)
| | - Zufeng Ren
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Sciences and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (H.G.); (Z.Y.); (Z.R.); (F.C.); (C.Z.); (W.Z.); (H.R.)
| | - Fan Chen
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Sciences and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (H.G.); (Z.Y.); (Z.R.); (F.C.); (C.Z.); (W.Z.); (H.R.)
| | - Changfan Zhou
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Sciences and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (H.G.); (Z.Y.); (Z.R.); (F.C.); (C.Z.); (W.Z.); (H.R.)
| | - Wei Zeng
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Sciences and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (H.G.); (Z.Y.); (Z.R.); (F.C.); (C.Z.); (W.Z.); (H.R.)
| | - Hongyan Ren
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Sciences and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (H.G.); (Z.Y.); (Z.R.); (F.C.); (C.Z.); (W.Z.); (H.R.)
| | - Yulong Yin
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China;
| | - Yanzhen Bi
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Sciences and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (H.G.); (Z.Y.); (Z.R.); (F.C.); (C.Z.); (W.Z.); (H.R.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
10
|
Filipczak D, Souchet A, Georgiou K, Foisner R, Naetar N. Lamin chromatin binding is modulated by interactions of different LAP2α domains with lamins and chromatin. iScience 2024; 27:110869. [PMID: 39319273 PMCID: PMC11417337 DOI: 10.1016/j.isci.2024.110869] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/11/2024] [Accepted: 08/29/2024] [Indexed: 09/26/2024] Open
Abstract
Lamins A and C are components of the lamina at the nuclear periphery and associate with heterochromatin. A distinct, relatively mobile pool of lamin A/C in the nuclear interior associates with euchromatic regions and with lamin-associated polypeptide 2α (LAP2α). Here we show that phosphorylation-dependent impairment of lamin assembly had no effect on its chromatin association, while LAP2α depletion was sufficient to increase chromatin association of lamins. This suggests that complex interactions between LAP2α, chromatin, and lamins regulate lamin chromatin binding. Both the C terminus of LAP2α and its N-terminal LAP2-Emerin-MAN1 (LEM) domain, mediating interaction with lamin A/C indirectly via barrier-to-autointegration factor (BAF), are required for binding to lamins. The N-terminal LEM-like domain of LAP2α, but not its LEM domain, mediates chromatin association of LAP2α and requires LAP2α dimerization via its C terminus. Our data suggest that formation of several LAP2α-, lamin A/C-, and BAF-containing complexes in the nucleoplasm and on chromatin affects lamin chromatin association.
Collapse
Affiliation(s)
- Daria Filipczak
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, Vienna 1030, Austria
- Medical University of Vienna, Max Perutz Labs, Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, Vienna 1030, Austria
- Vienna BioCenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, Vienna A-1030, Austria
| | - Anna Souchet
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, Vienna 1030, Austria
- Medical University of Vienna, Max Perutz Labs, Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, Vienna 1030, Austria
| | - Konstantina Georgiou
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, Vienna 1030, Austria
- Medical University of Vienna, Max Perutz Labs, Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, Vienna 1030, Austria
- Vienna BioCenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, Vienna A-1030, Austria
| | - Roland Foisner
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, Vienna 1030, Austria
- Medical University of Vienna, Max Perutz Labs, Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, Vienna 1030, Austria
| | - Nana Naetar
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, Vienna 1030, Austria
- Medical University of Vienna, Max Perutz Labs, Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, Vienna 1030, Austria
| |
Collapse
|
11
|
Pereira RT, Samarakone C, Bridger JM, de Castro IJ. Pushing the envelope - How the genome interacts with the nuclear envelope in health and disease. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 143:155-190. [PMID: 39843135 DOI: 10.1016/bs.apcsb.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
The nuclear envelope has for long been considered more than just the physical border between the nucleoplasm and the cytoplasm, emerging as a crucial player in genome organisation and regulation within the 3D nucleus. Consequently, its study has become a valuable topic in the research of cancer, ageing and several other diseases where chromatin organisation is compromised. In this chapter, we will delve into its several sub-elements, such as the nuclear lamina, nuclear pore complexes and nuclear envelope proteins, and their diverse roles in nuclear function and maintenance. We will explore their functions beyond nuclear structure and transport focusing on their interactions with chromatin and their paramount influence in its organisation, regulation and expression at the nuclear periphery. Finally, we will outline how this chromatin organisation and regulation at the nuclear envelope is affected in diseases, including laminopathies, cancer, neurodegenerative diseases and during viral infections.
Collapse
Affiliation(s)
- Rita Torres Pereira
- Genome Organisation and Dynamics Cluster, Center for Genome Engineering and Maintenance, Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, London, United Kingdom
| | - Cresentia Samarakone
- Genome Organisation and Dynamics Cluster, Center for Genome Engineering and Maintenance, Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, London, United Kingdom
| | - Joanna M Bridger
- Genome Organisation and Dynamics Cluster, Center for Genome Engineering and Maintenance, Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, London, United Kingdom
| | - Ines J de Castro
- Genome Organisation and Dynamics Cluster, Center for Genome Engineering and Maintenance, Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, London, United Kingdom.
| |
Collapse
|
12
|
Leconte M, Bonne G, Bertrand AT. Recent insights in striated muscle laminopathies. Curr Opin Neurol 2024; 37:509-514. [PMID: 38989655 DOI: 10.1097/wco.0000000000001297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
PURPOSE OF REVIEW To highlight recent insights in different aspects of striated muscle laminopathies (SMLs) related to LMNA mutations. RECENT FINDINGS Clinical and genetic studies allow better patient management and diagnosis, with confirmation of ventricular tachyarrhythmias (VTA) risk prediction score to help with ICD implantation and development of models to help with classification of LMNA variants of uncertain significance. From a pathophysiology perspective, characterization of lamin interactomes in different contexts revealed new lamin A/C partners. Expression or function modulation of these partners evidenced them as potential therapeutic targets. After a positive phase 2, the first phase 3 clinical trial, testing a p38 inhibitor targeting the life-threatening cardiac disease of SML, has been recently stopped, thus highlighting the need for new therapeutic approaches together with new animal and cell models. SUMMARY Since the first LMNA mutation report in 1999, lamin A/C structure and functions have been actively explored to understand the SML pathophysiology. The latest discoveries of partners and altered pathways, highlight the importance of lamin A/C at the nuclear periphery and in the nucleoplasm. Modulation of altered pathways allowed some benefits, especially for cardiac involvement. However, additional studies are still needed to fully assess treatment efficacy and safety.
Collapse
Affiliation(s)
- Marine Leconte
- Sorbonne Université, Inserm, Institut de Myologie, Centre de recherche en Myologie, Paris, France
| | | | | |
Collapse
|
13
|
Kim ED, Torii KU. Stomatal cell fate commitment via transcriptional and epigenetic control: Timing is crucial. PLANT, CELL & ENVIRONMENT 2024; 47:3288-3298. [PMID: 37996970 DOI: 10.1111/pce.14761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/25/2023] [Accepted: 10/29/2023] [Indexed: 11/25/2023]
Abstract
The formation of stomata presents a compelling model system for comprehending the initiation, proliferation, commitment and differentiation of de novo lineage-specific stem cells. Precise, timely and robust cell fate and identity decisions are crucial for the proper progression and differentiation of functional stomata. Deviations from this precise specification result in developmental abnormalities and nonfunctional stomata. However, the molecular underpinnings of timely cell fate commitment have just begun to be unravelled. In this review, we explore the key regulatory strategies governing cell fate commitment, emphasizing the distinctions between embryonic and postembryonic stomatal development. Furthermore, the interplay of transcription factors and cell cycle machineries is pivotal in specifying the transition into differentiation. We aim to synthesize recent studies utilizing single-cell as well as cell-type-specific transcriptomics, epigenomics and chromatin accessibility profiling to shed light on how master-regulatory transcription factors and epigenetic machineries mutually influence each other to drive fate commitment and maintenance.
Collapse
Affiliation(s)
- Eun-Deok Kim
- Howard Hughes Medical Institute and Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Keiko U Torii
- Howard Hughes Medical Institute and Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
- Institute of Transformative Biomolecules, Nagoya University, Nagoya, Japan
| |
Collapse
|
14
|
Czapiewski R, Schirmer EC. Enhancers on the edge - how the nuclear envelope controls gene regulatory elements. Curr Opin Genet Dev 2024; 87:102234. [PMID: 39047586 DOI: 10.1016/j.gde.2024.102234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/20/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
Precise temporal and sequential control of gene expression during development and in response to environmental stimuli requires tight regulation of the physical contact between gene regulatory elements and promoters. Current models describing how the genome folds in 3D space to establish these interactions often ignore the role of the most stable structural nuclear feature - the nuclear envelope. While contributions of 3D folding within/between topologically associated domains (TADs) have been extensively described, mechanical contributions from the nuclear envelope can impact enhancer-promoter interactions both directly and indirectly through influencing intra/inter-TAD interactions. Importantly, these nuclear envelope contributions clearly link this mechanism to development and, when defective, to human disease. Here, we discuss evidence for nuclear envelope regulation of tissue-specific enhancer-promoter pairings, potential mechanisms for this regulation, exciting recent findings that other regulatory elements such as microRNAs and long noncoding RNAs are under nuclear envelope regulation, the possible involvement of condensates, and how disruption of this regulation can lead to disease.
Collapse
Affiliation(s)
- Rafal Czapiewski
- Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom; MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom.
| | - Eric C Schirmer
- Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom.
| |
Collapse
|
15
|
Ahanger SH, Zhang C, Semenza ER, Gil E, Cole MA, Wang L, Kriegstein AR, Lim DA. Spatial 3D genome organization controls the activity of bivalent chromatin during human neurogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.01.606248. [PMID: 39131314 PMCID: PMC11312588 DOI: 10.1101/2024.08.01.606248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The nuclear genome is spatially organized into a three-dimensional (3D) architecture by physical association of large chromosomal domains with subnuclear compartments including the nuclear lamina at the radial periphery and nuclear speckles within the nucleoplasm1-5. However, how spatial genome architecture regulates human brain development has been overlooked owing to technical limitations. Here, we generate high-resolution maps of genomic interactions with the lamina and speckles in cells of the neurogenic lineage isolated from midgestational human cortex, uncovering an intimate association between subnuclear genome compartmentalization, chromatin state and transcription. During cortical neurogenesis, spatial genome organization is extensively remodeled, relocating hundreds of neuronal genes from the lamina to speckles including key neurodevelopmental genes bivalent for H3K27me3 and H3K4me3. At the lamina, bivalent genes have exceptionally low expression, and relocation to speckles enhances resolution of bivalent chromatin to H3K4me3 and increases transcription >7-fold. We further demonstrate that proximity to the nuclear periphery - not the presence of H3K27me3 - is the dominant factor in maintaining the lowly expressed, poised state of bivalent genes embedded in the lamina. In addition to uncovering a critical role of subnuclear genome compartmentalization in neurogenic transcriptional regulation, our results establish a new paradigm in which knowing the spatial location of a gene is necessary to understanding its epigenomic regulation.
Collapse
Affiliation(s)
- Sajad Hamid Ahanger
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Chujing Zhang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Evan R. Semenza
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Eugene Gil
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mitchel A. Cole
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Li Wang
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Arnold R. Kriegstein
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Daniel A. Lim
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
- San Francisco Veterans Affairs Medical Center, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
16
|
Stephens RK, Miroshnikova YA. Nuclear periphery and its mechanical regulation in cell fate transitions. Curr Opin Struct Biol 2024; 87:102867. [PMID: 38889500 DOI: 10.1016/j.sbi.2024.102867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024]
Abstract
Cell fate changes require rewiring of transcriptional programs to generate functionally specialized cell states. Reconfiguration of transcriptional networks requires overcoming epigenetic barriers imposed by silenced heterochromatin in order to activate lineage-specific genes. Further, cell fate decisions are made in a tissue-specific context, where cells are physically linked to each other as well as to the connective tissue environment. Here, cells are continuously exposed to a multitude of mechanical forces emanating from cellular dynamics in their local microenvironments, for example through cell movements, cell divisions, tissue contractions, or fluid flow. Through their ability to deform cellular structures and activate receptors, mechanical forces can be sensed at the plasma membrane, but also at the nuclear periphery through direct or cytoskeleton-mediated deformation of the nuclear envelope. This deformation and the associated signaling is capable of triggering changes in the mechanical state of the nuclear membranes, the organization and rigidity of the underlying nuclear lamina, compaction state of chromatin, and ultimately transcription. This review focuses on the role of nuclear architecture, particularly the nuclear lamina-chromatin interface, and its mechanical regulation in cell fate decisions as well as its physiological role in development and cellular reprogramming.
Collapse
Affiliation(s)
- Rebecca K Stephens
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA. https://twitter.com/BecKateStephens
| | - Yekaterina A Miroshnikova
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
17
|
Marin H, Simental E, Allen C, Martin E, Panning B, Al-Sady B, Buchwalter A. The nuclear periphery confers repression on H3K9me2-marked genes and transposons to shape cell fate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602542. [PMID: 39026839 PMCID: PMC11257442 DOI: 10.1101/2024.07.08.602542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Heterochromatic loci marked by histone H3 lysine 9 dimethylation (H3K9me2) are enriched at the nuclear periphery in metazoans, but the effect of spatial position on heterochromatin function has not been defined. Here, we remove three nuclear lamins and lamin B receptor (LBR) in mouse embryonic stem cells (mESCs) and show that heterochromatin detaches from the nuclear periphery. Mutant mESCs sustain naïve pluripotency and maintain H3K9me2 across the genome but cannot repress H3K9me2-marked genes or transposons. Further, mutant cells fail to differentiate into epiblast-like cells (EpiLCs), a transition that requires the expansion of H3K9me2 across the genome. Mutant EpiLCs can silence naïve pluripotency genes and activate epiblast-stage genes. However, H3K9me2 cannot repress markers of alternative fates, including primitive endoderm. We conclude that the nuclear periphery controls the spatial position, dynamic remodeling, and repressive capacity of H3K9me2-marked heterochromatin to shape cell fate decisions.
Collapse
Affiliation(s)
- Harold Marin
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Eric Simental
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
- Department of Biochemistry, University of California, San Francisco, CA, USA
| | - Charlie Allen
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Eric Martin
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
| | - Barbara Panning
- Department of Biochemistry, University of California, San Francisco, CA, USA
| | - Bassem Al-Sady
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
| | - Abigail Buchwalter
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
- Department of Physiology, University of California, San Francisco, CA, USA
| |
Collapse
|
18
|
Schätzl T, Todorow V, Kaiser L, Weinschrott H, Schoser B, Deigner HP, Meinke P, Kohl M. Meta-analysis towards FSHD reveals misregulation of neuromuscular junction, nuclear envelope, and spliceosome. Commun Biol 2024; 7:640. [PMID: 38796645 PMCID: PMC11127974 DOI: 10.1038/s42003-024-06325-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 05/13/2024] [Indexed: 05/28/2024] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is one of the most common autosomal dominant muscle disorders, yet no cure or amelioration exists. The clinical presentation is diverse, making it difficult to identify the actual driving pathomechanism among many downstream events. To unravel this complexity, we performed a meta-analysis of 13 original omics datasets (in total 171 FSHD and 129 control samples). Our approach confirmed previous findings about the disease pathology and specified them further. We confirmed increased expression of former proposed DUX4 biomarkers, and furthermore impairment of the respiratory chain. Notably, the meta-analysis provides insights about so far not reported pathways, including misregulation of neuromuscular junction protein encoding genes, downregulation of the spliceosome, and extensive alterations of nuclear envelope protein expression. Finally, we developed a publicly available shiny app to provide a platform for researchers who want to search our analysis for genes of interest in the future.
Collapse
Affiliation(s)
- Teresa Schätzl
- Institute of Precision Medicine, Furtwangen University, Furtwangen, Germany
| | - Vanessa Todorow
- Friedrich-Baur-Institute at the Department of Neurology, LMU University Hospital, Ludwig Maximilian University, Munich, Germany
| | - Lars Kaiser
- Institute of Precision Medicine, Furtwangen University, Furtwangen, Germany
| | - Helga Weinschrott
- Institute of Precision Medicine, Furtwangen University, Furtwangen, Germany
| | - Benedikt Schoser
- Friedrich-Baur-Institute at the Department of Neurology, LMU University Hospital, Ludwig Maximilian University, Munich, Germany
| | - Hans-Peter Deigner
- Institute of Precision Medicine, Furtwangen University, Furtwangen, Germany
- Faculty of Science, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
- EXIM Department, Fraunhofer Institute IZI (Leipzig), Rostock, Germany
| | - Peter Meinke
- Friedrich-Baur-Institute at the Department of Neurology, LMU University Hospital, Ludwig Maximilian University, Munich, Germany
| | - Matthias Kohl
- Institute of Precision Medicine, Furtwangen University, Furtwangen, Germany.
| |
Collapse
|
19
|
Sobo JM, Alagna NS, Sun SX, Wilson KL, Reddy KL. Lamins: The backbone of the nucleocytoskeleton interface. Curr Opin Cell Biol 2024; 86:102313. [PMID: 38262116 DOI: 10.1016/j.ceb.2023.102313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/25/2024]
Abstract
The nuclear lamina (NL) is a crucial component of the inner nuclear membrane (INM) and consists of lamin filaments and associated proteins. Lamins are type V intermediate filament proteins essential for maintaining the integrity and mechanical properties of the nucleus. In human cells, 'B-type' lamins (lamin B1 and lamin B2) are ubiquitously expressed, while 'A-type' lamins (lamin A, lamin C, and minor isoforms) are expressed in a tissue- and development-specific manner. Lamins homopolymerize to form filaments that localize primarily near the INM, but A-type lamins also localize to and function in the nucleoplasm. Lamins play central roles in the assembly, structure, positioning, and mechanics of the nucleus, modulating cell signaling and influencing development, differentiation, and other activities. This review highlights recent findings on the structure and regulation of lamin filaments, providing insights into their multifaceted functions, including their role as "mechanosensors", delving into the emerging significance of lamin filaments as vital links between cytoskeletal and nuclear structures, chromatin organization, and the genome.
Collapse
Affiliation(s)
- Joan M Sobo
- Department of Biological Chemistry, Center for Epigenetics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Nicholas S Alagna
- Department of Biological Chemistry, Center for Epigenetics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Sean X Sun
- Department of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Katherine L Wilson
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Karen L Reddy
- Department of Biological Chemistry, Center for Epigenetics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
20
|
Willemin A, Szabó D, Pombo A. Epigenetic regulatory layers in the 3D nucleus. Mol Cell 2024; 84:415-428. [PMID: 38242127 PMCID: PMC10872226 DOI: 10.1016/j.molcel.2023.12.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/21/2023] [Accepted: 12/15/2023] [Indexed: 01/21/2024]
Abstract
Nearly 7 decades have elapsed since Francis Crick introduced the central dogma of molecular biology, as part of his ideas on protein synthesis, setting the fundamental rules of sequence information transfer from DNA to RNAs and proteins. We have since learned that gene expression is finely tuned in time and space, due to the activities of RNAs and proteins on regulatory DNA elements, and through cell-type-specific three-dimensional conformations of the genome. Here, we review major advances in genome biology and discuss a set of ideas on gene regulation and highlight how various biomolecular assemblies lead to the formation of structural and regulatory features within the nucleus, with roles in transcriptional control. We conclude by suggesting further developments that will help capture the complex, dynamic, and often spatially restricted events that govern gene expression in mammalian cells.
Collapse
Affiliation(s)
- Andréa Willemin
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany; Humboldt-Universität zu Berlin, Institute for Biology, Berlin, Germany.
| | - Dominik Szabó
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany; Humboldt-Universität zu Berlin, Institute for Biology, Berlin, Germany
| | - Ana Pombo
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany; Humboldt-Universität zu Berlin, Institute for Biology, Berlin, Germany.
| |
Collapse
|
21
|
Nagel S, Haake J, Pommerenke C, Meyer C, MacLeod RAF. Establishment of the Myeloid TBX-Code Reveals Aberrant Expression of T-Box Gene TBX1 in Chronic Myeloid Leukemia. Int J Mol Sci 2023; 25:32. [PMID: 38203204 PMCID: PMC10778679 DOI: 10.3390/ijms25010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
T-box genes encode transcription factors, which control developmental processes and promote cancer if deregulated. Recently, we described the lymphoid TBX-code, which collates T-box gene activities in normal lymphopoiesis, enabling identification of members deregulated in lymphoid malignancies. Here, we have extended this analysis to cover myelopoiesis, compiling the myeloid TBX-code and, thus, highlighting which of these genes might be deregulated in myeloid tumor types. We analyzed public T-box gene expression datasets bioinformatically for normal and malignant cells. Candidate T-box-gene-expressing model cell lines were identified and examined by RQ-PCR, Western Blotting, genomic profiling, and siRNA-mediated knockdown combined with RNA-seq analysis and live-cell imaging. The established myeloid TBX-code comprised 10 T-box genes, including progenitor-cell-restricted TBX1. Accordingly, we detected aberrant expression of TBX1 in 10% of stem/progenitor-cell-derived chronic myeloid leukemia (CML) patients. The classic CML cell line K-562 expressed TBX1 at high levels and served as a model to identify TBX1 activators, including transcription factor GATA1 and genomic amplification of the TBX1 locus at 22q11; inhibitors, including BCR::ABL1 fusion and downregulated GNAI2, as well as BMP, FGF2, and WNT signaling; and the target genes CDKN1A, MIR17HG, NAV1, and TMEM38A. The establishment of the myeloid TBX-code permitted identification of aberrant TBX1 expression in subsets of CML patients and cell lines. TBX1 forms an integral part of an oncogenic regulatory network impacting proliferation, survival, and differentiation. Thus, the data spotlight novel diagnostic markers and potential therapeutic targets for this malignancy.
Collapse
Affiliation(s)
- Stefan Nagel
- Leibniz-Institute DSMZ, 38124 Braunschweig, Germany
| | | | | | | | | |
Collapse
|
22
|
Hicks MR, Saleh KK, Clock B, Gibbs DE, Yang M, Younesi S, Gane L, Gutierrez-Garcia V, Xi H, Pyle AD. Regenerating human skeletal muscle forms an emerging niche in vivo to support PAX7 cells. Nat Cell Biol 2023; 25:1758-1773. [PMID: 37919520 PMCID: PMC10709143 DOI: 10.1038/s41556-023-01271-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 09/26/2023] [Indexed: 11/04/2023]
Abstract
Skeletal muscle stem and progenitor cells including those derived from human pluripotent stem cells (hPSCs) offer an avenue towards personalized therapies and readily fuse to form human-mouse myofibres in vivo. However, skeletal muscle progenitor cells (SMPCs) inefficiently colonize chimeric stem cell niches and instead associate with human myofibres resembling foetal niches. We hypothesized competition with mouse satellite cells (SCs) prevented SMPC engraftment into the SC niche and thus generated an SC ablation mouse compatible with human engraftment. Single-nucleus RNA sequencing of SC-ablated mice identified the absence of a transient myofibre subtype during regeneration expressing Actc1. Similarly, ACTC1+ human myofibres supporting PAX7+ SMPCs increased in SC-ablated mice, and after re-injury we found SMPCs could now repopulate into chimeric niches. To demonstrate ACTC1+ myofibres are essential to supporting PAX7 SMPCs, we generated caspase-inducible ACTC1 depletion human pluripotent stem cells, and upon SMPC engraftment we found a 90% reduction in ACTC1+ myofibres and a 100-fold decrease in PAX7 cell numbers compared with non-induced controls. We used spatial RNA sequencing to identify key factors driving emerging human niche formation between ACTC1+ myofibres and PAX7+ SMPCs in vivo. This revealed that transient regenerating human myofibres are essential for emerging niche formation in vivo to support PAX7 SMPCs.
Collapse
Affiliation(s)
- Michael R Hicks
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA.
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA.
- Physiology and Biophysics, University of California, Irvine, CA, USA.
| | - Kholoud K Saleh
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA
- Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, CA, USA
| | - Ben Clock
- Physiology and Biophysics, University of California, Irvine, CA, USA
| | - Devin E Gibbs
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Mandee Yang
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Shahab Younesi
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Lily Gane
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
| | | | - Haibin Xi
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - April D Pyle
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA.
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, CA, USA.
- Jonnson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA.
| |
Collapse
|
23
|
Ibarra J, Hershenhouse T, Almassalha L, Walterhouse D, Backman V, MacQuarrie KL. Differentiation-dependent chromosomal organization changes in normal myogenic cells are absent in rhabdomyosarcoma cells. Front Cell Dev Biol 2023; 11:1293891. [PMID: 38020905 PMCID: PMC10662331 DOI: 10.3389/fcell.2023.1293891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Myogenesis, the progression of proliferating skeletal myoblasts to terminally differentiated myotubes, regulates thousands of target genes. Uninterrupted linear arrays of such genes are differentially associated with specific chromosomes, suggesting chromosome specific regulatory roles in myogenesis. Rhabdomyosarcoma (RMS), a tumor of skeletal muscle, shares common features with normal muscle cells. We hypothesized that RMS and myogenic cells possess differences in chromosomal organization related to myogenic gene arrangement. We compared the organizational characteristics of chromosomes 2 and 18, chosen for their difference in myogenic gene arrangement, in cultured RMS cell lines and normal myoblasts and myotubes. We found chromosome-specific differences in organization during normal myogenesis, with increased area occupied and a shift in peripheral localization specifically for chromosome 2. Most strikingly, we found a differentiation-dependent difference in positioning of chromosome 2 relative to the nuclear axis, with preferential positioning along the major nuclear axis present only in myotubes. RMS cells demonstrated no preference for such axial positioning, but induced differentiation through transfection of the pro-myogenic miRNA miR-206 resulted in an increase of major axial positioning of chromosome 2. Our findings identify both a differentiation-dependent, chromosome-specific change in organization in normal myogenesis, and highlight the role of chromosomal spatial organization in myogenic differentiation.
Collapse
Affiliation(s)
- Joe Ibarra
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University and Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| | - Tyler Hershenhouse
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University and Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| | - Luay Almassalha
- Department of Gastroenterology and Hepatology, Northwestern Memorial Hospital, Northwestern University, Chicago, IL, United States
| | - David Walterhouse
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University and Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| | - Vadim Backman
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States
| | - Kyle L. MacQuarrie
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University and Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| |
Collapse
|
24
|
Alagna NS, Thomas TI, Wilson KL, Reddy KL. Choreography of lamina-associated domains: structure meets dynamics. FEBS Lett 2023; 597:2806-2822. [PMID: 37953467 PMCID: PMC10858991 DOI: 10.1002/1873-3468.14771] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 11/14/2023]
Abstract
Lamina-associated domains are large regions of heterochromatin positioned at the nuclear periphery. These domains have been implicated in gene repression, especially in the context of development. In mammals, LAD organization is dependent on nuclear lamins, inner nuclear membrane proteins, and chromatin state. In addition, chromatin readers and modifier proteins have been implicated in this organization, potentially serving as molecular tethers that interact with both nuclear envelope proteins and chromatin. More recent studies have focused on teasing apart the rules that govern dynamic LAD organization and how LAD organization, in turn, relates to gene regulation and overall 3D genome organization. This review highlights recent studies in mammalian cells uncovering factors that instruct the choreography of LAD organization, re-organization, and dynamics at the nuclear lamina, including LAD dynamics in interphase and through mitotic exit, when LAD organization is re-established, as well as intra-LAD subdomain variations.
Collapse
Affiliation(s)
- Nicholas S. Alagna
- Department of Biological Chemistry, Center for Epigenetics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Tiera I. Thomas
- Department of Biological Chemistry, Center for Epigenetics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Katherine L. Wilson
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Karen L. Reddy
- Department of Biological Chemistry, Center for Epigenetics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
25
|
Shevelyov YY. Interactions of Chromatin with the Nuclear Lamina and Nuclear Pore Complexes. Int J Mol Sci 2023; 24:15771. [PMID: 37958755 PMCID: PMC10649103 DOI: 10.3390/ijms242115771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023] Open
Abstract
Heterochromatin and euchromatin form different spatial compartments in the interphase nucleus, with heterochromatin being localized mainly at the nuclear periphery. The mechanisms responsible for peripheral localization of heterochromatin are still not fully understood. The nuclear lamina and nuclear pore complexes were obvious candidates for the role of heterochromatin binders. This review is focused on recent studies showing that heterochromatin interactions with the nuclear lamina and nuclear pore complexes maintain its peripheral localization. Differences in chromatin interactions with the nuclear envelope in cell populations and in individual cells are also discussed.
Collapse
Affiliation(s)
- Yuri Y Shevelyov
- Laboratory of Analysis of Gene Regulation, National Research Centre "Kurchatov Institute", Kurchatov Sq. 2, 123182 Moscow, Russia
| |
Collapse
|
26
|
Elzamzami FD, Samal A, Arun AS, Dharmaraj T, Prasad NR, Rendon-Jonguitud A, DeVine L, Walston JD, Cole RN, Wilson KL. Native lamin A/C proteomes and novel partners from heart and skeletal muscle in a mouse chronic inflammation model of human frailty. Front Cell Dev Biol 2023; 11:1240285. [PMID: 37936983 PMCID: PMC10626543 DOI: 10.3389/fcell.2023.1240285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/05/2023] [Indexed: 11/09/2023] Open
Abstract
Clinical frailty affects ∼10% of people over age 65 and is studied in a chronically inflamed (Interleukin-10 knockout; "IL10-KO") mouse model. Frailty phenotypes overlap the spectrum of diseases ("laminopathies") caused by mutations in LMNA. LMNA encodes nuclear intermediate filament proteins lamin A and lamin C ("lamin A/C"), important for tissue-specific signaling, metabolism and chromatin regulation. We hypothesized that wildtype lamin A/C associations with tissue-specific partners are perturbed by chronic inflammation, potentially contributing to dysfunction in frailty. To test this idea we immunoprecipitated native lamin A/C and associated proteins from skeletal muscle, hearts and brains of old (21-22 months) IL10-KO versus control C57Bl/6 female mice, and labeled with Tandem Mass Tags for identification and quantitation by mass spectrometry. We identified 502 candidate lamin-binding proteins from skeletal muscle, and 340 from heart, including 62 proteins identified in both tissues. Candidates included frailty phenotype-relevant proteins Perm1 and Fam210a, and nuclear membrane protein Tmem38a, required for muscle-specific genome organization. These and most other candidates were unaffected by IL10-KO, but still important as potential lamin A/C-binding proteins in native heart or muscle. A subset of candidates (21 in skeletal muscle, 30 in heart) showed significantly different lamin A/C-association in an IL10-KO tissue (p < 0.05), including AldoA and Gins3 affected in heart, and Lmcd1 and Fabp4 affected in skeletal muscle. To screen for binding, eleven candidates plus prelamin A and emerin controls were arrayed as synthetic 20-mer peptides (7-residue stagger) and incubated with recombinant purified lamin A "tail" residues 385-646 under relatively stringent conditions. We detected strong lamin A binding to peptides solvent exposed in Lmcd1, AldoA, Perm1, and Tmem38a, and plausible binding to Csrp3 (muscle LIM protein). These results validated both proteomes as sources for native lamin A/C-binding proteins in heart and muscle, identified four candidate genes for Emery-Dreifuss muscular dystrophy (CSRP3, LMCD1, ALDOA, and PERM1), support a lamin A-interactive molecular role for Tmem38A, and supported the hypothesis that lamin A/C interactions with at least two partners (AldoA in heart, transcription factor Lmcd1 in muscle) are altered in the IL10-KO model of frailty.
Collapse
Affiliation(s)
- Fatima D. Elzamzami
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Arushi Samal
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Adith S. Arun
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Tejas Dharmaraj
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Neeti R. Prasad
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Alex Rendon-Jonguitud
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lauren DeVine
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jeremy D. Walston
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Robert N. Cole
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Katherine L. Wilson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
27
|
Mäntylä E, Montonen T, Azzari L, Mattola S, Hannula M, Vihinen-Ranta M, Hyttinen J, Vippola M, Foi A, Nymark S, Ihalainen TO. Iterative immunostaining combined with expansion microscopy and image processing reveals nanoscopic network organization of nuclear lamina. Mol Biol Cell 2023; 34:br13. [PMID: 37342871 PMCID: PMC10398900 DOI: 10.1091/mbc.e22-09-0448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 04/14/2023] [Accepted: 06/12/2023] [Indexed: 06/23/2023] Open
Abstract
Investigation of nuclear lamina architecture relies on superresolved microscopy. However, epitope accessibility, labeling density, and detection precision of individual molecules pose challenges within the molecularly crowded nucleus. We developed iterative indirect immunofluorescence (IT-IF) staining approach combined with expansion microscopy (ExM) and structured illumination microscopy to improve superresolution microscopy of subnuclear nanostructures like lamins. We prove that ExM is applicable in analyzing highly compacted nuclear multiprotein complexes such as viral capsids and provide technical improvements to ExM method including three-dimensional-printed gel casting equipment. We show that in comparison with conventional immunostaining, IT-IF results in a higher signal-to-background ratio and a mean fluorescence intensity by improving the labeling density. Moreover, we present a signal-processing pipeline for noise estimation, denoising, and deblurring to aid in quantitative image analyses and provide this platform for the microscopy imaging community. Finally, we show the potential of signal-resolved IT-IF in quantitative superresolution ExM imaging of nuclear lamina and reveal nanoscopic details of the lamin network organization-a prerequisite for studying intranuclear structural coregulation of cell function and fate.
Collapse
Affiliation(s)
- Elina Mäntylä
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland
| | - Toni Montonen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland
| | - Lucio Azzari
- Tampere Microscopy Center (TMC), Tampere University, 33100 Tampere, Finland
| | - Salla Mattola
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Markus Hannula
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland
| | - Maija Vihinen-Ranta
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Jari Hyttinen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland
| | - Minnamari Vippola
- Tampere Microscopy Center (TMC), Tampere University, 33100 Tampere, Finland
| | - Alessandro Foi
- Faculty of Information Technology and Communication Sciences, Computing Sciences, Tampere University, 33100 Tampere, Finland
| | - Soile Nymark
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland
| | - Teemu O. Ihalainen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland
- Tampere Institute for Advanced Study, Tampere University, 33100 Tampere, Finland
| |
Collapse
|
28
|
Liu H, Tsai H, Yang M, Li G, Bian Q, Ding G, Wu D, Dai J. Three-dimensional genome structure and function. MedComm (Beijing) 2023; 4:e326. [PMID: 37426677 PMCID: PMC10329473 DOI: 10.1002/mco2.326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023] Open
Abstract
Linear DNA undergoes a series of compression and folding events, forming various three-dimensional (3D) structural units in mammalian cells, including chromosomal territory, compartment, topologically associating domain, and chromatin loop. These structures play crucial roles in regulating gene expression, cell differentiation, and disease progression. Deciphering the principles underlying 3D genome folding and the molecular mechanisms governing cell fate determination remains a challenge. With advancements in high-throughput sequencing and imaging techniques, the hierarchical organization and functional roles of higher-order chromatin structures have been gradually illuminated. This review systematically discussed the structural hierarchy of the 3D genome, the effects and mechanisms of cis-regulatory elements interaction in the 3D genome for regulating spatiotemporally specific gene expression, the roles and mechanisms of dynamic changes in 3D chromatin conformation during embryonic development, and the pathological mechanisms of diseases such as congenital developmental abnormalities and cancer, which are attributed to alterations in 3D genome organization and aberrations in key structural proteins. Finally, prospects were made for the research about 3D genome structure, function, and genetic intervention, and the roles in disease development, prevention, and treatment, which may offer some clues for precise diagnosis and treatment of related diseases.
Collapse
Affiliation(s)
- Hao Liu
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
- School of StomatologyWeifang Medical UniversityWeifangChina
| | - Hsiangyu Tsai
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
| | - Maoquan Yang
- School of Clinical MedicineWeifang Medical UniversityWeifangChina
| | - Guozhi Li
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
| | - Qian Bian
- Shanghai Institute of Precision MedicineShanghaiChina
| | - Gang Ding
- School of StomatologyWeifang Medical UniversityWeifangChina
| | - Dandan Wu
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
| | - Jiewen Dai
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
| |
Collapse
|
29
|
Zhang Y, Ramirez-Martinez A, Chen K, McAnally JR, Cai C, Durbacz MZ, Chemello F, Wang Z, Xu L, Bassel-Duby R, Liu N, Olson EN. Net39 protects muscle nuclei from mechanical stress during the pathogenesis of Emery-Dreifuss muscular dystrophy. J Clin Invest 2023; 133:e163333. [PMID: 37395273 PMCID: PMC10313361 DOI: 10.1172/jci163333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 05/16/2023] [Indexed: 07/04/2023] Open
Abstract
Mutations in genes encoding nuclear envelope proteins lead to diseases known as nuclear envelopathies, characterized by skeletal muscle and heart abnormalities, such as Emery-Dreifuss muscular dystrophy (EDMD). The tissue-specific role of the nuclear envelope in the etiology of these diseases has not been extensively explored. We previously showed that global deletion of the muscle-specific nuclear envelope protein NET39 in mice leads to neonatal lethality due to skeletal muscle dysfunction. To study the potential role of the Net39 gene in adulthood, we generated a muscle-specific conditional knockout (cKO) of Net39 in mice. cKO mice recapitulated key skeletal muscle features of EDMD, including muscle wasting, impaired muscle contractility, abnormal myonuclear morphology, and DNA damage. The loss of Net39 rendered myoblasts hypersensitive to mechanical stretch, resulting in stretch-induced DNA damage. Net39 was downregulated in a mouse model of congenital myopathy, and restoration of Net39 expression through AAV gene delivery extended life span and ameliorated muscle abnormalities. These findings establish NET39 as a direct contributor to the pathogenesis of EDMD that acts by protecting against mechanical stress and DNA damage.
Collapse
Affiliation(s)
- Yichi Zhang
- Department of Molecular Biology
- Hamon Center for Regenerative Science and Medicine
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center
| | - Andres Ramirez-Martinez
- Department of Molecular Biology
- Hamon Center for Regenerative Science and Medicine
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center
| | - Kenian Chen
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, and
| | - John R. McAnally
- Department of Molecular Biology
- Hamon Center for Regenerative Science and Medicine
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center
| | - Chunyu Cai
- Department of Pathology, University of Texas (UT) Southwestern Medical Center, Dallas, Texas, USA
| | - Mateusz Z. Durbacz
- Department of Molecular Biology
- Hamon Center for Regenerative Science and Medicine
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center
| | - Francesco Chemello
- Department of Molecular Biology
- Hamon Center for Regenerative Science and Medicine
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center
| | - Zhaoning Wang
- Department of Molecular Biology
- Hamon Center for Regenerative Science and Medicine
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center
| | - Lin Xu
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, and
| | - Rhonda Bassel-Duby
- Department of Molecular Biology
- Hamon Center for Regenerative Science and Medicine
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center
| | - Ning Liu
- Department of Molecular Biology
- Hamon Center for Regenerative Science and Medicine
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center
| | - Eric N. Olson
- Department of Molecular Biology
- Hamon Center for Regenerative Science and Medicine
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center
| |
Collapse
|
30
|
Ibarra J, Hershenhouse T, Almassalha L, MacQuarrie KL. Differentiation-dependent chromosomal organization changes in normal myogenic cells are absent in rhabdomyosarcoma cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.11.540394. [PMID: 37214969 PMCID: PMC10197681 DOI: 10.1101/2023.05.11.540394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Myogenesis, the progression of proliferating skeletal myoblasts to terminally differentiated myotubes, regulates thousands of target genes. Uninterrupted linear arrays of such genes are differentially associated with specific chromosomes, suggesting chromosome specific regulatory roles in myogenesis. Rhabdomyosarcoma (RMS), a tumor of skeletal muscle, shares common features with normal muscle cells. We hypothesized that RMS and myogenic cells possess differences in chromosomal organization related to myogenic gene arrangement. We compared the organizational characteristics of chromosomes 2 and 18, chosen for their difference in myogenic gene arrangement, in cultured RMS cell lines and normal myoblasts and myotubes. We found chromosome-specific differences in organization during normal myogenesis, with increased area occupied and a shift in peripheral localization specifically for chromosome 2. Most strikingly, we found a differentiation-dependent difference in positioning of chromosome 2 relative to the nuclear axis, with preferential positioning along the major nuclear axis present only in myotubes. RMS cells demonstrated no preference for such axial positioning, but induced differentiation through transfection of the pro-myogenic miRNA miR-206 resulted in an increase of major axial positioning of chromosome 2. Our findings identify both a differentiation-dependent, chromosome-specific change in organization in normal myogenesis, and highlight the role of chromosomal spatial organization in myogenic differentiation.
Collapse
Affiliation(s)
- Joe Ibarra
- Division of Hematology, Oncology, and Stem Cell Transplantation, Department of Pediatrics, Feinberg School of Medicine, Northwestern University and Ann & Robert H. Lurie Children's Hospital of Chicago, IL
| | - Tyler Hershenhouse
- Division of Hematology, Oncology, and Stem Cell Transplantation, Department of Pediatrics, Feinberg School of Medicine, Northwestern University and Ann & Robert H. Lurie Children's Hospital of Chicago, IL
| | - Luay Almassalha
- Department of Gastroenterology and Hepatology, Northwestern Memorial Hospital, Northwestern University, Chicago, IL
| | - Kyle L MacQuarrie
- Division of Hematology, Oncology, and Stem Cell Transplantation, Department of Pediatrics, Feinberg School of Medicine, Northwestern University and Ann & Robert H. Lurie Children's Hospital of Chicago, IL
| |
Collapse
|
31
|
Yang BA, da Rocha AM, Newton I, Shcherbina A, Wong SW, Fraczek PM, Larouche JA, Hiraki HL, Baker BM, Shin JW, Takayama S, Thouless MD, Aguilar CA. Manipulation of the nucleoscaffold potentiates cellular reprogramming kinetics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.12.532246. [PMID: 36993714 PMCID: PMC10055010 DOI: 10.1101/2023.03.12.532246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Somatic cell fate is an outcome set by the activities of specific transcription factors and the chromatin landscape and is maintained by gene silencing of alternate cell fates through physical interactions with the nuclear scaffold. Here, we evaluate the role of the nuclear scaffold as a guardian of cell fate in human fibroblasts by comparing the effects of transient loss (knockdown) and mutation (progeria) of functional Lamin A/C, a core component of the nuclear scaffold. We observed that Lamin A/C deficiency or mutation disrupts nuclear morphology, heterochromatin levels, and increases access to DNA in lamina-associated domains. Changes in Lamin A/C were also found to impact the mechanical properties of the nucleus when measured by a microfluidic cellular squeezing device. We also show that transient loss of Lamin A/C accelerates the kinetics of cellular reprogramming to pluripotency through opening of previously silenced heterochromatin domains while genetic mutation of Lamin A/C into progerin induces a senescent phenotype that inhibits the induction of reprogramming genes. Our results highlight the physical role of the nuclear scaffold in safeguarding cellular fate.
Collapse
Affiliation(s)
- Benjamin A. Yang
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Isabel Newton
- Dept. of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anna Shcherbina
- Dept. of Biomedical Informatics, Stanford University, Palo Alto, CA 94305, USA
| | - Sing-Wan Wong
- Dept. of Pharmacology and Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Paula M. Fraczek
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jacqueline A. Larouche
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Harrison L. Hiraki
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brendon M. Baker
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jae-Won Shin
- Dept. of Pharmacology and Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Shuichi Takayama
- Wallace Coulter Dept. of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - M. D. Thouless
- Dept. of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Dept. of Materials Science & Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Carlos A. Aguilar
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
32
|
de Las Heras JI, Todorow V, Krečinić-Balić L, Hintze S, Czapiewski R, Webb S, Schoser B, Meinke P, Schirmer EC. Metabolic, fibrotic and splicing pathways are all altered in Emery-Dreifuss muscular dystrophy spectrum patients to differing degrees. Hum Mol Genet 2023; 32:1010-1031. [PMID: 36282542 PMCID: PMC9991002 DOI: 10.1093/hmg/ddac264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/16/2022] [Accepted: 10/20/2022] [Indexed: 11/14/2022] Open
Abstract
Emery-Dreifuss muscular dystrophy (EDMD) is a genetically and clinically variable disorder. Previous attempts to use gene expression changes to find its pathomechanism were unavailing, so we engaged a functional pathway analysis. RNA-Seq was performed on cells from 10 patients diagnosed with an EDMD spectrum disease with different mutations in seven genes. Upon comparing to controls, the pathway analysis revealed that multiple genes involved in fibrosis, metabolism, myogenic signaling and splicing were affected in all patients. Splice variant analysis revealed alterations of muscle-specific variants for several important muscle genes. Deeper analysis of metabolic pathways revealed a reduction in glycolytic and oxidative metabolism and reduced numbers of mitochondria across a larger set of 14 EDMD spectrum patients and 7 controls. Intriguingly, the gene expression signatures segregated the patients into three subgroups whose distinctions could potentially relate to differences in clinical presentation. Finally, differential expression analysis of miRNAs changing in the patients similarly highlighted fibrosis, metabolism and myogenic signaling pathways. This pathway approach revealed a transcriptome profile that can both be used as a template for establishing a biomarker panel for EDMD and direct further investigation into its pathomechanism. Furthermore, the segregation of specific gene changes into distinct groups that appear to correlate with clinical presentation may template development of prognostic biomarkers, though this will first require their testing in a wider set of patients with more clinical information.
Collapse
Affiliation(s)
| | - Vanessa Todorow
- Friedrich-Baur-Institute, Department of Neurology, LMU Clinic, Ludwig-Maximillians-University, Munich, Germany
| | - Lejla Krečinić-Balić
- Friedrich-Baur-Institute, Department of Neurology, LMU Clinic, Ludwig-Maximillians-University, Munich, Germany
| | - Stefan Hintze
- Friedrich-Baur-Institute, Department of Neurology, LMU Clinic, Ludwig-Maximillians-University, Munich, Germany
| | - Rafal Czapiewski
- Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Shaun Webb
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Benedikt Schoser
- Friedrich-Baur-Institute, Department of Neurology, LMU Clinic, Ludwig-Maximillians-University, Munich, Germany
| | - Peter Meinke
- Friedrich-Baur-Institute, Department of Neurology, LMU Clinic, Ludwig-Maximillians-University, Munich, Germany
| | - Eric C Schirmer
- Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
33
|
Madsen-Østerbye J, Abdelhalim M, Pickering SH, Collas P. Gene Regulatory Interactions at Lamina-Associated Domains. Genes (Basel) 2023; 14:genes14020334. [PMID: 36833261 PMCID: PMC9957430 DOI: 10.3390/genes14020334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
The nuclear lamina provides a repressive chromatin environment at the nuclear periphery. However, whereas most genes in lamina-associated domains (LADs) are inactive, over ten percent reside in local euchromatic contexts and are expressed. How these genes are regulated and whether they are able to interact with regulatory elements remain unclear. Here, we integrate publicly available enhancer-capture Hi-C data with our own chromatin state and transcriptomic datasets to show that inferred enhancers of active genes in LADs are able to form connections with other enhancers within LADs and outside LADs. Fluorescence in situ hybridization analyses show proximity changes between differentially expressed genes in LADs and distant enhancers upon the induction of adipogenic differentiation. We also provide evidence of involvement of lamin A/C, but not lamin B1, in repressing genes at the border of an in-LAD active region within a topological domain. Our data favor a model where the spatial topology of chromatin at the nuclear lamina is compatible with gene expression in this dynamic nuclear compartment.
Collapse
Affiliation(s)
- Julia Madsen-Østerbye
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
| | - Mohamed Abdelhalim
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
| | - Sarah Hazell Pickering
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
| | - Philippe Collas
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, 0424 Oslo, Norway
- Correspondence:
| |
Collapse
|
34
|
Shah PP, Keough KC, Gjoni K, Santini GT, Abdill RJ, Wickramasinghe NM, Dundes CE, Karnay A, Chen A, Salomon REA, Walsh PJ, Nguyen SC, Whalen S, Joyce EF, Loh KM, Dubois N, Pollard KS, Jain R. An atlas of lamina-associated chromatin across twelve human cell types reveals an intermediate chromatin subtype. Genome Biol 2023; 24:16. [PMID: 36691074 PMCID: PMC9869549 DOI: 10.1186/s13059-023-02849-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/05/2023] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Association of chromatin with lamin proteins at the nuclear periphery has emerged as a potential mechanism to coordinate cell type-specific gene expression and maintain cellular identity via gene silencing. Unlike many histone modifications and chromatin-associated proteins, lamina-associated domains (LADs) are mapped genome-wide in relatively few genetically normal human cell types, which limits our understanding of the role peripheral chromatin plays in development and disease. RESULTS To address this gap, we map LAMIN B1 occupancy across twelve human cell types encompassing pluripotent stem cells, intermediate progenitors, and differentiated cells from all three germ layers. Integrative analyses of this atlas with gene expression and repressive histone modification maps reveal that lamina-associated chromatin in all twelve cell types is organized into at least two subtypes defined by differences in LAMIN B1 occupancy, gene expression, chromatin accessibility, transposable elements, replication timing, and radial positioning. Imaging of fluorescently labeled DNA in single cells validates these subtypes and shows radial positioning of LADs with higher LAMIN B1 occupancy and heterochromatic histone modifications primarily embedded within the lamina. In contrast, the second subtype of lamina-associated chromatin is relatively gene dense, accessible, dynamic across development, and positioned adjacent to the lamina. Most genes gain or lose LAMIN B1 occupancy consistent with cell types along developmental trajectories; however, we also identify examples where the enhancer, but not the gene body and promoter, changes LAD state. CONCLUSIONS Altogether, this atlas represents the largest resource to date for peripheral chromatin organization studies and reveals an intermediate chromatin subtype.
Collapse
Affiliation(s)
- Parisha P Shah
- Departments of Medicine and Cell and Developmental Biology, Penn CVI, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Smilow TRC, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Kathleen C Keough
- University of California, San Francisco, CA, 94117, USA
- Gladstone Institute of Data Science and Biotechnology, 1650 Owens Street, San Francisco, CA, 94158, USA
| | - Ketrin Gjoni
- University of California, San Francisco, CA, 94117, USA
- Gladstone Institute of Data Science and Biotechnology, 1650 Owens Street, San Francisco, CA, 94158, USA
| | - Garrett T Santini
- Departments of Medicine and Cell and Developmental Biology, Penn CVI, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Smilow TRC, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Richard J Abdill
- Departments of Medicine and Cell and Developmental Biology, Penn CVI, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Smilow TRC, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Nadeera M Wickramasinghe
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Carolyn E Dundes
- Department of Developmental Biology and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ashley Karnay
- Departments of Medicine and Cell and Developmental Biology, Penn CVI, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Smilow TRC, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Angela Chen
- Department of Developmental Biology and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Rachel E A Salomon
- Department of Developmental Biology and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Patrick J Walsh
- Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Son C Nguyen
- Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sean Whalen
- Gladstone Institute of Data Science and Biotechnology, 1650 Owens Street, San Francisco, CA, 94158, USA
| | - Eric F Joyce
- Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kyle M Loh
- Department of Developmental Biology and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Nicole Dubois
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Katherine S Pollard
- University of California, San Francisco, CA, 94117, USA.
- Gladstone Institute of Data Science and Biotechnology, 1650 Owens Street, San Francisco, CA, 94158, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA.
| | - Rajan Jain
- Departments of Medicine and Cell and Developmental Biology, Penn CVI, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Smilow TRC, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA.
- Smilow TRC, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA.
| |
Collapse
|
35
|
Todorow V, Hintze S, Schoser B, Meinke P. Nuclear envelope transmembrane proteins involved in genome organization are misregulated in myotonic dystrophy type 1 muscle. Front Cell Dev Biol 2023; 10:1007331. [PMID: 36699009 PMCID: PMC9868253 DOI: 10.3389/fcell.2022.1007331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023] Open
Abstract
Myotonic dystrophy type 1 is a multisystemic disorder with predominant muscle and neurological involvement. Despite a well described pathomechanism, which is primarily a global missplicing due to sequestration of RNA-binding proteins, there are still many unsolved questions. One such question is the disease etiology in the different affected tissues. We observed alterations at the nuclear envelope in primary muscle cell cultures before. This led us to reanalyze a published RNA-sequencing dataset of DM1 and control muscle biopsies regarding the misregulation of NE proteins. We could identify several muscle NE protein encoding genes to be misregulated depending on the severity of the muscle phenotype. Among these misregulated genes were NE transmembrane proteins (NETs) involved in nuclear-cytoskeletal coupling as well as genome organization. For selected genes, we could confirm that observed gene-misregulation led to protein expression changes. Furthermore, we investigated if genes known to be under expression-regulation by genome organization NETs were also misregulated in DM1 biopsies, which revealed that misregulation of two NETs alone is likely responsible for differential expression of about 10% of all genes being differentially expressed in DM1. Notably, the majority of NETs identified here to be misregulated in DM1 muscle are mutated in Emery-Dreifuss muscular dystrophy or clinical similar muscular dystrophies, suggesting a broader similarity on the molecular level for muscular dystrophies than anticipated. This shows not only the importance of muscle NETs in muscle health and disease, but also highlights the importance of the NE in DM1 disease progression.
Collapse
|
36
|
Santini GT, Shah PP, Karnay A, Jain R. Aberrant chromatin organization at the nexus of laminopathy disease pathways. Nucleus 2022; 13:300-312. [PMID: 36503349 PMCID: PMC9746625 DOI: 10.1080/19491034.2022.2153564] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/02/2022] [Accepted: 11/11/2022] [Indexed: 12/14/2022] Open
Affiliation(s)
- Garrett T. Santini
- Departments of Medicine and Cell and Developmental Biology, Penn Cardiovascular Institute, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Parisha P. Shah
- Departments of Medicine and Cell and Developmental Biology, Penn Cardiovascular Institute, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Ashley Karnay
- Departments of Medicine and Cell and Developmental Biology, Penn Cardiovascular Institute, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Rajan Jain
- Departments of Medicine and Cell and Developmental Biology, Penn Cardiovascular Institute, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
37
|
Schirmer EC, Latonen L, Tollis S. Nuclear size rectification: A potential new therapeutic approach to reduce metastasis in cancer. Front Cell Dev Biol 2022; 10:1022723. [PMID: 36299481 PMCID: PMC9589484 DOI: 10.3389/fcell.2022.1022723] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/12/2022] [Indexed: 03/07/2024] Open
Abstract
Research on metastasis has recently regained considerable interest with the hope that single cell technologies might reveal the most critical changes that support tumor spread. However, it is possible that part of the answer has been visible through the microscope for close to 200 years. Changes in nuclear size characteristically occur in many cancer types when the cells metastasize. This was initially discarded as contributing to the metastatic spread because, depending on tumor types, both increases and decreases in nuclear size could correlate with increased metastasis. However, recent work on nuclear mechanics and the connectivity between chromatin, the nucleoskeleton, and the cytoskeleton indicate that changes in this connectivity can have profound impacts on cell mobility and invasiveness. Critically, a recent study found that reversing tumor type-dependent nuclear size changes correlated with reduced cell migration and invasion. Accordingly, it seems appropriate to now revisit possible contributory roles of nuclear size changes to metastasis.
Collapse
Affiliation(s)
- Eric C. Schirmer
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Leena Latonen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
- Foundation for the Finnish Cancer Institute, Helsinki, Finland
| | - Sylvain Tollis
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
38
|
Ringel AR, Szabo Q, Chiariello AM, Chudzik K, Schöpflin R, Rothe P, Mattei AL, Zehnder T, Harnett D, Laupert V, Bianco S, Hetzel S, Glaser J, Phan MHQ, Schindler M, Ibrahim DM, Paliou C, Esposito A, Prada-Medina CA, Haas SA, Giere P, Vingron M, Wittler L, Meissner A, Nicodemi M, Cavalli G, Bantignies F, Mundlos S, Robson MI. Repression and 3D-restructuring resolves regulatory conflicts in evolutionarily rearranged genomes. Cell 2022; 185:3689-3704.e21. [PMID: 36179666 PMCID: PMC9567273 DOI: 10.1016/j.cell.2022.09.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 06/03/2022] [Accepted: 08/30/2022] [Indexed: 01/26/2023]
Abstract
Regulatory landscapes drive complex developmental gene expression, but it remains unclear how their integrity is maintained when incorporating novel genes and functions during evolution. Here, we investigated how a placental mammal-specific gene, Zfp42, emerged in an ancient vertebrate topologically associated domain (TAD) without adopting or disrupting the conserved expression of its gene, Fat1. In ESCs, physical TAD partitioning separates Zfp42 and Fat1 with distinct local enhancers that drive their independent expression. This separation is driven by chromatin activity and not CTCF/cohesin. In contrast, in embryonic limbs, inactive Zfp42 shares Fat1's intact TAD without responding to active Fat1 enhancers. However, neither Fat1 enhancer-incompatibility nor nuclear envelope-attachment account for Zfp42's unresponsiveness. Rather, Zfp42's promoter is rendered inert to enhancers by context-dependent DNA methylation. Thus, diverse mechanisms enabled the integration of independent Zfp42 regulation in the Fat1 locus. Critically, such regulatory complexity appears common in evolution as, genome wide, most TADs contain multiple independently expressed genes.
Collapse
Affiliation(s)
- Alessa R Ringel
- Max Planck Institute for Molecular Genetics, Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Quentin Szabo
- Institute of Human Genetics, University of Montpellier, CNRS, Montpellier, France
| | - Andrea M Chiariello
- Dipartimento di Fisica, Università di Napoli Federico II and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Konrad Chudzik
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Robert Schöpflin
- Max Planck Institute for Molecular Genetics, Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Patricia Rothe
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Alexandra L Mattei
- Max Planck Institute for Molecular Genetics, Berlin, Germany; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Tobias Zehnder
- Max Planck Institute for Molecular Genetics, Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Dermot Harnett
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Verena Laupert
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Simona Bianco
- Dipartimento di Fisica, Università di Napoli Federico II and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Sara Hetzel
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Juliane Glaser
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Mai H Q Phan
- Max Planck Institute for Molecular Genetics, Berlin, Germany; Charité-Universitätsmedizin Berlin, BCRT-Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| | - Magdalena Schindler
- Max Planck Institute for Molecular Genetics, Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Daniel M Ibrahim
- Max Planck Institute for Molecular Genetics, Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany; Charité-Universitätsmedizin Berlin, BCRT-Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| | - Christina Paliou
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, Seville, Spain
| | - Andrea Esposito
- Dipartimento di Fisica, Università di Napoli Federico II and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Cesar A Prada-Medina
- Max Planck Institute for Molecular Genetics, Berlin, Germany; Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Stefan A Haas
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Peter Giere
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Martin Vingron
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Lars Wittler
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Alexander Meissner
- Max Planck Institute for Molecular Genetics, Berlin, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mario Nicodemi
- Dipartimento di Fisica, Università di Napoli Federico II and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy; Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Giacomo Cavalli
- Institute of Human Genetics, University of Montpellier, CNRS, Montpellier, France
| | - Frédéric Bantignies
- Institute of Human Genetics, University of Montpellier, CNRS, Montpellier, France
| | - Stefan Mundlos
- Max Planck Institute for Molecular Genetics, Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany; Charité-Universitätsmedizin Berlin, BCRT-Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany.
| | - Michael I Robson
- Max Planck Institute for Molecular Genetics, Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany; Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
39
|
Jain N, Lord JM, Vogel V. Mechanoimmunology: Are inflammatory epigenetic states of macrophages tuned by biophysical factors? APL Bioeng 2022; 6:031502. [PMID: 36051106 PMCID: PMC9427154 DOI: 10.1063/5.0087699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Many inflammatory diseases that are responsible for a majority of deaths are still uncurable, in part as the underpinning pathomechanisms and how to combat them is still poorly understood. Tissue-resident macrophages play pivotal roles in the maintenance of tissue homeostasis, but if they gradually convert to proinflammatory phenotypes, or if blood-born proinflammatory macrophages persist long-term after activation, they contribute to chronic inflammation and fibrosis. While biochemical factors and how they regulate the inflammatory transcriptional response of macrophages have been at the forefront of research to identify targets for therapeutic interventions, evidence is increasing that physical factors also tune the macrophage phenotype. Recently, several mechanisms have emerged as to how physical factors impact the mechanobiology of macrophages, from the nuclear translocation of transcription factors to epigenetic modifications, perhaps even DNA methylation. Insight into the mechanobiology of macrophages and associated epigenetic modifications will deliver novel therapeutic options going forward, particularly in the context of increased inflammation with advancing age and age-related diseases. We review here how biophysical factors can co-regulate pro-inflammatory gene expression and epigenetic modifications and identify knowledge gaps that require urgent attention if this therapeutic potential is to be realized.
Collapse
Affiliation(s)
- Nikhil Jain
- Authors to whom correspondence should be addressed: and
| | | | - Viola Vogel
- Department of Health Sciences and Technology, Institute of Translational Medicine, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
40
|
Schirmer EC. Nuclear organization and dynamics: The final Frontier for understanding genome regulation. Front Cell Dev Biol 2022; 10:951875. [PMID: 35923850 PMCID: PMC9340541 DOI: 10.3389/fcell.2022.951875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/27/2022] [Indexed: 11/20/2022] Open
|
41
|
Nagano M, Hu B, Yokobayashi S, Yamamura A, Umemura F, Coradin M, Ohta H, Yabuta Y, Ishikura Y, Okamoto I, Ikeda H, Kawahira N, Nosaka Y, Shimizu S, Kojima Y, Mizuta K, Kasahara T, Imoto Y, Meehan K, Stocsits R, Wutz G, Hiraoka Y, Murakawa Y, Yamamoto T, Tachibana K, Peters J, Mirny LA, Garcia BA, Majewski J, Saitou M. Nucleome programming is required for the foundation of totipotency in mammalian germline development. EMBO J 2022; 41:e110600. [PMID: 35703121 PMCID: PMC9251848 DOI: 10.15252/embj.2022110600] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 11/09/2022] Open
Abstract
Germ cells are unique in engendering totipotency, yet the mechanisms underlying this capacity remain elusive. Here, we perform comprehensive and in-depth nucleome analysis of mouse germ-cell development in vitro, encompassing pluripotent precursors, primordial germ cells (PGCs) before and after epigenetic reprogramming, and spermatogonia/spermatogonial stem cells (SSCs). Although epigenetic reprogramming, including genome-wide DNA de-methylation, creates broadly open chromatin with abundant enhancer-like signatures, the augmented chromatin insulation safeguards transcriptional fidelity. These insulatory constraints are then erased en masse for spermatogonial development. Notably, despite distinguishing epigenetic programming, including global DNA re-methylation, the PGCs-to-spermatogonia/SSCs development entails further euchromatization. This accompanies substantial erasure of lamina-associated domains, generating spermatogonia/SSCs with a minimal peripheral attachment of chromatin except for pericentromeres-an architecture conserved in primates. Accordingly, faulty nucleome maturation, including persistent insulation and improper euchromatization, leads to impaired spermatogenic potential. Given that PGCs after epigenetic reprogramming serve as oogenic progenitors as well, our findings elucidate a principle for the nucleome programming that creates gametogenic progenitors in both sexes, defining a basis for nuclear totipotency.
Collapse
|
42
|
Belmont AS. Nuclear Compartments: An Incomplete Primer to Nuclear Compartments, Bodies, and Genome Organization Relative to Nuclear Architecture. Cold Spring Harb Perspect Biol 2022; 14:a041268. [PMID: 34400557 PMCID: PMC9248822 DOI: 10.1101/cshperspect.a041268] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This work reviews nuclear compartments, defined broadly to include distinct nuclear structures, bodies, and chromosome domains. It first summarizes original cytological observations before comparing concepts of nuclear compartments emerging from microscopy versus genomic approaches and then introducing new multiplexed imaging approaches that promise in the future to meld both approaches. I discuss how previous models of radial distribution of chromosomes or the binary division of the genome into A and B compartments are now being refined by the recognition of more complex nuclear compartmentalization. The poorly understood question of how these nuclear compartments are established and maintained is then discussed, including through the modern perspective of phase separation, before moving on to address possible functions of nuclear compartments, using the possible role of nuclear speckles in modulating gene expression as an example. Finally, the review concludes with a discussion of future questions for this field.
Collapse
Affiliation(s)
- Andrew S Belmont
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
43
|
Bellanger A, Madsen-Østerbye J, Galigniana NM, Collas P. Restructuring of Lamina-Associated Domains in Senescence and Cancer. Cells 2022; 11:1846. [PMID: 35681541 PMCID: PMC9180887 DOI: 10.3390/cells11111846] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 01/01/2023] Open
Abstract
Induction of cellular senescence or cancer is associated with a reshaping of the nuclear envelope and a broad reorganization of heterochromatin. At the periphery of mammalian nuclei, heterochromatin is stabilized at the nuclear lamina via lamina-associated domains (LADs). Alterations in the composition of the nuclear lamina during senescence lead to a loss of peripheral heterochromatin, repositioning of LADs, and changes in epigenetic states of LADs. Cancer initiation and progression are also accompanied by a massive reprogramming of the epigenome, particularly in domains coinciding with LADs. Here, we review recent knowledge on alterations in chromatin organization and in the epigenome that affect LADs and related genomic domains in senescence and cancer.
Collapse
Affiliation(s)
- Aurélie Bellanger
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway; (A.B.); (J.M.-Ø.); (N.M.G.)
| | - Julia Madsen-Østerbye
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway; (A.B.); (J.M.-Ø.); (N.M.G.)
| | - Natalia M. Galigniana
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway; (A.B.); (J.M.-Ø.); (N.M.G.)
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, 0372 Oslo, Norway
| | - Philippe Collas
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway; (A.B.); (J.M.-Ø.); (N.M.G.)
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, 0372 Oslo, Norway
| |
Collapse
|
44
|
Zhang S, Zhang Y, Chen C, Hu Q, Fu Y, Xu L, Wang C, Liu Y. Identification of Robust and Key Differentially Expressed Genes during C2C12 Cell Myogenesis Based on Multiomics Data. Int J Mol Sci 2022; 23:ijms23116002. [PMID: 35682680 PMCID: PMC9180599 DOI: 10.3390/ijms23116002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 02/01/2023] Open
Abstract
Myogenesis is a central step in prenatal myofiber formation, postnatal myofiber hypertrophy, and muscle damage repair in adulthood. RNA-Seq technology has greatly helped reveal the molecular mechanism of myogenesis, but batch effects in different experiments inevitably lead to misinterpretation of differentially expressed genes (DEGs). We previously applied the robust rank aggregation (RRA) method to effectively circumvent batch effects across multiple RNA-Seq datasets from 3T3-L1 cells. Here, we also used the RRA method to integrate nine RNA-Seq datasets from C2C12 cells and obtained 3140 robust DEGs between myoblasts and myotubes, which were then validated with array expression profiles and H3K27ac signals. The upregulated robust DEGs were highly enriched in gene ontology (GO) terms related to muscle cell differentiation and development. Considering that the cooperative binding of transcription factors (TFs) to enhancers to regulate downstream gene expression is a classical epigenetic mechanism, differentially expressed TFs (DETFs) were screened, and potential novel myogenic factors (MAF, BCL6, and ESR1) with high connection degree in protein-protein interaction (PPI) network were presented. Moreover, KLF5 cooperatively binds with the three key myogenic factors (MYOD, MYOG, and MEF2D) in C2C12 cells. Motif analysis speculates that the binding of MYOD and MYOG is KLF5-independent, while MEF2D is KLF5-dependent. It was revealed that KLF5-binding sites could be exploited to filter redundant MYOD-, MYOG-, and MEF2D-binding sites to focus on key enhancers for myogenesis. Further functional annotation of KLF5-binding sites suggested that KLF5 may regulate myogenesis through the PI3K-AKt signaling pathway, Rap1 signaling pathway, and the Hippo signaling pathway. In general, our study provides a wealth of untapped candidate targets for myogenesis and contributes new insights into the core regulatory mechanisms of myogenesis relying on KLF5-binding signal.
Collapse
Affiliation(s)
- Song Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; (S.Z.); (Y.Z.); (C.C.); (Q.H.); (Y.F.); (L.X.); (C.W.)
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yuanyuan Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; (S.Z.); (Y.Z.); (C.C.); (Q.H.); (Y.F.); (L.X.); (C.W.)
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Choulin Chen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; (S.Z.); (Y.Z.); (C.C.); (Q.H.); (Y.F.); (L.X.); (C.W.)
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingqing Hu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; (S.Z.); (Y.Z.); (C.C.); (Q.H.); (Y.F.); (L.X.); (C.W.)
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Fu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; (S.Z.); (Y.Z.); (C.C.); (Q.H.); (Y.F.); (L.X.); (C.W.)
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Lingna Xu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; (S.Z.); (Y.Z.); (C.C.); (Q.H.); (Y.F.); (L.X.); (C.W.)
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Chao Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; (S.Z.); (Y.Z.); (C.C.); (Q.H.); (Y.F.); (L.X.); (C.W.)
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuwen Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; (S.Z.); (Y.Z.); (C.C.); (Q.H.); (Y.F.); (L.X.); (C.W.)
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Kunpeng Institute of Modern Agriculture at Foshan, Chinese Academy of Agricultural Sciences, Foshan 528226, China
- Correspondence:
| |
Collapse
|
45
|
Madsen-Østerbye J, Bellanger A, Galigniana NM, Collas P. Biology and Model Predictions of the Dynamics and Heterogeneity of Chromatin-Nuclear Lamina Interactions. Front Cell Dev Biol 2022; 10:913458. [PMID: 35693945 PMCID: PMC9178083 DOI: 10.3389/fcell.2022.913458] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
Associations of chromatin with the nuclear lamina, at the nuclear periphery, help shape the genome in 3 dimensions. The genomic landscape of lamina-associated domains (LADs) is well characterized, but much remains unknown on the physical and mechanistic properties of chromatin conformation at the nuclear lamina. Computational models of chromatin folding at, and interactions with, a surface representing the nuclear lamina are emerging in attempts to characterize these properties and predict chromatin behavior at the lamina in health and disease. Here, we highlight the heterogeneous nature of the nuclear lamina and LADs, outline the main 3-dimensional chromatin structural modeling methods, review applications of modeling chromatin-lamina interactions and discuss biological insights inferred from these models in normal and disease states. Lastly, we address perspectives on future developments in modeling chromatin interactions with the nuclear lamina.
Collapse
Affiliation(s)
- Julia Madsen-Østerbye
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Aurélie Bellanger
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Natalia M. Galigniana
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, Oslo, Norway
| | - Philippe Collas
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
46
|
Zhou S, Chen S, Pei YA, Pei M. Nidogen: A matrix protein with potential roles in musculoskeletal tissue regeneration. Genes Dis 2022; 9:598-609. [PMID: 35782975 PMCID: PMC9243345 DOI: 10.1016/j.gendis.2021.03.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/03/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
Basement membrane proteins are known to guide cell structures, differentiation, and tissue repair. Although there is a wealth of knowledge on the functions of laminins, perlecan, and type IV collagen in maintaining tissue homeostasis, not much is known about nidogen. As a key molecule in the basement membrane, nidogen contributes to the formation of a delicate microenvironment that proves necessary for stem cell lineage-specific differentiation. In this review, the expression of nidogen is delineated at both cellular and tissue levels from embryonic to adult stages of development; the effect of nidogens is also summarized in the context of musculoskeletal development and regeneration, including but not limited to adipogenesis, angiogenesis, chondrogenesis, myogenesis, and neurogenesis. Furthermore, potential mechanisms underlying the role of nidogens in stem cell-based tissue regeneration are also discussed. This concise review is expected to facilitate our existing understanding and utilization of nidogen in tissue engineering and regeneration.
Collapse
|
47
|
Nazer E. To be or not be (in the LAD): emerging roles of lamin proteins in transcriptional regulation. Biochem Soc Trans 2022; 50:1035-1044. [PMID: 35437578 PMCID: PMC9162450 DOI: 10.1042/bst20210858] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 12/21/2022]
Abstract
Lamins are components of the nuclear lamina, a protein meshwork that underlies the nuclear membrane. Lamins interact with chromatin in transcriptionally silent regions defined as lamina-associated-domains (LADs). However, recent studies have shown that lamins regulate active transcription inside LADs. In addition, ChIP-seq analysis has shown that lamins interact with lamin-dependent promoters and enhancers located in the interior of the nucleus. Moreover, functional studies suggest that lamins regulate transcription at associated-promoters and long-range chromatin interactions of key developmental gene programs. This review will discuss emerging, non-canonical functions of lamins in controlling non-silent genes located both inside and outside of LADs, focusing on transcriptional regulation and chromatin organization in Drosophila and mammals as metazoan model organisms.
Collapse
Affiliation(s)
- Ezequiel Nazer
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular and CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| |
Collapse
|
48
|
Madsen-Østerbye J, Abdelhalim M, Baudement MO, Collas P. Local euchromatin enrichment in lamina-associated domains anticipates their repositioning in the adipogenic lineage. Genome Biol 2022; 23:91. [PMID: 35410387 PMCID: PMC8996409 DOI: 10.1186/s13059-022-02662-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/31/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Interactions of chromatin with the nuclear lamina via lamina-associated domains (LADs) confer structural stability to the genome. The dynamics of positioning of LADs during differentiation, and how LADs impinge on developmental gene expression, remains, however, elusive. RESULTS We examined changes in the association of lamin B1 with the genome in the first 72 h of differentiation of adipose stem cells into adipocytes. We demonstrate a repositioning of entire stand-alone LADs and of LAD edges as a prominent nuclear structural feature of early adipogenesis. Whereas adipogenic genes are released from LADs, LADs sequester downregulated or repressed genes irrelevant for the adipose lineage. However, LAD repositioning only partly concurs with gene expression changes. Differentially expressed genes in LADs, including LADs conserved throughout differentiation, reside in local euchromatic and lamin-depleted sub-domains. In these sub-domains, pre-differentiation histone modification profiles correlate with the LAD versus inter-LAD outcome of these genes during adipogenic commitment. Lastly, we link differentially expressed genes in LADs to short-range enhancers which overall co-partition with these genes in LADs versus inter-LADs during differentiation. CONCLUSIONS We conclude that LADs are predictable structural features of adipose nuclear architecture that restrain non-adipogenic genes in a repressive environment.
Collapse
Affiliation(s)
- Julia Madsen-Østerbye
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
| | - Mohamed Abdelhalim
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
| | - Marie-Odile Baudement
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
- Present Address: Centre for Integrative Genetics, Faculty of Biosciences, Norwegian University of Life Sciences, 1430 Ås, Norway
| | - Philippe Collas
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, 0424 Oslo, Norway
| |
Collapse
|
49
|
Zhang T, Wang T, Niu Q, Xu L, Chen Y, Gao X, Gao H, Zhang L, Liu GE, Li J, Xu L. Transcriptional atlas analysis from multiple tissues reveals the expression specificity patterns in beef cattle. BMC Biol 2022; 20:79. [PMID: 35351103 PMCID: PMC8966188 DOI: 10.1186/s12915-022-01269-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 03/03/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND A comprehensive analysis of gene expression profiling across tissues can provide necessary information for an in-depth understanding of their biological functions. We performed a large-scale gene expression analysis and generated a high-resolution atlas of the transcriptome in beef cattle. RESULTS Our transcriptome atlas was generated from 135 bovine tissues in adult beef cattle, covering 51 tissue types of major organ systems (e.g., muscular system, digestive system, immune system, reproductive system). Approximately 94.76% of sequencing reads were successfully mapped to the reference genome assembly ARS-UCD1.2. We detected a total of 60,488 transcripts, and 32% of them were not reported before. We identified 2654 housekeeping genes (HKGs) and 477 tissue-specific genes (TSGs) across tissues. Using weighted gene co-expression network analysis, we obtained 24 modules with 237 hub genes (HUBGs). Functional enrichment analysis showed that HKGs mainly maintain the basic biological activities of cells, while TSGs were involved in tissue differentiation and specific physiological processes. HKGs in bovine tissues were more conserved in terms of expression pattern as compared to TSGs and HUBGs among multiple species. Finally, we obtained a subset of tissue-specific differentially expressed genes (DEGs) between beef and dairy cattle and several functional pathways, which may be involved in production and health traits. CONCLUSIONS We generated a large-scale gene expression atlas across the major tissues in beef cattle, providing valuable information for enhancing genome assembly and annotation. HKGs, TSGs, and HUBGs further contribute to better understanding the biology and evolution of multiple tissues in cattle. DEGs between beef and dairy cattle also fill in the knowledge gaps about differential transcriptome regulation of bovine tissues underlying economically important traits.
Collapse
Affiliation(s)
- Tianliu Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Tianzhen Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Qunhao Niu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Lei Xu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Yan Chen
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Xue Gao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Huijiang Gao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Lupei Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - George E. Liu
- Animal Genomics and Improvement Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, Maryland 20705 USA
| | - Junya Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Lingyang Xu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| |
Collapse
|
50
|
Kaczmarczyk LS, Levi N, Segal T, Salmon-Divon M, Gerlitz G. CTCF supports preferentially short lamina-associated domains. Chromosome Res 2022; 30:123-136. [PMID: 35239049 DOI: 10.1007/s10577-022-09686-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 01/06/2023]
Abstract
More than one third of the mammalian genome is in a close association with the nuclear lamina, thus these genomic regions were termed lamina-associated domains (LADs). This association is fundamental for many aspects of chromatin biology including transcription, replication, and DNA damage repair. LADs association with the nuclear envelope is thought to be dependent on two major mechanisms: The first mechanism is the interaction between nuclear membrane proteins such as LBR with heterochromatin modifications that are enriched in LADs chromatin. The second mechanism is based on proteins that bind the borders of the LADs and support the association of the LADs with the nuclear envelope. Two factors were suggested to support the second mechanism: CCCTC-binding factor (CTCF) and YY1 based on their enriched binding to LADs borders. However, this mechanism has not been proven yet at a whole genome level. Here, to test if CTCF supports the LADs landscape, we generated melanoma cells with a partial loss of function (pLoF) of CTCF by the CRISPR-Cas9 system and determined the LADs landscape by lamin B ChIP-seq analysis. We found that under regular growth conditions, CTCF pLoF led to modest changes in the LADs landscape that included an increase in the signal of 2% of the LADs and a decrease in the signal of 8% of the LADs. However, CTCF importance for the LADs landscape was much higher upon induction of a chromatin stress. We induced chromatin stress by inhibiting RNA polymerase II, an intervention that is known to alter chromatin compaction and supercoiling. Notably, only in CTCF pLoF cells, the chromatin stress led to the dissociation of 7% of the LADs from the lamina. The CTCF-dependent LADs had almost three times shorter median length than the non-affected LADs, were enriched in CTCF binding at their borders, and were higher in their facultative-status (cell-type specific). Thus, it appears that CTCF is a key factor in facilitating the association of short facultative LADs with the nuclear lamina upon chromatin stress.
Collapse
Affiliation(s)
- Lukasz Stanislaw Kaczmarczyk
- Department of Molecular Biology, Faculty of Life Sciences and Ariel Center for Applied Cancer Research, Ariel University, 40700, Ariel, Israel
| | - Nehora Levi
- Department of Molecular Biology, Faculty of Life Sciences and Ariel Center for Applied Cancer Research, Ariel University, 40700, Ariel, Israel
| | - Tamar Segal
- Department of Molecular Biology, Faculty of Life Sciences and Ariel Center for Applied Cancer Research, Ariel University, 40700, Ariel, Israel
| | - Mali Salmon-Divon
- Department of Molecular Biology, Faculty of Life Sciences and Ariel Center for Applied Cancer Research, Ariel University, 40700, Ariel, Israel.
- Adelson School of Medicine, Ariel University, 40700, Ariel, Israel.
| | - Gabi Gerlitz
- Department of Molecular Biology, Faculty of Life Sciences and Ariel Center for Applied Cancer Research, Ariel University, 40700, Ariel, Israel.
| |
Collapse
|