1
|
Pham K, Malachowski T, Zhou L, Kim JH, Su C, Phillips-Cremins JE. Mosaic H3K9me3 at BREACHes predicts synaptic gene expression associated with fragile X syndrome cognitive severity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.19.644148. [PMID: 40166285 PMCID: PMC11957133 DOI: 10.1101/2025.03.19.644148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Diseases vary in clinical presentation across individuals despite the same molecular diagnosis. In fragile X syndrome (FXS), mutation-length expansion of a CGG short tandem repeat (STR) in FMR1 causes reduced gene expression and FMRP loss. Nevertheless, FMR1 and FMRP are limited predictors of adaptive functioning and cognition in FXS patients, suggesting that molecular correlates of clinical measures would add diagnostic value. We recently uncovered Megabase-scale domains of heterochromatin (BREACHes) in FXS patient-derived iPSCs. Here, we identify BREACHes in FXS brain tissue (N=4) and absent from sex/age-matched neurotypical controls (N=4). BREACHes span >250 genes and exhibit patient-specific H3K9me3 variation. Using N=4 FXS iPSC lines and N=7 single-cell isogenic FXS iPSC subclones, we observe a strong correlation between inter-sample H3K9me3 variation and heterogeneous BREACH gene repression. We demonstrate improved prediction of cognitive metrics in FXS patients with an additive model of blood FMRP and mRNA levels of H3K9me3-mosaic, but not H3K9me3-invariant, BREACH genes. Our results highlight the utility of H3K9me3 variation at BREACHes for identifying genes associated with FXS clinical metrics.
Collapse
Affiliation(s)
- Kenneth Pham
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas Malachowski
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Linda Zhou
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ji Hun Kim
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chuanbin Su
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer E. Phillips-Cremins
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
2
|
Olp MD, Bursch KL, Wynia-Smith SL, Nuñez R, Goetz CJ, Jackson V, Smith BC. Multivalent nucleosome scaffolding by bromodomain and extraterminal domain tandem bromodomains. J Biol Chem 2025; 301:108289. [PMID: 39938804 PMCID: PMC11930079 DOI: 10.1016/j.jbc.2025.108289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/29/2025] [Accepted: 02/01/2025] [Indexed: 02/14/2025] Open
Abstract
Promoter-promoter and enhancer-promoter interactions are enriched in histone acetylation and central to chromatin organization in active genetic regions. Bromodomains are epigenetic "readers" that recognize and bind histone acetylation. Bromodomains often exist in tandem or with other reader domains. Cellular knockdown of the bromodomain and extraterminal domain (BET) protein family disrupts chromatin organization, but the mechanisms through which BET proteins preserve chromatin structure are largely unknown. We hypothesize that BET proteins maintain overall chromatin structure by employing their tandem bromodomains to multivalently scaffold acetylated nucleosomes in an intranucleosomal or internucleosomal manner. To test this hypothesis biophysically, we used small-angle X-ray scattering, electron paramagnetic resonance, and Rosetta protein modeling to show that a disordered linker separates BET tandem bromodomain acetylation binding sites by 15 to 157 Å. Most of these modeled distances are sufficient to span the length of a nucleosome (>57 Å). Focusing on the BET family member BRD4, we employed bioluminescence resonance energy transfer and isothermal titration calorimetry to show that BRD4 bromodomain binding of multiple acetylation sites on a histone tail does not increase BRD4-histone tail affinity, suggesting that BET bromodomain intranucleosome binding is not biologically relevant. Using sucrose gradients and amplified luminescent proximity homogeneous (AlphaScreen) assays, we provide the first direct biophysical evidence that BET bromodomains can scaffold multiple acetylated nucleosomes. Taken together, our results demonstrate that BET bromodomains are capable of multivalent internucleosome scaffolding in vitro. The knowledge gained provides implications for how BET bromodomain-mediated acetylated internucleosome scaffolding may maintain cellular chromatin interactions in active genetic regions.
Collapse
Affiliation(s)
- Michael D Olp
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Karina L Bursch
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Structural Genomics Unit, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Sarah L Wynia-Smith
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Raymundo Nuñez
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Christopher J Goetz
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Vaughn Jackson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Brian C Smith
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Structural Genomics Unit, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| |
Collapse
|
3
|
Fechtmeyer PH, Yeh JTH. Temporal and Spatial Characterization of CUL3 KLHL20-driven Targeted Degradation of BET family, BRD Proteins by the Macrocycle-based Degrader BTR2004. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.07.627262. [PMID: 39677683 PMCID: PMC11643031 DOI: 10.1101/2024.12.07.627262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Targeted protein degradation (TPD) is a promising new therapeutic modality that leverages the endogenous cellular protein degradation machinery of the ubiquitin-proteasome system (UPS) to degrade selected proteins. Recently, we developed a synthetic macrocycle ligand to recruit CUL3KLHL20 E3 ligase for TPD. Using this KLHL20 ligand, we constructed the PROTAC BTR2004, which demonstrated potent degradation of BET family proteins BRD 2, 3, and 4. As the TPD field expands, it is important to understand the cellular and biochemical properties of all utilized E3 ligases. Herein we report the temporal and spatial processes of BTR2004-facilitated BET family protein degradation by KLHL20: The target protein degradation kinetics, BTR2004 intracellular activity half-life, and the onset of BTR2004 cell permeabilization. Employing proximity ligation and confocal microscopy techniques, we also illustrate the subcellular location of the ternary complex assembly upon BTR2004 treatment. These characterizations provide further insight into the processes that govern TPD and features that could be incorporated when designing future PROTAC molecules.
Collapse
|
4
|
Tsaytler P, Blaess G, Scholze-Wittler M, Meierhofer D, Wittler L, Koch F, Herrmann BG. SRF promotes long-range chromatin loop formation and stem cell pluripotency. Cell Rep 2024; 43:114846. [PMID: 39392751 DOI: 10.1016/j.celrep.2024.114846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/05/2024] [Accepted: 09/23/2024] [Indexed: 10/13/2024] Open
Abstract
Serum response factor (SRF) is a transcription factor essential for cell proliferation, differentiation, and migration and is required for primitive streak and mesoderm formation in the embryo. The canonical roles of SRF are mediated by a diverse set of context-dependent cofactors. Here, we show that SRF physically interacts with CTCF and cohesin subunits at topologically associating domain (TAD) boundaries and loop anchors. SRF promotes long-range chromatin loop formation and contributes to TAD insulation. In embryonic stem cells (ESCs), SRF associates with SOX2 and NANOG and contributes to the formation of three-dimensional (3D) pluripotency hubs. Our findings reveal additional roles of SRF in higher-order chromatin organization.
Collapse
Affiliation(s)
- Pavel Tsaytler
- Department Developmental Genetics, Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany.
| | - Gaby Blaess
- Department Developmental Genetics, Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany
| | - Manuela Scholze-Wittler
- Department Developmental Genetics, Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany
| | - David Meierhofer
- Mass Spectrometry Lab, Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany
| | - Lars Wittler
- Department Developmental Genetics, Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany
| | - Frederic Koch
- Department Developmental Genetics, Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany.
| | - Bernhard G Herrmann
- Department Developmental Genetics, Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany.
| |
Collapse
|
5
|
Kulski JK, Pfaff AL, Koks S. SVA Regulation of Transposable Element Clustered Transcription within the Major Histocompatibility Complex Genomic Class II Region of the Parkinson's Progression Markers Initiative. Genes (Basel) 2024; 15:1185. [PMID: 39336776 PMCID: PMC11431313 DOI: 10.3390/genes15091185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
SINE-VNTR-Alu (SVA) retrotransposons can regulate expression quantitative trait loci (eQTL) of coding and noncoding genes including transposable elements (TEs) distributed throughout the human genome. Previously, we reported that expressed SVAs and human leucocyte antigen (HLA) class II genotypes on chromosome 6 were associated significantly with Parkinson's disease (PD). Here, our aim was to follow-up our previous study and evaluate the SVA associations and their regulatory effects on the transcription of TEs within the HLA class II genomic region. We reanalyzed the transcriptome data of peripheral blood cells from the Parkinson's Progression Markers Initiative (PPMI) for 1530 subjects for TE and gene RNAs with publicly available computing packages. Four structurally polymorphic SVAs regulate the transcription of 20 distinct clusters of 235 TE loci represented by LINES (37%), SINES (28%), LTR/ERVs (23%), and ancient transposon DNA elements (12%) that are located in close proximity to HLA genes. The transcribed TEs were mostly short length, with an average size of 389 nucleotides. The numbers, types and profiles of positive and negative regulation of TE transcription varied markedly between the four regulatory SVAs. The expressed SVA and TE RNAs in blood cells appear to be enhancer-like elements that are coordinated differentially in the regulation of HLA class II genes. Future work on the mechanisms underlying their regulation and potential impact is essential for elucidating their roles in normal cellular processes and disease pathogenesis.
Collapse
Affiliation(s)
- Jerzy K. Kulski
- Faculty of Health and Medical Sciences, School of Biomedical Science, The University of Western Australia, Crawley, WA 6009, Australia;
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan
| | - Abigail L. Pfaff
- Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia;
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia
| | - Sulev Koks
- Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia;
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia
| |
Collapse
|
6
|
Viviano M, Cipriano A, Fabbrizi E, Feoli A, Castellano S, Sbardella G, Mai A, Milite C, Rotili D. Successes and challenges in the development of BD1-selective BET inhibitors: a patent review. Expert Opin Ther Pat 2024; 34:529-545. [PMID: 38465537 DOI: 10.1080/13543776.2024.2327300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/01/2024] [Indexed: 03/12/2024]
Abstract
INTRODUCTION Bromodomain and ExtraTerminal (BET) domain proteins are transcriptional cofactors that, recognizing acetylated lysines of histone and non-histone proteins, can modulate gene expression. The BET family consists of four members, each of which contains two bromodomains (BD1 and BD2) able to recognize the acetylated mark. Pan-BET inhibitors (BETi) have shown a promising anticancer potential in many clinical trials; however, their further development has been in part hampered by the side effects due to their lack of selectivity. Mounting evidence suggests that BD1 is primarily involved in cancer and that its selective inhibition can phenocopy the anticancer effects of pan-BETi with increased tolerability. Therefore, the development of BD1 selective inhibitors is highly pursed in both academia and industry. AREAS COVERED This review aims at giving an overview of the patent literature of BD1-selective BETi between 2014 and 2023. WIPO, USPTO, EPO, and SciFinder® databases were used for the search of patents. EXPERT OPINION The development of BD1-selective BETi, despite challenging, is highly desirable as it could have a great impact on the development of new safer anticancer therapeutics. Several strategies could be applied to discover potent and selective compounds with limited side effects.
Collapse
Affiliation(s)
- Monica Viviano
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno, Fisciano, SA, Italy
| | - Alessandra Cipriano
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno, Fisciano, SA, Italy
| | - Emanuele Fabbrizi
- Department of Drug Chemistry & Technologies, Sapienza University of Rome, Rome, Italy
| | - Alessandra Feoli
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno, Fisciano, SA, Italy
| | - Sabrina Castellano
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno, Fisciano, SA, Italy
| | - Gianluca Sbardella
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno, Fisciano, SA, Italy
| | - Antonello Mai
- Department of Drug Chemistry & Technologies, Sapienza University of Rome, Rome, Italy
| | - Ciro Milite
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno, Fisciano, SA, Italy
| | - Dante Rotili
- Department of Drug Chemistry & Technologies, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
7
|
Ji Y, Chen W, Wang X. Bromodomain and Extraterminal Domain Protein 2 in Multiple Human Diseases. J Pharmacol Exp Ther 2024; 389:277-288. [PMID: 38565308 DOI: 10.1124/jpet.123.002036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024] Open
Abstract
Bromodomain and extraterminal domain protein 2 (BRD2), a member of the bromodomain and extraterminal domain (BET) protein family, is a crucial epigenetic regulator with significant function in various diseases and cellular processes. The central function of BRD2 is modulating gene transcription by binding to acetylated lysine residues on histones and transcription factors. This review highlights key findings on BRD2 in recent years, emphasizing its roles in maintaining genomic stability, influencing chromatin spatial organization, and participating in transcriptional regulation. BRD2's diverse functions are underscored by its involvement in diseases such as malignant tumors, neurologic disorders, inflammatory conditions, metabolic diseases, and virus infection. Notably, the potential role of BRD2 as a diagnostic marker and therapeutic target is discussed in the context of various diseases. Although pan inhibitors targeting the BET family have shown promise in preclinical studies, a critical need exists for the development of highly selective BRD2 inhibitors. In conclusion, this review offers insights into the multifaceted nature of BRD2 and calls for continued research to unravel its intricate mechanisms and harness its therapeutic potential. SIGNIFICANCE STATEMENT: BRD2 is involved in the occurrence and development of diseases through maintaining genomic stability, influencing chromatin spatial organization, and participating in transcriptional regulation. Targeting BRD2 through protein degradation-targeting complexes technology is emerging as a promising therapeutic approach for malignant cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Yikang Ji
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology
| | - Wantao Chen
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology
| | - Xu Wang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology
| |
Collapse
|
8
|
Rosenthal ZC, Fass DM, Payne NC, She A, Patnaik D, Hennig KM, Tesla R, Werthmann GC, Guhl C, Reis SA, Wang X, Chen Y, Placzek M, Williams NS, Hooker J, Herz J, Mazitschek R, Haggarty SJ. Epigenetic modulation through BET bromodomain inhibitors as a novel therapeutic strategy for progranulin-deficient frontotemporal dementia. Sci Rep 2024; 14:9064. [PMID: 38643236 PMCID: PMC11032351 DOI: 10.1038/s41598-024-59110-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/08/2024] [Indexed: 04/22/2024] Open
Abstract
Frontotemporal dementia (FTD) is a debilitating neurodegenerative disorder with currently no disease-modifying treatment options available. Mutations in GRN are one of the most common genetic causes of FTD, near ubiquitously resulting in progranulin (PGRN) haploinsufficiency. Small molecules that can restore PGRN protein to healthy levels in individuals bearing a heterozygous GRN mutation may thus have therapeutic value. Here, we show that epigenetic modulation through bromodomain and extra-terminal domain (BET) inhibitors (BETi) potently enhance PGRN protein levels, both intracellularly and secreted forms, in human central nervous system (CNS)-relevant cell types, including in microglia-like cells. In terms of potential for disease modification, we show BETi treatment effectively restores PGRN levels in neural cells with a GRN mutation known to cause PGRN haploinsufficiency and FTD. We demonstrate that BETi can rapidly and durably enhance PGRN in neural progenitor cells (NPCs) in a manner dependent upon BET protein expression, suggesting a gain-of-function mechanism. We further describe a CNS-optimized BETi chemotype that potently engages endogenous BRD4 and enhances PGRN expression in neuronal cells. Our results reveal a new epigenetic target for treating PGRN-deficient forms of FTD and provide mechanistic insight to aid in translating this discovery into therapeutics.
Collapse
Affiliation(s)
- Zachary C Rosenthal
- Chemical Neurobiology Laboratory, Precision Therapeutics Unit, Center for Genomic Medicine, Departments of Neurology and Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Daniel M Fass
- Chemical Neurobiology Laboratory, Precision Therapeutics Unit, Center for Genomic Medicine, Departments of Neurology and Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - N Connor Payne
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA, USA
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Angela She
- Chemical Neurobiology Laboratory, Precision Therapeutics Unit, Center for Genomic Medicine, Departments of Neurology and Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Debasis Patnaik
- Chemical Neurobiology Laboratory, Precision Therapeutics Unit, Center for Genomic Medicine, Departments of Neurology and Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Krista M Hennig
- Chemical Neurobiology Laboratory, Precision Therapeutics Unit, Center for Genomic Medicine, Departments of Neurology and Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Rachel Tesla
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gordon C Werthmann
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Charlotte Guhl
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | - Surya A Reis
- Chemical Neurobiology Laboratory, Precision Therapeutics Unit, Center for Genomic Medicine, Departments of Neurology and Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Xiaoyu Wang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yueting Chen
- Department of Radiology, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Michael Placzek
- Department of Radiology, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Noelle S Williams
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jacob Hooker
- Department of Radiology, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Joachim Herz
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ralph Mazitschek
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Stephen J Haggarty
- Chemical Neurobiology Laboratory, Precision Therapeutics Unit, Center for Genomic Medicine, Departments of Neurology and Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
9
|
Wang ZQ, Zhang ZC, Wu YY, Pi YN, Lou SH, Liu TB, Lou G, Yang C. Bromodomain and extraterminal (BET) proteins: biological functions, diseases, and targeted therapy. Signal Transduct Target Ther 2023; 8:420. [PMID: 37926722 PMCID: PMC10625992 DOI: 10.1038/s41392-023-01647-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/23/2023] [Accepted: 09/12/2023] [Indexed: 11/07/2023] Open
Abstract
BET proteins, which influence gene expression and contribute to the development of cancer, are epigenetic interpreters. Thus, BET inhibitors represent a novel form of epigenetic anticancer treatment. Although preliminary clinical trials have shown the anticancer potential of BET inhibitors, it appears that these drugs have limited effectiveness when used alone. Therefore, given the limited monotherapeutic activity of BET inhibitors, their use in combination with other drugs warrants attention, including the meaningful variations in pharmacodynamic activity among chosen drug combinations. In this paper, we review the function of BET proteins, the preclinical justification for BET protein targeting in cancer, recent advances in small-molecule BET inhibitors, and preliminary clinical trial findings. We elucidate BET inhibitor resistance mechanisms, shed light on the associated adverse events, investigate the potential of combining these inhibitors with diverse therapeutic agents, present a comprehensive compilation of synergistic treatments involving BET inhibitors, and provide an outlook on their future prospects as potent antitumor agents. We conclude by suggesting that combining BET inhibitors with other anticancer drugs and innovative next-generation agents holds great potential for advancing the effective targeting of BET proteins as a promising anticancer strategy.
Collapse
Affiliation(s)
- Zhi-Qiang Wang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Zhao-Cong Zhang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Yu-Yang Wu
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ya-Nan Pi
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Sheng-Han Lou
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Tian-Bo Liu
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Ge Lou
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China.
| | - Chang Yang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China.
| |
Collapse
|
10
|
Qiu X, Liang G, Zhou W, Sen R, Atchison ML. Multiple lineage-specific epigenetic landscapes at the antigen receptor loci. AGING RESEARCH (HONG KONG, CHINA) 2023; 1:9340010. [PMID: 38770228 PMCID: PMC11103674 DOI: 10.26599/agr.2023.9340010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Antigen receptors (AgRs) expressed on B and T cells provide the adaptive immune system with ability to detect numerous foreign antigens. Epigenetic features of B cell receptor (BCR) and T cell receptor (TCR) genes were previously studied in lymphocytes, but little is known about their epigenetic features in other cells. Here, we explored histone modifications and transcription markers at the BCR and TCR loci in lymphocytes (pro-B, DP T cells, and mature CD4+ T cells), compared to embryonic stem (ES) cells and neurons. In B cells, the BCR loci exhibited active histone modifications and transcriptional markers indicative of active loci. Similar results were observed at the TCR loci in T cells. All loci were largely inactive in neurons. Surprisingly, in ES cells all AgR loci displayed a high degree of active histone modifications and markers of active transcription. Locations of these active histone modifications in ES cells were largely distinct from those in pro-B cells, and co-localized at numerous binding locations for transcription factors Oct4, Sox2, and Nanog. ES and pro-B cells also showed distinct binding patterns for the ubiquitous transcription factor YY1 and chromatin remodeler Brg1. On the contrary, there were many overlapping CCCTC-binding factor (CTCF) binding patterns when comparing ES cells, pro-B cells, and neurons. Our study identifies epigenetic features in ES cells and lymphocytes that may be related to ES cell pluripotency and lymphocyte tissue-specific activation at the AgR loci.
Collapse
Affiliation(s)
- Xiang Qiu
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, Maryland 21224, USA
| | - Guanxiang Liang
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Weiqiang Zhou
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
| | - Ranjan Sen
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, Maryland 21224, USA
| | - Michael L. Atchison
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
11
|
Zheng B, Gold S, Iwanaszko M, Howard BC, Wang L, Shilatifard A. Distinct layers of BRD4-PTEFb reveal bromodomain-independent function in transcriptional regulation. Mol Cell 2023; 83:2896-2910.e4. [PMID: 37442129 PMCID: PMC10527981 DOI: 10.1016/j.molcel.2023.06.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/15/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
The BET family protein BRD4, which forms the CDK9-containing BRD4-PTEFb complex, is considered to be a master regulator of RNA polymerase II (Pol II) pause release. Because its tandem bromodomains interact with acetylated histone lysine residues, it has long been thought that BRD4 requires these bromodomains for its recruitment to chromatin and transcriptional regulatory function. Here, using rapid depletion and genetic complementation with domain deletion mutants, we demonstrate that BRD4 bromodomains are dispensable for Pol II pause release. A minimal, bromodomain-less C-terminal BRD4 fragment containing the PTEFb-interacting C-terminal motif (CTM) is instead both necessary and sufficient to mediate Pol II pause release in the absence of full-length BRD4. Although BRD4-PTEFb can associate with chromatin through acetyl recognition, our results indicate that a distinct, active BRD4-PTEFb population functions to regulate transcription independently of bromodomain-mediated chromatin association. These findings may enable more effective pharmaceutical modulation of BRD4-PTEFb activity.
Collapse
Affiliation(s)
- Bin Zheng
- Simpson Querrey Institute for Epigenetics and the Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Sarah Gold
- Simpson Querrey Institute for Epigenetics and the Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Marta Iwanaszko
- Simpson Querrey Institute for Epigenetics and the Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Benjamin Charles Howard
- Simpson Querrey Institute for Epigenetics and the Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Lu Wang
- Simpson Querrey Institute for Epigenetics and the Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - Ali Shilatifard
- Simpson Querrey Institute for Epigenetics and the Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
12
|
Bobbitt JR, Seachrist DD, Keri RA. Chromatin Organization and Transcriptional Programming of Breast Cancer Cell Identity. Endocrinology 2023; 164:bqad100. [PMID: 37394919 PMCID: PMC10370366 DOI: 10.1210/endocr/bqad100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/04/2023]
Abstract
The advent of sequencing technologies for assessing chromosome conformations has provided a wealth of information on the organization of the 3-dimensional genome and its role in cancer progression. It is now known that changes in chromatin folding and accessibility can promote aberrant activation or repression of transcriptional programs that can drive tumorigenesis and progression in diverse cancers. This includes breast cancer, which comprises several distinct subtypes defined by their unique transcriptomes that dictate treatment response and patient outcomes. Of these, basal-like breast cancer is an aggressive subtype controlled by a pluripotency-enforcing transcriptome. Meanwhile, the more differentiated luminal subtype of breast cancer is driven by an estrogen receptor-dominated transcriptome that underlies its responsiveness to antihormone therapies and conveys improved patient outcomes. Despite the clear differences in molecular signatures, the genesis of each subtype from normal mammary epithelial cells remains unclear. Recent technical advances have revealed key distinctions in chromatin folding and organization between subtypes that could underlie their transcriptomic and, hence, phenotypic differences. These studies also suggest that proteins controlling particular chromatin states may be useful targets for treating aggressive disease. In this review, we explore the current state of understanding of chromatin architecture in breast cancer subtypes and its potential role in defining their phenotypic characteristics.
Collapse
Affiliation(s)
- Jessica R Bobbitt
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Darcie D Seachrist
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Ruth A Keri
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
13
|
Regulation of Cell Plasticity by Bromodomain and Extraterminal Domain (BET) Proteins: A New Perspective in Glioblastoma Therapy. Int J Mol Sci 2023; 24:ijms24065665. [PMID: 36982740 PMCID: PMC10055343 DOI: 10.3390/ijms24065665] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
BET proteins are a family of multifunctional epigenetic readers, mainly involved in transcriptional regulation through chromatin modelling. Transcriptome handling ability of BET proteins suggests a key role in the modulation of cell plasticity, both in fate decision and in lineage commitment during embryonic development and in pathogenic conditions, including cancerogenesis. Glioblastoma is the most aggressive form of glioma, characterized by a very poor prognosis despite the application of a multimodal therapy. Recently, new insights are emerging about the glioblastoma cellular origin, leading to the hypothesis that several putative mechanisms occur during gliomagenesis. Interestingly, epigenome dysregulation associated with loss of cellular identity and functions are emerging as crucial features of glioblastoma pathogenesis. Therefore, the emerging roles of BET protein in glioblastoma onco-biology and the compelling demand for more effective therapeutic strategies suggest that BET family members could be promising targets for translational breakthroughs in glioblastoma treatment. Primarily, “Reprogramming Therapy”, which is aimed at reverting the malignant phenotype, is now considered a promising strategy for GBM therapy.
Collapse
|
14
|
Vermunt MW, Luan J, Zhang Z, Thrasher AJ, Huang A, Saari MS, Khandros E, Beagrie RA, Zhang S, Vemulamada P, Brilleman M, Lee K, Yano JA, Giardine BM, Keller CA, Hardison RC, Blobel GA. Gene silencing dynamics are modulated by transiently active regulatory elements. Mol Cell 2023; 83:715-730.e6. [PMID: 36868189 PMCID: PMC10719944 DOI: 10.1016/j.molcel.2023.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 12/05/2022] [Accepted: 02/03/2023] [Indexed: 03/05/2023]
Abstract
Transcriptional enhancers have been extensively characterized, but cis-regulatory elements involved in acute gene repression have received less attention. Transcription factor GATA1 promotes erythroid differentiation by activating and repressing distinct gene sets. Here, we study the mechanism by which GATA1 silences the proliferative gene Kit during murine erythroid cell maturation and define stages from initial loss of activation to heterochromatinization. We find that GATA1 inactivates a potent upstream enhancer but concomitantly creates a discrete intronic regulatory region marked by H3K27ac, short noncoding RNAs, and de novo chromatin looping. This enhancer-like element forms transiently and serves to delay Kit silencing. The element is ultimately erased via the FOG1/NuRD deacetylase complex, as revealed by the study of a disease-associated GATA1 variant. Hence, regulatory sites can be self-limiting by dynamic co-factor usage. Genome-wide analyses across cell types and species uncover transiently active elements at numerous genes during repression, suggesting that modulation of silencing kinetics is widespread.
Collapse
Affiliation(s)
- Marit W Vermunt
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Jing Luan
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhe Zhang
- Department of Biomedical and Health Informatics, The Children's Hospital of Pennsylvania, Philadelphia, PA 19104, USA
| | - A Josephine Thrasher
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Anran Huang
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Megan S Saari
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Eugene Khandros
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Robert A Beagrie
- Chromatin and Disease Group, Wellcome Centre for Human Genetics, Oxford OX3 7BN, UK
| | - Shiping Zhang
- Department of Biomedical and Health Informatics, The Children's Hospital of Pennsylvania, Philadelphia, PA 19104, USA
| | - Pranay Vemulamada
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Matilda Brilleman
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kiwon Lee
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jennifer A Yano
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Belinda M Giardine
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Cheryl A Keller
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Gerd A Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| |
Collapse
|
15
|
Eischer N, Arnold M, Mayer A. Emerging roles of BET proteins in transcription and co-transcriptional RNA processing. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1734. [PMID: 35491403 DOI: 10.1002/wrna.1734] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/06/2022] [Accepted: 04/09/2022] [Indexed: 01/31/2023]
Abstract
Transcription by RNA polymerase II (Pol II) gives rise to all nuclear protein-coding and a large set of non-coding RNAs, and is strictly regulated and coordinated with RNA processing. Bromodomain and extraterminal (BET) family proteins including BRD2, BRD3, and BRD4 have been implicated in the regulation of Pol II transcription in mammalian cells. However, only recent technological advances have allowed the analysis of direct functions of individual BET proteins with high precision in cells. These studies shed new light on the molecular mechanisms of transcription control by BET proteins challenging previous longstanding views. The most studied BET protein, BRD4, emerges as a master regulator of transcription elongation with roles also in coupling nascent transcription with RNA processing. In contrast, BRD2 is globally required for the formation of transcriptional boundaries to restrict enhancer activity to nearby genes. Although these recent findings suggest non-redundant functions of BRD4 and BRD2 in Pol II transcription, more research is needed for further clarification. Little is known about the roles of BRD3. Here, we illuminate experimental work that has initially linked BET proteins to Pol II transcription in mammalian cells, outline main methodological breakthroughs that have strongly advanced the understanding of BET protein functions, and discuss emerging roles of individual BET proteins in transcription and transcription-coupled RNA processing. Finally, we propose an updated model for the function of BRD4 in transcription and co-transcriptional RNA maturation. This article is categorized under: RNA Processing > 3' End Processing RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- Nicole Eischer
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Mirjam Arnold
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Andreas Mayer
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, Berlin, Germany
| |
Collapse
|
16
|
Luan J, Vermunt MW, Syrett CM, Coté A, Tome JM, Zhang H, Huang A, Luppino JM, Keller CA, Giardine BM, Zhang S, Dunagin MC, Zhang Z, Joyce EF, Lis JT, Raj A, Hardison RC, Blobel GA. CTCF blocks antisense transcription initiation at divergent promoters. Nat Struct Mol Biol 2022; 29:1136-1144. [PMID: 36369346 DOI: 10.1101/2021.10.30.465508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/29/2022] [Indexed: 05/26/2023]
Abstract
Transcription at most promoters is divergent, initiating at closely spaced oppositely oriented core promoters to produce sense transcripts along with often unstable upstream antisense transcripts (uasTrx). How antisense transcription is regulated and to what extent it is coordinated with sense transcription is not well understood. Here, by combining acute degradation of the multi-functional transcription factor CTCF and nascent transcription measurements, we find that CTCF specifically suppresses antisense but not sense transcription at hundreds of divergent promoters. Primary transcript RNA-FISH shows that CTCF lowers burst fraction but not burst intensity of uasTrx and that co-bursting of sense and antisense transcripts is disfavored. Genome editing, chromatin conformation studies and high-resolution transcript mapping revealed that precisely positioned CTCF directly suppresses the initiation of uasTrx, in a manner independent of its architectural function. In sum, CTCF shapes the transcriptional landscape in part by suppressing upstream antisense transcription.
Collapse
Affiliation(s)
- Jing Luan
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marit W Vermunt
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Camille M Syrett
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Clarion Healthcare, LLC, Boston, MA, USA
| | - Allison Coté
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacob M Tome
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
- Shape Therapeutics Inc, Seattle, WA, USA
| | - Haoyue Zhang
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Anran Huang
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jennifer M Luppino
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Cheryl A Keller
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Belinda M Giardine
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Shiping Zhang
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Margaret C Dunagin
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhe Zhang
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Eric F Joyce
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Arjun Raj
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Gerd A Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
17
|
Luan J, Vermunt MW, Syrett CM, Coté A, Tome JM, Zhang H, Huang A, Luppino JM, Keller CA, Giardine BM, Zhang S, Dunagin MC, Zhang Z, Joyce EF, Lis JT, Raj A, Hardison RC, Blobel GA. CTCF blocks antisense transcription initiation at divergent promoters. Nat Struct Mol Biol 2022; 29:1136-1144. [PMID: 36369346 PMCID: PMC10015438 DOI: 10.1038/s41594-022-00855-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/29/2022] [Indexed: 11/13/2022]
Abstract
Transcription at most promoters is divergent, initiating at closely spaced oppositely oriented core promoters to produce sense transcripts along with often unstable upstream antisense transcripts (uasTrx). How antisense transcription is regulated and to what extent it is coordinated with sense transcription is not well understood. Here, by combining acute degradation of the multi-functional transcription factor CTCF and nascent transcription measurements, we find that CTCF specifically suppresses antisense but not sense transcription at hundreds of divergent promoters. Primary transcript RNA-FISH shows that CTCF lowers burst fraction but not burst intensity of uasTrx and that co-bursting of sense and antisense transcripts is disfavored. Genome editing, chromatin conformation studies and high-resolution transcript mapping revealed that precisely positioned CTCF directly suppresses the initiation of uasTrx, in a manner independent of its architectural function. In sum, CTCF shapes the transcriptional landscape in part by suppressing upstream antisense transcription.
Collapse
Affiliation(s)
- Jing Luan
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marit W Vermunt
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Camille M Syrett
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Clarion Healthcare, LLC, Boston, MA, USA
| | - Allison Coté
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacob M Tome
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
- Shape Therapeutics Inc, Seattle, WA, USA
| | - Haoyue Zhang
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Anran Huang
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jennifer M Luppino
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Cheryl A Keller
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Belinda M Giardine
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Shiping Zhang
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Margaret C Dunagin
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhe Zhang
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Eric F Joyce
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Arjun Raj
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Gerd A Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
18
|
Chen IP, Ott M. Viral Hijacking of BET Proteins. Viruses 2022; 14:2274. [PMID: 36298829 PMCID: PMC9609653 DOI: 10.3390/v14102274] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/29/2022] Open
Abstract
Proteins of the bromodomain and exterminal domain (BET) family mediate critical host functions such as cell proliferation, transcriptional regulation, and the innate immune response, which makes them preferred targets for viruses. These multidomain proteins are best known as transcriptional effectors able to read acetylated histone and non-histone proteins through their tandem bromodomains. They also contain other short motif-binding domains such as the extraterminal domain, which recognizes transcriptional regulatory proteins. Here, we describe how different viruses have evolved to hijack or disrupt host BET protein function through direct interactions with BET family members to support their own propagation. The network of virus-BET interactions emerges as highly intricate, which may complicate the use of small-molecule BET inhibitors-currently in clinical development for the treatment of cancer and cardiovascular diseases-to treat viral infections.
Collapse
Affiliation(s)
- Irene P. Chen
- Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Melanie Ott
- Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
19
|
Yang J, Song C, Zhan X. The role of protein acetylation in carcinogenesis and targeted drug discovery. Front Endocrinol (Lausanne) 2022; 13:972312. [PMID: 36171897 PMCID: PMC9510633 DOI: 10.3389/fendo.2022.972312] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/23/2022] [Indexed: 12/01/2022] Open
Abstract
Protein acetylation is a reversible post-translational modification, and is involved in many biological processes in cells, such as transcriptional regulation, DNA damage repair, and energy metabolism, which is an important molecular event and is associated with a wide range of diseases such as cancers. Protein acetylation is dynamically regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs) in homeostasis. The abnormal acetylation level might lead to the occurrence and deterioration of a cancer, and is closely related to various pathophysiological characteristics of a cancer, such as malignant phenotypes, and promotes cancer cells to adapt to tumor microenvironment. Therapeutic modalities targeting protein acetylation are a potential therapeutic strategy. This article discussed the roles of protein acetylation in tumor pathology and therapeutic drugs targeting protein acetylation, which offers the contributions of protein acetylation in clarification of carcinogenesis, and discovery of therapeutic drugs for cancers, and lays the foundation for precision medicine in oncology.
Collapse
Affiliation(s)
- Jingru Yang
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Cong Song
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Xianquan Zhan
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| |
Collapse
|
20
|
Gupta A, Martin-Rufino JD, Jones TR, Subramanian V, Qiu X, Grody EI, Bloemendal A, Weng C, Niu SY, Min KH, Mehta A, Zhang K, Siraj L, Al' Khafaji A, Sankaran VG, Raychaudhuri S, Cleary B, Grossman S, Lander ES. Inferring gene regulation from stochastic transcriptional variation across single cells at steady state. Proc Natl Acad Sci U S A 2022; 119:e2207392119. [PMID: 35969771 PMCID: PMC9407670 DOI: 10.1073/pnas.2207392119] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/20/2022] [Indexed: 12/24/2022] Open
Abstract
Regulatory relationships between transcription factors (TFs) and their target genes lie at the heart of cellular identity and function; however, uncovering these relationships is often labor-intensive and requires perturbations. Here, we propose a principled framework to systematically infer gene regulation for all TFs simultaneously in cells at steady state by leveraging the intrinsic variation in the transcriptional abundance across single cells. Through modeling and simulations, we characterize how transcriptional bursts of a TF gene are propagated to its target genes, including the expected ranges of time delay and magnitude of maximum covariation. We distinguish these temporal trends from the time-invariant covariation arising from cell states, and we delineate the experimental and technical requirements for leveraging these small but meaningful cofluctuations in the presence of measurement noise. While current technology does not yet allow adequate power for definitively detecting regulatory relationships for all TFs simultaneously in cells at steady state, we investigate a small-scale dataset to inform future experimental design. This study supports the potential value of mapping regulatory connections through stochastic variation, and it motivates further technological development to achieve its full potential.
Collapse
Affiliation(s)
- Anika Gupta
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115
| | - Jorge D. Martin-Rufino
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA 02115
- Dana-Farber Cancer Institute, Boston, MA 02215
| | | | | | - Xiaojie Qiu
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
- HHMI, Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | | | - Chen Weng
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA 02115
- Dana-Farber Cancer Institute, Boston, MA 02215
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
| | | | - Kyung Hoi Min
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Arnav Mehta
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Dana-Farber Cancer Institute, Boston, MA 02215
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Kaite Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Layla Siraj
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | | | - Vijay G. Sankaran
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA 02115
- Dana-Farber Cancer Institute, Boston, MA 02215
| | - Soumya Raychaudhuri
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA 02115
| | - Brian Cleary
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | | | - Eric S. Lander
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
21
|
Zhou R, Tian K, Huang J, Duan W, Fu H, Feng Y, Wang H, Jiang Y, Li Y, Wang R, Hu J, Ma H, Qi Z, Ji X. CTCF DNA binding domain undergoes dynamic and selective protein–protein interactions. iScience 2022; 25:105011. [PMID: 36117989 PMCID: PMC9474293 DOI: 10.1016/j.isci.2022.105011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/13/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022] Open
Abstract
CTCF is a predominant insulator protein required for three-dimensional chromatin organization. However, the roles of its insulation of enhancers in a 3D nuclear organization have not been fully explained. Here, we found that the CTCF DNA-binding domain (DBD) forms dynamic self-interacting clusters. Strikingly, CTCF DBD clusters were found to incorporate other insulator proteins but are not coenriched with transcriptional activators in the nucleus. This property is not observed in other domains of CTCF or the DBDs of other transcription factors. Moreover, endogenous CTCF shows a phenotype consistent with the DBD by forming small protein clusters and interacting with CTCF motif arrays that have fewer transcriptional activators bound. Our results reveal an interesting phenomenon in which CTCF DBD interacts with insulator proteins and selectively localizes to nuclear positions with lower concentrations of transcriptional activators, providing insights into the insulation function of CTCF. The CTCF DNA-binding domain forms protein clusters in vivo and in vitro CTCF DBD clusters colocalize with insulator proteins but not with activators Arginine residues of CTCF DBD are frequently mutated in cancers Multiple transcription factor DBDs form protein clusters
Collapse
|
22
|
Tsujikawa LM, Kharenko OA, Stotz SC, Rakai BD, Sarsons CD, Gilham D, Wasiak S, Fu L, Sweeney M, Johansson JO, Wong NCW, Kulikowski E. Breaking boundaries: Pan BETi disrupt 3D chromatin structure, BD2-selective BETi are strictly epigenetic transcriptional regulators. Biomed Pharmacother 2022; 152:113230. [PMID: 35687908 DOI: 10.1016/j.biopha.2022.113230] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/25/2022] [Accepted: 06/01/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Bromodomain and extraterminal proteins (BETs) are more than just epigenetic regulators of transcription. Here we highlight a new role for the BET protein BRD4 in the maintenance of higher order chromatin structure at Topologically Associating Domain Boundaries (TADBs). BD2-selective and pan (non-selective) BET inhibitors (BETi) differentially support chromatin structure, selectively affecting transcription and cell viability. METHODS Using RNA-seq and BRD4 ChIP-seq, the differential effect of BETi treatment on the transcriptome and BRD4 chromatin occupancy of human aortic endothelial cells from diabetic patients (dHAECs) stimulated with TNFα was evaluated. Chromatin decondensation and DNA fragmentation was assessed by immunofluorescence imaging and quantification. Key dHAEC findings were verified in proliferating monocyte-like THP-1 cells using real time-PCR, BRD4 co-immunoprecipitation studies, western blots, proliferation and apoptosis assays. FINDINGS We discovered that 1) BRD4 co-localizes with Ying-Yang 1 (YY1) at TADBs, critical chromatin structure complexes proximal to many DNA repair genes. 2) BD2-selective BETi enrich BRD4/YY1 associations, while pan-BETi do not. 3) Failure to support chromatin structures through BRD4/YY1 enrichment inhibits DNA repair gene transcription, which induces DNA damage responses, and causes widespread chromatin decondensation, DNA fragmentation, and apoptosis. 4) BD2-selective BETi maintain high order chromatin structure and cell viability, while reducing deleterious pro-inflammatory transcription. INTERPRETATION BRD4 plays a previously unrecognized role at TADBs. BETi differentially impact TADB stability. Our results provide translational insight for the development of BETi as therapeutics for a range of diseases including CVD, chronic kidney disease, cancer, and COVID-19.
Collapse
Affiliation(s)
- Laura M Tsujikawa
- Resverlogix Corporation, Suite 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada.
| | - Olesya A Kharenko
- Resverlogix Corporation, Suite 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada.
| | - Stephanie C Stotz
- Resverlogix Corporation, Suite 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada.
| | - Brooke D Rakai
- Resverlogix Corporation, Suite 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada.
| | - Christopher D Sarsons
- Resverlogix Corporation, Suite 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada.
| | - Dean Gilham
- Resverlogix Corporation, Suite 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada.
| | - Sylwia Wasiak
- Resverlogix Corporation, Suite 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada.
| | - Li Fu
- Resverlogix Corporation, Suite 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada.
| | - Michael Sweeney
- Resverlogix Corporation, Suite 4010, 44 Montgomery Street, San Francisco, CA 94104, USA.
| | - Jan O Johansson
- Resverlogix Corporation, Suite 4010, 44 Montgomery Street, San Francisco, CA 94104, USA.
| | - Norman C W Wong
- Resverlogix Corporation, Suite 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada.
| | - Ewelina Kulikowski
- Resverlogix Corporation, Suite 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada.
| |
Collapse
|
23
|
Xie L, Dong P, Qi Y, Hsieh THS, English BP, Jung S, Chen X, De Marzio M, Casellas R, Chang HY, Zhang B, Tjian R, Liu Z. BRD2 compartmentalizes the accessible genome. Nat Genet 2022; 54:481-491. [PMID: 35410381 PMCID: PMC9099420 DOI: 10.1038/s41588-022-01044-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/01/2022] [Indexed: 12/15/2022]
Abstract
Mammalian chromosomes are organized into megabase-sized compartments that are further subdivided into topologically associated domains (TADs). While the formation of TADs is dependent on Cohesin, the mechanism behind compartmentalization remains enigmatic. Here, we show that the bromodomain and extraterminal (BET) family scaffold protein BRD2 promotes spatial mixing and compartmentalization of active chromatin after Cohesin loss. This activity is independent of transcription but requires BRD2 to recognize acetylated targets through its double bromodomain and interact with binding partners with its low complexity domain. Notably, genome compartmentalization mediated by BRD2 is antagonized on one hand by Cohesin and on the other by the BET homolog protein BRD4, both of which inhibit BRD2 binding to chromatin. Polymer simulation of our data supports a BRD2-Cohesin interplay model of nuclear topology, where genome compartmentalization results from a competition between loop extrusion and chromatin state-specific affinity interactions.
Collapse
|
24
|
Song Y, Liang Z, Zhang J, Hu G, Wang J, Li Y, Guo R, Dong X, Babarinde IA, Ping W, Sheng YL, Li H, Chen Z, Gao M, Chen Y, Shan G, Zhang MQ, Hutchins AP, Fu XD, Yao H. CTCF functions as an insulator for somatic genes and a chromatin remodeler for pluripotency genes during reprogramming. Cell Rep 2022; 39:110626. [PMID: 35385732 DOI: 10.1016/j.celrep.2022.110626] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/13/2022] [Accepted: 03/14/2022] [Indexed: 12/15/2022] Open
Abstract
CTCF mediates chromatin insulation and long-distance enhancer-promoter (EP) interactions; however, little is known about how these regulatory functions are partitioned among target genes in key biological processes. Here, we show that Ctcf expression is progressively increased during induced pluripotency. In this process, CTCF first functions as a chromatin insulator responsible for direct silencing of the somatic gene expression program and, interestingly, elevated Ctcf expression next ensures chromatin accessibility and contributes to increased EP interactions for a fraction of pluripotency-associated genes. Therefore, CTCF functions in a context-specific manner to modulate the 3D genome to enable cellular reprogramming. We further discover that these context-specific CTCF functions also enlist SMARCA5, an imitation switch (ISWI) chromatin remodeler, together rewiring the epigenome to facilitate cell-fate switch. These findings reveal the dual functions of CTCF in conjunction with a key chromatin remodeler to drive reprogramming toward pluripotency.
Collapse
Affiliation(s)
- Yawei Song
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health GuangDong Laboratory), Guangzhou 510005, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhengyu Liang
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA
| | - Jie Zhang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health GuangDong Laboratory), Guangzhou 510005, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gongcheng Hu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health GuangDong Laboratory), Guangzhou 510005, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Juehan Wang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health GuangDong Laboratory), Guangzhou 510005, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaoyi Li
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health GuangDong Laboratory), Guangzhou 510005, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Rong Guo
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health GuangDong Laboratory), Guangzhou 510005, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaotao Dong
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health GuangDong Laboratory), Guangzhou 510005, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Isaac A Babarinde
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wangfang Ping
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health GuangDong Laboratory), Guangzhou 510005, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying-Liang Sheng
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health GuangDong Laboratory), Guangzhou 510005, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Huanhuan Li
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
| | - Zhaoming Chen
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health GuangDong Laboratory), Guangzhou 510005, China
| | - Minghui Gao
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
| | - Yang Chen
- MOE Key Laboratory of Bioinformatics, Bioinformatics Division and Center for Synthetic & Systems Biology, BNRist, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Ge Shan
- Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Michael Q Zhang
- MOE Key Laboratory of Bioinformatics, Bioinformatics Division and Center for Synthetic & Systems Biology, BNRist, School of Medicine, Tsinghua University, Beijing 100084, China; Department of Biological Sciences, Center for Systems Biology, The University of Texas, Richardson, TX 75080-3021, USA
| | - Andrew P Hutchins
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA.
| | - Hongjie Yao
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health GuangDong Laboratory), Guangzhou 510005, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
25
|
Bellefroid M, Rodari A, Galais M, Krijger PHL, Tjalsma SJD, Nestola L, Plant E, Vos ESM, Cristinelli S, Van Driessche B, Vanhulle C, Ait-Ammar A, Burny A, Ciuffi A, de Laat W, Van Lint C. Role of the cellular factor CTCF in the regulation of bovine leukemia virus latency and three-dimensional chromatin organization. Nucleic Acids Res 2022; 50:3190-3202. [PMID: 35234910 PMCID: PMC8989512 DOI: 10.1093/nar/gkac107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 01/31/2022] [Accepted: 02/05/2022] [Indexed: 01/12/2023] Open
Abstract
Bovine leukemia virus (BLV)-induced tumoral development is a multifactorial phenomenon that remains incompletely understood. Here, we highlight the critical role of the cellular CCCTC-binding factor (CTCF) both in the regulation of BLV transcriptional activities and in the deregulation of the three-dimensional (3D) chromatin architecture surrounding the BLV integration site. We demonstrated the in vivo recruitment of CTCF to three conserved CTCF binding motifs along the provirus. Next, we showed that CTCF localized to regions of transitions in the histone modifications profile along the BLV genome and that it is implicated in the repression of the 5′Long Terminal Repeat (LTR) promoter activity, thereby contributing to viral latency, while favoring the 3′LTR promoter activity. Finally, we demonstrated that BLV integration deregulated the host cellular 3D chromatin organization through the formation of viral/host chromatin loops. Altogether, our results highlight CTCF as a new critical effector of BLV transcriptional regulation and BLV-induced physiopathology.
Collapse
Affiliation(s)
- Maxime Bellefroid
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Anthony Rodari
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Mathilde Galais
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Peter H L Krijger
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht 3584, CT, The Netherlands
| | - Sjoerd J D Tjalsma
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht 3584, CT, The Netherlands
| | - Lorena Nestola
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Estelle Plant
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Erica S M Vos
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht 3584, CT, The Netherlands
| | - Sara Cristinelli
- Institute of Microbiology, Lausanne University Hospital, University of Lausanne, Lausanne 1011, Switzerland
| | - Benoit Van Driessche
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Caroline Vanhulle
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Amina Ait-Ammar
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Arsène Burny
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Angela Ciuffi
- Institute of Microbiology, Lausanne University Hospital, University of Lausanne, Lausanne 1011, Switzerland
| | - Wouter de Laat
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht 3584, CT, The Netherlands
| | - Carine Van Lint
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| |
Collapse
|
26
|
Yang T, He X, An L, Li Q. Methods to Assess the Reproducibility and Similarity of Hi-C Data. Methods Mol Biol 2022; 2301:17-37. [PMID: 34415529 DOI: 10.1007/978-1-0716-1390-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hi-C experiments are costly to perform and involve multiple complex experimental steps. Reproducibility of Hi-C data is essential for ensuring the validity of the scientific conclusions drawn from the data. In this chapter, we describe several recently developed computational methods for assessing reproducibility of Hi-C replicate experiments. These methods can also be used to assess the similarity between any two Hi-C samples.
Collapse
Affiliation(s)
- Tao Yang
- Bioinformatics and Genomics Program, Pennsylvania State University, University Park, PA, USA
| | - Xi He
- Bioinformatics and Genomics Program, Pennsylvania State University, University Park, PA, USA
| | - Lin An
- Bioinformatics and Genomics Program, Pennsylvania State University, University Park, PA, USA
| | - Qunhua Li
- Department of Statistics, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
27
|
Branigan GL, Olsen KS, Burda I, Haemmerle MW, Ho J, Venuto A, D’Antonio ND, Briggs IE, DiBenedetto AJ. Zebrafish Paralogs brd2a and brd2b Are Needed for Proper Circulatory, Excretory and Central Nervous System Formation and Act as Genetic Antagonists during Development. J Dev Biol 2021; 9:jdb9040046. [PMID: 34842711 PMCID: PMC8629005 DOI: 10.3390/jdb9040046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022] Open
Abstract
Brd2 belongs to the BET family of epigenetic transcriptional co-regulators that act as adaptor-scaffolds for the assembly of chromatin-modifying complexes and other factors at target gene promoters. Brd2 is a protooncogene and candidate gene for juvenile myoclonic epilepsy in humans, a homeobox gene regulator in Drosophila, and a maternal-zygotic factor and cell death modulator that is necessary for normal development of the vertebrate central nervous system (CNS). As two copies of Brd2 exist in zebrafish, we use antisense morpholino knockdown to probe the role of paralog Brd2b, as a comparative study to Brd2a, the ortholog of human Brd2. A deficiency in either paralog results in excess cell death and dysmorphology of the CNS, whereas only Brd2b deficiency leads to loss of circulation and occlusion of the pronephric duct. Co-knockdown of both paralogs suppresses single morphant defects, while co-injection of morpholinos with paralogous RNA enhances them, suggesting novel genetic interaction with functional antagonism. Brd2 diversification includes paralog-specific RNA variants, a distinct localization of maternal factors, and shared and unique spatiotemporal expression, providing unique insight into the evolution and potential functions of this gene.
Collapse
Affiliation(s)
- Gregory L. Branigan
- Medical Scientist Training Program, Center for Innovation in Brain Science, Department of Pharmacology, University of Arizona College of Medicine-Tucson, 1501 N Campbell Ave., Tucson, AZ 85724, USA;
| | - Kelly S. Olsen
- Biological and Biomedical Sciences Program, Department of Microbiology and Immunology, University of North Carolina School of Medicine-Chapel Hill, 321 S Columbia St., Chapel Hill, NC 27516, USA;
| | - Isabella Burda
- Department of Molecular Biology and Genetics, Weill Institute for Cell & Molecular Biology, Cornell University, 239 Weill Hall, Ithaca, NY 14853, USA;
| | - Matthew W. Haemmerle
- Institute for Diabetes, Obesity, and Metabolism, Smilow Center for Translational Research, Perelman School of Medicine, University of Pennsylvania, Room 12-124, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA;
| | - Jason Ho
- Robert Wood Johnson Medical School, Rutgers University, Clinical Academic Building (CAB), 125 Paterson St., New Brunswick, NJ 08901, USA;
| | - Alexandra Venuto
- Department of Biology, East Carolina University, Greenville, NC 27858, USA;
| | - Nicholas D. D’Antonio
- Sidney Kimmel Medical College, Thomas Jefferson University Hospital, 1025 Walnut St. #100, Philadelphia, PA 19107, USA;
| | - Ian E. Briggs
- Department of Biology, Villanova University, 800 Lancaster Ave., Villanova, PA 19085, USA;
| | - Angela J. DiBenedetto
- Department of Biology, Villanova University, 800 Lancaster Ave., Villanova, PA 19085, USA;
- Correspondence:
| |
Collapse
|
28
|
Lee JH, Yoo SS, Hong MJ, Choi JE, Kang HG, Do SK, Lee WK, Choi SH, Lee YH, Seo H, Lee J, Lee SY, Cha SI, Kim CH, Lee EB, Cho S, Jheon S, Park JY. Epigenetic readers and lung cancer: the rs2427964C>T variant of the bromodomain and extraterminal domain gene BRD3 is associated with poorer survival outcome in NSCLC. Mol Oncol 2021; 16:750-763. [PMID: 34605158 PMCID: PMC8807359 DOI: 10.1002/1878-0261.13109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/25/2021] [Accepted: 10/01/2021] [Indexed: 11/07/2022] Open
Abstract
Bromodomain and extraterminal domain (BET) proteins are epigenetic readers that regulate gene expression. We investigated whether variants in BET genes are associated with survival outcomes for lung cancer. To do this, the associations between 77 variants in BET family genes and survival outcomes were analyzed in 773 non‐small‐cell lung cancer (NSCLC) patients who underwent surgery (349 and 424 patients in the discovery and validation cohorts, respectively). We found that six variants were significantly associated with overall survival (OS) in the discovery cohort, and one variant (rs2506711C>T) was replicated in the validation cohort. BRD3 rs2506711C>T is located in the repressed area and has a strong linkage disequilibrium with rs2427964C>T in the promoter region. BRD3 rs2427964C>T was significantly associated with worse OS in the discovery cohort, validation cohort, and combined analysis. In a luciferase assay, promoter activity in the BRD3 rs2427964 T allele was significantly higher than that in the BRD3 rs2427964 C allele, which selectively bound with the transcriptional repressor SIN3A. Knockdown of BRD3 with BRD3‐specific siRNA decreased the proliferation and migration of lung cancer cells while also increasing the rate of apoptosis. These results suggest that BRD3 rs2427964C>T increases BRD3 expression through increased promoter activity, which is associated with poor prognosis for lung cancer.
Collapse
Affiliation(s)
- Jang Hyuck Lee
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Korea.,Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Seung Soo Yoo
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Korea
| | - Mi Jeong Hong
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Korea.,Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Jin Eun Choi
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Korea.,Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Hyo-Gyoung Kang
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Korea.,Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Sook Kyung Do
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Korea.,Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Won Kee Lee
- Biostatistics, Medical Research Collaboration Center, Kyungpook National University, Daegu, Korea
| | - Sun Ha Choi
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Korea
| | - Yong Hoon Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Korea
| | - Hyewon Seo
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Korea
| | - Jaehee Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Korea
| | - Shin Yup Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Korea
| | - Seung Ick Cha
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Korea
| | - Chang Ho Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Korea
| | - Eung Bae Lee
- Department of Thoracic Surgery, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Sukki Cho
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Seoul National University, Korea
| | - Sanghoon Jheon
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Seoul National University, Korea
| | - Jae Yong Park
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Korea.,Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Korea.,Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Korea.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Daegu, Korea
| |
Collapse
|
29
|
Cheung KL, Kim C, Zhou MM. The Functions of BET Proteins in Gene Transcription of Biology and Diseases. Front Mol Biosci 2021; 8:728777. [PMID: 34540900 PMCID: PMC8446420 DOI: 10.3389/fmolb.2021.728777] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/31/2021] [Indexed: 12/25/2022] Open
Abstract
The BET (bromodomain and extra-terminal domain) family proteins, consisting of BRD2, BRD3, BRD4, and testis-specific BRDT, are widely acknowledged as major transcriptional regulators in biology. They are characterized by two tandem bromodomains (BDs) that bind to lysine-acetylated histones and transcription factors, recruit transcription factors and coactivators to target gene sites, and activate RNA polymerase II machinery for transcriptional elongation. Pharmacological inhibition of BET proteins with BD inhibitors has been shown as a promising therapeutic strategy for the treatment of many human diseases including cancer and inflammatory disorders. The recent advances in bromodomain protein biology have further uncovered the complex and versatile functions of BET proteins in the regulation of gene expression in chromatin. In this review article, we highlight our current understanding of BET proteins' functions in mediating protein-protein interactions required for chromatin-templated gene transcription and splicing, chromatin remodeling, DNA replication, and DNA damage repair. We further discuss context-dependent activator vs. repressor functions of individual BET proteins, isoforms, and bromodomains that may be harnessed for future development of BET bromodomain inhibitors as emerging epigenetic therapies for cancer and inflammatory disorders.
Collapse
|
30
|
Lara-Ureña N, García-Domínguez M. Relevance of BET Family Proteins in SARS-CoV-2 Infection. Biomolecules 2021; 11:1126. [PMID: 34439792 PMCID: PMC8391731 DOI: 10.3390/biom11081126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 12/14/2022] Open
Abstract
The recent pandemic we are experiencing caused by the coronavirus disease 2019 (COVID-19) has put the world's population on the rack, with more than 191 million cases and more than 4.1 million deaths confirmed to date. This disease is caused by a new type of coronavirus, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A massive proteomic analysis has revealed that one of the structural proteins of the virus, the E protein, interacts with BRD2 and BRD4 proteins of the Bromodomain and Extra Terminal domain (BET) family of proteins. BETs are essential to cell cycle progression, inflammation and immune response and have also been strongly associated with infection by different types of viruses. The fundamental role BET proteins play in transcription makes them appropriate targets for the propagation strategies of some viruses. Recognition of histone acetylation by BET bromodomains is essential for transcription control. The development of drugs mimicking acetyl groups, and thereby able to displace BET proteins from chromatin, has boosted interest on BETs as attractive targets for therapeutic intervention. The success of these drugs against a variety of diseases in cellular and animal models has been recently enlarged with promising results from SARS-CoV-2 infection studies.
Collapse
Affiliation(s)
| | - Mario García-Domínguez
- Andalusian Centre for Molecular Biology and Regenerative Medicine (CABIMER), CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Av. Américo Vespucio 24, 41092 Seville, Spain;
| |
Collapse
|
31
|
García-Gutiérrez P, García-Domínguez M. BETting on a Transcriptional Deficit as the Main Cause for Cornelia de Lange Syndrome. Front Mol Biosci 2021; 8:709232. [PMID: 34386522 PMCID: PMC8353280 DOI: 10.3389/fmolb.2021.709232] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Cornelia de Lange Syndrome (CdLS) is a human developmental syndrome with complex multisystem phenotypic features. It has been traditionally considered a cohesinopathy together with other phenotypically related diseases because of their association with mutations in subunits of the cohesin complex. Despite some overlap, the clinical manifestations of cohesinopathies vary considerably and, although their precise molecular mechanisms are not well defined yet, the potential pathomechanisms underlying these diverse developmental defects have been theoretically linked to alterations of the cohesin complex function. The cohesin complex plays a critical role in sister chromatid cohesion, but this function is not affected in CdLS. In the last decades, a non-cohesion-related function of this complex on transcriptional regulation has been well established and CdLS pathoetiology has been recently associated to gene expression deregulation. Up to 70% of CdLS cases are linked to mutations in the cohesin-loading factor NIPBL, which has been shown to play a prominent function on chromatin architecture and transcriptional regulation. Therefore, it has been suggested that CdLS can be considered a transcriptomopathy. Actually, CdLS-like phenotypes have been associated to mutations in chromatin-associated proteins, as KMT2A, AFF4, EP300, TAF6, SETD5, SMARCB1, MAU2, ZMYND11, MED13L, PHIP, ARID1B, NAA10, BRD4 or ANKRD11, most of which have no known direct association with cohesin. In the case of BRD4, a critical highly investigated transcriptional coregulator, an interaction with NIPBL has been recently revealed, providing evidence on their cooperation in transcriptional regulation of developmentally important genes. This new finding reinforces the notion of an altered gene expression program during development as the major etiological basis for CdLS. In this review, we intend to integrate the recent available evidence on the molecular mechanisms underlying the clinical manifestations of CdLS, highlighting data that favors a transcription-centered framework, which support the idea that CdLS could be conceptualized as a transcriptomopathy.
Collapse
Affiliation(s)
- Pablo García-Gutiérrez
- Andalusian Centre for Molecular Biology and Regenerative Medicine-CABIMER, CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Seville, Spain
| | - Mario García-Domínguez
- Andalusian Centre for Molecular Biology and Regenerative Medicine-CABIMER, CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
32
|
A BRD4-mediated elongation control point primes transcribing RNA polymerase II for 3'-processing and termination. Mol Cell 2021; 81:3589-3603.e13. [PMID: 34324863 DOI: 10.1016/j.molcel.2021.06.026] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 04/14/2021] [Accepted: 06/22/2021] [Indexed: 12/15/2022]
Abstract
Transcription elongation has emerged as a regulatory hub in gene expression of metazoans. A major control point occurs during early elongation before RNA polymerase II (Pol II) is released into productive elongation. Prior research has linked BRD4 with transcription elongation. Here, we use rapid BET protein and BRD4-selective degradation along with quantitative genome-wide approaches to investigate direct functions of BRD4 in Pol II transcription regulation. Notably, as an immediate consequence of acute BRD4 loss, promoter-proximal pause release is impaired, and transcriptionally engaged Pol II past this checkpoint undergoes readthrough transcription. An integrated proteome-wide analysis uncovers elongation and 3'-RNA processing factors as core BRD4 interactors. BRD4 ablation disrupts the recruitment of general 3'-RNA processing factors at the 5'-control region, which correlates with RNA cleavage and termination defects. These studies, performed in human cells, reveal a BRD4-mediated checkpoint and begin to establish a molecular link between 5'-elongation control and 3'-RNA processing.
Collapse
|
33
|
Davidson IF, Peters JM. Genome folding through loop extrusion by SMC complexes. Nat Rev Mol Cell Biol 2021; 22:445-464. [PMID: 33767413 DOI: 10.1038/s41580-021-00349-7] [Citation(s) in RCA: 281] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2021] [Indexed: 02/02/2023]
Abstract
Genomic DNA is folded into loops and topologically associating domains (TADs), which serve important structural and regulatory roles. It has been proposed that these genomic structures are formed by a loop extrusion process, which is mediated by structural maintenance of chromosomes (SMC) protein complexes. Recent single-molecule studies have shown that the SMC complexes condensin and cohesin are indeed able to extrude DNA into loops. In this Review, we discuss how the loop extrusion hypothesis can explain key features of genome architecture; cellular functions of loop extrusion, such as separation of replicated DNA molecules, facilitation of enhancer-promoter interactions and immunoglobulin gene recombination; and what is known about the mechanism of loop extrusion and its regulation, for example, by chromatin boundaries that depend on the DNA binding protein CTCF. We also discuss how the loop extrusion hypothesis has led to a paradigm shift in our understanding of both genome architecture and the functions of SMC complexes.
Collapse
Affiliation(s)
- Iain F Davidson
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Jan-Michael Peters
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria.
| |
Collapse
|
34
|
Salahong T, Schwartz C, Sungthong R. Are BET Inhibitors yet Promising Latency-Reversing Agents for HIV-1 Reactivation in AIDS Therapy? Viruses 2021; 13:v13061026. [PMID: 34072421 PMCID: PMC8228869 DOI: 10.3390/v13061026] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 12/26/2022] Open
Abstract
AIDS first emerged decades ago; however, its cure, i.e., eliminating all virus sources, is still unachievable. A critical burden of AIDS therapy is the evasive nature of HIV-1 in face of host immune responses, the so-called "latency." Recently, a promising approach, the "Shock and Kill" strategy, was proposed to eliminate latently HIV-1-infected cell reservoirs. The "Shock and Kill" concept involves two crucial steps: HIV-1 reactivation from its latency stage using a latency-reversing agent (LRA) followed by host immune responses to destroy HIV-1-infected cells in combination with reinforced antiretroviral therapy to kill the progeny virus. Hence, a key challenge is to search for optimal LRAs. Looking at epigenetics of HIV-1 infection, researchers proved that some bromodomains and extra-terminal motif protein inhibitors (BETis) are able to reactivate HIV-1 from latency. However, to date, only a few BETis have shown HIV-1-reactivating functions, and none of them have yet been approved for clinical trial. In this review, we aim to demonstrate the epigenetic roles of BETis in HIV-1 infection and HIV-1-related immune responses. Possible future applications of BETis and their HIV-1-reactivating properties are summarized and discussed.
Collapse
Affiliation(s)
- Thanarat Salahong
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
| | - Christian Schwartz
- Research Unit 7292, DHPI, IUT Louis Pasteur, University of Strasbourg, 67300 Schiltigheim, France
- Correspondence: (C.S.); (R.S.)
| | - Rungroch Sungthong
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
- Laboratory of Hydrology and Geochemistry of Strasbourg, University of Strasbourg, UMR 7517 CNRS/EOST, 67084 Strasbourg CEDEX, France
- Correspondence: (C.S.); (R.S.)
| |
Collapse
|
35
|
Edwards DS, Maganti R, Tanksley JP, Luo J, Park JJH, Balkanska-Sinclair E, Ling J, Floyd SR. BRD4 Prevents R-Loop Formation and Transcription-Replication Conflicts by Ensuring Efficient Transcription Elongation. Cell Rep 2021; 32:108166. [PMID: 32966794 PMCID: PMC7507985 DOI: 10.1016/j.celrep.2020.108166] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/13/2020] [Accepted: 08/27/2020] [Indexed: 12/29/2022] Open
Abstract
Effective spatio-temporal control of transcription and replication during S-phase is paramount to maintaining genomic integrity and cell survival. Dysregulation of these systems can lead to conflicts between the transcription and replication machinery, causing DNA damage and cell death. BRD4 allows efficient transcriptional elongation by stimulating phosphorylation of RNA polymerase II (RNAPII). We report that bromodomain and extra-terminal domain (BET) protein loss of function (LOF) causes RNAPII pausing on the chromatin and DNA damage affecting cells in S-phase. This persistent RNAPII-dependent pausing leads to an accumulation of RNA:DNA hybrids (R-loops) at sites of BRD4 occupancy, leading to transcription-replication conflicts (TRCs), DNA damage, and cell death. Finally, our data show that the BRD4 C-terminal domain, which interacts with P-TEFb, is required to prevent R-loop formation and DNA damage caused by BET protein LOF.
Collapse
Affiliation(s)
- Drake S Edwards
- Medical Scientist Training Program, Duke University School of Medicine, Durham, NC 27710, USA; Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - Jarred P Tanksley
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jie Luo
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA
| | - James J H Park
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA
| | | | | | - Scott R Floyd
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
36
|
Kim SK, Liu X, Park J, Um D, Kilaru G, Chiang CM, Kang M, Huber KM, Kang K, Kim TK. Functional coordination of BET family proteins underlies altered transcription associated with memory impairment in fragile X syndrome. SCIENCE ADVANCES 2021; 7:7/21/eabf7346. [PMID: 34138732 PMCID: PMC8133748 DOI: 10.1126/sciadv.abf7346] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/30/2021] [Indexed: 05/07/2023]
Abstract
Bromodomain and extraterminal proteins (BET) are epigenetic readers that play critical roles in gene regulation. Pharmacologic inhibition of the bromodomain present in all BET family members is a promising therapeutic strategy for various diseases, but its impact on individual family members has not been well understood. Using a transcriptional induction paradigm in neurons, we have systematically demonstrated that three major BET family proteins (BRD2/3/4) participated in transcription with different recruitment kinetics, interdependency, and sensitivity to a bromodomain inhibitor, JQ1. In a mouse model of fragile X syndrome (FXS), BRD2/3 and BRD4 showed oppositely altered expression and chromatin binding, correlating with transcriptional dysregulation. Acute inhibition of CBP/p300 histone acetyltransferase (HAT) activity restored the altered binding patterns of BRD2 and BRD4 and rescued memory impairment in FXS. Our study emphasizes the importance of understanding the BET coordination controlled by a balanced action between HATs with different substrate specificity.
Collapse
Affiliation(s)
- Seung-Kyoon Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Korea
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xihui Liu
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jongmin Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Korea
| | - Dahun Um
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Korea
| | - Gokhul Kilaru
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cheng-Ming Chiang
- Simmons Comprehensive Cancer Center, Department of Biochemistry, and Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mingon Kang
- Department of Computer Science, University of Nevada, Las Vegas, NV 89154, USA
| | - Kimberly M Huber
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Keunsoo Kang
- Department of Microbiology, Dankook University, Cheonan 31116, Korea.
| | - Tae-Kyung Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Korea.
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
37
|
Duan Z, Yuan C, Han Y, Zhou L, Zhao J, Ruan Y, Chen J, Ni M, Ji X. TMT-based quantitative proteomics analysis reveals the attenuated replication mechanism of Newcastle disease virus caused by nuclear localization signal mutation in viral matrix protein. Virulence 2021; 11:607-635. [PMID: 32420802 PMCID: PMC7549962 DOI: 10.1080/21505594.2020.1770482] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Nuclear localization of cytoplasmic RNA virus proteins mediated by intrinsic nuclear localization signal (NLS) plays essential roles in successful virus replication. We previously reported that NLS mutation in the matrix (M) protein obviously attenuates the replication and pathogenicity of Newcastle disease virus (NDV), but the attenuated replication mechanism remains unclear. In this study, we showed that M/NLS mutation not only disrupted M's nucleocytoplasmic trafficking characteristic but also impaired viral RNA synthesis and transcription. Using TMT-based quantitative proteomics analysis of BSR-T7/5 cells infected with the parental NDV rSS1GFP and the mutant NDV rSS1GFP-M/NLSm harboring M/NLS mutation, we found that rSS1GFP infection stimulated much greater quantities and more expression changes of differentially expressed proteins involved in host cell transcription, ribosomal structure, posttranslational modification, and intracellular trafficking than rSS1GFP-M/NLSm infection. Further in-depth analysis revealed that the dominant nuclear accumulation of M protein inhibited host cell transcription, RNA processing and modification, protein synthesis, posttranscriptional modification and transport; and this kind of inhibition could be weakened when most of M protein was confined outside the nucleus. More importantly, we found that the function of M protein in the cytoplasm effected the inhibition of TIFA expression in a dose-dependent manner, and promoted NDV replication by down-regulating TIFA/TRAF6/NF-κB-mediated production of cytokines. It was the first report about the involvement of M protein in NDV immune evasion. Taken together, our findings demonstrate that NDV replication is closely related to the nucleocytoplasmic trafficking of M protein, which accelerates our understanding of the molecular functions of NDV M protein.
Collapse
Affiliation(s)
- Zhiqiang Duan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University , Guiyang, China.,College of Animal Science, Guizhou University , Guiyang, China
| | - Chao Yuan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University , Guiyang, China.,College of Animal Science, Guizhou University , Guiyang, China
| | - Yifan Han
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University , Guiyang, China.,College of Animal Science, Guizhou University , Guiyang, China
| | - Lei Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University , Guiyang, China.,College of Animal Science, Guizhou University , Guiyang, China
| | - Jiafu Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University , Guiyang, China.,College of Animal Science, Guizhou University , Guiyang, China
| | - Yong Ruan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University , Guiyang, China.,College of Animal Science, Guizhou University , Guiyang, China
| | - Jiaqi Chen
- College of Animal Science, Guizhou University , Guiyang, China
| | - Mengmeng Ni
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University , Guiyang, China.,College of Animal Science, Guizhou University , Guiyang, China
| | - Xinqin Ji
- College of Animal Science, Guizhou University , Guiyang, China
| |
Collapse
|
38
|
At the Crossroad of Gene Regulation and Genome Organization: Potential Roles for ATP-Dependent Chromatin Remodelers in the Regulation of CTCF-Mediated 3D Architecture. BIOLOGY 2021; 10:biology10040272. [PMID: 33801596 PMCID: PMC8066914 DOI: 10.3390/biology10040272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/20/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023]
Abstract
Simple Summary The way DNA is packaged in the nucleus of a cell is important for when and how genes are expressed. There are many levels of packaging, and new techniques have revealed that long-range interactions are important for both promoting and restricting the transcription of genes. Some long-range interactions are mediated by physical loops in the genome where, like a rubber band, the ring-shaped cohesin complex loops sections of DNA bound by CCCTC-binding factor (CTCF). Both cohesin and CTCF act on DNA, and increasing evidence indicates that their function is inhibited by nucleosomes bound to the DNA. In this review, we summarize the current knowledge of how individual chromatin remodelers, which utilize ATP to move nucleosomes on DNA, facilitate or inhibit cohesin/CTCF-dependent looping interactions. Abstract In higher order organisms, the genome is assembled into a protein-dense structure called chromatin. Chromatin is spatially organized in the nucleus through hierarchical folding, which is tightly regulated both in cycling cells and quiescent cells. Assembly and folding are not one-time events in a cell’s lifetime; rather, they are subject to dynamic shifts to allow changes in transcription, DNA replication, or DNA damage repair. Chromatin is regulated at many levels, and recent tools have permitted the elucidation of specific factors involved in the maintenance and regulation of the three-dimensional (3D) genome organization. In this review/perspective, we aim to cover the potential, but relatively unelucidated, crosstalk between 3D genome architecture and the ATP-dependent chromatin remodelers with a specific focus on how the architectural proteins CTCF and cohesin are regulated by chromatin remodeling.
Collapse
|
39
|
Federation AJ, Nandakumar V, Searle BC, Stergachis A, Wang H, Pino LK, Merrihew G, Ting YS, Howard N, Kutyavin T, MacCoss MJ, Stamatoyannopoulos JA. Highly Parallel Quantification and Compartment Localization of Transcription Factors and Nuclear Proteins. Cell Rep 2021; 30:2463-2471.e5. [PMID: 32101728 DOI: 10.1016/j.celrep.2020.01.096] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/15/2019] [Accepted: 01/28/2020] [Indexed: 01/12/2023] Open
Abstract
Transcription factors and other chromatin-associated proteins are difficult to quantify comprehensively. Here, we combine facile nuclear sub-fractionation with data-independent acquisition mass spectrometry to achieve rapid, sensitive, and highly parallel quantification of the nuclear proteome in human cells. We apply this approach to quantify the response to acute degradation of BET bromodomains, revealing unexpected chromatin regulatory dynamics. The method is simple and enables system-level study of previously inaccessible chromatin and genome regulators.
Collapse
Affiliation(s)
| | - Vivek Nandakumar
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| | - Brian C Searle
- University of Washington, Department of Genome Sciences, Seattle, WA 98195, USA
| | - Andrew Stergachis
- University of Washington, Department of Genome Sciences, Seattle, WA 98195, USA
| | - Hao Wang
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| | - Lindsay K Pino
- University of Washington, Department of Genome Sciences, Seattle, WA 98195, USA
| | - Gennifer Merrihew
- University of Washington, Department of Genome Sciences, Seattle, WA 98195, USA
| | - Ying S Ting
- University of Washington, Department of Genome Sciences, Seattle, WA 98195, USA
| | - Nicholas Howard
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| | - Tanya Kutyavin
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| | - Michael J MacCoss
- University of Washington, Department of Genome Sciences, Seattle, WA 98195, USA.
| | - John A Stamatoyannopoulos
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA; University of Washington, Department of Genome Sciences, Seattle, WA 98195, USA.
| |
Collapse
|
40
|
Browne JA, NandyMazumdar M, Paranjapye A, Leir SH, Harris A. The Bromodomain Containing 8 (BRD8) transcriptional network in human lung epithelial cells. Mol Cell Endocrinol 2021; 524:111169. [PMID: 33476703 PMCID: PMC8035426 DOI: 10.1016/j.mce.2021.111169] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/18/2020] [Accepted: 01/07/2021] [Indexed: 12/17/2022]
Abstract
Mechanisms regulating gene expression in the airway epithelium underlie its response to the environment. A network of transcription factors (TFs) and architectural proteins, modulate chromatin accessibility and recruit activating or repressive signals. Bromodomain-containing proteins function as TFs or by engaging methyltransferase or acetyltransferase activity to induce chromatin modifications. Here we investigate the role of Bromodomain Containing 8 (BRD8) in coordinating lung epithelial function. Sites of BRD8 occupancy genome-wide were mapped in human lung epithelial cell lines (Calu-3 and 16HBE14o-). CCCTC-Binding Factor (CTCF) was identified as a predicted co-factor of BRD8, based upon motif over-representation under BRD8 ChIP-seq peaks. Following siRNA-mediated depletion of BRD8, differentially expressed genes with nearby peaks of BRD8 occupancy were subject to gene ontology process enrichment analysis. BRD8 targets are enriched for genes involved in the innate immune response and the cell cycle. Depletion of BRD8 increased the secretion of the antimicrobial peptide beta-defensin 1 and multiple chemokines, and reduced cell proliferation.
Collapse
Affiliation(s)
- James A Browne
- Department of Genetics and Genome Sciences, Cleveland, OH, USA
| | | | | | - Shih-Hsing Leir
- Department of Genetics and Genome Sciences, Cleveland, OH, USA; Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Ann Harris
- Department of Genetics and Genome Sciences, Cleveland, OH, USA; Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
41
|
Tracing DNA paths and RNA profiles in cultured cells and tissues with ORCA. Nat Protoc 2021; 16:1647-1713. [PMID: 33619390 PMCID: PMC8525907 DOI: 10.1038/s41596-020-00478-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 11/26/2020] [Indexed: 01/31/2023]
Abstract
Chromatin conformation capture (3C) methods and fluorescent in situ hybridization (FISH) microscopy have been used to investigate the spatial organization of the genome. Although powerful, both techniques have limitations. Hi-C is challenging for low cell numbers and requires very deep sequencing to achieve its high resolution. In contrast, FISH can be done on small cell numbers and capture rare cell populations, but typically targets pairs of loci at a lower resolution. Here we detail a protocol for optical reconstruction of chromatin architecture (ORCA), a microscopy approach to trace the 3D DNA path within the nuclei of fixed tissues and cultured cells with a genomic resolution as fine as 2 kb and a throughput of ~10,000 cells per experiment. ORCA can identify structural features with comparable resolution to Hi-C while providing single-cell resolution and multimodal measurements characteristic of microscopy. We describe how to use this DNA labeling in parallel with multiplexed labeling of dozens of RNAs to relate chromatin structure and gene expression in the same cells. Oligopaint probe design, primary probe making, sample collection, cryosectioning and RNA/DNA primary probe hybridization can be completed in 1.5 weeks, while automated RNA/DNA barcode hybridization and RNA/DNA imaging typically takes 2-6 d for data collection and 2-7 d for the automated steps of image analysis.
Collapse
|
42
|
The HRI-regulated transcription factor ATF4 activates BCL11A transcription to silence fetal hemoglobin expression. Blood 2021; 135:2121-2132. [PMID: 32299090 DOI: 10.1182/blood.2020005301] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/08/2020] [Indexed: 12/19/2022] Open
Abstract
Reactivation of fetal hemoglobin remains a critical goal in the treatment of patients with sickle cell disease and β-thalassemia. Previously, we discovered that silencing of the fetal γ-globin gene requires the erythroid-specific eIF2α kinase heme-regulated inhibitor (HRI), suggesting that HRI might present a pharmacologic target for raising fetal hemoglobin levels. Here, via a CRISPR-Cas9-guided loss-of-function screen in human erythroblasts, we identify transcription factor ATF4, a known HRI-regulated protein, as a novel γ-globin regulator. ATF4 directly stimulates transcription of BCL11A, a repressor of γ-globin transcription, by binding to its enhancer and fostering enhancer-promoter contacts. Notably, HRI-deficient mice display normal Bcl11a levels, suggesting species-selective regulation, which we explain here by demonstrating that the analogous ATF4 motif at the murine Bcl11a enhancer is largely dispensable. Our studies uncover a linear signaling pathway from HRI to ATF4 to BCL11A to γ-globin and illustrate potential limits of murine models of globin gene regulation.
Collapse
|
43
|
Serresi M, Kertalli S, Li L, Schmitt MJ, Dramaretska Y, Wierikx J, Hulsman D, Gargiulo G. Functional antagonism of chromatin modulators regulates epithelial-mesenchymal transition. SCIENCE ADVANCES 2021; 7:7/9/eabd7974. [PMID: 33627422 PMCID: PMC7904264 DOI: 10.1126/sciadv.abd7974] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 01/06/2021] [Indexed: 05/27/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is a developmental process hijacked by cancer cells to modulate proliferation, migration, and stress response. Whereas kinase signaling is believed to be an EMT driver, the molecular mechanisms underlying epithelial-mesenchymal interconversion are incompletely understood. Here, we show that the impact of chromatin regulators on EMT interconversion is broader than that of kinases. By combining pharmacological modulation of EMT, synthetic genetic tracing, and CRISPR interference screens, we uncovered a minority of kinases and several chromatin remodelers, writers, and readers governing homeostatic EMT in lung cancer cells. Loss of ARID1A, DOT1L, BRD2, and ZMYND8 had nondeterministic and sometimes opposite consequences on epithelial-mesenchymal interconversion. Together with RNAPII and AP-1, these antagonistic gatekeepers control chromatin of active enhancers, including pan-cancer-EMT signature genes enabling supraclassification of anatomically diverse tumors. Thus, our data uncover general principles underlying transcriptional control of cancer cell plasticity and offer a platform to systematically explore chromatin regulators in tumor-state-specific therapy.
Collapse
Affiliation(s)
- Michela Serresi
- Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13092 Berlin, Germany.
| | - Sonia Kertalli
- Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Lifei Li
- Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Matthias Jürgen Schmitt
- Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Yuliia Dramaretska
- Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Jikke Wierikx
- Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Danielle Hulsman
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, Netherlands
| | - Gaetano Gargiulo
- Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13092 Berlin, Germany.
| |
Collapse
|
44
|
Cavalheiro GR, Pollex T, Furlong EE. To loop or not to loop: what is the role of TADs in enhancer function and gene regulation? Curr Opin Genet Dev 2021; 67:119-129. [PMID: 33497970 DOI: 10.1016/j.gde.2020.12.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/13/2020] [Accepted: 12/22/2020] [Indexed: 01/22/2023]
Abstract
The past decade has seen a huge jump in the resolution and scale at which we can interrogate the three-dimensional properties of the genome. This revealed different types of chromatin structures including topologically associating domains, partitioning genes and their enhancers into interacting domains. While the visualisation of these topologies and their dynamics has dramatically improved, our understanding of their underlying mechanisms and functional roles in gene expression has lagged behind. A suite of recent studies have addressed this using genetic manipulations to perturb topological features and loops at different scales. Here we assess the new biological insights gained on the functional relationship between genome topology and gene expression, with a particular focus on enhancer function.
Collapse
Affiliation(s)
- Gabriel R Cavalheiro
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, D-69117, Heidelberg, Germany; Collaboration for Joint PhD Degree Between EMBL and Heidelberg University, Faculty of Biosciences, Germany
| | - Tim Pollex
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, D-69117, Heidelberg, Germany
| | - Eileen Em Furlong
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, D-69117, Heidelberg, Germany.
| |
Collapse
|
45
|
Zheng B, Aoi Y, Shah AP, Iwanaszko M, Das S, Rendleman EJ, Zha D, Khan N, Smith ER, Shilatifard A. Acute perturbation strategies in interrogating RNA polymerase II elongation factor function in gene expression. Genes Dev 2021; 35:273-285. [PMID: 33446572 PMCID: PMC7849361 DOI: 10.1101/gad.346106.120] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/03/2020] [Indexed: 12/20/2022]
Abstract
The regulation of gene expression catalyzed by RNA polymerase II (Pol II) requires a host of accessory factors to ensure cell growth, differentiation, and survival under environmental stress. Here, using the auxin-inducible degradation (AID) system to study transcriptional activities of the bromodomain and extraterminal domain (BET) and super elongation complex (SEC) families, we found that the CDK9-containing BRD4 complex is required for the release of Pol II from promoter-proximal pausing for most genes, while the CDK9-containing SEC is required for activated transcription in the heat shock response. By using both the proteolysis targeting chimera (PROTAC) dBET6 and the AID system, we found that dBET6 treatment results in two major effects: increased pausing due to BRD4 loss, and reduced enhancer activity attributable to BRD2 loss. In the heat shock response, while auxin-mediated depletion of the AFF4 subunit of the SEC has a more severe defect than AFF1 depletion, simultaneous depletion of AFF1 and AFF4 leads to a stronger attenuation of the heat shock response, similar to treatment with the SEC inhibitor KL-1, suggesting a possible redundancy among SEC family members. This study highlights the usefulness of orthogonal acute depletion/inhibition strategies to identify distinct and redundant biological functions among Pol II elongation factor paralogs.
Collapse
Affiliation(s)
- Bin Zheng
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Yuki Aoi
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Avani P Shah
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Marta Iwanaszko
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Siddhartha Das
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Emily J Rendleman
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Didi Zha
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Nabiha Khan
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Edwin R Smith
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Ali Shilatifard
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| |
Collapse
|
46
|
Ma K, Han XX, Yang XM, Zhou SL. Proteolysis targeting chimera technology: a novel strategy for treating diseases of the central nervous system. Neural Regen Res 2021; 16:1944-1949. [PMID: 33642364 PMCID: PMC8343312 DOI: 10.4103/1673-5374.308075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neurological diseases such as stroke, Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease are among the intractable diseases for which appropriate drugs and treatments are lacking. Proteolysis targeting chimera (PROTAC) technology is a novel strategy to solve this problem. PROTAC technology uses the ubiquitin-protease system to eliminate mutated, denatured, and harmful proteins in cells. It can be reused, and utilizes the protein destruction mechanism of the cells, thus making up for the deficiencies of traditional protein degradation methods. It can effectively target and degrade proteins, including proteins that are difficult to identify and bind. Therefore, it has extremely important implications for drug development and the treatment of neurological diseases. At present, the targeted degradation of mutant BTK, mHTT, Tau, EGFR, and other proteins using PROTAC technology is gaining attention. It is expected that corresponding treatment of nervous system diseases can be achieved. This review first focuses on the recent developments in PROTAC technology in terms of protein degradation, drug production, and treatment of central nervous system diseases, and then discusses its limitations. This review will provide a brief overview of the recent application of PROTAC technology in the treatment of central nervous system diseases.
Collapse
Affiliation(s)
- Ke Ma
- College of Life Science, Nantong University, Nantong, Jiangsu Province, China
| | - Xiao-Xiao Han
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Xiao-Ming Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Song-Lin Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
47
|
Auer JMT, Stoddart JJ, Christodoulou I, Lima A, Skouloudaki K, Hall HN, Vukojević V, Papadopoulos DK. Of numbers and movement - understanding transcription factor pathogenesis by advanced microscopy. Dis Model Mech 2020; 13:dmm046516. [PMID: 33433399 PMCID: PMC7790199 DOI: 10.1242/dmm.046516] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Transcription factors (TFs) are life-sustaining and, therefore, the subject of intensive research. By regulating gene expression, TFs control a plethora of developmental and physiological processes, and their abnormal function commonly leads to various developmental defects and diseases in humans. Normal TF function often depends on gene dosage, which can be altered by copy-number variation or loss-of-function mutations. This explains why TF haploinsufficiency (HI) can lead to disease. Since aberrant TF numbers frequently result in pathogenic abnormalities of gene expression, quantitative analyses of TFs are a priority in the field. In vitro single-molecule methodologies have significantly aided the identification of links between TF gene dosage and transcriptional outcomes. Additionally, advances in quantitative microscopy have contributed mechanistic insights into normal and aberrant TF function. However, to understand TF biology, TF-chromatin interactions must be characterised in vivo, in a tissue-specific manner and in the context of both normal and altered TF numbers. Here, we summarise the advanced microscopy methodologies most frequently used to link TF abundance to function and dissect the molecular mechanisms underlying TF HIs. Increased application of advanced single-molecule and super-resolution microscopy modalities will improve our understanding of how TF HIs drive disease.
Collapse
Affiliation(s)
- Julia M T Auer
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 1XU, UK
| | - Jack J Stoddart
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 1XU, UK
| | | | - Ana Lima
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 1XU, UK
| | | | - Hildegard N Hall
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 1XU, UK
| | - Vladana Vukojević
- Center for Molecular Medicine (CMM), Department of Clinical Neuroscience, Karolinska Institutet, 17176 Stockholm, Sweden
| | | |
Collapse
|
48
|
Alpsoy A, Utturkar SM, Carter BC, Dhiman A, Torregrosa-Allen SE, Currie MP, Elzey BD, Dykhuizen EC. BRD9 Is a Critical Regulator of Androgen Receptor Signaling and Prostate Cancer Progression. Cancer Res 2020; 81:820-833. [PMID: 33355184 DOI: 10.1158/0008-5472.can-20-1417] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/19/2020] [Accepted: 12/14/2020] [Indexed: 11/16/2022]
Abstract
Switch/sucrose-nonfermentable (SWI/SNF) chromatin-remodeling complexes are critical regulators of chromatin dynamics during transcription, DNA replication, and DNA repair. A recently identified SWI/SNF subcomplex termed GLTSCR1/1L-BAF (GBAF; or "noncanonical BAF", ncBAF) uniquely contains bromodomain-containing protein BRD9 and glioma tumor suppressor candidate region 1 (GLTSCR1) or its paralog GLTSCR1-like (GLTSCR1L). Recent studies have identified a unique dependency on GBAF (ncBAF) complexes in synovial sarcoma and malignant rhabdoid tumors, both of which possess aberrations in canonical BAF (cBAF) and Polybromo-BAF (PBAF) complexes. Dependencies on GBAF in malignancies without SWI/SNF aberrations, however, are less defined. Here, we show that GBAF, particularly its BRD9 subunit, is required for the viability of prostate cancer cell lines in vitro and for optimal xenograft tumor growth in vivo. BRD9 interacts with androgen receptor (AR) and CCCTC-binding factor (CTCF), and modulates AR-dependent gene expression. The GBAF complex exhibits overlapping genome localization and transcriptional targets as bromodomain and extraterminal domain-containing (BET) proteins, which are established AR coregulators. Our results demonstrate that GBAF is critical for coordinating SWI/SNF-BET cooperation and uncover a new druggable target for AR-positive prostate cancers, including those resistant to androgen deprivation or antiandrogen therapies. SIGNIFICANCE: Advanced prostate cancers resistant to androgen receptor antagonists are still susceptible to nontoxic BRD9 inhibitors, making them a promising alternative for halting AR signaling in progressed disease.
Collapse
Affiliation(s)
- Aktan Alpsoy
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Sagar M Utturkar
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Benjamin C Carter
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Alisha Dhiman
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Sandra E Torregrosa-Allen
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana.,Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana
| | - Melanie P Currie
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana.,Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana
| | - Bennett D Elzey
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana.,Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana
| | - Emily C Dykhuizen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana. .,Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana
| |
Collapse
|
49
|
Lan X, Ren R, Feng R, Ly LC, Lan Y, Zhang Z, Aboreden N, Qin K, Horton JR, Grevet JD, Mayuranathan T, Abdulmalik O, Keller CA, Giardine B, Hardison RC, Crossley M, Weiss MJ, Cheng X, Shi J, Blobel GA. ZNF410 Uniquely Activates the NuRD Component CHD4 to Silence Fetal Hemoglobin Expression. Mol Cell 2020; 81:239-254.e8. [PMID: 33301730 DOI: 10.1016/j.molcel.2020.11.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/26/2020] [Accepted: 11/02/2020] [Indexed: 01/08/2023]
Abstract
Metazoan transcription factors typically regulate large numbers of genes. Here we identify via a CRISPR-Cas9 genetic screen ZNF410, a pentadactyl DNA-binding protein that in human erythroid cells directly activates only a single gene, the NuRD component CHD4. Specificity is conveyed by two highly evolutionarily conserved clusters of ZNF410 binding sites near the CHD4 gene with no counterparts elsewhere in the genome. Loss of ZNF410 in adult-type human erythroid cell culture systems and xenotransplantation settings diminishes CHD4 levels and derepresses the fetal hemoglobin genes. While previously known to be silenced by CHD4, the fetal globin genes are exposed here as among the most sensitive to reduced CHD4 levels.. In vitro DNA binding assays and crystallographic studies reveal the ZNF410-DNA binding mode. ZNF410 is a remarkably selective transcriptional activator in erythroid cells, and its perturbation might offer new opportunities for treatment of hemoglobinopathies.
Collapse
Affiliation(s)
- Xianjiang Lan
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ren Ren
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ruopeng Feng
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Lana C Ly
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW) Sydney, Sydney, NSW 2052, Australia
| | - Yemin Lan
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhe Zhang
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Nicholas Aboreden
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kunhua Qin
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jeremy D Grevet
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - Osheiza Abdulmalik
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Cheryl A Keller
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Belinda Giardine
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Merlin Crossley
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW) Sydney, Sydney, NSW 2052, Australia
| | - Mitchell J Weiss
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Junwei Shi
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Gerd A Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
50
|
Kuang S, Wang L. Deep Learning of Sequence Patterns for CCCTC-Binding Factor-Mediated Chromatin Loop Formation. J Comput Biol 2020; 28:133-145. [PMID: 33232622 DOI: 10.1089/cmb.2020.0225] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The three-dimensional (3D) organization of the human genome is of crucial importance for gene regulation, and the CCCTC-binding factor (CTCF) plays an important role in chromatin interactions. However, it is still unclear what sequence patterns in addition to CTCF motif pairs determine chromatin loop formation. To discover the underlying sequence patterns, we have developed a deep learning model, called DeepCTCFLoop, to predict whether a chromatin loop can be formed between a pair of convergent or tandem CTCF motifs using only the DNA sequences of the motifs and their flanking regions. Our results suggest that DeepCTCFLoop can accurately distinguish the CTCF motif pairs forming chromatin loops from the ones not forming loops. It significantly outperforms CTCF-MP, a machine learning model based on word2vec and boosted trees, when using DNA sequences only. Furthermore, we show that DNA motifs binding to several transcription factors, including ZNF384, ZNF263, ASCL1, SP1, and ZEB1, may constitute the complex sequence patterns for CTCF-mediated chromatin loop formation. DeepCTCFLoop has also been applied to disease-associated sequence variants to identify candidates that may disrupt chromatin loop formation. Therefore, our results provide useful information for understanding the mechanism of 3D genome organization and may also help annotate and prioritize the noncoding sequence variants associated with human diseases.
Collapse
Affiliation(s)
- Shuzhen Kuang
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA.,Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Liangjiang Wang
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|