1
|
Wang H, Zhang X, Wang D, Jiang Q, Sun Y, Zhao B, Liang Z, Qing G, Jiang B, Zhang L, Zhang Y. Affinity peptide ligands: new tools for chasing non-canonical N-phosphoproteome. Chem Sci 2025:d5sc01557j. [PMID: 40290335 PMCID: PMC12022672 DOI: 10.1039/d5sc01557j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 04/17/2025] [Indexed: 04/30/2025] Open
Abstract
The enrichment of protein N-phosphorylation encounters substantial challenges due to the inherent instability of the N-P bond, severely impeding the manifestation of its biological functions. Traditional enrichment methods often rely on antibodies, organic solvents and metal ion interactions, which are limited by lack of universality, potential degradation of sample integrity, or reduced selectivity for N-phosphorylation. To overcome these challenges, we innovatively capitalized phage display technology to identify affinity peptides that specifically bind to the N-PO3 group. By functionalizing magnetic nanoparticles with the affinity peptide, we developed a novel, organic solvent- and metal-free enrichment strategy that enhanced both the selectivity and efficiency for all three types of N-phosphopeptide capture under neutral conditions, ensuring superior preservation of sample integrity and allowing more accurate proteomic analysis. This strategy has demonstrated robust enrichment capabilities for both prokaryotic and eukaryotic samples. In HeLa cells, 1995 novel N-phosphorylation sites were identified, representing a substantial increase of 2- to 5-fold in detection depth over previous approaches and significantly expanding the scale of the N-phosphoproteome database. Additionally, it was discovered that N-phosphorylation modification was highly concentrated in the nucleus. By integrating the nuclear isolation technique, 1296 N-phosphorylation sites were identified for the first time, offering new leads for uncovering the functions of N-phosphorylation in nuclear proteins. Finally, in conjunction with the quantitative proteomics method, the dynamic changes in N-phosphorylation modification during the progression of Alzheimer's disease were investigated, providing fresh perspectives on the research of AD pathogenesis. Overall, this work not only presents a new approach for efficient enrichment of N-phosphopeptides but also advances the functional study of N-phosphorylated proteins in physiological and pathological processes.
Collapse
Affiliation(s)
- He Wang
- State Key Laboratory of Medical Proteomics, National Chromatographic R&A Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiaoyu Zhang
- State Key Laboratory of Medical Proteomics, National Chromatographic R&A Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Dongdong Wang
- State Key Laboratory of Medical Proteomics, National Chromatographic R&A Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Qianqian Jiang
- State Key Laboratory of Medical Proteomics, National Chromatographic R&A Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yue Sun
- State Key Laboratory of Medical Proteomics, National Chromatographic R&A Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Baofeng Zhao
- State Key Laboratory of Medical Proteomics, National Chromatographic R&A Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Zhen Liang
- State Key Laboratory of Medical Proteomics, National Chromatographic R&A Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Guangyan Qing
- State Key Laboratory of Medical Proteomics, National Chromatographic R&A Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Bo Jiang
- State Key Laboratory of Medical Proteomics, National Chromatographic R&A Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Lihua Zhang
- State Key Laboratory of Medical Proteomics, National Chromatographic R&A Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Yukui Zhang
- State Key Laboratory of Medical Proteomics, National Chromatographic R&A Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| |
Collapse
|
2
|
Choi S, Lee SH, Kee JM. Bringing Histidine Phosphorylation into Light: Role of Chemical Tools. ACS Chem Biol 2025; 20:778-790. [PMID: 40184269 DOI: 10.1021/acschembio.5c00103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2025]
Abstract
Histidine phosphorylation is a historically underexplored post-translational modification (PTM). Once deemed "elusive" due to its chemical lability, phosphohistidine (pHis) has recently come to light thanks to emerging chemical tools─including stable pHis analogs, pHis-specific antibodies, and tailored proteomics workflows─that enable its detection and functional analysis. Together, these innovations have led to a surge in the identification of pHis sites and raised awareness of their roles in both bacterial and mammalian systems. New assay systems have also facilitated the characterization of histidine kinases and phosphatases. This Review summarizes recent breakthroughs in pHis research tools, examines the limitations of current approaches, and outlines future tools needed to fully unravel the potential of histidine phosphorylation.
Collapse
Affiliation(s)
- Solbee Choi
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Shin Hyeon Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jung-Min Kee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
3
|
Gao B, Jiang Q, Wang H, Wei S, Qu J, Jiang B. Biotin@DpaZn Molecules Enabled Efficient Enrichment of N-Phosphopeptides under Neutral Conditions. Anal Chem 2025; 97:6984-6990. [PMID: 40135852 DOI: 10.1021/acs.analchem.5c00621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Protein N-phosphorylation has been garnering increasing attention owing to its unique biological functions. The large-scale identification of protein N-phosphorylation serves as the foundation for exploring a novel function. Despite the advancements in enrichment methods under neutral conditions, persistently low enrichment efficiency has long hindered the progress of this field. In this work, Biotin@DpaZn molecules were first synthesized for liquid-liquid enrichment, which enabled the efficient enrichment of N-phosphopeptides under neutral conditions. This enrichment strategy combined the benefits of low steric hindrance, high selectivity, and high affinity inherent in pull-down techniques along with the alkali resistance of agarose microspheres, which could significantly enhance the enrichment efficiency. Compared to SiO2@DpaZn, the number of identified N-phosphorylation sites in E. coli increased from 27 to 58. Moreover, we successfully achieved large-scale N-phosphorylation identification in Corynebacterium glutamicum under different growth conditions, greatly advancing functional studies. Overall, we developed a liquid-liquid enrichment method for protein N-phosphorylation. Our work has expanded the identification coverage of N-phosphorylation, especially in prokaryotes, facilitating the exploration of potential functions.
Collapse
Affiliation(s)
- Bo Gao
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
- State Key Laboratory of Medical Proteomics, National Chromatographic R&A Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qianqian Jiang
- State Key Laboratory of Medical Proteomics, National Chromatographic R&A Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - He Wang
- State Key Laboratory of Medical Proteomics, National Chromatographic R&A Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuxian Wei
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
- State Key Laboratory of Medical Proteomics, National Chromatographic R&A Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jianbo Qu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Bo Jiang
- State Key Laboratory of Medical Proteomics, National Chromatographic R&A Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
4
|
Abstract
PGAM5, a phosphatase found in mitochondria, is crucial for mitochondrial quality control (MQC) through its regulation on mitochondrial dynamics, biogenesis, and mitophagy. Previous studies have shown its involvement in multiple regulated cell deaths (RCDs), including apoptosis, necroptosis, and pyroptosis. The objective of this review is to enhance our comprehension of the involvement of PGAM5 in MQC and RCDs. Additionally, we summarize some novel roles of PGAM5 in cellular senescence, lipid metabolism, and immune response modulation in recent studies. Finally, we discuss PGAM5's contribution to the pathological state of cardiovascular, hepatic, neurological, and neoplastic diseases, offering potential perspectives for future research.
Collapse
Affiliation(s)
- Weibin He
- Department of Cardiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences) Southern Medical University, Guangzhou 510080, China
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Guangdong Cardiovascular Institute, Guangzhou 510080, China
| | - Wenlong He
- Department of Cardiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences) Southern Medical University, Guangzhou 510080, China
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Guangdong Cardiovascular Institute, Guangzhou 510080, China
| | - Zhongchan Sun
- Department of Cardiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences) Southern Medical University, Guangzhou 510080, China
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Guangdong Cardiovascular Institute, Guangzhou 510080, China
| | - Pengcheng He
- Department of Cardiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences) Southern Medical University, Guangzhou 510080, China
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Guangdong Cardiovascular Institute, Guangzhou 510080, China
- Department of Cardiology, Heyuan People’s Hospital, Heyuan 517000, China
| |
Collapse
|
5
|
Zhang Z, Patel R, Luo ZQ, Das C. Cryo-EM Detection of AMPylated Histidine Implies Covalent Catalysis in AMPylation Mediated by a Bacterial Effector. J Mol Biol 2025; 437:168917. [PMID: 39694182 DOI: 10.1016/j.jmb.2024.168917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 12/20/2024]
Abstract
AMPylation is a post-translational modification (PTM) whereby adenosine monophosphate (AMP) from adenosine triphosphate (ATP) is transferred onto protein hydroxyl groups of serine, threonine, or tyrosine. Recently, an actin-dependent AMPylase namely LnaB from the bacterial pathogen Legionella pneumophila was found to AMPylate phosphate groups of phosphoribosylated ubiquitin and Src family kinases. LnaB represents an evolutionarily distinct family of AMPylases with conserved active site Ser-His-Glu residues. Here, we capture the structure of the LnaB-actin complex in a putative intermediate state via single-particle cryogenic electron microscopy (cryo-EM) and find that the catalytic histidine of LnaB is covalently attached to AMP through a phosphoramidate linkage at the Nδ1 atom. This observation provides direct structural evidence of histidine AMPylation as a PTM and implies the possibility of covalent catalysis in LnaB-mediated AMPylation, a mechanism distinct from known AMPylases. Subsequent biochemical studies confirm the observed AMP binding site and provide additional insights into the catalytic properties of LnaB. Together, our work highlights the power of cryo-EM in capturing labile PTMs and transient species during enzymatic reactions, while opening new avenues of mechanistic investigation into the LnaB family.
Collapse
Affiliation(s)
- Zhengrui Zhang
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Rishi Patel
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Zhao-Qing Luo
- Department of Biological Sciences, Purdue Institute for Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
| | - Chittaranjan Das
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
6
|
Qi Y, Rajbanshi B, Hao R, Dang Y, Xu C, Lu W, Dai L, Zhang B, Zhang X. The dual role of PGAM5 in inflammation. Exp Mol Med 2025; 57:298-311. [PMID: 39930129 PMCID: PMC11873181 DOI: 10.1038/s12276-025-01391-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/04/2024] [Accepted: 11/10/2024] [Indexed: 03/04/2025] Open
Abstract
In recent years, the focus on human inflammation in research has increased, with aging-related inflammation widely recognized as a defining characteristic of aging. Inflammation is strongly correlated with mitochondrial dysfunction. Phosphoglycerate mutase family member 5 (PGAM5) is a novel modulator of mitochondrial homeostasis in response to mechanical stimulation. Here we review the structure and sublocalization of PGAM5, introduce its importance in programmed cell death and summarize its crucial roles in the development and progression of inflammatory diseases such as pneumonia, hepatitis, neuroinflammation and aging. Notably, PGAM5 has dual effects on controlling inflammation: distinct PGAM5-mediated mitochondrial functions exhibit cellular heterogeneity, leading to its dual functions in inflammation control. We therefore highlight the double-edged sword nature of PGAM5 as a potential critical regulator and innovative therapeutic target in inflammation. Finally, the challenges and future directions of the use of PGAM5, which has dual properties, as a target molecule in the clinic are discussed. This review provides crucial insights to guide the development of intelligent therapeutic strategies targeting PGAM5-specific regulation to treat intractable inflammatory conditions, as well as the potential extension of its broader application to other diseases to achieve more precise and effective treatment outcomes.
Collapse
Affiliation(s)
- Yuxin Qi
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, China
- National Facility for Translational Medicine, Shanghai, China
| | - Bhavana Rajbanshi
- Department of Dermatology and Venereology, Tongji University School of Medicine, Shanghai, China
| | - Ruihan Hao
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Facility for Translational Medicine, Shanghai, China
| | - Yifan Dang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, China
- National Facility for Translational Medicine, Shanghai, China
| | - Churong Xu
- National Facility for Translational Medicine, Shanghai, China
- School of Medicine, Shanghai University, Shanghai, China
| | - Wei Lu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Liming Dai
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Facility for Translational Medicine, Shanghai, China
| | - Bingjun Zhang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- National Facility for Translational Medicine, Shanghai, China.
| | - Xiaoling Zhang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, China.
- National Facility for Translational Medicine, Shanghai, China.
| |
Collapse
|
7
|
Thi Hong Van N, Hyun Nam J. Intermediate conductance calcium-activated potassium channel (KCa3.1) in cancer: Emerging roles and therapeutic potentials. Biochem Pharmacol 2024; 230:116573. [PMID: 39396649 DOI: 10.1016/j.bcp.2024.116573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/02/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
The KCa3.1 channel (also known as the KCNN4, IK1, or SK4 channel) is an intermediate-conductance calcium-activated potassium channel that regulates the membrane potential and maintains calcium homeostasis. Recently, KCa3.1 channels have attracted increasing attention because of their diverse roles in various types of cancers. In cancer cells, KCa3.1 channels regulate key processes, including cell proliferation, cell cycle, migration, invasion, tumor microenvironments, and therapy resistance. In addition, abnormal KCa3.1 expression in cancers is utilized to distinguish between tumor and normal tissues, classify cancer stages, and predict patient survival outcomes. This review comprehensively examines the current understanding of the contribution of KCa3.1 channels to tumor formation, metastasis, and its mechanisms. We evaluated the potential of KCa3.1 as a biomarker for cancer diagnosis and prognosis. Finally, we discuss the advances and challenges of applying KCa3.1 modulators in cancer treatment and propose approaches to overcome these obstacles. In summary, this review highlights the importance of this ion channel as a potent therapeutic target and prognostic biomarker of cancer.
Collapse
Affiliation(s)
- Nhung Thi Hong Van
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea; Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Republic of Korea
| | - Joo Hyun Nam
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea; Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Republic of Korea.
| |
Collapse
|
8
|
Li S, Li L, Ma M, Xing M, Qian X, Ying W. Integrated strategy for high-confident global profiling of the histidine phosphoproteome. Anal Chim Acta 2024; 1331:343336. [PMID: 39532420 DOI: 10.1016/j.aca.2024.343336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/08/2024] [Accepted: 10/12/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Histidine phosphorylation (pHis) plays a key role in signal transduction in prokaryotes and regulates tumour initiation and progression in mammals. However, the pHis substrates and their functions are rarely known due to the lack of effective analytical strategies. RESULTS Herein, we provide a strategy for unbiased enrichment and assignment of the pHis peptides. First, the entire procedure was designed under alkaline conditions to maintain the stability of the N-P bond of pHis and high-pH reverse-phase chromatography was used to efficiently separate the pHis peptides. Second, exploiting the coelution benefits of diethyl labelling, the ratios of light- and heavy-labelled peptides were accurately quantified, and the sites of phosphorylated histidine were assigned. Finally, Cu-IDA bead enrichment and data-independent acquisition mass spectrometry analysis were used to improve the coverage of the histidine phosphoproteome. With this novel strategy, 768 and 1125 potential pHis peptides were identified from lysates of E. coli and HeLa cells, respectively. And these values represent the highest coverage of the histidine phosphoproteome for both cell types. SIGNIFICANCE These data strongly support the presumption that pHis modifications are widely present in bacteria. The study provides an efficient strategy and can lead to a better understanding of pHis-modified substrates and their biological functions.
Collapse
Affiliation(s)
- Shiyi Li
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Lei Li
- Central Laboratory, Capital Medical University, Beijing, 100069, China
| | - Mengran Ma
- College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China
| | - Meining Xing
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Xiaohong Qian
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.
| | - Wantao Ying
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.
| |
Collapse
|
9
|
Martyn GD, Kalagiri R, Veggiani G, Stanfield RL, Choudhuri I, Sala M, Meisenhelder J, Chen C, Biswas A, Levy RM, Lyumkis D, Wilson IA, Hunter T, Sidhu SS. Using phage display for rational engineering of a higher affinity humanized 3'phosphohistidine-specific antibody. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.04.621849. [PMID: 39574610 PMCID: PMC11580931 DOI: 10.1101/2024.11.04.621849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Histidine phosphorylation (pHis) is a non-canonical post-translational modification (PTM) that is historically understudied due to a lack of robust reagents that are required for its investigation, such as high affinity pHis-specific antibodies. Engineering pHis-specific antibodies is very challenging due to the labile nature of the phosphoramidate (P-N) bond and the stringent requirements for selective recognition of the two isoforms, 1-phosphohistidine (1-pHis) and 3-phosphohistidine (3-pHis). Here, we present a strategy for in vitro engineering of antibodies for detection of native 3-pHis targets. Specifically, we humanized the rabbit SC44-8 anti-3-pTza (a stable 3-pHis mimetic) mAb into a scaffold (herein referred to as hSC44) that was suitable for phage display. We then constructed six unique Fab phage-displayed libraries using the hSC44 scaffold and selected high affinity 3-pHis binders. Our selection strategy was carefully designed to enrich antibodies that bound 3-pHis with high affinity and had specificity for 3-pHis versus 3-pTza. hSC44.20N32F L , the best engineered antibody, has an ∼10-fold higher affinity for 3-pHis than the parental hSC44. Eleven new Fab structures, including the first reported antibody-pHis peptide structures were solved by X-ray crystallography. Structural and quantum mechanical calculations provided molecular insights into 3-pHis and 3-pTza discrimination by different hSC44 variants and their affinity increase obtained through in vitro engineering. Furthermore, we demonstrate the utility of these newly developed high-affinity 3-pHis-specific antibodies for recognition of pHis proteins in mammalian cells by immunoblotting and immunofluorescence staining. Overall, our work describes a general method for engineering PTM-specific antibodies and provides a set of novel antibodies for further investigations of the role of 3-pHis in cell biology. Significance Statement Histidine phosphorylation is an elusive PTM whose role in mammalian cell biology is largely unknown due to the lack of robust tools and methods for its analysis. Here we report the development of antibodies with unprecedented affinity and specificity towards 3-pHis and present the first crystal structures of a pHis peptide in complex with an antibody. Finally, we show how these antibodies can be used in standard molecular biology workflows to investigate pHis-dependent biology.
Collapse
Affiliation(s)
- Gregory D. Martyn
- School of Pharmacy, University of Waterloo, 10 Victoria St A, Kitchener, ON, N2G 1C5, Canada
| | - Rajasree Kalagiri
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Gianluca Veggiani
- School of Pharmacy, University of Waterloo, 10 Victoria St A, Kitchener, ON, N2G 1C5, Canada
- Division of Biotechnology and Molecular Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Robyn L. Stanfield
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, 92037, USA
| | - Indrani Choudhuri
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Margaux Sala
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Jill Meisenhelder
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Chao Chen
- School of Pharmacy, University of Waterloo, 10 Victoria St A, Kitchener, ON, N2G 1C5, Canada
| | - Avik Biswas
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Department of Physics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ronald M. Levy
- Center for Biophysics and Computational Biology, and Department of Chemistry, Temple University, Philadelphia, PA, 19122, USA
| | - Dmitry Lyumkis
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, 92037, USA
- The Skaggs Institute for Chemical Biology, Scripps Research, La Jolla, California, 92037, USA
| | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Sachdev S. Sidhu
- School of Pharmacy, University of Waterloo, 10 Victoria St A, Kitchener, ON, N2G 1C5, Canada
| |
Collapse
|
10
|
Ning J, Sala M, Reina J, Kalagiri R, Hunter T, McCullough BS. Histidine Phosphorylation: Protein Kinases and Phosphatases. Int J Mol Sci 2024; 25:7975. [PMID: 39063217 PMCID: PMC11277029 DOI: 10.3390/ijms25147975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Phosphohistidine (pHis) is a reversible protein post-translational modification (PTM) that is currently poorly understood. The P-N bond in pHis is heat and acid-sensitive, making it more challenging to study than the canonical phosphoamino acids pSer, pThr, and pTyr. As advancements in the development of tools to study pHis have been made, the roles of pHis in cells are slowly being revealed. To date, a handful of enzymes responsible for controlling this modification have been identified, including the histidine kinases NME1 and NME2, as well as the phosphohistidine phosphatases PHPT1, LHPP, and PGAM5. These tools have also identified the substrates of these enzymes, granting new insights into previously unknown regulatory mechanisms. Here, we discuss the cellular function of pHis and how it is regulated on known pHis-containing proteins, as well as cellular mechanisms that regulate the activity of the pHis kinases and phosphatases themselves. We further discuss the role of the pHis kinases and phosphatases as potential tumor promoters or suppressors. Finally, we give an overview of various tools and methods currently used to study pHis biology. Given their breadth of functions, unraveling the role of pHis in mammalian systems promises radical new insights into existing and unexplored areas of cell biology.
Collapse
Affiliation(s)
- Jia Ning
- Correspondence: (J.N.); (B.S.M.)
| | | | | | | | | | - Brandon S. McCullough
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; (M.S.); (J.R.); (R.K.); (T.H.)
| |
Collapse
|
11
|
JIANG B, GAO B, WEI S, LIANG Z, ZHANG L, ZHANG Y. [Progress in enrichment methods for protein N-phosphorylation]. Se Pu 2024; 42:623-631. [PMID: 38966971 PMCID: PMC11224942 DOI: 10.3724/sp.j.1123.2024.04029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Indexed: 07/06/2024] Open
Abstract
Protein phosphorylation is one of the most common and important post-translational modifications that regulates almost all life processes. In particular, protein phosphorylation regulates the development of major diseases such as tumors, neurodegenerative diseases, and diabetes. For example, excessive phosphorylation of Tau protein can cause neurofibrillary tangles, leading to Alzheimer's disease. Therefore, large-scale methods for identifying protein phosphorylation must be developed. Rapid developmentin efficient enrichment methods and biological mass spectrometry technologies have enabled the large-scale identification of low-abundance protein O-phosphorylation modifications in, allowing for a more thorough study of their biological functions. The N-phosphorylation modifications that occur on the side-chain amino groups of histidine, arginine, and lysine have recently received increased attention. For example, the biological function of histidine phosphorylation in prokaryotes has been well studied; this type of modification regulates signal transduction and sugar metabolism. Two mammalian pHis kinases (NME1 and NME2) and three pHis phosphatases (PHPT1, LHPP, and PGAM5) have been successfully identified using various biological methods. N-Phosphorylation is involved in multiple biological processes, and its functions cannot be ignored. However, N-phosphorylation is unstable under acidic and thermal conditions owing to the poor chemical stability of the P-N bond. Unfortunately, the current O-phosphorylation enrichment method, which relies on acidic conditions, is unsuitable for N-phosphorylation enrichment, resulting in a serious lag in the large-scale identification of protein N-phosphorylation. The lack of enrichment methods has also seriously hindered studies on the biological functions of N-phosphorylation. Therefore, the development of efficient enrichment methods that target protein N-phosphorylation is an urgent undertaking. Research on N-phosphorylation proteome enrichment methods is limited, hindering functional research. Thus, summarizing such methods is necessary to promote further functional research. This article introduces the structural characteristics and reported biological functions of protein N-phosphorylation, reviews the protein N-phosphorylation modification enrichment methods developed over the past two decades, and analyzes the advantages and disadvantages of each method. In this study, both antibody-based and nonantibody-dependent methods are described in detail. Owing to the stability of the molecular structure of histidine, the antibody method is currently limited to histidine phosphorylation enrichment research. Future studies will focus on the development of new enrichment ligands. Moreover, research on ligands will promote studies on other nonconventional phosphorylation targets, such as two acyl-phosphates (pAsp, pGlu) and S-phosphate (pCys). In summary, this review provides a detailed analysis of the history and development directions of N-phosphorylation enrichment methods.
Collapse
|
12
|
Zavala E, Dansereau S, Burke MJ, Lipchock JM, Maschietto F, Batista V, Loria JP. A salt bridge of the C-terminal carboxyl group regulates PHPT1 substrate affinity and catalytic activity. Protein Sci 2024; 33:e5009. [PMID: 38747379 PMCID: PMC11094782 DOI: 10.1002/pro.5009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 05/19/2024]
Abstract
PHPT1 is a histidine phosphatase that modulates signaling in eukaryotes through its catalytic activity. Here, we present an analysis of the structure and dynamics of PHPT1 through a combination of solution NMR, molecular dynamics, and biochemical experiments. We identify a salt bridge formed between the R78 guanidinium moiety and the C-terminal carboxyl group on Y125 that is critical for ligand binding. Disruption of the salt bridge by appending a glycine residue at the C-terminus (G126) leads to a decrease in catalytic activity and binding affinity for the pseudo substrate, para-nitrophenylphosphate (pNPP), as well as the active site inhibitor, phenylphosphonic acid (PPA). We show through NMR chemical shift, 15N relaxation measurements, and analysis of molecular dynamics trajectories, that removal of this salt bridge results in an active site that is altered both structurally and dynamically thereby significantly impacting enzymatic function and confirming the importance of this electrostatic interaction.
Collapse
Affiliation(s)
- Erik Zavala
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenConnecticutUSA
| | | | | | - James M. Lipchock
- Department of Chemical and Biological SciencesMontgomery CollegeGermantownMarylandUSA
| | | | - Victor Batista
- Department of ChemistryYale UniversityNew HavenConnecticutUSA
| | - J. Patrick Loria
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenConnecticutUSA
- Department of ChemistryYale UniversityNew HavenConnecticutUSA
| |
Collapse
|
13
|
Hansen FM, Kremer LS, Karayel O, Bludau I, Larsson NG, Kühl I, Mann M. Mitochondrial phosphoproteomes are functionally specialized across tissues. Life Sci Alliance 2024; 7:e202302147. [PMID: 37984987 PMCID: PMC10662294 DOI: 10.26508/lsa.202302147] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023] Open
Abstract
Mitochondria are essential organelles whose dysfunction causes human pathologies that often manifest in a tissue-specific manner. Accordingly, mitochondrial fitness depends on versatile proteomes specialized to meet diverse tissue-specific requirements. Increasing evidence suggests that phosphorylation may play an important role in regulating tissue-specific mitochondrial functions and pathophysiology. Building on recent advances in mass spectrometry (MS)-based proteomics, we here quantitatively profile mitochondrial tissue proteomes along with their matching phosphoproteomes. We isolated mitochondria from mouse heart, skeletal muscle, brown adipose tissue, kidney, liver, brain, and spleen by differential centrifugation followed by separation on Percoll gradients and performed high-resolution MS analysis of the proteomes and phosphoproteomes. This in-depth map substantially quantifies known and predicted mitochondrial proteins and provides a resource of core and tissue-specific mitochondrial proteins (mitophos.de). Predicting kinase substrate associations for different mitochondrial compartments indicates tissue-specific regulation at the phosphoproteome level. Illustrating the functional value of our resource, we reproduce mitochondrial phosphorylation events on dynamin-related protein 1 responsible for its mitochondrial recruitment and fission initiation and describe phosphorylation clusters on MIGA2 linked to mitochondrial fusion.
Collapse
Affiliation(s)
- Fynn M Hansen
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Laura S Kremer
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ozge Karayel
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Isabell Bludau
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Nils-Göran Larsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Inge Kühl
- Department of Cell Biology, Institute of Integrative Biology of the Cell, UMR9198, CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
14
|
Bang BR, Miki H, Kang YJ. Mitochondrial PGAM5-Drp1 signaling regulates the metabolic reprogramming of macrophages and regulates the induction of inflammatory responses. Front Immunol 2023; 14:1243548. [PMID: 37771598 PMCID: PMC10523165 DOI: 10.3389/fimmu.2023.1243548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
Macrophages play a critical role in the regulation of inflammation and tissue homeostasis. In addition to their vital functions for cell survival and physiology, mitochondria play a crucial role in innate immunity as a platform for the induction of inflammatory responses by regulating cell signaling and dynamics. Dynamin-related protein 1 (Drp1) plays a role in the induction of inflammatory responses and the subsequent development of various diseases. PGAM5 (phosphoglycerate mutase member 5) is a mitochondrial outer membrane phosphatase that dephosphorylates its substrate, Drp1. Previous studies showed that PGAM5 regulates the phosphorylation of Drp1 for the activation of NKT cells and T cells. However, it is not clear how PGAM5 regulates Drp1 activity for the induction of inflammation in macrophages. Here, we demonstrate that PGAM5 activity regulates the dephosphorylation of Drp1 in macrophages, leading to the induction of proinflammatory responses in macrophages. In TLR signaling, PGAM5 regulates the expression and production of inflammatory cytokines by regulating the activation of downstream signaling pathways, including the NF-κB and MAPK pathways. Upon LPS stimulation, PGAM5 interacts with Drp1 to form a complex, leading to the production of mtROS. Furthermore, PGAM5-Drp1 signaling promotes the polarization of macrophages toward a proinflammatory phenotype. Our study further demonstrates that PGAM5-Drp1 signaling promotes metabolic reprogramming by upregulating glycolysis and mitochondrial metabolism in macrophages. Altogether, PGAM5 signaling is a linker between alterations in Drp1-mediated mitochondrial dynamics and inflammatory responses in macrophages and may be a target for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Bo-Ram Bang
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States
| | - Haruka Miki
- Division of Immune Regulation, La Jolla Institute for Immunology, La Jolla, CA, United States
- Department of Rheumatology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Young Jun Kang
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States
- Molecular Medicine Research Institute, Sunnyvale, CA, United States
| |
Collapse
|
15
|
Nag S, Szederkenyi K, Gorbenko O, Tyrrell H, Yip CM, McQuibban GA. PGAM5 is an MFN2 phosphatase that plays an essential role in the regulation of mitochondrial dynamics. Cell Rep 2023; 42:112895. [PMID: 37498743 DOI: 10.1016/j.celrep.2023.112895] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 06/13/2023] [Accepted: 07/13/2023] [Indexed: 07/29/2023] Open
Abstract
Mitochondrial morphology is regulated by the post-translational modifications of the dynamin family GTPase proteins including mitofusin 1 (MFN1), MFN2, and dynamin-related protein 1 (DRP1). Mitochondrial phosphatase phosphoglycerate mutase 5 (PGAM5) is emerging as a regulator of these post-translational modifications; however, its precise role in the regulation of mitochondrial morphology is unknown. We show that PGAM5 interacts with MFN2 and DRP1 in a stress-sensitive manner. PGAM5 regulates MFN2 phosphorylation and consequently protects it from ubiquitination and degradation. Further, phosphorylation and dephosphorylation modification of MFN2 regulates its fusion ability. Phosphorylation enhances fission and degradation, whereas dephosphorylation enhances fusion. PGAM5 dephosphorylates MFN2 to promote mitochondrial network formation. Further, using a Drosophila genetic model, we demonstrate that the MFN2 homolog Marf and dPGAM5 are in the same biological pathway. Our results identify MFN2 dephosphorylation as a regulator of mitochondrial fusion and PGAM5 as an MFN2 phosphatase.
Collapse
Affiliation(s)
- Sudeshna Nag
- Department of Biochemistry, University of Toronto, MaRS Centre West Tower, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Kaitlin Szederkenyi
- Department of Biochemistry, University of Toronto, MaRS Centre West Tower, 661 University Avenue, Toronto, ON M5G 1M1, Canada; Terrence Donnelly Centre for Cellular and Biomolecular Research, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Olena Gorbenko
- Department of Biochemistry, University of Toronto, MaRS Centre West Tower, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Hannah Tyrrell
- Department of Biochemistry, University of Toronto, MaRS Centre West Tower, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Christopher M Yip
- Department of Biochemistry, University of Toronto, MaRS Centre West Tower, 661 University Avenue, Toronto, ON M5G 1M1, Canada; Terrence Donnelly Centre for Cellular and Biomolecular Research, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - G Angus McQuibban
- Department of Biochemistry, University of Toronto, MaRS Centre West Tower, 661 University Avenue, Toronto, ON M5G 1M1, Canada.
| |
Collapse
|
16
|
Fu G, Li ST, Jiang Z, Mao Q, Xiong N, Li X, Hao Y, Zhang H. PGAM5 deacetylation mediated by SIRT2 facilitates lipid metabolism and liver cancer proliferation. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1370-1379. [PMID: 37580952 PMCID: PMC10520483 DOI: 10.3724/abbs.2023155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 02/13/2023] [Indexed: 08/16/2023] Open
Abstract
Tumor metabolic reprogramming and epigenetic modification work together to promote tumorigenesis and development. Protein lysine acetylation, which affects a variety of biological functions of proteins, plays an important role under physiological and pathological conditions. Here, through immunoprecipitation and mass spectrum data, we show that phosphoglycerate mutase 5 (PGAM5) deacetylation enhances malic enzyme 1 (ME1) metabolic enzyme activity to promote lipid synthesis and proliferation of liver cancer cells. Mechanistically, we demonstrate that the deacetylase SIRT2 mediates PGAM5 deacetylation to activate ME1 activity, leading to ME1 dephosphorylation, subsequent lipid accumulation and the proliferation of liver cancer cells. Taken together, our study establishes an important role for the SIRT2-PGAM5-ME1 axis in the proliferation of liver cancer cells, suggesting a potential innovative cancer therapy.
Collapse
Affiliation(s)
- Gongyu Fu
- Anhui Key Laboratory of Hepatopancreatobiliary SurgeryDepartment of General SurgeryAnhui Provincial Hospitalthe First Affiliated Hospital of USTCDivision of Life Science and MedicineUniversity of Science and Technology of ChinaHefei230027China
- Hefei National Laboratory for Physical Sciences at Microscalethe Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic DiseaseSchool of Basic Medical SciencesDivision of Life Science and MedicineUniversity of Science and Technology of ChinaHefei230027China
| | - Shi-Ting Li
- Guangdong Cardiovascular InstituteGuangdong Provincial People’s HospitalGuangdong Academy of Medical SciencesGuangzhou510080China
| | - Zetan Jiang
- Anhui Key Laboratory of Hepatopancreatobiliary SurgeryDepartment of General SurgeryAnhui Provincial Hospitalthe First Affiliated Hospital of USTCDivision of Life Science and MedicineUniversity of Science and Technology of ChinaHefei230027China
- Hefei National Laboratory for Physical Sciences at Microscalethe Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic DiseaseSchool of Basic Medical SciencesDivision of Life Science and MedicineUniversity of Science and Technology of ChinaHefei230027China
| | - Qiankun Mao
- Anhui Key Laboratory of Hepatopancreatobiliary SurgeryDepartment of General SurgeryAnhui Provincial Hospitalthe First Affiliated Hospital of USTCDivision of Life Science and MedicineUniversity of Science and Technology of ChinaHefei230027China
- Hefei National Laboratory for Physical Sciences at Microscalethe Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic DiseaseSchool of Basic Medical SciencesDivision of Life Science and MedicineUniversity of Science and Technology of ChinaHefei230027China
| | - Nanchi Xiong
- Anhui Key Laboratory of Hepatopancreatobiliary SurgeryDepartment of General SurgeryAnhui Provincial Hospitalthe First Affiliated Hospital of USTCDivision of Life Science and MedicineUniversity of Science and Technology of ChinaHefei230027China
- Hefei National Laboratory for Physical Sciences at Microscalethe Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic DiseaseSchool of Basic Medical SciencesDivision of Life Science and MedicineUniversity of Science and Technology of ChinaHefei230027China
| | - Xiang Li
- Hefei National Laboratory for Physical Sciences at Microscalethe Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic DiseaseSchool of Basic Medical SciencesDivision of Life Science and MedicineUniversity of Science and Technology of ChinaHefei230027China
| | - Yijie Hao
- Anhui Key Laboratory of Hepatopancreatobiliary SurgeryDepartment of General SurgeryAnhui Provincial Hospitalthe First Affiliated Hospital of USTCDivision of Life Science and MedicineUniversity of Science and Technology of ChinaHefei230027China
- Hefei National Laboratory for Physical Sciences at Microscalethe Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic DiseaseSchool of Basic Medical SciencesDivision of Life Science and MedicineUniversity of Science and Technology of ChinaHefei230027China
| | - Huafeng Zhang
- Anhui Key Laboratory of Hepatopancreatobiliary SurgeryDepartment of General SurgeryAnhui Provincial Hospitalthe First Affiliated Hospital of USTCDivision of Life Science and MedicineUniversity of Science and Technology of ChinaHefei230027China
- Hefei National Laboratory for Physical Sciences at Microscalethe Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic DiseaseSchool of Basic Medical SciencesDivision of Life Science and MedicineUniversity of Science and Technology of ChinaHefei230027China
| |
Collapse
|
17
|
Linder M, Liko D, Kancherla V, Piscuoglio S, Hall MN. Colitis Is Associated with Loss of the Histidine Phosphatase LHPP and Upregulation of Histidine Phosphorylation in Intestinal Epithelial Cells. Biomedicines 2023; 11:2158. [PMID: 37626656 PMCID: PMC10452693 DOI: 10.3390/biomedicines11082158] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023] Open
Abstract
Protein histidine phosphorylation (pHis) is a posttranslational modification involved in cell cycle regulation, ion channel activity and phagocytosis. Using novel monoclonal antibodies to detect pHis, we previously reported that the loss of the histidine phosphatase LHPP (phospholysine phosphohistidine inorganic pyrophosphate phosphatase) results in elevated pHis levels in hepatocellular carcinoma. Here, we show that intestinal inflammation correlates with the loss of LHPP in dextran sulfate sodium (DSS)-treated mice and in inflammatory bowel disease (IBD) patients. Increased histidine phosphorylation was observed in intestinal epithelial cells (IECs), as determined by pHis immunofluorescence staining of colon samples from a colitis mouse model. However, the ablation of Lhpp did not cause increased pHis or promote intestinal inflammation under physiological conditions or after DSS treatment. Our observations suggest that increased histidine phosphorylation plays a role in colitis, but the loss of LHPP is not sufficient to increase pHis or to cause inflammation in the intestine.
Collapse
Affiliation(s)
- Markus Linder
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Dritan Liko
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Venkatesh Kancherla
- Institute of Medical Genetics and Pathology, University Hospital Basel, 4031 Basel, Switzerland
| | - Salvatore Piscuoglio
- Institute of Medical Genetics and Pathology, University Hospital Basel, 4031 Basel, Switzerland
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | | |
Collapse
|
18
|
Meng L, Hu P, Xu A. PGAM5 promotes tumorigenesis of gastric cancer cells through PI3K/AKT pathway. Pathol Res Pract 2023; 244:154405. [PMID: 36889176 DOI: 10.1016/j.prp.2023.154405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
PGAM5 has been associated with the development of tumours, however, its function in gastric cancer (GC) remains unexplored. Here, we investigated the role and mechanism of PGAM5 in regulating GC. The results revealed that PGAM5 was upregulated in GC tissues and cell lines, which was correlated with tumour size and TNM stage. Moreover, PGAM5 knockdown inhibited proliferation, migration, and invasion progression, whereas PGAM5 overexpression promoted the function of GC cells in vitro. PGAM5 also promoted the activation of the PI3K/AKT signalling pathway. Furthermore, MK-2206, an AKT inhibitor, reversed the proliferation and activation of the PI3K/AKT signalling pathway induced by PGAM5 knockdown in GC cells. In conclusion, PGAM5 promotes the proliferation of GC by positively regulating the activation of the PI3K/AKT signalling pathway in GC cells.
Collapse
Affiliation(s)
- Lei Meng
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Pibo Hu
- Department of General Surgery, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Huzhou, Zhejiang, China
| | - Aman Xu
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| |
Collapse
|
19
|
Lin D, Li L, Chen WB, Chen J, Ren D, Zheng ZH, Zhao C, Zhong Y, Luo B, Jing H, Chen P, Zou S, Lai X, Zhou T, Ding N, Li L, Pan BX, Fei E. LHPP, a risk factor for major depressive disorder, regulates stress-induced depression-like behaviors through its histidine phosphatase activity. Mol Psychiatry 2023; 28:908-918. [PMID: 36460727 DOI: 10.1038/s41380-022-01893-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022]
Abstract
Histidine phosphorylation (pHis), occurring on the histidine of substrate proteins, is a hidden phosphoproteome that is poorly characterized in mammals. LHPP (phospholysine phosphohistidine inorganic pyrophosphate phosphatase) is one of the histidine phosphatases and its encoding gene was recently identified as a susceptibility gene for major depressive disorder (MDD). However, little is known about how LHPP or pHis contributes to depression. Here, by using integrative approaches of genetics, behavior and electrophysiology, we observed that LHPP in the medial prefrontal cortex (mPFC) was essential in preventing stress-induced depression-like behaviors. While genetic deletion of LHPP per se failed to affect the mice's depression-like behaviors, it markedly augmented the behaviors upon chronic social defeat stress (CSDS). This augmentation could be recapitulated by the local deletion of LHPP in mPFC. By contrast, overexpressing LHPP in mPFC increased the mice's resilience against CSDS, suggesting a critical role of mPFC LHPP in stress-induced depression. We further found that LHPP deficiency increased the levels of histidine kinases (NME1/2) and global pHis in the cortex, and decreased glutamatergic transmission in mPFC upon CSDS. NME1/2 served as substrates of LHPP, with the Aspartic acid 17 (D17), Threonine 54 (T54), or D214 residue within LHPP being critical for its phosphatase activity. Finally, reintroducing LHPP, but not LHPP phosphatase-dead mutants, into the mPFC of LHPP-deficient mice reversed their behavioral and synaptic deficits upon CSDS. Together, these results demonstrate a critical role of LHPP in regulating stress-related depression and provide novel insight into the pathogenesis of MDD.
Collapse
Affiliation(s)
- Dong Lin
- School of Life Sciences, Nanchang University, Nanchang, 330031, China.,Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Luhui Li
- School of Life Sciences, Nanchang University, Nanchang, 330031, China.,Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Wen-Bing Chen
- Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Jiang Chen
- Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Dongyan Ren
- School of Life Sciences, Nanchang University, Nanchang, 330031, China.,Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Zhi-Heng Zheng
- School of Life Sciences, Nanchang University, Nanchang, 330031, China.,Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Changqin Zhao
- School of Life Sciences, Nanchang University, Nanchang, 330031, China.,Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Yanzi Zhong
- School of Life Sciences, Nanchang University, Nanchang, 330031, China.,Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Bin Luo
- Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Hongyang Jing
- Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Peng Chen
- Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Suqi Zou
- School of Life Sciences, Nanchang University, Nanchang, 330031, China.,Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Xinsheng Lai
- School of Life Sciences, Nanchang University, Nanchang, 330031, China.,Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Tian Zhou
- School of Basic Medical Sciences, Nanchang University, Nanchang, 330031, China
| | - Ning Ding
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Lei Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Bing-Xing Pan
- School of Life Sciences, Nanchang University, Nanchang, 330031, China. .,Institute of Life Science, Nanchang University, Nanchang, 330031, China.
| | - Erkang Fei
- School of Life Sciences, Nanchang University, Nanchang, 330031, China. .,Institute of Life Science, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
20
|
Widespread protein N-phosphorylation in organism revealed by SiO2@DpaZn beads based mild-acidic enrichment method. Talanta 2023; 251:123740. [DOI: 10.1016/j.talanta.2022.123740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 11/20/2022]
|
21
|
Sakai Y, Hanafusa H, Hisamoto N, Matsumoto K. Histidine dephosphorylation of the Gβ protein GPB-1 promotes axon regeneration in C. elegans. EMBO Rep 2022; 23:e55076. [PMID: 36278516 PMCID: PMC9724660 DOI: 10.15252/embr.202255076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 12/12/2022] Open
Abstract
Histidine phosphorylation is an emerging noncanonical protein phosphorylation in animals, yet its physiological role remains largely unexplored. The protein histidine phosphatase (PHPT1) was recently identified for the first time in mammals. Here, we report that PHIP-1, an ortholog of PHPT1 in Caenorhabditis elegans, promotes axon regeneration by dephosphorylating GPB-1 Gβ at His-266 and inactivating GOA-1 Goα signaling, a negative regulator of axon regeneration. Overexpression of the histidine kinase NDK-1 also inhibits axon regeneration via GPB-1 His-266 phosphorylation. Thus, His-phosphorylation plays an antiregenerative role in C. elegans. Furthermore, we identify a conserved UNC-51/ULK kinase that functions in autophagy as a PHIP-1-binding protein. We demonstrate that UNC-51 phosphorylates PHIP-1 at Ser-112 and activates its catalytic activity and that this phosphorylation is required for PHIP-1-mediated axon regeneration. This study reveals a molecular link from ULK to protein histidine phosphatase, which facilitates axon regeneration by inhibiting trimeric G protein signaling.
Collapse
Affiliation(s)
- Yoshiki Sakai
- Division of Biological Science, Graduate School of ScienceNagoya UniversityNagoyaJapan
| | - Hiroshi Hanafusa
- Division of Biological Science, Graduate School of ScienceNagoya UniversityNagoyaJapan
| | - Naoki Hisamoto
- Division of Biological Science, Graduate School of ScienceNagoya UniversityNagoyaJapan
| | - Kunihiro Matsumoto
- Division of Biological Science, Graduate School of ScienceNagoya UniversityNagoyaJapan
| |
Collapse
|
22
|
Lin Y, Zhao YJ, Zhang HL, Hao WJ, Zhu RD, Wang Y, Hu W, Zhou RP. Regulatory role of KCa3.1 in immune cell function and its emerging association with rheumatoid arthritis. Front Immunol 2022; 13:997621. [PMID: 36275686 PMCID: PMC9580404 DOI: 10.3389/fimmu.2022.997621] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/16/2022] [Indexed: 11/25/2022] Open
Abstract
Rheumatoid arthritis (RA) is a common autoimmune disease characterized by chronic inflammation. Immune dysfunction is an essential mechanism in the pathogenesis of RA and directly linked to synovial inflammation and cartilage/bone destruction. Intermediate conductance Ca2+-activated K+ channel (KCa3.1) is considered a significant regulator of proliferation, differentiation, and migration of immune cells by mediating Ca2+ signal transduction. Earlier studies have demonstrated abnormal activation of KCa3.1 in the peripheral blood and articular synovium of RA patients. Moreover, knockout of KCa3.1 reduced the severity of synovial inflammation and cartilage damage to a significant extent in a mouse collagen antibody-induced arthritis (CAIA) model. Accumulating evidence implicates KCa3.1 as a potential therapeutic target for RA. Here, we provide an overview of the KCa3.1 channel and its pharmacological properties, discuss the significance of KCa3.1 in immune cells and feasibility as a drug target for modulating the immune balance, and highlight its emerging role in pathological progression of RA.
Collapse
Affiliation(s)
- Yi Lin
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Ying-Jie Zhao
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Hai-Lin Zhang
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Wen-Juan Hao
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Ren-Di Zhu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yan Wang
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- *Correspondence: Wei Hu, ; Ren-Peng Zhou,
| | - Ren-Peng Zhou
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- *Correspondence: Wei Hu, ; Ren-Peng Zhou,
| |
Collapse
|
23
|
Ding M, Fang H, Zhang J, Shi J, Yu X, Wen P, Wang Z, Cao S, Zhang Y, Shi X, Zhang H, He Y, Yan B, Tang H, Guo D, Gao J, Liu Z, Zhang L, Zhang S, Zhang X, Guo W. E3 ubiquitin ligase ring finger protein 5 protects against hepatic ischemia reperfusion injury by mediating phosphoglycerate mutase family member 5 ubiquitination. Hepatology 2022; 76:94-111. [PMID: 34735734 PMCID: PMC9303746 DOI: 10.1002/hep.32226] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/11/2021] [Accepted: 10/18/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND AIMS Hepatic ischemia-reperfusion (HIR) injury, a common clinical complication of liver transplantation and resection, affects patient prognosis. Ring finger protein 5 (RNF5) is an E3 ubiquitin ligase that plays important roles in endoplasmic reticulum stress, unfolded protein reactions, and inflammatory responses; however, its role in HIR is unclear. APPROACH AND RESULTS RNF5 expression was significantly down-regulated during HIR in mice and hepatocytes. Subsequently, RNF5 knockdown and overexpression of cell lines were subjected to hypoxia-reoxygenation challenge. Results showed that RNF5 knockdown significantly increased hepatocyte inflammation and apoptosis, whereas RNF5 overexpression had the opposite effect. Furthermore, hepatocyte-specific RNF5 knockout and transgenic mice were established and subjected to HIR, and RNF5 deficiency markedly aggravated liver damage and cell apoptosis and activated hepatic inflammatory responses, whereas hepatic RNF5 transgenic mice had the opposite effect compared with RNF5 knockout mice. Mechanistically, RNF5 interacted with phosphoglycerate mutase family member 5 (PGAM5) and mediated the degradation of PGAM5 through K48-linked ubiquitination, thereby inhibiting the activation of apoptosis-regulating kinase 1 (ASK1) and its downstream c-Jun N-terminal kinase (JNK)/p38. This eventually suppresses the inflammatory response and cell apoptosis in HIR. CONCLUSIONS We revealed that RNF5 protected against HIR through its interaction with PGAM5 to inhibit the activation of ASK1 and the downstream JNK/p38 signaling cascade. Our findings indicate that the RNF5-PGAM5 axis may be a promising therapeutic target for HIR.
Collapse
Affiliation(s)
- Ming‐Jie Ding
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina,Henan Engineering Technology Research Center for Organ TransplantationZhengzhouChina,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and ApplicationZhengzhouChina,Henan Research Centre for Organ TransplantationZhengzhouChina
| | - Hao‐Ran Fang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina,Henan Engineering Technology Research Center for Organ TransplantationZhengzhouChina,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and ApplicationZhengzhouChina,Henan Research Centre for Organ TransplantationZhengzhouChina
| | - Jia‐Kai Zhang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina,Henan Engineering Technology Research Center for Organ TransplantationZhengzhouChina,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and ApplicationZhengzhouChina,Henan Research Centre for Organ TransplantationZhengzhouChina
| | - Ji‐Hua Shi
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina,Henan Engineering Technology Research Center for Organ TransplantationZhengzhouChina,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and ApplicationZhengzhouChina,Henan Research Centre for Organ TransplantationZhengzhouChina
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina,Henan Engineering Technology Research Center for Organ TransplantationZhengzhouChina,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and ApplicationZhengzhouChina,Henan Research Centre for Organ TransplantationZhengzhouChina
| | - Pei‐Hao Wen
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina,Henan Engineering Technology Research Center for Organ TransplantationZhengzhouChina,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and ApplicationZhengzhouChina,Henan Research Centre for Organ TransplantationZhengzhouChina
| | - Zhi‐Hui Wang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina,Henan Engineering Technology Research Center for Organ TransplantationZhengzhouChina,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and ApplicationZhengzhouChina,Henan Research Centre for Organ TransplantationZhengzhouChina
| | - Sheng‐Li Cao
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina,Henan Engineering Technology Research Center for Organ TransplantationZhengzhouChina,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and ApplicationZhengzhouChina,Henan Research Centre for Organ TransplantationZhengzhouChina
| | - Yi Zhang
- Department of SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Xiao‐Yi Shi
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina,Henan Engineering Technology Research Center for Organ TransplantationZhengzhouChina,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and ApplicationZhengzhouChina,Henan Research Centre for Organ TransplantationZhengzhouChina
| | - Hua‐Peng Zhang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina,Henan Engineering Technology Research Center for Organ TransplantationZhengzhouChina,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and ApplicationZhengzhouChina,Henan Research Centre for Organ TransplantationZhengzhouChina
| | - Yu‐Ting He
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina,Henan Engineering Technology Research Center for Organ TransplantationZhengzhouChina,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and ApplicationZhengzhouChina,Henan Research Centre for Organ TransplantationZhengzhouChina
| | - Bing Yan
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina,Henan Engineering Technology Research Center for Organ TransplantationZhengzhouChina,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and ApplicationZhengzhouChina,Henan Research Centre for Organ TransplantationZhengzhouChina
| | - Hong‐Wei Tang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina,Henan Engineering Technology Research Center for Organ TransplantationZhengzhouChina,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and ApplicationZhengzhouChina,Henan Research Centre for Organ TransplantationZhengzhouChina
| | - Dan‐Feng Guo
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina,Henan Engineering Technology Research Center for Organ TransplantationZhengzhouChina,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and ApplicationZhengzhouChina,Henan Research Centre for Organ TransplantationZhengzhouChina
| | - Jie Gao
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina,Henan Engineering Technology Research Center for Organ TransplantationZhengzhouChina,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and ApplicationZhengzhouChina,Henan Research Centre for Organ TransplantationZhengzhouChina
| | - Zhen Liu
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Li Zhang
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Shui‐Jun Zhang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina,Henan Engineering Technology Research Center for Organ TransplantationZhengzhouChina,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and ApplicationZhengzhouChina,Henan Research Centre for Organ TransplantationZhengzhouChina
| | | | - Wen‐Zhi Guo
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina,Henan Engineering Technology Research Center for Organ TransplantationZhengzhouChina,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and ApplicationZhengzhouChina,Henan Research Centre for Organ TransplantationZhengzhouChina
| |
Collapse
|
24
|
Hunter T. A journey from phosphotyrosine to phosphohistidine and beyond. Mol Cell 2022; 82:2190-2200. [PMID: 35654043 DOI: 10.1016/j.molcel.2022.05.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/22/2022] [Accepted: 05/05/2022] [Indexed: 10/18/2022]
Abstract
Protein phosphorylation is a reversible post-translational modification. Nine of the 20 natural amino acids in proteins can be phosphorylated, but most of what we know about the roles of protein phosphorylation has come from studies of serine, threonine, and tyrosine phosphorylation. Much less is understood about the phosphorylation of histidine, lysine, arginine, cysteine, aspartate, and glutamate, so-called non-canonical phosphorylations. Phosphohistidine (pHis) was discovered 60 years ago as a mitochondrial enzyme intermediate; since then, evidence for the existence of histidine kinases and phosphohistidine phosphatases has emerged, together with examples where protein function is regulated by reversible histidine phosphorylation. pHis is chemically unstable and has thus been challenging to study. However, the recent development of tools for studying pHis has accelerated our understanding of the multifaceted functions of histidine phosphorylation, revealing a large number of proteins that are phosphorylated on histidine and implicating pHis in a wide range of cellular processes.
Collapse
Affiliation(s)
- Tony Hunter
- Molecular Cell Biology, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
25
|
Wu C, Feng ML, Jiao TW, Sun MJ. Clinical and prognostic significance of expression of phosphoglycerate mutase family member 5 and Parkin in advanced colorectal cancer. World J Clin Cases 2022; 10:4368-4379. [PMID: 35663086 PMCID: PMC9125282 DOI: 10.12998/wjcc.v10.i14.4368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/17/2021] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Drugs targeting mitochondria can induce mitophagy and restrain proliferation in colorectal cancer (CRC) cells. Phosphoglycerate mutase family member 5 (PGAM5) activates serine/threonine PTEN-induced putative kinase 1/Parkin pathway-mediated mitophagy. However, there are few studies on the clinical and prognostic significance of expression of PGAM5 protein and mitophagy-related protein Parkin in patients. AIM To assess the clinical significance of PGAM5 and Parkin proteins, as biomarkers for diagnosis and prognosis of CRC, by studying their expression in advanced CRC tissues and their association with clinicopathological parameters. METHODS The expression of PGAM5 and Parkin in CRC tissues from 100 patients was determined by immunohistochemistry. Each case was evaluated by using a combined scoring method based on signal intensity staining (scored 0-3) and the proportion of positively stained cancer cells (scored 0-4). The final staining score was calculated as the intensity score multiplied by the proportion score. Specimens were categorized as either high or low expression according to the Youden index, and the association between the expression of PGAM5 or Parkin and clinicopathological factors was ascertained. Additionally, we employed western blot to measure PGAM5 and Parkin protein expression in six matched pairs of CRC and adjacent non-tumor tissues. RESULTS Immunohistochemical and western blot findings showed that both PGAM5 and Parkin protein expression in tumor tissues was significantly higher than that in the adjacent tissues: PGAM5 and Parkin were mainly expressed in the cytoplasm of colonic epithelial cells. PGAM5 and Parkin protein levels were significantly positively correlated in advanced CRC tissues. Moreover, reduced Parkin protein expression was an independent prognostic factor for overall survival and progression-free survival in CRC patients as evinced by multivariate analysis. CONCLUSION The expression of PGAM5 protein and mitophagy-related protein Parkin has diagnostic significance for CRC and may become new biomarkers. Parkin may be a potential marker for the survival of CRC patients.
Collapse
Affiliation(s)
- Can Wu
- Department of Endoscope, The First Hospital Affiliated to China Medical University, Shenyang 110001, Liaoning Province, China
| | - Ming-Liang Feng
- Department of Endoscope, The First Hospital Affiliated to China Medical University, Shenyang 110001, Liaoning Province, China
| | - Tai-Wei Jiao
- Department of Endoscope, The First Hospital Affiliated to China Medical University, Shenyang 110001, Liaoning Province, China
| | - Ming-Jun Sun
- Department of Endoscope, The First Hospital Affiliated to China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
26
|
The many ways that nature has exploited the unusual structural and chemical properties of phosphohistidine for use in proteins. Biochem J 2021; 478:3575-3596. [PMID: 34624072 DOI: 10.1042/bcj20210533] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/15/2021] [Accepted: 09/22/2021] [Indexed: 01/12/2023]
Abstract
Histidine phosphorylation is an important and ubiquitous post-translational modification. Histidine undergoes phosphorylation on either of the nitrogens in its imidazole side chain, giving rise to 1- and 3- phosphohistidine (pHis) isomers, each having a phosphoramidate linkage that is labile at high temperatures and low pH, in contrast with stable phosphomonoester protein modifications. While all organisms routinely use pHis as an enzyme intermediate, prokaryotes, lower eukaryotes and plants also use it for signal transduction. However, research to uncover additional roles for pHis in higher eukaryotes is still at a nascent stage. Since the discovery of pHis in 1962, progress in this field has been relatively slow, in part due to a lack of the tools and techniques necessary to study this labile modification. However, in the past ten years the development of phosphoproteomic techniques to detect phosphohistidine (pHis), and methods to synthesize stable pHis analogues, which enabled the development of anti-phosphohistidine (pHis) antibodies, have accelerated our understanding. Recent studies that employed anti-pHis antibodies and other advanced techniques have contributed to a rapid expansion in our knowledge of histidine phosphorylation. In this review, we examine the varied roles of pHis-containing proteins from a chemical and structural perspective, and present an overview of recent developments in pHis proteomics and antibody development.
Collapse
|
27
|
Dong Y, Han H, Li Y, Guo L. [Roles of Histidine Kinases and Histidine Phosphatases in Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2021; 24:646-652. [PMID: 34455734 PMCID: PMC8503980 DOI: 10.3779/j.issn.1009-3419.2021.102.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
蛋白磷酸化修饰是最常见、最重要的蛋白质翻译后修饰方式。磷酸化修饰在细胞的增殖、分化、发育和代谢等生物学过程中发挥了重要的调控功能,与肿瘤的发生和发展也密切相关。蛋白激酶和磷酸酶对蛋白磷酸化修饰具有普遍的开/关调控作用。真核生物的蛋白磷酸化主要发生在丝氨酸、苏氨酸和酪氨酸残基,他们在肿瘤发生和发展中的作用已经得到了广泛的研究。但关于组氨酸磷酸化的研究受限于质谱分析和富集技术的发展研究较少。近年来,随着相关技术的快速发展和新的组氨酸磷酸酶的发现,使得研究人员越来越多关注到组氨酸磷酸化在肿瘤中的作用。因此,本文旨在对组氨酸磷酸化调控相关的组氨酸激酶和组氨酸磷酸酶在肿瘤中的作用作一综述。
Collapse
Affiliation(s)
- Yafang Dong
- Key Laboratory of Kidney Disease, precision Medicine Center, The Shanxi Provincial People' s Hospital, Shanxi Medical University, Taiyuan 030000, China
| | - Huimin Han
- Key Laboratory of Kidney Disease, precision Medicine Center, The Shanxi Provincial People' s Hospital, Shanxi Medical University, Taiyuan 030000, China
| | - Yafeng Li
- Key Laboratory of Kidney Disease, precision Medicine Center, The Shanxi Provincial People' s Hospital, Shanxi Medical University, Taiyuan 030000, China
| | - Lili Guo
- Key Laboratory of Kidney Disease, precision Medicine Center, The Shanxi Provincial People' s Hospital, Shanxi Medical University, Taiyuan 030000, China
| |
Collapse
|
28
|
A novel PGAM5 inhibitor LFHP-1c protects blood-brain barrier integrity in ischemic stroke. Acta Pharm Sin B 2021; 11:1867-1884. [PMID: 34386325 PMCID: PMC8343116 DOI: 10.1016/j.apsb.2021.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/15/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
Blood–brain barrier (BBB) damage after ischemia significantly influences stroke outcome. Compound LFHP-1c was previously discovered with neuroprotective role in stroke model, but its mechanism of action on protection of BBB disruption after stroke remains unknown. Here, we show that LFHP-1c, as a direct PGAM5 inhibitor, prevented BBB disruption after transient middle cerebral artery occlusion (tMCAO) in rats. Mechanistically, LFHP-1c binding with endothelial PGAM5 not only inhibited the PGAM5 phosphatase activity, but also reduced the interaction of PGAM5 with NRF2, which facilitated nuclear translocation of NRF2 to prevent BBB disruption from ischemia. Furthermore, LFHP-1c administration by targeting PGAM5 shows a trend toward reduced infarct volume, brain edema and neurological deficits in nonhuman primate Macaca fascicularis model with tMCAO. Thus, our study identifies compound LFHP-1c as a firstly direct PGAM5 inhibitor showing amelioration of ischemia-induced BBB disruption in vitro and in vivo, and provides a potentially therapeutics for brain ischemic stroke.
Collapse
|
29
|
Niemi NM, Pagliarini DJ. The extensive and functionally uncharacterized mitochondrial phosphoproteome. J Biol Chem 2021; 297:100880. [PMID: 34144036 PMCID: PMC8267538 DOI: 10.1016/j.jbc.2021.100880] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 11/06/2022] Open
Abstract
More than half a century ago, reversible protein phosphorylation was linked to mitochondrial metabolism through the regulation of pyruvate dehydrogenase. Since this discovery, the number of identified mitochondrial protein phosphorylation sites has increased by orders of magnitude, driven largely by technological advances in mass spectrometry-based phosphoproteomics. However, the majority of these modifications remain uncharacterized, rendering their function and relevance unclear. Nonetheless, recent studies have shown that disruption of resident mitochondrial protein phosphatases causes substantial metabolic dysfunction across organisms, suggesting that proper management of mitochondrial phosphorylation is vital for organellar and organismal homeostasis. While these data suggest that phosphorylation within mitochondria is of critical importance, significant gaps remain in our knowledge of how these modifications influence organellar function. Here, we curate publicly available datasets to map the extent of protein phosphorylation within mammalian mitochondria and to highlight the known functions of mitochondrial-resident phosphatases. We further propose models by which phosphorylation may affect mitochondrial enzyme activities, protein import and processing, and overall organellar homeostasis.
Collapse
Affiliation(s)
- Natalie M Niemi
- Department of Biochemistry & Molecular Biophysics, Washington University in St Louis, St Louis, Missouri, USA
| | - David J Pagliarini
- Departments of Cell Biology and Physiology, Biochemistry & Molecular Biophysics, and Genetics, Washington University in St Louis, St Louis, Missouri, USA; Morgridge Institute for Research, Madison, Wisconsin, USA; Department of Biochemistry, University of Madison-Wisconsin, Madison, Wisconsin, USA.
| |
Collapse
|
30
|
Baba T, Tanimura S, Yamaguchi A, Horikawa K, Yokozeki M, Hachiya S, Iemura SI, Natsume T, Matsuda N, Takeda K. Cleaved PGAM5 dephosphorylates nuclear serine/arginine-rich proteins during mitophagy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119045. [PMID: 33872670 DOI: 10.1016/j.bbamcr.2021.119045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 04/02/2021] [Accepted: 04/13/2021] [Indexed: 01/23/2023]
Abstract
PGAM5 is a protein phosphatase located in the inner mitochondrial membrane through its transmembrane (TM) domain and is cleaved within the TM domain upon mitochondrial dysfunction. We found previously that cleaved PGAM5 is released from mitochondria, following proteasome-mediated rupture of the outer mitochondrial membrane during mitophagy, a selective form of autophagy specific to mitochondria. Here, we examined the role of cleaved PGAM5 outside mitochondria. Deletion mutants that mimic cleaved PGAM5 existed not only in the cytosol but also in the nucleus, and a fraction of cleaved PGAM5 translocated to the nucleus during mitophagy induced by the uncoupler CCCP. We identified serine/arginine-related nuclear matrix protein of 160 kDa (SRm160)/SRRM1, which contains a highly phosphorylated domain rich in arginine/serine dipeptides, called the RS domain, as a nuclear protein that interacts with PGAM5. PGAM5 dephosphorylated SRm160, and incubation of lysates from WT cells, but not of those from PGAM5-deficient cells, induced dephosphorylation of SRm160 and another RS domain-containing protein SRSF1, one of the most characterized serine/arginine-rich (SR) proteins. Moreover, phosphorylation of these proteins and other SR proteins, which are commonly reactive toward the 1H4 monoclonal antibody that detects phosphorylated SR proteins, decreased during mitophagy, largely because of PGAM5 activity. These results suggest that PGAM5 regulates phosphorylation of these nuclear proteins during mitophagy. Because SRm160 and SR proteins play critical roles in mRNA metabolism, PGAM5 may coordinate cellular responses to mitochondrial stress at least in part through post-transcriptional and pre-translational events.
Collapse
Affiliation(s)
- Taiki Baba
- Department of Cell Regulation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Susumu Tanimura
- Department of Cell Regulation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Ayane Yamaguchi
- Department of Cell Regulation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Koichiro Horikawa
- Department of Cell Regulation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Masashi Yokozeki
- Department of Cell Regulation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Saki Hachiya
- Department of Cell Regulation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Shun-Ichiro Iemura
- Translational Research Center, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Tohru Natsume
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan
| | - Noriyuki Matsuda
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Kohsuke Takeda
- Department of Cell Regulation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan.
| |
Collapse
|
31
|
Terešak P, Lapao A, Subic N, Boya P, Elazar Z, Simonsen A. Regulation of PRKN-independent mitophagy. Autophagy 2021; 18:24-39. [PMID: 33570005 DOI: 10.1080/15548627.2021.1888244] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Mitochondria are dynamic, multifunctional cellular organelles that play a fundamental role in maintaining cellular homeostasis. Keeping the quality of mitochondria in check is of essential importance for functioning and survival of the cells. Selective autophagic clearance of flawed mitochondria, a process termed mitophagy, is one of the most prominent mechanisms through which cells maintain a healthy mitochondrial pool. The best-studied pathway through which mitophagy is exerted is the PINK1-PRKN pathway. However, an increasing number of studies have shown an existence of alternative pathways, where different proteins and lipids are able to recruit autophagic machinery independently of PINK1 and PRKN. The significance of PRKN-independent mitophagy pathways is reflected in various physiological and pathophysiological processes, but many questions regarding the regulation and the interplay between these pathways remain open. Here we review the current knowledge and recent progress made in the field of PRKN-independent mitophagy. Particularly we focus on the regulation of various receptors that participate in targeting impaired mitochondria to autophagosomes independently of PRKN.AbbreviationsAMPK: AMP-activated protein kinase; ATP: adenosine triphosphate; BCL2: BCL2 apoptosis regulator; BH: BCL2 homology; CCCP: Carbonyl cyanide m-chlorophenylhydrazone; CL: cardiolipin; ER: endoplasmic reticulum; FCCP: carbonyl cyanide p-trifluoromethoxyphenylhydrazone; IMM: inner mitochondrial membrane; IMS: mitochondrial intermembrane space; LIR: LC3-interacting region; MDVs: mitochondrial-derived vesicles; MTORC1: mechanistic target of rapamycin kinase complex 1; OMM: outer mitochondrial membrane; OXPHOS: oxidative phosphorylation; PD: Parkinson disease; PtdIns3K: phosphatidylinositol 3-kinase; RGC: retinal ganglion cell; RING: really interesting new gene; ROS: reactive oxygen species; SUMO: small ubiquitin like modifier; TBI: traumatic brain injury; TM: transmembrane.
Collapse
Affiliation(s)
- Petra Terešak
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Ana Lapao
- Department of Molecular Medicine, Institute of Basic Medical Sciences and Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nemanja Subic
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Patricia Boya
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Zvulun Elazar
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Anne Simonsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences and Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
32
|
Cheng M, Lin N, Dong D, Ma J, Su J, Sun L. PGAM5: A crucial role in mitochondrial dynamics and programmed cell death. Eur J Cell Biol 2020; 100:151144. [PMID: 33370650 DOI: 10.1016/j.ejcb.2020.151144] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/17/2022] Open
Abstract
In response to mitochondrial damage, mitochondria activate mitochondrial dynamics to maintain normal functions, and an imbalance in mitochondrial dynamics triggers multiple programmed cell death processes. Recent studies have shown that phosphoglycerate mutase 5 (PGAM5) is associated with mitochondrial damage. PGAM5 activates mitochondrial biogenesis and mitophagy to promote a cellular compensatory response when mitochondria are mildly damaged, whereas severe damage to mitochondria leads to PGAM5 inducing excessive mitochondria fission, disruption to mitochondrial movement, and amplification of apoptosis, necroptosis and mitophagic death signals, which eventually evoke cell death. PGAM5 functions mainly through protein-protein interactions and specific Ser/Thr/His protein phosphatase activity. PGAM5 is also regulated by mitochondrial proteases. Detection of PGAM5 and its interacting protein partners should enable a more accurate evaluation of mitochondrial damage and a more precise method for the diagnosis and treatment of diseases.
Collapse
Affiliation(s)
- Meiyu Cheng
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, Jilin, 130021, China
| | - Nan Lin
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, Jilin, 130021, China
| | - Delu Dong
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, Jilin, 130021, China
| | - Jiaoyan Ma
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, Jilin, 130021, China
| | - Jing Su
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, Jilin, 130021, China.
| | - Liankun Sun
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, Jilin, 130021, China.
| |
Collapse
|
33
|
Schulte JE, Roggiani M, Shi H, Zhu J, Goulian M. The phosphohistidine phosphatase SixA dephosphorylates the phosphocarrier NPr. J Biol Chem 2020; 296:100090. [PMID: 33199374 PMCID: PMC7948535 DOI: 10.1074/jbc.ra120.015121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/28/2020] [Accepted: 11/16/2020] [Indexed: 01/17/2023] Open
Abstract
Histidine phosphorylation is a posttranslational modification that alters protein function and also serves as an intermediate of phosphoryl transfer. Although phosphohistidine is relatively unstable, enzymatic dephosphorylation of this residue is apparently needed in some contexts, since both prokaryotic and eukaryotic phosphohistidine phosphatases have been reported. Here we identify the mechanism by which a bacterial phosphohistidine phosphatase dephosphorylates the nitrogen-related phosphotransferase system, a broadly conserved bacterial pathway that controls diverse metabolic processes. We show that the phosphatase SixA dephosphorylates the phosphocarrier protein NPr and that the reaction proceeds through phosphoryl transfer from a histidine on NPr to a histidine on SixA. In addition, we show that Escherichia coli lacking SixA are outcompeted by wild-type E. coli in the context of commensal colonization of the mouse intestine. Notably, this colonization defect requires NPr and is distinct from a previously identified in vitro growth defect associated with dysregulation of the nitrogen-related phosphotransferase system. The widespread conservation of SixA, and its coincidence with the phosphotransferase system studied here, suggests that this dephosphorylation mechanism may be conserved in other bacteria.
Collapse
Affiliation(s)
- Jane E Schulte
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Manuela Roggiani
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hui Shi
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA; College of Food Science, Southwest University, Beibei, Chongqing, China
| | - Jun Zhu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mark Goulian
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
34
|
Ahn S, Jung H, Kee JM. Quest for the Crypto-phosphoproteome. Chembiochem 2020; 22:319-325. [PMID: 33094900 DOI: 10.1002/cbic.202000583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/14/2020] [Indexed: 11/05/2022]
Abstract
Protein phosphorylation is one of the most studied post-translational modifications (PTMs). Despite the remarkable advances in phosphoproteomics, a chemically less-stable subset of the phosphosites, which we call the crypto-phosphoproteome, has remained underexplored due to technological challenges. In this Viewpoint, we briefly summarize the current understanding of these elusive protein phosphorylations and identify the missing pieces for future studies.
Collapse
Affiliation(s)
- Seungmin Ahn
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Korea
| | - Hoyoung Jung
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Korea
| | - Jung-Min Kee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Korea
| |
Collapse
|
35
|
DeBlasi JM, DeNicola GM. Dissecting the Crosstalk between NRF2 Signaling and Metabolic Processes in Cancer. Cancers (Basel) 2020; 12:E3023. [PMID: 33080927 PMCID: PMC7603127 DOI: 10.3390/cancers12103023] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022] Open
Abstract
The transcription factor NRF2 (nuclear factor-erythroid 2 p45-related factor 2 or NFE2L2) plays a critical role in response to cellular stress. Following an oxidative insult, NRF2 orchestrates an antioxidant program, leading to increased glutathione levels and decreased reactive oxygen species (ROS). Mounting evidence now implicates the ability of NRF2 to modulate metabolic processes, particularly those at the interface between antioxidant processes and cellular proliferation. Notably, NRF2 regulates the pentose phosphate pathway, NADPH production, glutaminolysis, lipid and amino acid metabolism, many of which are hijacked by cancer cells to promote proliferation and survival. Moreover, deregulation of metabolic processes in both normal and cancer-based physiology can stabilize NRF2. We will discuss how perturbation of metabolic pathways, including the tricarboxylic acid (TCA) cycle, glycolysis, and autophagy can lead to NRF2 stabilization, and how NRF2-regulated metabolism helps cells deal with these metabolic stresses. Finally, we will discuss how the negative regulator of NRF2, Kelch-like ECH-associated protein 1 (KEAP1), may play a role in metabolism through NRF2 transcription-independent mechanisms. Collectively, this review will address the interplay between the NRF2/KEAP1 complex and metabolic processes.
Collapse
Affiliation(s)
- Janine M. DeBlasi
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA;
- Cancer Biology PhD Program, University of South Florida, Tampa, FL 33612, USA
| | - Gina M. DeNicola
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA;
| |
Collapse
|
36
|
Gong H, Fan Z, Yi D, Chen J, Li Z, Guo R, Wang C, Fang W, Liu S. Histidine kinase NME1 and NME2 are involved in TGF-β1-induced HSC activation and CCl 4-induced liver fibrosis. J Mol Histol 2020; 51:573-581. [PMID: 32860079 DOI: 10.1007/s10735-020-09906-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 08/20/2020] [Indexed: 12/20/2022]
Abstract
Histidine phosphorylation (pHis) was first reported in 1962. There are few studies on pHis because of the thermal and acidic instability of pHis and the lack of specific methods to detect it. pHis has two isomers of 1-phosphate histidine (1-pHis) and 3-phosphate histidine (3-pHis). pHis antibodies have been developed recently and have promoted research in this field. In this study, we established a CCl4-induced liver fibrosis model in C57 mice and a TGF-β1-induced HSC activation model in LX-2 cells, to study the role of histidine phosphorylation. The expression of histidine kinases NME1 and NME2 was increased, histidine phosphatase PGAM5 and PHPT1 was unchanged, and 1-pHis and 3-pHis were increased in the in vivo and in vitro models. The expression of LHPP was decreased in the in vivo model but not in the in vitro model. To further study the role of NME1, NME2, and histidine phosphorylation in HSC activation, we silenced NME1 or NME2 and administered TGF-β1 in LX-2 cells. The results showed silencing NME1 or NME2 decreased TGF-β1-induced pHis levels and the expression of α-SMA and COL1A1, indicating the activation of HSC was suppressed. Then, we found the inhibitory effect on HSC activation is due to reduced phosphorylation of Smad2 and Smad3. In summary, our studies indicate that NME1 and NME2 are involved in TGF-β1-induced HSC activation and CCl4-induced liver fibrosis, which may be mediated by histidine phosphorylation.
Collapse
Affiliation(s)
- Hui Gong
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Zhiqiang Fan
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Dan Yi
- Center of Drug Clinical Trial, Zhuzhou Central Hospital, Zhuzhou, 412000, Hunan, China
| | - Junyu Chen
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Zuojun Li
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Ren Guo
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Chunjiang Wang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Weijin Fang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Shikun Liu
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
37
|
Adam K, Ning J, Reina J, Hunter T. NME/NM23/NDPK and Histidine Phosphorylation. Int J Mol Sci 2020; 21:E5848. [PMID: 32823988 PMCID: PMC7461546 DOI: 10.3390/ijms21165848] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/15/2022] Open
Abstract
The NME (Non-metastatic) family members, also known as NDPKs (nucleoside diphosphate kinases), were originally identified and studied for their nucleoside diphosphate kinase activities. This family of kinases is extremely well conserved through evolution, being found in prokaryotes and eukaryotes, but also diverges enough to create a range of complexity, with homologous members having distinct functions in cells. In addition to nucleoside diphosphate kinase activity, some family members are reported to possess protein-histidine kinase activity, which, because of the lability of phosphohistidine, has been difficult to study due to the experimental challenges and lack of molecular tools. However, over the past few years, new methods to investigate this unstable modification and histidine kinase activity have been reported and scientific interest in this area is growing rapidly. This review presents a global overview of our current knowledge of the NME family and histidine phosphorylation, highlighting the underappreciated protein-histidine kinase activity of NME family members, specifically in human cells. In parallel, information about the structural and functional aspects of the NME family, and the knowns and unknowns of histidine kinase involvement in cell signaling are summarized.
Collapse
Affiliation(s)
| | | | | | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; (K.A.); (J.N.); (J.R.)
| |
Collapse
|
38
|
Hay IM, Fearnley GW, Rios P, Köhn M, Sharpe HJ, Deane JE. The receptor PTPRU is a redox sensitive pseudophosphatase. Nat Commun 2020; 11:3219. [PMID: 32591542 PMCID: PMC7320164 DOI: 10.1038/s41467-020-17076-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 06/05/2020] [Indexed: 01/06/2023] Open
Abstract
The receptor-linked protein tyrosine phosphatases (RPTPs) are key regulators of cell-cell communication through the control of cellular phosphotyrosine levels. Most human RPTPs possess an extracellular receptor domain and tandem intracellular phosphatase domains: comprising an active membrane proximal (D1) domain and an inactive distal (D2) pseudophosphatase domain. Here we demonstrate that PTPRU is unique amongst the RPTPs in possessing two pseudophosphatase domains. The PTPRU-D1 displays no detectable catalytic activity against a range of phosphorylated substrates and we show that this is due to multiple structural rearrangements that destabilise the active site pocket and block the catalytic cysteine. Upon oxidation, this cysteine forms an intramolecular disulphide bond with a vicinal "backdoor" cysteine, a process thought to reversibly inactivate related phosphatases. Importantly, despite the absence of catalytic activity, PTPRU binds substrates of related phosphatases strongly suggesting that this pseudophosphatase functions in tyrosine phosphorylation by competing with active phosphatases for the binding of substrates.
Collapse
Affiliation(s)
- Iain M Hay
- Cambridge Institute for Medical Research, Hills Road, Cambridge, CB2 0XY, UK
- Signalling Programme, Babraham Institute, Cambridge, CB22 3AT, UK
| | - Gareth W Fearnley
- Cambridge Institute for Medical Research, Hills Road, Cambridge, CB2 0XY, UK
- Signalling Programme, Babraham Institute, Cambridge, CB22 3AT, UK
| | - Pablo Rios
- Signalling Research Centres BIOSS and CIBSS, and Faculty of Biology, University of Freiburg, Schänzlestr. 18, Freiburg, D-79104, Germany
| | - Maja Köhn
- Signalling Research Centres BIOSS and CIBSS, and Faculty of Biology, University of Freiburg, Schänzlestr. 18, Freiburg, D-79104, Germany
| | - Hayley J Sharpe
- Cambridge Institute for Medical Research, Hills Road, Cambridge, CB2 0XY, UK.
- Signalling Programme, Babraham Institute, Cambridge, CB22 3AT, UK.
| | - Janet E Deane
- Cambridge Institute for Medical Research, Hills Road, Cambridge, CB2 0XY, UK.
| |
Collapse
|
39
|
Sugawara S, Kanamaru Y, Sekine S, Maekawa L, Takahashi A, Yamamoto T, Watanabe K, Fujisawa T, Hattori K, Ichijo H. The mitochondrial protein PGAM5 suppresses energy consumption in brown adipocytes by repressing expression of uncoupling protein 1. J Biol Chem 2020; 295:5588-5601. [PMID: 32144202 PMCID: PMC7186182 DOI: 10.1074/jbc.ra119.011508] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 03/04/2020] [Indexed: 01/06/2023] Open
Abstract
Accumulating evidence suggests that brown adipose tissue (BAT) is a potential therapeutic target for managing obesity and related diseases. PGAM family member 5, mitochondrial serine/threonine protein phosphatase (PGAM5), is a protein phosphatase that resides in the mitochondria and regulates many biological processes, including cell death, mitophagy, and immune responses. Because BAT is a mitochondria-rich tissue, we have hypothesized that PGAM5 has a physiological function in BAT. We previously reported that PGAM5-knockout (KO) mice are resistant to severe metabolic stress. Importantly, lipid accumulation is suppressed in PGAM5-KO BAT, even under unstressed conditions, raising the possibility that PGAM5 deficiency stimulates lipid consumption. However, the mechanism underlying this observation is undetermined. Here, using an array of biochemical approaches, including quantitative RT-PCR, immunoblotting, and oxygen consumption assays, we show that PGAM5 negatively regulates energy expenditure in brown adipocytes. We found that PGAM5-KO brown adipocytes have an enhanced oxygen consumption rate and increased expression of uncoupling protein 1 (UCP1), a protein that increases energy consumption in the mitochondria. Mechanistically, we found that PGAM5 phosphatase activity and intramembrane cleavage are required for suppression of UCP1 activity. Furthermore, utilizing a genome-wide siRNA screen in HeLa cells to search for regulators of PGAM5 cleavage, we identified a set of candidate genes, including phosphatidylserine decarboxylase (PISD), which catalyzes the formation of phosphatidylethanolamine at the mitochondrial membrane. Taken together, these results indicate that PGAM5 suppresses mitochondrial energy expenditure by down-regulating UCP1 expression in brown adipocytes and that its phosphatase activity and intramembrane cleavage are required for UCP1 suppression.
Collapse
Affiliation(s)
- Sho Sugawara
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yusuke Kanamaru
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shiori Sekine
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Lila Maekawa
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Akinori Takahashi
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| | - Tadashi Yamamoto
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan; Laboratory for Immunogenetics, Center for Integrative Medical Sciences, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Japan
| | - Kengo Watanabe
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takao Fujisawa
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazuki Hattori
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
40
|
Immunohistochemistry (IHC): Chromogenic Detection of 3-Phosphohistidine Proteins in Formaldehyde-Fixed, Frozen Mouse Liver Tissue Sections. Methods Mol Biol 2020; 2077:193-208. [PMID: 31707660 PMCID: PMC9828869 DOI: 10.1007/978-1-4939-9884-5_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The development of antibodies that specifically detect histidine-phosphorylated proteins is a recent achievement and allows potential roles of histidine phosphorylated proteins in pathological and physiological conditions to be characterized. Immunohistochemical analyses enable the detection of proteins in tissues and can reveal alterations to the quantity and/or localization of these proteins through comparisons of normal and diseased specimens. However, the sensitivity of phosphohistidine modifications to phosphatases, acidic pH, and elevated temperatures poses unique challenges to the detection process and requires a protocol that bypasses traditional procedures utilizing paraffin-embedding and antigen-retrieval methods. Here, we detail a method for a brief fixation by 4% (v/v) paraformaldehyde on freshly collected tissues in the presence of PhosSTOP to block phosphatase activity, followed by a float on sucrose to protect the tissue prior to freezing. Specimens are then embedded in a cryopreservation medium in molds and frozen using an isoflurane, dry ice bath to best preserve the tissue morphology and phosphohistidine signal. We validate this technique in normal mouse liver using SC44-1, a monoclonal anti-3-pHis antibody used to uncover a role for a protein histidine phosphatase as a tumor suppressor in the liver. Furthermore, we demonstrate that the antibody signal can be eliminated by preincubating SC44-1 with a peptide treated with phosphoramidate to phosphorylate histidine residues. Thus, we present an IHC protocol suitable for specific detection of 3-phosphohistidine proteins in mouse liver tissue, and suggest that this can be used as a starting point for optimization of IHC using other phosphohistidine antibodies or in other tissue types, generating information that will enhance our understanding of phosphohistidine in models of disease.
Collapse
|
41
|
Abstract
Histidine phosphorylation of proteins is increasingly recognised as an important regulatory posttranslational modification in eukaryotes as well as prokaryotes. The HP (Histidine Phosphatase) superfamily, named for a key catalytic His residue, harbors two known groups of protein phosphohistidine phosphatases (PPHPs). The bacterial SixA protein acts as a regulator of His-Asp phosphorelays with two substrates characterized in vitro and/or in vivo. The recently characterized eukaryotic PHPP PGAM5 only has one currently known substrate, NDPK-B, through which it helps regulate T-cell signaling. SixA and PGAM5 appear to share no particular sequence or structural features relating to their PPHP activity suggesting that PHPP activity has arisen independently in different lineages of the HP superfamily. Further members of the HP superfamily may thus harbor (additional) unsuspected PHPP activity.
Collapse
|
42
|
Clubbs Coldron AKM, Byrne DP, Eyers PA. Analysis of 1- and 3-Phosphohistidine (pHis) Protein Modification Using Model Enzymes Expressed in Bacteria. Methods Mol Biol 2020; 2077:63-81. [PMID: 31707652 DOI: 10.1007/978-1-4939-9884-5_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Despite the discovery of protein histidine (His) phosphorylation nearly six decades ago, difficulties in measuring and quantifying this unstable post-translational modification (PTM) have limited its mechanistic analysis in prokaryotic and eukaryotic signaling. Here, we describe reliable procedures for affinity purification, cofactor-binding analysis and antibody-based detection of phosphohistidine (pHis), on the putative human His kinases NME1 (NDPK-A) and NME2 (NDPK-B) and the glycolytic phosphoglycerate mutase PGAM1. By exploiting isomer-specific monoclonal N1-pHis and N3-pHis antibodies, we describe robust protocols for immunological detection and isomer discrimination of site-specific pHis, including N3-pHis on His 11 of PGAM1.
Collapse
Affiliation(s)
- Alice K M Clubbs Coldron
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Dominic P Byrne
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Patrick A Eyers
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK.
| |
Collapse
|
43
|
Abstract
Signal transduction systems configured around a core phosphotransfer step between a histidine kinase and a cognate response regulator protein occur in organisms from all domains of life. These systems, termed two-component systems, constitute the majority of multi-component signaling pathways in Bacteria but are less prevalent in Archaea and Eukarya. The core signaling domains are modular, allowing versatility in configuration of components into single-step phosphotransfer and multi-step phosphorelay pathways, the former being predominant in bacteria and the latter in eukaryotes. Two-component systems regulate key cellular regulatory processes that provide adaptive responses to environmental stimuli and are of interest for the development of antimicrobial therapeutics, biotechnology applications, and biosensor engineering. In bacteria, two-component systems have been found to mediate responses to an extremely broad array of extracellular and intracellular chemical and physical stimuli, whereas in archaea and eukaryotes, the use of two-component systems is more limited. This review summarizes recent advances in exploring the repertoire of sensor histidine kinases in the Archaea and Eukarya domains of life.
Collapse
Affiliation(s)
- Nicolas Papon
- Groupe d'Etude des Interactions Hôte-Pathogène (GEIHP, EA 3142), SFR ICAT 4208, UNIV Angers, UNIV Brest, Angers, France
| | - Ann M Stock
- Department of Biochemistry and Molecular Biology, Center for Advanced Biotechnology and Medicine, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| |
Collapse
|
44
|
Hou B, Li W, Li J, Ma J, Xia P, Liu Z, Zeng Q, Zhang X, Chang D. Tumor suppressor LHPP regulates the proliferation of colorectal cancer cells via the PI3K/AKT pathway. Oncol Rep 2019; 43:536-548. [PMID: 31894339 PMCID: PMC6967159 DOI: 10.3892/or.2019.7442] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/20/2019] [Indexed: 12/15/2022] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed cancer and the fourth leading cause of cancer-related mortality worldwide. Thus, identification of the mechanisms involved in the progression of CRC has become a crucial element of facilitating early CRC diagnosis and targeted therapy for patients with advanced CRC. Currently, Phospholysine phosphohistidine inorganic pyrophosphate phosphatase (LHPP), a type of histidine phosphatase protein, has been confirmed as a tumor suppressor in hepatocellular carcinoma (HCC) and cervical cancer. However, the functions and molecular mechanisms underlying LHPP in CRC remain undefined. The present study revealed that dysregulation of LHPP was frequently observed in CRC tissues and was positively correlated with tumor severity and poor prognosis. Functional experiments demonstrated that overexpression of LHPP impeded CRC cell growth and proliferation in vitro, and was associated with a change in p53 expression and PI3K/AKT activity. In contrast, silencing of LHPP significantly promoted cell growth and proliferation by modulating the PI3K/AKT signaling pathway. Notably, the anti-CRC effects of LHPP were also observed in nude mouse in vivo experiments. Overall, the data obtained in the present study suggested that LHPP may be exploited as a diagnostic and prognostic candidate for patients with CRC.
Collapse
Affiliation(s)
- Bin Hou
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Wenhan Li
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 10068, P.R. China
| | - Jianhui Li
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 10068, P.R. China
| | - Jia Ma
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 10068, P.R. China
| | - Peng Xia
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Zhao Liu
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Qingnuo Zeng
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xin Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Dongmin Chang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
45
|
Battersby BJ, Richter U, Safronov O. Mitochondrial Nascent Chain Quality Control Determines Organelle Form and Function. ACS Chem Biol 2019; 14:2396-2405. [PMID: 31498990 DOI: 10.1021/acschembio.9b00518] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Proteotoxicity has long been considered a key factor in mitochondrial dysfunction and human disease. The origin of the endogenous offending toxic substrates and the regulatory pathways to deal with these insults, however, have remained unclear. Mitochondria maintain a compartmentalized gene expression system that in animals is only responsible for synthesis of 1% of the organelle proteome. Because of the relatively small contribution of the mitochondrial genome to the overall proteome, the synthesis and quality control of these nascent chains to maintain organelle proteostasis has long been overlooked. However, recent research has uncovered mechanisms by which defects to the quality control of mitochondrial gene expression are linked to a novel cellular stress response that impinges upon organelle form and function and cell fitness. In this review, we discuss the mechanisms for a key event in the response: activation of the metalloprotease OMA1. This severs the membrane tether of the dynamin-related GTPase OPA1, which is a critical determinant for mitochondrial morphology and function. We also highlight the evolutionary conservation from bacteria of these quality-control mechanisms to maintain membrane integrity, gene expression, and cell fitness.
Collapse
Affiliation(s)
| | - Uwe Richter
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| | - Omid Safronov
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
46
|
Zhu Y, Gu L, Lin X, Liu C, Lu B, Cui K, Zhou F, Zhao Q, Prochownik EV, Fan C, Li Y. Dynamic Regulation of ME1 Phosphorylation and Acetylation Affects Lipid Metabolism and Colorectal Tumorigenesis. Mol Cell 2019; 77:138-149.e5. [PMID: 31735643 DOI: 10.1016/j.molcel.2019.10.015] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/14/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022]
Abstract
PGAM5 is a mitochondrial serine/threonine phosphatase that regulates multiple metabolic pathways and contributes to tumorigenesis in a poorly understood manner. We show here that PGAM5 inhibition attenuates lipid metabolism and colorectal tumorigenesis in mice. PGAM5-mediated dephosphorylation of malic enzyme 1 (ME1) at S336 allows increased ACAT1-mediated K337 acetylation, leading to ME1 dimerization and activation, both of which are reversed by NEK1 kinase-mediated S336 phosphorylation. SIRT6 deacetylase antagonizes ACAT1 function in a manner that involves mutually exclusive ME1 S336 phosphorylation and K337 acetylation. ME1 also promotes nicotinamide adenine dinucleotide phosphate (NADPH) production, lipogenesis, and colorectal cancers in which ME1 transcripts are upregulated and ME1 protein is hypophosphorylated at S336 and hyperacetylated at K337. PGAM5 and ME1 upregulation occur via direct transcriptional activation mediated by β-catenin/TCF1. Thus, the balance between PGAM5-mediated dephosphorylation of ME1 S336 and ACAT1-mediated acetylation of K337 strongly influences NADPH generation, lipid metabolism, and the susceptibility to colorectal tumorigenesis.
Collapse
Affiliation(s)
- Yahui Zhu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Li Gu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Xi Lin
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Cheng Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Bingjun Lu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Kaisa Cui
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Feng Zhou
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University School of Medicine, Wuhan 430071 China; Hubei Clinical Center and Key Laboratory for Intestinal and Colorectal Diseases, Wuhan 430071, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University School of Medicine, Wuhan 430071 China; Hubei Clinical Center and Key Laboratory for Intestinal and Colorectal Diseases, Wuhan 430071, China
| | - Edward V Prochownik
- Division of Hematology/Oncology, Children's Hospital of Pittsburgh of UPMC, The Department of Microbiology and Molecular Genetics, The Pittsburgh Liver Research Center and The Hillman Cancer Center of UPMC, The University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Chengpeng Fan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Youjun Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
47
|
Zhu YR, Jiang XX, Zhang DM. Critical regulation of atherosclerosis by the KCa3.1 channel and the retargeting of this therapeutic target in in-stent neoatherosclerosis. J Mol Med (Berl) 2019; 97:1219-1229. [DOI: 10.1007/s00109-019-01814-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 05/07/2019] [Accepted: 06/18/2019] [Indexed: 01/09/2023]
|
48
|
Hardman G, Perkins S, Brownridge PJ, Clarke CJ, Byrne DP, Campbell AE, Kalyuzhnyy A, Myall A, Eyers PA, Jones AR, Eyers CE. Strong anion exchange-mediated phosphoproteomics reveals extensive human non-canonical phosphorylation. EMBO J 2019; 38:e100847. [PMID: 31433507 PMCID: PMC6826212 DOI: 10.15252/embj.2018100847] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 07/24/2019] [Accepted: 08/01/2019] [Indexed: 12/18/2022] Open
Abstract
Phosphorylation is a key regulator of protein function under (patho)physiological conditions, and defining site-specific phosphorylation is essential to understand basic and disease biology. In vertebrates, the investigative focus has primarily been on serine, threonine and tyrosine phosphorylation, but mounting evidence suggests that phosphorylation of other "non-canonical" amino acids also regulates critical aspects of cell biology. However, standard methods of phosphoprotein characterisation are largely unsuitable for the analysis of non-canonical phosphorylation due to their relative instability under acidic conditions and/or elevated temperature. Consequently, the complete landscape of phosphorylation remains unexplored. Here, we report an unbiased phosphopeptide enrichment strategy based on strong anion exchange (SAX) chromatography (UPAX), which permits identification of histidine (His), arginine (Arg), lysine (Lys), aspartate (Asp), glutamate (Glu) and cysteine (Cys) phosphorylation sites on human proteins by mass spectrometry-based phosphoproteomics. Remarkably, under basal conditions, and having accounted for false site localisation probabilities, the number of unique non-canonical phosphosites is approximately one-third of the number of observed canonical phosphosites. Our resource reveals the previously unappreciated diversity of protein phosphorylation in human cells, and opens up avenues for high-throughput exploration of non-canonical phosphorylation in all organisms.
Collapse
Affiliation(s)
- Gemma Hardman
- Centre for Proteome Research, Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Simon Perkins
- Department of Comparative and Functional Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Philip J Brownridge
- Centre for Proteome Research, Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Christopher J Clarke
- Centre for Proteome Research, Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Dominic P Byrne
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Amy E Campbell
- Centre for Proteome Research, Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Anton Kalyuzhnyy
- Department of Comparative and Functional Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Ashleigh Myall
- Department of Comparative and Functional Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Patrick A Eyers
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Andrew R Jones
- Department of Comparative and Functional Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Claire E Eyers
- Centre for Proteome Research, Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
49
|
Li H, Guan K, Li X, Ma Y, Zhou S. MFG-E8 induced differences in proteomic profiles in mouse C2C12 cells and its effect on PI3K/Akt and ERK signal pathways. Int J Biol Macromol 2019; 124:681-688. [DOI: 10.1016/j.ijbiomac.2018.11.265] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 12/13/2022]
|
50
|
Petkowski JJ, Bains W, Seager S. Natural Products Containing 'Rare' Organophosphorus Functional Groups. Molecules 2019; 24:E866. [PMID: 30823503 PMCID: PMC6429109 DOI: 10.3390/molecules24050866] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/13/2019] [Accepted: 02/22/2019] [Indexed: 12/25/2022] Open
Abstract
Phosphorous-containing molecules are essential constituents of all living cells. While the phosphate functional group is very common in small molecule natural products, nucleic acids, and as chemical modification in protein and peptides, phosphorous can form P⁻N (phosphoramidate), P⁻S (phosphorothioate), and P⁻C (e.g., phosphonate and phosphinate) linkages. While rare, these moieties play critical roles in many processes and in all forms of life. In this review we thoroughly categorize P⁻N, P⁻S, and P⁻C natural organophosphorus compounds. Information on biological source, biological activity, and biosynthesis is included, if known. This review also summarizes the role of phosphorylation on unusual amino acids in proteins (N- and S-phosphorylation) and reviews the natural phosphorothioate (P⁻S) and phosphoramidate (P⁻N) modifications of DNA and nucleotides with an emphasis on their role in the metabolism of the cell. We challenge the commonly held notion that nonphosphate organophosphorus functional groups are an oddity of biochemistry, with no central role in the metabolism of the cell. We postulate that the extent of utilization of some phosphorus groups by life, especially those containing P⁻N bonds, is likely severely underestimated and has been largely overlooked, mainly due to the technological limitations in their detection and analysis.
Collapse
Affiliation(s)
- Janusz J Petkowski
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA.
| | - William Bains
- Rufus Scientific, 37 The Moor, Melbourn, Royston, Herts SG8 6ED, UK.
| | - Sara Seager
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA.
- Department of Physics, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA.
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA.
| |
Collapse
|