1
|
Zhao X, Li Y, Gu D, Wang X, Han G, Yao Y, Ren L, Yao Q, Li X, Qi Y. The up-regulated expression level of deubiquitinating enzyme USP46 induces the apoptosis of A549 cells by TRAF6. Invest New Drugs 2025; 43:328-336. [PMID: 40263244 DOI: 10.1007/s10637-025-01532-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 04/11/2025] [Indexed: 04/24/2025]
Abstract
This study investigates the function of Ubiquitin-specific protease 46 (USP46), a deubiquitinase, in the context of lung cancer, particularly its role in regulating cell proliferation via the ubiquitination of TRAF6. In A549 lung cancer cells, analysis revealed a significant downregulation of USP46 expression, while TRAF6 levels were notably elevated. These findings were corroborated by Western blotting, which confirmed the altered expression patterns. To further assess the implications of these changes, several experimental assays, including the Cell Counting Kit-8, transwell migration assays, and flow cytometry, were conducted to evaluate cell viability and apoptosis rates. Co-immunoprecipitation experiments demonstrated a direct interaction between USP46 and TRAF6, implicating USP46 in the modulation of TRAF6 ubiquitination, a process that is fundamental to tumor physiology. The results indicated that decreased USP46 expression led to an increase in the levels of the anti-apoptotic protein Bcl-2, while there was a corresponding decrease in key pro-apoptotic proteins such as caspase-3, caspase-9, and Bax. Additionally, the study found elevated levels of phosphorylated AKT and mTOR, which suggest the activation of survival signaling pathways in the cancer cells. These findings collectively suggest that the up-regulated USP46 promotes apoptosis in lung cancer cells through the regulation of TRAF6. Therefore, targeting the USP46/TRAF6 signaling pathway presents a promising therapeutic strategy for lung cancer treatment, potentially offering new avenues for intervention in cancer progression and cell survival mechanisms.
Collapse
Affiliation(s)
- Xuan Zhao
- Department of Bioengineering, School of Chemical Engineering, Shijiazhuang University, Shijiazhuang, 050035, Hebei, China
| | - Yanan Li
- Department of Neurosurgery, Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Dandan Gu
- Department of Bioengineering, School of Chemical Engineering, Shijiazhuang University, Shijiazhuang, 050035, Hebei, China
| | - Xiaoru Wang
- Department of Bioengineering, School of Chemical Engineering, Shijiazhuang University, Shijiazhuang, 050035, Hebei, China
- Hebei Biopharmaceutical International Joint Research Center, Shijiazhuang University, Shijiazhuang, 050035, Hebei, China
| | - Guangxin Han
- Department of Bioengineering, School of Chemical Engineering, Shijiazhuang University, Shijiazhuang, 050035, Hebei, China
| | - Yasen Yao
- Department of Bioengineering, School of Chemical Engineering, Shijiazhuang University, Shijiazhuang, 050035, Hebei, China
| | - Limei Ren
- Department of Bioengineering, School of Chemical Engineering, Shijiazhuang University, Shijiazhuang, 050035, Hebei, China
- Hebei Biopharmaceutical International Joint Research Center, Shijiazhuang University, Shijiazhuang, 050035, Hebei, China
| | - Qingguo Yao
- Department of Bioengineering, School of Chemical Engineering, Shijiazhuang University, Shijiazhuang, 050035, Hebei, China
| | - Xiaobing Li
- Department of Bioengineering, School of Chemical Engineering, Shijiazhuang University, Shijiazhuang, 050035, Hebei, China
- Hebei Biopharmaceutical International Joint Research Center, Shijiazhuang University, Shijiazhuang, 050035, Hebei, China
| | - Yonghao Qi
- Department of Bioengineering, School of Chemical Engineering, Shijiazhuang University, Shijiazhuang, 050035, Hebei, China.
- Key Laboratory of Innovative Drug Research and Evaluation in Hebei Province, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| |
Collapse
|
2
|
Xie ZQ, Tan WL, Wang ZM, Kang Y, Zhang MC, Li WX, Li HX. HBx/DTL Positive Feedback Loop Promotes HBV-Related Hepatocellular Carcinoma Progression. J Med Virol 2025; 97:e70284. [PMID: 40062428 DOI: 10.1002/jmv.70284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/23/2025] [Accepted: 02/24/2025] [Indexed: 05/13/2025]
Abstract
Although hepatitis B virus (HBV) infection is a well-documented etiologic factor for hepatocellular carcinoma (HCC), which ranks as the third leading cause of cancer-related mortality globally, the mechanism by which HBV facilitates cancer development remains largely elusive. In this study, we employed advanced methodologies including, single-cell RNA sequencing, flow cytometry, western blot analysis, chromatin immunoprecipitation-qPCR and Cut&Tag to investigate the expression of DTL and its biological functions in HCC. We observed that DTL is overexpressed in HBV-positive HCC samples, with its elevated expression being associated with increased tumor cell proliferation and reduced overall and disease-free survival rates. The upregulation of DTL expression was specifically induced by the HBV regulatory protein HBx, thereby substantiating the oncogenic potential of HBV. Mechanistically, our findings indicated that the HBx protein augments DTL transcription by binding to its promoter region, subsequently facilitating HCC cell proliferation and modulating cell cycle progression, particularly by increasing the proportion of cells in the S phase. Furthermore, DTL was identified as a protein that interacts with HBx and associates with the Cullin4-RING ubiquitin ligases (CRL4s), thereby stabilizing HBx by reducing its ubiquitin-mediated degradation. In vivo experiments demonstrated that DTL not only facilitated cancer cell proliferation by modulating the cell cycle but also promoted tumorigenesis in nude mice. Moreover, DTL expression modifies the tumor immune microenvironment by increasing the proportion of regulatory T cells, thereby contributing to immune evasion. In summary, our findings underscore the pivotal role of DTL as a key regulator in HBV-related HCC by influencing cell cycle progression and establishing a positive feedback loop involving the HBx-DTL-CRL4s. These insights expand our understanding of HBV oncogenic mechanisms and suggest that DTL could serve as a novel biomarker and therapeutic target, potentially enhancing patient outcomes.
Collapse
Affiliation(s)
- Zhi-Qin Xie
- Department of Hepatobiliary and Pancreatic Surgery, Medical Center of Digestive Disease, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Wen-Liang Tan
- Department of Hepatobiliary and Pancreatic Surgery, Medical Center of Digestive Disease, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Zhi-Ming Wang
- Department of Hepatobiliary and Pancreatic Surgery, Medical Center of Digestive Disease, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Yan Kang
- Department of Hepatobiliary and Pancreatic Surgery, Medical Center of Digestive Disease, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Ming-Chang Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Medical Center of Digestive Disease, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Wen-Xin Li
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hong-Xia Li
- Department of Pathology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| |
Collapse
|
3
|
Wootton LM, Morgan EL. Ubiquitin and ubiquitin-like proteins in HPV-driven carcinogenesis. Oncogene 2025; 44:713-723. [PMID: 40011575 PMCID: PMC11888991 DOI: 10.1038/s41388-025-03310-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/20/2025] [Accepted: 02/12/2025] [Indexed: 02/28/2025]
Abstract
Persistent infection with high-risk (HR) human papillomaviruses (HPVs) is responsible for approximately 5% of cancer cases worldwide, including a growing number of oropharyngeal and anogenital cancers. The major HPV oncoproteins, E6 and E7, act together to manipulate cellular pathways involved in the regulation of proliferation, the cell cycle and cell survival, ultimately driving malignant transformation. Protein ubiquitination and the ubiquitin proteasome system (UPS) is often deregulated upon viral infection and in oncogenesis. HPV E6 and E7 interact with and disrupt multiple components of the ubiquitination machinery to promote viral persistence, which can also result in cellular transformation and the formation of tumours. This review highlights the ways in which HPV manipulates protein ubiquitination and the ubiquitin-like protein pathways and how this contributes to tumour development. Furthermore, we discuss how understanding the interactions between HPV and the protein ubiquitination could lead to novel therapeutic targets that are of urgent need in HPV+ carcinomas.
Collapse
Affiliation(s)
| | - Ethan L Morgan
- School of Life Sciences, University of Sussex, Brighton, UK.
| |
Collapse
|
4
|
Yang ZZ, Yang B, Yan H, Ma X, Tian B, Zheng B, Chen YX, Dong YM, Deng J, Zhan Z, Shi Y, Zhang JY, Lu D, He JH, Zhang Y, Hu K, Zhu S, Zhou K, Zhang YC, Zheng Y, Yin D, Liao JY. DCAF13-mediated K63-linked ubiquitination of RNA polymerase I promotes uncontrolled proliferation in Breast Cancer. Nat Commun 2025; 16:557. [PMID: 39788980 PMCID: PMC11718263 DOI: 10.1038/s41467-025-55851-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/31/2024] [Indexed: 01/12/2025] Open
Abstract
Hyperactivation of ribosome biogenesis (RiBi) drives cancer progression, yet the role of RiBi-associated proteins (RiBPs) in breast cancer (BC) is underexplored. In this study, we perform a comprehensive multi-omics analysis and reveal that assembly and maturation factors (AMFs), a subclass of RiBPs, are upregulated at both RNA and protein levels in BC, correlating with poor patient outcomes. In contrast, ribosomal proteins (RPs) do not show systematic upregulation across various cancers, including BC. We further demonstrate that the oncogenic activation of a top AMF candidate in BC, DCAF13, enhances Pol I transcription and promotes proliferation in BC cells both in vitro and in vivo. Mechanistically, DCAF13 promotes Pol I transcription activity by facilitating the K63-linked ubiquitination of RPA194. This process stimulates global protein synthesis and cell growth. Our findings uncover a modification of RPA194 that regulates Pol I activity; this modification is dysregulated in BC, contributing to cancer progression.
Collapse
Affiliation(s)
- Zhi-Zhi Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, PR China
| | - Bing Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, PR China
| | - Haiyan Yan
- Department of Clinical Laboratory, Shenshan Central Hospital, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, Guangdong, 516600, PR China
| | - Xingyu Ma
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, PR China
| | - Bin Tian
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, PR China
| | - Bingqi Zheng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, PR China
| | - Yong-Xian Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, PR China
| | - Yi-Ming Dong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, PR China
| | - Jinsi Deng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, PR China
| | - Ziling Zhan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, PR China
| | - Yanmei Shi
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, PR China
| | - Jing Yuan Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, PR China
| | - Daning Lu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, PR China
| | - Jie-Hua He
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, PR China
| | - Yin Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, PR China
| | - KaiShun Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, PR China
| | - Shuang Zhu
- Center for Bioresources and Drug Discovery and School of Biosciences and Biopharmaceutics, Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Keda Zhou
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, PR China
| | - Yu-Chan Zhang
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Yiqing Zheng
- Center for Precision Medicine, Shenshan Central Hospital, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, Guangdong, 516600, PR China.
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 West Yan Jiang Road, Guangzhou, 510120, PR China.
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, 107 West Yan Jiang Road, Guangzhou, 510120, PR China.
| | - Dong Yin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, PR China.
| | - Jian-You Liao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, PR China.
- Center for Precision Medicine, Shenshan Central Hospital, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, Guangdong, 516600, PR China.
| |
Collapse
|
5
|
Thi Pham KH, Tran MH, Nam LB, Pham PTV, Nguyen TK. Structure, Inhibitors, and Biological Function in Nervous System and Cancer of Ubiquitin-Specific Protease 46. Bioinform Biol Insights 2024; 18:11779322241285982. [PMID: 39410943 PMCID: PMC11475357 DOI: 10.1177/11779322241285982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024] Open
Abstract
Deubiquitinating enzymes (DUBs) prevent ubiquitination by eliminating ubiquitin from their substrates. Deubiquitinating enzymes have important roles in a number of cell biology subfields that are highly relevant to diseases like neurodegeneration, cancer, autoimmune disorders, and long-term inflammation. Deubiquitinating enzymes feature a well-defined active site and, for the most part, catalytic cysteine, which makes them appealing targets for small-molecule drug development. Ubiquitin-specific protease 46 (USP46) is a member of the ubiquitin-specific protease family, the largest subfamily of DUBs. Over the past 10 years, some studies have steadily demonstrated the significance of USP46 in several biological processes, although it was identified later and early research progress was modest. Specifically, in the last few years, the carcinogenic properties of USP46 have become more apparent. In the current review, we provide a comprehensive overview of the current knowledge about USP46 including its characteristics, structure, inhibitors, function in diseases, especially in the nervous system, and the correlation of USP46 with cancers.
Collapse
Affiliation(s)
- Khanh Huyen Thi Pham
- Department of Pharmacy, School of Medicine and Pharmacy, The University of Danang, Danang City, Vietnam
- College of Pharmacy, Dongguk University, Seoul, Republic of Korea
| | - Manh Hung Tran
- Department of Pharmacy, School of Medicine and Pharmacy, The University of Danang, Danang City, Vietnam
| | - Le Ba Nam
- Faculty of Pharmacy, Thanh Do University, Hanoi City, Vietnam
| | - Phu Tran Vinh Pham
- Department of Biomedical Science, VN-UK Institute for Research and Executive Education, The University of Danang, Danang City, Vietnam
| | - Tan Khanh Nguyen
- Scientific Management Department, Dong A University, Danang City, Vietnam
| |
Collapse
|
6
|
Wang Y, Liu H, Zhang M, Xu J, Zheng L, Liu P, Chen J, Liu H, Chen C. Epigenetic reprogramming in gastrointestinal cancer: biology and translational perspectives. MedComm (Beijing) 2024; 5:e670. [PMID: 39184862 PMCID: PMC11344282 DOI: 10.1002/mco2.670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 08/27/2024] Open
Abstract
Gastrointestinal tumors, the second leading cause of human mortality, are characterized by their association with inflammation. Currently, progress in the early diagnosis and effective treatment of gastrointestinal tumors is limited. Recent whole-genome analyses have underscored their profound heterogeneity and extensive genetic and epigenetic reprogramming. Epigenetic reprogramming pertains to dynamic and hereditable alterations in epigenetic patterns, devoid of concurrent modifications in the underlying DNA sequence. Common epigenetic modifications encompass DNA methylation, histone modifications, noncoding RNA, RNA modifications, and chromatin remodeling. These modifications possess the potential to invoke or suppress a multitude of genes associated with cancer, thereby governing the establishment of chromatin configurations characterized by diverse levels of accessibility. This intricate interplay assumes a pivotal and indispensable role in governing the commencement and advancement of gastrointestinal cancer. This article focuses on the impact of epigenetic reprogramming in the initiation and progression of gastric cancer, esophageal cancer, and colorectal cancer, as well as other uncommon gastrointestinal tumors. We elucidate the epigenetic landscape of gastrointestinal tumors, encompassing DNA methylation, histone modifications, chromatin remodeling, and their interrelationships. Besides, this review summarizes the potential diagnostic, therapeutic, and prognostic targets in epigenetic reprogramming, with the aim of assisting clinical treatment strategies.
Collapse
Affiliation(s)
- Yingjie Wang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Hongyu Liu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Mengsha Zhang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Jing Xu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Liuxian Zheng
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Pengpeng Liu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Jingyao Chen
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Hongyu Liu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Chong Chen
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
7
|
Shu J, Yang C, Miao Y, Li J, Zheng T, Xiao J, Kong W, Xu Z, Feng H. USP46 promotes the interferon antiviral signaling in black carp by deubiquitinating TBK1. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 156:105170. [PMID: 38522716 DOI: 10.1016/j.dci.2024.105170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/23/2024] [Accepted: 03/22/2024] [Indexed: 03/26/2024]
Abstract
Ubiquitin-specific peptidase 46 (USP46) functions as a deubiquitinating enzyme, facilitating the removal of ubiquitin molecules attached to substrate proteins and playing a critical role in cancer and neurodegenerative diseases. However, its function in innate antiviral immunity is unknown. In this study we cloned and identified bcUSP46, a homolog of USP46 from black carp. We discovered that overexpression of bcUSP46 enhanced the transcription of interferon (IFN) promoters and increased the expression of IFN, PKR, and Mx1. In addition, bcUSP46 knockdown significantly inhibited the expression of ISG genes, as well as the antiviral activity of the host cells. Interestingly, when bcUSP46 was co-expressed with the RLR factors, it significantly enhanced the activity of the IFN promoter mediated by these factors, especially TANK-binding kinase 1 (TBK1). The subsequent co-immunoprecipitation (co-IP) and immunofluorescence (IF) assay confirmed the association between bcUSP46 and bcTBK1. Noteworthily, co-expression of bcUSP46 with bcTBK1 led to an elevation of bcTBK1 protein level. Further analysis revealed that bcUSP46 stabilized bcTBK1 by eliminating the K48-linked ubiquitination of bcTBK1. Overall, our findings highlight the unique role of USP46 in modulating TBK1/IFN signaling and enrich our knowledge of the function of deubiquitination in regulating innate immunity in vertebrates.
Collapse
Affiliation(s)
- Juanjuan Shu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Can Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Yujia Miao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Jinyi Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Tianle Zheng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Jun Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China.
| | - Weiguang Kong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zhen Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Hao Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China.
| |
Collapse
|
8
|
Gao S, Wang Y, Xu Y, Liu L, Liu S. USP46 enhances tamoxifen resistance in breast cancer cells by stabilizing PTBP1 to facilitate glycolysis. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167011. [PMID: 38176460 DOI: 10.1016/j.bbadis.2023.167011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/10/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
Tamoxifen (TAM) is the primary drug for treating estrogen receptor alpha-positive (ER+) breast cancer (BC). However, resistance to TAM can develop in some patients, limiting its therapeutic efficacy. The ubiquitin-specific protease (USP) family has been associated with the development, progression, and drug resistance of various cancers. To explore the role of USPs in TAM resistance in BC, we used qRT-PCR to compare USP expression between TAM-sensitive (MCF-7 and T47D) and TAM-resistant cells (MCF-7R and T47DR). We then modulated USP46 expression and examined its impact on cell proliferation, drug resistance (via CCK-8 and EdU experiments), glycolysis levels (using a glycolysis detection assay), protein interactions (confirmed by co-IP), and protein changes (analyzed through Western blotting). Our findings revealed that USP46 was significantly overexpressed in TAM-resistant BC cells, leading to the inhibition of the ubiquitin degradation of polypyrimidine tract-binding protein 1 (PTBP1). Overexpression of PTBP1 increased the PKM2/PKM1 ratio, promoted glycolysis, and intensified TAM resistance in BC cells. Knockdown of USP46 induced downregulation of PTBP1 protein by promoting its K48-linked ubiquitination, resulting in a decreased PKM2/PKM1 ratio, reduced glycolysis, and heightened TAM sensitivity in BC cells. In conclusion, this study highlights the critical role of the USP46/PTBP1/PKM2 axis in TAM resistance in BC. Targeted therapy against USP46 may represent a promising strategy to improve the prognosis of TAM-resistant patients.
Collapse
Affiliation(s)
- Shun Gao
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yuan Wang
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yingkun Xu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Li Liu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Shengchun Liu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
9
|
Bolhuis DL, Emanuele MJ, Brown NG. Friend or foe? Reciprocal regulation between E3 ubiquitin ligases and deubiquitinases. Biochem Soc Trans 2024; 52:241-267. [PMID: 38414432 PMCID: PMC11349938 DOI: 10.1042/bst20230454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/29/2024]
Abstract
Protein ubiquitination is a post-translational modification that entails the covalent attachment of the small protein ubiquitin (Ub), which acts as a signal to direct protein stability, localization, or interactions. The Ub code is written by a family of enzymes called E3 Ub ligases (∼600 members in humans), which can catalyze the transfer of either a single ubiquitin or the formation of a diverse array of polyubiquitin chains. This code can be edited or erased by a different set of enzymes termed deubiquitinases (DUBs; ∼100 members in humans). While enzymes from these distinct families have seemingly opposing activities, certain E3-DUB pairings can also synergize to regulate vital cellular processes like gene expression, autophagy, innate immunity, and cell proliferation. In this review, we highlight recent studies describing Ub ligase-DUB interactions and focus on their relationships.
Collapse
Affiliation(s)
- Derek L Bolhuis
- Department of Biochemistry and Biophysics, UNC Chapel Hill School of Medicine, Chapel Hill, NC, 27599
| | - Michael J Emanuele
- Department of Pharmacology and Lineberger Comprehensive Care Center, UNC Chapel Hill School of Medicine, Chapel Hill, NC, 27599
| | - Nicholas G Brown
- Department of Pharmacology and Lineberger Comprehensive Care Center, UNC Chapel Hill School of Medicine, Chapel Hill, NC, 27599
| |
Collapse
|
10
|
Zhou J, Li H, Wu B, Zhu L, Huang Q, Guo Z, He Q, Wang L, Peng X, Guo T. Network pharmacology combined with experimental verification to explore the potential mechanism of naringenin in the treatment of cervical cancer. Sci Rep 2024; 14:1860. [PMID: 38253629 PMCID: PMC10803340 DOI: 10.1038/s41598-024-52413-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/18/2024] [Indexed: 01/24/2024] Open
Abstract
Cervical cancer is the second leading cause of morbidity and mortality in women worldwide. Traditional treatment methods have become limited. Naringenin, a flavonoid abundant in various fruits and herbal medicines, has demonstrated anti-tumor properties among other effects. This research undertook to elucidate the mechanism of naringenin in the context of cervical cancer treatment by leveraging network pharmacology and performing experimental validation. Initial steps involved predicting potential naringenin targets and subsequently screening for overlaps between these targets and those related to cervical cancer, followed by analysis of their interrelationships. Molecular docking was subsequently utilized to verify the binding effect of the central target. Within the framework of network pharmacology, it was discovered that naringenin might possess anti-cancer properties specific to cervical cancer. Following this, the anti-tumor effects of naringenin on Hela cell viability, migration, and invasion were assessed employing CCK-8, transwell, wound healing assays, and western blotting. Experimental data indicated that naringenin attenuates the migration and invasion of Hela cells via downregulation EGFR/PI3K/AKT signaling pathway. Thus, our findings suggest that naringenin has therapeutic impacts on cervical cancer via multiple mechanisms, primarily by inhibiting the migration and invasion through the EGFR/PI3K/AKT/mTOR pathway. This study offers fresh insights for future clinical studies.
Collapse
Affiliation(s)
- Ji Zhou
- Medical School, Changsha Social Work College, Changsha, China
- The First Affiliated Hospital of Changsha Medical University, Changsha, China
| | - Haoying Li
- The First Affiliated Hospital of Changsha Medical University, Changsha, China
| | - Ben Wu
- The First Affiliated Hospital of Changsha Medical University, Changsha, China
- Wuzhou Medical college, Wuzhou, China
| | - Lemei Zhu
- The First Affiliated Hospital of Changsha Medical University, Changsha, China
| | - Qiao Huang
- The First Affiliated Hospital of Changsha Medical University, Changsha, China
| | - Zhenyu Guo
- The First Affiliated Hospital of Changsha Medical University, Changsha, China
| | - Qizhi He
- The First Affiliated Hospital of Changsha Medical University, Changsha, China
| | - Lin Wang
- The First Affiliated Hospital of Changsha Medical University, Changsha, China.
| | - Xiaozhen Peng
- School of Public Health & Laboratory Medicine, Hunan University of Medicine, Huaihua, China.
| | - Tianyao Guo
- Department of Pathology, The Second Xiangya Hospital of Central South University, Changsha, China.
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, The Second Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
11
|
Li Y, Zhao Q, Yao J, Lv C, Gao Y, Sun D, Yang Y. MiR-96-5p Suppresses Progression of Arsenite-Induced Human Keratinocyte Proliferation and Malignant Transformation by Targeting Denticleless E3 Ubiquitin Protein Ligase Homolog. TOXICS 2023; 11:978. [PMID: 38133379 PMCID: PMC10747408 DOI: 10.3390/toxics11120978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023]
Abstract
Long-term exposure to arsenic has been linked to a variety of cancers, among which skin cancer is the most prevalent form. However, the mechanism underlying arsenic carcinogenesis is unclear, and there is still limited information on the role of miRNAs in arsenic-induced skin cancer. This study aims to explore the role of miR-96-5p in the arsenite-induced proliferation and malignant transformation of human HaCaT keratinocytes. The GEO database (accession numbers GSE97303, GSE97305, and GSE97306) was used to extract mRNA and miRNA expression profiles of HaCaT cells treated with or without 0.1 μmol/L sodium arsenite for 3 and 7 weeks. In this paper, according to the CCK8 assay result, HaCaT cells exposed to 0.1 μmol/L sodium arsenite for 48 h were finalized. CCK8, MTT, EdU incorporation, and colony formation assays were used to determine the viability and proliferation of HaCaT cells and transformed HaCaT (T-HaCaT) cells. The subcellular localization and relative expression levels of DTL, as well as miR-96-5p in HaCaT cells induced by arsenite, were determined via immunofluorescence, RT-qPCR, and Western blot. Dual-luciferase reporter assay was performed to identify miR-96-5p bound directly to DTL. Transfection of miR-96-5p mimics or DTL siRNA was conducted to verify the arsenite-induced viability of HaCaT cells and T-HaCaT cells. T-HaCaT cells and nude mice were used to construct arsenite-induced malignant transformation and an in vivo xenograft model to demonstrate the over-expressed effect of miR-96-5p. The results showed that DTL was the target gene of miR-96-5p. Meanwhile, we also found that 0.1 μmol/L sodium arsenite upregulated DTL by decreasing the miR-96-5p level, leading to the proliferation and malignant transformation of HaCaT cells. MiR-96-5p agomir treatment slowed the growth of transplanted HaCaT cells transformed by arsenite in a manner associated with DTL downregulation in the nude mice xenograft model. Taken together, we confirmed that miR-96-5p, as a potent regulator of DTL, suppressed arsenite-induced HaCaT cell proliferation and malignant transformation, which might provide a novel therapeutic target for the treatment of arsenic-induced skin cancer.
Collapse
Affiliation(s)
- Yan Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin 150081, China
| | - Qiaoshi Zhao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin 150081, China
| | - Jinyin Yao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin 150081, China
| | - Chunpeng Lv
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin 150081, China
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin 150081, China
- Institution of Environmentally Related Diseases, Harbin Medical University, Harbin 150081, China
| | - Dianjun Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin 150081, China
| | - Yanmei Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin 150081, China
| |
Collapse
|
12
|
Ren J, Yu P, Liu S, Li R, Niu X, Chen Y, Zhang Z, Zhou F, Zhang L. Deubiquitylating Enzymes in Cancer and Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303807. [PMID: 37888853 PMCID: PMC10754134 DOI: 10.1002/advs.202303807] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/30/2023] [Indexed: 10/28/2023]
Abstract
Deubiquitylating enzymes (DUBs) maintain relative homeostasis of the cellular ubiquitome by removing the post-translational modification ubiquitin moiety from substrates. Numerous DUBs have been demonstrated specificity for cleaving a certain type of ubiquitin linkage or positions within ubiquitin chains. Moreover, several DUBs perform functions through specific protein-protein interactions in a catalytically independent manner, which further expands the versatility and complexity of DUBs' functions. Dysregulation of DUBs disrupts the dynamic equilibrium of ubiquitome and causes various diseases, especially cancer and immune disorders. This review summarizes the Janus-faced roles of DUBs in cancer including proteasomal degradation, DNA repair, apoptosis, and tumor metastasis, as well as in immunity involving innate immune receptor signaling and inflammatory and autoimmune disorders. The prospects and challenges for the clinical development of DUB inhibitors are further discussed. The review provides a comprehensive understanding of the multi-faced roles of DUBs in cancer and immunity.
Collapse
Affiliation(s)
- Jiang Ren
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Peng Yu
- Zhongshan Institute for Drug DiscoveryShanghai Institute of Materia MedicaChinese Academy of SciencesZhongshanGuangdongP. R. China
| | - Sijia Liu
- International Biomed‐X Research CenterSecond Affiliated Hospital of Zhejiang University School of MedicineZhejiang UniversityHangzhouP. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhou310058China
| | - Ran Li
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Xin Niu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
| | - Yan Chen
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Zhenyu Zhang
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450003P. R. China
| | - Fangfang Zhou
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Long Zhang
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
- International Biomed‐X Research CenterSecond Affiliated Hospital of Zhejiang University School of MedicineZhejiang UniversityHangzhouP. R. China
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058P. R. China
| |
Collapse
|
13
|
Ng VH, Spencer Z, Neitzel LR, Nayak A, Loberg MA, Shen C, Kassel SN, Kroh HK, An Z, Anthony CC, Bryant JM, Lawson A, Goldsmith L, Benchabane H, Hansen AG, Li J, D'Souza S, Lebensohn AM, Rohatgi R, Weiss WA, Weiss VL, Williams C, Hong CC, Robbins DJ, Ahmed Y, Lee E. The USP46 complex deubiquitylates LRP6 to promote Wnt/β-catenin signaling. Nat Commun 2023; 14:6173. [PMID: 37798301 PMCID: PMC10556042 DOI: 10.1038/s41467-023-41836-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 09/20/2023] [Indexed: 10/07/2023] Open
Abstract
The relative abundance of Wnt receptors plays a crucial role in controlling Wnt signaling in tissue homeostasis and human disease. While the ubiquitin ligases that ubiquitylate Wnt receptors are well-characterized, the deubiquitylase that reverses these reactions remains unclear. Herein, we identify USP46, UAF1, and WDR20 (USP46 complex) as positive regulators of Wnt signaling in cultured human cells. We find that the USP46 complex is similarly required for Wnt signaling in Xenopus and zebrafish embryos. We demonstrate that Wnt signaling promotes the association between the USP46 complex and cell surface Wnt coreceptor, LRP6. Knockdown of USP46 decreases steady-state levels of LRP6 and increases the level of ubiquitylated LRP6. In contrast, overexpression of the USP46 complex blocks ubiquitylation of LRP6 by the ubiquitin ligases RNF43 and ZNFR3. Size exclusion chromatography studies suggest that the size of the USP46 cytoplasmic complex increases upon Wnt stimulation. Finally, we show that USP46 is essential for Wnt-dependent intestinal organoid viability, likely via its role in LRP6 receptor homeostasis. We propose a model in which the USP46 complex increases the steady-state level of cell surface LRP6 and facilitates the assembly of LRP6 into signalosomes via a pruning mechanism that removes sterically hindering ubiquitin chains.
Collapse
Affiliation(s)
- Victoria H Ng
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Zachary Spencer
- Department of Molecular and Systems Biology and the Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, 03755, USA
| | - Leif R Neitzel
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Anmada Nayak
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20057, USA
| | - Matthew A Loberg
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Chen Shen
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20057, USA
| | - Sara N Kassel
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Heather K Kroh
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Zhenyi An
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, 94158, USA
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Christin C Anthony
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Jamal M Bryant
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Amanda Lawson
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Lily Goldsmith
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Hassina Benchabane
- Department of Molecular and Systems Biology and the Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, 03755, USA
| | - Amanda G Hansen
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
- STEMCELL Technologies, 1618 Station Street, Vancouver, BC, V6A 1B6, Canada
| | - Jingjing Li
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Starina D'Souza
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Andres M Lebensohn
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Rajat Rohatgi
- Departments of Biochemistry, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - William A Weiss
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, 94158, USA
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Vivian L Weiss
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Charles Williams
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Charles C Hong
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - David J Robbins
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20057, USA
| | - Yashi Ahmed
- Department of Molecular and Systems Biology and the Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, 03755, USA.
| | - Ethan Lee
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA.
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, 37232, USA.
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| |
Collapse
|
14
|
Ye J, Zheng L, He Y, Qi X. Human papillomavirus associated cervical lesion: pathogenesis and therapeutic interventions. MedComm (Beijing) 2023; 4:e368. [PMID: 37719443 PMCID: PMC10501338 DOI: 10.1002/mco2.368] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/19/2023] Open
Abstract
Human papillomavirus (HPV) is the most prevalent sexually transmitted virus globally. Persistent high-risk HPV infection can result in cervical precancerous lesions and cervical cancer, with 70% of cervical cancer cases associated with high-risk types HPV16 and 18. HPV infection imposes a significant financial and psychological burden. Therefore, studying methods to eradicate HPV infection and halt the progression of precancerous lesions remains crucial. This review comprehensively explores the mechanisms underlying HPV-related cervical lesions, including the viral life cycle, immune factors, epithelial cell malignant transformation, and host and environmental contributing factors. Additionally, we provide a comprehensive overview of treatment methods for HPV-related cervical precancerous lesions and cervical cancer. Our focus is on immunotherapy, encompassing HPV therapeutic vaccines, immune checkpoint inhibitors, and advanced adoptive T cell therapy. Furthermore, we summarize the commonly employed drugs and other nonsurgical treatments currently utilized in clinical practice for managing HPV infection and associated cervical lesions. Gene editing technology is currently undergoing clinical research and, although not yet employed officially in clinical treatment of cervical lesions, numerous preclinical studies have substantiated its efficacy. Therefore, it holds promise as a precise treatment strategy for HPV-related cervical lesions.
Collapse
Affiliation(s)
- Jiatian Ye
- Department of Gynecology and ObstetricsKey Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan UniversityChengduChina
| | - Lan Zheng
- Department of Pathology and Lab MedicineUniversity of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Yuedong He
- Department of Gynecology and ObstetricsKey Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan UniversityChengduChina
| | - Xiaorong Qi
- Department of Gynecology and ObstetricsKey Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
15
|
Singh G, Sharma SK, Dorata A, Singh SK. miR-17 ~ 92 suppresses proliferation and invasion of cervical cancer cells by inhibiting cell cycle regulator Cdt2. Discov Oncol 2023; 14:172. [PMID: 37707654 PMCID: PMC10501107 DOI: 10.1007/s12672-023-00775-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/21/2023] [Indexed: 09/15/2023] Open
Abstract
Cervical cancer (CC) is the 4th most leading cause of death among women worldwide, and if diagnosed in late stages the treatment options are almost negligible. 99% of CC is caused by high-risk human papilloma viruses (HR-HPV). Upon integration into human genome, the encoded viral proteins mis-regulate various onco-suppressors and checkpoint factors including cell cycle regulators. One such protein is cell cycle S phase licensing factor, CDC-10 dependent transcript-2 (Cdt2) which has been reported to be highly upregulated in various cancers including CC. Also, in CC cells, several tumor suppressor miRNAs are suppressed, including miR-17 ~ 92 cluster. In this study, we report that miR-17 ~ 92 directly recruits to 3'UTR of Cdt2 and downregulates this oncogene which suppresses the proliferation, migration and invasion capabilities of the CC cell lines without affecting non-cancerous cells. We further show that suppression of Cdt2 by miR-17 ~ 92, blocks the cancerous cells in S phase and induces apoptosis, eventually leading to their death. Hence, our work for the first time, mechanistically shows how miR-17 ~ 92 could work as tumor suppressor in cervical cancer cells, opening up the potential of miR-17 ~ 92 to be used in developing therapy for cervical cancer treatment.
Collapse
Affiliation(s)
- Garima Singh
- Cell Cycle and Cancer Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Sonika Kumari Sharma
- Cell Cycle and Cancer Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Aastha Dorata
- Cell Cycle and Cancer Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Samarendra Kumar Singh
- Cell Cycle and Cancer Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India.
| |
Collapse
|
16
|
Kubaichuk K, Kietzmann T. USP10 Contributes to Colon Carcinogenesis via mTOR/S6K Mediated HIF-1α but Not HIF-2α Protein Synthesis. Cells 2023; 12:1585. [PMID: 37371055 DOI: 10.3390/cells12121585] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Colorectal cancer ranks among the third most common human malignant diseases and is one of the leading causes of cancer-related deaths globally. Colon cancer cells are hypoxic and display disturbed protein homeostasis. Ubiquitin-ligase-initiated proteasomal degradation as well as its prevention by deubiquitinases (DUBs) are supposed to contribute to the above-mentioned disturbances. However, not much is known about the involvement of ubiquitinating and deubiquitinating enzymes in colon cancer and their effect on the hypoxia response. Here, we identify the DUB ubiquitin-specific protease 10 (USP10) as an important player in the control of colon cancer progression and a new modifier of the hypoxia response. Mechanistically, we show that knockout of USP10 in different colon cancer cells causes an elevation in HIF-1α but not HIF-2α protein levels under both normoxic and hypoxic conditions. In addition, the lack of USP10 increased cellular migration, reduced cell adhesion, and switched the energy phenotype towards increased glycolysis and enhanced extracellular acidification. These changes were at least partially caused by HIF-1α, as the knockdown of HIF-1α rescued the cellular phenotype caused by USP10 deficiency. Interestingly, the USP10-dependent increase in HIF-1 α was neither caused by enhanced transcription nor prolonged half-life but via mTOR/S6K mediated HIF-1α protein synthesis. Together, the current findings indicate that USP10 is able to participate in colon carcinogenesis by modulating the hypoxia response and may therefore represent a new therapeutic target.
Collapse
Affiliation(s)
- Kateryna Kubaichuk
- Faculty of Biochemistry and Molecular Biology, University of Oulu, 90570 Oulu, Finland
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Biology, University of Oulu, 90570 Oulu, Finland
| |
Collapse
|
17
|
Xu W, Liu L, Cui Z, Li M, Ni J, Huang N, Zhang Y, Luo J, Sun L, Sun F. Identification of key enzalutamide-resistance-related genes in castration-resistant prostate cancer and verification of RAD51 functions. Open Med (Wars) 2023; 18:20230715. [PMID: 37251536 PMCID: PMC10224628 DOI: 10.1515/med-2023-0715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/16/2023] [Accepted: 04/17/2023] [Indexed: 05/31/2023] Open
Abstract
Patients with castration-resistant prostate cancer (CRPC) often develop drug resistance after treatment with enzalutamide. The goal of our study was to identify the key genes related to enzalutamide resistance in CRPC and to provide new gene targets for future research on improving the efficacy of enzalutamide. Differential expression genes (DEGs) associated with enzalutamide were obtained from the GSE151083 and GSE150807 datasets. We used R software, the DAVID database, protein-protein interaction networks, the Cytoscape program, and Gene Set Cancer Analysis for data analysis. The effect of RAD51 knockdown on prostate cancer (PCa) cell lines was demonstrated using Cell Counting Kit-8, clone formation, and transwell migration experiments. Six hub genes with prognostic values were screened (RAD51, BLM, DTL, RFC2, APOE, and EXO1), which were significantly associated with immune cell infiltration in PCa. High RAD51, BLM, EXO1, and RFC2 expression was associated with androgen receptor signaling pathway activation. Except for APOE, high expression of hub genes showed a significant negative correlation with the IC50 of Navitoclax and NPK76-II-72-1. RAD51 knockdown inhibited the proliferation and migration of PC3 and DU145 cell lines and promoted apoptosis. Additionally, 22Rv1 cell proliferation was more significantly inhibited with RAD51 knockdown than without RAD51 knockdown under enzalutamide treatment. Overall, six key genes associated with enzalutamide resistance were screened (RAD51, BLM, DTL, RFC2, APOE, and EXO1), which are potential therapeutic targets for enzalutamide-resistant PCa in the future.
Collapse
Affiliation(s)
- Wen Xu
- Shanghai Clinical College, Anhui Medical University, Shanghai, 200072, China
- The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Li Liu
- Department of Clinical Laboratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Zhongqi Cui
- Department of Clinical Laboratory, Shanghai Tenth People’s Hospital of Tongji University, 200072, Shanghai, China
| | - Mingyang Li
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Jinliang Ni
- Shanghai Clinical College, Anhui Medical University, Shanghai, 200072, China
- The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Nan Huang
- Department of Clinical Laboratory, Shanghai Tenth People’s Hospital of Tongji University, 200072, Shanghai, China
| | - Yue Zhang
- Department of Clinical Laboratory, Shanghai Tenth People’s Hospital of Tongji University, 200072, Shanghai, China
| | - Jie Luo
- Department of Clinical Laboratory, Shanghai Tenth People’s Hospital of Tongji University, 200072, Shanghai, China
| | - Limei Sun
- Department of Clinical Laboratory, Shanghai Tenth People’s Hospital of Tongji University, 200072, Shanghai, China
| | - Fenyong Sun
- The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, 230032, Anhui, China
- Shanghai Clinical College, Anhui Medical University, No. 301, Yanchang Middle Road, Jingan District, Shanghai, 200072, China
- Department of Clinical Laboratory, Shanghai Tenth People’s Hospital of Tongji University, No. 301, Yanchang Middle Road, Jingan District, 200072, Shanghai, China
| |
Collapse
|
18
|
Morgan EL, Toni T, Viswanathan R, Robbins Y, Yang X, Cheng H, Gunti S, Huynh A, Sowers AL, Mitchell JB, Allen CT, Chen Z, Van Waes C. Inhibition of USP14 promotes TNFα-induced cell death in head and neck squamous cell carcinoma (HNSCC). Cell Death Differ 2023; 30:1382-1396. [PMID: 37055579 PMCID: PMC10154301 DOI: 10.1038/s41418-023-01144-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 04/15/2023] Open
Abstract
TNFα is a key mediator of immune, chemotherapy and radiotherapy-induced cytotoxicity, but several cancers, including head and neck squamous cell carcinomas (HNSCC), display resistance to TNFα due to activation of the canonical NFκB pro-survival pathway. However, direct targeting of this pathway is associated with significant toxicity; thus, it is vital to identify novel mechanism(s) contributing to NFκB activation and TNFα resistance in cancer cells. Here, we demonstrate that the expression of proteasome-associated deubiquitinase USP14 is significantly increased in HNSCC and correlates with worse progression free survival in Human Papillomavirus (HPV)- HNSCC. Inhibition or depletion of USP14 inhibited the proliferation and survival of HNSCC cells. Further, USP14 inhibition reduced both basal and TNFα-inducible NFκB activity, NFκB-dependent gene expression and the nuclear translocation of the NFκB subunit RELA. Mechanistically, USP14 bound to both RELA and IκBα and reduced IκBα K48-ubiquitination leading to the degradation of IκBα, a critical inhibitor of the canonical NFκB pathway. Furthermore, we demonstrated that b-AP15, an inhibitor of USP14 and UCHL5, sensitized HNSCC cells to TNFα-mediated cell death, as well as radiation-induced cell death in vitro. Finally, b-AP15 delayed tumor growth and enhanced survival, both as a monotherapy and in combination with radiation, in HNSCC tumor xenograft models in vivo, which could be significantly attenuated by TNFα depletion. These data offer new insights into the activation of NFκB signaling in HNSCC and demonstrate that small molecule inhibitors targeting the ubiquitin pathway warrant further investigation as a novel therapeutic avenue to sensitize these cancers to TNFα- and radiation-induced cytotoxicity.
Collapse
Affiliation(s)
- Ethan L Morgan
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA.
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK.
| | - Tiffany Toni
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
- NIH Medical Research Scholars Program, Bethesda, MD, USA
| | - Ramya Viswanathan
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Yvette Robbins
- Translational Tumor Immunology Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Xinping Yang
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Hui Cheng
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Sreenivasulu Gunti
- Sinonasal and Skull Base Tumor Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Angel Huynh
- Translational Tumor Immunology Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Anastasia L Sowers
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James B Mitchell
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Clint T Allen
- Translational Tumor Immunology Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Zhong Chen
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Carter Van Waes
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
19
|
Tang Y, Lei Y, Gao P, Jia J, Du H, Wang Q, Yan Z, Zhang C, Liang G, Wang Y, Ma W, Xing N, Cheng L, Ren L. Pan-cancer analysis and experimental validation of DTL as a potential diagnosis, prognosis and immunotherapy biomarker. BMC Cancer 2023; 23:328. [PMID: 37038185 PMCID: PMC10088150 DOI: 10.1186/s12885-023-10755-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/20/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND DTL has been found to be related with multiple cancers. However, comprehensive analyses, which identify the prediction value of DTL in diagnosis, prognosis, immune infiltration and treatment, have rarely been reported so far. METHODS Combined with the data online databases, the gene expression, gene mutation, function enrichment and the correlations with the immunity status and clinical indexes of DTL were analyzed. Expression of DTL and the degree of immune cell infiltration were examined by immunofluorescence (IF) and immunohistochemistry (IHC) and analyzed by statistical analysis. Furthermore, the influences of DTL on the cell cycle, cell proliferation and apoptosis were detected by live cell imaging, IF and flow cytometric (FC) analysis. Genomic stability assays were conducted by chromosome slide preparation. RESULTS DTL was widely expressed in various cells and tissues, while it was overexpressed in tumor tissues except acute myeloid leukemia (LAML). Pan-cancer bioinformatics analysis showed that the expression of DTL was correlated with the prognosis, immunotherapy, and clinical indexes in various cancers. In addition, gene set enrichment analysis (GSEA) uncovered that DTL was enriched in oocyte meiosis, pyrimidine metabolism, the cell cycle, the G2M checkpoint, mTORC1 signaling and E2F targets. Furthermore, the overexpression of DTL, and its association with immune cell infiltration and clinical indexes in liver hepatocellular carcinoma (LIHC), bladder urothelial carcinoma (BLCA) and stomach adenocarcinoma (STAD) were verified in our study. It was also verified that overexpression of DTL could regulate the cell cycle, promote cell proliferation and cause genomic instability in cultured cells, which may be the reason why DTL plays a role in the occurrence, progression and treatment of cancer. CONCLUSIONS Collectively, this study suggested that DTL is of clinical value in the diagnosis, prognosis and treatment of various cancers, and may be a potential biomarker in certain cancers.
Collapse
Affiliation(s)
- Yumei Tang
- School of Basic Medical Sciences, Dali University, Dali, 671000, P.R. China
- Department of Immunology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyaun, 030000, P.R. China
- Shanxi Keda Research Institute, Taiyaun, 030000, P.R. China
| | - Ye Lei
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P.R. China
- Department of Urology, Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyaun, 030000, P.R. China
| | - Peng Gao
- BGI-Shenzhen, Shenzhen, 518083, P.R. China
| | - Junting Jia
- Department of Pharmacy, Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyaun, 030000, P.R. China
| | - Huijun Du
- Department of Cardiology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, P.R. China
| | - Qitong Wang
- School of Basic Medical Sciences, Dali University, Dali, 671000, P.R. China
| | - Zhixin Yan
- Department of Immunology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyaun, 030000, P.R. China
| | - Chen Zhang
- Department of Immunology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyaun, 030000, P.R. China
| | - Guojun Liang
- Department of Immunology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyaun, 030000, P.R. China
| | - Yanfeng Wang
- Department of Immunology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyaun, 030000, P.R. China
| | - Weijun Ma
- Shanxi Beike Biotechnology Co., Ltd, Taiyuan, 030000, P.R. China
| | - Nianzeng Xing
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P.R. China.
- Department of Urology, Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyaun, 030000, P.R. China.
| | - Le Cheng
- BGI-Yunnan, Kunming, Yunnan, 650106, P.R. China.
| | - Laifeng Ren
- Department of Immunology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyaun, 030000, P.R. China.
| |
Collapse
|
20
|
Ke L, Jia Z, Gao W, Luo L. Ubiquitin specific protease 46 potentiates triple negative breast cancer development by stabilizing PGAM1-mediated glycolysis. Cell Biol Int 2023; 47:41-51. [PMID: 36335636 DOI: 10.1002/cbin.11937] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 07/10/2022] [Accepted: 08/03/2022] [Indexed: 11/08/2022]
Abstract
Triple-negative breast cancer (TNBC) is a malignancy with high metastasis rate and poor prognosis. Limited drugs are effective for the treatment of TNBC patients. Ubiquitin specific proteases (USPs) are important posttranscription modulators that promote protein stability by reducing the ubiquitination of the proteins. Aberrant expression of USPs is involved in the development of numerous cancers. However, it remains poorly understood on the role of USP46 in TNBC growth and metastasis. In this study, we explored the clinical relevance, function and molecular mechanisms of USP46 in TNBC. USP46 expression was increased in breast cancer tissues. High expression of USP46 was associated with the poorer prognosis of the patients. Overexpression and knockdown experiments demonstrated that USP46 was critical for TNBC cell growth, migration, and tumorigenesis. Mechanistically, USP46 enhanced the protein stability of phosphoglycerate mutase 1 (PGAM1) via direct interaction. Importantly, USP46 stimulated the glycolysis and promoted the malignant growth of TNBC cells through upregulation of PGAM1. Our study reveals that USP46/PGAM1 axis contributes to TNBC progression and is a potential target for the treatment of TNBC patients.
Collapse
Affiliation(s)
- Longzhu Ke
- Oncology Department, GuiHang Guiyang Hospital, Guiyang, China
| | - Zhaoyang Jia
- Department of Radiation Oncology, Tenth People's Hospital of Tongji University, Shanghai, China
| | - Wei Gao
- Department of Radiation Oncology, Shanghai Fourth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Li Luo
- Oncology Department, GuiHang Guiyang Hospital, Guiyang, China
| |
Collapse
|
21
|
Jin S, Kudo Y, Horiguchi T. The Role of Deubiquitinating Enzyme in Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2022; 24:ijms24010552. [PMID: 36613989 PMCID: PMC9820089 DOI: 10.3390/ijms24010552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 12/30/2022] Open
Abstract
Ubiquitination and deubiquitination are two popular ways for the post-translational modification of proteins. These two modifications affect intracellular localization, stability, and function of target proteins. The process of deubiquitination is involved in histone modification, cell cycle regulation, cell differentiation, apoptosis, endocytosis, autophagy, and DNA repair after damage. Moreover, it is involved in the processes of carcinogenesis and cancer development. In this review, we discuss these issues in understanding deubiquitinating enzyme (DUB) function in head and neck squamous cell carcinoma (HNSCC), and their potential therapeutic strategies for HNSCC patients are also discussed.
Collapse
|
22
|
Yang H, Xie Y, Guan R, Zhao Y, Lv W, Liu Y, Zhu F, Liu H, Guo X, Tang Z, Li H, Zhong Y, Zhang B, Yu H. Factors affecting HPV infection in U.S. and Beijing females: A modeling study. Front Public Health 2022; 10:1052210. [PMID: 36589946 PMCID: PMC9794849 DOI: 10.3389/fpubh.2022.1052210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
Background Human papillomavirus (HPV) infection is an important carcinogenic infection highly prevalent among many populations. However, independent influencing factors and predictive models for HPV infection in both U.S. and Beijing females are rarely confirmed. In this study, our first objective was to explore the overlapping HPV infection-related factors in U.S. and Beijing females. Secondly, we aimed to develop an R package for identifying the top-performing prediction models and build the predictive models for HPV infection using this R package. Methods This cross-sectional study used data from the 2009-2016 NHANES (a national population-based study) and the 2019 data on Beijing female union workers from various industries. Prevalence, potential influencing factors, and predictive models for HPV infection in both cohorts were explored. Results There were 2,259 (NHANES cohort, age: 20-59 years) and 1,593 (Beijing female cohort, age: 20-70 years) participants included in analyses. The HPV infection rate of U.S. NHANES and Beijing females were, respectively 45.73 and 8.22%. The number of male sex partners, marital status, and history of HPV infection were the predominant factors that influenced HPV infection in both NHANES and Beijing female cohorts. However, condom application was not an independent influencing factor for HPV infection in both cohorts. R package Modelbest was established. The nomogram developed based on Modelbest package showed better performance than the nomogram which only included significant factors in multivariate regression analysis. Conclusion Collectively, despite the widespread availability of HPV vaccines, HPV infection is still prevalent. Compared with condom promotion, avoidance of multiple sexual partners seems to be more effective for preventing HPV infection. Nomograms developed based on Modelbest can provide improved personalized risk assessment for HPV infection. Our R package Modelbest has potential to be a powerful tool for future predictive model studies.
Collapse
Affiliation(s)
- Huixia Yang
- Labor Model Health Management Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Yujin Xie
- Labor Model Health Management Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Rui Guan
- Labor Model Health Management Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Yanlan Zhao
- Labor Model Health Management Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Weihua Lv
- Labor Model Health Management Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Ying Liu
- Labor Model Health Management Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Feng Zhu
- Labor Model Health Management Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Huijuan Liu
- Labor Model Health Management Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Xinxiang Guo
- Labor Model Health Management Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Zhen Tang
- Labor Model Health Management Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Haijing Li
- Labor Model Health Management Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Yu Zhong
- Labor Model Health Management Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China,Yu Zhong
| | - Bin Zhang
- Respiratory Rehabilitation Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China,Bin Zhang
| | - Hong Yu
- Labor Model Health Management Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China,*Correspondence: Hong Yu
| |
Collapse
|
23
|
Qi L, Wang Y, Su S, Wang M, Jablonska E, Jia Y, Wang R, Hao S, Feng C, Li G, Jiang M, Du L, Sun H, Li Q, Wang T. Sodium selenite inhibits cervical cancer growth via ROS mediated AMPK/FOXO3a /GADD45a axis. Chem Biol Interact 2022; 367:110171. [PMID: 36108716 DOI: 10.1016/j.cbi.2022.110171] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/26/2022] [Accepted: 09/04/2022] [Indexed: 11/03/2022]
Abstract
Selenium is a trace element that has been shown to inhibit the growth of various cancer cell types. However, its role in cervical cancer and its underlying mechanisms remains largely unknown. Herein, we explored the anti-cervical cancer effect of selenium and its potential mechanisms through xenograft and in vitro experiments. HeLa cell xenografts in female nude mice showed tumor growth retardation, with no obvious liver and kidney toxicity, after being intraperitoneally injected with 3 mg/kg sodium selenite (SS) for 14 days. Compared to the control group, selenium levels in the tumor tissue increased significantly after SS treatment. In vitro experiments, SS inhibited the viability of HeLa and SiHa cells, blocked the cell cycle at the S phase, and enhanced apoptosis. RNA-sequencing, Kyoto encyclopedia of genes and genomes pathway analysis showed that forkhead box protein O (FOXO) was a key regulatory signaling pathway for SS to exhibit anticancer effects. Gene Ontology analysis filtered multiple terms associated with apoptosis, anti-proliferation, and cell cycle arrest. Further research revealed that SS increased intracellular reactive oxygen species (ROS) and impaired mitochondrial function, which activated adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) via phosphorylation at Thr172, resulting in activation of FOXO3a and its downstream growth arrest and DNA damage-inducible alpha (GADD45a). In summary, SS exhibited anti-cervical cancer effects, and their mechanisms may be that SS is involved in inducing cell cycle arrest and potentiating cell apoptosis caused by ROS-dependent activation of the AMPK/FOXO3a/GADD45a axis.
Collapse
Affiliation(s)
- Lei Qi
- Institute of Keshan Disease, Chinese Center for Endemic Disease Control, Harbin Medical University, Harbin, 150081, China
| | - Yuanyuan Wang
- Institute of Keshan Disease, Chinese Center for Endemic Disease Control, Harbin Medical University, Harbin, 150081, China
| | - Shengqi Su
- Institute of Keshan Disease, Chinese Center for Endemic Disease Control, Harbin Medical University, Harbin, 150081, China
| | - Mingxing Wang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Ewa Jablonska
- Department of Translational Research, Nofer Institute of Occupational Medicine, Sw. Teresy 8 Street, Lodz, 91-348, Poland
| | - Yuehui Jia
- Institute of Keshan Disease, Chinese Center for Endemic Disease Control, Harbin Medical University, Harbin, 150081, China
| | - Ruixiang Wang
- Institute of Keshan Disease, Chinese Center for Endemic Disease Control, Harbin Medical University, Harbin, 150081, China
| | - Shuxiu Hao
- Institute of Keshan Disease, Chinese Center for Endemic Disease Control, Harbin Medical University, Harbin, 150081, China
| | - Chen Feng
- Institute of Keshan Disease, Chinese Center for Endemic Disease Control, Harbin Medical University, Harbin, 150081, China
| | - Guijin Li
- Institute of Keshan Disease, Chinese Center for Endemic Disease Control, Harbin Medical University, Harbin, 150081, China
| | - Meijing Jiang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Linlin Du
- Institute of Keshan Disease, Chinese Center for Endemic Disease Control, Harbin Medical University, Harbin, 150081, China
| | - Huixin Sun
- Institute of Keshan Disease, Chinese Center for Endemic Disease Control, Harbin Medical University, Harbin, 150081, China
| | - Qi Li
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| | - Tong Wang
- Institute of Keshan Disease, Chinese Center for Endemic Disease Control, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
24
|
Singh G, Sharma SK, Singh SK. miR-34a negatively regulates cell cycle factor Cdt2/DTL in HPV infected cervical cancer cells. BMC Cancer 2022; 22:777. [PMID: 35840896 PMCID: PMC9288023 DOI: 10.1186/s12885-022-09879-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/04/2022] [Indexed: 11/10/2022] Open
Abstract
MicroRNAs have emerged as an important regulator of cell cycle and various other cellular processes. Aberration in microRNAs has been linked with development of several cancers and other diseases but still very little is known about the mechanism by which they regulate these cellular events. High risk human papilloma virus (HR HPV) is the causative agent of 99% of cervical cancer cases which attenuates multiple tumor suppressors and checkpoint factors of the host cell. The viral proteins also stabilize many oncogenic factors, including an essential cell cycle regulator Cdt2/DTL which in turn promotes cell transformation and proliferation. In this study, we report that a micro-RNA, miR-34a by suppressing HPV E6 protein, destabilizes Cdt2/DTL protein level in HPV infected cervical cancer cell lines. Destabilization of Cdt2 stabilizes pro-apoptotic and onco-suppressor proteins like p21 and Set8 and suppresses cell proliferation, invasion and migration capabilities of the HPV positive cervical cancer cells. Overexpression of either HPV E6 or Cdt2 genes along with miR-34a restored back the suppressed proliferation rate. This study is the first-ever report to show that miR-34a regulates cell cycle factor Cdt2 by suppressing viral E6 protein level, thus opening up the possibility of exploring miR-34a as a specific therapy for cervical cancer treatment.
Collapse
Affiliation(s)
- Garima Singh
- Cell Cycle and Cancer Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, UP-221005, India
| | - Sonika Kumari Sharma
- Cell Cycle and Cancer Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, UP-221005, India
| | - Samarendra Kumar Singh
- Cell Cycle and Cancer Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, UP-221005, India.
| |
Collapse
|
25
|
Vieira GV, Somera dos Santos F, Lepique AP, da Fonseca CK, Innocentini LMAR, Braz-Silva PH, Quintana SM, Sales KU. Proteases and HPV-Induced Carcinogenesis. Cancers (Basel) 2022; 14:cancers14133038. [PMID: 35804810 PMCID: PMC9264903 DOI: 10.3390/cancers14133038] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/01/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Human papillomavirus (HPV) infection is a sexually transmitted disease with high prevalence worldwide. Although most HPV infections do not lead to cancer, some HPV types are correlated with the majority of cervical cancers, and with some anogenital and oropharyngeal cancers. Moreover, enzymes known as proteases play an essential role in the pathogenic process in HPV-induced carcinogenesis. This review highlights the role of proteases and recent epidemiological data regarding HPV-dependent carcinogenesis. Abstract Persistent infection with Human papillomavirus (HPV) is the main etiologic factor for pre-malignant and malignant cervical lesions. Moreover, HPV is also associated with oropharynx and other anogenital carcinomas. Cancer-causing HPV viruses classified as group 1 carcinogens include 12 HPV types, with HPV 16 and 18 being the most prevalent. High-risk HPVs express two oncoproteins, E6 and E7, the products of which are responsible for the inhibition of p53 and pRB proteins, respectively, in human keratinocytes and cellular immortalization. p53 and pRB are pleiotropic proteins that regulate the activity of several signaling pathways and gene expression. Among the important factors that are augmented in HPV-mediated carcinogenesis, proteases not only control processes involved in cellular carcinogenesis but also control the microenvironment. For instance, genetic polymorphisms of matrix metalloproteinase 1 (MMP-1) are associated with carcinoma invasiveness. Similarly, the serine protease inhibitors hepatocyte growth factor activator inhibitor-1 (HAI-1) and -2 (HAI-2) have been identified as prognostic markers for HPV-dependent cervical carcinomas. This review highlights the most crucial mechanisms involved in HPV-dependent carcinogenesis, and includes a section on the proteolytic cascades that are important for the progression of this disease and their impact on patient health, treatment, and survival.
Collapse
Affiliation(s)
- Gabriel Viliod Vieira
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil; (G.V.V.); (C.K.d.F.); (L.M.A.R.I.)
| | - Fernanda Somera dos Santos
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil; (F.S.d.S.); (S.M.Q.)
| | - Ana Paula Lepique
- Department of Immunology, Biomedical Sciences Institute, University of Sao Paulo, Sao Paulo 05508-000, SP, Brazil;
| | - Carol Kobori da Fonseca
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil; (G.V.V.); (C.K.d.F.); (L.M.A.R.I.)
| | - Lara Maria Alencar Ramos Innocentini
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil; (G.V.V.); (C.K.d.F.); (L.M.A.R.I.)
- Clinical Hospital of Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto 14049-900, SP, Brazil
| | - Paulo Henrique Braz-Silva
- Department of Stomatology, School of Dentistry, University of Sao Paulo, São Paulo 05508-000, SP, Brazil;
- Laboratory of Virology, Institute of Tropical Medicine of Sao Paulo, School of Medicine, University of Sao Paulo, Sao Paulo 05403-000, SP, Brazil
| | - Silvana Maria Quintana
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil; (F.S.d.S.); (S.M.Q.)
| | - Katiuchia Uzzun Sales
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil; (G.V.V.); (C.K.d.F.); (L.M.A.R.I.)
- Correspondence: ; Tel.: +55-16-3315-9113
| |
Collapse
|
26
|
Wen M, Xu H, Peng H, Sheng Y, Yang W, Yan J. MiR-27a-3p targets USP46 to inhibit the cell proliferation of hepatocellular carcinoma. Chem Biol Drug Des 2022; 100:280-289. [PMID: 35637630 DOI: 10.1111/cbdd.14063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/05/2022] [Accepted: 05/08/2022] [Indexed: 12/24/2022]
Abstract
Micro-RNAs are involved in the occurrence and development of hepatocellular carcinoma (HCC) as potential therapeutic targets for HCC. In this study, we found that miR-27a-3p was highly expressed in HCC, which was associated with lower survival rates of HCC patients. In vivo and in vitro functional experiments confirmed that over-expression or knock-down miR-27a-3p could significantly affect the proliferation ability of HCCLM3 and Huh-7, two HCC cell lines. Ubiquitin-specific protease 46 (USP46) was confirmed as the key target gene of miR-27a-3p in HCC via RNA-seq, quantitative polymerase chain reaction, Western blotting, and luciferase report. When knocking down USP46, the proliferation activity of HCC cells was significantly enhanced, while it was significantly inhibited after over-expressing USP4. Above results suggest that the abnormally over-expressed miR-27a-3p in liver promotes the proliferation of cancer cells and accelerates the development of HCC by targeting inhibition the expression of USP46. Targeting miR-27a-3p may be an effective strategy for prevention and treatment of HCC.
Collapse
Affiliation(s)
- Minghua Wen
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hongyan Xu
- Department of Pathology, The Affiliated Children's Hospital of Nanchang University, Nanchang, China
| | - Hong Peng
- Department of Colorectal Surgery, The 908th Hospital of Chinese People's Liberation Army Joint, Nanchang, China
| | - Yanling Sheng
- Department of Ultrasound, The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Wenlong Yang
- Department of Infectious Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jinlong Yan
- Department of general surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
27
|
Li Z, Wang R, Qiu C, Cao C, Zhang J, Ge J, Shi Y. Role of DTL in Hepatocellular Carcinoma and Its Impact on the Tumor Microenvironment. Front Immunol 2022; 13:834606. [PMID: 35392073 PMCID: PMC8980229 DOI: 10.3389/fimmu.2022.834606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/21/2022] [Indexed: 01/15/2023] Open
Abstract
Background The crucial role of DTL has been previously implicated in genomic stability; however, its prognostic value and its relation with tumor immunity in hepatocellular carcinoma (HCC) remain to be further explored. Methods Transcriptional and mutational datasets as well as clinical information were retrieved from the GEO, ICGC, and TCGA databases. Differentially expressed genes (DEGs) were obtained from the comparison of DTLhigh and DTLlow expression groups of the TCGA-HCC cohort. Those genes were under KEGG and gene ontology (GO) analyses to decipher the influence of the DTL gene on the biological behavior of HCC tumor cells. The survival status and mutational characteristics of patients according to DTL levels were depicted and analyzed. The DTL overexpression in HCC and its impact on prognosis were further confirmed by a cohort of 114 HCC patients (validation cohort). The TIMER, GEPIA, and TISIDB databases were adopted to investigate the potential relations between DTL levels and the status of immune cells, as well as immune cell infiltrations. Results The DTL gene is overexpressed in tumor tissues compared with distant non-malignant liver tissues, and DTL overexpression in HCC would enhance the HCC cells in the activities of cell cycle and division. HCC patients with high DTL expression have unfavorable clinical outcomes and harbor more somatic mutations than those with low DTL expression, and multivariate analysis also revealed that DTL overexpression could act as an independent biomarker for prognosis. Moreover, the DTL gene was positively linked to marker sets of infiltrating activated CD8+ and CD4+ T cells; however, these cells demonstrated to be functionally exhausted. Conclusions Patients with a DTL overexpression phenotype in HCC have poorer prognosis than those in the DTLlow group due to the role of the DTL gene in the process of pro-cell proliferation, accompanied by the immunosuppressive microenvironment and T cell exhaustion.
Collapse
Affiliation(s)
- Zuyin Li
- Department of Hepatobiliary Surgery, Peking University Organ Transplantation Institute, Peking University People's Hospital, Beijing, China.,Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rangrang Wang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of General Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Chen Qiu
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai, China
| | - Can Cao
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianming Zhang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of General Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Jun Ge
- Department of General Surgery, The 306th Hospital of People's Liberation Army (PLA)-Peking University Teaching Hospital, Beijing, China
| | - Yuanping Shi
- Department of Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
28
|
Zhang Q, Jia Q, Gao W, Zhang W. The Role of Deubiquitinases in Virus Replication and Host Innate Immune Response. Front Microbiol 2022; 13:839624. [PMID: 35283827 PMCID: PMC8908266 DOI: 10.3389/fmicb.2022.839624] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
As a critical post-translational modification, ubiquitination is known to affect almost all the cellular processes including immunity, signaling pathways, cell death, cancer development, and viral infection by controlling protein stability. Deubiquitinases (DUBs) cleave ubiquitin from proteins and reverse the process of ubiquitination. Thus, DUBs play an important role in the deubiquitination process and serve as therapeutic targets for various diseases. DUBs are found in eukaryotes, bacteria, and viruses and influence various biological processes. Here, we summarize recent findings on the function of DUBs in modulating viral infection, the mechanism by which viral DUBs regulate host innate immune response, and highlight those DUBs that have recently been discovered as antiviral therapeutic targets.
Collapse
Affiliation(s)
- Qinglin Zhang
- College of Life Sciences of Jilin University, Changchun, China
| | - Qizhen Jia
- College of Life Sciences of Jilin University, Changchun, China
| | - Wenying Gao
- Center for Pathogen Biology and Infectious Diseases, Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Wenyan Zhang
- Center for Pathogen Biology and Infectious Diseases, Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
29
|
Zhao K, Yi Y, Ma Z, Zhang W. INHBA is a Prognostic Biomarker and Correlated With Immune Cell Infiltration in Cervical Cancer. Front Genet 2022; 12:705512. [PMID: 35058963 PMCID: PMC8764128 DOI: 10.3389/fgene.2021.705512] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 12/06/2021] [Indexed: 11/29/2022] Open
Abstract
Background: Inhibin A (INHBA), a member of the TGF-β superfamily, has been shown to be differentially expressed in various cancer types and is associated with prognosis. However, its role in cervical cancer remains unclear. Methods: We aimed to demonstrate the relationship between INHBA expression and pan-cancer using The Cancer Genome Atlas (TCGA) database. Next, we validated INHBA expression in cervical cancer using the Gene Expression Omnibus (GEO) database, including GSE7803, GSE63514, and GSE9750 datasets. Enrichment analysis of INHBA was performed using the R package “clusterProfiler.” We analyzed the association between immune infiltration level and INHBA expression in cervical cancer using the single-sample gene set enrichment analysis (ssGSEA) method by the R package GSVA. We explored the association between INHBA expression and prognosis using the R package “survival”. Results: Pan-cancer data analysis showed that INHBA expression was elevated in 19 tumor types, including cervical cancer. We further confirmed that INHBA expression was higher in cervical cancer samples from GEO database and cervical cancer cell lines than in normal cervical cells. Survival prognosis analysis indicated that higher INHBA expression was significantly associated with reduced Overall Survival (p = 0.001), disease Specific Survival (p = 0.006), and Progression Free Interval (p = 0.001) in cervical cancer and poorer prognosis in other tumors. GSEA and infiltration analysis showed that INHBA expression was significantly associated with tumor progression and some types of immune infiltrating cells. Conclusion:INHBA was highly expressed in cervical cancer and was significantly associated with poor prognosis. Meanwhile, it was correlated with immune cell infiltration and could be used as a promising prognostic target for cervical cancer.
Collapse
Affiliation(s)
- Kaidi Zhao
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuexiong Yi
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhou Ma
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Zhang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
30
|
Kiran S, Wilson B, Saha S, Graff JA, Dutta A. HPVE6-USP46 Mediated Cdt2 Stabilization Reduces Set8 Mediated H4K20-Methylation to Induce Gene Expression Changes. Cancers (Basel) 2021; 14:30. [PMID: 35008200 PMCID: PMC8750077 DOI: 10.3390/cancers14010030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/21/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
E6 from high-risk strains of HPV is well known to transform cells by deregulating p53. We reported that in HPV transformed cell-lines E6 from high-risk HPV can recruit the USP46 deubiquitinase to substrates such as Cdt2 and stabilize the latter, and that USP46 is important for growth of HPV induced tumors in xenografts. Here we show that in cervical cancer biopsies the stabilization of Cdt2 in the HPV-induced cancers leads to the decrease of a CRL4-Cdt2 substrate, the histone H4K20 mono-methyltransferase Set8, and decrease in H4K20me1 or H4K20me3 that can be detected by immunohistochemistry. In HPV-transformed cancer cell lines in vitro, knockdown of E6 decreases Cdt2 and increases Set8. Co-knockdown of Set8 shows that some of the gene expression changes produced by E6 knockdown is due to the increase of Set8. EGFR and EGFR regulated genes were identified in this set of genes. Turning to the mechanism by which E6 stabilizes Cdt2, we find that a purified E6:USP46 complex has significantly more de-ubiquitinase activity in vitro than USP46 alone, demonstrating that E6 can directly interact with USP46 in the absence of other proteins and that it can substitute for the known activators of USP46, UAF1 and WDR20. Deletion mapping of Cdt2 shows that there are three discrete, but redundant, parts of the substrate that are essential for stabilization by E6: USP46. The helix-loop-helix region or the WD40 repeat driven beta-propeller structure of Cdt2 are dispensable for the stabilization implying that interaction with DDB1 (and the rest of the CRL4 complex) or with the substrate of the CRL4-Cdt2 E3 ligase is not necessary for E6:USP46 to interact with and stabilize Cdt2. The identification of 50 amino acid stretches in the 731 amino acid Cdt2 protein as being important for the stabilization by E6 underlines the specificity of the process. In summary, E6 activates the deubiquitinase activity of USP46, stabilizes Cdt2 utilizing multiple sites on Cdt2, and leads to degradation of Set8 and changes in gene-expression in HPV-transformed cells.
Collapse
Affiliation(s)
- Shashi Kiran
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA; (B.W.); (S.S.); (J.A.G.)
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Briana Wilson
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA; (B.W.); (S.S.); (J.A.G.)
| | - Shekhar Saha
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA; (B.W.); (S.S.); (J.A.G.)
| | - Julia Ann Graff
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA; (B.W.); (S.S.); (J.A.G.)
| | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA; (B.W.); (S.S.); (J.A.G.)
- Department of Genetics, University of Alabama, Birmingham, AL 35294, USA
| |
Collapse
|
31
|
Liu S, Song L, Yao H, Zhang L. HPV16 E6/E7 stabilize PGK1 protein by reducing its poly-ubiquitination in cervical cancer. Cell Biol Int 2021; 46:370-380. [PMID: 34882921 DOI: 10.1002/cbin.11744] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/03/2021] [Accepted: 11/28/2021] [Indexed: 12/11/2022]
Abstract
This study aimed to explore the expression profile, prognostic value, regulatory effect, and the underlying mechanism of dysregulation of phosphoglycerate kinase 1 (PGK1) in high-risk human papillomavirus (HPV)-positive cervical epithelial squamous cell carcinoma (CESC). Bioinformatic analysis was performed using the CESC subset of The Cancer Genome Atlas (TCGA)-Cervical Cancer (CESC) and normal cervix in The Genotype-Tissue Expression (GTEx) project. HPV-16 positive CaSki and SiHa cells were used as in vitro cell models. Results showed that compared to the normal cervix, CESC tissues had significantly higher expression of PGK1. CESC patients with the higher 50% expression of PGK1 had substantially shorter disease-specific survival (DSS), and progression-free survival (PFS) compared to the cases with the lower 50% expression of PGK1. PGK1 knockdown impaired, but PGK1 overexpression enhanced the proliferation, colony formation, aerobic glycolytic activities (lactate production, intracellular ATP levels, glucose uptake, and extracellular acidification rate), migration, and invasion of CaSki and SiHa cells. HPV-16 E6/E7 knockdown in CaSki and SiHa cells had limited influence on PGK1 transcription but significantly decreased the half-life of PGK1 protein. E6/E7 knockdown mediated PGK1 downregulation could be blocked by adding MG-132. PGK1 poly-ubiquitination was significantly enhanced after E6/E7 knockdown. In conclusion, this study showed that PGK1 expression might serve as a prognostic biomarker in cervical cancer. Its upregulation contributes to enhanced aerobic glycolysis, migration, and invasion of CESC cells. HPV16 E6/E7 stabilizes PGK1 protein by reducing its poly-ubiquitination.
Collapse
Affiliation(s)
- Shikai Liu
- Department of Obstetrics and Gynecology, Cangzhou Central Hospital, Cangzhou, China
| | - Lili Song
- Department of Obstetrics and Gynecology, Cangzhou Central Hospital, Cangzhou, China
| | - Hairong Yao
- Department of Obstetrics and Gynecology, Cangzhou Central Hospital, Cangzhou, China
| | - Liang Zhang
- Department of Obstetrics and Gynecology, Cangzhou Central Hospital, Cangzhou, China
| |
Collapse
|
32
|
Ye X, Hang Y, Lu Y, Li D, Shen F, Guan P, Dong J, Shi L, Hu W. CircRNA circ-NNT mediates myocardial ischemia/reperfusion injury through activating pyroptosis by sponging miR-33a-5p and regulating USP46 expression. Cell Death Dis 2021; 7:370. [PMID: 34845193 PMCID: PMC8630116 DOI: 10.1038/s41420-021-00706-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/06/2021] [Accepted: 10/04/2021] [Indexed: 11/09/2022]
Abstract
Pyroptosis has been implicated in the pathophysiology of myocardial infarction (MI) in rodents, but its contribution to reperfusion injury in MI patients is unclear. Here, we evaluated pyroptosis in MI patients in vitro and in vivo models of myocardial ischemia/reperfusion (I/R) injury. We also investigated the molecular mechanisms that regulate pyroptosis and myocardial I/R injury in these in vitro and in vivo models. The study showed that MI patients exhibited elevated serum concentrations of the pyroptosis-related pro-inflammatory cytokines IL-1β and IL-18. Increased levels of IL-1β and IL-18 as well as the pyroptosis-related inflammatory caspases (caspase-1 and 11) were detected in cultured cardiomyocytes after anoxia/reoxygenation (A/R) and in cardiac tissues after I/R. Circ-NNT and USP46 were upregulated while miR-33a-5p was downregulated in MI patients, as well as in cultured cardiomyocytes after A/R and cardiac tissues after I/R. Circ-NNT or USP46 knockdown or miR-33a-5p overexpression inhibited the expression of pro-caspase-1, cleaved caspase-1, pro-caspase-11, cleaved caspase-11, IL-1β, and IL-18 in A/R cardiomyocytes and attenuated myocardial infarction in I/R mice. The results from luciferase reporter assays and gene overexpression/knockdown studies indicated that miR-33a-5p directly targets USP46, and circ-NNT regulates USP46 by acting as a miR-33a-5p sponge. Direct association between circ-NNT and miR-33a-5p in cardiomyocytes was confirmed by pull-down assays. In summary, pyroptosis is activated during myocardial I/R and contributes to reperfusion injury. Circ-NNT promotes pyroptosis and myocardial I/R injury by acting as a miR-33a-5p sponge to regulate USP46. This circ-NNT→miR-33a-5p→USP46 signaling axis may serve as a potential target for the development of cardio-protective agents to improve the clinical outcome of reperfusion therapy.
Collapse
Affiliation(s)
- Xiaomiao Ye
- grid.8547.e0000 0001 0125 2443Department of Cardiology, Minhang Hospital, Fudan University, Shanghai, China
| | - Yanwen Hang
- grid.8547.e0000 0001 0125 2443Department of Cardiology, Minhang Hospital, Fudan University, Shanghai, China
| | - Yi Lu
- grid.8547.e0000 0001 0125 2443Department of Cardiology, Minhang Hospital, Fudan University, Shanghai, China
| | - Dandan Li
- grid.8547.e0000 0001 0125 2443Department of Cardiology, Minhang Hospital, Fudan University, Shanghai, China
| | - Fangfang Shen
- grid.8547.e0000 0001 0125 2443Department of Cardiology, Minhang Hospital, Fudan University, Shanghai, China
| | - Ping Guan
- grid.8547.e0000 0001 0125 2443Department of Cardiology, Minhang Hospital, Fudan University, Shanghai, China
| | - Jian Dong
- grid.8547.e0000 0001 0125 2443Department of Cardiology, Minhang Hospital, Fudan University, Shanghai, China
| | - Ludong Shi
- Department of Cardiology, Minhang Hospital, Fudan University, Shanghai, China.
| | - Wei Hu
- Department of Cardiology, Minhang Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
33
|
Qiu Y, Huang D, Sheng Y, Huang J, Li N, Zhang S, Hong Z, Yin X, Yan J. Deubiquitinating enzyme USP46 suppresses the progression of hepatocellular carcinoma by stabilizing MST1. Exp Cell Res 2021; 405:112646. [PMID: 34029571 DOI: 10.1016/j.yexcr.2021.112646] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 05/04/2021] [Accepted: 05/08/2021] [Indexed: 12/24/2022]
Abstract
The deubiquitinating enzyme USP46 (ubiquitin-specific protease 46) is implicated in various cancers. However, its role and regulatory mechanism in HCC (hepatocellular carcinoma) are still unknown. In this study, we showed that USP46 is downregulated in HCC tissues and that low USP46 levels are associated with poor prognosis in HCC patients. In functional experiments, overexpression of USP46 impaired proliferation and metastasis of HCC cells, whereas knockdown of USP46 enhanced cell proliferation and invasiveness in vitro and in vivo. Furthermore, we found that USP46 suppresses HCC cell proliferation and metastasis by inhibiting YAP1. Ectopic expression of YAP1 rescued the inhibition of cell proliferation and metastasis caused by USP46 overexpression. Mechanistically, USP46 promotes the degradation of YAP1 by increasing expression of MST1, and the increase in MST1 protein antagonizes YAP1 to suppress HCC progression. Finally, we demonstrated that USP46 stabilizes the MST1 protein by directly binding to it and decreasing its ubiquitination. Taken together, our results demonstrated that USP46 may be a novel tumor suppressor in HCC. Moreover, USP46 acts as a deubiquitinating enzyme of MST1 to potentiate MST1 kinase activity to suppress tumor growth and metastasis, indicating that USP46 activation may represent a potential treatment strategy for HCC.
Collapse
Affiliation(s)
- Yumin Qiu
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Dan Huang
- Department of Anesthesiology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Yanling Sheng
- Department of Ultrasound, The Affliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, 330006, China
| | - Jinshi Huang
- Department of General Surgery, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi Province, 330006, China
| | - Nuoya Li
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Shouhua Zhang
- Department of General Surgery, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi Province, 330006, China
| | - Zhengdong Hong
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Xiangbao Yin
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China.
| | - Jinlong Yan
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China.
| |
Collapse
|
34
|
Zhou S, Cai Y, Liu X, Jin L, Wang X, Ma W, Zhang T. Role of H2B mono-ubiquitination in the initiation and progression of cancer. Bull Cancer 2021; 108:385-398. [PMID: 33685627 DOI: 10.1016/j.bulcan.2020.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 01/07/2023]
Abstract
Numerous epigenetic alterations are observed in cancer cells, and dysregulation of mono-ubiquitination of histone H2B (H2Bub1) has often been linked to tumorigenesis. H2Bub1 is a dynamic post-translational histone modification associated with transcriptional elongation and DNA damage response. Histone H2B monoubiquitination occurs in the site of lysine 120, written predominantly by E3 ubiquitin ligases RNF20/RNF40 and deubiquitinated by ubiquitin specific peptidase 22 (USP22). RNF20/40 is often altered in the primary tumors including colorectal cancer, breast cancer, ovarian cancer, prostate cancer, and lung cancer, and the loss of H2Bub1 is usually associated with poor prognosis in tumor patients. The purpose of this review is to summarize the current knowledge of H2Bub1 in transcription, DNA damage response and primary tumors. This review also provides novel options for exploiting the potential therapeutic target H2Bub1 in personalized cancer therapy.
Collapse
Affiliation(s)
- Sa Zhou
- Tianjin University of Science and Technology, College of Biotechnology, Tianjin 300457, PR China
| | - Yuqiao Cai
- Tianjin University of Science and Technology, College of Biotechnology, Tianjin 300457, PR China
| | - Xinyi Liu
- Tianjin University of Science and Technology, College of Biotechnology, Tianjin 300457, PR China
| | - Lijun Jin
- Tianjin University of Science and Technology, College of Biotechnology, Tianjin 300457, PR China
| | - Xiaoqin Wang
- Beijing University of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing 102206, PR China
| | - Wenjian Ma
- Tianjin University of Science and Technology, College of Biotechnology, Tianjin 300457, PR China; Qilu Institute of Technology, Shandong 250200, PR China.
| | - Tongcun Zhang
- Tianjin University of Science and Technology, College of Biotechnology, Tianjin 300457, PR China; Wuhan University of Science and Technology, Institute of Biology and Medicine, Wuhan 430081, PR China.
| |
Collapse
|
35
|
The deubiquitinase (DUB) USP13 promotes Mcl-1 stabilisation in cervical cancer. Oncogene 2021; 40:2112-2129. [PMID: 33627786 PMCID: PMC7979541 DOI: 10.1038/s41388-021-01679-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 01/13/2021] [Accepted: 01/25/2021] [Indexed: 01/30/2023]
Abstract
Protein ubiquitination is a critical regulator of cellular homeostasis. Aberrations in the addition or removal of ubiquitin can result in the development of cancer and key components of the ubiquitination machinery serve as oncogenes or tumour suppressors. An emerging target in the development of cancer therapeutics are the deubiquitinase (DUB) enzymes that remove ubiquitin from protein substrates. Whether this class of enzyme plays a role in cervical cancer has not been fully explored. By interrogating the cervical cancer data from the TCGA consortium, we noted that the DUB USP13 is amplified in ~15% of cervical cancer cases. We confirmed that USP13 expression was increased in cervical cancer cell lines, cytology samples from patients with cervical disease and in cervical cancer tissue. Depletion of USP13 inhibited cervical cancer cell proliferation. Mechanistically, USP13 bound to, deubiquitinated and stabilised Mcl-1, a pivotal member of the anti-apoptotic BCL-2 family. Furthermore, reduced Mcl-1 expression partially contributed to the observed proliferative defect in USP13 depleted cells. Importantly, the expression of USP13 and Mcl-1 proteins correlated in cervical cancer tissue. Finally, we demonstrated that depletion of USP13 expression or inhibition of USP13 enzymatic activity increased the sensitivity of cervical cancer cells to the BH3 mimetic inhibitor ABT-263. Together, our data demonstrates that USP13 is a potential oncogene in cervical cancer that functions to stabilise the pro-survival protein Mcl-1, offering a potential therapeutic target for these cancers.
Collapse
|
36
|
Song H, Zhao C, Yu Z, Li Q, Yan R, Qin Y, Jia M, Zhao W. UAF1 deubiquitinase complexes facilitate NLRP3 inflammasome activation by promoting NLRP3 expression. Nat Commun 2020; 11:6042. [PMID: 33247121 PMCID: PMC7695691 DOI: 10.1038/s41467-020-19939-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/05/2020] [Indexed: 02/08/2023] Open
Abstract
NOD-like receptor protein 3 (NLRP3) detects microbial infections or endogenous danger signals and activates the NLRP3 inflammasome, which has important functions in host defense and contributes to the pathogenesis of inflammatory diseases, and thereby needs to be tightly controlled. Deubiquitination of NLRP3 is considered a key step in NLRP3 inflammasome activation. However, the mechanisms by which deubiquitination controls NLRP3 inflammasome activation are unclear. Here, we show that the UAF1/USP1 deubiquitinase complex selectively removes K48-linked polyubiquitination of NLRP3 and suppresses its ubiquitination-mediated degradation, enhancing cellular NLRP3 levels, which are indispensable for subsequent NLRP3 inflammasome assembly and activation. In addition, the UAF1/USP12 and UAF1/USP46 complexes promote NF-κB activation, enhance the transcription of NLRP3 and proinflammatory cytokines (including pro-IL-1β, TNF, and IL-6) by inhibiting ubiquitination-mediated degradation of p65. Consequently, Uaf1 deficiency attenuates NLRP3 inflammasome activation and IL-1β secretion both in vitro and in vivo. Our study reveals that the UAF1 deubiquitinase complexes enhance NLRP3 and pro-IL-1β expression by targeting NLRP3 and p65 and licensing NLRP3 inflammasome activation. NLRP3 inflammasome activation is regulated by various signaling pathways to ensure inflammation does not go unchecked. Here the authors show how deubiquitination avoids this regulation to activate the NLRP3 inflammasome through the function of UAF1/USP deubiquitinase complexes.
Collapse
Affiliation(s)
- Hui Song
- Department of Immunology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China.,State Key Laboratory of Microbial Technology, Shandong University, 250012, Jinan, Shandong, China
| | - Chunyuan Zhao
- Department of Immunology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China.,State Key Laboratory of Microbial Technology, Shandong University, 250012, Jinan, Shandong, China.,Department of Cell Biology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China
| | - Zhongxia Yu
- Department of Immunology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China.,State Key Laboratory of Microbial Technology, Shandong University, 250012, Jinan, Shandong, China
| | - Qizhao Li
- Department of Immunology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China.,State Key Laboratory of Microbial Technology, Shandong University, 250012, Jinan, Shandong, China
| | - Rongzhen Yan
- Department of Immunology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China.,State Key Laboratory of Microbial Technology, Shandong University, 250012, Jinan, Shandong, China
| | - Ying Qin
- Department of Immunology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China.,State Key Laboratory of Microbial Technology, Shandong University, 250012, Jinan, Shandong, China
| | - Mutian Jia
- Department of Immunology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China.,State Key Laboratory of Microbial Technology, Shandong University, 250012, Jinan, Shandong, China
| | - Wei Zhao
- Department of Immunology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China. .,State Key Laboratory of Microbial Technology, Shandong University, 250012, Jinan, Shandong, China.
| |
Collapse
|
37
|
Tian M, Zhu R, Ding F, Liu Z. Ubiquitin-specific peptidase 46 promotes tumor metastasis through stabilizing ENO1 in human esophageal squamous cell carcinoma. Exp Cell Res 2020; 395:112188. [PMID: 32707136 DOI: 10.1016/j.yexcr.2020.112188] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/06/2020] [Accepted: 07/19/2020] [Indexed: 01/06/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) has high aggressiveness and poor prognosis, and is the major histological subtype of esophageal cancer in East Asia and East Africa. In this study, we found that USP46, a deubiquitinating enzyme, is overexpressed in clinical ESCC samples, especially in patients with positive lymph node metastasis. Moreover, USP46 enhances the migration and invasion of ESCC cells by mediating the EMT process in vitro, and promotes lymph nodes and lung metastasis of ESCC in vivo. In addition, we found that USP46 is a bona fide deubiquitinating enzyme to stabilize the protein level of ENO1 through deubiquitination. ENO1 protein level was also positively correlated with USP46 in the ESCC samples. In summary, these findings reveal the functional role of USP46 as a deubiquitinating enzyme on ESCC metastasis, providing us a potential therapeutic target for the treatment of ESCC.
Collapse
Affiliation(s)
- Maoqing Tian
- Guizhou University School of Medicine, Guizhou, 550025, PR China
| | - Rui Zhu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, PR China
| | - Fang Ding
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, PR China
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, PR China.
| |
Collapse
|
38
|
Hodul M, Ganji R, Dahlberg CL, Raman M, Juo P. The WD40-repeat protein WDR-48 promotes the stability of the deubiquitinating enzyme USP-46 by inhibiting its ubiquitination and degradation. J Biol Chem 2020; 295:11776-11788. [PMID: 32587090 DOI: 10.1074/jbc.ra120.014590] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/22/2020] [Indexed: 01/11/2023] Open
Abstract
Ubiquitination is a reversible post-translational modification that has emerged as a critical regulator of synapse development and function. However, the mechanisms that regulate the deubiquitinating enzymes (DUBs) responsible for the removal of ubiquitin from target proteins are poorly understood. We have previously shown that the DUB ubiquitin-specific protease 46 (USP-46) removes ubiquitin from the glutamate receptor GLR-1 and regulates its trafficking and degradation in Caenorhabditis elegans We found that the WD40-repeat proteins WDR-20 and WDR-48 bind and stimulate the catalytic activity of USP-46. Here, we identified another mechanism by which WDR-48 regulates USP-46. We found that increased expression of WDR-48, but not WDR-20, promotes USP-46 abundance in mammalian cells in culture and in C. elegans neurons in vivo Inhibition of the proteasome increased USP-46 abundance, and this effect was nonadditive with increased WDR-48 expression. We found that USP-46 is ubiquitinated and that expression of WDR-48 reduces the levels of ubiquitin-USP-46 conjugates and increases the t 1/2 of USP-46. A point-mutated WDR-48 variant that disrupts binding to USP-46 was unable to promote USP-46 abundance in vivo Finally, siRNA-mediated knockdown of wdr48 destabilizes USP46 in mammalian cells. Together, these results support a model in which WDR-48 binds and stabilizes USP-46 protein levels by preventing the ubiquitination and degradation of USP-46 in the proteasome. Given that a large number of USPs interact with WDR proteins, we propose that stabilization of DUBs by their interacting WDR proteins may be a conserved and widely used mechanism that controls DUB availability and function.
Collapse
Affiliation(s)
- Molly Hodul
- Graduate Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA.,Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Rakesh Ganji
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Caroline L Dahlberg
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA.,Department of Biology, Western Washington University, Bellingham, Washington, USA
| | - Malavika Raman
- Graduate Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA.,Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Peter Juo
- Graduate Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA .,Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
39
|
Yuan Y, Shi X, Li B, Peng M, Zhu T, Lv G, Liu L, Jin H, Li L, Qin D. Integrated analysis of key microRNAs /TFs /mRNAs/ in HPV-positive cervical cancer based on microRNA sequencing and bioinformatics analysis. Pathol Res Pract 2020; 216:152952. [PMID: 32307200 DOI: 10.1016/j.prp.2020.152952] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/15/2020] [Accepted: 03/29/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Cervical squamous cell carcinoma (CESC) is one of the most common malignancies associated with mortality in females. Its onset and prognosis are primarily concerned with persistent infection with high-risk types of human papillomavirus (HPV). However, the molecular mechanisms of HPV-positive CESC remain unclear. METHODS In this study, we conducted a high-throughput sequencing to identify differentially expressed miRNAs (DEMs). Besides, three series were selected from the Gene Expression Omnibus (GEO) database to identify differentially expressed genes (DEGs). Then the miRNA-TF-gene regulatory network was constructed using bioinformatic methods. Genes in the network were performed functional enrichment analysis and protein-protein interaction (PPI) network analysis. Ultimately, the expression levels of six key miRNAs, TFs, and mRNAs were validated by 20 HPV-positive CESC tissues and 15 normal cervical samples. RESULTS A total of 52 DEMs and 300 DEGs differed between the HPV-positive CESC and normal cervical samples. Then the miRNA-TF-gene regulatory network was constructed consisting of 22 miRNAs, 6 TFs, and 76 corresponding genes, among which miR-149-5p, miRNA-1248 and E2F4 acted as key regulators. PPI network analysis showed that ten genes including TOP2A, AURKA, CHEK1, KIF11, MCM4, MKI67, DTL, FOXM1, SMC4, and FBXO5 were recognized as hub genes with the highest connectivity degrees. Besides, five key molecules miRNA-149-5p, E2F4, KIF11, DTL, and SMC4 were suggested to play crucial roles in the development of HPV-positive CESC. CONCLUSION These results present a unique insight into the pathological mechanisms of HPV-positive CESC and possibly provides potential therapeutic targets.
Collapse
Affiliation(s)
- Yingying Yuan
- Department of Clinical Laboratory, Key Laboratory of Laboratory Medicine of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiaoqing Shi
- Department of Clinical Laboratory, Key Laboratory of Laboratory Medicine of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Bingjie Li
- Department of Clinical Laboratory, Fuwai Central China Cardiovascular Hospital, Zhengzhou 451450, China
| | - Mengle Peng
- Department of Clinical Laboratory, The Third People's Hospital of Henan Province, Zhengzhou 450050, China
| | - Tao Zhu
- Department of Clinical Laboratory, People's Hospital of Zhecheng County, Shangqiu 476200, China
| | - Guanting Lv
- Department of Blood Transfusion, The Second Affiliated Hospital of Air Force Military Medical University of Chinese PLA, Xian 710032, China
| | - Lu Liu
- Department of Clinical Laboratory, Key Laboratory of Laboratory Medicine of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Huifang Jin
- Department of Blood Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Liuxia Li
- Department of Gynaecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Dongchun Qin
- Department of Clinical Laboratory, Key Laboratory of Laboratory Medicine of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
40
|
Panagopoulos A, Taraviras S, Nishitani H, Lygerou Z. CRL4Cdt2: Coupling Genome Stability to Ubiquitination. Trends Cell Biol 2020; 30:290-302. [DOI: 10.1016/j.tcb.2020.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/12/2020] [Accepted: 01/14/2020] [Indexed: 12/20/2022]
|
41
|
Dou N, Hu Q, Li L, Wu Q, Li Y, Gao Y. USP32 promotes tumorigenesis and chemoresistance in gastric carcinoma via upregulation of SMAD2. Int J Biol Sci 2020; 16:1648-1657. [PMID: 32226309 PMCID: PMC7097920 DOI: 10.7150/ijbs.43117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/29/2020] [Indexed: 12/21/2022] Open
Abstract
USP32, a member of the ubiquitin-specific proteases family, has been implicated in the development of breast cancer and small lung cancer. However, its biological functions and clinical significance in gastric cancer (GC) remain unclear. In the present study, we reported that knockdown or depletion of USP32 significantly inhibited GC cell proliferation and migration in vitro and in vivo, indicating that USP32 functions as an oncogene in GC. Importantly, results from immunohistochemical staining in a tissue microarray revealed that USP32 was upregulated in GC tissues compared with paracancerous tissues. Further analyses showed that high expression of USP32 was closely related with high T-staging and poor outcomes of GC patients. Mechanistically, USP32 silencing caused a decrease in the expression of SMAD2, which resulted in the inhibitory effects of GC cells on growth, motility, and chemoresistance to cisplatin. Therefore, our findings strongly suggest the involvement of USP32 in GC progression and provide a potential target for future therapy of GC.
Collapse
Affiliation(s)
- Ning Dou
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Qingqing Hu
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Li Li
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Qiong Wu
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yandong Li
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yong Gao
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| |
Collapse
|
42
|
Đukić A, Lulić L, Thomas M, Skelin J, Bennett Saidu NE, Grce M, Banks L, Tomaić V. HPV Oncoproteins and the Ubiquitin Proteasome System: A Signature of Malignancy? Pathogens 2020; 9:pathogens9020133. [PMID: 32085533 PMCID: PMC7168213 DOI: 10.3390/pathogens9020133] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/22/2022] Open
Abstract
Human papillomavirus (HPV) E6 and E7 oncoproteins are critical for development and maintenance of the malignant phenotype in HPV-induced cancers. These two viral oncoproteins interfere with a plethora of cellular pathways, including the regulation of cell cycle and the control of apoptosis, which are critical in maintaining normal cellular functions. E6 and E7 bind directly with certain components of the Ubiquitin Proteasome System (UPS), enabling them to manipulate a number of important cellular pathways. These activities are the means by which HPV establishes an environment supporting the normal viral life cycle, however in some instances they can also lead to the development of malignancy. In this review, we have discussed how E6 and E7 oncoproteins from alpha and beta HPV types interact with the components of the UPS, and how this interplay contributes to the development of cancer.
Collapse
Affiliation(s)
- Anamaria Đukić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (A.Đ.); (L.L.); (J.S.); (N.E.B.S.); (M.G.)
| | - Lucija Lulić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (A.Đ.); (L.L.); (J.S.); (N.E.B.S.); (M.G.)
| | - Miranda Thomas
- International Centre for Genetic Engineering and Biotechnology, AREA Science Park, Padriciano 99, I-34149 Trieste, Italy; (M.T.); (L.B.)
| | - Josipa Skelin
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (A.Đ.); (L.L.); (J.S.); (N.E.B.S.); (M.G.)
| | - Nathaniel Edward Bennett Saidu
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (A.Đ.); (L.L.); (J.S.); (N.E.B.S.); (M.G.)
| | - Magdalena Grce
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (A.Đ.); (L.L.); (J.S.); (N.E.B.S.); (M.G.)
| | - Lawrence Banks
- International Centre for Genetic Engineering and Biotechnology, AREA Science Park, Padriciano 99, I-34149 Trieste, Italy; (M.T.); (L.B.)
| | - Vjekoslav Tomaić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (A.Đ.); (L.L.); (J.S.); (N.E.B.S.); (M.G.)
- Correspondence: ; Tel.: +385-1-4561110; Fax: +385-1-4561010
| |
Collapse
|
43
|
Functional analysis of deubiquitylating enzymes in tumorigenesis and development. Biochim Biophys Acta Rev Cancer 2019; 1872:188312. [DOI: 10.1016/j.bbcan.2019.188312] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 02/06/2023]
|
44
|
Mennerich D, Kubaichuk K, Kietzmann T. DUBs, Hypoxia, and Cancer. Trends Cancer 2019; 5:632-653. [PMID: 31706510 DOI: 10.1016/j.trecan.2019.08.005] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/24/2019] [Accepted: 08/27/2019] [Indexed: 02/08/2023]
Abstract
Alterations in protein ubiquitylation and hypoxia are commonly associated with cancer. Ubiquitylation is carried out by three sequentially acting ubiquitylating enzymes and can be opposed by deubiquitinases (DUBs), which have emerged as promising drug targets. Apart from protein localization and activity, ubiquitylation regulates degradation of proteins, among them hypoxia-inducible factors (HIFs). Thereby, various E3 ubiquitin ligases and DUBs regulate HIF abundance. Conversely, several E3s and DUBs are regulated by hypoxia. While hypoxia is a powerful HIF regulator, less is known about hypoxia-regulated DUBs and their impact on HIFs. Here, we review current knowledge about the relationship of E3s, DUBs, and hypoxia signaling. We also discuss the reciprocal regulation of DUBs by hypoxia and use of DUB-specific drugs in cancer.
Collapse
Affiliation(s)
- Daniela Mennerich
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, 90570, Finland
| | - Kateryna Kubaichuk
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, 90570, Finland
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, 90570, Finland; Biocenter Oulu, University of Oulu, Oulu, 90570, Finland.
| |
Collapse
|
45
|
Loboda AP, Soond SM, Piacentini M, Barlev NA. Lysine-specific post-translational modifications of proteins in the life cycle of viruses. Cell Cycle 2019; 18:1995-2005. [PMID: 31291816 DOI: 10.1080/15384101.2019.1639305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
The process of protein post-translational modifications (PTM) is one of the critical mechanisms of regulation of many cellular processes, which makes it an attractive target for various viruses. Since viruses cannot replicate on their own, they have developed unique abilities to alter metabolic and signaling cell pathways, including protein PTMs, to ensure faithful replication of their genomes. This review describes several ways of how lysine-specific PTMs are used by various viruses to ensure its successful invasion and replication. Covalent modifications like acetylation, ubiquitination, and methylation form a complex system of reversible and often competing modifications, which adds an additional level of complexity to the system of regulation of the activity of host proteins involved in viral replication and propagation. In furthering these, we also describe the manner in which PTM pathways can also be accosted by various types of viruses to neutralize the host's cellular mechanisms for anti-viral protection and highlight key areas for future therapeutic targeting and design.
Collapse
Affiliation(s)
- Anna P Loboda
- a Laboratory of Intracellular Signaling, Moscow Institute of Physics and Technology , Dolgoprudny, Moscow Region , Russian Federation
| | - Surinder M Soond
- b Laboratory of Molecular Biology and Biochemistry, Institute of Molecular Medicine, Sechenov First Moscow State Medical University , Moscow , Russian Federation
| | - Mauro Piacentini
- c Laboratory of Molecular Medicine, Institute of Cytology of the Russian Academy of Science , St-Petersburg , Russian Federation
| | - Nickolai A Barlev
- a Laboratory of Intracellular Signaling, Moscow Institute of Physics and Technology , Dolgoprudny, Moscow Region , Russian Federation.,c Laboratory of Molecular Medicine, Institute of Cytology of the Russian Academy of Science , St-Petersburg , Russian Federation
| |
Collapse
|