1
|
Dasharathy S, Pranay, Devadas SK, Tripathi E, Karyala P. Emerging role of deubiquitinases in modulating cancer chemoresistance. Drug Discov Today 2025; 30:104339. [PMID: 40118446 DOI: 10.1016/j.drudis.2025.104339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 03/08/2025] [Accepted: 03/14/2025] [Indexed: 03/23/2025]
Abstract
Chemotherapy remains a gold standard in cancer treatment by targeting the rapidly dividing cancer cells. However, chemoresistance is a major obstacle to successful cancer treatment, often leading to recurrence, metastasis, and high mortality. Deubiquitinases (DUBs), enzymes that remove ubiquitin and stabilize proteins, have been implicated in chemoresistance and can either promote therapeutic resistance or enhance sensitivity depending on their targets. In this review, we highlight the chemoresistance mechanisms of DUBs in various cancers, including breast, lung, liver, gastrointestinal, colorectal, ovarian, prostate, and blood cancers. Given these mechanisms, the development of DUB inhibitors has gained considerable attention in cancer therapeutics and combination therapies involving these inhibitors show potential to overcome drug resistance and improving treatment outcomes.
Collapse
Affiliation(s)
- Sukeerthi Dasharathy
- Department of Biotechnology, Faculty of Life and Allied Health Sciences, M.S. Ramaiah University of Applied Sciences, Bangalore 560054, India
| | - Pranay
- Department of Biotechnology, Faculty of Life and Allied Health Sciences, M.S. Ramaiah University of Applied Sciences, Bangalore 560054, India
| | - Santhosh K Devadas
- Department of Medical Oncology, Ramaiah Medical College and Hospital, M.S. Ramaiah University of Applied Sciences, Bangalore 560054, India
| | - Ekta Tripathi
- Department of Biotechnology, Faculty of Life and Allied Health Sciences, M.S. Ramaiah University of Applied Sciences, Bangalore 560054, India.
| | - Prashanthi Karyala
- Department of Biotechnology, Faculty of Life and Allied Health Sciences, M.S. Ramaiah University of Applied Sciences, Bangalore 560054, India.
| |
Collapse
|
2
|
Zhang H, Lu L, Yi C, Jiang T, Lu Y, Yang X, Zhong K, Zhou J, Li J, Xie G, Chen Z, Jiang Z, Asadikaram G, Peng Y, Zhou D, Wang H. BRD4 regulates m 6A of ESPL1 mRNA via interaction with ALKBH5 to modulate breast cancer progression. Acta Pharm Sin B 2025; 15:1552-1570. [PMID: 40370540 PMCID: PMC12069253 DOI: 10.1016/j.apsb.2024.12.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/18/2024] [Accepted: 11/15/2024] [Indexed: 05/16/2025] Open
Abstract
The interaction between m6A-methylated RNA and chromatin modification remains largely unknown. We found that targeted inhibition of bromodomain-containing protein 4 (BRD4) by siRNA or its inhibitor (JQ1) significantly decreases mRNA m6A levels and suppresses the malignancy of breast cancer (BC) cells via increased expression of demethylase AlkB homolog 5 (ALKBH5). Mechanistically, inhibition of BRD4 increases the mRNA stability of ALKBH5 via enhanced binding between its 3' untranslated regions (3'UTRs) with RNA-binding protein RALY. Further, BRD4 serves as a scaffold for ubiquitin enzymes tripartite motif containing-21 (TRIM21) and ALKBH5, resulting in the ubiquitination and degradation of ALKBH5 protein. JQ1-increased ALKBH5 then demethylates mRNA of extra spindle pole bodies like 1 (ESPL1) and reduces binding between ESPL1 mRNA and m6A reader insulin like growth factor 2 mRNA binding protein 3 (IGF2BP3), leading to decay of ESPL1 mRNA. Animal and clinical studies confirm a critical role of BRD4/ALKBH5/ESPL1 pathway in BC progression. Further, our study sheds light on the crosstalks between histone modification and RNA methylation.
Collapse
Affiliation(s)
- Haisheng Zhang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery; State Key Laboratory of Anti-Infective Drug Discovery and Development; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Linlin Lu
- Institute of Medical Sciences, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
| | - Cheng Yi
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery; State Key Laboratory of Anti-Infective Drug Discovery and Development; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Tao Jiang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery; State Key Laboratory of Anti-Infective Drug Discovery and Development; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- School of Life Sciences, Zhuhai College of Science and Technology, Zhuhai 519041, China
| | - Yunqing Lu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery; State Key Laboratory of Anti-Infective Drug Discovery and Development; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xianyuan Yang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery; State Key Laboratory of Anti-Infective Drug Discovery and Development; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ke Zhong
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery; State Key Laboratory of Anti-Infective Drug Discovery and Development; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jiawang Zhou
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery; State Key Laboratory of Anti-Infective Drug Discovery and Development; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jiexin Li
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery; State Key Laboratory of Anti-Infective Drug Discovery and Development; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Guoyou Xie
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery; State Key Laboratory of Anti-Infective Drug Discovery and Development; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhuojia Chen
- Sun Yat-sen University Cancer Center State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Zongpei Jiang
- Department of Nephrology, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China
| | - Gholamreza Asadikaram
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Medical University Campus, Kerman 7616914115, Iran
| | - Yanxi Peng
- School of Public Health, Xiangnan University, Chenzhou 423000, China
| | - Dan Zhou
- Department of Breast Surgery, the First People's Hospital of Foshan, Foshan 528100, China
| | - Hongsheng Wang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery; State Key Laboratory of Anti-Infective Drug Discovery and Development; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
3
|
Zhang S, Wu N, Geng Y, Guan L, Niu MM, Li J, Zhu L. A combinatorial screening protocol for identifying novel and highly potent dual-target inhibitor of BRD4 and STAT3 for kidney cancer therapy. Front Pharmacol 2025; 16:1560559. [PMID: 40078291 PMCID: PMC11897524 DOI: 10.3389/fphar.2025.1560559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 02/10/2025] [Indexed: 03/14/2025] Open
Abstract
Concurrent inhibition of bromodomain-containing protein 4 (BRD4) and signal transductor and activator of transcription 3 (STAT3) could potentially be an effective strategy against renal cell carcinoma (RCC). Here, we successfully identified five dual-targeted BRD4/STAT3 inhibitors (BSTs 1-5) using a combinatorial screening protocol. Particularly, BST-4 was the most potent inhibitor simultaneously targeting BRD4 (IC50 = 2.45 ± 0.11 nM) and STAT3 (IC50 = 8.07 ± 0.51 nM). MD simulation indicated that BST-4 stably bound to the active sites of BRD4 and STAT3. The cytotoxicity assays exhibited that BST-4 had a significant antiproliferative activity against RCC cell lines, especially CAKI-2 cells (IC50 = 0.76 ± 0.05 μM). Moreover, in vivo experiments revealed that BST-4 more effectively inhibited the growth of xenograft tumors compared with positive controls RVX-208 and CJ-1383. Overall, these data indicated that BST-4 could be a promising candidate compound for RCC therapy.
Collapse
Affiliation(s)
- Shizhu Zhang
- Department of Nephrology, Huai’an Cancer Hospital, Huai’an, China
| | - Nan Wu
- Department of Nephrology, Huai’an Cancer Hospital, Huai’an, China
| | - Yifei Geng
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Lixia Guan
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Miao-Miao Niu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Jindong Li
- Department of Pharmacy, Taizhou School of Clinical Medicine, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| | - Lusha Zhu
- Department of Pharmacy, Taizhou School of Clinical Medicine, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| |
Collapse
|
4
|
Lyu K, Ren Y, Mou J, Yang Y, Pan Y, Zhang H, Li Y, Cao D, Chen L, Chen D, Guo D, Xiong B. Structure-Based Rational Design and Evaluation of BET-Aurora Kinase Dual-Inhibitors for Treatment of Cancers. J Med Chem 2025; 68:1344-1364. [PMID: 39844725 DOI: 10.1021/acs.jmedchem.4c01933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Simultaneous inhibition of the bromodomain and extra-terminal domain and Aurora kinases is a promising anticancer therapeutic strategy. Based on our previous study on BET-kinase dual inhibitors, we employed the molecular docking approach to design novel dual BET-Aurora kinase A inhibitors. Through several rounds of optimization and with the guidance of the solved cocrystal structure of BRD4 bound to inhibitor 27, we finally obtained a series of highly potent dual BET-Aurora kinase A inhibitors. Compound 38 exhibited strong affinity toward both BRD4 and Aurora kinase A. It also showed good antiproliferative activities on diverse cancer cell lines, good pharmacokinetic profiles, and favorable antitumor efficacy in renal cell cancer and colon cancer xenograft models with TGI of 45.99% and 53.06%, respectively. The development of compound 38 reinforces the concept that a rational design may achieve dual inhibitors targeting specific kinases and bromodomain proteins.
Collapse
Affiliation(s)
- Kaikai Lyu
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Ying Ren
- Jiangsu Key Laboratory of New Drug and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221006, China
| | - Jie Mou
- Jiangsu Key Laboratory of New Drug and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221006, China
| | - Yunfang Yang
- Jiangsu Key Laboratory of New Drug and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221006, China
| | - Yaoyao Pan
- Jiangsu Key Laboratory of New Drug and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221006, China
| | - Huijie Zhang
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yanlian Li
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Danyan Cao
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Lin Chen
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Danqi Chen
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Dong Guo
- Jiangsu Key Laboratory of New Drug and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221006, China
| | - Bing Xiong
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- Jiangsu Key Laboratory of New Drug and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221006, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| |
Collapse
|
5
|
Xian Y, Ye J, Tang Y, Zhang N, Peng C, Huang W, He G. Deubiquitinases as novel therapeutic targets for diseases. MedComm (Beijing) 2024; 5:e70036. [PMID: 39678489 PMCID: PMC11645450 DOI: 10.1002/mco2.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024] Open
Abstract
Deubiquitinating enzymes (DUBs) regulate substrate ubiquitination by removing ubiquitin or cleaving within ubiquitin chains, thereby maintaining cellular homeostasis. Approximately 100 DUBs in humans counteract E3 ubiquitin ligases, finely balancing ubiquitination and deubiquitination processes to maintain cellular proteostasis and respond to various stimuli and stresses. Given their role in modulating ubiquitination levels of various substrates, DUBs are increasingly linked to human health and disease. Here, we review the DUB family, highlighting their distinctive structural characteristics and chain-type specificities. We show that DUB family members regulate key signaling pathways, such as NF-κB, PI3K/Akt/mTOR, and MAPK, and play crucial roles in tumorigenesis and other diseases (neurodegenerative disorders, cardiovascular diseases, inflammatory disorders, and developmental diseases), making them promising therapeutic targets Our review also discusses the challenges in developing DUB inhibitors and underscores the critical role of the DUBs in cellular signaling and cancer. This comprehensive analysis enhances our understanding of the complex biological functions of the DUBs and underscores their therapeutic potential.
Collapse
Affiliation(s)
- Yali Xian
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Jing Ye
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Yu Tang
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine ResourcesSchool of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine ResourcesSchool of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine ResourcesSchool of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Gu He
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
6
|
Cui Y, Zhao Y, Shen G, Lv Q, Ma L. CDYL loss promotes cervical cancer aggression by increasing PD-L1 expression via the suppression of IRF2BP2 transcription. Transl Oncol 2024; 47:102038. [PMID: 38991463 PMCID: PMC11296252 DOI: 10.1016/j.tranon.2024.102038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/28/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Recurrent or metastatic cervical cancer have an extremely low 5-year survival rates about 17% due to limited therapeutic options. CDYL plays a critical role in multiple cancer development, as an oncogene or tumor suppressor in a context-dependent manner. However, the role of CDYL in cervical carcinogenesis has not yet been explored. METHODS CDYL expression was examined in cervical cancer and cell lines. The effect of CDYL/IRF2BP2/PD-L1 axis on malignant phenotypes of cervical cancer cells were tested with gain-of-function experiments. A mouse model of cervical cancer was developed to validate the in vitro results. RESULTS Clinical data analysis revealed that CDYL was downregulated and associated with a poor prognosis in cervical cancer patients. CDYL overexpression suppressed cervical cancer cells proliferation and invasion in vitro and vivo assays and enhanced the immune response by decreasing PD-L1 expression and reversing the tumor immunosuppressing microenvironment. Mechanistically, CDYL inhibited the PD-L1 expression through transcriptionally suppressing IRF2BP2 in cervical cancer cells. CONCLUSIONS Taken together, our findings established the crucial role of CDYL in cervical carcinogenesis and sensitivity for immune checkpoint blockade therapy, and supported the hypothesis that CDYL could be a potential novel immunotherapy response predictive biomarker for cervical cancer patients.
Collapse
Affiliation(s)
- Ying Cui
- Department of Obstetrics and Gynecology, National Center of Gerontology/Beijing Hospital, Beijing 100730, PR China
| | - Yuxi Zhao
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100021, PR China
| | - Guihua Shen
- Department of Obstetrics and Gynecology, National Center of Gerontology/Beijing Hospital, Beijing 100730, PR China
| | - Qiubo Lv
- Department of Obstetrics and Gynecology, National Center of Gerontology/Beijing Hospital, Beijing 100730, PR China.
| | - Linlin Ma
- Department of Obstetrics and Gynecology, National Center of Gerontology/Beijing Hospital, Beijing 100730, PR China.
| |
Collapse
|
7
|
Zou D, Liao J, Xiao M, Liu L, Xu M. Melatonin alleviates hyperoxia-induced lung injury through elevating MSC exosomal miR-18a-5p expression to repress PUM2 signaling. FASEB J 2024; 38:e70012. [PMID: 39183539 DOI: 10.1096/fj.202400374r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024]
Abstract
Mesenchymal stem cells (MSC)-derived exosomes (Exo) are a possible option for hyperoxia-induced lung injury (HLI). We wanted to see if melatonin (MT)-pretreated MSC-derived exosomes (MT-Exo) were more effective against HLI, and we also tried to figure out the underlying mechanism. HLI models were established by hyperoxia exposure. HE staining was adopted to analyze lung pathological changes. MTT and flow cytometry were used to determine cell viability and apoptosis, respectively. The mitochondrial membrane potential (MMP) was analyzed using the JC-1 probe. LDH, ROS, SOD, and GSH-Px levels were examined by the corresponding kits. The interactions between miR-18a-5p, PUM2, and DUB3 were analyzed by molecular interaction experiments. MT-Exo could effectively inhibit hyperoxia-induced oxidative stress, inflammatory injury, and apoptosis in lung epithelial cells, while these effects of MT-Exo were weakened by miR-18a-5p knockdown in MSCs. miR-18a-5p reduced PUM2 expression in MLE-12 cells by directly targeting PUM2. In addition, PUM2 inactivated the Nrf2/HO-1 signaling pathway by promoting DUB3 mRNA decay post-transcriptionally. As expected, PUM2 overexpression or DUB3 knockdown abolished the protective effect of MT-Exo on hyperoxia-induced lung epithelial cell injury. MT-Exo carrying miR-18a-5p reduced hyperoxia-mediated lung injury in mice through activating Nrf2/HO-1 pathway. MT reduced PUM2 expression and subsequently activated the DUB3/Nrf2/HO-1 signal axis by increasing miR-18a-5p expression in MSC-derived exosomes to alleviate HLI.
Collapse
Affiliation(s)
- Dongmei Zou
- The Department of Pediatric, Shenzhen Children's Hospital, China Medical University, Shenzhen, Guangdong, China
| | - Jinwen Liao
- The Department of Pediatric, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, Guangdong, China
| | - Min Xiao
- The Department of Pediatric, Shenzhen Children's Hospital, China Medical University, Shenzhen, Guangdong, China
| | - Liang Liu
- The Department of Pediatric, Shenzhen Children's Hospital, China Medical University, Shenzhen, Guangdong, China
| | - Mingguo Xu
- The Department of Pediatric, Shenzhen Children's Hospital, China Medical University, Shenzhen, Guangdong, China
- The Department of Pediatric, The Third People's Hospital of Longgang District Shenzhen, Shenzhen, Guangdong, China
| |
Collapse
|
8
|
Pieper NM, Schnell J, Bruecher D, Knapp S, Vogler M. Inhibition of bromodomain and extra-terminal proteins targets constitutively active NFκB and STAT signaling in lymphoma and influences the expression of the antiapoptotic proteins BCL2A1 and c-MYC. Cell Commun Signal 2024; 22:415. [PMID: 39192247 DOI: 10.1186/s12964-024-01782-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
The antiapoptotic protein BCL2A1 is highly, but very heterogeneously expressed in Diffuse Large B-cell Lymphoma (DLBCL). Particularly in the context of resistance to current therapies, BCL2A1 appears to play an important role in protecting cancer cells from the induction of cell death. Reducing BCL2A1 levels may have therapeutic potential, however, no specific inhibitor is currently available. In this study, we hypothesized that the signaling network regulated by epigenetic readers may regulate the transcription of BCL2A1 and hence that inhibition of Bromodomain and Extra-Terminal (BET) proteins may reduce BCL2A1 expression thus leading to cell death in DLBCL cell lines. We found that the mechanisms of action of acetyl-lysine competitive BET inhibitors are different from those of proteolysis targeting chimeras (PROTACs) that induce the degradation of BET proteins. Both classes of BETi reduced the expression of BCL2A1 which coincided with a marked downregulation of c-MYC. Mechanistically, BET inhibition attenuated the constitutively active canonical nuclear factor kappa-light-chain-enhancer of activated B-cells (NFκB) signaling pathway and inhibited p65 activation. Furthermore, signal transducer of activated transcription (STAT) signaling was reduced by inhibiting BET proteins, targeting another pathway that is often constitutively active in DLBCL. Both pathways were also inhibited by the IκB kinase inhibitor TPCA-1, resulting in decreased BCL2A1 and c-MYC expression. Taken together, our study highlights a novel complex regulatory network that links BET proteins to both NFκB and STAT survival signaling pathways controlling both BCL2A1 and c-MYC expression in DLBCL.
Collapse
Affiliation(s)
- Nadja M Pieper
- Institute for Experimental Pediatric Hematology and Oncology, Goethe University Frankfurt, Komturstrasse 3a, 60528, Frankfurt, Germany
| | - Julia Schnell
- Institute for Experimental Pediatric Hematology and Oncology, Goethe University Frankfurt, Komturstrasse 3a, 60528, Frankfurt, Germany
| | - Daniela Bruecher
- Institute for Experimental Pediatric Hematology and Oncology, Goethe University Frankfurt, Komturstrasse 3a, 60528, Frankfurt, Germany
| | - Stefan Knapp
- Institute for Pharmaceutical Chemistry, Germany and Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe-University Frankfurt, Max-von-Laue- Str. 9, Biozentrum, 60438, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK) Partner Site Frankfurt/Mainz, a Partnership between 10 DKFZ and University Hospital Frankfurt, Frankfurt, Germany
| | - Meike Vogler
- Institute for Experimental Pediatric Hematology and Oncology, Goethe University Frankfurt, Komturstrasse 3a, 60528, Frankfurt, Germany.
- German Cancer Consortium (DKTK) Partner Site Frankfurt/Mainz, a Partnership between 10 DKFZ and University Hospital Frankfurt, Frankfurt, Germany.
- University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany.
| |
Collapse
|
9
|
Li W, Guo F, Zeng R, Liang H, Wang Y, Xiong W, Wu H, Yang C, Jin X. CDK4/6 Alters TBK1 Phosphorylation to Inhibit the STING Signaling Pathway in Prostate Cancer. Cancer Res 2024; 84:2588-2606. [PMID: 38861362 DOI: 10.1158/0008-5472.can-23-3704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/02/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024]
Abstract
The efficacy of immunotherapy in patients with prostate cancer is limited due to the "cold" tumor microenvironment and the paucity of neoantigens. The STING-TBK1-IRF3 signaling axis is involved in innate immunity and has been increasingly recognized as a candidate target for cancer immunotherapy. Here, we found that treatment with CDK4/6 inhibitors stimulates the STING pathway and enhances the antitumor effect of STING agonists in prostate cancer. Mechanistically, CDK4/6 phosphorylated TBK1 at S527 to inactivate the STING signaling pathway independent of RB1 in prostate cancer cells. CDK4/6-mediated phosphorylation of RB1 at S249/T252 also induced the interaction of RB1 with TBK1 to diminish the phosphorylation of TBK1 at S172, which suppressed STING pathway activation. Overall, this study showed that CDK4/6 suppresses the STING pathway through RB1-dependent and RB1-independent pathways, indicating that CDK4/6 inhibition could be a potential strategy to overcome immunosuppression in prostate cancer. Significance: Inhibiting CDK4/6 activates STING-TBK1-IRF3 signaling in prostate cancer by regulating TBK1 phosphorylation, suggesting that the combination of CDK4/6 inhibitors and STING agonists could be an effective approach to stimulate innate immunity.
Collapse
Affiliation(s)
- Wei Li
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
- Uro-Oncology Institute of Central South University, Changsha, China
| | - Feng Guo
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruijiang Zeng
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
- Uro-Oncology Institute of Central South University, Changsha, China
| | - Huaiyuan Liang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
- Uro-Oncology Institute of Central South University, Changsha, China
| | - Yinhuai Wang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
- Uro-Oncology Institute of Central South University, Changsha, China
| | - Wei Xiong
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
- Uro-Oncology Institute of Central South University, Changsha, China
| | - Heshui Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunguang Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Jin
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
- Uro-Oncology Institute of Central South University, Changsha, China
| |
Collapse
|
10
|
Xu P, Yang JC, Chen B, Ning S, Zhang X, Wang L, Nip C, Shen Y, Johnson OT, Grigorean G, Phinney B, Liu L, Wei Q, Corey E, Tepper CG, Chen HW, Evans CP, Dall'Era MA, Gao AC, Gestwicki JE, Liu C. Proteostasis perturbation of N-Myc leveraging HSP70 mediated protein turnover improves treatment of neuroendocrine prostate cancer. Nat Commun 2024; 15:6626. [PMID: 39103353 PMCID: PMC11300456 DOI: 10.1038/s41467-024-50459-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 07/11/2024] [Indexed: 08/07/2024] Open
Abstract
N-Myc is a key driver of neuroblastoma and neuroendocrine prostate cancer (NEPC). One potential way to circumvent the challenge of undruggable N-Myc is to target the protein homeostasis (proteostasis) system that maintains N-Myc levels. Here, we identify heat shock protein 70 (HSP70) as a top partner of N-Myc, which binds a conserved "SELILKR" motif and prevents the access of E3 ubiquitin ligase, STIP1 homology and U-box containing protein 1 (STUB1), possibly through steric hindrance. When HSP70's dwell time on N-Myc is increased by treatment with the HSP70 allosteric inhibitor, STUB1 is in close proximity with N-Myc and becomes functional to promote N-Myc ubiquitination on the K416 and K419 sites and forms polyubiquitination chains linked by the K11 and K63 sites. Notably, HSP70 inhibition significantly suppressed NEPC tumor growth, increased the efficacy of aurora kinase A (AURKA) inhibitors, and limited the expression of neuroendocrine-related pathways.
Collapse
Affiliation(s)
- Pengfei Xu
- Department of Urologic Surgery, University of California, Davis, CA, USA
| | - Joy C Yang
- Department of Urologic Surgery, University of California, Davis, CA, USA
| | - Bo Chen
- Department of Urologic Surgery, University of California, Davis, CA, USA
- Department of Urology, West China Hospital, Sichuan University, Sichuan, China
| | - Shu Ning
- Department of Urologic Surgery, University of California, Davis, CA, USA
| | - Xiong Zhang
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA, USA
| | - Leyi Wang
- Department of Urologic Surgery, University of California, Davis, CA, USA
- Graduate Group in Integrative Pathobiology, University of California, Davis, CA, USA
| | - Christopher Nip
- Department of Urologic Surgery, University of California, Davis, CA, USA
| | - Yuqiu Shen
- Department of Urologic Surgery, University of California, Davis, CA, USA
| | - Oleta T Johnson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | | | - Brett Phinney
- Proteomics Core Facility, University of California, Davis, CA, USA
| | - Liangren Liu
- Department of Urology, West China Hospital, Sichuan University, Sichuan, China
| | - Qiang Wei
- Department of Urology, West China Hospital, Sichuan University, Sichuan, China
| | - Eva Corey
- Department of Urology, University of Washington, Washington, WA, USA
| | - Clifford G Tepper
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA, USA
- University of California, Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - Hong-Wu Chen
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA, USA
- University of California, Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - Christopher P Evans
- Department of Urologic Surgery, University of California, Davis, CA, USA
- University of California, Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - Marc A Dall'Era
- Department of Urologic Surgery, University of California, Davis, CA, USA
- University of California, Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - Allen C Gao
- Department of Urologic Surgery, University of California, Davis, CA, USA
- University of California, Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Chengfei Liu
- Department of Urologic Surgery, University of California, Davis, CA, USA.
- Graduate Group in Integrative Pathobiology, University of California, Davis, CA, USA.
- University of California, Davis Comprehensive Cancer Center, Sacramento, CA, USA.
| |
Collapse
|
11
|
Zhang Y, Fong KW, Mao F, Wang R, Allison DB, Napier D, He D, Liu J, Zhang Y, Chen J, Kong Y, Li C, Li G, Liu J, Li Z, Zhu H, Wang C, Liu X. Elevating PLK1 overcomes BETi resistance in prostate cancer via triggering BRD4 phosphorylation-dependent degradation in mitosis. Cell Rep 2024; 43:114431. [PMID: 38968071 PMCID: PMC11334074 DOI: 10.1016/j.celrep.2024.114431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/20/2024] [Accepted: 06/18/2024] [Indexed: 07/07/2024] Open
Abstract
Bromodomain-containing protein 4 (BRD4) has emerged as a promising therapeutic target in prostate cancer (PCa). Understanding the mechanisms of BRD4 stability could enhance the clinical response to BRD4-targeted therapy. In this study, we report that BRD4 protein levels are significantly decreased during mitosis in a PLK1-dependent manner. Mechanistically, we show that BRD4 is primarily phosphorylated at T1186 by the CDK1/cyclin B complex, recruiting PLK1 to phosphorylate BRD4 at S24/S1100, which are recognized by the APC/CCdh1 complex for proteasome pathway degradation. We find that PLK1 overexpression lowers SPOP mutation-stabilized BRD4, consequently rendering PCa cells re-sensitized to BRD4 inhibitors. Intriguingly, we report that sequential treatment of docetaxel and JQ1 resulted in significant inhibition of PCa. Collectively, the results support that PLK1-phosphorylated BRD4 triggers its degradation at M phase. Sequential treatment of docetaxel and JQ1 overcomes BRD4 accumulation-associated bromodomain and extra-terminal inhibitor (BETi) resistance, which may shed light on the development of strategies to treat PCa.
Collapse
Affiliation(s)
- Yanquan Zhang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA.
| | - Ka-Wing Fong
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Fengyi Mao
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Ruixin Wang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Derek B Allison
- Pathology & Laboratory Medicine, University of Kentucky, Lexington, KY 40508, USA
| | - Dana Napier
- Biospecimen Procurement & Translational Pathology Shared Resource Facility, University of Kentucky, Lexington, KY 40536, USA
| | - Daheng He
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Jinpeng Liu
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Yeqing Zhang
- Department of Biology, College of Arts & Sciences, University of Kentucky, Lexington, KY 40506, USA
| | - Jing Chen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Yifan Kong
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Chaohao Li
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Guangbing Li
- Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Jinghui Liu
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Zhiguo Li
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Haining Zhu
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Chi Wang
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Xiaoqi Liu
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
12
|
Yongprayoon V, Wattanakul N, Khomate W, Apithanangsiri N, Kasitipradit T, Nantajit D, Tavassoli M. Targeting BRD4: Potential therapeutic strategy for head and neck squamous cell carcinoma (Review). Oncol Rep 2024; 51:74. [PMID: 38606512 DOI: 10.3892/or.2024.8733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024] Open
Abstract
As a member of BET (bromodomain and extra-terminal) protein family, BRD4 (bromodomain‑containing protein 4) is a chromatin‑associated protein that interacts with acetylated histones and actively recruits regulatory proteins, leading to the modulation of gene expression and chromatin remodeling. The cellular and epigenetic functions of BRD4 implicate normal development, fibrosis and inflammation. BRD4 has been suggested as a potential therapeutic target as it is often overexpressed and plays a critical role in regulating gene expression programs that drive tumor cell proliferation, survival, migration and drug resistance. To address the roles of BRD4 in cancer, several drugs that specifically target BRD4 have been developed. Inhibition of BRD4 has shown promising results in preclinical models, with several BRD4 inhibitors undergoing clinical trials for the treatment of various cancers. Head and neck squamous cell carcinoma (HNSCC), a heterogeneous group of cancers, remains a health challenge with a high incidence rate and poor prognosis. Conventional therapies for HNSCC often cause adverse effects to the patients. Targeting BRD4, therefore, represents a promising strategy to sensitize HNSCC to chemo‑ and radiotherapy allowing de‑intensification of the current therapeutic regime and subsequent reduced side effects. However, further studies are required to fully understand the underlying mechanisms of action of BRD4 in HNSCC in order to determine the optimal dosing and administration of BRD4‑targeted drugs for the treatment of patients with HNSCC.
Collapse
Affiliation(s)
- Voraporn Yongprayoon
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Napasporn Wattanakul
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Winnada Khomate
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Nathakrit Apithanangsiri
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Tarathip Kasitipradit
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Danupon Nantajit
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Mahvash Tavassoli
- Centre for Host Microbiome Interactions, King's College London, London SE1 1UL, UK
| |
Collapse
|
13
|
Ling H, Li Y, Peng C, Yang S, Seto E. HDAC10 inhibition represses melanoma cell growth and BRAF inhibitor resistance via upregulating SPARC expression. NAR Cancer 2024; 6:zcae018. [PMID: 38650694 PMCID: PMC11034028 DOI: 10.1093/narcan/zcae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/08/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
Secreted protein acidic and rich in cysteine (SPARC), a conserved secreted glycoprotein, plays crucial roles in regulating various biological processes. SPARC is highly expressed and has profound implications in several cancer types, including melanoma. Understanding the mechanisms that govern SPARC expression in cancers has the potential to lead to improved cancer diagnosis, prognosis, treatment strategies, and patient outcomes. Here, we demonstrate that histone deacetylase 10 (HDAC10) is a key regulator of SPARC expression in melanoma cells. Depletion or inhibition of HDAC10 upregulates SPARC expression, whereas overexpression of HDAC10 downregulates it. Mechanistically, HDAC10 coordinates with histone acetyltransferase p300 to modulate the state of acetylation of histone H3 at lysine 27 (H3K27ac) at SPARC regulatory elements and the recruitment of bromodomain-containing protein 4 (BRD4) to these regions, thereby fine-tuning SPARC transcription. HDAC10 depletion and resultant SPARC upregulation repress melanoma cell growth primarily by activating AMPK signaling and inducing autophagy. Moreover, SPARC upregulation due to HDAC10 depletion partly accounts for the resensitization of resistant cells to a BRAF inhibitor. Our work reveals the role of HDAC10 in gene regulation through indirect histone modification and suggests a potential therapeutic strategy for melanoma or other cancers by targeting HDAC10 and SPARC.
Collapse
Affiliation(s)
- Hongbo Ling
- George Washington Cancer Center, Department of Biochemistry & Molecular Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20037, USA
| | - Yixuan Li
- George Washington Cancer Center, Department of Biochemistry & Molecular Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20037, USA
| | - Changmin Peng
- George Washington Cancer Center, Department of Biochemistry & Molecular Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20037, USA
| | - Shengyu Yang
- Department of Cellular and Molecular Physiology, Penn State Cancer Institute, The Penn State University, 400 University Drive, Hershey, PA 17033, USA
| | - Edward Seto
- George Washington Cancer Center, Department of Biochemistry & Molecular Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20037, USA
| |
Collapse
|
14
|
Zhang Q, Wu Q, Huan XJ, Song SS, Bao XB, Miao ZH, Wang YQ. Co-inhibition of BET and NAE enhances BIM-dependent apoptosis with augmented cancer therapeutic efficacy. Biochem Pharmacol 2024; 223:116198. [PMID: 38588830 DOI: 10.1016/j.bcp.2024.116198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/22/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
Agents that inhibit bromodomain and extra-terminal domain (BET) proteins have been actively tested in the clinic as potential anticancer drugs. NEDD8-activating enzyme (NAE) inhibitors, represented by MLN4924, target the only activation enzyme in the neddylation pathway that has been identified as an attractive target for cancer therapy. In this study, we focus on the combination of BET inhibitors (BETis) and NAE inhibitors (NAEis) as a cancer therapeutic strategy and investigate its underlying mechanisms to explore and expand the application scope of both types of drugs. The results showed that this combination synergistically inhibited the proliferative activity of tumor cells from different tissues. Compared to a single drug, combination therapy had a weak effect on cycle arrest but significantly enhanced cell apoptosis. Furthermore, the growth of NCI-H1975 xenografts in nude mice was significantly inhibited by the combination without obvious body weight loss. Research on the synergistic mechanism demonstrated that combination therapy significantly increased the mRNA and protein levels of the proapoptotic gene BIM. The inhibition and knockout of BIM significantly attenuated the apoptosis induced by the combination, whereas the re-expression of BIM restored the synergistic effects, indicating that BIM induction plays a critical role in mediating the enhanced apoptosis induced by the co-inhibition of BET and NAE. Together, the enhanced transcription mediated by miR-17-92 cluster inhibition and reduced degradation promoted the increase in BIM levels, resulting in a synergistic effect. Collectively, these findings highlight the need for further clinical investigation into the combination of BETi and NAEi as a promising strategy for cancer therapy.
Collapse
Affiliation(s)
- Qian Zhang
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Qian Wu
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xia-Juan Huan
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Shan-Shan Song
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Xu-Bin Bao
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Ze-Hong Miao
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| | - Ying-Qing Wang
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
15
|
Huang QX, Fan DM, Zheng ZZ, Ran T, Bai A, Xiao RQ, Hu GS, Liu W. Peptide Inhibitor Targeting the Extraterminal Domain in BRD4 Potently Suppresses Breast Cancer Both In Vitro and In Vivo. J Med Chem 2024; 67:6658-6672. [PMID: 38569135 PMCID: PMC11056977 DOI: 10.1021/acs.jmedchem.4c00141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/27/2024] [Accepted: 03/20/2024] [Indexed: 04/05/2024]
Abstract
BRD4 is associated with a variety of human diseases, including breast cancer. The crucial roles of amino-terminal bromodomains (BDs) of BRD4 in binding with acetylated histones to regulate oncogene expression make them promising drug targets. However, adverse events impede the development of the BD inhibitors. BRD4 adopts an extraterminal (ET) domain, which recruits proteins to drive oncogene expression. We discovered a peptide inhibitor PiET targeting the ET domain to disrupt BRD4/JMJD6 interaction, a protein complex critical in oncogene expression and breast cancer. The cell-permeable form of PiET, TAT-PiET, and PROTAC-modified TAT-PiET, TAT-PiET-PROTAC, potently inhibits the expression of BRD4/JMJD6 target genes and breast cancer cell growth. Combination therapy with TAT-PiET/TAT-PiET-PROTAC and JQ1, iJMJD6, or Fulvestrant exhibits synergistic effects. TAT-PiET or TAT-PiET-PROTAC treatment overcomes endocrine therapy resistance in ERα-positive breast cancer cells. Taken together, we demonstrated that targeting the ET domain is effective in suppressing breast cancer, providing a therapeutic avenue in the clinic.
Collapse
Affiliation(s)
- Qi-xuan Huang
- State
Key Laboratory of Cellular Stress Biology, School of Pharmaceutical
Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
- Fujian
Provincial Key Laboratory of Innovative Drug Target Research, School
of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
- Xiang
An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty
of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
| | - Da-meng Fan
- State
Key Laboratory of Cellular Stress Biology, School of Pharmaceutical
Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
- Fujian
Provincial Key Laboratory of Innovative Drug Target Research, School
of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
- Xiang
An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty
of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
| | - Zao-zao Zheng
- State
Key Laboratory of Cellular Stress Biology, School of Pharmaceutical
Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
- Fujian
Provincial Key Laboratory of Innovative Drug Target Research, School
of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
- Xiang
An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty
of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
| | - Ting Ran
- Bioland
Laboratory (Guangzhou Regenerative Medicine and Health—Guangdong
Laboratory), KaiYuan
Road, Guangzhou, Guangdong 510530, China
| | - Ao Bai
- State
Key Laboratory of Cellular Stress Biology, School of Pharmaceutical
Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
- Fujian
Provincial Key Laboratory of Innovative Drug Target Research, School
of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
- Xiang
An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty
of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
| | - Rong-quan Xiao
- State
Key Laboratory of Cellular Stress Biology, School of Pharmaceutical
Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
- Fujian
Provincial Key Laboratory of Innovative Drug Target Research, School
of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
- Xiang
An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty
of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
| | - Guo-sheng Hu
- State
Key Laboratory of Cellular Stress Biology, School of Pharmaceutical
Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
- Fujian
Provincial Key Laboratory of Innovative Drug Target Research, School
of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
- Xiang
An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty
of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
| | - Wen Liu
- State
Key Laboratory of Cellular Stress Biology, School of Pharmaceutical
Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
- Fujian
Provincial Key Laboratory of Innovative Drug Target Research, School
of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
- Xiang
An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty
of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
| |
Collapse
|
16
|
Liu N, Wang A, Xue M, Zhu X, Liu Y, Chen M. FOXA1 and FOXA2: the regulatory mechanisms and therapeutic implications in cancer. Cell Death Discov 2024; 10:172. [PMID: 38605023 PMCID: PMC11009302 DOI: 10.1038/s41420-024-01936-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
FOXA1 (Forkhead Box A1) and FOXA2 (Forkhead Box A2) serve as pioneering transcription factors that build gene expression capacity and play a central role in biological processes, including organogenesis and differentiation, glycolipid metabolism, proliferation, migration and invasion, and drug resistance. Notably, FOXA1 and FOXA2 may exert antagonistic, synergistic, or complementary effects in the aforementioned biological processes. This article focuses on the molecular mechanisms and clinical relevance of FOXA1 and FOXA2 in steroid hormone-induced malignancies and highlights potential strategies for targeting FOXA1 and FOXA2 for cancer therapy. Furthermore, the article describes the prospect of targeting upstream regulators of FOXA1/FOXA2 to regulate its expression for cancer therapy because of the drug untargetability of FOXA1/FOXA2.
Collapse
Affiliation(s)
- Na Liu
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China.
| | - Anran Wang
- Department of Radiotherapy and Oncology, Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Suzhou, 215300, Jiangsu Province, China
| | - Mengen Xue
- Department of Radiotherapy and Oncology, Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Suzhou, 215300, Jiangsu Province, China
| | - Xiaoren Zhu
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Yang Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minbin Chen
- Department of Radiotherapy and Oncology, Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Suzhou, 215300, Jiangsu Province, China.
| |
Collapse
|
17
|
Li H, Ma YP, Wang HL, Tian CJ, Guo YX, Zhang HB, Liu XM, Liu PF. Establishment of a prognosis predictive model for liver cancer based on expression of genes involved in the ubiquitin-proteasome pathway. World J Clin Oncol 2024; 15:434-446. [PMID: 38576590 PMCID: PMC10989257 DOI: 10.5306/wjco.v15.i3.434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/27/2023] [Accepted: 02/05/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND The ubiquitin-proteasome pathway (UPP) has been proven to play important roles in cancer. AIM To investigate the prognostic significance of genes involved in the UPP and develop a predictive model for liver cancer based on the expression of these genes. METHODS In this study, UPP-related E1, E2, E3, deubiquitylating enzyme, and proteasome gene sets were obtained from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, aiming to screen the prognostic genes using univariate and multivariate regression analysis and develop a prognosis predictive model based on the Cancer Genome Atlas liver cancer cases. RESULTS Five genes (including autophagy related 10, proteasome 20S subunit alpha 8, proteasome 20S subunit beta 2, ubiquitin specific peptidase 17 like family member 2, and ubiquitin specific peptidase 8) were proven significantly correlated with prognosis and used to develop a prognosis predictive model for liver cancer. Among training, validation, and Gene Expression Omnibus sets, the overall survival differed significantly between the high-risk and low-risk groups. The expression of the five genes was significantly associated with immunocyte infiltration, tumor stage, and postoperative recurrence. A total of 111 differentially expressed genes (DEGs) were identified between the high-risk and low-risk groups and they were enriched in 20 and 5 gene ontology and KEGG pathways. Cell division cycle 20, Kelch repeat and BTB domain containing 11, and DDB1 and CUL4 associated factor 4 like 2 were the DEGs in the E3 gene set that correlated with survival. CONCLUSION We have constructed a prognosis predictive model in patients with liver cancer, which contains five genes that associate with immunocyte infiltration, tumor stage, and postoperative recurrence.
Collapse
Affiliation(s)
- Hua Li
- Department of Endoscopy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yi-Po Ma
- Department of Critical Care Medicine, Dingzhou City People’s Hospital, Dingzhou 073000, Hebei Province, China
| | - Hai-Long Wang
- Department of Oncology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin 300120, China
| | - Cai-Juan Tian
- Tianjin Marvel Medical Laboratory, Tianjin Marvelbio Technology Co., Ltd, Tianjin 300180, China
| | - Yi-Xian Guo
- Department of Intelligent Technology, Tianjin Yunquan Intelligent Technology Co., Ltd, Tianjin 300381, China
| | - Hong-Bo Zhang
- Tianjin Marvel Medical Laboratory, Tianjin Marvelbio Technology Co., Ltd, Tianjin 300180, China
| | - Xiao-Min Liu
- Department of Oncology, Tianjin Huanhu Hospital, Tianjin 300350, China
| | - Peng-Fei Liu
- Department of Oncology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin 300120, China
| |
Collapse
|
18
|
Zheng Z, Chen M, Feng S, Zhao H, Qu T, Zhao X, Ruan Q, Li L, Guo J. VDR and deubiquitination control neuronal oxidative stress and microglial inflammation in Parkinson's disease. Cell Death Discov 2024; 10:150. [PMID: 38514643 PMCID: PMC10957901 DOI: 10.1038/s41420-024-01912-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 02/29/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024] Open
Abstract
Close correlation between vitamin D (VitD) deficiency and Parkinson's Disease (PD) risk, VitD as an adjuvant treatment promising to improve PD progression. However, VitD excessive intake could induce hypercalcemia and renal damage. Therefore, upregulation of vitD receptor (VDR) is considered a compensatory strategy to overcome VitD insufficiency and alleviate PD symptoms. In this study, we discovered that VDR played antioxidative roles in dopaminergic neurons by decreasing reactive oxygen species (ROS) and maintaining mitochondrial membrane potential. Further, we newly identified VDR downstream events in C. elegans, including glutathione S-transferase (gst) and forkhead box transcription factor class O (daf-16) mediated oxidative stress resistance. VDR upregulation also mitigated microglial activation through inhibition of NLRP3/caspase-1-mediated inflammation and membrane permeabilization. These findings highlight the multifaceted protective effects of VDR in both neurons and microglia against the development of PD. Importantly, we discovered a novel deubiquitinase DUB3, whose N-terminal catalytic domain interacted with the C-terminal ligand-binding domain of VDR to reduce VDR ubiquitination. Identification of DUB3 as an essential player in the deubiquitinating mechanism of VDR provides valuable insights into VDR regulation and its potential as a therapeutic target for PD.
Collapse
Affiliation(s)
- Zihui Zheng
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, P. R. China
| | - Miao Chen
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, P. R. China
| | - Shengliang Feng
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, P. R. China
| | - Huanhuan Zhao
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, P. R. China
| | - Tiange Qu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, P. R. China
| | - Xudong Zhao
- Department of General Practice, Affiliated Hospital of Xuzhou Medical University, 99 Huaihai West Road, Xuzhou, 221002, Jiangsu, P. R. China
| | - Qinli Ruan
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, P. R. China.
| | - Lei Li
- Department of General Practice, Affiliated Hospital of Xuzhou Medical University, 99 Huaihai West Road, Xuzhou, 221002, Jiangsu, P. R. China.
| | - Jun Guo
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, P. R. China
| |
Collapse
|
19
|
Chen Y, Gao F, He Y, Liu M, Quan Y, Zhang P. DUB3 is a MAGEA3 deubiquitinase and a potential therapeutic target in hepatocellular carcinoma. iScience 2024; 27:109181. [PMID: 38414853 PMCID: PMC10897913 DOI: 10.1016/j.isci.2024.109181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/24/2023] [Accepted: 02/06/2024] [Indexed: 02/29/2024] Open
Abstract
Although melanoma-associated antigen A3 and A6 (MAGEA3/6)-specific tumor vaccines have shown antitumor effects in melanoma and non-small cell lung cancer (NSCLC), many cancers do not respond because MAGEA3 can promote cancer without triggering an immune response. Here, we identified DUB3 as the MAGEA3 deubiquitinase. DUB3 interacts with, deubiquitinates and stabilizes MAGEA3. Depletion of DUB3 in hepatocellular carcinoma (HCC) cells results in MAGEA3 degradation and P53-dependent growth inhibition. Moreover, DUB3 knockout attenuates HCC tumorigenesis in vivo, which can be rescued by restoration of MAGEA3. Intriguingly, pharmacological inhibition of DUB3 by palbociclib promotes degradation of MAGEA3 and inhibits tumor growth in preclinical models implanted with parental HCC cells but not with DUB3 knockout HCC cells. In patients with HCC, DUB3 is highly expressed, and its levels positively correlate with MAGEA3 levels. Taken together, DUB3 is a MAGEA3 deubiquitinase, and abrogating DUB3 enzymatic activity by palbociclib is a promising therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Yuanhong Chen
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Feng Gao
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yan He
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Meijun Liu
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuan Quan
- Stem Cell Laboratory, the Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, China
| | - Peijing Zhang
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
20
|
Marr AR, Halpin M, Corbin DL, Asemelash Y, Sher S, Gordon BK, Whipp EC, Mitchell S, Harrington BK, Orwick S, Benrashid S, Goettl VM, Yildiz V, Mitchell AD, Cahn O, Mims AS, Larkin KTM, Long M, Blachly J, Woyach JA, Lapalombella R, Grieselhuber NR. The multi-CDK inhibitor dinaciclib reverses bromo- and extra-terminal domain (BET) inhibitor resistance in acute myeloid leukemia via inhibition of Wnt/β-catenin signaling. Exp Hematol Oncol 2024; 13:27. [PMID: 38438856 PMCID: PMC10913666 DOI: 10.1186/s40164-024-00483-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/23/2024] [Indexed: 03/06/2024] Open
Abstract
Acute myeloid leukemia (AML) is a highly aggressive hematologic cancer with poor survival across a broad range of molecular subtypes. Development of efficacious and well-tolerable therapies encompassing the range of mutations that can arise in AML remains an unmet need. The bromo- and extra-terminal domain (BET) family of proteins represents an attractive therapeutic target in AML due to their crucial roles in many cellular functions, regardless of any specific mutation. Many BET inhibitors (BETi) are currently in pre-clinical and early clinical development, but acquisition of resistance continues to remain an obstacle for the drug class. Novel methods to circumvent this development of resistance could be instrumental for the future use of BET inhibitors in AML, both as monotherapy and in combination. To date, many investigations into possible drug combinations of BETi with CDK inhibitors have focused on CDK9, which has a known physical and functional interaction with the BET protein BRD4. Therefore, we wished to investigate possible synergy and additive effects between inhibitors of these targets in AML. Here, we describe combination therapy with the multi-CDK inhibitor dinaciclib and the BETi PLX51107 in pre-clinical models of AML. Dinaciclib and PLX51107 demonstrate additive effects in AML cell lines, primary AML samples, and in vivo. Further, we demonstrate novel activity of dinaciclib through inhibition of the canonical/β-catenin dependent Wnt signaling pathway, a known resistance mechanism to BETi in AML. We show dinaciclib inhibits Wnt signaling at multiple levels, including downregulation of β-catenin, the Wnt co-receptor LRP6, as well as many Wnt pathway components and targets. Moreover, dinaciclib sensitivity remains unaffected in a setting of BET resistance, demonstrating similar inhibitory effects on Wnt signaling when compared to BET-sensitive cells. Ultimately, our results demonstrate rationale for combination CDKi and BETi in AML. In addition, our novel finding of Wnt signaling inhibition could have potential implications in other cancers where Wnt signaling is dysregulated and demonstrates one possible approach to circumvent development of BET resistance in AML.
Collapse
Affiliation(s)
- Alexander R Marr
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Madeline Halpin
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Dominique L Corbin
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Yerdanos Asemelash
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Steven Sher
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Britten K Gordon
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Ethan C Whipp
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | | | | | - Shelley Orwick
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Samon Benrashid
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Virginia M Goettl
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Vedat Yildiz
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Andrew D Mitchell
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Olivia Cahn
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Alice S Mims
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Karilyn T M Larkin
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Meixao Long
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - James Blachly
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
- Leukemia Research Program, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, USA
| | - Jennifer A Woyach
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
- Leukemia Research Program, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, USA
| | - Rosa Lapalombella
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
- Leukemia Research Program, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, USA
| | - Nicole R Grieselhuber
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA.
- Leukemia Research Program, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, USA.
| |
Collapse
|
21
|
Li N, Zhang E, Li Z, Lv S, Zhao X, Ke Q, Zou Q, Li W, Wang Y, Guo H, Song T, Sun L. The P53-P21-RB1 pathway promotes BRD4 degradation in liver cancer through USP1. J Biol Chem 2024; 300:105707. [PMID: 38309505 PMCID: PMC10907170 DOI: 10.1016/j.jbc.2024.105707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 02/05/2024] Open
Abstract
Liver cancer is notoriously refractory to conventional therapeutics. Tumor progression is governed by the interplay between tumor-promoting genes and tumor-suppressor genes. BRD4, an acetyl lysine-binding protein, is overexpressed in many cancer types, which promotes activation of a pro-tumor gene network. But the underlying mechanism for BRD4 overexpression remains incompletely understood. In addition, understanding the regulatory mechanism of BRD4 protein level will shed insight into BRD4-targeting therapeutics. In this study, we investigated the potential relation between BRD4 protein level and P53, the most frequently dysregulated tumor suppressor. By analyzing the TCGA datasets, we first identify a strong negative correlation between protein levels of P53 and BRD4 in liver cancer. Further investigation shows that P53 promotes BRD4 protein degradation. Mechanistically, P53 indirectly represses the transcription of USP1, a deubiquitinase, through the P21-RB1 axis. USP1 itself is also overexpressed in liver cancer and we show USP1 deubiquitinates BRD4 in vivo and in vitro, which increases BRD4 stability. With cell proliferation assays and xenograft model, we show the pro-tumor role of USP1 is partially mediated by BRD4. With functional transcriptomic analysis, we find the USP1-BRD4 axis upholds expression of a group of cancer-related genes. In summary, we identify a functional P53-P21-RB1-USP1-BRD4 axis in liver cancer.
Collapse
Affiliation(s)
- Neng Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Erlei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China
| | - Zhenyong Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Suli Lv
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuefeng Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Ke
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingli Zou
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wensheng Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yifei Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haocheng Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tanjing Song
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Lidong Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
22
|
Wang WP, Shi D, Yun D, Hu J, Wang JF, Liu J, Yang YP, Li MR, Wang JF, Kong DL. Role of deubiquitinase JOSD2 in the pathogenesis of esophageal squamous cell carcinoma. World J Gastroenterol 2024; 30:565-578. [PMID: 38463028 PMCID: PMC10921146 DOI: 10.3748/wjg.v30.i6.565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/20/2023] [Accepted: 01/16/2024] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is a deadly malignancy with limited treatment options. Deubiquitinases (DUBs) have been confirmed to play a crucial role in the development of malignant tumors. JOSD2 is a DUB involved in controlling protein deubiquitination and influencing critical cellular processes in cancer. AIM To investigate the impact of JOSD2 on the progression of ESCC. METHODS Bioinformatic analyses were employed to explore the expression, prognosis, and enriched pathways associated with JOSD2 in ESCC. Lentiviral transduction was utilized to manipulate JOSD2 expression in ESCC cell lines (KYSE30 and KYSE150). Functional assays, including cell proliferation, colony formation, drug sensitivity, migration, and invasion, were performed, revealing the impact of JOSD2 on ESCC cell lines. JOSD2's role in xenograft tumor growth and drug sensitivity in vivo was also assessed. The proteins that interacted with JOSD2 were identified using mass spectrometry. RESULTS Preliminary research indicated that JOSD2 was highly expressed in ESCC tissues, which was associated with poor prognosis. Further analysis demonstrated that JOSD2 was upregulated in ESCC cell lines compared to normal esophageal cells. JOSD2 knockdown inhibited ESCC cell activity, including proliferation and colony-forming ability. Moreover, JOSD2 knockdown decreased the drug resistance and migration of ESCC cells, while JOSD2 overexpression enhanced these phenotypes. In vivo xenograft assays further confirmed that JOSD2 promoted tumor proliferation and drug resistance in ESCC. Mechanistically, JOSD2 appears to activate the MAPK/ERK and PI3K/AKT signaling pathways. Mass spectrometry was used to identify crucial substrate proteins that interact with JOSD2, which identified the four primary proteins that bind to JOSD2, namely USP47, IGKV2D-29, HSP90AB1, and PRMT5. CONCLUSION JOSD2 plays a crucial role in enhancing the proliferation, migration, and drug resistance of ESCC, suggesting that JOSD2 is a potential therapeutic target in ESCC.
Collapse
Affiliation(s)
- Wen-Peng Wang
- Department of Colorectal Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Dan Shi
- Department of Gastrointestinal Surgery, Tianjin Nan Kai Hospital, Tianjin Medical University, Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin 300100, China
| | - Duo Yun
- Department of Oncology, The First Hospital of Hohhot, Hohhot 010000, Inner Mongolia Autonomous Region, China
| | - Jun Hu
- Department of Colorectal Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Jie-Fu Wang
- Department of Colorectal Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Jia Liu
- Department of Colorectal Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Yan-Peng Yang
- Department of Colorectal Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Ming-Rui Li
- Department of Endocrinology, Dazhou Central Hospital, Dazhou 635000, Sichuan Province, China
| | - Jun-Feng Wang
- Department of Colorectal Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Da-Lu Kong
- Department of Colorectal Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| |
Collapse
|
23
|
Ma X, Chen Z, Chen W, Chen Z, Shang Y, Zhao Y, Li L, Zhou C, He J, Meng X. LncRNA AL139294.1 can be transported by extracellular vesicles to promote the oncogenic behaviour of recipient cells through activation of the Wnt and NF-κB2 pathways in non-small-cell lung cancer. J Exp Clin Cancer Res 2024; 43:20. [PMID: 38229152 DOI: 10.1186/s13046-023-02939-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/22/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) participate in cancer development via cell-to-cell communication. Long non-coding RNAs (lncRNAs), one component of EVs, can play an essential role in non-small-cell lung cancer (NSCLC) through EV-mediated delivery. METHODS The NSCLC-associated lncRNA AL139294.1 in EVs was identified via lncRNA microarray analysis. The role of AL139294.1 in NSCLC was examined in vitro and in vivo. Confocal microscopy was used to observe the encapsulation of AL139294.1 into EVs and its transport to recipient cells. A co-culture device was used to examine the effects of transported AL139294.1 on the oncogenic behaviour of recipient cells. Dual-luciferase reporter assay was performed to verify the direct interaction of miR-204-5p with AL139294.1 and bromodomain-containing protein 4 (BRD4). AL139294.1 and miR-204-5p in EVs were quantified using quantitative polymerase chain reaction. Receiver operating characteristic analyses were conducted to evaluate the diagnostic efficiency. RESULTS The lncRNA AL139294.1 in EVs promoted NSCLC progression in vitro and in vivo. After AL139294.1 was encapsulated into EVs and transported to recipient cells, it promoted the cells' proliferation, migration, and invasion abilities by competitively binding with miR-204-5p to regulate BRD4, leading to the activation of the Wnt and NF-κB2 pathways. Additionally, the expression of serum lncRNA AL139294.1 in EVs was increased, whereas miR-204-5p in EVs was decreased in NSCLC. High levels of lncRNA AL139294.1 and low levels of miR-204-5p in EVs were associated with advanced pathological staging, lymph node metastasis, and distant metastasis, underscoring their promising utility for distinguishing between more and less severe manifestations of the disease. CONCLUSIONS This study reveals a novel lncRNA in EVs associated with NSCLC, namely, AL139294.1, providing valuable insights into the development of NSCLC and introducing potential diagnostic biomarkers for NSCLC.
Collapse
Affiliation(s)
- Xinyi Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, China
- Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Zhenhua Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, China
- Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Wei Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, China
- Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
- Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315020, China
| | - Ziyuan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, China
- Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
- Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315020, China
| | - Yue Shang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, China
- Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Yikai Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, China
- Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Leyi Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, China
- Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Chengwei Zhou
- Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315020, China
| | - Jinxian He
- Department of Thoracic Surgery, The Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, 315048, China
| | - Xiaodan Meng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, China.
- Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
24
|
Zhang L, Ye Q, Gan S, Liu H, Zhang Q, Wang S, Cheng C. Gallic Acid Alleviates Psoriasis Keratinization and Inflammation by Regulating BRD4 Expression. Folia Biol (Praha) 2024; 70:53-61. [PMID: 38830123 DOI: 10.14712/fb2024070010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Psoriasis is a chronic non-contagious autoimmune disease. Gallic acid is a natural compound with potential health benefits, including antioxidant, anticancer, antiviral and antibacterial properties. Nevertheless, the influence of gallic acid on psoriasis has not been fully determined. This investigation aimed to discover the effect of gallic acid on psoriasis. Thirty-one pairs of psoriatic skin tissues and healthy adult human skin tissues were collected. Human keratinocytes (HaCaT cells) were transfected with interleukin 17A (IL-17A) to create the psoriatic keratinocyte model. The content of bromodomain-containing protein 4 (BRD4) microRNA was assessed using qRT-PCR testing. The content of BRD4 was detected by Western blotting. Cell migration was evaluated by conducting a wound healing assay. Cell proliferation was determined using an EdU assay. Apoptosis was detected by the TUNEL assay. The contents of interferon gamma (IFN-γ), IL-6, IL-8 and IL-17 were detected by ELISA. BRD4 was up-regulated in psoriatic skin tissues and in the IL-17A group compared to the healthy adult human skin tissues and the control group. Silencing BRD4 inhibited cell migration, proliferation and inflammatory response but induced apoptosis in IL-17A-treated HaCaT cells. Conversely, BRD4 over-expression promoted cell migration, proliferation and inflammatory response but suppressed apoptosis in IL-17A-treated HaCaT cells. Gallic acid repressed cell migration, proliferation and inflammatory response but indu-ced apoptosis in HaCaT cells transfected with IL-17A by down-regulating BRD4. Gallic acid represses cell migration, proliferation and inflammatory response but induces apoptosis in IL-17A-transfected HaCaT cells by down-regulating BRD4.
Collapse
Affiliation(s)
- Li Zhang
- Dermatology Department, ShenZhen Qianhai Shekou Free Trade Zone Hospital, China
| | - Qiaoyuan Ye
- Department of Dermatology and Venereology, Second Clinical Medical College of Guangdong Medical University, China
| | - Saiyang Gan
- Dermatology Department, ShenZhen Qianhai Shekou Free Trade Zone Hospital, China
| | - Huan Liu
- Dermatology Department, ShenZhen Qianhai Shekou Free Trade Zone Hospital, China
| | - Qing Zhang
- Dermatology Department, ShenZhen Qianhai Shekou Free Trade Zone Hospital, China
| | - Shuangshuang Wang
- Dermatology Department, ShenZhen Qianhai Shekou Free Trade Zone Hospital, China
| | | |
Collapse
|
25
|
Zhu S, Xu N, Zeng H. Molecular complexity of intraductal carcinoma of the prostate. Cancer Med 2024; 13:e6939. [PMID: 38379333 PMCID: PMC10879723 DOI: 10.1002/cam4.6939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/21/2023] [Accepted: 12/04/2023] [Indexed: 02/22/2024] Open
Abstract
Intraductal carcinoma of the prostate (IDC-P) is an aggressive subtype of prostate cancer characterized by the growth of tumor cells within the prostate ducts. It is often found alongside invasive carcinoma and is associated with poor prognosis. Understanding the molecular mechanisms driving IDC-P is crucial for improved diagnosis, prognosis, and treatment strategies. This review summarizes the molecular characteristics of IDC-P and their prognostic indications, comparing them to conventional prostate acinar adenocarcinoma, to gain insights into its unique behavior and identify potential therapeutic targets.
Collapse
Affiliation(s)
- Sha Zhu
- Department of Urology, Institute of Urology, West China HospitalSichuan UniversityChengduChina
| | - Nanwei Xu
- Department of Urology, Institute of Urology, West China HospitalSichuan UniversityChengduChina
| | - Hao Zeng
- Department of Urology, Institute of Urology, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
26
|
Zhang Y, Yu R, Zhao C, Liang J, Zhang Y, Su H, Zhao J, Wu H, Xu S, Zhang Z, Wang L, Zou X, Zhu Y, Zhang S, Lv Y. CAFs Homologous Biomimetic Liposome Bearing BET Inhibitor and Pirfenidone Synergistically Promoting Antitumor Efficacy in Pancreatic Ductal Adenocarcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305279. [PMID: 37968249 PMCID: PMC10767438 DOI: 10.1002/advs.202305279] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/27/2023] [Indexed: 11/17/2023]
Abstract
BRD4 is a member of the BET protein family involved in chromatin remodeling and transcriptional regulation. Several BET inhibitors (BETi) have entered clinical trials, demonstrating potential in inducing cancer cell apoptosis and tumor regression. However, resistance to BETi is common in solid tumors. In pancreatic cancer, it is found that cancer-associated fibroblasts (CAFs) in the tumor microenvironment reduce the BET inhibitor JQ1 sensitivity by inducing BRD4 expression. Moreover, CAFs play a crucial role in the formation of a dense stromal barrier. Therefore, targeting CAFs in the tumor microenvironment of pancreatic cancer not only enhances cancer cells sensitivity to JQ1 but also increases drug perfusion and improves oxygen supply, thus reducing glycolysis and limiting energy supply. To address this challenge, a homologous targeting mechanism utilizing activated fibroblast membrane-coated liposomes is proposed for specific drug precise target to CAFs-rich pancreatic cancer. Additionally, TAT peptides enable liposomes penetration, delivering PFD for targeted anti-fibrotic therapy, reducing extracellular matrix generation and glycolysis, and enhancing JQ1 delivery and sensitivity. In conclusion, the findings indicate the tremendous potential of this CAFs-targeting liposomal delivery system in pancreatic cancer.
Collapse
Affiliation(s)
- Yin Zhang
- Department of GastroenterologyNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsu Province210008P. R. China
- Institute of PancreatologyNanjing UniversityNanjingJiangsu Province210008P. R. China
| | - Ranran Yu
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life Sciences Nanjing UniversityNanjingJiangsu Province210008P. R. China
| | - Cheng Zhao
- Department of GastroenterologyNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsu Province210008P. R. China
| | - Jiawei Liang
- Department of GastroenterologyNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsu Province210008P. R. China
- Institute of PancreatologyNanjing UniversityNanjingJiangsu Province210008P. R. China
| | - Yixuan Zhang
- Department of GastroenterologyNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsu Province210008P. R. China
- Institute of PancreatologyNanjing UniversityNanjingJiangsu Province210008P. R. China
| | - Haochen Su
- Institute of PancreatologyNanjing UniversityNanjingJiangsu Province210008P. R. China
- Department of GastroenterologyNanjing Drum Tower Hospital Clinical College of Nanjing Medical UniversityNanjingJiangsu Province210008P. R. China
| | - Jing Zhao
- Department of GastroenterologyNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsu Province210008P. R. China
- Institute of PancreatologyNanjing UniversityNanjingJiangsu Province210008P. R. China
| | - Hao Wu
- Department of GastroenterologyNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsu Province210008P. R. China
- Institute of PancreatologyNanjing UniversityNanjingJiangsu Province210008P. R. China
| | - Shijin Xu
- Institute of PancreatologyNanjing UniversityNanjingJiangsu Province210008P. R. China
- Department of GastroenterologyNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese MedicineNanjingJiangsu Province210008P. R. China
| | - Ziying Zhang
- Institute of PancreatologyNanjing UniversityNanjingJiangsu Province210008P. R. China
- Department of GastroenterologyNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese MedicineNanjingJiangsu Province210008P. R. China
| | - Lei Wang
- Department of GastroenterologyNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsu Province210008P. R. China
- Institute of PancreatologyNanjing UniversityNanjingJiangsu Province210008P. R. China
| | - Xiaoping Zou
- Department of GastroenterologyNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsu Province210008P. R. China
- Institute of PancreatologyNanjing UniversityNanjingJiangsu Province210008P. R. China
| | - Yun Zhu
- Department of GastroenterologyNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsu Province210008P. R. China
- Department of PharmacyNanjing Drum Tower HospitalDrum Tower Clinical Medical College of Nanjing Medical UniversityNanjingJiangsu Province210008P. R. China
- Nanjing Medical Center for Clinical PharmacyNanjingJiangsu Province210008P. R. China
| | - Shu Zhang
- Department of GastroenterologyNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsu Province210008P. R. China
- Institute of PancreatologyNanjing UniversityNanjingJiangsu Province210008P. R. China
| | - Ying Lv
- Department of GastroenterologyNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsu Province210008P. R. China
- Institute of PancreatologyNanjing UniversityNanjingJiangsu Province210008P. R. China
| |
Collapse
|
27
|
Song Q, Zheng Y, Zhong G, Wang S, He C, Li M. Application of Nanoparticles in the Diagnosis and Treatment of Colorectal Cancer. Anticancer Agents Med Chem 2024; 24:1305-1326. [PMID: 39129164 PMCID: PMC11497148 DOI: 10.2174/0118715206323900240807110122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/26/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024]
Abstract
Colorectal cancer is a common malignant tumor with high morbidity and mortality rates, imposing a huge burden on both patients and the healthcare system. Traditional treatments such as surgery, chemotherapy and radiotherapy have limitations, so finding more effective diagnostic and therapeutic tools is critical to improving the survival and quality of life of colorectal cancer patients. While current tumor targeting research mainly focuses on exploring the function and mechanism of molecular targets and screening for excellent drug targets, it is crucial to test the efficacy and mechanism of tumor cell therapy that targets these molecular targets. Selecting the appropriate drug carrier is a key step in effectively targeting tumor cells. In recent years, nanoparticles have gained significant interest as gene carriers in the field of colorectal cancer diagnosis and treatment due to their low toxicity and high protective properties. Nanoparticles, synthesized from natural or polymeric materials, are NM-sized particles that offer advantages such as low toxicity, slow release, and protection of target genes during delivery. By modifying nanoparticles, they can be targeted towards specific cells for efficient and safe targeting of tumor cells. Numerous studies have demonstrated the safety, efficiency, and specificity of nanoparticles in targeting tumor cells, making them a promising gene carrier for experimental and clinical studies. This paper aims to review the current application of nanoparticles in colorectal cancer diagnosis and treatment to provide insights for targeted therapy for colorectal cancer while also highlighting future prospects for nanoparticle development.
Collapse
Affiliation(s)
- Qiuyu Song
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yifeng Zheng
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guoqiang Zhong
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shanping Wang
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chengcheng He
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mingsong Li
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
28
|
Qian H, Zhu M, Tan X, Zhang Y, Liu X, Yang L. Super-enhancers and the super-enhancer reader BRD4: tumorigenic factors and therapeutic targets. Cell Death Discov 2023; 9:470. [PMID: 38135679 PMCID: PMC10746725 DOI: 10.1038/s41420-023-01775-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/02/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Transcriptional super-enhancers and the BET bromodomain protein BRD4 are emerging as critical drivers of tumorigenesis and therapeutic targets. Characterized by substantial accumulation of histone H3 lysine 27 acetylation (H3K27ac) signals at the loci of cell identity genes and critical oncogenes, super-enhancers are recognized, bound and activated by BRD4, resulting in considerable oncogene over-expression, malignant transformation, cancer cell proliferation, survival, tumor initiation and progression. Small molecule compound BRD4 BD1 and BD2 bromodomain inhibitors block BRD4 binding to super-enhancers, suppress oncogene transcription and expression, reduce cancer cell proliferation and survival, and repress tumor progression in a variety of cancer types. Like other targeted therapy agents, BRD4 inhibitors show moderate anticancer effects on their own, and exert synergistic anticancer effects in vitro and in preclinical models, when combined with other anticancer agents including CDK7 inhibitors, CBP/p300 inhibitors and histone deacetylase inhibitors. More recently, BRD4 BD2 bromodomain selective inhibitors, proteolysis-targeting chimera (PROTAC) BRD4 protein degraders, and dual BRD4 and CBP/p300 bromodomain co-inhibitors have been developed and shown better anticancer efficacy and/or safety profile. Importantly, more than a dozen BRD4 inhibitors have entered clinical trials in patients with cancer of various organ origins. In summary, super-enhancers and their reader BRD4 are critical tumorigenic drivers, and BRD4 BD1 and BD2 bromodomain inhibitors, BRD4 BD2 bromodomain selective inhibitors, PROTAC BRD4 protein degraders, and dual BRD4 and CBP/p300 bromodomain co-inhibitors are promising novel anticancer agents for clinical translation.
Collapse
Affiliation(s)
- Haihong Qian
- Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China
| | - Min Zhu
- Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China
| | - Xinyu Tan
- Department of Dentistry, Kunming Medical University, Kunming, 650032, China
| | - Yixing Zhang
- Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China
| | - Xiangning Liu
- Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China
| | - Li Yang
- Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China.
| |
Collapse
|
29
|
Ling H, Li Y, Peng C, Yang S, Seto E. HDAC10 blockade upregulates SPARC expression thereby repressing melanoma cell growth and BRAF inhibitor resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.570182. [PMID: 38106051 PMCID: PMC10723323 DOI: 10.1101/2023.12.05.570182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Secreted Protein Acidic and Rich in Cysteine (SPARC), a highly conserved secreted glycoprotein, is crucial for various bioprocesses. Here we demonstrate that histone deacetylase 10 (HDAC10) is a key regulator of SPARC expression. HDAC10 depletion or inhibition upregulates, while overexpression of HDAC10 downregulates, SPARC expression. Mechanistically, HDAC10 coordinates with histone acetyltransferase p300 to modulate the acetylation state of histone H3 lysine 27 (H3K27ac) at SPARC regulatory elements and the recruitment of bromodomain-containing protein 4 (BRD4) to these regions, thereby tuning SPARC transcription. HDAC10 depletion and resultant SPARC upregulation repress melanoma cell growth, primarily by induction of autophagy via activation of AMPK signaling. Moreover, SPARC upregulation due to HDAC10 depletion partly accounts for the resensitivity of resistant cells to a BRAF inhibitor. Our work reveals the role of HDAC10 in gene regulation through epigenetic modification and suggests a potential therapeutic strategy for melanoma or other cancers by targeting HDAC10 and SPARC. Highlights HDAC10 is the primary HDAC member that tightly controls SPARC expression. HDAC10 coordinates with p300 in modulating the H3K27ac state at SPARC regulatory elements and the recruitment of BRD4 to these regions. HDAC10 depletion and resultant SPARC upregulation inhibit melanoma cell growth by inducing autophagy via activation of AMPK signaling.SPARC upregulation as a result of HDAC10 depletion resensitizes resistant cells to BRAF inhibitors.
Collapse
|
30
|
Ren J, Yu P, Liu S, Li R, Niu X, Chen Y, Zhang Z, Zhou F, Zhang L. Deubiquitylating Enzymes in Cancer and Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303807. [PMID: 37888853 PMCID: PMC10754134 DOI: 10.1002/advs.202303807] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/30/2023] [Indexed: 10/28/2023]
Abstract
Deubiquitylating enzymes (DUBs) maintain relative homeostasis of the cellular ubiquitome by removing the post-translational modification ubiquitin moiety from substrates. Numerous DUBs have been demonstrated specificity for cleaving a certain type of ubiquitin linkage or positions within ubiquitin chains. Moreover, several DUBs perform functions through specific protein-protein interactions in a catalytically independent manner, which further expands the versatility and complexity of DUBs' functions. Dysregulation of DUBs disrupts the dynamic equilibrium of ubiquitome and causes various diseases, especially cancer and immune disorders. This review summarizes the Janus-faced roles of DUBs in cancer including proteasomal degradation, DNA repair, apoptosis, and tumor metastasis, as well as in immunity involving innate immune receptor signaling and inflammatory and autoimmune disorders. The prospects and challenges for the clinical development of DUB inhibitors are further discussed. The review provides a comprehensive understanding of the multi-faced roles of DUBs in cancer and immunity.
Collapse
Affiliation(s)
- Jiang Ren
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Peng Yu
- Zhongshan Institute for Drug DiscoveryShanghai Institute of Materia MedicaChinese Academy of SciencesZhongshanGuangdongP. R. China
| | - Sijia Liu
- International Biomed‐X Research CenterSecond Affiliated Hospital of Zhejiang University School of MedicineZhejiang UniversityHangzhouP. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhou310058China
| | - Ran Li
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Xin Niu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
| | - Yan Chen
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Zhenyu Zhang
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450003P. R. China
| | - Fangfang Zhou
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Long Zhang
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
- International Biomed‐X Research CenterSecond Affiliated Hospital of Zhejiang University School of MedicineZhejiang UniversityHangzhouP. R. China
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058P. R. China
| |
Collapse
|
31
|
Liang H, Yang C, Zeng R, Song Y, Wang J, Xiong W, Yan B, Jin X. Targeting CBX3 with a Dual BET/PLK1 Inhibitor Enhances the Antitumor Efficacy of CDK4/6 Inhibitors in Prostate Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302368. [PMID: 37949681 PMCID: PMC10754129 DOI: 10.1002/advs.202302368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/10/2023] [Indexed: 11/12/2023]
Abstract
The development of castration-resistant prostate cancer (CRPC) is a significant factor that reduces life expectancy among patients with prostate cancer. Previously, it is reported that CDK4/6 inhibitors can overcome the resistance of CRPC to BET inhibitors by destabilizing BRD4, suggesting that the combination of CDK4/6 inhibitors and BET inhibitors is a promising approach for treating CRPC. In this study, candidates that affect the combined antitumor effect of CDK4/6 inhibitors and BET inhibitors on CRPC is aimed to examine. The data demonstrates that CBX3 is abnormally upregulated in CDK4/6 inhibitors-resistant cells. CBX3 is almost positively correlated with the cell cycle in multiple malignancies and is downregulated by BET inhibitors. Mechanistically, it is showed that CBX3 is transcriptionally upregulated by BRD4 in CRPC cells. Moreover, it is demonstrated that CBX3 modulated the sensitivity of CRPC to CDK4/6 inhibitors by binding with RB1 to release E2F1. Furthermore, it is revealed that PLK1 phosphorylated CBX3 to enhance the interaction between RB1 and CBX3, and desensitize CRPC cells to CDK4/6 inhibitors. Given that BRD4 regulates CBX3 expression and PLK1 affects the binding between RB1 and CBX3, it is proposed that a dual BRD4/PLK1 inhibitor can increase the sensitivity of CRPC cells to CDK4/6 inhibitors partially through CBX3.
Collapse
Affiliation(s)
- Huaiyuan Liang
- Department of UrologyThe Second Xiangya HospitalCentral South UniversityChangshaHunan410011China
- Uro‐Oncology Institute of Central South UniversityChangshaHunan410011China
| | - Chunguang Yang
- Department of UrologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Ruijiang Zeng
- Department of UrologyThe Second Xiangya HospitalCentral South UniversityChangshaHunan410011China
- Uro‐Oncology Institute of Central South UniversityChangshaHunan410011China
| | - Yingqiu Song
- Cancer centerUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Jianxi Wang
- Department of UrologyThe Third Hospital of ChangshaChangshaHunan410011China
| | - Wei Xiong
- Department of UrologyThe Second Xiangya HospitalCentral South UniversityChangshaHunan410011China
- Uro‐Oncology Institute of Central South UniversityChangshaHunan410011China
| | - Binyuan Yan
- Department of UrologyPelvic Floor Disorders CenterThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhen518107China
| | - Xin Jin
- Department of UrologyThe Second Xiangya HospitalCentral South UniversityChangshaHunan410011China
- Uro‐Oncology Institute of Central South UniversityChangshaHunan410011China
| |
Collapse
|
32
|
Hong Z, Xu C, Zheng S, Wang X, Tao Y, Tan Y, Lin G, Wu D, Ye D. Nucleophosmin 1 cooperates with BRD4 to facilitate c-Myc transcription to promote prostate cancer progression. Cell Death Discov 2023; 9:392. [PMID: 37875480 PMCID: PMC10597990 DOI: 10.1038/s41420-023-01682-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/08/2023] [Accepted: 10/12/2023] [Indexed: 10/26/2023] Open
Abstract
Nucleophosmin 1 (NPM1) is a multifunctional protein that promotes tumor progression in various cancers and is associated with a poor prognosis of prostate cancer (PCa). However, the mechanism by which NPM1 exerts its malignant potential in PCa remains elusive. Here, we showed that NPM1 is overexpressed in PCa cell lines and tissues and that the dysregulation of NPM1 promotes PCa proliferation. We also demonstrated that NPM1 transcriptionally upregulates c-Myc expression in PCa cells that is diminished by blockade of bromodomain-containing protein 4 (BRD4). Furthermore, we detected a correlation between NPM1 and c-Myc in patient PCa specimens. Mechanistically, NPM1 influences and cooperates with BRD4 to facilitate c-Myc transcription to promote PCa progression. In addition, JQ1, a bromodomain and extra-terminal domain (BET) inhibitor, in combination with NPM1 inhibition suppresses PCa progression in vitro and in vivo. These results indicate that NPM1 promotes PCa progression through a c-Myc -mediated pathway via BRD4, and blockade of the NPM1-c-Myc oncogenic pathway may be a therapeutic strategy for PCa.
Collapse
Affiliation(s)
- Zhe Hong
- Department of Urology, Fudan University Shanghai Cancer Center, 200032, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China
- Shanghai Genitourinary Cancer Institute, 200032, Shanghai, China
| | - Chengdang Xu
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, 200065, Shanghai, China
| | - Shengfeng Zheng
- Department of Urology, Fudan University Shanghai Cancer Center, 200032, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China
- Shanghai Genitourinary Cancer Institute, 200032, Shanghai, China
| | - Xinan Wang
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, 200065, Shanghai, China
| | - Yiran Tao
- Department of Urology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, 317000, Taizhou, China
| | - Yao Tan
- Department of Urology, Fudan University Shanghai Cancer Center, 200032, Shanghai, China
| | - Guowen Lin
- Department of Urology, Fudan University Shanghai Cancer Center, 200032, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China
- Shanghai Genitourinary Cancer Institute, 200032, Shanghai, China
| | - Denglong Wu
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, 200065, Shanghai, China.
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, 200032, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China.
- Shanghai Genitourinary Cancer Institute, 200032, Shanghai, China.
| |
Collapse
|
33
|
Kotekar A, Singh AK, Devaiah BN. BRD4 and MYC: power couple in transcription and disease. FEBS J 2023; 290:4820-4842. [PMID: 35866356 PMCID: PMC9867786 DOI: 10.1111/febs.16580] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/16/2022] [Accepted: 07/20/2022] [Indexed: 01/26/2023]
Abstract
The MYC proto-oncogene and BRD4, a BET family protein, are two cardinal proteins that have a broad influence in cell biology and disease. Both proteins are expressed ubiquitously in mammalian cells and play central roles in controlling growth, development, stress responses and metabolic function. As chromatin and transcriptional regulators, they play a critical role in regulating the expression of a burgeoning array of genes, maintaining chromatin architecture and genome stability. Consequently, impairment of their function or regulation leads to many diseases, with cancer being the most predominant. Interestingly, accumulating evidence indicates that regulation of the expression and functions of MYC are tightly intertwined with BRD4 at both transcriptional and post-transcriptional levels. Here, we review the mechanisms by which MYC and BRD4 are regulated, their functions in governing various molecular mechanisms and the consequences of their dysregulation that lead to disease. We present a perspective of how the regulatory mechanisms for the two proteins could be entwined at multiple points in a BRD4-MYC nexus that leads to the modulation of their functions and disease upon dysregulation.
Collapse
Affiliation(s)
- Aparna Kotekar
- Experimental Immunology Branch, NCI, NIH, Bethesda, MD 20892, USA
| | - Amit Kumar Singh
- Experimental Immunology Branch, NCI, NIH, Bethesda, MD 20892, USA
| | | |
Collapse
|
34
|
Drumond-Bock AL, Wang L, Wang L, Cybula M, Rostworowska M, Kinter M, Bieniasz M. Increased expression of BRD4 isoforms long (BRD4-L) and short (BRD4-S) promotes chemotherapy resistance in high-grade serous ovarian carcinoma. Genes Cancer 2023; 14:56-76. [PMID: 37705995 PMCID: PMC10496930 DOI: 10.18632/genesandcancer.233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023] Open
Abstract
Chemoresistance in ovarian carcinoma is a puzzling issue that urges understanding of strategies used by cancer cells to survive DNA damage and to escape cell death. Expanding efforts to understand mechanisms driving chemoresistance and to develop alternative therapies targeting chemoresistant tumors are critical. Amplification of BRD4 is frequently associated with chemoresistant ovarian carcinoma, but little is known about the biological effects of the overexpression of BRD4 isoforms in this malignancy. Here, we described the consequences of BRD4-L and BRD4-S overexpression in ovarian carcinoma shedding a light on a complex regulation of BRD4 isoforms. We demonstrated that the BRD4-L transcript expression is required to generate both isoforms, BRD4-L and BRD4-S. We showed that the BRD4-S mRNA expression positively correlated with BRD4-S protein levels, while BRD4-L isoform showed negative correlation between mRNA and protein levels. Moreover, we demonstrated that an overexpression of BRD4 isoforms is associated with chemoresistance in ovarian cancer.
Collapse
Affiliation(s)
- Ana Luiza Drumond-Bock
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Luyao Wang
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Lin Wang
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | | | - Maria Rostworowska
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Michael Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Magdalena Bieniasz
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| |
Collapse
|
35
|
Elshazly AM, Sinanian MM, Neely V, Chakraborty E, Alshehri MA, McGrath MK, Harada H, Schoenlein PV, Gewirtz DA. BRD4 Inhibition as a Strategy to Prolong the Response to Standard of Care in Estrogen Receptor-Positive Breast Cancer. Cancers (Basel) 2023; 15:4066. [PMID: 37627092 PMCID: PMC10452571 DOI: 10.3390/cancers15164066] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Breast cancer is the most commonly occurring malignancy in women and the second most common cause of cancer-related deaths. ER+ breast cancer constitutes approximately 70% of all breast cancer cases. The standard of care for ER+ breast cancer involves estrogen antagonists such as tamoxifen or fulvestrant in combination with CDK4/6 inhibitors such as palbociclib. However, these treatments are often not curative, with disease recurrence and metastasis being responsible for patient mortality. Overexpression of the epigenetic regulator, BRD4, has been shown to be a negative prognostic indicator in breast cancer, and BET family inhibitors such as ARV-825 and ABBV-744 have garnered interest for their potential to improve and prolong the response to current therapeutic strategies. The current work examined the potential of utilizing ARV-825 and ABBV-744 to increase the effectiveness of tamoxifen or fulvestrant plus palbociclib. ARV-825 was effective in both p53 wild-type (WT) breast tumor cells and in cells lacking functional p53 either alone or in combination with tamoxifen, while the effectiveness of ABBV-744 was limited to fulvestrant plus palbociclib in p53 WT cells. These differential effects may be related to the capacity to suppress c-Myc, a downstream target of BRD4.
Collapse
Affiliation(s)
- Ahmed M. Elshazly
- Departments of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.M.E.); (M.M.S.); (M.A.A.)
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA; (V.N.); (E.C.); (H.H.)
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Melanie M. Sinanian
- Departments of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.M.E.); (M.M.S.); (M.A.A.)
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA; (V.N.); (E.C.); (H.H.)
| | - Victoria Neely
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA; (V.N.); (E.C.); (H.H.)
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Eesha Chakraborty
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA; (V.N.); (E.C.); (H.H.)
- C. Kenneth and Dianne Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Muruj A. Alshehri
- Departments of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.M.E.); (M.M.S.); (M.A.A.)
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA; (V.N.); (E.C.); (H.H.)
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Michael K. McGrath
- Department of Cellular Biology and Anatomy, MCG Cancer Center, Augusta University, Augusta, GA 30912, USA; (M.K.M.); (P.V.S.)
| | - Hisashi Harada
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA; (V.N.); (E.C.); (H.H.)
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Patricia V. Schoenlein
- Department of Cellular Biology and Anatomy, MCG Cancer Center, Augusta University, Augusta, GA 30912, USA; (M.K.M.); (P.V.S.)
| | - David A. Gewirtz
- Departments of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.M.E.); (M.M.S.); (M.A.A.)
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA; (V.N.); (E.C.); (H.H.)
| |
Collapse
|
36
|
Cheng M, Li JJ, Niu XN, Zhu L, Liu JY, Jia PC, Zhu S, Meng HW, Lv XW, Huang C, Li J. BRD4 promotes hepatic stellate cells activation and hepatic fibrosis via mediating P300/H3K27ac/PLK1 axis. Biochem Pharmacol 2023; 210:115497. [PMID: 36907496 DOI: 10.1016/j.bcp.2023.115497] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/14/2023]
Abstract
Hepatic fibrosis (HF) is a reversible wound-healing response characterized by excessive extracellular matrix (ECM) deposition and secondary to persistent chronic injury. Bromodomain protein 4 (BRD4) commonly functions as a "reader" to regulate epigenetic modifications involved in various biological and pathological events, but the mechanism of HF remains unclear. In this study, we established a CCl4-induced HF model and spontaneous recovery model in mice and found aberrant BRD4 expression, which was consistent with the results in human hepatic stellate cells (HSCs)- LX2 cells in vitro. Subsequently, we found that distriction and inhibition of BRD4 restrained TGFβ-induced trans-differentiation of LX2 cells into activated, proliferative myofibroblasts and accelerated apoptosis, and BRD4 overexpression blocked MDI-induced LX2 cells inactivation and promoted the proliferation and inhibited apoptosis of inactivated cells. Additionally, adeno-associated virus serotype 8-loaded short hairpin RNA-mediated BRD4 knockdown in mice significantly attenuated CCl4-induced fibrotic responses including HSCs activation and collagen deposition. Mechanistically, BRD4 deficiency inhibited PLK1 expression in activated LX2 cells, and ChIP and Co-IP assays revealed that BRD4 regulation of PLK1 was dependent on P300-mediated acetylation modification for H3K27 on the PLK1 promoter. In conclusion, BRD4 deficiency in the liver alleviates CCl4-induced HF in mice, and BRD4 participates in the activation and reversal of HSCs through positively regulating the P300/H3K27ac/PLK1 axis, providing a potential insight for HF therapy.
Collapse
Affiliation(s)
- Miao Cheng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Juan-Juan Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xue-Ni Niu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Lin Zhu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jin-Yu Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Peng-Cheng Jia
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Sai Zhu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Hong-Wu Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xiong-Wen Lv
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
37
|
Mandl A, Markowski MC, Carducci MA, Antonarakis ES. Role of bromodomain and extraterminal (BET) proteins in prostate cancer. Expert Opin Investig Drugs 2023; 32:213-228. [PMID: 36857796 DOI: 10.1080/13543784.2023.2186851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
INTRODUCTION The bromodomain and extraterminal (BET) family of proteins are epigenetic readers of acetylated histones and are critical activators of oncogenic networks across many cancers. Therapeutic targeting of BET proteins has been an attractive area of clinical development for metastatic castration-resistant prostate cancer. In recent years, many structurally diverse BET inhibitors have been discovered and tested. Preclinical studies have demonstrated significant antiproliferative activity of BET inhibitors against prostate cancer. However, their clinical success as monotherapies has been limited by treatment-associated toxicities, primary and acquired drug resistance, and a lack of predictive biomarkers of benefit. AREAS COVERED This review provides an overview of advancements in BET inhibitor design, preclinical research, and conclusions from clinical trials in prostate cancer. We speculate on incorporating BET inhibitors into combination regimens with other agents to improve the therapeutic index of BET inhibition in treating prostate cancer. EXPERT OPINION The therapeutic potential of BET inhibitors for prostate cancer has been demonstrated in preclinical studies. However, further research is needed to identify biomarkers that can predict sensitivity to BET inhibitors and to develop novel, highly selective inhibitors to reduce toxicities. Finally, BET inhibitors are likely to hold the most clinical potential in combination with other agents.
Collapse
Affiliation(s)
- Adel Mandl
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins, Baltimore, MD, USA
| | - Mark C Markowski
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins, Baltimore, MD, USA
| | - Michael A Carducci
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins, Baltimore, MD, USA
| | - Emmanuel S Antonarakis
- Department of Medicine, University of Minnesota Masonic Cancer Center, Minneapolis, MN, USA
| |
Collapse
|
38
|
Sailer V, von Amsberg G, Duensing S, Kirfel J, Lieb V, Metzger E, Offermann A, Pantel K, Schuele R, Taubert H, Wach S, Perner S, Werner S, Aigner A. Experimental in vitro, ex vivo and in vivo models in prostate cancer research. Nat Rev Urol 2023; 20:158-178. [PMID: 36451039 DOI: 10.1038/s41585-022-00677-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2022] [Indexed: 12/02/2022]
Abstract
Androgen deprivation therapy has a central role in the treatment of advanced prostate cancer, often causing initial tumour remission before increasing independence from signal transduction mechanisms of the androgen receptor and then eventual disease progression. Novel treatment approaches are urgently needed, but only a fraction of promising drug candidates from the laboratory will eventually reach clinical approval, highlighting the demand for critical assessment of current preclinical models. Such models include standard, genetically modified and patient-derived cell lines, spheroid and organoid culture models, scaffold and hydrogel cultures, tissue slices, tumour xenograft models, patient-derived xenograft and circulating tumour cell eXplant models as well as transgenic and knockout mouse models. These models need to account for inter-patient and intra-patient heterogeneity, the acquisition of primary or secondary resistance, the interaction of tumour cells with their microenvironment, which make crucial contributions to tumour progression and resistance, as well as the effects of the 3D tissue network on drug penetration, bioavailability and efficacy.
Collapse
Affiliation(s)
- Verena Sailer
- Institute for Pathology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Gunhild von Amsberg
- Department of Oncology and Hematology, University Cancer Center Hamburg Eppendorf and Martini-Klinik, Prostate Cancer Center, University Hospital Hamburg Eppendorf, Hamburg, Germany
| | - Stefan Duensing
- Section of Molecular Urooncology, Department of Urology, University Hospital Heidelberg and National Center for Tumour Diseases, Heidelberg, Germany
| | - Jutta Kirfel
- Institute for Pathology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Verena Lieb
- Research Division Molecular Urology, Department of Urology and Paediatric Urology, University Hospital Erlangen, Erlangen, Germany
| | - Eric Metzger
- Department of Urology, Center for Clinical Research, University of Freiburg Medical Center, Freiburg, Germany
| | - Anne Offermann
- Institute for Pathology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Klaus Pantel
- Institute for Tumour Biology, Center for Experimental Medicine, University Clinics Hamburg-Eppendorf, Hamburg, Germany
- Mildred-Scheel-Nachwuchszentrum HaTRiCs4, University Cancer Center Hamburg, Hamburg, Germany
| | - Roland Schuele
- Department of Urology, Center for Clinical Research, University of Freiburg Medical Center, Freiburg, Germany
| | - Helge Taubert
- Research Division Molecular Urology, Department of Urology and Paediatric Urology, University Hospital Erlangen, Erlangen, Germany
| | - Sven Wach
- Research Division Molecular Urology, Department of Urology and Paediatric Urology, University Hospital Erlangen, Erlangen, Germany
| | - Sven Perner
- University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
- Pathology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Stefan Werner
- Institute for Tumour Biology, Center for Experimental Medicine, University Clinics Hamburg-Eppendorf, Hamburg, Germany
- Mildred-Scheel-Nachwuchszentrum HaTRiCs4, University Cancer Center Hamburg, Hamburg, Germany
| | - Achim Aigner
- Clinical Pharmacology, Rudolf-Boehm-Institute for Pharmacology and Toxicology, University of Leipzig, Medical Faculty, Leipzig, Germany.
| |
Collapse
|
39
|
Guo Y, Cui S, Chen Y, Guo S, Chen D. Ubiquitin specific peptidases and prostate cancer. PeerJ 2023; 11:e14799. [PMID: 36811009 PMCID: PMC9939025 DOI: 10.7717/peerj.14799] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/04/2023] [Indexed: 02/18/2023] Open
Abstract
Protein ubiquitination is an important post-translational modification mechanism, which regulates protein stability and activity. The ubiquitination of proteins can be reversed by deubiquitinating enzymes (DUBs). Ubiquitin-specific proteases (USPs), the largest DUB subfamily, can regulate cellular functions by removing ubiquitin(s) from the target proteins. Prostate cancer (PCa) is the second leading type of cancer and the most common cause of cancer-related deaths in men worldwide. Numerous studies have demonstrated that the development of PCa is highly correlated with USPs. The expression of USPs is either high or low in PCa cells, thereby regulating the downstream signaling pathways and causing the development or suppression of PCa. This review summarized the functional roles of USPs in the development PCa and explored their potential applications as therapeutic targets for PCa.
Collapse
Affiliation(s)
- Yunfei Guo
- Shandong University of Technology, School of Life Sciences and Medicine, Zibo, Shandong, China
| | - Shuaishuai Cui
- Shandong University of Technology, School of Life Sciences and Medicine, Zibo, Shandong, China
| | - Yuanyuan Chen
- Shandong University of Technology, School of Life Sciences and Medicine, Zibo, Shandong, China
| | - Song Guo
- Shandong University of Technology, School of Life Sciences and Medicine, Zibo, Shandong, China
| | - Dahu Chen
- Shandong University of Technology, School of Life Sciences and Medicine, Zibo, Shandong, China
| |
Collapse
|
40
|
Dong J, Wang X. Identification of novel BRD4 inhibitors by pharmacophore screening, molecular docking, and molecular dynamics simulation. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
41
|
Wang Q, Li B, Zhang W, Li Z, Jiang B, Hou S, Ma S, Qin C. Lethal activity of BRD4 PROTAC degrader QCA570 against bladder cancer cells. Front Chem 2023; 11:1121724. [PMID: 36733715 PMCID: PMC9887192 DOI: 10.3389/fchem.2023.1121724] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2023] Open
Abstract
Bladder cancer is the most common malignancy of the urinary system. Efforts to identify innovative and effective therapies for bladder cancer are urgently needed. Recent studies have identified the BRD4 protein as the critical factor in regulation of cell proliferation and apoptosis in bladder cancer, and it shows promising potential for pharmacologic treatment against bladder cancer. In this study, we have evaluated the biological function of QCA570, a novel BET degrader, on multiple bladder cancer cells and explore its underlying mechanisms. QCA570 potently induces degradation of BRD4 protein at nanomolar concentrations, with a DC50 of ∼ 1 nM. It decreases EZH2 and c-MYC levels by transcriptional suppression and protein degradation. Moreover, the degrader significantly induces cell apoptosis and cycle arrest and shows antiproliferation activity against bladder cancer cells. These findings support the potential efficacy of QCA570 on bladder cancer.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Urology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China,Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Baohu Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Wenkai Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Zhuoyue Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Bo Jiang
- Department of Urology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China,*Correspondence: Bo Jiang, ; Sichuan Hou, ; Shumin Ma, ; Chong Qin,
| | - Sichuan Hou
- Department of Urology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China,*Correspondence: Bo Jiang, ; Sichuan Hou, ; Shumin Ma, ; Chong Qin,
| | - Shumin Ma
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China,*Correspondence: Bo Jiang, ; Sichuan Hou, ; Shumin Ma, ; Chong Qin,
| | - Chong Qin
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China,*Correspondence: Bo Jiang, ; Sichuan Hou, ; Shumin Ma, ; Chong Qin,
| |
Collapse
|
42
|
Makki AA, Ibraheem W, Alzain AA. Cytosporone E analogues as BRD4 inhibitors for cancer treatment: molecular docking and molecular dynamic investigations. J Biomol Struct Dyn 2023; 41:12643-12653. [PMID: 36644887 DOI: 10.1080/07391102.2023.2167122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/05/2023] [Indexed: 01/17/2023]
Abstract
Cancer is considered one of the worldwide life-threatening and leading causes of human mortality. In 2020, 19,292,789 cancer cases and 9,958,133 cancer deaths have been estimated worldwide. Therefore, efforts have been devoted to discover novel anticancer agents. Bromodomains have a vital role in the regulation of transcription. Many reports have shown that bromodomain-containing protein 4 (BRD4) is an important target for cancer therapeutics. In this study, several in silico approaches were utilized to discover new inhibitors against the BRD4 protein using the Schrodinger suite. A library of 27 cytosporone E derivatives was docked into the active site of the BRD4 protein. Docked ligands showed docking scores ranging between -11.289 to -3.992 Kcal/mol. Ligands 1-4 showed better binding affinities with docking scores ranging from -11.289 to -8.917 Kcal/mol compared to the reference ligand BI-2536 (-8.426 Kcal/mol). These ligands displayed favorable MM-GBSA free binding energy. Also, ligands 1-4 were subjected to molecular dynamics simulations for 100 ns to get insight into the ligand-binding stability. These compounds exhibited an average RMSD below 2.8 Å, indicating the stability of the compounds with BRD4 protein. Further, Moreover, ligands 1-3 displayed favorable AMDET properties (absorption, distribution, metabolism, excretion, and toxicity). These new compounds might be potential leads to combat cancer.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Alaa A Makki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| | - Walaa Ibraheem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| | - Abdulrahim A Alzain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| |
Collapse
|
43
|
Zerio CJ, Sivinski J, Wijeratne EMK, Xu YM, Ngo DT, Ambrose AJ, Villa-Celis L, Ghadirian N, Clarkson MW, Zhang DD, Horton NC, Gunatilaka AAL, Fromme R, Chapman E. Physachenolide C is a Potent, Selective BET Inhibitor. J Med Chem 2023; 66:913-933. [PMID: 36577036 DOI: 10.1021/acs.jmedchem.2c01770] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A pulldown using a biotinylated natural product of interest in the 17β-hydroxywithanolide (17-BHW) class, physachenolide C (PCC), identified the bromodomain and extra-terminal domain (BET) family of proteins (BRD2, BRD3, and BRD4), readers of acetyl-lysine modifications and regulators of gene transcription, as potential cellular targets. BROMOscan bromodomain profiling and biochemical assays support PCC as a BET inhibitor with increased selectivity for bromodomain (BD)-1 of BRD3 and BRD4, and X-ray crystallography and NMR studies uncovered specific contacts that underlie the potency and selectivity of PCC toward BRD3-BD1 over BRD3-BD2. PCC also displays characteristics of a molecular glue, facilitating proteasome-mediated degradation of BRD3 and BRD4. Finally, PCC is more potent than other withanolide analogues and gold-standard pan-BET inhibitor (+)-JQ1 in cytotoxicity assays across five prostate cancer (PC) cell lines regardless of androgen receptor (AR)-signaling status.
Collapse
Affiliation(s)
- Christopher J Zerio
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, 1703 E. Mabel Street, PO Box 210207, Tucson, Arizona 85721, United States
| | - Jared Sivinski
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, 1703 E. Mabel Street, PO Box 210207, Tucson, Arizona 85721, United States
| | - E M Kithsiri Wijeratne
- College of Agriculture and Life Sciences, School of Natural Resources and the Environment, Southwest Center for Natural Products Research, University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706, United States
| | - Ya-Ming Xu
- College of Agriculture and Life Sciences, School of Natural Resources and the Environment, Southwest Center for Natural Products Research, University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706, United States
| | - Duc T Ngo
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, 1703 E. Mabel Street, PO Box 210207, Tucson, Arizona 85721, United States
| | - Andrew J Ambrose
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, 1703 E. Mabel Street, PO Box 210207, Tucson, Arizona 85721, United States
| | - Luis Villa-Celis
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, 1703 E. Mabel Street, PO Box 210207, Tucson, Arizona 85721, United States
| | - Niloofar Ghadirian
- Department of Molecular and Cellular Biology, University of Arizona, 1007 E. Lowell Street, Tucson, Arizona 85721, United States
| | - Michael W Clarkson
- Department of Chemistry and Biochemistry, University of Arizona, 1041 E. Lowell Street, Tucson, Arizona 85719, United States
| | - Donna D Zhang
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, 1703 E. Mabel Street, PO Box 210207, Tucson, Arizona 85721, United States
| | - Nancy C Horton
- Department of Molecular and Cellular Biology, University of Arizona, 1007 E. Lowell Street, Tucson, Arizona 85721, United States
| | - A A Leslie Gunatilaka
- College of Agriculture and Life Sciences, School of Natural Resources and the Environment, Southwest Center for Natural Products Research, University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706, United States
| | - Raimund Fromme
- School of Molecular Sciences, Biodesign Institute, Arizona State University, 1001 S. McAllister Avenue, Tempe, Arizona 85287, United States
| | - Eli Chapman
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, 1703 E. Mabel Street, PO Box 210207, Tucson, Arizona 85721, United States
| |
Collapse
|
44
|
Tong X, Tang R, Xiao M, Xu J, Wang W, Zhang B, Liu J, Yu X, Shi S. Targeting cell death pathways for cancer therapy: recent developments in necroptosis, pyroptosis, ferroptosis, and cuproptosis research. J Hematol Oncol 2022; 15:174. [PMID: 36482419 PMCID: PMC9733270 DOI: 10.1186/s13045-022-01392-3] [Citation(s) in RCA: 426] [Impact Index Per Article: 142.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
Many types of human cells self-destruct to maintain biological homeostasis and defend the body against pathogenic substances. This process, called regulated cell death (RCD), is important for various biological activities, including the clearance of aberrant cells. Thus, RCD pathways represented by apoptosis have increased in importance as a target for the development of cancer medications in recent years. However, because tumor cells show avoidance to apoptosis, which causes treatment resistance and recurrence, numerous studies have been devoted to alternative cancer cell mortality processes, namely necroptosis, pyroptosis, ferroptosis, and cuproptosis; these RCD modalities have been extensively studied and shown to be crucial to cancer therapy effectiveness. Furthermore, evidence suggests that tumor cells undergoing regulated death may alter the immunogenicity of the tumor microenvironment (TME) to some extent, rendering it more suitable for inhibiting cancer progression and metastasis. In addition, other types of cells and components in the TME undergo the abovementioned forms of death and induce immune attacks on tumor cells, resulting in enhanced antitumor responses. Hence, this review discusses the molecular processes and features of necroptosis, pyroptosis, ferroptosis, and cuproptosis and the effects of these novel RCD modalities on tumor cell proliferation and cancer metastasis. Importantly, it introduces the complex effects of novel forms of tumor cell death on the TME and the regulated death of other cells in the TME that affect tumor biology. It also summarizes the potential agents and nanoparticles that induce or inhibit novel RCD pathways and their therapeutic effects on cancer based on evidence from in vivo and in vitro studies and reports clinical trials in which RCD inducers have been evaluated as treatments for cancer patients. Lastly, we also summarized the impact of modulating the RCD processes on cancer drug resistance and the advantages of adding RCD modulators to cancer treatment over conventional treatments.
Collapse
Affiliation(s)
- Xuhui Tong
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Rong Tang
- Shanghai Pancreatic Cancer Institute, No. 270 Dong'An Road, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Mingming Xiao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiang Liu
- Shanghai Pancreatic Cancer Institute, No. 270 Dong'An Road, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xianjun Yu
- Shanghai Pancreatic Cancer Institute, No. 270 Dong'An Road, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
45
|
Dai Y, Yang L, Sakandar A, Zhang D, Du F, Zhang X, Zou L, Zhao Y, Wang J, Zhang Z, Wu X, Li M, Ling X, Yu L, Dong L, Shen J, Xiao Z, Wen Q. Vemurafenib inhibits immune escape biomarker BCL2A1 by targeting PI3K/AKT signaling pathway to suppress breast cancer. Front Oncol 2022; 12:906197. [PMID: 36524001 PMCID: PMC9745811 DOI: 10.3389/fonc.2022.906197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 11/07/2022] [Indexed: 01/23/2025] Open
Abstract
OBJECTIVES To investigate the role of immune escape encoding genes on the prognosis of BC, and to predict the novel targeting agents. METHODS Human immune genes and immune escape encoding genes were obtained from the IMMPORT database and the previous study. Sample information and clinical data on BC were obtained from the TCGA and GTEX databases. Obtaining differentially expressed protein data from cBioportal database. To construct a risk score model by lasso analysis, and nomogram was used to predict score core. GSCA, TIMER and CELLMINER databases were used for immune and drug susceptibility correlation analyses. Cell experiments were verified by MTT, Western blotting, and RT-qPCR. RESULTS We found prognostic models consisting of eleven immune escape related protein-coding genes with ROC curves that performed well in the ontology data (AUC for TCGA is 0.672) and the external data (AUC for GSE20685 is 0.663 and for GES42568 is 0.706). Five core prognostic models are related to survival (EIF4EBP1, BCL2A1, NDRG1, ERRFI1 and BRD4) were summarized, and a nomogram was constructed to validate a C-index of 0.695, which was superior to other prognostic models. Relevant drugs targeting core genes were identified based on drug sensitivity analysis, and found that Vemurafenib downregulates the PI3K-AKT pathway and BCL2A1 protein in BC, as confirmed by external data and cellular assays. CONCLUSIONS Briefly, our work establishes and validates an 11-immune escape risk model, and five core prognostic factors that are mined deeply from this model, and elucidates in detail that Vemurafenib suppresses breast cancer by targeting the PI3K/AKT signaling pathway to inhibit the immune escape biomarker BCL2A1, confirms the validity of the prognostic model, and provides corresponding targeted agents to guide individualized treatment of BC patients.
Collapse
Affiliation(s)
- Yalan Dai
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Liqiong Yang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs, Luzhou Key Laboratory, Luzhou, China
| | - Abass Sakandar
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Duoli Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs, Luzhou Key Laboratory, Luzhou, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs, Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Southwest Medical University, Luzhou, China
| | - Xinyi Zhang
- School of Data Science, The Chinese University of Hong Kong, Shenzhen, China
| | - Linglin Zou
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs, Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Southwest Medical University, Luzhou, China
| | - Jigang Wang
- Shenzhen Municipal People’s Hospital, Shenzhen, China
| | - Zhenhua Zhang
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs, Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Southwest Medical University, Luzhou, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs, Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Southwest Medical University, Luzhou, China
| | - Xiao Ling
- Department of Obstetrics, Luzhou Maternal & Child Health Hospital (Luzhou Second People’s Hospital), Luzhou, Sichuan, China
| | - Lei Yu
- Department of Obstetrics, Luzhou Maternal & Child Health Hospital (Luzhou Second People’s Hospital), Luzhou, Sichuan, China
| | - Lishu Dong
- Department of Obstetrics, Luzhou Maternal & Child Health Hospital (Luzhou Second People’s Hospital), Luzhou, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs, Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Southwest Medical University, Luzhou, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs, Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Southwest Medical University, Luzhou, China
| | - Qinglian Wen
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| |
Collapse
|
46
|
Cao Z, Shu Y, Wang J, Wang C, Feng T, Yang L, Shao J, Zou L. Super enhancers: Pathogenic roles and potential therapeutic targets for acute myeloid leukemia (AML). Genes Dis 2022; 9:1466-1477. [PMID: 36157504 PMCID: PMC9485276 DOI: 10.1016/j.gendis.2022.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/06/2022] [Accepted: 01/13/2022] [Indexed: 11/04/2022] Open
Abstract
Acute myeloid leukemia (AML) is a malignant hematological tumor with disordered oncogenes/tumor suppressor genes and limited treatments. The potent anti-cancer effects of bromodomain and extra-terminal domain (BET) inhibitors, targeting the key component of super enhancers, in early clinical trials on AML patients, implies the critical role of super enhancers in AML. Here, we review the concept and characteristic of super enhancer, and then summarize the current researches about super enhancers in AML pathogenesis, diagnosis and classification, followed by illustrate the potential super enhancer-related targets and drugs, and propose the future directions of super enhancers in AML. This information provides integrated insight into the roles of super enhancers in this disease.
Collapse
Affiliation(s)
- Ziyang Cao
- Clinical Research Unit, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, PR China
- Institute of Pediatric Infection, Immunity, Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, PR China
| | - Yi Shu
- Center for Clinical Molecular Laboratory Medicine of Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Jinxia Wang
- Clinical Research Unit, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, PR China
- Institute of Pediatric Infection, Immunity, Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, PR China
| | - Chunxia Wang
- Clinical Research Unit, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, PR China
- Institute of Pediatric Infection, Immunity, Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, PR China
| | - Tienan Feng
- Clinical Research Unit, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, PR China
- Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Li Yang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Jingbo Shao
- Department of Hematology/Oncology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, PR China
| | - Lin Zou
- Clinical Research Unit, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, PR China
- Institute of Pediatric Infection, Immunity, Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, PR China
- Center for Clinical Molecular Laboratory Medicine of Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| |
Collapse
|
47
|
Ding D, Zheng R, Tian Y, Jimenez R, Hou X, Weroha SJ, Wang L, Shi L, Huang H. Retinoblastoma protein as an intrinsic BRD4 inhibitor modulates small molecule BET inhibitor sensitivity in cancer. Nat Commun 2022; 13:6311. [PMID: 36274096 PMCID: PMC9588789 DOI: 10.1038/s41467-022-34024-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 10/07/2022] [Indexed: 12/25/2022] Open
Abstract
Bromodomain and extraterminal (BET) proteins including BRD4 play important roles in oncogenesis and immune inflammation. Here we demonstrate that cancer cells with loss of the retinoblastoma (RB) tumor suppressor became resistant to small molecule bromodomain inhibitors of BET proteins. We find that RB binds to bromodomain-1 (BD1) of BRD4, but binding is impeded by CDK4/6-mediated RB phosphorylation at serine-249/threonine-252 (S249/T252). ChIP-seq analysis shows RB knockdown increases BRD4 occupancy at genomic loci of genes enriched in cancer-related pathways including the GPCR-GNBIL-CREB axis. S249/T252-phosphorylated RB positively correlates with GNBIL protein level in prostate cancer patient samples. BET inhibitor resistance in RB-deficient cells is abolished by co-administration of CREB inhibitor. Our study identifies RB protein as a bona fide intrinsic inhibitor of BRD4 and demonstrates that RB inactivation confers resistance to small molecule BET inhibitors, thereby revealing a regulatory hub that converges RB upstream signaling onto BRD4 functions in diseases such as cancer.
Collapse
Affiliation(s)
- Donglin Ding
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
- Department of Urology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Rongbin Zheng
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Ye Tian
- Department of Urology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Rafael Jimenez
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Xiaonan Hou
- Divison of Oncology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Saravut J Weroha
- Divison of Oncology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Liguo Wang
- Divison of Medical Informatics and Statistics, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Lei Shi
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA.
- Department of Radiation Oncology, Cancer Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, 310000, China.
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA.
- Department of Urology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA.
- Mayo Clinic Cancer Center, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA.
| |
Collapse
|
48
|
Chen IP, Ott M. Viral Hijacking of BET Proteins. Viruses 2022; 14:2274. [PMID: 36298829 PMCID: PMC9609653 DOI: 10.3390/v14102274] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/29/2022] Open
Abstract
Proteins of the bromodomain and exterminal domain (BET) family mediate critical host functions such as cell proliferation, transcriptional regulation, and the innate immune response, which makes them preferred targets for viruses. These multidomain proteins are best known as transcriptional effectors able to read acetylated histone and non-histone proteins through their tandem bromodomains. They also contain other short motif-binding domains such as the extraterminal domain, which recognizes transcriptional regulatory proteins. Here, we describe how different viruses have evolved to hijack or disrupt host BET protein function through direct interactions with BET family members to support their own propagation. The network of virus-BET interactions emerges as highly intricate, which may complicate the use of small-molecule BET inhibitors-currently in clinical development for the treatment of cancer and cardiovascular diseases-to treat viral infections.
Collapse
Affiliation(s)
- Irene P. Chen
- Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Melanie Ott
- Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
49
|
Zhang GM, Huang SS, Ye LX, Liu XL, Shi WH, Ren ZL, Zhou RH, Zhang JJ, Pan JX, Liu SW, Yu L, Li YL. Reciprocal positive regulation between BRD4 and YAP in GNAQ-mutant uveal melanoma cells confers sensitivity to BET inhibitors. Pharmacol Res 2022; 184:106464. [PMID: 36162600 DOI: 10.1016/j.phrs.2022.106464] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022]
Abstract
Uveal melanoma (UM) is the most common intraocular cancer in adults. UMs are usually initiated by a mutation in GNAQ or GNA11 (encoding Gq or G11, respectively), unlike cutaneous melanomas (CMs), which usually carry a BRAF or NRAS mutation. Currently, there are no clinically effective targeted therapies for UM carrying Gq/11 mutations. Here, we identified a causal link between Gq activating mutations and hypersensitivity to bromodomain and extra-terminal (BET) inhibitors. BET inhibitors transcriptionally repress YAP via BRD4 regardless of Gq mutation status, independently of Hippo core components LATS1/2. In contrast, YAP/TAZ downregulation reduces BRD4 transcription exclusively in Gq-mutant cells and LATS1/2 double knockout cells, both of which are featured by constitutively active YAP/TAZ. The transcriptional interdependency between BRD4 and YAP identified in Gq-mutated cells is responsible for the preferential inhibitory effect of BET inhibitors on the growth and dissemination of Gq-mutated UM cells compared to BRAF-mutated CM cells in both culture cells and animal models. Our findings suggest BRD4 as a viable therapeutic target for Gq-driven UMs that are addicted to unrestrained YAP function.
Collapse
Affiliation(s)
- Gui-Ming Zhang
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Si-Si Huang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lin-Xuan Ye
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiao-Lian Liu
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wen-Hui Shi
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhong-Lu Ren
- College of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Run-Hua Zhou
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jia-Jie Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jing-Xuan Pan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Shu-Wen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Le Yu
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| | - Yi-Lei Li
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
50
|
A Comprehensive Review of BET-targeting PROTACs for Cancer Therapy. Bioorg Med Chem 2022; 73:117033. [DOI: 10.1016/j.bmc.2022.117033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/11/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022]
|