1
|
Xu Z, Xie H, Song L, Huang Y, Huang J. BRCA1 and BRCA2 in DNA damage and replication stress response: Insights into their functions, mechanisms, and implications for cancer treatment. DNA Repair (Amst) 2025; 150:103847. [PMID: 40373656 DOI: 10.1016/j.dnarep.2025.103847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 05/04/2025] [Accepted: 05/08/2025] [Indexed: 05/17/2025]
Abstract
Genomic stability is a cornerstone of cellular survival and proliferation. To counter the constant threat posed by endogenous and exogenous DNA-damaging agents, cells rely on a network of intricate mechanisms to safeguard DNA integrity and ensure accurate replication. Among these, the BRCA1 and BRCA2 tumor suppressor proteins play pivotal roles. While traditionally recognized for their involvement in homologous recombination repair and cell cycle checkpoints, emerging evidence highlights their essential functions in protecting stalled replication forks during replication stress. Mutations in BRCA1 or BRCA2 disrupt these critical functions, leading to compromised genome stability and an increased susceptibility to various cancers, particularly breast and ovarian cancers. This review provides a comprehensive analysis of the multifaceted roles of BRCA1 and BRCA2, focusing on their contributions to DNA damage responses and replication stress management. By elucidating the molecular pathways through which BRCA1 and BRCA2 operate, we aim to provide insights into their pivotal roles in maintaining genomic integrity and their implications for cancer treatment.
Collapse
Affiliation(s)
- Ziqi Xu
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Haihua Xie
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Lizhi Song
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yuhua Huang
- Department of Urology, the First Affiliated Hospital of Soochow University, Suzhou 215000, China.
| | - Jun Huang
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing 321000, China.
| |
Collapse
|
2
|
Seppa IM, Ceppi I, Tennakoon M, Reginato G, Jackson J, Rouault CD, Agashe S, Sviderskiy VO, Limbu M, Lantelme E, Meroni A, Braunshier S, Borrello D, Verma P, Cejka P, Vindigni A. MRN-CtIP, EXO1, and DNA2-WRN/BLM act bidirectionally to process DNA gaps in PARPi-treated cells without strand cleavage. Genes Dev 2025; 39:582-602. [PMID: 40127955 PMCID: PMC12047661 DOI: 10.1101/gad.352421.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/24/2025] [Indexed: 03/26/2025]
Abstract
Single-stranded DNA (ssDNA) gaps impact genome stability and PARP inhibitor (PARPi) sensitivity, especially in BRCA1/2-deficient tumors. Using single-molecule DNA fiber analysis, electron microscopy, and biochemical methods, we found that MRN, CtIP, EXO1, and DNA2-WRN/BLM resect ssDNA gaps through a mechanism different from their actions at DNA ends. MRN resects ssDNA gaps in the 3'-to-5' direction using its pCtIP-stimulated exonuclease activity. Unlike at DNA ends, MRN does not use its endonucleolytic activity to cleave the 5'-terminated strand flanking the gap or the ssDNA. EXO1 and DNA2-WRN/BLM specifically resect the 5' end of the gap independent of MRN-CtIP. This resection process alters ssDNA gap repair kinetics in BRCA1-proficient and -deficient cells. In BRCA1-deficient cells treated with PARPis, excessive resection results in larger ssDNA gaps, hindering their repair and leading to DNA breaks in subsequent cell cycle stages due to ssDNA gaps colliding with DNA replication forks. These findings broaden our understanding of the role of human nucleases in DNA metabolism and have significant implications for defining the mechanisms driving PARPi sensitivity in BRCA-deficient tumors.
Collapse
Affiliation(s)
- Isabelle M Seppa
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri 63110, USA
| | - Ilaria Ceppi
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana, CH 6500 Bellinzona, Switzerland
| | - Mithila Tennakoon
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri 63110, USA
| | - Giordano Reginato
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana, CH 6500 Bellinzona, Switzerland
| | - Jessica Jackson
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri 63110, USA
| | - Celia D Rouault
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri 63110, USA
| | - Sumedha Agashe
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri 63110, USA
| | - Vladislav O Sviderskiy
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri 63110, USA
| | - Mangsi Limbu
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri 63110, USA
| | - Erica Lantelme
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Alice Meroni
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri 63110, USA
| | - Stefan Braunshier
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana, CH 6500 Bellinzona, Switzerland
| | - Damiano Borrello
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana, CH 6500 Bellinzona, Switzerland
| | - Priyanka Verma
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri 63110, USA
| | - Petr Cejka
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana, CH 6500 Bellinzona, Switzerland
| | - Alessandro Vindigni
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri 63110, USA;
| |
Collapse
|
3
|
Wang Y, Liu Z, Lv Y, Long J, Lu Y, Huang P. Mechanisms of radioresistance and radiosensitization strategies for Triple Negative Breast Cancer. Transl Oncol 2025; 55:102351. [PMID: 40112501 PMCID: PMC11964565 DOI: 10.1016/j.tranon.2025.102351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 03/02/2025] [Accepted: 03/04/2025] [Indexed: 03/22/2025] Open
Abstract
Breast cancer is one of the most common malignant tumors in women. Triple-negative breast cancer (TNBC) is a molecular subtype of breast cancer that is characterized by a high risk of recurrence and poor prognosis. With the increasingly prominent role of radiotherapy in TNBC treatment, patient resistance to radiotherapy is an attractive area of clinical research. Gene expression changes induced by multiple mechanisms can affect the radiosensitivity of TNBC cells to radiotherapy through a variety of ways, and the enhancement of radioresistance is an important factor in the malignant progression of TNBC. The above pathways mainly include DNA damage repair, programmed cell death, cancer stem cells (CSC), antioxidant function, tumor microenvironment, and epithelial-mesenchymal transition (EMT) pathway. Tumor cells can reduce the damage of radiotherapy to themselves through the above ways, resulting in radioresistance. Therefore, in this review, we aim to summarize the strategies for immunotherapy combined with radiotherapy, targeted therapy combined with radiotherapy, and epigenetic therapy combined with radiotherapy to identify the best treatment for TNBC and improve the cure and survival rates of patients with TNBC. This review will provide important guidance and inspiration for the clinical practice of radiotherapy for TNBC, which will help deepen our understanding of this field and promote its development.
Collapse
Affiliation(s)
- Yuxuan Wang
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Zhiwei Liu
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Yulu Lv
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Jiayang Long
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Yao Lu
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China.
| | - Panpan Huang
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China.
| |
Collapse
|
4
|
Jordan MR, Mendoza-Munoz PL, Pawelczak KS, Turchi JJ. Targeting DNA damage sensors for cancer therapy. DNA Repair (Amst) 2025; 149:103841. [PMID: 40339280 DOI: 10.1016/j.dnarep.2025.103841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/18/2025] [Accepted: 04/26/2025] [Indexed: 05/10/2025]
Abstract
DNA damage occurs from both endogenous and exogenous sources and DNA damaging agents are a mainstay in cancer therapeutics. DNA damage sensors (DDS) are proteins that recognize and bind to unique DNA structures that arise from direct DNA damage or replication stress and are the first step in the DNA damage response (DDR). DNA damage sensors are responsible for recruiting transducer proteins that signal downstream DNA repair pathways. As the initiating proteins, DDS are excellent candidates for anti-cancer drug targeting to limit DDR activation. Here, we review four major DDS: PARP1, RPA, Ku, and the MRN complex. We briefly describe the cellular DDS functions before analyzing the structural mechanisms of DNA damage sensing. Lastly, we examine the current state of the field towards inhibiting each DDS for anti-cancer therapeutics and broadly discuss the therapeutic potential for DDS targeting.
Collapse
Affiliation(s)
- Matthew R Jordan
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Pamela L Mendoza-Munoz
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | | | - John J Turchi
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States; NERx BioSciences, Indianapolis, IN, United States.
| |
Collapse
|
5
|
Kim S, Yamada S, Li T, Canasto-Chibuque C, Kim JH, Marcet-Ortega M, Xu J, Eng DY, Feeney L, Petrini JHJ, Keeney S. Mouse MRE11-RAD50-NBS1 is needed to start and extend meiotic DNA end resection. Nat Commun 2025; 16:3613. [PMID: 40240347 PMCID: PMC12003770 DOI: 10.1038/s41467-025-57928-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 03/07/2025] [Indexed: 04/18/2025] Open
Abstract
Nucleolytic resection of DNA ends is critical for homologous recombination, but its mechanism is not fully understood, particularly in mammalian meiosis. Here we examine roles of the conserved MRN complex (MRE11, RAD50, and NBS1) through genome-wide analysis of meiotic resection during spermatogenesis in mice with various MRN mutations, including several that cause chromosomal instability in humans. Meiotic DSBs form at elevated levels but remain unresected if Mre11 is conditionally deleted, thus MRN is required for both resection initiation and regulation of DSB numbers. Resection lengths are reduced to varying degrees in MRN hypomorphs or if MRE11 nuclease activity is attenuated in a conditional nuclease-dead Mre11 model. These findings unexpectedly establish that MRN is needed for longer-range extension of resection beyond that carried out by the orthologous proteins in budding yeast meiosis. Finally, resection defects are additively worsened by combining MRN and Exo1 mutations, and mice that are unable to initiate resection or have greatly curtailed resection lengths experience catastrophic spermatogenic failure. Our results elucidate MRN roles in meiotic DSB end processing and establish the importance of resection for mammalian meiosis.
Collapse
Affiliation(s)
- Soonjoung Kim
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea.
| | - Shintaro Yamada
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Tao Li
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Jun Hyun Kim
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marina Marcet-Ortega
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jiaqi Xu
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Diana Y Eng
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- PackGene Biotech, Houston, TX, USA
| | - Laura Feeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Translational Medicine, Oncology R&D, AstraZeneca, Barcelona, Spain
| | - John H J Petrini
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
6
|
Vivalda F, Gatti M, Manfredi L, Dogan H, Porro A, Collotta G, Ceppi I, von Aesch C, van Ackeren V, Wild S, Steger M, Canovas B, Cubillos-Rojas M, Riera A, Cejka P, Nebreda A, Dibitetto D, Rottenberg S, Sartori A. The PIN1-p38-CtIP signalling axis protects stalled replication forks from deleterious degradation. Nucleic Acids Res 2025; 53:gkaf278. [PMID: 40207632 PMCID: PMC11983131 DOI: 10.1093/nar/gkaf278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 04/11/2025] Open
Abstract
Human CtIP plays a critical role in homologous recombination (HR) by promoting the resection of DNA double-strand breaks. Moreover, CtIP maintains genome stability through protecting stalled replication forks from nucleolytic degradation. However, the upstream signalling mechanisms governing the molecular switch between these two CtIP-dependent processes remain largely elusive. Here, we show that phosphorylation of CtIP by the p38α stress kinase and subsequent PIN1-mediated CtIP cis-to-trans isomerization is required for fork stabilization but dispensable for HR. We found that stalled forks are degraded in cells expressing non-phosphorylatable CtIP or lacking PIN1-p38α activity, while expression of a CtIP trans-locked mutant overcomes the requirement for PIN1-p38α in fork protection. We further reveal that Brca1-deficient mammary tumour cells that have acquired PARP inhibitor (PARPi) resistance regain chemosensitivity after PIN1 or p38α inhibition. Collectively, our findings identify the PIN1-p38-CtIP signalling pathway as a critical regulator of replication fork integrity.
Collapse
Affiliation(s)
- Francesca Vivalda
- Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland
| | - Marco Gatti
- Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland
| | - Letizia Manfredi
- Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland
| | - Hülya Dogan
- Institute of Animal Pathology and Bern Center for Precision Medicine, University of Bern, 3001 Bern, Switzerland
| | - Antonio Porro
- Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland
| | - Giulio Collotta
- Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland
| | - Ilaria Ceppi
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
| | - Christine von Aesch
- Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland
| | - Vanessa van Ackeren
- Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland
| | - Sebastian Wild
- Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland
| | - Martin Steger
- NEOsphere Biotechnologies, 82152 Martinsried, Germany
| | - Begoña Canovas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Monica Cubillos-Rojas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Antoni Riera
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Petr Cejka
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
| | - Angel R Nebreda
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- ICREA, 08010 Barcelona, Spain
| | - Diego Dibitetto
- Institute of Animal Pathology and Bern Center for Precision Medicine, University of Bern, 3001 Bern, Switzerland
- Department of Experimental Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Sven Rottenberg
- Institute of Animal Pathology and Bern Center for Precision Medicine, University of Bern, 3001 Bern, Switzerland
- Cancer Therapy Resistance Cluster, Department for Biomedical Research, University of Bern, 3008 Bern, Switzerland
| | - Alessandro A Sartori
- Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
7
|
Lahiri S, Hamilton G, Moore G, Goehring L, Huang TT, Jensen RB, Rothenberg E. BRCA2 prevents PARPi-mediated PARP1 retention to protect RAD51 filaments. Nature 2025; 640:1103-1111. [PMID: 40140565 DOI: 10.1038/s41586-025-08749-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/06/2025] [Indexed: 03/28/2025]
Abstract
The tumour-suppressor protein BRCA2 has a central role in homology-directed DNA repair by enhancing the formation of RAD51 filaments on resected single-stranded DNA generated at double-stranded DNA breaks and stimulating RAD51 activity1,2. Individuals with BRCA2 mutations are predisposed to cancer; however, BRCA2-deficient tumours are often responsive to targeted therapy with PARP inhibitors (PARPi)3-6. The mechanism by which BRCA2 deficiency renders cells sensitive to PARPi but with minimal toxicity in cells heterozygous for BRCA2 mutations remains unclear. Here we identify a previously unknown role of BRCA2 that is directly linked to the effect of PARP1 inhibition. Using biochemical and single-molecule approaches, we demonstrate that PARPi-mediated PARP1 retention on a resected DNA substrate interferes with RAD51 filament stability and impairs RAD51-mediated DNA strand exchange. Full-length BRCA2 protects RAD51 filaments and counteracts the instability conferred by PARPi-mediated retention by preventing the binding of PARP1 to DNA. Extending these findings to a cellular context, we use quantitative single-molecule localization microscopy to show that BRCA2 prevents PARPi-induced PARP1 retention at homologous-recombination repair sites. By contrast, BRCA2-deficient cells exhibit increased PARP1 retention at these lesions in response to PARPi. These results provide mechanistic insights into the role of BRCA2 in maintaining RAD51 stability and protecting homologous-recombination repair sites by mitigating PARPi-mediated PARP1 retention.
Collapse
Affiliation(s)
- Sudipta Lahiri
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - George Hamilton
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Gemma Moore
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - Liana Goehring
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Tony T Huang
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Ryan B Jensen
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA.
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
8
|
Ceccaldi R, Cejka P. Mechanisms and regulation of DNA end resection in the maintenance of genome stability. Nat Rev Mol Cell Biol 2025:10.1038/s41580-025-00841-4. [PMID: 40133633 DOI: 10.1038/s41580-025-00841-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2025] [Indexed: 03/27/2025]
Abstract
DNA end resection is a crucial early step in most DNA double-strand break (DSB) repair pathways. Resection involves the nucleolytic degradation of 5' ends at DSB sites to generate 3' single-stranded DNA overhangs. The first, short-range resection step is catalysed by the nuclease MRE11, acting as part of the MRE11-RAD50-NBS1 complex. Subsequent long-range resection is catalysed by the nucleases EXO1 and/or DNA2. Resected DNA is necessary for homology search and the priming of DNA synthesis in homologous recombination. DNA overhangs may also mediate DNA annealing in the microhomology-mediated end-joining and single-strand annealing pathways, and activate the DNA damage response. By contrast, DNA end resection inhibits DSB repair by non-homologous end-joining. In this Review, we discuss the importance of DNA end resection in various DSB repair pathways, the molecular mechanisms of end resection and its regulation, focusing on phosphorylation and other post-translational modifications that control resection throughout the cell cycle and in response to DNA damage.
Collapse
Affiliation(s)
- Raphael Ceccaldi
- INSERM U830, PSL Research University, Institut Curie, Paris, France.
| | - Petr Cejka
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland.
| |
Collapse
|
9
|
Nikulenkov F, Carbain B, Biswas R, Havel S, Prochazkova J, Sisakova A, Zacpalova M, Chavdarova M, Marini V, Vsiansky V, Weisova V, Slavikova K, Biradar D, Khirsariya P, Vitek M, Sedlak D, Bartunek P, Daniel L, Brezovsky J, Damborsky J, Paruch K, Krejci L. Discovery of new inhibitors of nuclease MRE11. Eur J Med Chem 2025; 285:117226. [PMID: 39793442 DOI: 10.1016/j.ejmech.2024.117226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 12/10/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025]
Abstract
MRE11 nuclease is a central player in signaling and processing DNA damage, and in resolving stalled replication forks. Here, we describe the identification and characterization of new MRE11 inhibitors MU147 and MU1409. Both compounds inhibit MRE11 nuclease more specifically and effectively than the relatively weak state-of-the-art inhibitor mirin. They also abrogate double-strand break repair mechanisms that rely on MRE11 nuclease activity, without impairing ATM activation. Inhibition of MRE11 also impairs nascent strand degradation of stalled replication forks and selectively affects BRCA2-deficient cells. Herein, we illustrate that our newly discovered compounds MU147 and MU1409 can be used as chemical probes to further explore the biological role of MRE11 and support the potential clinical relevance of pharmacological inhibition of this nuclease.
Collapse
Affiliation(s)
- Fedor Nikulenkov
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
| | - Benoit Carbain
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic; Department of Chemistry, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic
| | - Raktim Biswas
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
| | - Stepan Havel
- International Clinical Research Center, St. Anne's University Hospital in Brno, 62500, Brno, Czech Republic; Department of Chemistry, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic
| | - Jana Prochazkova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
| | - Alexandra Sisakova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
| | - Magdalena Zacpalova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
| | - Melita Chavdarova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
| | - Victoria Marini
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
| | - Vit Vsiansky
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
| | - Veronika Weisova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
| | - Kristina Slavikova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
| | - Dhanraj Biradar
- International Clinical Research Center, St. Anne's University Hospital in Brno, 62500, Brno, Czech Republic; Department of Chemistry, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic
| | - Prashant Khirsariya
- International Clinical Research Center, St. Anne's University Hospital in Brno, 62500, Brno, Czech Republic; Department of Chemistry, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic
| | - Marco Vitek
- Department of Chemistry, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic
| | - David Sedlak
- CZ-OPENSCREEN, Institute of Molecular Genetics of the ASCR, v.v.i., Prague 4, Czech Republic
| | - Petr Bartunek
- CZ-OPENSCREEN, Institute of Molecular Genetics of the ASCR, v.v.i., Prague 4, Czech Republic
| | - Lukas Daniel
- International Clinical Research Center, St. Anne's University Hospital in Brno, 62500, Brno, Czech Republic; Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic
| | - Jan Brezovsky
- International Clinical Research Center, St. Anne's University Hospital in Brno, 62500, Brno, Czech Republic; Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic
| | - Jiri Damborsky
- International Clinical Research Center, St. Anne's University Hospital in Brno, 62500, Brno, Czech Republic; Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic
| | - Kamil Paruch
- International Clinical Research Center, St. Anne's University Hospital in Brno, 62500, Brno, Czech Republic; Department of Chemistry, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic.
| | - Lumir Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic; NCBR, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic.
| |
Collapse
|
10
|
Lu M, Wu J, Gao Q, Jin R, An C, Ma T. To cleave or not and how? The DNA exonucleases and endonucleases in immunity. Genes Dis 2025; 12:101219. [PMID: 39759116 PMCID: PMC11697192 DOI: 10.1016/j.gendis.2024.101219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/02/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2025] Open
Abstract
DNA exonucleases and endonucleases are key executors of the genome during many physiological processes. They generate double-stranded DNA by cleaving damaged endogenous or exogenous DNA, triggering the activation of the innate immune pathways such as cGAS-STING-IFN, and enabling the body to produce anti-viral or anti-tumor immune responses. This is of great significance for maintaining the stability of the genome and improving the therapeutic efficacy of tumors. In addition, genomic instability caused by exonuclease mutations contributes to the development of various autoimmune diseases. This review summarizes the DNA exonucleases and endonucleases which have critical functions in immunity and associated diseases.
Collapse
Affiliation(s)
- Mingjun Lu
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Jinghong Wu
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Qing Gao
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Renjing Jin
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Changming An
- Department of Head and Neck Surgery, Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Teng Ma
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| |
Collapse
|
11
|
Mentani A, Maresca M, Shiriaeva A. Prime Editing: Mechanistic Insights and DNA Repair Modulation. Cells 2025; 14:277. [PMID: 39996750 PMCID: PMC11853414 DOI: 10.3390/cells14040277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/15/2025] [Accepted: 01/24/2025] [Indexed: 02/26/2025] Open
Abstract
Prime editing is a genome editing technique that allows precise modifications of cellular DNA without relying on donor DNA templates. Recently, several different prime editor proteins have been published in the literature, relying on single- or double-strand breaks. When prime editing occurs, the DNA undergoes one of several DNA repair pathways, and these processes can be modulated with the use of inhibitors. Firstly, this review provides an overview of several DNA repair mechanisms and their modulation by known inhibitors. In addition, we summarize different published prime editors and provide a comprehensive overview of associated DNA repair mechanisms. Finally, we discuss the delivery and safety aspects of prime editing.
Collapse
Affiliation(s)
- Astrid Mentani
- Genome Engineering, Discovery Science, BioPharmaceuticals R&D, AstraZeneca, 43183 Mölndal, Sweden
| | - Marcello Maresca
- Genome Engineering, Discovery Science, BioPharmaceuticals R&D, AstraZeneca, 43183 Mölndal, Sweden
| | - Anna Shiriaeva
- Genome Engineering, Discovery Science, BioPharmaceuticals R&D, AstraZeneca, 43183 Mölndal, Sweden
| |
Collapse
|
12
|
Asad M, Chang Y, Liao J, Yang G. CRISPR/Cas9 Genome Editing in the Diamondback Moth: Current Progress, Challenges, and Prospects. Int J Mol Sci 2025; 26:1515. [PMID: 40003981 PMCID: PMC11855872 DOI: 10.3390/ijms26041515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/04/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
The development of site-specific genome-editing tools like CRISPR (clustered regularly interspaced short palindromic repeat) and its associated protein, Cas9, is revolutionizing genetic engineering with its highly efficient mechanism, offering the potential for effective pest management. Recently, CRISPR/Cas9 gene-editing has been extensively utilized in the management of the diamondback moth, Plutella xylostella (L.), a highly destructive pest of vegetable crops, for different purposes, such as gene function analysis and genetic control. However, the progress related to this gene-editing tool in P. xylostella has not yet been summarized. This review highlights the progress and applications of CRISPR/Cas9 in uncovering the genes critical for development, reproduction, and insecticide resistance in P. xylostella. Moreover, the progress related to the CRISPR/Cas9 gene drive for population suppression and modifications has also been discussed. In addition to the significant progress made, challenges such as low germline editing efficiency and limited homology-directed repair remain obstacles to its widespread application. To address these limitations, we have discussed the different strategies that are anticipated to improve the efficiency of CRISPR/Cas9, paving the way to it becoming a pivotal tool in sustainable pest management. Therefore, the present review will help researchers in the future enhance the efficiency of the CRISPR/Cas9 system and use it to manage the diamondback moth.
Collapse
Affiliation(s)
- Muhammad Asad
- State Key Laboratory of Agricultural and Forestry Biosecurity, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.A.); (Y.C.); (J.L.)
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou 350002, China
| | - Yanpeng Chang
- State Key Laboratory of Agricultural and Forestry Biosecurity, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.A.); (Y.C.); (J.L.)
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou 350002, China
| | - Jianying Liao
- State Key Laboratory of Agricultural and Forestry Biosecurity, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.A.); (Y.C.); (J.L.)
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou 350002, China
| | - Guang Yang
- State Key Laboratory of Agricultural and Forestry Biosecurity, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.A.); (Y.C.); (J.L.)
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou 350002, China
| |
Collapse
|
13
|
Whalen JM, Earley J, Wisniewski C, Mercurio AM, Cantor SB. Targeting BRCA1-deficient PARP inhibitor-resistant cells with nickases reveals nick resection as a cancer vulnerability. NATURE CANCER 2025; 6:278-291. [PMID: 39838098 PMCID: PMC12041741 DOI: 10.1038/s43018-024-00902-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 12/18/2024] [Indexed: 01/23/2025]
Abstract
Tumors lacking the BRCA1 and BRCA2 (BRCA) hereditary breast cancer genes display heightened sensitivity to anti-cancer treatments, such as inhibitors of poly (ADP-ribose) polymerase 1 (PARP1). However, when resistance develops, treatments are lacking. Using CRISPR technology, we discovered that enhancing homologous recombination through increased DNA end resection in BRCA1-deficient cells by loss of the 53BP1-Shieldin complex-which is associated with resistance to PARP inhibitors-also heightens sensitivity to DNA nicks. The sensitivity is caused by hyper-resection of nicks into extensive single-stranded regions that trigger cell death. Based on these findings and that nicks limit tumor formation in mice, we propose nickases as a tool for personalized medicine. Moreover, our findings indicate that restricting nick expansion is a critical function of the 53BP1-Shieldin complex.
Collapse
Affiliation(s)
- Jenna M Whalen
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jillian Earley
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Christi Wisniewski
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Arthur M Mercurio
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Sharon B Cantor
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
14
|
Chiou LF, Jayaprakash D, Droby GN, Zhang X, Yang Y, Mills CA, Webb TS, Barker NK, Wu D, Herring LE, Bowser J, Vaziri C. The RING Finger E3 Ligase RNF25 Protects DNA Replication Forks Independently of its Canonical Roles in Ubiquitin Signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.09.632184. [PMID: 39829812 PMCID: PMC11741350 DOI: 10.1101/2025.01.09.632184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The DNA damage response (DDR) mechanisms that allow cells to tolerate DNA replication stress are critically important for genome stability and cell viability. Using an unbiased genetic screen we identify a role for the RING finger E3 ubiquitin ligase RNF25 in promoting DNA replication stress tolerance. In response to DNA replication stress, RNF25-deficient cells generate aberrantly high levels of single-stranded DNA (ssDNA), accumulate in S-phase and show reduced mitotic entry. Using single-molecule DNA fiber analysis, we show that RNF25 protects reversed DNA replication forks generated by the fork remodeler HLTF from nucleolytic degradation by MRE11 and CtIP. Mechanistically, RNF25 interacts with the replication fork protection factor REV7 and recruits REV7 to nascent DNA after replication stress. The role of RNF25 in protecting replication forks is fully separable from its canonical functions in ubiquitin conjugation. This work reveals the RNF25-REV7 signaling axis as an important protective mechanism in cells experiencing replication stress.
Collapse
Affiliation(s)
- Lilly F. Chiou
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Deepika Jayaprakash
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Oral and Craniofacial Biomedicine Program, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC 27599, USA
- Present address: Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37237, USA
| | - Gaith N. Droby
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xingyuan Zhang
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Present address: Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - Yang Yang
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Present address: In Vivo Neurobiology Group, Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - C. Allie Mills
- UNC Metabolomics & Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Thomas S. Webb
- UNC Metabolomics & Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Natalie K. Barker
- UNC Metabolomics & Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Di Wu
- Division of Oral and Craniofacial Health Science, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Laura E. Herring
- UNC Metabolomics & Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jessica Bowser
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Cyrus Vaziri
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lead Contact
| |
Collapse
|
15
|
Samsa WE, Zhang Z, Gong Z. CBFβ Regulates RUNX3 ADP-Ribosylation to Mediate Homologous Recombination Repair. J Cell Physiol 2025; 240:e31503. [PMID: 39696918 DOI: 10.1002/jcp.31503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/09/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024]
Abstract
RUNX3 is a master developmental transcriptional factor that has been implicated as a tumor suppressor in many cancers. However, the exact role of RUNX3 in cancer pathogenesis remains to be completely elucidated. Recently, it has emerged that RUNX3 is involved in the DNA damage response. Here, we demonstrate that heterodimerization of RUNX3 with CBFβ is necessary for its stability by protecting RUNX3 from RUNX3 ADP-ribosylation-dependent ubiquitination and degradation. We further identify new amino acid residues that are targets for PARylation and demonstrate that RUNX3 PARylation at these residues is necessary for localization of RUNX3 to DNA double strand break sites (DBSs). We also demonstrate that both RUNX3 PARylation and CBFβ heterodimerization with RUNX3 positively regulates homologous recombination (HR) repair, in part by promoting the recruitment of CtIP and phospho-RPA2 to the DBSs to mediate HR repair. In summary, we provide evidence that RUNX3 regulates HR repair activity in a PARylation-dependent manner.
Collapse
Affiliation(s)
- William E Samsa
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Zhen Zhang
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Zihua Gong
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| |
Collapse
|
16
|
Nelligan A, Dungrawala H. SNF2L suppresses nascent DNA gap formation to promote DNA synthesis. Nucleic Acids Res 2024; 52:13003-13018. [PMID: 39413208 PMCID: PMC11602140 DOI: 10.1093/nar/gkae903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024] Open
Abstract
Nucleosome remodelers at replication forks function in the assembly and maturation of chromatin post DNA synthesis. The ISWI chromatin remodeler SNF2L (or SMARCA1) travels with replication forks but its contribution to DNA replication remains largely unknown. We find that fork elongation is curtailed when SNF2L is absent. SNF2L deficiency elevates replication stress and causes fork collapse due to remodeling activities by fork reversal enzymes. Mechanistically, SNF2L regulates nucleosome assembly to suppress post-replicative ssDNA gap accumulation. Gap induction is not dependent on fork remodeling and PRIMPOL. Instead, gap synthesis is driven by MRE11 and EXO1 indicating susceptibility of nascent DNA to nucleolytic cleavage and resection when SNF2L is removed. Additionally, nucleosome remodeling by SNF2L protects nascent chromatin from MNase digestion and gap induction highlighting a critical role of SNF2L in chromatin assembly post DNA synthesis to maintain unperturbed replication.
Collapse
Affiliation(s)
- Anthony Nelligan
- Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA
| | - Huzefa Dungrawala
- Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
17
|
Thomas MS, Pillai GS, Butler MA, Fernandez J, LaRocque JR. The epistatic relationship of Drosophila melanogaster CtIP and Rif1 in homology-directed repair of DNA double-strand breaks. G3 (BETHESDA, MD.) 2024; 14:jkae210. [PMID: 39397376 PMCID: PMC11540315 DOI: 10.1093/g3journal/jkae210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/26/2024] [Indexed: 10/15/2024]
Abstract
Double-strand breaks (DSBs) are genotoxic DNA lesions that pose significant threats to genomic stability, necessitating precise and efficient repair mechanisms to prevent cell death or mutations. DSBs are repaired through nonhomologous end-joining (NHEJ) or homology-directed repair (HDR), which includes homologous recombination (HR) and single-strand annealing (SSA). CtIP and Rif1 are conserved proteins implicated in DSB repair pathway choice, possibly through redundant roles in promoting DNA end-resection required for HDR. Although the roles of these proteins have been well-established in other organisms, the role of Rif1 and its potential redundancies with CtIP in Drosophila melanogaster remain elusive. To examine the roles of DmCtIP and DmRif1 in DSB repair, this study employed the direct repeat of white (DR-white) assay, tracking across indels by decomposition (TIDE) analysis, and P{wIw_2 kb 3'} assay to track repair outcomes in HR, NHEJ, and SSA, respectively. These experiments were performed in DmCtIPΔ/Δ single mutants, DmRif1Δ/Δ single mutants, and DmRif1Δ/Δ; DmCtIPΔ/Δ double mutants. This work demonstrates significant defects in both HR and SSA repair in DmCtIPΔ/Δ and DmRif1Δ/Δ single mutants. However, experiments in DmRif1Δ/Δ; DmCtIPΔ/Δ double mutants reveal that DmCtIP is epistatic to DmRif1 in promoting HDR. Overall, this study concludes that DmRif1 and DmCtIP do not perform their activities in a redundant pathway, but rather DmCtIP is the main driver in promoting HR and SSA, most likely through its role in end resection.
Collapse
Affiliation(s)
- Makenzie S Thomas
- Department of Human Science, School of Health, Georgetown University Medical Center, Washington, D.C. 20057, USA
| | - Gautham S Pillai
- Department of Human Science, School of Health, Georgetown University Medical Center, Washington, D.C. 20057, USA
| | - Margaret A Butler
- Department of Human Science, School of Health, Georgetown University Medical Center, Washington, D.C. 20057, USA
| | - Joel Fernandez
- Department of Human Science, School of Health, Georgetown University Medical Center, Washington, D.C. 20057, USA
| | - Jeannine R LaRocque
- Department of Human Science, School of Health, Georgetown University Medical Center, Washington, D.C. 20057, USA
| |
Collapse
|
18
|
Wu W, Fan Z, Fu H, Ma X, Wang D, Liu H, Zhang C, Zheng H, Yang Y, Wu H, Miao X, An R, Gong Y, Tang TS, Guo C. VGLL3 modulates chemosensitivity through promoting DNA double-strand break repair. SCIENCE ADVANCES 2024; 10:eadr2643. [PMID: 39383226 PMCID: PMC11463272 DOI: 10.1126/sciadv.adr2643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/04/2024] [Indexed: 10/11/2024]
Abstract
Transcription cofactor vestigial-like 3 (VGLL3), as a master regulator of female-biased autoimmunity, also functions in tumor development, while the underlying mechanisms remain largely elusive. Here, we report that VGLL3 plays an important role in DNA damage response (DDR). VGLL3 can be recruited to damage sites in a PARylation-dependent manner. VGLL3 depletion impairs the accumulation of RNF8 and RAD51 at sites of DNA damage, leading to reduced homologous recombination efficiency and increased cellular sensitivity to chemotherapeutic drugs. Mechanistically, VGLL3 can prevent CtIP from KLHL15-mediated ubiquitination and degradation through competitive binding with KLHL15 and, meanwhile, stabilize MDC1 by limiting TRIP12-MDC1 but promoting USP7-MDC1 associations for optimal RNF8 signaling initiation. Consistently, VGLL3 depletion delays tumor development and sensitizes the xenografts to etoposide treatment. Overall, our results reveal an unexpected role of VGLL3 in DDR, which is distinct from its transcriptional cofactor function and not conserved among VGLL family members.
Collapse
Affiliation(s)
- Wei Wu
- China National Center for Bioinformation, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhenzhen Fan
- China National Center for Bioinformation, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hui Fu
- China National Center for Bioinformation, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolu Ma
- Key Laboratory of Organ Regeneration and Reconstruction’State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Dongzhou Wang
- China National Center for Bioinformation, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongmei Liu
- Key Laboratory of Organ Regeneration and Reconstruction’State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Chuanchao Zhang
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hui Zheng
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yeran Yang
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Honglin Wu
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Organ Regeneration and Reconstruction’State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Xiuxiu Miao
- China National Center for Bioinformation, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruiyuan An
- China National Center for Bioinformation, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifei Gong
- China National Center for Bioinformation, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tie-Shan Tang
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Organ Regeneration and Reconstruction’State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Caixia Guo
- China National Center for Bioinformation, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Ceppi I, Dello Stritto MR, Mütze M, Braunshier S, Mengoli V, Reginato G, Võ HMP, Jimeno S, Acharya A, Roy M, Sanchez A, Halder S, Howard SM, Guérois R, Huertas P, Noordermeer SM, Seidel R, Cejka P. Mechanism of BRCA1-BARD1 function in DNA end resection and DNA protection. Nature 2024; 634:492-500. [PMID: 39261728 PMCID: PMC11464378 DOI: 10.1038/s41586-024-07909-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 08/05/2024] [Indexed: 09/13/2024]
Abstract
DNA double-strand break (DSB) repair by homologous recombination is initiated by DNA end resection, a process involving the controlled degradation of the 5'-terminated strands at DSB sites1,2. The breast cancer suppressor BRCA1-BARD1 not only promotes resection and homologous recombination, but it also protects DNA upon replication stress1,3-9. BRCA1-BARD1 counteracts the anti-resection and pro-non-homologous end-joining factor 53BP1, but whether it functions in resection directly has been unclear10-16. Using purified recombinant proteins, we show here that BRCA1-BARD1 directly promotes long-range DNA end resection pathways catalysed by the EXO1 or DNA2 nucleases. In the DNA2-dependent pathway, BRCA1-BARD1 stimulates DNA unwinding by the Werner or Bloom helicase. Together with MRE11-RAD50-NBS1 and phosphorylated CtIP, BRCA1-BARD1 forms the BRCA1-C complex17,18, which stimulates resection synergistically to an even greater extent. A mutation in phosphorylated CtIP (S327A), which disrupts its binding to the BRCT repeats of BRCA1 and hence the integrity of the BRCA1-C complex19-21, inhibits resection, showing that BRCA1-C is a functionally integrated ensemble. Whereas BRCA1-BARD1 stimulates resection in DSB repair, it paradoxically also protects replication forks from unscheduled degradation upon stress, which involves a homologous recombination-independent function of the recombinase RAD51 (refs. 4-6,8). We show that in the presence of RAD51, BRCA1-BARD1 instead inhibits DNA degradation. On the basis of our data, the presence and local concentration of RAD51 might determine the balance between the pronuclease and the DNA protection functions of BRCA1-BARD1 in various physiological contexts.
Collapse
Affiliation(s)
- Ilaria Ceppi
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Maria Rosaria Dello Stritto
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Martin Mütze
- Peter Debye Institute for Soft Matter Physics, Universität Leipzig, Leipzig, Germany
| | - Stefan Braunshier
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Valentina Mengoli
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Giordano Reginato
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Hồ Mỹ Phúc Võ
- Leiden University Medical Center, Leiden, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Sonia Jimeno
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, Spain
| | - Ananya Acharya
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Megha Roy
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Aurore Sanchez
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland
- Institut Curie, Paris Sciences and Lettres University, Sorbonne Université, CNRS UMR 3244, Dynamics of Genetic Information, Paris, France
| | - Swagata Halder
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland
- Biological Systems Engineering, Plaksha University, Mohali, India
| | - Sean Michael Howard
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland
- Department of Mechanical and Biomedical Engineering, Boise State University, Boise, ID, USA
| | - Raphaël Guérois
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Pablo Huertas
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, Spain
| | - Sylvie M Noordermeer
- Leiden University Medical Center, Leiden, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Ralf Seidel
- Peter Debye Institute for Soft Matter Physics, Universität Leipzig, Leipzig, Germany
| | - Petr Cejka
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland.
| |
Collapse
|
20
|
Qian C, Li X, Zhang J, Wang Y. Small Molecular Inhibitors That Target ATM for Drug Discovery: Current Research and Potential Prospective. J Med Chem 2024; 67:14742-14767. [PMID: 39149790 DOI: 10.1021/acs.jmedchem.4c01064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The protein kinase ataxia telangiectasia mutated (ATM) is a constituent of the phosphatidylinositol 3-kinase-related kinase (PIKK) family, exerting a pivotal influence on diverse cellular processes, notably the signaling of double-strand DNA breaks (DSB) and stress response. The dysregulation of ATM is implicated in the pathogenesis of cancer and other diseases such as neurodegeneration. Hence, ATM is deemed a promising candidate for potential therapeutic interventions across a spectrum of diseases. Presently, while ATM small molecule inhibitors are not commercially available, various selective inhibitors have progressed to the clinical research phase. Specifically, AZD1390, WSD0628, SYH2051, and ZN-B-2262 are under investigation in clinical studies pertaining to glioblastoma multiforme and advanced solid tumors, respectively. In this Perspective, we encapsulate the structure, biological functions, and disease relevance of ATM. Subsequently, we concentrate on the design concepts and structure-activity relationships (SAR) of ATM inhibitors, delineating potential avenues for the development of more efficacious ATM-targeted inhibitors.
Collapse
Affiliation(s)
- Chunlin Qian
- Department of Respiratory and Critical Care Medicine and Targeted Tracer Research and Development Laboratory and Institute of Respiratory Health and State Key Laboratory of Respiratory Health and Multimorbidity and Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu 610041, Sichuan China
| | - Xiaoxue Li
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan China
| | - Jifa Zhang
- Department of Respiratory and Critical Care Medicine and Targeted Tracer Research and Development Laboratory and Institute of Respiratory Health and State Key Laboratory of Respiratory Health and Multimorbidity and Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu 610041, Sichuan China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, Sichuan China
| | - Yuxi Wang
- Department of Respiratory and Critical Care Medicine and Targeted Tracer Research and Development Laboratory and Institute of Respiratory Health and State Key Laboratory of Respiratory Health and Multimorbidity and Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu 610041, Sichuan China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, Sichuan China
| |
Collapse
|
21
|
Kim S, Yamada S, Li T, Canasto-Chibuque C, Kim JH, Marcet-Ortega M, Xu J, Eng DY, Feeney L, Petrini JHJ, Keeney S. The MRE11-RAD50-NBS1 complex both starts and extends DNA end resection in mouse meiosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.17.608390. [PMID: 39185212 PMCID: PMC11343206 DOI: 10.1101/2024.08.17.608390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Nucleolytic resection of DNA ends is critical for homologous recombination, but its mechanism is not fully understood, particularly in mammalian meiosis. Here we examine roles of the conserved MRN complex (MRE11, RAD50, and NBS1) through genome-wide analysis of meiotic resection in mice with various MRN mutations, including several that cause chromosomal instability in humans. Meiotic DSBs form at elevated levels but remain unresected if Mre11 is conditionally deleted, thus MRN is required for both resection initiation and regulation of DSB numbers. Resection lengths are reduced to varying degrees in MRN hypomorphs or if MRE11 nuclease activity is attenuated in a conditional nuclease-dead Mre11 model. These findings unexpectedly establish that MRN is needed for longer-range extension of resection, not just resection initiation. Finally, resection defects are additively worsened by combining MRN and Exo1 mutations, and mice that are unable to initiate resection or have greatly curtailed resection lengths experience catastrophic spermatogenic failure. Our results elucidate multiple functions of MRN in meiotic recombination, uncover unanticipated relationships between short- and long-range resection, and establish the importance of resection for mammalian meiosis.
Collapse
Affiliation(s)
- Soonjoung Kim
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Shintaro Yamada
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- The HAKUBI Center for Advanced Research, and Department of Aging Science and Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tao Li
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Claudia Canasto-Chibuque
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Jun Hyun Kim
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Marina Marcet-Ortega
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Jiaqi Xu
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Weill Cornell Graduate School of Medical Sciences
| | - Diana Y. Eng
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Laura Feeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - John H. J. Petrini
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Weill Cornell Graduate School of Medical Sciences
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Weill Cornell Graduate School of Medical Sciences
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
22
|
van de Kooij B, van der Wal FJ, Rother MB, Wiegant WW, Creixell P, Stout M, Joughin BA, Vornberger J, Altmeyer M, van Vugt MATM, Yaffe MB, van Attikum H. The Fanconi anemia core complex promotes CtIP-dependent end resection to drive homologous recombination at DNA double-strand breaks. Nat Commun 2024; 15:7076. [PMID: 39152113 PMCID: PMC11329772 DOI: 10.1038/s41467-024-51090-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 07/17/2024] [Indexed: 08/19/2024] Open
Abstract
During the repair of interstrand crosslinks (ICLs) a DNA double-strand break (DSB) is generated. The Fanconi anemia (FA) core complex, which is recruited to ICLs, promotes high-fidelity repair of this DSB by homologous recombination (HR). However, whether the FA core complex also promotes HR at ICL-independent DSBs, for example induced by ionizing irradiation or nucleases, remains controversial. Here, we identified the FA core complex members FANCL and Ube2T as HR-promoting factors in a CRISPR/Cas9-based screen. Using isogenic cell line models, we further demonstrated an HR-promoting function of FANCL and Ube2T, and of their ubiquitination substrate FANCD2. We show that FANCL and Ube2T localize at DSBs in a FANCM-dependent manner, and are required for the DSB accumulation of FANCD2. Mechanistically, we demonstrate that FANCL ubiquitin ligase activity is required for the accumulation of CtIP at DSBs, thereby promoting end resection and Rad51 loading. Together, these data demonstrate a dual genome maintenance function of the FA core complex and FANCD2 in promoting repair of both ICLs and DSBs.
Collapse
Affiliation(s)
- Bert van de Kooij
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands.
- Koch Institute for Integrative Cancer Research, MIT Center for Precision Cancer Medicine, Departments of Biology and Bioengineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | - Fenna J van der Wal
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Magdalena B Rother
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Wouter W Wiegant
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Pau Creixell
- Koch Institute for Integrative Cancer Research, MIT Center for Precision Cancer Medicine, Departments of Biology and Bioengineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- CRUK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Merula Stout
- Department of Molecular Mechanisms of Disease, University of Zurich (UZH), Zurich, Switzerland
| | - Brian A Joughin
- Koch Institute for Integrative Cancer Research, MIT Center for Precision Cancer Medicine, Departments of Biology and Bioengineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Julia Vornberger
- Department of Molecular Mechanisms of Disease, University of Zurich (UZH), Zurich, Switzerland
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of Zurich (UZH), Zurich, Switzerland
| | - Marcel A T M van Vugt
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Michael B Yaffe
- Koch Institute for Integrative Cancer Research, MIT Center for Precision Cancer Medicine, Departments of Biology and Bioengineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Surgery, Beth Israel Deaconess Medical Center, Divisions of Acute Care Surgery, Trauma, and Critical Care and Surgical Oncology, Harvard Medical School, Boston, USA.
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
23
|
Lokanathan Balaji S, De Bragança S, Balaguer-Pérez F, Northall S, Wilkinson OJ, Aicart-Ramos C, Seetaloo N, Sobott F, Moreno-Herrero F, Dillingham MS. DNA binding and bridging by human CtIP in the healthy and diseased states. Nucleic Acids Res 2024; 52:8303-8319. [PMID: 38922686 DOI: 10.1093/nar/gkae538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
The human DNA repair factor CtIP helps to initiate the resection of double-stranded DNA breaks for repair by homologous recombination, in part through its ability to bind and bridge DNA molecules. However, CtIP is a natively disordered protein that bears no apparent similarity to other DNA-binding proteins and so the structural basis for these activities remains unclear. In this work, we have used bulk DNA binding, single molecule tracking, and DNA bridging assays to study wild-type and variant CtIP proteins to better define the DNA binding domains and the effects of mutations associated with inherited human disease. Our work identifies a monomeric DNA-binding domain in the C-terminal region of CtIP. CtIP binds non-specifically to DNA and can diffuse over thousands of nucleotides. CtIP-mediated bridging of distant DNA segments is observed in single-molecule magnetic tweezers experiments. However, we show that binding alone is insufficient for DNA bridging, which also requires tetramerization via the N-terminal domain. Variant CtIP proteins associated with Seckel and Jawad syndromes display impaired DNA binding and bridging activities. The significance of these findings in the context of facilitating DNA break repair is discussed.
Collapse
Affiliation(s)
- Shreya Lokanathan Balaji
- DNA:Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Sara De Bragança
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049, Spain
| | - Francisco Balaguer-Pérez
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049, Spain
| | - Sarah Northall
- DNA:Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Oliver John Wilkinson
- DNA:Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Clara Aicart-Ramos
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049, Spain
| | - Neeleema Seetaloo
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Frank Sobott
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Fernando Moreno-Herrero
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049, Spain
| | - Mark Simon Dillingham
- DNA:Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
24
|
Bian X, Liu W, Yang K, Sun C. Therapeutic targeting of PARP with immunotherapy in acute myeloid leukemia. Front Pharmacol 2024; 15:1421816. [PMID: 39175540 PMCID: PMC11338796 DOI: 10.3389/fphar.2024.1421816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024] Open
Abstract
Targeting the poly (ADP-ribose) polymerase (PARP) protein has shown therapeutic efficacy in cancers with homologous recombination (HR) deficiency due to BRCA mutations. Only small fraction of acute myeloid leukemia (AML) cells carry BRCA mutations, hence the antitumor efficacy of PARP inhibitors (PARPi) against this malignancy is predicted to be limited; however, recent preclinical studies have demonstrated that PARPi monotherapy has modest efficacy in AML, while in combination with cytotoxic chemotherapy it has remarkable synergistic antitumor effects. Immunotherapy has revolutionized therapeutics in cancer treatment, and PARPi creates an ideal microenvironment for combination therapy with immunomodulatory agents by promoting tumor mutation burden. In this review, we summarize the role of PARP proteins in DNA damage response (DDR) pathways, and discuss recent preclinical studies using synthetic lethal modalities to treat AML. We also review the immunomodulatory effects of PARPi in AML preclinical models and propose future directions for therapy in AML, including combined targeting of the DDR and tumor immune microenvironment; such combination regimens will likely benefit patients with AML undergoing PARPi-mediated cancer therapy.
Collapse
Affiliation(s)
- Xing Bian
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Wenli Liu
- Food and Drug Inspection Center, Lu’an, China
| | - Kaijin Yang
- Food and Drug Inspection Center, Huai’nan, China
| | - Chuanbo Sun
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| |
Collapse
|
25
|
Wang J, Sadeghi CA, Le LV, Le Bouteiller M, Frock RL. ATM and 53BP1 regulate alternative end joining-mediated V(D)J recombination. SCIENCE ADVANCES 2024; 10:eadn4682. [PMID: 39083600 PMCID: PMC11290492 DOI: 10.1126/sciadv.adn4682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 06/11/2024] [Indexed: 08/02/2024]
Abstract
G0-G1 phase alternative end joining (A-EJ) is a recently defined mutagenic pathway characterized by resected deletion and translocation joints that are predominantly direct and are distinguished from A-EJ in cycling cells that rely much more on microhomology-mediated end joining (MMEJ). Using chemical and genetic approaches, we systematically evaluate potential A-EJ factors and DNA damage response (DDR) genes to support this mechanism by mapping the repair fates of RAG1/2-initiated double-strand breaks in the context of Igκ locus V-J recombination and chromosome translocation. Our findings highlight a polymerase theta-independent Parp1-XRCC1/LigIII axis as central A-EJ components, supported by 53BP1 in the context of an Ataxia-telangiectasia mutated (ATM)-activated DDR. Mechanistically, we demonstrate varied changes in short-range resection, MMEJ, and translocation, imposed by compromising specific DDR activities, which include polymerase alpha, Ataxia-telangiectasia and Rad3-related (ATR), DNA2, and Mre11. This study advances our understanding of DNA damage repair within the 53BP1 regulatory domain and the RAG1/2 postcleavage complex.
Collapse
Affiliation(s)
- Jinglong Wang
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Cheyenne A. Sadeghi
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Long V. Le
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Marie Le Bouteiller
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
26
|
Matsuzaki S, Sakuma T, Yamamoto T. REMOVER-PITCh: microhomology-assisted long-range gene replacement with highly multiplexed CRISPR-Cas9. In Vitro Cell Dev Biol Anim 2024; 60:697-707. [PMID: 38334880 PMCID: PMC11297102 DOI: 10.1007/s11626-024-00850-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/02/2024] [Indexed: 02/10/2024]
Abstract
A variety of CRISPR-Cas9-based gene editing technologies have been developed, including gene insertion and gene replacement, and applied to the study and treatment of diseases. While numerous studies have been conducted to improve the efficiency of gene insertion and to expand the system in various ways, there have been relatively few reports on gene replacement technology; therefore, further improvements are still needed in this context. Here, we developed the REMOVER-PITCh system to establish an efficient long-range gene replacement method and demonstrated its utility at two genomic loci in human cultured cells. REMOVER-PITCh depends on microhomology-assisted gene insertion technology called PITCh with highly multiplexed CRISPR-Cas9. First, we achieved gene replacement of about 20-kb GUSB locus using this system. Second, by applying the previously established knock-in-enhancing platform, the LoAD system, along with REMOVER-PITCh, we achieved the replacement of a longer gene region of about 200 kb at the ARSB locus. Our REMOVER-PITCh system will make it possible to remove and incorporate a variety of sequences from and into the genome, respectively, which will facilitate the generation of various disease and humanized models.
Collapse
Affiliation(s)
- Shu Matsuzaki
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
- Drug Discovery Laboratory, Wakunaga Pharmaceutical Co., Ltd., 1624 Shimokotachi, Koda-Cho, Akitakata-Shi, Hiroshima, 739-1195, Japan
| | - Tetsushi Sakuma
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.
| | - Takashi Yamamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| |
Collapse
|
27
|
Li S, Tang M, Xiong Y, Feng X, Wang C, Nie L, Huang M, Zhang H, Yin L, Zhu D, Yang C, Ma T, Chen J. Systematic investigation of BRCA1-A, -B, and -C complexes and their functions in DNA damage response and DNA repair. Oncogene 2024; 43:2621-2634. [PMID: 39068216 DOI: 10.1038/s41388-024-03108-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024]
Abstract
BRCA1, a breast cancer susceptibility gene, has emerged as a central mediator that brings together multiple signaling complexes in response to DNA damage. The A, B, and C complexes of BRCA1, which are formed based on their phosphorylation-dependent interactions with the BRCA1-C-terminal domains, contribute to the roles of BRCA1 in DNA repair and cell cycle checkpoint control. However, their functions in DNA damage response remain to be fully appreciated. Specifically, there has been no systematic investigation of the roles of BRCA1-A, -B, and -C complexes in the regulation of BRCA1 localization and functions, in part because of cellular lethality associated with loss of CtIP protein, which is an essential component in BRCA1-C complex. To systematically investigate the functions of these complexes in DNA damage response, we depleted a key component in each of these complexes. We used the degradation tag system to inducibly deplete endogenous CtIP and obtained a series of RAP80/FANCJ/CtIP single-, double-, and triple-knockout cells. We showed that loss of BRCA1-B/FANCJ and BRCA1-C/CtIP, but not BRCA1-A/RAP80, resulted in reduced cell proliferation and increased sensitivity to DNA damage. BRCA1-C/CtIP and BRCA1-A/RAP80 were involved in BRCA1 recruitment to sites of DNA damage. However, BRCA1-A/RAP80 was not essential for damage-induced BRCA1 localization. Instead, RAP80/H2AX and CtIP have redundant roles in BRCA1 recruitment. Altogether, our systematic analysis uncovers functional differences between BRCA1-A, -B, and -C complexes and provides new insights into the roles of these BRCA1-associated protein complexes in DNA damage response and DNA repair.
Collapse
Affiliation(s)
- Siting Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mengfan Tang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Immunology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yun Xiong
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xu Feng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chao Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Litong Nie
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Min Huang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Huimin Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ling Yin
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dandan Zhu
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chang Yang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tiantian Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
28
|
Khayat F, Alshmery M, Pal M, Oliver A, Bianchi A. Binding of the TRF2 iDDR motif to RAD50 highlights a convergent evolutionary strategy to inactivate MRN at telomeres. Nucleic Acids Res 2024; 52:7704-7719. [PMID: 38884214 PMCID: PMC11260466 DOI: 10.1093/nar/gkae509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/07/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024] Open
Abstract
Telomeres protect chromosome ends from unscheduled DNA repair, including from the MRN (MRE11, RAD50, NBS1) complex, which processes double-stranded DNA breaks (DSBs) via activation of the ATM kinase, promotes DNA end-tethering aiding the non-homologous end-joining (NHEJ) pathway, and initiates DSB resection through the MRE11 nuclease. A protein motif (MIN, for MRN inhibitor) inhibits MRN at budding yeast telomeres by binding to RAD50 and evolved at least twice, in unrelated telomeric proteins Rif2 and Taz1. We identify the iDDR motif of human shelterin protein TRF2 as a third example of convergent evolution for this telomeric mechanism for binding MRN, despite the iDDR lacking sequence homology to the MIN motif. CtIP is required for activation of MRE11 nuclease action, and we provide evidence for binding of a short C-terminal region of CtIP to a RAD50 interface that partly overlaps with the iDDR binding site, indicating that the interaction is mutually exclusive. In addition, we show that the iDDR impairs the DNA binding activity of RAD50. These results highlight direct inhibition of MRN action as a crucial role of telomeric proteins across organisms and point to multiple mechanisms enforced by the iDDR to disable the many activities of the MRN complex.
Collapse
Affiliation(s)
- Freddy Khayat
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Majedh Alshmery
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
- Department of Life Sciences, Hafr Al Batin University, Saudi Arabia
| | - Mohinder Pal
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
- School of Biosciences, University of Kent, Canterbury, UK
| | - Antony W Oliver
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Alessandro Bianchi
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| |
Collapse
|
29
|
Reginato G, Dello Stritto MR, Wang Y, Hao J, Pavani R, Schmitz M, Halder S, Morin V, Cannavo E, Ceppi I, Braunshier S, Acharya A, Ropars V, Charbonnier JB, Jinek M, Nussenzweig A, Ha T, Cejka P. HLTF disrupts Cas9-DNA post-cleavage complexes to allow DNA break processing. Nat Commun 2024; 15:5789. [PMID: 38987539 PMCID: PMC11237066 DOI: 10.1038/s41467-024-50080-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024] Open
Abstract
The outcome of CRISPR-Cas-mediated genome modifications is dependent on DNA double-strand break (DSB) processing and repair pathway choice. Homology-directed repair (HDR) of protein-blocked DSBs requires DNA end resection that is initiated by the endonuclease activity of the MRE11 complex. Using reconstituted reactions, we show that Cas9 breaks are unexpectedly not directly resectable by the MRE11 complex. In contrast, breaks catalyzed by Cas12a are readily processed. Cas9, unlike Cas12a, bridges the broken ends, preventing DSB detection and processing by MRE11. We demonstrate that Cas9 must be dislocated after DNA cleavage to allow DNA end resection and repair. Using single molecule and bulk biochemical assays, we next find that the HLTF translocase directly removes Cas9 from broken ends, which allows DSB processing by DNA end resection or non-homologous end-joining machineries. Mechanistically, the activity of HLTF requires its HIRAN domain and the release of the 3'-end generated by the cleavage of the non-target DNA strand by the Cas9 RuvC domain. Consequently, HLTF removes the H840A but not the D10A Cas9 nickase. The removal of Cas9 H840A by HLTF explains the different cellular impact of the two Cas9 nickase variants in human cells, with potential implications for gene editing.
Collapse
Affiliation(s)
- Giordano Reginato
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana (USI), 6500, Bellinzona, Switzerland
| | - Maria Rosaria Dello Stritto
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana (USI), 6500, Bellinzona, Switzerland
| | - Yanbo Wang
- Department of Biophysics & Biophysical Chemistry, Johns Hopkins University, Baltimore, MD, 21205, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jingzhou Hao
- Department of Biophysics, Johns Hopkins University, Baltimore, MD21218, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Raphael Pavani
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Michael Schmitz
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Swagata Halder
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana (USI), 6500, Bellinzona, Switzerland
- Biological Systems Engineering, Plaksha University, Mohali, Punjab, 140306, India
| | - Vincent Morin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Elda Cannavo
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana (USI), 6500, Bellinzona, Switzerland
| | - Ilaria Ceppi
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana (USI), 6500, Bellinzona, Switzerland
| | - Stefan Braunshier
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana (USI), 6500, Bellinzona, Switzerland
| | - Ananya Acharya
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana (USI), 6500, Bellinzona, Switzerland
| | - Virginie Ropars
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Jean-Baptiste Charbonnier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Martin Jinek
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Andrè Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Taekjip Ha
- Department of Biophysics & Biophysical Chemistry, Johns Hopkins University, Baltimore, MD, 21205, USA
- Department of Biophysics, Johns Hopkins University, Baltimore, MD21218, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Petr Cejka
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana (USI), 6500, Bellinzona, Switzerland.
| |
Collapse
|
30
|
He X, Brakebusch C. Regulation of Precise DNA Repair by Nuclear Actin Polymerization: A Chance for Improving Gene Therapy? Cells 2024; 13:1093. [PMID: 38994946 PMCID: PMC11240418 DOI: 10.3390/cells13131093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
Although more difficult to detect than in the cytoplasm, it is now clear that actin polymerization occurs in the nucleus and that it plays a role in the specific processes of the nucleus such as transcription, replication, and DNA repair. A number of studies suggest that nuclear actin polymerization is promoting precise DNA repair by homologous recombination, which could potentially be of help for precise genome editing and gene therapy. This review summarizes the findings and describes the challenges and chances in the field.
Collapse
Affiliation(s)
| | - Cord Brakebusch
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark;
| |
Collapse
|
31
|
Nicolas Y, Bret H, Cannavo E, Acharya A, Cejka P, Borde V, Guerois R. Molecular insights into the activation of Mre11-Rad50 endonuclease activity by Sae2/CtIP. Mol Cell 2024; 84:2223-2237.e4. [PMID: 38870937 DOI: 10.1016/j.molcel.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 02/25/2024] [Accepted: 05/20/2024] [Indexed: 06/15/2024]
Abstract
In Saccharomyces cerevisiae (S. cerevisiae), Mre11-Rad50-Xrs2 (MRX)-Sae2 nuclease activity is required for the resection of DNA breaks with secondary structures or protein blocks, while in humans, the MRE11-RAD50-NBS1 (MRN) homolog with CtIP is needed to initiate DNA end resection of all breaks. Phosphorylated Sae2/CtIP stimulates the endonuclease activity of MRX/N. Structural insights into the activation of the Mre11 nuclease are available only for organisms lacking Sae2/CtIP, so little is known about how Sae2/CtIP activates the nuclease ensemble. Here, we uncover the mechanism of Mre11 activation by Sae2 using a combination of AlphaFold2 structural modeling of biochemical and genetic assays. We show that Sae2 stabilizes the Mre11 nuclease in a conformation poised to cleave substrate DNA. Several designs of compensatory mutations establish how Sae2 activates MRX in vitro and in vivo, supporting the structural model. Finally, our study uncovers how human CtIP, despite considerable sequence divergence, employs a similar mechanism to activate MRN.
Collapse
Affiliation(s)
- Yoann Nicolas
- Institut Curie, PSL University, Sorbonne Université, CNRS UMR3244, Dynamics of Genetic Information, 75005 Paris, France
| | - Hélène Bret
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Elda Cannavo
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona 6500, Switzerland
| | - Ananya Acharya
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona 6500, Switzerland
| | - Petr Cejka
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona 6500, Switzerland.
| | - Valérie Borde
- Institut Curie, PSL University, Sorbonne Université, CNRS UMR3244, Dynamics of Genetic Information, 75005 Paris, France.
| | - Raphaël Guerois
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| |
Collapse
|
32
|
Liu Y, Lin Z, Yan J, Zhang X, Tong MH. A Rad50-null mutation in mouse germ cells causes reduced DSB formation, abnormal DSB end resection and complete loss of germ cells. Development 2024; 151:dev202312. [PMID: 38512324 DOI: 10.1242/dev.202312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 03/13/2024] [Indexed: 03/22/2024]
Abstract
The conserved MRE11-RAD50-NBS1/Xrs2 complex is crucial for DNA break metabolism and genome maintenance. Although hypomorphic Rad50 mutation mice showed normal meiosis, both null and hypomorphic rad50 mutation yeast displayed impaired meiosis recombination. However, the in vivo function of Rad50 in mammalian germ cells, particularly its in vivo role in the resection of meiotic double strand break (DSB) ends at the molecular level remains elusive. Here, we have established germ cell-specific Rad50 knockout mouse models to determine the role of Rad50 in mitosis and meiosis of mammalian germ cells. We find that Rad50-deficient spermatocytes exhibit defective meiotic recombination and abnormal synapsis. Mechanistically, using END-seq, we demonstrate reduced DSB formation and abnormal DSB end resection occurs in mutant spermatocytes. We further identify that deletion of Rad50 in gonocytes leads to complete loss of spermatogonial stem cells due to genotoxic stress. Taken together, our results reveal the essential role of Rad50 in mammalian germ cell meiosis and mitosis, and provide in vivo views of RAD50 function in meiotic DSB formation and end resection at the molecular level.
Collapse
Affiliation(s)
- Yuefang Liu
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
| | - Zhen Lin
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Junyi Yan
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xi Zhang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ming-Han Tong
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
33
|
Galanti L, Peritore M, Gnügge R, Cannavo E, Heipke J, Palumbieri MD, Steigenberger B, Symington LS, Cejka P, Pfander B. Dbf4-dependent kinase promotes cell cycle controlled resection of DNA double-strand breaks and repair by homologous recombination. Nat Commun 2024; 15:2890. [PMID: 38570537 PMCID: PMC10991553 DOI: 10.1038/s41467-024-46951-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 03/13/2024] [Indexed: 04/05/2024] Open
Abstract
DNA double-strand breaks (DSBs) can be repaired by several pathways. In eukaryotes, DSB repair pathway choice occurs at the level of DNA end resection and is controlled by the cell cycle. Upon cell cycle-dependent activation, cyclin-dependent kinases (CDKs) phosphorylate resection proteins and thereby stimulate end resection and repair by homologous recombination (HR). However, inability of CDK phospho-mimetic mutants to bypass this cell cycle regulation, suggests that additional cell cycle regulators may be important. Here, we identify Dbf4-dependent kinase (DDK) as a second major cell cycle regulator of DNA end resection. Using inducible genetic and chemical inhibition of DDK in budding yeast and human cells, we show that end resection and HR require activation by DDK. Mechanistically, DDK phosphorylates at least two resection nucleases in budding yeast: the Mre11 activator Sae2, which promotes resection initiation, as well as the Dna2 nuclease, which promotes resection elongation. Notably, synthetic activation of DDK allows limited resection and HR in G1 cells, suggesting that DDK is a key component of DSB repair pathway selection.
Collapse
Affiliation(s)
- Lorenzo Galanti
- Cell Biology, Dortmund Life Science Center (DOLCE), TU Dortmund University, Faculty of Chemistry and Chemical Biology, Dortmund, Germany
- Research Group DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Martinsried, Germany
- Genome Maintenance Mechanisms in Health and Disease, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Institute for Genome Stability in Aging and Disease, University of Cologne, Medical Faculty, CECAD Research Center, Cologne, Germany
| | - Martina Peritore
- Research Group DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Martinsried, Germany
- Genome Maintenance Mechanisms in Health and Disease, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Institute for Genome Stability in Aging and Disease, University of Cologne, Medical Faculty, CECAD Research Center, Cologne, Germany
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Robert Gnügge
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Elda Cannavo
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Bellinzona, Switzerland
| | - Johannes Heipke
- Cell Biology, Dortmund Life Science Center (DOLCE), TU Dortmund University, Faculty of Chemistry and Chemical Biology, Dortmund, Germany
- Research Group DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Martinsried, Germany
- Institute for Genome Stability in Aging and Disease, University of Cologne, Medical Faculty, CECAD Research Center, Cologne, Germany
| | - Maria Dilia Palumbieri
- Genome Maintenance Mechanisms in Health and Disease, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Institute for Genome Stability in Aging and Disease, University of Cologne, Medical Faculty, CECAD Research Center, Cologne, Germany
- Research Group of Proteomics and ADP-Ribosylation Signaling, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Barbara Steigenberger
- Mass Spectrometry Core Facility, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Lorraine S Symington
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Petr Cejka
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Bellinzona, Switzerland
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| | - Boris Pfander
- Cell Biology, Dortmund Life Science Center (DOLCE), TU Dortmund University, Faculty of Chemistry and Chemical Biology, Dortmund, Germany.
- Research Group DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Martinsried, Germany.
- Genome Maintenance Mechanisms in Health and Disease, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany.
- Institute for Genome Stability in Aging and Disease, University of Cologne, Medical Faculty, CECAD Research Center, Cologne, Germany.
| |
Collapse
|
34
|
Alfano L, Iannuzzi CA, Barone D, Forte IM, Ragosta MC, Cuomo M, Mazzarotti G, Dell'Aquila M, Altieri A, Caporaso A, Roma C, Marra L, Boffo S, Indovina P, De Laurentiis M, Giordano A. CDK9-55 guides the anaphase-promoting complex/cyclosome (APC/C) in choosing the DNA repair pathway choice. Oncogene 2024; 43:1263-1273. [PMID: 38433256 DOI: 10.1038/s41388-024-02982-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024]
Abstract
DNA double-strand breaks (DSBs) contribute to genome instability, a key feature of cancer. DSBs are mainly repaired by homologous recombination (HR) and non-homologous end-joining (NHEJ). We investigated the role of an isoform of the multifunctional cyclin-dependent kinase 9, CDK9-55, in DNA repair, by generating CDK9-55-knockout HeLa clones (through CRISPR-Cas9), which showed potential HR dysfunction. A phosphoproteomic screening in these clones treated with camptothecin revealed that CDC23 (cell division cycle 23), a component of the E3-ubiquitin ligase APC/C (anaphase-promoting complex/cyclosome), is a new substrate of CDK9-55, with S588 being its putative phosphorylation site. Mutated non-phosphorylatable CDC23(S588A) affected the repair pathway choice by impairing HR and favouring error-prone NHEJ. This CDK9 role should be considered when designing CDK-inhibitor-based cancer therapies.
Collapse
Affiliation(s)
- Luigi Alfano
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)-Fondazione G. Pascale, Napoli, Italy.
| | - Carmelina Antonella Iannuzzi
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)-Fondazione G. Pascale, Napoli, Italy
| | - Daniela Barone
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)-Fondazione G. Pascale, Napoli, Italy
| | - Iris Maria Forte
- Breast Unit, Istituto Nazionale Tumori-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)-Fondazione G. Pascale, Napoli, Italy
| | | | - Maria Cuomo
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Giulio Mazzarotti
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Milena Dell'Aquila
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - Angela Altieri
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - Antonella Caporaso
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - Cristin Roma
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)-Fondazione G. Pascale, Napoli, Italy
| | - Laura Marra
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)-Fondazione G. Pascale, Napoli, Italy
| | - Silvia Boffo
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - Paola Indovina
- Sbarro Research Health Organization, Candiolo, Torino, Italy
| | - Michelino De Laurentiis
- Breast Unit, Istituto Nazionale Tumori-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)-Fondazione G. Pascale, Napoli, Italy
| | - Antonio Giordano
- Department of Medical Biotechnologies, University of Siena, Siena, Italy.
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
35
|
Merker L, Feller L, Dorn A, Puchta H. Deficiency of both classical and alternative end-joining pathways leads to a synergistic defect in double-strand break repair but not to an increase in homology-dependent gene targeting in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:242-254. [PMID: 38179887 DOI: 10.1111/tpj.16604] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/13/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024]
Abstract
In eukaryotes, double-strand breaks (DSBs) are either repaired by homologous recombination (HR) or non-homologous end-joining (NHEJ). In somatic plant cells, HR is very inefficient. Therefore, the vast majority of DSBs are repaired by two different pathways of NHEJ. The classical (cNHEJ) pathway depends on the heterodimer KU70/KU80, while polymerase theta (POLQ) is central to the alternative (aNHEJ) pathway. Surprisingly, Arabidopsis plants are viable, even when both pathways are impaired. However, they exhibit severe growth retardation and reduced fertility. Analysis of mitotic anaphases indicates that the double mutant is characterized by a dramatic increase in chromosome fragmentation due to defective DSB repair. In contrast to the single mutants, the double mutant was found to be highly sensitive to the DSB-inducing genotoxin bleomycin. Thus, both pathways can complement for each other efficiently in DSB repair. We speculated that in the absence of both NHEJ pathways, HR might be enhanced. This would be especially attractive for gene targeting (GT) in which predefined changes are introduced using a homologous template. Unexpectedly, the polq single mutant as well as the double mutant showed significantly lower GT frequencies in comparison to wildtype plants. Accordingly, we were able to show that elimination of both NHEJ pathways does not pose an attractive approach for Agrobacterium-mediated GT. However, our results clearly indicate that a loss of cNHEJ leads to an increase in GT frequency, which is especially drastic and attractive for practical applications, in which the in planta GT strategy is used.
Collapse
Affiliation(s)
- Laura Merker
- Joseph Gottlieb Kölreuter Institute for Plant Sciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | - Laura Feller
- Joseph Gottlieb Kölreuter Institute for Plant Sciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | - Annika Dorn
- Joseph Gottlieb Kölreuter Institute for Plant Sciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | - Holger Puchta
- Joseph Gottlieb Kölreuter Institute for Plant Sciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| |
Collapse
|
36
|
Locke AJ, Abou Farraj R, Tran C, Zeinali E, Mashayekhi F, Ali JYH, Glover JNM, Ismail IH. The role of RNF138 in DNA end resection is regulated by ubiquitylation and CDK phosphorylation. J Biol Chem 2024; 300:105709. [PMID: 38309501 PMCID: PMC10910129 DOI: 10.1016/j.jbc.2024.105709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 01/02/2024] [Accepted: 01/18/2024] [Indexed: 02/05/2024] Open
Abstract
Double-strand breaks (DSBs) are DNA lesions that pose a significant threat to genomic stability. The repair of DSBs by the homologous recombination (HR) pathway is preceded by DNA end resection, the 5' to 3' nucleolytic degradation of DNA away from the DSB. We and others previously identified a role for RNF138, a really interesting new gene finger E3 ubiquitin ligase, in stimulating DNA end resection and HR. Yet, little is known about how RNF138's function is regulated in the context of DSB repair. Here, we show that RNF138 is phosphorylated at residue T27 by cyclin-dependent kinase (CDK) activity during the S and G2 phases of the cell cycle. We also observe that RNF138 is ubiquitylated constitutively, with ubiquitylation occurring in part on residue K158 and rising during the S/G2 phases. Interestingly, RNF138 ubiquitylation decreases upon genotoxic stress. By mutating RNF138 at residues T27, K158, and the previously identified S124 ataxia telangiectasia mutated phosphorylation site (Han et al., 2016, ref. 22), we find that post-translational modifications at all three positions mediate DSB repair. Cells expressing the T27A, K158R, and S124A variants of RNF138 are impaired in DNA end resection, HR activity, and are more sensitive to ionizing radiation compared to those expressing wildtype RNF138. Our findings shed more light on how RNF138 activity is controlled by the cell during HR.
Collapse
Affiliation(s)
- Andrew J Locke
- Division of Experimental Oncology, Department of Oncology, Faculty of Medicine & Dentistry, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Rabih Abou Farraj
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Caroline Tran
- Division of Experimental Oncology, Department of Oncology, Faculty of Medicine & Dentistry, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Elham Zeinali
- Division of Experimental Oncology, Department of Oncology, Faculty of Medicine & Dentistry, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Fatemeh Mashayekhi
- Division of Experimental Oncology, Department of Oncology, Faculty of Medicine & Dentistry, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Jana Yasser Hafez Ali
- Division of Experimental Oncology, Department of Oncology, Faculty of Medicine & Dentistry, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - J N Mark Glover
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Ismail Hassan Ismail
- Division of Experimental Oncology, Department of Oncology, Faculty of Medicine & Dentistry, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada; Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt.
| |
Collapse
|
37
|
Möller C, Sharma R, Öz R, Reginato G, Cannavo E, Ceppi I, Sriram KK, Cejka P, Westerlund F. Xrs2/NBS1 promote end-bridging activity of the MRE11-RAD50 complex. Biochem Biophys Res Commun 2024; 695:149464. [PMID: 38217957 DOI: 10.1016/j.bbrc.2023.149464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/04/2023] [Accepted: 12/29/2023] [Indexed: 01/15/2024]
Abstract
DNA double strand breaks (DSBs) can be detrimental to the cell and need to be efficiently repaired. A first step in DSB repair is to bring the free ends in close proximity to enable ligation by non-homologous end-joining (NHEJ), while the more precise, but less available, repair by homologous recombination (HR) requires close proximity of a sister chromatid. The human MRE11-RAD50-NBS1 (MRN) complex, Mre11-Rad50-Xrs2 (MRX) in yeast, is involved in both repair pathways. Here we use nanofluidic channels to study, on the single DNA molecule level, how MRN, MRX and their constituents interact with long DNA and promote DNA bridging. Nanofluidics is a suitable method to study reactions on DNA ends since no anchoring of the DNA end(s) is required. We demonstrate that NBS1 and Xrs2 play important, but differing, roles in the DNA tethering by MRN and MRX. NBS1 promotes DNA bridging by MRN consistent with tethering of a repair template. MRX shows a "synapsis-like" DNA end-bridging, stimulated by the Xrs2 subunit. Our results highlight the different ways MRN and MRX bridge DNA, and the results are in agreement with their key roles in HR and NHEJ, respectively, and contribute to the understanding of the roles of NBS1 and Xrs2 in DSB repair.
Collapse
Affiliation(s)
- Carl Möller
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, SE, 41296, Sweden
| | - Rajhans Sharma
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, SE, 41296, Sweden
| | - Robin Öz
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, SE, 41296, Sweden
| | - Giordano Reginato
- Institute for Research in Biomedicine, Universitá della Svizzera Italiana, Bellinzona, CH 6500, Switzerland
| | - Elda Cannavo
- Institute for Research in Biomedicine, Universitá della Svizzera Italiana, Bellinzona, CH 6500, Switzerland
| | - Ilaria Ceppi
- Institute for Research in Biomedicine, Universitá della Svizzera Italiana, Bellinzona, CH 6500, Switzerland
| | - K K Sriram
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, SE, 41296, Sweden
| | - Petr Cejka
- Institute for Research in Biomedicine, Universitá della Svizzera Italiana, Bellinzona, CH 6500, Switzerland; Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH) Zürich, Switzerland
| | - Fredrik Westerlund
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, SE, 41296, Sweden.
| |
Collapse
|
38
|
Waters KL, Spratt DE. New Discoveries on Protein Recruitment and Regulation during the Early Stages of the DNA Damage Response Pathways. Int J Mol Sci 2024; 25:1676. [PMID: 38338953 PMCID: PMC10855619 DOI: 10.3390/ijms25031676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
Maintaining genomic stability and properly repairing damaged DNA is essential to staying healthy and preserving cellular homeostasis. The five major pathways involved in repairing eukaryotic DNA include base excision repair (BER), nucleotide excision repair (NER), mismatch repair (MMR), non-homologous end joining (NHEJ), and homologous recombination (HR). When these pathways do not properly repair damaged DNA, genomic stability is compromised and can contribute to diseases such as cancer. It is essential that the causes of DNA damage and the consequent repair pathways are fully understood, yet the initial recruitment and regulation of DNA damage response proteins remains unclear. In this review, the causes of DNA damage, the various mechanisms of DNA damage repair, and the current research regarding the early steps of each major pathway were investigated.
Collapse
Affiliation(s)
| | - Donald E. Spratt
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, 950 Main St., Worcester, MA 01610, USA;
| |
Collapse
|
39
|
Chen Y, Wu J, Zhai L, Zhang T, Yin H, Gao H, Zhao F, Wang Z, Yang X, Jin M, Huang B, Ding X, Li R, Yang J, He Y, Wang Q, Wang W, Kloeber JA, Li Y, Hao B, Zhang Y, Wang J, Tan M, Li K, Wang P, Lou Z, Yuan J. Metabolic regulation of homologous recombination repair by MRE11 lactylation. Cell 2024; 187:294-311.e21. [PMID: 38128537 PMCID: PMC11725302 DOI: 10.1016/j.cell.2023.11.022] [Citation(s) in RCA: 126] [Impact Index Per Article: 126.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 08/09/2023] [Accepted: 11/18/2023] [Indexed: 12/23/2023]
Abstract
Lactylation is a lactate-induced post-translational modification best known for its roles in epigenetic regulation. Herein, we demonstrate that MRE11, a crucial homologous recombination (HR) protein, is lactylated at K673 by the CBP acetyltransferase in response to DNA damage and dependent on ATM phosphorylation of the latter. MRE11 lactylation promotes its binding to DNA, facilitating DNA end resection and HR. Inhibition of CBP or LDH downregulated MRE11 lactylation, impaired HR, and enhanced chemosensitivity of tumor cells in patient-derived xenograft and organoid models. A cell-penetrating peptide that specifically blocks MRE11 lactylation inhibited HR and sensitized cancer cells to cisplatin and PARPi. These findings unveil lactylation as a key regulator of HR, providing fresh insights into the ways in which cellular metabolism is linked to DSB repair. They also imply that the Warburg effect can confer chemoresistance through enhancing HR and suggest a potential therapeutic strategy of targeting MRE11 lactylation to mitigate the effects.
Collapse
Affiliation(s)
- Yuping Chen
- State Key Laboratory of Cardiology and Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200120, China
| | - Jinhuan Wu
- State Key Laboratory of Cardiology and Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200120, China
| | - Linhui Zhai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing, China
| | - Tingting Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Hui Yin
- Department of Thoracic Surgery, The First Affiliated Hospital of Shaoyang University, Shaoyang 422001, China
| | - Huanyao Gao
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Fei Zhao
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Zhe Wang
- State Key Laboratory of Cardiology and Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200120, China
| | - Xiaoning Yang
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Mingpeng Jin
- State Key Laboratory of Cardiology and Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200120, China
| | - Bingsong Huang
- State Key Laboratory of Cardiology and Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200120, China
| | - Xin Ding
- State Key Laboratory of Cardiology and Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200120, China
| | - Rui Li
- State Key Laboratory of Cardiology and Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200120, China
| | - Jie Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yiming He
- State Key Laboratory of Cardiology and Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200120, China
| | - Qianwen Wang
- State Key Laboratory of Cardiology and Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200120, China
| | - Weibin Wang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jake A Kloeber
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA; Mayo Clinic Medical Scientist Training Program, Mayo Clinic Alix School of Medicine and Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Yunxuan Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Bingbing Hao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuanyuan Zhang
- State Key Laboratory of Cardiology and Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Jiadong Wang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ke Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Shanghai 200072, China
| | - Zhenkun Lou
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA; Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jian Yuan
- State Key Laboratory of Cardiology and Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200120, China.
| |
Collapse
|
40
|
Ahuja JS, Sandhu R, Huang L, Klein F, Börner GV. Temporal and Functional Relationship between Synaptonemal Complex Morphogenesis and Recombination during Meiosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.11.575218. [PMID: 38260343 PMCID: PMC10802607 DOI: 10.1101/2024.01.11.575218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
During prophase of meiosis I, programmed double strand breaks (DSBs) are processed into crossovers, a critical requirement for segregation of homologous chromosomes (homologs) and genome haploidization in sexually reproducing organisms. Crossovers form via homologous recombination in close temporospatial association with morphogenesis of the synaptonemal complex (SC), a proteinaceous structure that connects paired homologs along their length during the pachytene stage. Synapsis and recombination are a paradigm for the interplay between higher order chromosome structure and DNA metabolism, yet their temporal and functional relationship remains poorly understood. Probing linkage between these processes in budding yeast, we show that SC assembly is associated with a distinct threshold number of unstable D-loops. The transition from bona fide paranemic D-loops to plectonemic DSB single end invasions (SEIs) is completed during midpachynema, when the SC is fully assembled. Double Holliday junctions (dHJs) form at the time of desynapsis and are resolved into crossovers during diplonema. The SC central element component Zip1 shepherds recombination through three transitions, including DSB first end strand exchange and second end capture, as well as dHJ resolution. Zip1 mediates SEI formation independent of its polymerization whereas precocious Zip1 assembly interferes with double Holliday junction resolution. Together, our findings indicate that the synaptonemal complex controls recombination while assembled but also beyond its disassembly, possibly by establishing spatial constraints at recombination sites.
Collapse
|
41
|
Saha LK, Pommier Y. TOP3A coupling with replication forks and repair of TOP3A cleavage complexes. Cell Cycle 2024; 23:115-130. [PMID: 38341866 PMCID: PMC11037291 DOI: 10.1080/15384101.2024.2314440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/04/2023] [Accepted: 01/08/2024] [Indexed: 02/13/2024] Open
Abstract
Humans have two Type IA topoisomerases, topoisomerase IIIα (TOP3A) and topoisomerase IIIβ (TOP3B). In this review, we focus on the role of human TOP3A in DNA replication and highlight the recent progress made in understanding TOP3A in the context of replication. Like other topoisomerases, TOP3A acts by a reversible mechanism of cleavage and rejoining of DNA strands allowing changes in DNA topology. By cleaving and resealing single-stranded DNA, it generates TOP3A-linked single-strand breaks as TOP3A cleavage complexes (TOP3Accs) with a TOP3A molecule covalently bound to the 5´-end of the break. TOP3A is critical for both mitochondrial and for nuclear DNA replication. Here, we discuss the formation and repair of irreversible TOP3Accs, as their presence compromises genome integrity as they form TOP3A DNA-protein crosslinks (TOP3A-DPCs) associated with DNA breaks. We discuss the redundant pathways that repair TOP3A-DPCs, and how their defects are a source of DNA damage leading to neurological diseases and mitochondrial disorders.
Collapse
Affiliation(s)
- Liton Kumar Saha
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
42
|
Kim S, Kim Y, Lee JY. Real-time single-molecule visualization using DNA curtains reveals the molecular mechanisms underlying DNA repair pathways. DNA Repair (Amst) 2024; 133:103612. [PMID: 38128155 DOI: 10.1016/j.dnarep.2023.103612] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/06/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
The demand for direct observation of biomolecular interactions provides new insights into the molecular mechanisms underlying many biological processes. Single-molecule imaging techniques enable real-time visualization of individual biomolecules, providing direct observations of protein machines. Various single-molecule imaging techniques have been developed and have contributed to breakthroughs in biological research. One such technique is the DNA curtain, a novel, high-throughput, single-molecule platform that integrates lipid fluidity, nano-fabrication, microfluidics, and fluorescence imaging. Many DNA metabolic reactions, such as replication, transcription, and chromatin dynamics, have been studied using DNA curtains. In particular, the DNA curtain platform has been intensively applied in investigating the molecular details of DNA repair processes. This article reviews DNA curtain techniques and their applications for imaging DNA repair proteins.
Collapse
Affiliation(s)
- Subin Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Youngseo Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Ja Yil Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea.
| |
Collapse
|
43
|
Wu-Baer F, Wong M, Tschoe L, Lin CS, Jiang W, Zha S, Baer R. ATM/ATR Phosphorylation of CtIP on Its Conserved Sae2-like Domain Is Required for Genotoxin-Induced DNA Resection but Dispensable for Animal Development. Cells 2023; 12:2762. [PMID: 38067190 PMCID: PMC10706839 DOI: 10.3390/cells12232762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/09/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
Homology-directed repair (HDR) of double-strand DNA breaks (DSBs) is dependent on enzymatic resection of DNA ends by the Mre11/Rad50/Nbs1 complex. DNA resection is triggered by the CtIP/Sae2 protein, which allosterically promotes Mre11-mediated endonuclease DNA cleavage at a position internal to the DSB. Although the mechanics of resection, including the initial endonucleolytic step, are largely conserved in eucaryotes, CtIP and its functional counterpart in Saccharomyces cerevisiae (Sae2) share only a modest stretch of amino acid homology. Nonetheless, this stretch contains two highly conserved phosphorylation sites for cyclin-dependent kinases (T843 in mouse) and the damage-induced ATM/ATR kinases (T855 in mouse), both of which are required for DNA resection. To explore the function of ATM/ATR phosphorylation at Ctip-T855, we generated and analyzed mice expressing the Ctip-T855A mutant. Surprisingly, unlike Ctip-null mice and Ctip-T843A-expressing mice, both of which undergo embryonic lethality, homozygous CtipT855A/T855A mice develop normally. Nonetheless, they are hypersensitive to ionizing radiation, and CtipT855A/T855A mouse embryo fibroblasts from these mice display marked defects in DNA resection, chromosomal stability, and HDR-mediated repair of DSBs. Thus, although ATM/ATR phosphorylation of CtIP-T855 is not required for normal animal development, it enhances CtIP-mediated DNA resection in response to acute stress, such as genotoxin exposure.
Collapse
Affiliation(s)
- Foon Wu-Baer
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA; (F.W.-B.); (M.W.); (L.T.); (W.J.); (S.Z.)
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA;
| | - Madeline Wong
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA; (F.W.-B.); (M.W.); (L.T.); (W.J.); (S.Z.)
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA;
| | - Lydia Tschoe
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA; (F.W.-B.); (M.W.); (L.T.); (W.J.); (S.Z.)
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA;
| | - Chyuan-Sheng Lin
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA;
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Wenxia Jiang
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA; (F.W.-B.); (M.W.); (L.T.); (W.J.); (S.Z.)
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA;
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Shan Zha
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA; (F.W.-B.); (M.W.); (L.T.); (W.J.); (S.Z.)
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA;
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Richard Baer
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA; (F.W.-B.); (M.W.); (L.T.); (W.J.); (S.Z.)
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA;
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
44
|
Börner GV, Hochwagen A, MacQueen AJ. Meiosis in budding yeast. Genetics 2023; 225:iyad125. [PMID: 37616582 PMCID: PMC10550323 DOI: 10.1093/genetics/iyad125] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 06/13/2023] [Indexed: 08/26/2023] Open
Abstract
Meiosis is a specialized cell division program that is essential for sexual reproduction. The two meiotic divisions reduce chromosome number by half, typically generating haploid genomes that are packaged into gametes. To achieve this ploidy reduction, meiosis relies on highly unusual chromosomal processes including the pairing of homologous chromosomes, assembly of the synaptonemal complex, programmed formation of DNA breaks followed by their processing into crossovers, and the segregation of homologous chromosomes during the first meiotic division. These processes are embedded in a carefully orchestrated cell differentiation program with multiple interdependencies between DNA metabolism, chromosome morphogenesis, and waves of gene expression that together ensure the correct number of chromosomes is delivered to the next generation. Studies in the budding yeast Saccharomyces cerevisiae have established essentially all fundamental paradigms of meiosis-specific chromosome metabolism and have uncovered components and molecular mechanisms that underlie these conserved processes. Here, we provide an overview of all stages of meiosis in this key model system and highlight how basic mechanisms of genome stability, chromosome architecture, and cell cycle control have been adapted to achieve the unique outcome of meiosis.
Collapse
Affiliation(s)
- G Valentin Börner
- Center for Gene Regulation in Health and Disease (GRHD), Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | | | - Amy J MacQueen
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA
| |
Collapse
|
45
|
Deshpande RA, Marin-Gonzalez A, Barnes HK, Woolley PR, Ha T, Paull TT. Genome-wide analysis of DNA-PK-bound MRN cleavage products supports a sequential model of DSB repair pathway choice. Nat Commun 2023; 14:5759. [PMID: 37717054 PMCID: PMC10505227 DOI: 10.1038/s41467-023-41544-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 09/07/2023] [Indexed: 09/18/2023] Open
Abstract
The Mre11-Rad50-Nbs1 (MRN) complex recognizes and processes DNA double-strand breaks for homologous recombination by performing short-range removal of 5' strands. Endonucleolytic processing by MRN requires a stably bound protein at the break site-a role we postulate is played by DNA-dependent protein kinase (DNA-PK) in mammals. Here we interrogate sites of MRN-dependent processing by identifying sites of CtIP association and by sequencing DNA-PK-bound DNA fragments that are products of MRN cleavage. These intermediates are generated most efficiently when DNA-PK is catalytically blocked, yielding products within 200 bp of the break site, whereas DNA-PK products in the absence of kinase inhibition show greater dispersal. Use of light-activated Cas9 to induce breaks facilitates temporal resolution of DNA-PK and Mre11 binding, showing that both complexes bind to DNA ends before release of DNA-PK-bound products. These results support a sequential model of double-strand break repair involving collaborative interactions between homologous and non-homologous repair complexes.
Collapse
Affiliation(s)
| | - Alberto Marin-Gonzalez
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Baltimore, MD, 21205, USA
| | - Hannah K Barnes
- The Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Phillip R Woolley
- The Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Baltimore, MD, 21205, USA
| | - Tanya T Paull
- The Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
46
|
van de Kooij B, van der Wal FJ, Rother MB, Creixell P, Stout M, Wiegant W, Joughin BA, Vornberger J, van Vugt MA, Altmeyer M, Yaffe MB, van Attikum H. The Fanconi anemia core complex promotes CtIP-dependent end-resection to drive homologous recombination at DNA double-strand breaks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.05.556391. [PMID: 37732274 PMCID: PMC10508776 DOI: 10.1101/2023.09.05.556391] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Homologous Recombination (HR) is a high-fidelity repair mechanism of DNA Double-Strand Breaks (DSBs), which are induced by irradiation, genotoxic chemicals or physiological DNA damaging processes. DSBs are also generated as intermediates during the repair of interstrand crosslinks (ICLs). In this context, the Fanconi anemia (FA) core complex, which is effectively recruited to ICLs, promotes HR-mediated DSB-repair. However, whether the FA core complex also promotes HR at ICL-independent DSBs remains controversial. Here, we identified the FA core complex members FANCL and Ube2T as HR-promoting factors in a CRISPR/Cas9-based screen with cells carrying the DSB-repair reporter DSB-Spectrum. Using isogenic cell-line models, we validated the HR-function of FANCL and Ube2T, and demonstrated a similar function for their ubiquitination-substrate FANCD2. We further show that FANCL and Ube2T are directly recruited to DSBs and are required for the accumulation of FANCD2 at these break sites. Mechanistically, we demonstrate that FANCL ubiquitin ligase activity is required for the accumulation of the nuclease CtIP at DSBs, and consequently for optimal end-resection and Rad51 loading. CtIP overexpression rescues HR in FANCL-deficient cells, validating that FANCL primarily regulates HR by promoting CtIP recruitment. Together, these data demonstrate that the FA core complex and FANCD2 have a dual genome maintenance function by promoting repair of DSBs as well as the repair of ICLs.
Collapse
Affiliation(s)
- Bert van de Kooij
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
- Current address: Department of Medical Oncology, University Medical Center Groningen, University of Groningen, the Netherlands
| | - Fenna J. van der Wal
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Magdalena B. Rother
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Pau Creixell
- Koch Institute for Integrative Cancer Research, MIT Center for Precision Cancer Medicine, Departments of Biology and Bioengineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Current address: CRUK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Merula Stout
- Department of Molecular Mechanisms of Disease, University of Zurich (UZH), Zurich, Switzerland
| | - Wouter Wiegant
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Brian A. Joughin
- Koch Institute for Integrative Cancer Research, MIT Center for Precision Cancer Medicine, Departments of Biology and Bioengineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Julia Vornberger
- Department of Molecular Mechanisms of Disease, University of Zurich (UZH), Zurich, Switzerland
| | - Marcel A.T.M. van Vugt
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, the Netherlands
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of Zurich (UZH), Zurich, Switzerland
| | - Michael B. Yaffe
- Koch Institute for Integrative Cancer Research, MIT Center for Precision Cancer Medicine, Departments of Biology and Bioengineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Surgery, Beth Israel Deaconess Medical Center, Divisions of Acute Care Surgery, Trauma, and Critical Care and Surgical Oncology, Harvard Medical School, Boston
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
47
|
Myler LR, Toia B, Vaughan CK, Takai K, Matei AM, Wu P, Paull TT, de Lange T, Lottersberger F. DNA-PK and the TRF2 iDDR inhibit MRN-initiated resection at leading-end telomeres. Nat Struct Mol Biol 2023; 30:1346-1356. [PMID: 37653239 PMCID: PMC10497418 DOI: 10.1038/s41594-023-01072-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 07/18/2023] [Indexed: 09/02/2023]
Abstract
Telomeres replicated by leading-strand synthesis lack the 3' overhang required for telomere protection. Surprisingly, resection of these blunt telomeres is initiated by the telomere-specific 5' exonuclease Apollo rather than the Mre11-Rad50-Nbs1 (MRN) complex, the nuclease that acts at DNA breaks. Without Apollo, leading-end telomeres undergo fusion, which, as demonstrated here, is mediated by alternative end joining. Here, we show that DNA-PK and TRF2 coordinate the repression of MRN at blunt mouse telomeres. DNA-PK represses an MRN-dependent long-range resection, while the endonuclease activity of MRN-CtIP, which could cleave DNA-PK off of blunt telomere ends, is inhibited in vitro and in vivo by the iDDR of TRF2. AlphaFold-Multimer predicts a conserved association of the iDDR with Rad50, potentially interfering with CtIP binding and MRN endonuclease activation. We propose that repression of MRN-mediated resection is a conserved aspect of telomere maintenance and represents an ancient feature of DNA-PK and the iDDR.
Collapse
Affiliation(s)
- Logan R Myler
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, NY, USA
| | - Beatrice Toia
- Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Cara K Vaughan
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Kaori Takai
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, NY, USA
| | - Andreea M Matei
- Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Peng Wu
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, NY, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Tanya T Paull
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Titia de Lange
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, NY, USA.
| | - Francisca Lottersberger
- Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden.
| |
Collapse
|
48
|
Bian X, Sun C, Cheng J, Hong B. Targeting DNA Damage Repair and Immune Checkpoint Proteins for Optimizing the Treatment of Endometrial Cancer. Pharmaceutics 2023; 15:2241. [PMID: 37765210 PMCID: PMC10536053 DOI: 10.3390/pharmaceutics15092241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/04/2023] [Accepted: 08/12/2023] [Indexed: 09/29/2023] Open
Abstract
The dependence of cancer cells on the DNA damage response (DDR) pathway for the repair of endogenous- or exogenous-factor-induced DNA damage has been extensively studied in various cancer types, including endometrial cancer (EC). Targeting one or more DNA damage repair protein with small molecules has shown encouraging treatment efficacy in preclinical and clinical models. However, the genes coding for DDR factors are rarely mutated in EC, limiting the utility of DDR inhibitors in this disease. In the current review, we recapitulate the functional role of the DNA repair system in the development and progression of cancer. Importantly, we discuss strategies that target DDR proteins, including PARP, CHK1 and WEE1, as monotherapies or in combination with cytotoxic agents in the treatment of EC and highlight the compounds currently being evaluated for their efficacy in EC in clinic. Recent studies indicate that the application of DNA damage agents in cancer cells leads to the activation of innate and adaptive immune responses; targeting immune checkpoint proteins could overcome the immune suppressive environment in tumors. We further summarize recently revolutionized immunotherapies that have been completed or are now being evaluated for their efficacy in advanced EC and propose future directions for the development of DDR-based cancer therapeutics in the treatment of EC.
Collapse
Affiliation(s)
- Xing Bian
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an 237012, China; (X.B.); (C.S.); (J.C.)
| | - Chuanbo Sun
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an 237012, China; (X.B.); (C.S.); (J.C.)
| | - Jin Cheng
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an 237012, China; (X.B.); (C.S.); (J.C.)
| | - Bo Hong
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
49
|
Sun JKL, Wong GCN, Chow KHM. Cross-talk between DNA damage response and the central carbon metabolic network underlies selective vulnerability of Purkinje neurons in ataxia-telangiectasia. J Neurochem 2023; 166:654-677. [PMID: 37319113 DOI: 10.1111/jnc.15881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/17/2023]
Abstract
Cerebellar ataxia is often the first and irreversible outcome in the disease of ataxia-telangiectasia (A-T), as a consequence of selective cerebellar Purkinje neuronal degeneration. A-T is an autosomal recessive disorder resulting from the loss-of-function mutations of the ataxia-telangiectasia-mutated ATM gene. Over years of research, it now becomes clear that functional ATM-a serine/threonine kinase protein product of the ATM gene-plays critical roles in regulating both cellular DNA damage response and central carbon metabolic network in multiple subcellular locations. The key question arises is how cerebellar Purkinje neurons become selectively vulnerable when all other cell types in the brain are suffering from the very same defects in ATM function. This review intended to comprehensively elaborate the unexpected linkages between these two seemingly independent cellular functions and the regulatory roles of ATM involved, their integrated impacts on both physical and functional properties, hence the introduction of selective vulnerability to Purkinje neurons in the disease will be addressed.
Collapse
Affiliation(s)
- Jacquelyne Ka-Li Sun
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong
| | - Genper Chi-Ngai Wong
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong
| | - Kim Hei-Man Chow
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong
- Nexus of Rare Neurodegenerative Diseases, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
50
|
Leung W, Simoneau A, Saxena S, Jackson J, Patel PS, Limbu M, Vindigni A, Zou L. ATR protects ongoing and newly assembled DNA replication forks through distinct mechanisms. Cell Rep 2023; 42:112792. [PMID: 37454295 PMCID: PMC10529362 DOI: 10.1016/j.celrep.2023.112792] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/06/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023] Open
Abstract
The ATR kinase safeguards genomic integrity during S phase, but how ATR protects DNA replication forks remains incompletely understood. Here, we combine four distinct assays to analyze ATR functions at ongoing and newly assembled replication forks upon replication inhibition by hydroxyurea. At ongoing forks, ATR inhibitor (ATRi) increases MRE11- and EXO1-mediated nascent DNA degradation from PrimPol-generated, single-stranded DNA (ssDNA) gaps. ATRi also exposes template ssDNA through fork uncoupling and nascent DNA degradation. Electron microscopy reveals that ATRi reduces reversed forks by increasing gap-dependent nascent DNA degradation. At new forks, ATRi triggers MRE11- and CtIP-initiated template DNA degradation by EXO1, exposing nascent ssDNA. Upon PARP inhibition, ATRi preferentially exacerbates gap-dependent nascent DNA degradation at ongoing forks in BRCA1/2-deficient cells and disrupts the restored gap protection in BRCA1-deficient, PARP-inhibitor-resistant cells. Thus, ATR protects ongoing and new forks through distinct mechanisms, providing an extended view of ATR's functions in stabilizing replication forks.
Collapse
Affiliation(s)
- Wendy Leung
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Antoine Simoneau
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Sneha Saxena
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Jessica Jackson
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Parasvi S Patel
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Mangsi Limbu
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alessandro Vindigni
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27708, USA.
| |
Collapse
|