1
|
Xu DQ, Geng JX, Gao ZK, Fan CY, Zhang BW, Han X, He LQ, Dai L, Gao S, Yang Z, Zhang Y, Arshad M, Fu Y, Mu XQ. To explore the potential combined treatment strategy for colorectal cancer: Inhibition of cancer stem cells and enhancement of intestinal immune microenvironment. Eur J Pharmacol 2025; 998:177533. [PMID: 40120791 DOI: 10.1016/j.ejphar.2025.177533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 03/19/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND The antibiotic salinomycin, a well-known cancer stem cell inhibitor, may impact the diversity of the intestinal microbiota in colorectal cancer (CRC) mice, which plays a pivotal role in shaping the immune system. This study explores the anti-cancer effects and mechanisms of combining salinomycin and fecal microbiota transplantation (FMT) in treating CRC. METHODS FMT was given via enema, while salinomycin was injected intraperitoneally into the CRC mouse model induced by azoxymethane/dextran sodium sulfate. RESULTS In CRC mice, a large number of LGR5-labeled cancer stem cells and severe disturbances in the intestinal microbiota were observed. Interestingly, salinomycin inhibited the proliferation of cancer stem cells without exacerbating the microbial disorder as expected. In comparison to salinomycin treatment, the combination of salinomycin and FMT significantly improved pathological damage and restored intestinal microbial diversity, which is responsible for shaping the anti-cancer immune microenvironment. The supplementation of FMT significantly increased the levels of propionic acid and butyric acid while also promoting the infiltration of CD8+ T cells and Ly6G+ neutrophils, as well as reducing F4/80+ macrophage recruitment. Notably, cytokines that were not impacted by salinomycin exhibited robust reactions to alterations in the gut microbiota. These included pro-inflammatory factors (IL6, IL12b, IL17, and IL22), chemokine-like protein OPN, and immunosuppressive factor PD-L1. CONCLUSIONS Salinomycin plays the role of "eliminating pathogenic qi," targeting cancer stem cells; FMT plays the role of "strengthening vital qi," reversing the intestinal microbiota disorder and enhancing anti-cancer immunity. They have a synergistic effect on the development of CRC.
Collapse
Affiliation(s)
- Dan-Qi Xu
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Jia-Xin Geng
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Zhan-Kui Gao
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Chao-Yuan Fan
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Bo-Wen Zhang
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Xing Han
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Li-Qian He
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Lin Dai
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Shuo Gao
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Zhou Yang
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Yang Zhang
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Muhammad Arshad
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Yin Fu
- School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, 150006, China.
| | - Xiao-Qin Mu
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
2
|
Yan Y, Kong X, Jin X, Bu J, Ni B, Rao Z, Guo J, Xu S. RNA‑binding protein MBNL1 regulates tumor growth, chemosensitivity and antitumor immunity in lung adenocarcinoma by controlling the expression of tumor suppressor RNF125. Oncol Rep 2025; 54:74. [PMID: 40341413 PMCID: PMC12075997 DOI: 10.3892/or.2025.8907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 04/01/2025] [Indexed: 05/10/2025] Open
Abstract
Ring finger protein 125 (RNF125), a ubiquitin E3 ligase, has been reported to act as a tumor suppressor in several cancers, but its precise function in lung adenocarcinoma (LUAD) has not been elucidated. In the present study, through bioinformatics analysis and immunohistochemistry in LUAD and non‑cancerous samples, it was demonstrated that RNF125 was significantly downregulated in lung cancer. Low levels of RNF125 expression were associated with metastatic status, advanced tumor stage and poor overall survival in LUAD. The results of gain‑ and loss‑of‑function experiments demonstrated that RNF125 inhibited proliferation, colony formation, migration and invasion of LUAD cells. In addition, RNF125 increased the sensitivity of LUAD cells to cisplatin. Mechanistically, RNF125 interacted with programmed cell death ligand 1 (PD‑L1) and reduced PD‑L1 expression levels in LUAD cells. Furthermore, IL‑2 secretion by Jurkat T cells was significantly suppressed when co‑cultured with RNF125‑silenced LUAD cells. NK‑92 cell lysis of RNF125‑silenced LUAD cells was also weaker compared with that of control LUAD cells, suggesting that RNF125 knockdown enhanced the immune evasion ability of LUAD cells. Notably, the results of the present study identified that the RNA‑binding protein muscleblind‑like 1 (MBNL1) is the upstream regulator of RNF125 in LUAD. MBNL1 increased the stability of the RNF125 transcript in LUAD cells and knockdown of RNF125 reversed the antitumor effect of MBNL1 on LUAD cells. In conclusion, the present study demonstrated the tumor suppressor role of RNF125 in LUAD and implicated MBNL1 as an upstream regulator of RNF125 in LUAD. These findings contributed to an improved understanding of the molecular features of LUAD progression.
Collapse
Affiliation(s)
- Yubo Yan
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150000, P.R. China
| | - Xianglong Kong
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150000, P.R. China
| | - Xiangyuan Jin
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150000, P.R. China
| | - Jianlong Bu
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150000, P.R. China
| | - Boxiong Ni
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150000, P.R. China
| | - Zuqin Rao
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150000, P.R. China
| | - Junnan Guo
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150000, P.R. China
| | - Shidong Xu
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150000, P.R. China
| |
Collapse
|
3
|
Xu L, Li K, Li J, Xu F, Liang S, Kong Y, Chen B. The crosstalk between lung adenocarcinoma cells and M2 macrophages promotes cancer cell development via the SFRS1/miR-708-5p/PD-L1 axis. Life Sci 2025; 371:123599. [PMID: 40185466 DOI: 10.1016/j.lfs.2025.123599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/24/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025]
Abstract
This study aimed to elucidate the underlying mechanisms regarding microRNA-708-5p (miR-708-5p) in lung adenocarcinoma (LUAD). Here, the co-culture system of LUAD cells and macrophages, as well as a xenograft mouse model, were established. High levels of miR-708-5p were observed in LUAD. Exosomal miR-708-5p facilitated M2-like phenotype polarization, whereas miR-708-5p inhibition blocked the polarization. Exosomal miR-708-5p was identified as a pivotal signaling molecule for macrophages to mediate tumor cell proliferation, invasion, migration and IFN-γ production in T cells. In addition, miR708-5p was observed to induce PD-L1 expression, and PD-L1 silencing inhibited macrophage-induced tumor cell growth behavior and regulated CD8 T cell activity. In xenograft models, miR-708-5p inhibition and PD-L1 silencing attenuated macrophage-induced tumor growth, induced IFN-γ secretion and CD8 expression, and modulated the PTEN/AKT/mTOR pathway. In LUAD patients, there was an upregulation of both miR-708-5p and PD-L1 expression, accompanied by the activation of PTEN/AKT/mTOR. In conclusion, this study demonstrated the induction of M2 macrophage polarization and PD-L1 expression by exosomal miR-708-5p. We observed that exosomal miR-708-5p mediated the PTEN/AKT/mTOR pathway, diminished CD8 T cell activity and accelerated LUAD progression. The inhibition of specific exosomal miRNA secretion and anti-PD-L1 in the LUAD microenvironment may represent a promising avenue for LUAD immunotherapy.
Collapse
Affiliation(s)
- Li Xu
- The Second Department of Thoracic Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Kang Li
- The Second Department of Thoracic Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Jia Li
- The Second Department of Thoracic Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Fang Xu
- The Second Department of Thoracic Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Shuzhi Liang
- The Second Department of Thoracic Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Yi Kong
- The Second Department of Thoracic Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China.
| | - Bolin Chen
- The Second Department of Thoracic Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China.
| |
Collapse
|
4
|
He Z, Cao J, Wang X, Yang S, Gao H, Yu Y, Di Z, Peng C. Single-cell analyses unravel ecosystem dynamics and intercellular crosstalk during gallbladder cancer malignant transformation. Hepatol Commun 2025; 9:e0697. [PMID: 40377484 DOI: 10.1097/hc9.0000000000000697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 03/04/2025] [Indexed: 05/18/2025] Open
Abstract
BACKGROUND Gallbladder cancer (GBC) is a rare but aggressive malignancy, often detected late due to early asymptomatic stages. Understanding cellular and molecular changes from normal tissue to high-grade intraepithelial neoplasia (HGIN) and invasive GBC is vital for identifying early biomarkers and therapeutic targets. METHODS We performed single-cell RNA sequencing on 98,113 cells derived from 2 normal adjacent tissues (NAT), 2 HGIN, and 6 GBC samples. The cellular diversity and heterogeneity, particularly within epithelial and immune cell populations in NAT-HGIN-GBC, were investigated utilizing single-cell RNA sequencing, bulk RNA sequencing (bulk RNA-seq), and 10 machine learning methodologies. Furthermore, the intercellular crosstalk between epithelial cells and tumor immune microenvironment cells was examined and validated through multiplex immunofluorescence staining. RESULTS The constructed cell atlas elucidated alterations in the immune landscape across various states of NAT-HGIN-GBC, highlighting a more pronounced inhibitory immune microenvironment in GBC. The epithelial subtype TOP2A+ Epi is markedly elevated in GBC and is correlated with a poor prognosis. Key genes associated with this subtype may include GMNN, CYTOR, KLK6, and BIRC5. Similarly, immunosuppressive macrophages, identified as TOP2A+ Macro, also increase along the NAT-HGIN-GBC sequence and are linked to reduced patient survival. Furthermore, TOP2A+ Macro and CD8+ exhausted T cells (CD8+ Tex) engage in intercellular communication with epithelial TOP2A+Epi cells via the TWEAK/FN14 signaling pathway, thereby promoting tumor progression and immune evasion in GBC. The findings were further corroborated through multiplex immunofluorescence staining conducted on specimens from patients. CONCLUSIONS This study elucidates significant alteration in the cellular ecosystems and intercellular signaling within the tumor immune microenvironment across the NAT-HGIN-GBC sequence. It identifies TOP2A, TWEAK, and FN14 as potential biomarkers and therapeutic targets for GBC.
Collapse
Affiliation(s)
- Zhaobin He
- Department of Hepatobiliary Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
- Department of Hepatobiliary Minimally Invasive Surgery, Shandong University Institute of Endoscopic Minimally Invasive Surgery, Jinan, Shandong Province, China
| | - Jianqiang Cao
- Department of Hepatobiliary Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
- Department of Hepatobiliary Minimally Invasive Surgery, Shandong University Institute of Endoscopic Minimally Invasive Surgery, Jinan, Shandong Province, China
| | - Xiqiang Wang
- Department of Hepatobiliary Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
- Department of Hepatobiliary Minimally Invasive Surgery, Shandong University Institute of Endoscopic Minimally Invasive Surgery, Jinan, Shandong Province, China
| | - Shengbiao Yang
- Department of Hepatobiliary Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
- Department of Hepatobiliary Minimally Invasive Surgery, Shandong University Institute of Endoscopic Minimally Invasive Surgery, Jinan, Shandong Province, China
| | - Huijie Gao
- Department of Hepatobiliary Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
- Department of Hepatobiliary Minimally Invasive Surgery, Shandong University Institute of Endoscopic Minimally Invasive Surgery, Jinan, Shandong Province, China
| | - Yongzhe Yu
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Zequn Di
- Department of Hepatobiliary Minimally Invasive Surgery, Shandong University Institute of Endoscopic Minimally Invasive Surgery, Jinan, Shandong Province, China
- Department of Clinical Medicine, School of Basic Medical Sciences Nanchang University, Nanchang, Jiangxi Province, China
| | - Cheng Peng
- Department of Hepatobiliary Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
- Department of Hepatobiliary Minimally Invasive Surgery, Shandong University Institute of Endoscopic Minimally Invasive Surgery, Jinan, Shandong Province, China
| |
Collapse
|
5
|
Wang K, Baird L, Yamamoto M. The clinical-grade CBP/ p300 inhibitor CCS1477 represses the global NRF2-dependent cytoprotective transcription program and re-sensitizes cancer cells to chemotherapeutic drugs. Free Radic Biol Med 2025; 233:102-117. [PMID: 40127850 DOI: 10.1016/j.freeradbiomed.2025.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/14/2025] [Accepted: 03/22/2025] [Indexed: 03/26/2025]
Abstract
Constitutive activation of NRF2 provides a selective advantage to malignant tumour clones through the hijacking of the NRF2-dependent cytoprotective transcriptional program, which allows the cancer cells to survive and thrive in the chemically stressful tumour niche, whilst also providing resistance to anti-cancer drugs due to the upregulation of xenobiotic metabolizing enzymes and drug efflux pumps. Through a small-molecule epigenetic screen carried out in KEAP1 mutant lung cancer cells, in this study, we identified CCS1477 (Inobrodib) to be an inhibitor of the global NRF2-dependent transcription program. Mechanistically, CCS1477 is able to repress NRF2's cytoprotective response through the inhibition of its obligate transcriptional activator partner CBP/p300. Importantly, in addition to repressing NRF2-dependent anti-oxidative stress and xenobiotic metabolizing enzyme gene expression, CCS1477 treatment is also able to reverse the chemoresistance phenotype and re-sensitize NRF2-activated tumour cells to anti-cancer drugs. Furthermore, in co-culture experiments of KEAP1 mutant cancer cells with primary human T cells, CCS1477 treatment suppressed the acquisition of the T cell exhaustion transcriptional state, which should function to augment the anti-cancer immune response. Thus, CCS1477-mediated inhibition of CBP/p300 represents a novel therapeutic strategy with which to target the currently untreatable tumours with aberrant NRF2 activation.
Collapse
Affiliation(s)
- Ke Wang
- Department of Biochemistry and Molecular Biology, Tohoku University, Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan
| | - Liam Baird
- Department of Biochemistry and Molecular Biology, Tohoku University, Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan; Advanced Research Center for Innovations in Next-Generation Medicine (INGEM), Tohoku University, Sendai, 980-8575, Japan; Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Miyagi, Japan.
| | - Masayuki Yamamoto
- Department of Biochemistry and Molecular Biology, Tohoku University, Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan; Advanced Research Center for Innovations in Next-Generation Medicine (INGEM), Tohoku University, Sendai, 980-8575, Japan; Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Miyagi, Japan.
| |
Collapse
|
6
|
Li N, Wang L, Yao J, Yang H. Mechanism of the N6-methyladenosine reader heterogeneous nuclear ribonucleoprotein C facilitating immune escape in thyroid cancer by stabilizing programmed death ligand 1. Cytotechnology 2025; 77:96. [PMID: 40342628 PMCID: PMC12055676 DOI: 10.1007/s10616-025-00755-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 04/11/2025] [Indexed: 05/11/2025] Open
Abstract
Thyroid cancer (TC) is a leading malignancy of the endocrine system. We investigated mechanism of the N6-methyladenosine (m6A) reader heterogeneous nuclear ribonucleoprotein C (HNRNPC) facilitating immune escape in TC by stabilizing programmed death ligand 1 (PD-L1). HNRNPC expression in TC tissues was analyzed using databases. Human TC cells (BHT-101, B-CPAP, SW579) and human thyroid follicular epithelial cells (Nthy-ori3-1) were cultured in vitro. SW579 cells were treated with pcDNA3.1-HNRNPC (oe-HNRNPC) and small interfering (si)-PD-L1, and B-CPAP cells were transfected with si-HNRNPC. HNRNPC and PD-L1 expression levels were assessed by RT-qPCR and Western blot. Cell proliferation, migration and invasion were evaluated by CCK-8, colony formation, and Transwell assays. Carboxyfluorescein diacetate succinimidyl ester-labelled CD8+ T cell proliferation and effector cytokine (interferon-γ, tumor necrosis factor-α) levels were measured by flow cytometry and ELISA. The correlation between HNRNPC and PD-L1 expression in TC tissues, m6A modification sites on PD-L1 messenger RNA (mRNA), and HNRNPC-PD-L1 interaction were analyzed by databases and RIP assay. PD-L1 m6A modification was determined by Me-RIP assay. PD-L1 mRNA stability was detected by treating cells with actinomycin D. HNRNPC was notably highly expressed in TC cells. HNRNPC promoted TC cell proliferation, migration and invasion, facilitating immune escape. Mechanistically, HNRNPC mediated m6A modification to strengthen PD-L1 mRNA stability and up-regulate PD-L1 expression. Moreover, knockdown of PD-L1 partially reversed the promotional effect of HNRNPC on immune escape in TC cells. HNRNPC bolstered PD-L1 stability and up-regulated PD-L1 expression through m6A modification, thus promoting immune escape in TC.
Collapse
Affiliation(s)
- Nuoxuan Li
- Department of Head and Neck Surgery, Guangzhou Medical University Affiliated Cancer Hospital, No.78 Hengzhigang Road, Yuexiu District, Guangzhou, 510030 Guangdong China
| | - Liang Wang
- Department of Head and Neck Surgery, Guangzhou Medical University Affiliated Cancer Hospital, No.78 Hengzhigang Road, Yuexiu District, Guangzhou, 510030 Guangdong China
| | - Jie Yao
- Department of Head and Neck Surgery, Guangzhou Medical University Affiliated Cancer Hospital, No.78 Hengzhigang Road, Yuexiu District, Guangzhou, 510030 Guangdong China
| | - Hong Yang
- Department of Head and Neck Surgery, Guangzhou Medical University Affiliated Cancer Hospital, No.78 Hengzhigang Road, Yuexiu District, Guangzhou, 510030 Guangdong China
| |
Collapse
|
7
|
Geng R, Ren M, Ma Y, Su W. Mechanism of the KIAA1429/KLF1/PD-L1 Axis in Regulating Immune Escape in Non-small Cell Lung Cancer. Cell Biochem Biophys 2025; 83:1835-1845. [PMID: 39499390 DOI: 10.1007/s12013-024-01592-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2024] [Indexed: 11/07/2024]
Abstract
Non-small cell lung cancer (NSCLC), accounting for approximately 80% of lung cancer cases, remains the leading cause of cancer-related mortality. Immune evasion is a critical challenge in NSCLC, contributing to poor treatment outcomes. This study investigates the role of KIAA1429 in immune evasion, aiming to identify novel therapeutic targets and provide a theoretical basis for NSCLC treatment. NSCLC cell lines were cultured to assess the expression of KIAA1429, KLF transcription factor (KLF1), and programmed cell death ligand 1 (PD-L1). Co-culture experiments were conducted with peripheral blood mononuclear cells (PBMCs) to evaluate cytotoxicity, CD8+T cell proportions, and levels of interferon-gamma (IFN-γ)/interleukin (IL)-10/IL-2. Additionally, N6-methyladenosine (m6A) modification in NSCLC cells, m6A enrichment on KLF1, and KLF1 mRNA stability were analyzed. Results showed increased expression of KIAA1429 and KLF1 in NSCLC cells. Knockdown of KIAA1429 inhibited NSCLC cell proliferation, enhanced PBMC cytotoxicity and CD8+T cell activation, increased IFN-γ and IL-2 levels, and decreased IL-10 levels. Mechanistically, KIAA1429 stabilized KLF1 mRNA level through m6A modification, promoting both KLF1 and PD-L1 expression. Overexpression of KLF1 or PD-L1 reversed the immune-modulating effects of KIAA1429 knockdown. In conclusion, KIAA1429 facilitates immune evasion in NSCLC by stabilizing KLF1 mRNA and upregulating PD-L1 expression.
Collapse
Affiliation(s)
- Rui Geng
- Department of Research-oriented Ward, Yuncheng Central Hospital Affiliated to Shanxi Medical University, Yuncheng, Shanxi, China
| | - Mingmin Ren
- Department of Research-oriented Ward, Yuncheng Central Hospital Affiliated to Shanxi Medical University, Yuncheng, Shanxi, China
| | - Yuhui Ma
- Department of Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences; Tongji Shanxi Hospital, Tongji Medical College, Huazhong University Science of and Technology, Taiyuan, Shanxi, China
| | - Wen Su
- Department of Immunology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
8
|
He M, Xie W, Yuan Z, Chen J, Wang J, Fu Y, Hu Z, Meng Q, Gao W, Hu D, Zhang Y, Pan Y, Zhou Z. Comparing PD-L1 and PD-1 inhibitors plus bevacizumab combined with hepatic arterial interventional therapies in unresetable hepatocellular carcinoma: A single-center, real-world study. Int J Cancer 2025; 156:1972-1985. [PMID: 39834172 DOI: 10.1002/ijc.35341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/18/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025]
Abstract
With the rise of anti-vascular endothelial growth factor antibody and programmed cell death-ligand 1 (PD-L1) regimens, particularly bevacizumab and atezolizumab, as first-line treatments for advanced hepatocellular carcinoma (HCC), there is a need to explore PD-L1 and programmed cell death 1 inhibitors in combination therapies for unresectable HCC (uHCC). Integrating systemic therapies with locoregional approaches is also emerging as a potent strategy. This study compares the outcomes of atezolizumab (PD-L1 inhibitor) and sintilimab (programmed cell death 1 inhibitor) with bevacizumab or its biosimilar, combined with hepatic arterial interventional therapies (HAIT) in uHCC patients. From January 2020 to September 2023, a retrospective analysis was conducted on 138 uHCC patients at Sun Yat-sen University Cancer Center. The cohort included 69 patients treated with atezolizumab with bevacizumab (Bev/Ate) and 69 with bevacizumab biosimilar with sintilimab (Bio/Sin), combined with HAIT. The propensity score matching was also employed to further explore the efficacy and safety. The median progression-free survival (mPFS) was 13.8 months for the Bev/Ate group and 10.0 months for the Bio/Sin group (p = 0.188). The Bev/Ate group showed significantly longer intrahepatic mPFS (HR 0.381; 95% confidence interval 0.176-0.824; p = .018) and higher overall response rates compared with the Bio/Sin group (60.87% vs. 31.88%, p = .001; 69.57% vs. 49.28%, p = .024) based on Response Evaluation Criteria in Solid Tumors v1.1 and modified Response Evaluation Criteria in Solid Tumors criteria. Treatment-related adverse events were similar between groups (p > .050). Combining atezolizumab or sintilimab with bevacizumab or its biosimilar alongside HAIT provided similar overall PFS in uHCC patients. However, the atezolizumab-bevacizumab combination with HAIT showed superior intrahepatic PFS and control rates, warranting further validation.
Collapse
Affiliation(s)
- Minrui He
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, PR China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, PR China
| | - Wa Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, PR China
- Imaging Diagnostic and Interventional Center, Sun Yat-Sen University Cancer Center, Guangzhou, PR China
| | - Ze Yuan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, PR China
- Department of Neurosurgery/NeuroOncology, Sun Yat-Sen University Cancer Center, Guangzhou, PR China
| | - Jinbin Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, PR China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, PR China
| | - Juncheng Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, PR China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, PR China
| | - Yizhen Fu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, PR China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, PR China
| | - Zili Hu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, PR China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, PR China
| | - Qi Meng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, PR China
- Department of Clinical Research, Sun Yat-Sen University Cancer Center, Guangzhou, PR China
| | - Wenqing Gao
- Department of Oncology, Tengchong People's Hospital, Baoshan, PR China
| | - Dandan Hu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, PR China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, PR China
| | - Yaojun Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, PR China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, PR China
| | - Yangxun Pan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, PR China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, PR China
| | - Zhongguo Zhou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, PR China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, PR China
| |
Collapse
|
9
|
Zhang F, Ramar S, Wang Y, Xu H, Zhang K, Awadasseid A, Rao G, Zhang W. Advances in cancer immunotherapy using small-molecular inhibitors targeting the PD-1/PD-L1 interaction. Bioorg Med Chem 2025; 127:118238. [PMID: 40367914 DOI: 10.1016/j.bmc.2025.118238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 05/05/2025] [Accepted: 05/09/2025] [Indexed: 05/16/2025]
Abstract
Cancer cells evade immune responses by interacting with PD-1 and its ligand, PD-L1. Although monoclonal antibodies targeting this pathway have revolutionized oncology, their high production costs, poor oral bioavailability, and limited tumor penetration remain significant challenges. Small-molecule inhibitors provide a promising alternative, offering advantages such as improved tumor penetration and cost-effectiveness. This review highlights advancements in small-molecule PD-1/PD-L1 inhibitors, focusing on their mechanisms, structural designs, and therapeutic potential. Key innovations, including biphenyl scaffolds, heterocyclic frameworks, enhance binding efficiency and immune activation. The article effectively integrates fundamental principles of drug chemistry with real-world clinical needs, offering a comprehensive approach to the design of PD-1/PD-L1 small-molecule inhibitors. It systematically classifies various molecular structures, analyzes relevant industrial cases, and incorporates the most recent research findings. By examining these aspects, it uncovers the underlying logic driving the design process and provides a fresh, innovative perspective on advancing the field of immune small-molecule inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Feng Zhang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Deqing 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing 313299, China
| | - Sivaramakarthikeyan Ramar
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Deqing 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing 313299, China; Moganshan Institute ZJUT, Deqing 313202, China
| | - Yu Wang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Deqing 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing 313299, China
| | - Haoran Xu
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Deqing 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing 313299, China
| | - Koutian Zhang
- Zhejiang Qingzhenghong Technology Co., Ltd, Hangzhou 311121, China
| | - Annoor Awadasseid
- Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing 313299, China; Zhejiang Qingzhenghong Technology Co., Ltd, Hangzhou 311121, China.
| | - Guowu Rao
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Deqing 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing 313299, China.
| | - Wen Zhang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Deqing 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing 313299, China; Zhejiang Jieyuan Med-Tech Co., Ltd., Hangzhou 311113, China.
| |
Collapse
|
10
|
Meng F, He Y, Zhao J, Yuan Z, Wang J, Parra KG, Fishel ML, Ratliff TL, Yeo Y. Timely administration of drug combination improves chemoimmunotherapy of an immune-cold tumor. J Control Release 2025; 381:113579. [PMID: 40023227 PMCID: PMC12002645 DOI: 10.1016/j.jconrel.2025.02.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
An immunoactive complex consisting of a polyethyleneimine derivative (2E'), paclitaxel (PTX), and cyclic dinucleotide (CDN) was developed for chemoimmunotherapy of solid tumors. Each component uniquely contributes to stimulating innate immune response to tumors: 2E' carries PTX and CDN while stimulating antigen-presenting cells, PTX induces immunogenic cell death, and CDN activates the STING pathway. A single intratumoral injection of 2E'/PTX/CDN inhibited the growth of MOC1 oral squamous cell carcinoma and KPCY (2838c3) pancreatic tumors, achieving complete tumor regression in 80-100 % of mice. However, 2E'/PTX/CDN showed limited therapeutic efficacy with immune-cold B16F10 melanoma, accompanied by the increase of innate immune cells in the tumor draining lymph nodes peaking on day 5 post-administration and subsiding thereafter. The addition of a complex of 2E' and siRNA targeting PD-L1 (siPD-L1) at an optimal 5-d interval improved the response in B16F10 melanoma, resulting in tumor-free survival in 50 % of mice and rejection of live tumor rechallenge in 67 % of surviving animals. Consistent with the function of each component, the timed combination of 2E'/PTX/CDN and 2E'/siPD-L1 increased the fractions of mature dendritic cells and M1 macrophages, prevented the increase of regulatory T cells in tumor-draining lymph nodes, and increased melanoma antigen-specific CD8+ T cells in the spleen. These results demonstrate the effectiveness of the 2E'/PTX/CDN complex in the chemoimmunotherapy of solid tumors and highlight the significance of timely intervention to sustain the immunoactive phenotype in its application to immune-cold tumors.
Collapse
Affiliation(s)
- Fanfei Meng
- Department of Industrial and Molecular Pharmaceutics, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, 3 Solomont Way, Lowell, MA 01854, USA
| | - Yanying He
- Department of Industrial and Molecular Pharmaceutics, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Jiaqi Zhao
- Department of Industrial and Molecular Pharmaceutics, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Zhongyue Yuan
- Department of Industrial and Molecular Pharmaceutics, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Jianping Wang
- Department of Industrial and Molecular Pharmaceutics, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Karen Gutierrez Parra
- Department of Industrial and Molecular Pharmaceutics, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Melissa L Fishel
- Departments of Pediatrics and of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Timothy L Ratliff
- Purdue University Institute for Cancer Research, 201 South University Street, West Lafayette, IN 47907, USA; Department of Comparative Pathobiology, Purdue University, 625 Harrison Street, West Lafayette, Indiana 47907, USA
| | - Yoon Yeo
- Department of Industrial and Molecular Pharmaceutics, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; Purdue University Institute for Cancer Research, 201 South University Street, West Lafayette, IN 47907, USA; Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Drive, West Lafayette, IN 47907, USA.
| |
Collapse
|
11
|
Kaufman B, Abu-Ahmad M, Radinsky O, Gharra E, Manko T, Bhattacharya B, Gologan D, Erlichman N, Meshel T, Nuta Y, Cooks T, Elkabets M, Ben-Baruch A, Porgador A. N-glycosylation of PD-L1 modulates the efficacy of immune checkpoint blockades targeting PD-L1 and PD-1. Mol Cancer 2025; 24:140. [PMID: 40346531 PMCID: PMC12065222 DOI: 10.1186/s12943-025-02330-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 04/11/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND The PD-L1/PD-1 pathway is crucial for immune regulation and has become a target in cancer immunotherapy. However, in order to improve patient selection for immune checkpoint blockade (ICB) therapies, better selection criteria are needed. This study explores how the N-glycosylation of PD-L1 affects its interaction with PD-1 and ICB efficacy, focusing on its four N-linked glycosylation sites: N35, N192, N200, and N219. METHODS Human PD-L1 glycosylation mutants-at each individual site or at all four sites together (Nx4)-were tested for their functional interaction with PD-1 using an artificial immune checkpoint reporter assay (IcAR-PD1). The blocking efficacy of anti-PD-L1 and anti-PD-1 antibodies was evaluated using human breast cancer cell lines (MDA-MB231 and MCF7), as well as A375 melanoma and A549 lung carcinoma cells expressing the glycosylation mutants. Results were validated through ex vivo activation and cytotoxicity assays using human CD8+ T cells. RESULTS The binding of the PD-L1N35A mutant to PD-1 was not effectively blocked by anti-PD-L1 and anti-PD-1 ICBs. In contrast, high blocking efficacy of PD-L1 binding to PD-1 was obtained at minimal ICB concentrations when PD-L1 did not express any glycosylation site (PD-L1Nx4 mutant). The PD-L1N35A mutant produced elevated levels of PD-L1 as a soluble (sPD-L1) and extracellular vesicles (EV)-bound molecule; in contrast, the PD-L1Nx4 mutant had lower sPD-L1 and EV levels. PD-L1 glycosylation status influenced the ability of PD-L1 interactions with PD-1 to down-regulate T-cell activation and cytotoxicity, with the PD-L1N35A mutant showing the lowest levels of T cell functions and the PD-L1Nx4 mutant the highest. CONCLUSIONS The N-glycosylation of PD-L1 at all four sites interferes with the ability of anti-PD-L1 and anti-PD-1 ICBs to block PD-L1 interactions with PD-1; in contrast, glycosylation at the N35 site enhances ICB blocking efficacy. These effects are connected to the ability of sPD-L1 to compete with ICB binding to PD-L1 or PD-1. Thus, assessing PD-L1 glycosylation, beyond expression levels, could improve patient stratification and outcomes.
Collapse
Affiliation(s)
- Bar Kaufman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Muhammad Abu-Ahmad
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Olga Radinsky
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Eman Gharra
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Tal Manko
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Baisali Bhattacharya
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Daniela Gologan
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Nofar Erlichman
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Tsipi Meshel
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Yoav Nuta
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Tomer Cooks
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
| | - Adit Ben-Baruch
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel.
| | - Angel Porgador
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
| |
Collapse
|
12
|
Kakimi K, Sugie T. Why combine and why neoadjuvant? Tumor immunological perspectives on chemoimmunotherapy in triple-negative breast cancer. Breast Cancer 2025:10.1007/s12282-025-01707-5. [PMID: 40327275 DOI: 10.1007/s12282-025-01707-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 04/18/2025] [Indexed: 05/07/2025]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype characterized by limited targeted therapies and high recurrence rates. While immune checkpoint inhibitors (ICIs) have shown promise, their efficacy as monotherapy is limited. Clinically, ICIs demonstrate significant benefit primarily when combined with chemotherapy, particularly in the neoadjuvant setting for early-stage TNBC, which yields superior outcomes compared to adjuvant therapy. This review elucidates the tumor immunological principles underlying these observations. We discussed how the suppressive tumor microenvironment (TME), progressive T cell exhaustion, and associated epigenetic scarring constrain ICI monotherapy effectiveness. Crucially, we highlight the immunological advantages of the neoadjuvant approach: the presence of the primary tumor provides abundant antigens, and intact tumor-draining lymph nodes (TDLNs) act as critical sites for ICI-mediated priming and expansion of naïve and precursor exhausted T cells. This robust activation within TDLNs enhances systemic anti-tumor immunity and expands the T cell repertoire, a process less effectively achieved in the adjuvant setting after tumor resection. These mechanisms provide a strong rationale for the improved pathological complete response (pCR) rates and event-free survival observed with neoadjuvant chemoimmunotherapy, as demonstrated in trials like KEYNOTE-522. We further explore the implications for adjuvant therapy decisions based on treatment response, the challenges of ICI resistance, the need for predictive biomarkers, management of immune-related adverse events (irAEs), and future therapeutic directions. Understanding the dynamic interplay between chemotherapy, ICIs, T cells, and the TME, particularly the role of TDLNs in the neoadjuvant context, is essential for optimizing immunotherapy strategies and improving outcomes for patients with TNBC.
Collapse
Affiliation(s)
- Kazuhiro Kakimi
- Department of Immunology, Kindai University Faculty of Medicine, 377-2 Onohigashi, Osakasayama, Osaka, 589-8511, Japan.
- Chemotherapy Center, Kansai Medical University Kori Hospital, 8-45 Korihondori, Neyagawa, Osaka, 572-8551, Japan.
| | - Tomoharu Sugie
- Chemotherapy Center, Kansai Medical University Kori Hospital, 8-45 Korihondori, Neyagawa, Osaka, 572-8551, Japan.
| |
Collapse
|
13
|
Elder AM, Fairchild HR, Kines KT, Cozzens LM, Becks AR, Slansky JE, Anderson SM, Lyons TR. Semaphorin7A and PD-L1 cooperatively drive immunosuppression during mammary involution and breast cancer. Cell Rep 2025; 44:115676. [PMID: 40333186 DOI: 10.1016/j.celrep.2025.115676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/06/2025] [Accepted: 04/16/2025] [Indexed: 05/09/2025] Open
Abstract
Postpartum mammary gland remodeling after a pregnancy/lactation cycle is characterized by mechanisms of cell death and inflammation. Here, we show that SEMA7A promotes PD-L1 expression in immune cells of the mammary tissue during involution. These same phenotypes are mimicked in the microenvironment of SEMA7A-expressing tumors, which partially respond to αPD-1/αPD-L1 treatments in vivo. However, cells that remain after treatment are enriched for SEMA7A expression. Therefore, we tested a monoclonal antibody that directly targets SEMA7A-expressing tumors, in part, by reducing SEMA7A-mediated upregulation of PD-L1. In vivo, the SEMA7A monoclonal antibody reduces tumor growth and/or promotes complete regression of mouse mammary tumors, reduces some immunosuppressive phenotypes in the tumor microenvironment, and restores cytotoxic T cells, suggesting that SEMA7A may be a candidate for immune-based therapy for breast cancer patients.
Collapse
Affiliation(s)
- Alan M Elder
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Cancer Biology Graduate Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Heather R Fairchild
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kelsey T Kines
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Cancer Biology Graduate Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Lauren M Cozzens
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Cancer Biology Graduate Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alexandria R Becks
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Cancer Biology Graduate Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jill E Slansky
- University of Colorado Cancer Center, Aurora, CO, USA; Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Traci R Lyons
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; University of Colorado Cancer Center, Aurora, CO, USA; Young Women's Breast Cancer Translational Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
14
|
McGinty MT, Putelo AM, Kolli SH, Feng TY, Dietl MR, Hatzinger CN, Bajgai S, Poblete MK, Azar FN, Mohammad A, Kumar P, Rutkowski MR. TLR5 Signaling Causes Dendritic Cell Dysfunction and Orchestrates Failure of Immune Checkpoint Therapy against Ovarian Cancer. Cancer Immunol Res 2025; 13:696-711. [PMID: 39932226 PMCID: PMC12048257 DOI: 10.1158/2326-6066.cir-24-0513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/05/2024] [Accepted: 01/24/2025] [Indexed: 02/23/2025]
Abstract
Ovarian cancer accounts for more deaths than any other cancer of the female reproductive system. Patients who have ovarian tumors infiltrated with high frequencies of T cells are associated with a greater survival probability. However, therapies to revitalize tumor-associated T cells, such as PD-L1/PD-1 or CTLA4 blockade, are ineffective for the treatment of ovarian cancer. In this study, we demonstrate that for ovarian cancer, Toll-like receptor 5 (TLR5) signaling, for which the only known ligand is bacterial flagellin, governed failure of PD-L1 and CTLA4 blockade. Mechanistically, chronic TLR5 signaling on CD11c+ cells in vivo and in vitro impaired the differentiation of functional IL-12-producing XCR1+CD103+ conventional type 1 dendritic cells, biasing CD11c+ precursor cells toward myeloid subsets expressing high levels of PD-L1. This culminated in impaired activation of CD8+ T cells, reducing CD8+ T-cell function and ability to persist within the ovarian tumor microenvironment. Expansion of XCR1+CD103+ conventional type 1 dendritic cells in situ using Flt3L-Ig in combination with PD-L1 blockade achieved significant survival benefit in TLR5 knockout mice bearing ovarian tumors, whereas no benefit was observed in the presence of TLR5 signaling. Thus, we have identified a host-intrinsic mechanism leading to the failure of PD-L1 blockade for ovarian cancer, demonstrating that chronic TLR5 signaling on CD11c+ cells is a barrier limiting the efficacy of checkpoint therapy.
Collapse
Affiliation(s)
- Mitchell T. McGinty
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, VA, USA
| | - Audrey M. Putelo
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, VA, USA
| | - Sree H. Kolli
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, VA, USA
| | - Tzu-Yu Feng
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, VA, USA
| | - Madison R. Dietl
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, VA, USA
| | - Cara N. Hatzinger
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, VA, USA
| | - Simona Bajgai
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, VA, USA
| | - Mika K. Poblete
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, VA, USA
| | - Francesca N. Azar
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, VA, USA
| | - Anwaruddin Mohammad
- Bioinformatics Core, University of Virginia School of Medicine, Charlottesville, VA
| | - Pankaj Kumar
- Bioinformatics Core, University of Virginia School of Medicine, Charlottesville, VA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA
| | - Melanie R. Rutkowski
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, VA, USA
| |
Collapse
|
15
|
Qiu H, Zhang C, Ma X, Li Y. Molecular insights and treatment innovations: Advancing outcomes in acute myeloid leukemia with myelodysplasia‑related changes (Review). Oncol Rep 2025; 53:54. [PMID: 40116086 DOI: 10.3892/or.2025.8887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/10/2025] [Indexed: 03/23/2025] Open
Abstract
Acute myeloid leukemia, myelodysplasia‑related (AML‑MR), a challenging and aggressive subtype of AML, is characterized by unique genetic abnormalities and molecular features, which contribute to its poor prognosis compared with other AML subtypes. The present review summarizes the current understanding of AML‑MR pathogenesis, highlighting notable advancements in genetic and cytogenetic insights. Critical mutations, such as those in the tumor antigen p53 and additional sex combs like 1 genes, and their role in disease progression and resistance to treatment, are explored. The review further investigates how clonal evolution and cellular microenvironment alterations drive AML‑MR transformation and impact patient outcomes. Despite the poor outlook typically associated with AML‑MR, developments in treatment approaches offer hope. The present review considers the efficacy of novel therapeutic agents, including CPX‑351, hypomethylating agents and targeted molecular therapies. Additionally, innovations in immunotherapy and allogeneic hematopoietic stem cell transplantation are discussed as promising avenues to improve patient survival rates. The challenges of treating AML‑MR, particularly in elderly and pretreated patients, underline the necessity for individualized treatment strategies that consider both the biological complexity of the disease and the overall health profile of the patient. The present review focuses on the mechanisms of AML‑MR transformation, highlighting factors that may offer a crucial theoretical foundation and pave the way for future applications in precision medicine. Future research directions include exploring novel targeted therapies and combination regimens to mitigate the transformation risks and enhance the quality of life of patients with AML‑MR.
Collapse
Affiliation(s)
- Hong Qiu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Chaowei Zhang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Xiaochen Ma
- Department of Public Health, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Ying Li
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
16
|
Aden D, Zaheer S, Sureka N, Trisal M, Chaurasia JK, Zaheer S. Exploring immune checkpoint inhibitors: Focus on PD-1/PD-L1 axis and beyond. Pathol Res Pract 2025; 269:155864. [PMID: 40068282 DOI: 10.1016/j.prp.2025.155864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 01/20/2025] [Accepted: 02/25/2025] [Indexed: 04/19/2025]
Abstract
Immunotherapy emerges as a promising approach, marked by recent substantial progress in elucidating how the host immune response impacts tumor development and its sensitivity to various treatments. Immune checkpoint inhibitors have revolutionized cancer therapy by unleashing the power of the immune system to recognize and eradicate tumor cells. Among these, inhibitors targeting the programmed cell death protein 1 (PD-1) and its ligand (PD-L1) have garnered significant attention due to their remarkable clinical efficacy across various malignancies. This review delves into the mechanisms of action, clinical applications, and emerging therapeutic strategies surrounding PD-1/PD-L1 blockade. We explore the intricate interactions between PD-1/PD-L1 and other immune checkpoints, shedding light on combinatorial approaches to enhance treatment outcomes and overcome resistance mechanisms. Furthermore, we discuss the expanding landscape of immune checkpoint inhibitors beyond PD-1/PD-L1, including novel targets such as CTLA-4, LAG-3, TIM-3, and TIGIT. Through a comprehensive analysis of preclinical and clinical studies, we highlight the promise and challenges of immune checkpoint blockade in cancer immunotherapy, paving the way for future advancements in the field.
Collapse
Affiliation(s)
- Durre Aden
- Department of Pathology, Hamdard Institute of Medical science and research, Jamia Hamdard, New Delhi, India.
| | - Samreen Zaheer
- Department of Radiotherapy, Jawaharlal Nehru Medical College, AMU, Aligarh, India.
| | - Niti Sureka
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India.
| | - Monal Trisal
- Department of Pathology, Hamdard Institute of Medical science and research, Jamia Hamdard, New Delhi, India.
| | | | - Sufian Zaheer
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India.
| |
Collapse
|
17
|
Zhang K, Huang C, Ren Y, Zhang M, Lu X, Yang B, Chen P, Guo S, Wang X, Zhuo Y, Qi C, Cai K. Manganese-based nanoadjuvants for the synergistic enhancement of immune responses in breast cancer therapy via disulfidptosis-induced ICD and cGAS-STING activation. Biomaterials 2025; 322:123359. [PMID: 40288315 DOI: 10.1016/j.biomaterials.2025.123359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
Tumor immunotherapy represents one of the most promising strategies for combating tumors by activating the immune system, harnessing anti-tumor immune cells to eliminate tumor cells, and preventing tumor recurrence and metastasis. However, clinical data indicate that the anti-tumor immune response is often inadequate in many cancer patients, resulting in the failure of tumor immunotherapy. Herein, we report a manganese (Mn)-based nanoadjuvant (denoted as BMP-Au) aimed at synergistically enhancing anti-tumor immune responses in breast cancer therapy through disulfidptosis-induced immunogenic cell death and Mn-mediated cGAS-STING pathway activation. BMP-Au is synthesized using bovine serum albumin as a biotemplate for biomimetic mineralization of manganese phosphate nanosheets, followed by the deposition of gold nanoparticles (Au NPs) on their surface. By exploiting the glucose oxidase-like activity of Au NPs alongside the Fenton-like reaction facilitated by Mn2+, BMP-Au orchestrates a cascade catalytic reaction that generates reactive oxygen species from glucose. This process not only initiates disulfidptosis but also leads to DNA fragmentation crucial for activating the cGAS-STING pathway. These concurrent mechanisms compromise cancer cell viability while significantly enhancing tumor immunogenicity, positioning BMP-Au as an innovative nanoadjuvant for cancer treatment that leverages both cellular stress mechanisms and immune activation.
Collapse
Affiliation(s)
- Ke Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Chengyao Huang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yu Ren
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Mingyue Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Xiaotong Lu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Bangliu Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Peiran Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Shiyao Guo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Xueqian Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yuhong Zhuo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Chao Qi
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
18
|
Yahata T, Toujima S, Sasaki I, Iwahashi N, Fujino M, Nishioka K, Noguchi T, Tanizaki-Horiuchi Y, Kaisho T, Ino K. Adeno-associated virus-clustered regularly interspaced short palindromic repeats/cas9‑mediated ovarian cancer treatment targeting PD-L1. BMC Cancer 2025; 25:749. [PMID: 40264105 PMCID: PMC12012987 DOI: 10.1186/s12885-025-14093-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 04/04/2025] [Indexed: 04/24/2025] Open
Abstract
The response rate of antibody therapy targeting immune checkpoint molecules in ovarian cancer is insufficient. This study aimed to develop a novel gene immunotherapy model targeting programmed death ligand 1 (PD-L1) in vivo in ovarian cancer using adeno-associated virus (AAV)-clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 and investigate its efficacy. In vitro, we produced PD-L1-AAV particles to knock out PD-L1. PD-L1-AAV particles were transduced into the murine ovarian cancer cell line ID8. PD-L1 expression at the cellular level was significantly decreased following treatment with PD-L1-AAV particles compared with control-AAV particles. In the peritoneal dissemination model, the survival time was significantly longer in the PD-L1-AAV particles intraperitoneally injected group than that in the control group. Furthermore, intratumoral lymphocyte recruitment was analyzed by immunohistochemistry, and the number of intratumoral CD4+ and CD8+ T cells was significantly higher, whereas that of Foxp3+ Treg cells was significantly lower in the PD-L1-AAV particles injected group than in the control group. No severe adverse events in normal organs, such as the lungs, spleen, liver, and kidney, were observed. These results suggest that PD-L1-targeted therapy by genome editing using AAV-CRISPR/Cas9 is a novel gene-immune therapeutic strategy for ovarian cancer.
Collapse
Affiliation(s)
- Tamaki Yahata
- Department of Obstetrics and Gynecology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan.
| | - Saori Toujima
- Department of Obstetrics and Gynecology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Izumi Sasaki
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Naoyuki Iwahashi
- Department of Obstetrics and Gynecology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Megumi Fujino
- Department of Obstetrics and Gynecology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Kaho Nishioka
- Department of Obstetrics and Gynecology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Tomoko Noguchi
- Department of Obstetrics and Gynecology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Yuko Tanizaki-Horiuchi
- Department of Obstetrics and Gynecology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Tsuneyasu Kaisho
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Kazuhiko Ino
- Department of Obstetrics and Gynecology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| |
Collapse
|
19
|
Philips S, Lu P, Fausel C, Wagner T, Jiang G, Shen F, Cantor E, Tran M, Roland LM, Schneider BP. Association of heightened host and tumor immunity with prolonged duration of response to checkpoint inhibition across solid tumors. Sci Rep 2025; 15:13195. [PMID: 40240402 PMCID: PMC12003766 DOI: 10.1038/s41598-025-96925-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
Cancer immunotherapy is a beneficial therapy for many cancer types, but predictive pan-tumor biomarkers for clinical benefit are suboptimal. Our study, employing DNA and RNA based analysis, investigated the role of predicted neoantigens in the benefits of immunotherapy within a cohort of 88 patients of European descent with advanced solid tumors. Patients who had a prolonged (> 12 months) duration of immunotherapy exhibited heightened immune responses, characterized by increased levels of predicted neoantigens with strong HLA binding potential, elevated cytotoxic marker levels, and enhanced T cell activity. Furthermore, our analysis revealed associations between prolonged duration of therapy and rare variants, notably within the EPHA8 gene. These variants, exclusive to patients with a prolonged (> 12 months) duration of immunotherapy, suggest potential implications for immunotherapy response. In addition, the evolutionary conservation of these variants across vertebrate species underscores their functional importance in tumor biology and ultimately, treatment outcomes. Despite limitations in sample size and patient homogeneity, our findings emphasize the potential utility of understanding the molecular and immunological mechanisms underlying immunotherapy responses to further refine personalized treatment strategies.
Collapse
Affiliation(s)
- Santosh Philips
- Division of Hematology and Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA
| | - Pei Lu
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA
| | - Chris Fausel
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA
| | - Thomas Wagner
- College of Pharmacy and Health Sciences, Butler University, Indianapolis, IN, USA
| | - Guanglong Jiang
- Division of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Fei Shen
- Division of Hematology and Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Erica Cantor
- Division of Hematology and Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mya Tran
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA
| | - Lauren M Roland
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA
| | - Bryan P Schneider
- Division of Hematology and Oncology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA.
- Division of Hematology/Oncology, Department of Medicine, Indiana University, 535 Barnhill Drive, RT 473, Indianapolis, IN, 46202, USA.
| |
Collapse
|
20
|
Zhang L, Lin H, Liang J, Liu X, Zhang C, Man Q, Li R, Zhao Y, Liu B. Programmed death-ligand 1 regulates ameloblastoma growth and recurrence. Int J Oral Sci 2025; 17:29. [PMID: 40240323 PMCID: PMC12003687 DOI: 10.1038/s41368-025-00364-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 03/05/2025] [Accepted: 03/10/2025] [Indexed: 04/18/2025] Open
Abstract
Tumor cell-intrinsic programmed death-ligand 1 (PD-L1) signals mediate tumor initiation, progression and metastasis, but their effects in ameloblastoma (AM) have not been reported. In this comprehensive study, we observed marked upregulation of PD-L1 in AM tissues and revealed the robust correlation between elevated PD-L1 expression and increased tumor growth and recurrence rates. Notably, we found that PD-L1 overexpression markedly increased self-renewal capacity and promoted tumorigenic processes and invasion in hTERT+-AM cells, whereas genetic ablation of PD-L1 exerted opposing inhibitory effects. By performing high-resolution single-cell profiling and thorough immunohistochemical analyses in AM patients, we delineated the intricate cellular landscape and elucidated the mechanisms underlying the aggressive phenotype and unfavorable prognosis of these tumors. Our findings revealed that hTERT+-AM cells with upregulated PD-L1 expression exhibit increased proliferative potential and stem-like attributes and undergo partial epithelial‒mesenchymal transition. This phenotypic shift is induced by the activation of the PI3K-AKT-mTOR signaling axis; thus, this study revealed a crucial regulatory mechanism that fuels tumor growth and recurrence. Importantly, targeted inhibition of the PD-L1-PI3K-AKT-mTOR signaling axis significantly suppressed the growth of AM patient-derived tumor organoids, highlighting the potential of PD-L1 blockade as a promising therapeutic approach for AM.
Collapse
Affiliation(s)
- Linzhou Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hao Lin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jiajie Liang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xuanhao Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Chenxi Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Qiwen Man
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Ruifang Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yi Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
- Department of Prosthodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Bing Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
21
|
Yang M, Zhang Z, Qin H, Lin X, Liu X, Zhang H. The emerging significance of the METTL family as m6A-modified RNA methyltransferases in head and neck cancer. Cell Signal 2025; 132:111798. [PMID: 40239728 DOI: 10.1016/j.cellsig.2025.111798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/06/2025] [Accepted: 04/07/2025] [Indexed: 04/18/2025]
Abstract
RNA epigenetic modifications are crucial in tumor development, with N6-methyladenosine (m6A) being the most prevalent epigenetic modification found in all eukaryotic messenger RNAs. Accumulating evidence indicates that m6A modifications significantly influence the progression of various malignancies, including head and neck cancer (HNC). The Methyltransferase-like (METTL) family proteins, a group of methyltransferases identified in recent years, function as the "writers" of m6A modifications. These proteins affect RNA stability, translation efficiency, splicing, and localization, thereby regulating diverse cellular functions and promoting tumorigenesis in multiple cancers through their methylation domains. This review aims to summarize existing literature on the METTL family of m6A-modified RNA to elucidate their roles in HNC, providing a theoretical foundation for their potential use as therapeutic targets.
Collapse
Affiliation(s)
- Ming Yang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong, China; The 2nd Medical College of Binzhou Medical University, Yantai, Shandong, China.
| | - Zile Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong, China; The 2nd Medical College of Binzhou Medical University, Yantai, Shandong, China
| | - Hanbin Qin
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Xinhua Lin
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Xuexia Liu
- Shandong Stem Cell Engineering Technology Research Center, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China.
| | - Hua Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong, China.
| |
Collapse
|
22
|
Sharma S, Kunc M, Czapliński M, Łyzińska W, Pęksa R, Qu L, Radziszewski P, Zapała Ł. Biology of renal cancer tumor thrombus - towards the personalized approach. Crit Rev Oncol Hematol 2025; 211:104731. [PMID: 40233870 DOI: 10.1016/j.critrevonc.2025.104731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 04/01/2025] [Accepted: 04/10/2025] [Indexed: 04/17/2025] Open
Abstract
Renal cell carcinoma - related thrombus arising within venous system (venous tumor thrombus, VTT) represents a distinct compartment within cancer, situated at the frontline with the continual interaction with host blood cells. Various host immune blood cells may possibly interact with VTT influencing its biology. While many authors have reviewed the current state-of-the-art of the management of VTT, its biology and microenvironment has not been comprehensively reviewed to date. In this narrative review, we described the current concepts on formation of thrombus, its histopathology, immune microenvironment, genetic and molecular features with potential impact on prognostication and tailored therapy. Although it is the sophisticated and challenging surgery that remains the primary modality in the management of RCC with VTT, recent advances in the research on cancer biology and microenvironment shed some light on the numerous future perspectives. The formation of tumor thrombus is a complex process, understanding of which may trigger onset of novel therapies leading to the improvement of not only oncological results but also patients' safety in these life-threatening conditions.
Collapse
Affiliation(s)
- Sumit Sharma
- Clinic of General Oncological and Functional Urology Medical University of Warsaw, Warsaw, Poland
| | - Michał Kunc
- Department of Pathomorphology Medical University of Gdańsk, Gdańsk, Poland.
| | - Mieszko Czapliński
- ED Scientific Circle of Pathomorphology, Medical University of Gdańsk, Poland
| | - Weronika Łyzińska
- ED Scientific Circle of Pathomorphology, Medical University of Gdańsk, Poland
| | - Rafał Pęksa
- Department of Pathomorphology Medical University of Gdańsk, Gdańsk, Poland
| | - Le Qu
- Department of Urology Jinling Hospital Affiliated Hospital of Medical School Nanjing University, Nanjing, Jiangsu, China
| | - Piotr Radziszewski
- Clinic of General Oncological and Functional Urology Medical University of Warsaw, Warsaw, Poland
| | - Łukasz Zapała
- Clinic of General Oncological and Functional Urology Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
23
|
Veryaskina YA, Titov SE, Kovynev IB, Fyodorova SS, Berezina OV, Zhurakovskij IP, Antonenko OV, Demakov SA, Demenkov PS, Ruzankin PS, Tarasenko AS, Pospelova TI, Zhimulev IF. MicroRNAs in Diffuse Large B-Cell Lymphoma (DLBCL): Biomarkers with Prognostic Potential. Cancers (Basel) 2025; 17:1300. [PMID: 40282476 PMCID: PMC12025702 DOI: 10.3390/cancers17081300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/31/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: The heterogeneity of diffuse large B-cell lymphoma (DLBCL) based on differences in both genetic and epigenetic factors contributes to the dynamics of tumor growth and efficacy of cytoreductive therapy, as well as considerably affecting disease prognosis. This study aimed to detect microRNAs (miRNAs) capable of improving prognostic accuracy in DLBCL patients. Methods: We performed miRNA sequencing in bone marrow (BM) samples collected from DLBCL patients. Next, the expression levels of miRNAs in lymph node (LN) samples (n = 43) and BM samples (n = 70) were analyzed by real-time RT-PCR in the group of DLBCL patients. Results: It was found that the expression levels of miRNA-10b, -100, -125a, -125b, -126, -143, -23a and let-7a were statistically significantly reduced in the group of DLBCL patients who had a poor prognosis compared to DLBCL patients with a favorable prognosis (p < 0.05). Kaplan-Meier survival analysis demonstrated that the upregulated expression of miRNA-23a, miRNA-125a, and miRNA-100 was associated with better overall survival in DLBCL patients. A statistically significant elevation in the expression levels of miRNA-151a, miRNA-148b and miRNA-192 in the BM samples was observed for DLBCL patients both with and without BM involvement compared to BM samples from non-cancerous blood disease (NCBD) patients (p < 0.05). Statistically significant upregulation of PD-L1, TIMP1, TOP2A, and TP53 was observed in BM samples from DLBCL patients with and without BM involvement in comparison with BM samples from NCBD patients (p < 0.05). Conclusions: miRNA-23a, miRNA-125a, and miRNA-100 were shown to be potential prognostically significant biomarkers in DLBCL patients. Changes in expression levels of miRNA-151a, miRNA-148b, miRNA-192, PD-L1, TIMP1, TOP2A, and TP53 reflect alterations in the BM without morphological or immunophenotypic signs of a DLBCL-related BM pathology.
Collapse
Affiliation(s)
- Yuliya A. Veryaskina
- Laboratory of Molecular Genetics, Department of the Structure and Function of Chromosomes, Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk 630090, Russia; (S.E.T.); (O.V.A.); (S.A.D.); (I.F.Z.)
- Laboratory of Gene Engineering, Institute of Cytology and Genetics, SB RAS, Novosibirsk 630090, Russia
| | - Sergei E. Titov
- Laboratory of Molecular Genetics, Department of the Structure and Function of Chromosomes, Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk 630090, Russia; (S.E.T.); (O.V.A.); (S.A.D.); (I.F.Z.)
- AO Vector-Best, Novosibirsk 630117, Russia
| | - Igor B. Kovynev
- Department of Therapy, Hematology and Transfusiology, Novosibirsk State Medical University, Novosibirsk 630091, Russia; (I.B.K.); (S.S.F.); (O.V.B.); (I.P.Z.); (T.I.P.)
| | - Sofya S. Fyodorova
- Department of Therapy, Hematology and Transfusiology, Novosibirsk State Medical University, Novosibirsk 630091, Russia; (I.B.K.); (S.S.F.); (O.V.B.); (I.P.Z.); (T.I.P.)
| | - Olga V. Berezina
- Department of Therapy, Hematology and Transfusiology, Novosibirsk State Medical University, Novosibirsk 630091, Russia; (I.B.K.); (S.S.F.); (O.V.B.); (I.P.Z.); (T.I.P.)
| | - Igor P. Zhurakovskij
- Department of Therapy, Hematology and Transfusiology, Novosibirsk State Medical University, Novosibirsk 630091, Russia; (I.B.K.); (S.S.F.); (O.V.B.); (I.P.Z.); (T.I.P.)
| | - Oksana V. Antonenko
- Laboratory of Molecular Genetics, Department of the Structure and Function of Chromosomes, Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk 630090, Russia; (S.E.T.); (O.V.A.); (S.A.D.); (I.F.Z.)
| | - Sergei A. Demakov
- Laboratory of Molecular Genetics, Department of the Structure and Function of Chromosomes, Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk 630090, Russia; (S.E.T.); (O.V.A.); (S.A.D.); (I.F.Z.)
| | - Pavel S. Demenkov
- Laboratory of Computer Proteomics, Institute of Cytology and Genetics, SB RAS, Novosibirsk 630090, Russia;
| | - Pavel S. Ruzankin
- Department of Probability Theory and Mathematical Statistics, Novosibirsk State University, Novosibirsk 630090, Russia; (P.S.R.); (A.S.T.)
- Sobolev Institute of Mathematics, Novosibirsk 630090, Russia
| | - Anton S. Tarasenko
- Department of Probability Theory and Mathematical Statistics, Novosibirsk State University, Novosibirsk 630090, Russia; (P.S.R.); (A.S.T.)
- Sobolev Institute of Mathematics, Novosibirsk 630090, Russia
| | - Tatiana I. Pospelova
- Department of Therapy, Hematology and Transfusiology, Novosibirsk State Medical University, Novosibirsk 630091, Russia; (I.B.K.); (S.S.F.); (O.V.B.); (I.P.Z.); (T.I.P.)
| | - Igor F. Zhimulev
- Laboratory of Molecular Genetics, Department of the Structure and Function of Chromosomes, Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk 630090, Russia; (S.E.T.); (O.V.A.); (S.A.D.); (I.F.Z.)
| |
Collapse
|
24
|
Shao YY, Wang HY, Hsu HW, Wo RR, Cheng AL, Hsu CH. Downregulation of PD-L1 expression by Wnt pathway inhibition to enhance PD-1 blockade efficacy in hepatocellular carcinoma. Biol Direct 2025; 20:49. [PMID: 40211365 PMCID: PMC11987266 DOI: 10.1186/s13062-025-00645-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 03/28/2025] [Indexed: 04/13/2025] Open
Abstract
BACKGROUND Immunotherapy targeting the programmed death-ligand 1 (PD-L1) pathway is a standard treatment for advanced hepatocellular carcinoma (HCC). The Wnt signaling pathway, often upregulated in HCC, contributes to an immunosuppressive tumor microenvironment. This study investigated the impact of Wnt pathway inhibition on PD-L1 expression in HCC and evaluated the potential therapeutic benefit of combining Wnt pathway inhibition with PD-L1 blockade. METHODS The effects of Wnt pathway inhibitors XAV939 and IWR-1 on PD-L1 expression were examined in human HCC cell lines HuH7 and Hep3B. Beta-catenin overexpression and knockdown experiments confirmed these findings. For in vivo efficacy, the BNL 1ME A.7R.1 mouse HCC cell line was orthotopically implanted in mice, which were subsequently treated with XAV939, anti-PD-L1 antibodies, or both. RESULTS Wnt pathway inhibitors XAV939 and IWR-1 significantly reduced PD-L1 protein expression in a dose-dependent manner in HuH7 and Hep3B cells, without affecting mRNA levels. CTNNB1 knockdown produced similar results, and beta-catenin overexpression reversed the effects of Wnt pathway inhibitors on PD-L1 expression. Wnt pathway inhibition did not promote PD-L1 protein degradation but instead increased the level of unphosphorylated 4EBP1, which could prevent the translation function of eIF-4E. In vivo, mice treated with a combination of XAV939 and an anti-PD-L1 antibody had significantly smaller tumors compared to those treated with either agent alone. The combination treatment also enhanced multiple immune-related pathways in harvested tumors. CONCLUSION Inhibition of the Wnt pathway reduced PD-L1 expression in HCC cells and enhanced the efficacy of PD-L1 blockade, supporting its potential as HCC treatment.
Collapse
Affiliation(s)
- Yu-Yun Shao
- Graduate Institute of Oncology, National Taiwan University College of Medicine, 1, Sec. 1, Ren'ai Rd, Taipei City, 10051, Taiwan
- Department of Oncology, National Taiwan University Hospital, 7, Chun-Shan S. Rd, Taipei, Taiwan
- Department of Medical Oncology, National Taiwan University Cancer Center, 57, Ln. 155, Sec. 3, Keelung Rd, Taipei City, Taiwan
| | - Han-Yu Wang
- Department of Oncology, National Taiwan University Hospital, 7, Chun-Shan S. Rd, Taipei, Taiwan
| | - Hung-Wei Hsu
- Department of Oncology, National Taiwan University Hospital, 7, Chun-Shan S. Rd, Taipei, Taiwan
| | - Rita Robin Wo
- Department of Oncology, National Taiwan University Hospital, 7, Chun-Shan S. Rd, Taipei, Taiwan
| | - Ann-Lii Cheng
- Graduate Institute of Oncology, National Taiwan University College of Medicine, 1, Sec. 1, Ren'ai Rd, Taipei City, 10051, Taiwan
- Department of Internal Medicine, National Taiwan University College of Medicine, 1, Sec. 1, Ren'ai Rd, Taipei City, Taiwan
- Department of Oncology, National Taiwan University Hospital, 7, Chun-Shan S. Rd, Taipei, Taiwan
- Department of Medical Oncology, National Taiwan University Cancer Center, 57, Ln. 155, Sec. 3, Keelung Rd, Taipei City, Taiwan
| | - Chih-Hung Hsu
- Graduate Institute of Oncology, National Taiwan University College of Medicine, 1, Sec. 1, Ren'ai Rd, Taipei City, 10051, Taiwan.
- Department of Oncology, National Taiwan University Hospital, 7, Chun-Shan S. Rd, Taipei, Taiwan.
- Department of Medical Oncology, National Taiwan University Cancer Center, 57, Ln. 155, Sec. 3, Keelung Rd, Taipei City, Taiwan.
| |
Collapse
|
25
|
Liu L, Hao Z, Yang X, Li Y, Wang S, Li L. Metabolic reprogramming in T cell senescence: a novel strategy for cancer immunotherapy. Cell Death Discov 2025; 11:161. [PMID: 40204707 PMCID: PMC11982223 DOI: 10.1038/s41420-025-02468-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 03/25/2025] [Accepted: 04/01/2025] [Indexed: 04/11/2025] Open
Abstract
The complex interplay between cancer progression and immune senescence is critically influenced by metabolic reprogramming in T cells. As T cells age, especially within the tumor microenvironment, they undergo significant metabolic shifts that may hinder their proliferation and functionality. This manuscript reviews how metabolic alterations contribute to T cell senescence in cancer and discusses potential therapeutic strategies aimed at reversing these metabolic changes. We explore interventions such as mitochondrial enhancement, glycolytic inhibition, and lipid metabolism adjustments that could rejuvenate senescent T cells, potentially restoring their efficacy in tumor suppression. This review also focuses on the significance of metabolic interventions in T cells with aging and further explores the future direction of the metabolism-based cancer immunotherapy in senescent T cells.
Collapse
Affiliation(s)
- Li Liu
- The Operation Room, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhanying Hao
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Xi Yang
- Department of General Surgery, Sanya People's Hospital, Sanya, China
| | - Yan Li
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China.
| | - Siyang Wang
- Department of Anesthesiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China.
| | - Linze Li
- The Operation Room, The Fourth Affiliated Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
26
|
Zafar M, Sweis N, Kapoor H, Gantt G. Advances and Challenges in the Treatment of HPV-Associated Lower Genital Tract Cancers by Immune Checkpoint Blockers: Insights from Basic and Clinical Science. Cancers (Basel) 2025; 17:1260. [PMID: 40282436 PMCID: PMC12026392 DOI: 10.3390/cancers17081260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025] Open
Abstract
Human papillomavirus (HPV)-related lower genital cancers, including cervical cancer, anal squamous cell carcinoma (SCC), vaginal cancer, vulvar cancer, and penile cancer, pose a significant health burden, with approximately 45,000 new cases diagnosed annually. Current effective treatment modalities include chemoradiotherapy, systemic chemotherapy, and immune checkpoint inhibitors (ICIs). The tumor microenvironment in HPV-related cancers is characterized by immune evasion mechanisms, including the modulation of immune checkpoints such as PD-L1/PD-1. HPV oncoproteins E5, E6, and E7 play crucial roles in this process, altering the expression of immune inhibitory molecules and the recruitment of immune cells. ICIs, such as programmed cell death protein 1 (PD-1) inhibitors, have shown efficacy in enhancing the immune response against HPV-associated tumors by blocking proteins that allow cancer cells to evade immune surveillance. Recent studies have demonstrated that HPV-positive tumors exhibit a more favorable response to ICI-based therapies compared to HPV-negative tumors. The integration of ICIs into treatment regimens for HPV-related cancers has been supported by several clinical trials. The inclusion of ICIs in the treatment approach for HPV-related lower genital cancers presents a promising opportunity for improving patient outcomes. Ongoing research and clinical trials are advancing our understanding of the immune microenvironment and the therapeutic potential of immunotherapy for these cancers.
Collapse
|
27
|
Reinhold-Larsson NV, Starnbach MN. Type I IFNs contribute to upregulation of PD-L1 during Chlamydia trachomatis infection. Infect Immun 2025; 93:e0004025. [PMID: 40071913 PMCID: PMC11977314 DOI: 10.1128/iai.00040-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 02/03/2025] [Indexed: 04/09/2025] Open
Abstract
Chlamydia trachomatis is an obligate intracellular bacterial pathogen that if left untreated can cause reproductive harm. Failure of natural adaptive immunity results in chronic and repeat infections. In efforts to understand the failure of adaptive immunity, we have previously discovered that CD8+ T cells, normally integral for controlling intracellular pathogen infections, are misprogrammed by PD-1/PD-L1 signaling during in vivo C. trachomatis infection and fail to mount a protective response. Seeking to uncover the pathways and host factors involved in PD-L1 upregulation that may lead to CD8+ T-cell inhibition, we discovered that C. trachomatis triggers the secretion of host type I interferons (IFNs) that are necessary and sufficient to upregulate PD-L1 in vitro. Additionally, secretion of type I IFNs is dependent on C. trachomatis development and its type III secretion system. We have also validated that type I IFNs contribute to upregulation of PD-L1 during C. trachomatis infection in vivo using a mouse model of infection. Overall, these findings reveal that C. trachomatis induction of this host pathway may contribute to adaptive immune evasion.
Collapse
|
28
|
Park TI, Yang AH, Kanth BK, Pack SP. Aptamers as Diagnostic and Therapeutic Agents for Aging and Age-Related Diseases. BIOSENSORS 2025; 15:232. [PMID: 40277546 PMCID: PMC12024714 DOI: 10.3390/bios15040232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/26/2025]
Abstract
In the 21st century, the demographic shift toward an aging population has posed a significant challenge, particularly with respect to age-related diseases, which constitute a major threat to human health. Accordingly, the detection, prevention, and treatment of aging and age-related diseases have become critical issues, and the introduction of novel molecular recognition elements, called aptamers, has been considered. Aptamers, a class of oligonucleotides, can bind to target molecules with high specificity. In addition, aptamers exhibit superior stability, biocompatibility, and applicability, rendering them promising tools for the diagnosis and treatment of human diseases. In this paper, we present a comprehensive overview of aptamers, systematic evolution of ligands by exponential enrichment (SELEX), biomarkers associated with aging, as well as aptamer-based diagnostic and therapeutic platforms. Finally, the limitations associated with predicting and preventing age-related conditions are discussed, along with potential solutions based on advanced technologies and theoretical approaches.
Collapse
Affiliation(s)
- Tae-In Park
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea; (T.-I.P.); (A.H.Y.)
| | - Ah Hyun Yang
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea; (T.-I.P.); (A.H.Y.)
| | - Bashistha Kumar Kanth
- Department of Food Science and Nutrition, Dong-A University, Pusan 602760, Republic of Korea;
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea; (T.-I.P.); (A.H.Y.)
| |
Collapse
|
29
|
Wang Y, Jiang J, Shang K, Xu X, Sun J. Turning "trashed" genomic loci into treasurable sites for integrating chimeric antigen receptors in T and NK cells. Mol Ther 2025; 33:1368-1379. [PMID: 39980196 PMCID: PMC11997492 DOI: 10.1016/j.ymthe.2025.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/11/2024] [Accepted: 02/17/2025] [Indexed: 02/22/2025] Open
Abstract
Chimeric antigen receptor (CAR)-based immune cell therapy involves genetically engineering immune cells, such as T cells and natural killer (NK) cells, to express CARs that can specifically recognize target antigens. This modification enables T/NK cells to selectively eliminate tumor cells following adoptive transfer. One common approach to stably integrate CARs into the genome of T/NK cells is through retroviral or lentiviral vectors. However, these vectors mediate semi-random gene integration, posing risks such as oncogenic mutations, gene silencing, and variable CAR expression levels. Targeted integration of CAR genes into the specific genomic locus could overcome these limitations, but identifying the optimal integration sites to maximize the safety and efficacy of CAR-T/NK cell products remains a critical question. Improper integration sites may disturb the endogenous genes surrounding the integration sites, raising safety concerns. Additionally, regulatory elements at the integration sites, such as promoters, can influence the expression level of CAR genes, thus affecting the efficacy of CAR-T/NK cells. In this review, we summarized current strategies for selecting integration sites and promoters in the engineering of CAR-T/NK cells to achieve potent anti-tumor efficacy in preclinical studies.
Collapse
Affiliation(s)
- Yajie Wang
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China; Institute of Hematology, Zhejiang University and Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, Zhejiang, China
| | - Jie Jiang
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China; Institute of Hematology, Zhejiang University and Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, Zhejiang, China
| | - Kai Shang
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China; Institute of Hematology, Zhejiang University and Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, Zhejiang, China
| | - Xiaobao Xu
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Institute of Hematology, Zhejiang University and Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, Zhejiang, China
| | - Jie Sun
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China; Institute of Hematology, Zhejiang University and Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
30
|
Galsky MD, Kockx M, Roels J, Van Elzen R, Guan X, Yuen K, Rishipathak D, Anker JF, Gnjatic S, Izadmehr S, Sanjabi S, Johnston RJ, Peterson M, Koeppen H, David JM, Gupta S, Bamias A, Arranz JA, Kikuchi E, De Santis M, Davis ID, Williams P, Bernhard S, Mellman I, Grande E, Banchereau R, Mariathasan S. Different PD-L1 Assays Reveal Distinct Immunobiology and Clinical Outcomes in Urothelial Cancer. Cancer Immunol Res 2025; 13:476-486. [PMID: 39853278 PMCID: PMC11962399 DOI: 10.1158/2326-6066.cir-24-0649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/03/2024] [Accepted: 01/22/2025] [Indexed: 01/26/2025]
Abstract
Testing for PD-L1 expression by IHC is used to predict immune checkpoint blockade (ICB) benefits but has performed inconsistently in urothelial cancer clinical trials. Different approaches are used for PD-L1 IHC. We analyzed paired PD-L1 IHC data on urothelial cancer samples using the SP142 and 22C3 assays from the phase III IMvigor130 trial and found discordant findings summarized by four phenotypes: PD-L1 positive by both assays, PD-L1 positive by the SP142 assay only, PD-L1 positive by the 22C3 assay only, and PD-L1 negative by both assays double negative. PD-L1 positive by both assays and PD-L1 positive by the SP142 assay only urothelial cancers were associated with more favorable ICB outcomes and increased dendritic cell (DC) infiltration. SP142 PD-L1 staining co-localized with DC-LAMP, a DC marker, whereas 22C3 staining was more diffuse. PD-L1 positive by the 22C3 assay only urothelial cancers, associated with worse outcomes, were enriched in tumor cell (TC)-dominant PD-L1 expression. Multiplex IHC in an independent ICB-treated cohort confirmed that TC-dominant PD-L1 expression was associated with shorter survival. Using different PD-L1 assays, we uncovered that SP142 may preferentially stain PD-L1-expressing DCs, key to orchestrating antitumor immunity, whereas TC-dominant PD-L1 expression, which underlies a subset of "PD-L1-positive" specimens, is associated with poor ICB outcomes. See related Spotlight by Karunamurthy and Davar, p. 454 .
Collapse
Affiliation(s)
| | | | | | | | | | - Kobe Yuen
- Genentech, South San Francisco, California
| | | | | | - Sacha Gnjatic
- Icahn School of Medicine at Mount Sinai, New York, New York
| | - Sudeh Izadmehr
- Icahn School of Medicine at Mount Sinai, New York, New York
| | | | | | | | | | | | | | | | | | - Eiji Kikuchi
- Keio University School of Medicine, Tokyo, Japan
- St Marianna University School of Medicine, Kawasaki, Japan
| | - Maria De Santis
- Charité Universitätsmedizin Berlin, Berlin, Germany
- Medical University of Vienna, Vienna, Austria
| | - Ian D. Davis
- Monash University, Melbourne, Australia
- Eastern Health, Melbourne, Australia
| | | | | | | | | | | | | |
Collapse
|
31
|
Zheng MM, Li JY, Guo HJ, Zhang J, Wang LS, Jiang KF, Wu HH, He QJ, Ding L, Yang B. IMPDH inhibitors upregulate PD-L1 in cancer cells without impairing immune checkpoint inhibitor efficacy. Acta Pharmacol Sin 2025; 46:1058-1067. [PMID: 39592732 PMCID: PMC11950507 DOI: 10.1038/s41401-024-01411-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/12/2024] [Indexed: 11/28/2024]
Abstract
Tumor cells are characterized by rapid proliferation. In order to provide purines for DNA and RNA synthesis, inosine 5'-monophosphate dehydrogenase (IMPDH), a key enzyme in the de novo guanosine biosynthesis, is highly expressed in tumor cells. In this study we investigated whether IMPDH was involved in cancer immunoregulation. We revealed that the IMPDH inhibitors AVN944, MPA or ribavirin concentration-dependently upregulated PD-L1 expression in non-small cell lung cancer cell line NCI-H292. This effect was reproduced in other non-small cell lung cancer cell lines H460, H1299 and HCC827, colon cancer cell lines HT29, RKO and HCT116, as well as kidney cancer cell line Huh7. In NCI-H292 cells, we clarified that IMPDH inhibitors increased CD274 mRNA levels by enhancing CD274 mRNA stability. IMPDH inhibitors improved the affinity of the ARE-binding protein HuR for CD274 mRNA, thereby stabilizing CD274 mRNA. Guanosine supplementation abolished the IMPDH inhibitor-induced increase in PD-L1 expression. In CT26 and EMT6 tumor models used for ICIs based studies, we showed that despite its immunosuppressive properties, the IMPDH inhibitor mycophenolate mofetil did not reduce the clinical response of checkpoint inhibitors, representing an important clinical observation given that this class of drugs is approved for use in multiple diseases. We conclude that PD-L1 induction contributes to the immunosuppressive effect of IMPDH inhibitors. Furthermore, the IMPDH inhibitor mycophenolate mofetil does not antagonize immune checkpoint blockade.
Collapse
Affiliation(s)
- Ming-Ming Zheng
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jia-Yi Li
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hong-Jie Guo
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jie Zhang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Long-Sheng Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ke-Fan Jiang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hong-Hai Wu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qiao-Jun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, 310018, China
- Cancer Center of Zhejiang University, Hangzhou, 310058, China
| | - Ling Ding
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Nanhu Brain-Computer Interface Institute, Hangzhou, 311100, China.
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, 310018, China.
- School of Medicine, Hangzhou City University, Hangzhou, 310015, China.
| |
Collapse
|
32
|
Sharma A, Mishra AK. Tumor-Associated Macrophages Write the Script of Cancer Obesity Paradox. Bioessays 2025; 47:e202400264. [PMID: 39967434 DOI: 10.1002/bies.202400264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 02/20/2025]
Abstract
Obesity paradoxically advances cancer progression while enhancing certain immunotherapies, like anti-PD-1/PD-L1. Bader et al. discovered that obesity-driven factors increase PD-1 on tumor-associated macrophages (TAMs), suppressing anti-tumor responses. Remarkably, anti-PD-1 therapy reverses this metabolic dysfunction, boosting immune checkpoint blockade (ICB) effectiveness by reactivating PD-1+ TAMs.
Collapse
Affiliation(s)
- Anshul Sharma
- Department of Medicine, Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical, Worcester, Massachusetts, USA
| | - Alok K Mishra
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical, Worcester, Massachusetts, USA
- Department of Hematopoietic Biology & Malignancy, MD Anderson Cancer Center, University of Texas, Houston, Texas, USA
| |
Collapse
|
33
|
Wang RN, Li L, Zhou J, Ran J. Multifaceted roles of UFMylation in health and disease. Acta Pharmacol Sin 2025; 46:805-815. [PMID: 39775503 PMCID: PMC11950361 DOI: 10.1038/s41401-024-01456-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025]
Abstract
Ubiquitin fold modifier 1 (UFM1) is a newly identified post-translational modifier that is involved in the UFMylation process. Similar to ubiquitination, UFMylation enables the conjugation of UFM1 to specific target proteins, thus altering their stability, activity, or localization. UFM1 chains have the potential to undergo cleavage from their associated proteins via UFM1-specific proteases, thus highlighting a reversible feature of UFMylation. This modification is conserved across nearly all eukaryotic organisms, and is associated with diverse biological activities such as hematopoiesis and the endoplasmic reticulum stress response. The disruption of UFMylation results in embryonic lethality in mice and is associated with various human diseases, thus underscoring its essential role in embryonic development, tissue morphogenesis, and organismal homeostasis. In this review, we aim to provide an in-depth overview of the UFMylation system, its importance in disease processes, and its potential as a novel target for therapeutic intervention.
Collapse
Affiliation(s)
- Ru-Na Wang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Lin Li
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Jun Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
- Department of Genetics and Cell Biology, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Nankai University, Tianjin, 300071, China
| | - Jie Ran
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
34
|
Peng D, Yang W, Tang T, He A, Xu X, Jing T, Xia D. PLA2G7 promotes immune evasion of bladder cancer through the JAK-STAT-PDL1 axis. Cell Death Dis 2025; 16:234. [PMID: 40169540 PMCID: PMC11962123 DOI: 10.1038/s41419-025-07593-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/10/2025] [Accepted: 03/24/2025] [Indexed: 04/03/2025]
Abstract
Targeting immune checkpoints such as Programmed death ligand-1 (PD-L1) and Programmed cell death 1 (PD-1) has been approved for treating bladder cancer and shows promising clinical benefits. However, the relatively low response rate highlights the need to seek an alternative strategy to traditional PD-1/PD-L1 targeting immunotherapy. In this study, we found that PLA2G7 is significantly elevated in bladder cancer and correlates with worse prognosis. In vitro experiments demonstrated that knockdown of PLA2G7 does not significantly affect the proliferation, migration, and invasion of bladder cancer cells. Flow cytometry detection, as well as protein and RNA detection, showed that knockdown of PLA2G7 significantly inhibits PD-L1 expression and suppresses the growth of transplanted tumors by promoting CD8 + T-cell infiltration. Further experiments showed that PLA2G7 regulates the JAK-STAT pathway to promote PD-L1 expression by upregulating the phosphorylation of STAT1 and STAT3. Meanwhile, results from syngeneic mouse models indicated that PLA2G7 suppression and anti-CTLA4 therapy have synergistic effects on tumor burden and mouse survival. In addition, we found that ETS1 promotes PLA2G7 overexpression in bladder cancer cells. In summary, our findings provide a novel immunotherapeutic strategy against bladder cancer through targeting the ETS1-PLA2G7-STAT1/STAT3-PD-L1 axis.
Collapse
Affiliation(s)
- Ding Peng
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, PR China
| | - Wuping Yang
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, PR China
| | - Tianyu Tang
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, PR China
| | - Anbang He
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, PR China
| | - Xin Xu
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, PR China.
| | - Taile Jing
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, PR China.
| | - Dan Xia
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, PR China.
| |
Collapse
|
35
|
Alghazali T, Ahmed AT, Hussein UAR, Sanghvi G, Uthirapathy S, Edan RT, Lal M, Shit D, Naidu KS, Al-Hamairy AK. Noncoding RNA (ncRNA)-mediated regulation of TLRs: critical regulator of inflammation in tumor microenvironment. Med Oncol 2025; 42:144. [PMID: 40163200 DOI: 10.1007/s12032-025-02690-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/13/2025] [Indexed: 04/02/2025]
Abstract
Toll-like receptors (TLRs) are central components of the innate immune system as they recognize molecular patterns associated with pathogens and cellular damage and initiate immune responses using MyD88- and TRIF-dependent pathways. In contrast to being very useful for immune defense, dysregulated TLR signaling may be involved in diseases, such as cancer and autoimmune conditions. In cancer, TLRs create an environment that supports tumorigenesis and growth. In addition to this, a class of multifunctional noncoding RNAs (ncRNAs), including miRNAs, lncRNAs, and circRNAs, regulate gene expression without encoding proteins. MiRNAs regulate gene expression in a fine-tuned manner, while lncRNAs and circRNAs do so via diverse mechanisms. Notably, these ncRNAs interact, where lncRNAs and circRNAs function as competing endogenous RNAs and ceRNA, affecting miRNA activity. This interaction has a vital role in cancer pathology, in influencing that of various oncogenes and tumor suppressors in the tumor microenvironment; hence, modulation of ncRNAs could also be a great promising therapeutic approach. In this context, interplay between TLRs and ncRNAs is of paramount importance as they influence various parameters of the tumor microenvironment. TLR signaling works upon the expression of ncRNAs, while ncRNAs work back to regulate TLR signaling in return. An example of this includes miRNA targeting of components of the TLR; lncRNAs induced by TLR signaling possibly would favor tumor progression. Pharmacological interventions directed toward inhibiting these TLR pathways could be the model to halt malignancy by hampering pro-tumor inflammation and boosting immune responses against neoplasms. Hence, the review will highlight the complicated contrast of ncRNAs and TLRs within human cancer. By connecting the mechanisms, the researchers may study more about tumorigenesis and gather up new, innovative notions regarding therapeutic targeting.
Collapse
Affiliation(s)
| | | | | | - Gaurav Sanghvi
- Department of Microbiology, Faculty of Science, Marwadi University Research Center, Marwadi University, Rajkot, 360003, Gujarat, India
| | - Subasini Uthirapathy
- Pharmacy Department, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Reem Turki Edan
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | - Madan Lal
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Debasish Shit
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - K Satyam Naidu
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, 531162, India
| | - Ahmed Khudhair Al-Hamairy
- Anesthesia Techniques Department, College of Health and Medical Techniques, Al-Mustaqbal University, 51001, Babylon, Iraq
| |
Collapse
|
36
|
Li S, Yu Y, Xu Y, Zhou Y, Huang J, Jia J. Clinicopathological characteristics and the relationship of PD-L1 status, tumor mutation burden, and microsatellite instability in patients with esophageal carcinoma. BMC Cancer 2025; 25:576. [PMID: 40165109 PMCID: PMC11956183 DOI: 10.1186/s12885-025-13938-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 03/13/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Despite significant advancements in the field of immunotherapy for esophageal cancer in recent years, only a minority of patients respond to these treatments, and effective predictive biomarkers remain elusive. Biomarkers such as programmed cell death 1 ligand 1 (PD-L1), tumor mutational burden (TMB), and microsatellite instability (MSI) are pivotal in guiding immune checkpoint inhibitor therapies. This study aimed to explore the correlation between the three biomarkers in patients with esophageal carcinoma. METHODS We collected one hundred esophageal squamous cell carcinoma (ESCC) tumor samples from patients who have been undergoing radical resection of esophageal carcinoma. Each tissue sample was divided into two parts for next-generation sequencing (NGS) and immunohistochemical staining. Mutations were identified using the NGS database, and TMB was calculated. Multiplex PCR targeting five loci (NR21, NR24, NR27, BAT25, and BAT26) was used to evaluate MSI. PD-L1 expression was determined through immunohistochemical analysis. RESULTS Among the 100 ESCC patients, 54% (54/100) exhibited positive PD-L1 expression, 57% (57/100) demonstrated high TMB (TMB-H), and only 1% (1/100) had high MSI (MSI-H). Within the subset of TMB-H cases, 32 showed positive PD-L1 expression, with a single case displaying high expression of all three biomarkers, and 21 cases displaying low expression of all three biomarkers. There was no statistical association between PD-L1 expression levels and TMB. Further analysis showed a significant correlation between TNM staging and PD-L1 expression levels in ESCC tissues, with higher positive rates of PD-L1 expression observed in advanced stages. Similarly, a significant relationship was observed between TMB and lymph node metastasis. CONCLUSIONS Based on our preliminary results, TMB and PD-L1 can serve as potential early screening clinical biomarkers and molecular targets for immune treatment in ESCC. However, there is no apparent statistical association between TMB and PD-L1 expression levels. Furthermore, PD-L1 and TMB may independently influence the efficacy of immunotherapy, highlighting the inadequacy of single-marker detection in effectively predicting treatment outcomes.
Collapse
Affiliation(s)
- Suyao Li
- The Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei, China
| | - Yongling Yu
- The Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei, China
| | - Yirong Xu
- Shanxi Cancer Hospital, Taiyuan, Shanxi, China
| | - Yue Zhou
- Wuxi People's Hospital, Wuxi, Jiangsu, China
| | - Junxing Huang
- The Affilitated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China.
| | - Jinghao Jia
- The Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei, China.
| |
Collapse
|
37
|
Zheng Y, Li H, Wang Y, Huang L, Chen L, Lin S, Lin S. Identification and immunoassay of biomarkers associated with T cell exhaustion in systemic lupus erythematosus. Front Immunol 2025; 16:1476575. [PMID: 40207215 PMCID: PMC11979134 DOI: 10.3389/fimmu.2025.1476575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 03/10/2025] [Indexed: 04/11/2025] Open
Abstract
Background Systemic lupus erythematosus (SLE) is an autoimmune disease with unclear etiology. T cell exhaustion (TEX) suppresses the immune response and can be a potential therapeutic strategy for autoimmune diseases. Therefore, this study primarily investigated the mechanism by which TEX influences SLE, offering a novel target for its treatment. Methods GSE72326 and GSE81622 were utilized in this study. TEX related genes (TEX-RGs) were obtained from the published literature. Differentially expressed genes (DEGs) were obtained through differential expression analysis. Subsequently, candidate genes were selected by overlapping DEGs and TEX-RGs. These candidate genes underwent protein-protein interactions (PPIs) analysis for further screening. Machine learning was applied to identify candidate key genes from the PPI-identified genes. The candidate key genes exhibiting an area under the receiver operating characteristic (ROC) curve (AUC) greater than 0.7, along with consistent expression trends and significant differences in GSE72326 and GSE81622 were defined as biomarkers. Additionally, enrichment analysis, immune infiltration analysis, chemical compounds prediction and molecular docking were carried out. Importantly, the biomarkers were validated for expression by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Results The biomarkers MX1, LY6E, IFI44 and OASL were screened by overlapping 327 DEGs and 1,408 TEX-RGs. Gene set enrichment analysis (GSEA) showed that there was a significant positive correlation between the expression of these biomarkers and immune-related pathways, such as the NOD-like receptor signaling pathway, Toll-like receptor signaling pathway and RIG-I-like receptor signaling pathway significant positive correlation. The immune infiltration of 8 types of immune cells differed significantly in SLE. Naive B cells, resting memory CD4 T cells and resting NK cells were significantly down-regulated in the SLE group. 4 biomarkers showed the highest correlation with resting memory CD4 T cells. Bisphenol A targeted OASL and LY6E, whereas acetaminophen targeted IFI44 and MX1.The binding activity between the biomarkers and the chemical compounds targeting them was very strong. Finally, RT-qPCR expression of MX1, LY6E, IFI44 and OASL was consistent with the results of the dataset. Conclusion MX1, LY6E, IFI44 and OASL were identified as biomarkers related to TEX in SLE. These biomarkers could be detected in the blood for early diagnosis of the disease or to monitor the efficacy of the disease treatment, thus providing a new target for the management of SLE.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shuhuan Lin
- Department of Rheumatology, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
38
|
Sun D, Cui X, Yang W, Wei M, Yan Z, Zhang M, Yu W. Simvastatin inhibits PD-L1 via ILF3 to induce ferroptosis in gastric cancer cells. Cell Death Dis 2025; 16:208. [PMID: 40140647 PMCID: PMC11947124 DOI: 10.1038/s41419-025-07562-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/09/2025] [Accepted: 03/18/2025] [Indexed: 03/28/2025]
Abstract
The treatment of gastric cancer remains challenging, with immunotherapy serving as a critical component of the holistic approach to its treatment. The results of this study indicated that statins could decrease the serum levels of interleukin-enhancing binding factor 3 (ILF3) and programmed cell death ligand 1(PD-L1) in GC patients and improve their prognosis. Functional experiments demonstrated that simvastatin induced ferroptosis by inhibiting ILF3 in GC cells and enhanced the killing effect of activated CD8+ T cells on GC cells. The CUT&Tag assay revealed that, mechanistically, simvastatin inhibited ILF3 expression by reducing the acetylation level at residue site H3K14 in ILF3. Next-generation sequencing and Kyoto Encyclopedia of Genes and Genomes analysis revealed that ILF3 regulated PD-L1 expression through the DEPTOR/mTOR signaling pathway. Overall, simvastatin induced ferroptosis in GC cells by inhibiting ILF3 expression while promoting the activation of CD8+ T cells to augment antitumor immune responses, thereby facilitating synergistic immunotherapy.
Collapse
Affiliation(s)
- Danping Sun
- Department of Gastrointestinal Surgery, General Surgery, Qilu Hospital of Shandong University, 107 West Wen Hua Road, Jinan, 250012, China
| | - Xiaohan Cui
- Department of Gastrointestinal Surgery, General Surgery, Qilu Hospital of Shandong University, 107 West Wen Hua Road, Jinan, 250012, China
| | - Wenshuo Yang
- Department of Gastrointestinal Surgery, General Surgery, Qilu Hospital of Shandong University, 107 West Wen Hua Road, Jinan, 250012, China
| | - Meng Wei
- Department of Gastrointestinal Surgery, General Surgery, Qilu Hospital of Shandong University, 107 West Wen Hua Road, Jinan, 250012, China
| | - Zhibo Yan
- Department of Gastrointestinal Surgery, General Surgery, Qilu Hospital of Shandong University, 107 West Wen Hua Road, Jinan, 250012, China
| | - Mingxiang Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, 107 West Wen Hua Road, Jinan, 250012, China
| | - Wenbin Yu
- Department of Gastrointestinal Surgery, General Surgery, Qilu Hospital of Shandong University, 107 West Wen Hua Road, Jinan, 250012, China.
| |
Collapse
|
39
|
Moradi S, Sarikhani P, Albadr RJ, Taher WM, Alwan M, Jawad MJ, Mushtaq H, Vakilzadehian N. PD-1/PD-L1 blockade therapy with atezolizumab: a new paradigm in the treatment of non-small cell lung cancer (NSCLC). Discov Oncol 2025; 16:407. [PMID: 40140170 PMCID: PMC11947372 DOI: 10.1007/s12672-025-02076-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
Now, platinum-based chemotherapy is used as the first-line treatment for advanced non-small cell lung cancer (NSCLC). Interestingly, a combination of immune checkpoint inhibitors, such as mepolizumab, with other targeted therapies and chemotherapy help to make a significant improvement. Atezolizumab, a fully humanized, engineered monoclonal antibody of IgG1 isotype against the protein programmed cell death-ligand 1 (PD-L1), blocks PD-1 activation and results in T-cell activity against tumor cells. As the second-line treatment of advanced or metastatic NSCLC, atezolizumab plus chemotherapy was approved in 2017 concerning the clinical benefit of the phase III OAK trials. Atezolizumab, compared with docetaxel, remarkably increased overall survival (OS) and showed promising efficacy and tolerability in the treatment of advanced NSCLC.Research on atezolizumab's application in neoadjuvant (pre-surgery) and adjuvant (post-surgery) contexts is ongoing. It is now undergoing trials to assess its efficacy in these settings, which may broaden its place in the NSCLC therapy spectrum and enhance long-term results. This paper briefly summarizes the clinical data of atezolizumab therapy alone or in combination with other therapeutics for NSCLC therapy.
Collapse
Affiliation(s)
- Samaneh Moradi
- Departments of Internal Medical, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Pedram Sarikhani
- Medicine Department, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Waam Mohammed Taher
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | - Mariem Alwan
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | | | | | - Niyousha Vakilzadehian
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
40
|
Mathews P, Wang X, Wu J, Jabbar S, Burcher K, Rein L, Kang Y. β-Arrestin 2 as a Prognostic Indicator and Immunomodulatory Factor in Multiple Myeloma. Cells 2025; 14:496. [PMID: 40214450 PMCID: PMC11987970 DOI: 10.3390/cells14070496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/14/2025] Open
Abstract
β-arrestin 2 (ARRB2) is involved in the desensitization and trafficking of G protein-coupled receptors (GPCRs) and plays a critical role in cell proliferation, apoptosis, chemotaxis, and immune response modulation. The role of ARRB2 in the pathogenesis of multiple myeloma (MM) has not been elucidated. This study addressed this question by evaluating the expression of ARRB2 in bone marrow (BM) samples from newly diagnosed MM patients and deriving correlations with key clinical outcomes. In light of recent trends towards the use of immune checkpoint inhibitors across malignancies, the effect of ARRB2 in the regulation of the PD-1/PD-L1 axis was also investigated. The expression of ARRB2 was significantly higher in MM patients resistant to proteosome inhibitor (bortezomib) treatment compared to those who responded. Higher ARRB2 expression in the BM of newly diagnosed MM patients was associated with inferior progression-free survival and overall survival. PD-1 expression was downregulated in CD3 T cells isolated from ARRB2 knockout (KO) mice. Furthermore, knockdown of ARRB2 with siRNA reduced PD-1 expression in murine CD3 T cells and PD-L1 expression in murine myeloid-derived suppressor cells. These findings suggest an important role of ARRB2 in MM pathogenesis, potentially mediated via modulation of immune checkpoints in the tumor microenvironment. Our study provides new evidence that ARRB2 may have non-canonical functions independent of GPCRs with relevance to the understanding of MM pathobiology as well as immunotherapy and checkpoint inhibitor escape/resistance more broadly.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yubin Kang
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, School of Medicine, Duke University Medical Center, Durham, NC 27710, USA; (P.M.); (X.W.); (J.W.); (S.J.); (K.B.); (L.R.)
| |
Collapse
|
41
|
Yueh PF, Chiang IT, Weng YS, Liu YC, Wong RCB, Chen CY, Hsu JBK, Jeng LB, Shyu WC, Hsu FT. Innovative dual-gene delivery platform using miR-124 and PD-1 via umbilical cord mesenchymal stem cells and exosome for glioblastoma therapy. J Exp Clin Cancer Res 2025; 44:107. [PMID: 40134003 PMCID: PMC11934454 DOI: 10.1186/s13046-025-03336-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/18/2025] [Indexed: 03/27/2025] Open
Abstract
Addressing the challenges of identifying suitable targets and effective delivery strategies is critical in pursuing therapeutic solutions for glioblastoma (GBM). This study focuses on the therapeutic potential of microRNA-124 (miR-124), known for its tumor-suppressing properties, by investigating its ability to target key oncogenic pathways in GBM. The results reveal that CDK4 and CDK6-cyclin-dependent kinases that promote cell cycle progression-are significantly overexpressed in GBM brain samples, underscoring their role in tumor proliferation and identifying them as critical targets for miR-124 intervention. However, delivering miRNA-based therapies remains a major obstacle due to the instability of RNA molecules and the difficulty in achieving targeted, efficient delivery. To address these issues, this research introduces an innovative, non-viral dual-gene delivery platform that utilizes umbilical cord mesenchymal stem cells (UMSCs) and their exosomes to transport miR-124 and programmed cell death protein-1 (PD-1). The efficacy of this dual-gene delivery system was validated using an orthotopic GBM model, which closely mimics the tumor microenvironment seen in patients. Experimental results demonstrate that the UMSC/miR-124-PD-1 complex and its exosomes successfully induce apoptosis in GBM cells, significantly inhibiting tumor growth. Notably, these treatments show minimal cytotoxic effects on normal glial cells, highlighting their safety and selectivity. Moreover, the study highlights the immunomodulatory properties of UMSC/miR-124-PD-1 and its exosomes, enhancing the activation of immune cells such as T cells and dendritic cells, while reducing immunosuppressive cells populations like regulatory T cells and myeloid-derived suppressor cells. The orchestrated dual-gene delivery system by UMSCs and exosomes showcased targeted tumor inhibition and positive immune modulation, emphasizing its potential as a promising therapeutic approach for GBM.
Collapse
Affiliation(s)
- Po-Fu Yueh
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, 112, Taipei, Beitou, Taiwan (ROC)
| | - I-Tsang Chiang
- Research assistant Center, Show Chwan Memorial Hospital, 500, Changhua, Taiwan (ROC)
- Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, 406, Taichung, Taiwan (ROC)
- Department of Radiation Oncology, Show Chwan Memorial Hospital, Changhua, Taiwan (ROC)
| | - Yueh-Shan Weng
- Department of Biological Science and Technology, China Medical University, 406, Taichung, Taiwan (ROC)
| | - Yu-Chang Liu
- Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, 406, Taichung, Taiwan (ROC)
- Department of Radiation Oncology, Chang Bing Show Chwan Memorial Hospital, 505, Lukang, Changhua, Taiwan (ROC)
- LOHAS Naturopathic Medical Center, Chang Bing Show Chwan Memorial Hospital, Lukang, Taiwan (ROC)
- Evidence-Based Medicine Center, Chang Bing Show Chwan Memorial Hospital, Lukang, Taiwan (ROC)
- Center of Quality Management, Chang Bing Show Chwan Memorial Hospital, Lukang, Taiwan (ROC)
| | - Raymond C B Wong
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, 3002, East Melbourne, VIC, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, 3002, East Melbourne, VIC, Australia
| | - Cheng-Yu Chen
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taipei, Taiwan (ROC)
- Department of Medical Imaging, Taipei Medical University Hospital, 112, Taipei, Taiwan (ROC)
| | - Justin Bo-Kai Hsu
- Department of Computer Science and Engineering, Yuan Ze University, 320, Taoyuan, Taiwan (ROC)
| | - Long-Bin Jeng
- Organ Transplantation Center, China Medical University Hospital, 404, Taichung, Taiwan (ROC).
- Cell Therapy Center, China Medical University Hospital, 404, Taichung, Taiwan (ROC).
- School of Medicine, China Medical University, 404, Taichung, Taiwan (ROC).
| | - Woei-Cherng Shyu
- Graduate Institute of Biomedical Sciences, China Medical University, 404, Taichung, Taiwan (ROC).
- Neuroscience and Brain Disease Center, China Medical University, 404, Taichung, Taiwan (ROC).
- Translational Medicine Research Center, Drug Development Center, Department of Neurology, China Medical University & Hospital, 404, Taichung, Taiwan (ROC).
| | - Fei-Ting Hsu
- Department of Biological Science and Technology, China Medical University, 406, Taichung, Taiwan (ROC).
- Department of Life Sciences, National Central University, 320, Taoyuan, Taiwan (ROC).
| |
Collapse
|
42
|
Liu Y, Liu Y, Niu X, Chen A, Li Y, Yu Y, Mo B, Liu Z, Xu T, Cheng J, Wu Z, Wei W. Massively parallel interrogation of human functional variants modulating cancer immunosurveillance. Signal Transduct Target Ther 2025; 10:88. [PMID: 40102418 PMCID: PMC11920242 DOI: 10.1038/s41392-025-02171-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 01/23/2025] [Accepted: 02/12/2025] [Indexed: 03/20/2025] Open
Abstract
Anti-PD-1/PD-L1 immune checkpoint blockade (ICB) therapy has revolutionized clinical cancer treatment, while abnormal PD-L1 or HLA-I expression in patients can significantly impact the therapeutic efficacy. Somatic mutations in cancer cells that modulate these critical regulators are closely associated with tumor progression and ICB response. However, a systematic interpretation of cancer immune-related mutations is still lacking. Here, we harnessed the ABEmax system to establish a large-scale sgRNA library encompassing approximately 820,000 sgRNAs that target all feasible serine/threonine/tyrosine residues across the human genome, which systematically unveiled thousands of novel mutations that decrease or augment PD-L1 or HLA-I expression. Beyond residues associated with phosphorylation events, our screens also identified functional mutations that affect mRNA or protein stability, DNA binding capacity, protein-protein interactions, and enzymatic catalytic activity, leading to either gene inactivation or activation. Notably, we uncovered certain mutations that concurrently modulate PD-L1 and HLA-I expression, represented by the clinically relevant mutation SETD2_Y1666. We demonstrated that this mutation induces consistent phenotypic effects across multiple cancer cell lines and enhances the efficacy of immunotherapy in different tumor models. Our findings provide an unprecedented resource of functional residues that regulate cancer immunosurveillance, offering valuable guidance for clinical diagnosis, ICB therapy, and the development of innovative drugs for cancer treatment.
Collapse
Affiliation(s)
- Ying Liu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China
- Changping Laboratory, Beijing, China
| | - Yongshuo Liu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xuran Niu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China
| | - Ang Chen
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yizhou Li
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China
- Changping Laboratory, Beijing, China
| | - Ying Yu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China
| | - Binrui Mo
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China
| | - Zhiheng Liu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China
| | - Tao Xu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China
| | - Jie Cheng
- Department of pathology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zeguang Wu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China
| | - Wensheng Wei
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China.
- Changping Laboratory, Beijing, China.
| |
Collapse
|
43
|
Agostini M, Traldi P, Hamdan M. Programmed Cell Death Ligand as a Biomarker for Response to Immunotherapy: Contribution of Mass Spectrometry-Based Analysis. Cancers (Basel) 2025; 17:1001. [PMID: 40149335 PMCID: PMC11940629 DOI: 10.3390/cancers17061001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 03/12/2025] [Indexed: 03/29/2025] Open
Abstract
Immune checkpoint inhibition is a major component in today's cancer immunotherapy. In recent years, the FDA has approved a number of immune checkpoint inhibitors (ICIs) for the treatment of melanoma, non-small-cell lung, breast and gastrointestinal cancers. These inhibitors, which target cytotoxic T-lymphocyte antigen-4, programmed cell death (PD-1), and programmed cell death ligand (PD-L1) checkpoints have assumed a leading role in immunotherapy. The same inhibitors exert significant antitumor effects by overcoming tumor cell immune evasion and reversing T-cell exhaustion. The initial impact of this therapy in cancer treatment was justly described as revolutionary, however, clinical as well as research data which followed demonstrated that these innovative drugs are costly, are associated with potentially severe adverse effects, and only benefit a small subset of patients. These limitations encouraged enhanced research and clinical efforts to identify predictive biomarkers to stratify patients who are most likely to benefit from this form of therapy. The discovery and characterization of this class of biomarkers is pivotal in guiding individualized treatment against various forms of cancer. Currently, there are three FDA-approved predictive biomarkers, however, none of which on its own can deliver a reliable and precise response to immune therapy. Present literature identifies the absence of precise predictive biomarkers and poor understanding of the mechanisms behind tumor resistance as the main obstacles facing ICIs immunotherapy. In the present text, we discuss the dual role of PD-L1 as a biomarker for response to immunotherapy and as an immune checkpoint. The contribution of mass spectrometry-based analysis, particularly the impact of protein post-translational modifications on the performance of this protein is underlined.
Collapse
Affiliation(s)
| | - Pietro Traldi
- Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35100 Padova, Italy; (M.A.); (M.H.)
| | | |
Collapse
|
44
|
Pan X, Zhang YWQ, Dai C, Zhang J, Zhang M, Chen X. Applications of mRNA Delivery in Cancer Immunotherapy. Int J Nanomedicine 2025; 20:3339-3361. [PMID: 40125430 PMCID: PMC11928443 DOI: 10.2147/ijn.s500520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 03/08/2025] [Indexed: 03/25/2025] Open
Abstract
Cancer treatment is continually advancing, with immunotherapy gaining prominence as a standard modality that has markedly improved the management of various malignancies. Despite these advancements, the efficacy of immunotherapy remains variable, with certain cancers exhibiting limited response and patient outcomes differing considerably. Thus, enhancing the effectiveness of immunotherapy is imperative. A promising avenue is mRNA delivery, employing carriers such as liposomes, peptide nanoparticles, inorganic nanoparticles, and exosomes to introduce mRNA cargos encoding tumor antigens, immune-stimulatory, or immune-modulatory molecules into the tumor immune microenvironment (TIME). This method aims to activate the immune system to target and eradicate tumor cells. In this review, we introduce the characteristics and limitations of these carriers and summarize the application and mechanisms of currently prevalent cargos in mRNA-based tumor treatment. Additionally, given the significant clinical application of immune checkpoint inhibitors (ICIs) and chimeric antigen receptor (CAR)-based cell therapies in solid tumors (including melanoma, non-small-cell lung cancer, head and neck squamous cell carcinoma, triple-negative breast cancer, gastric cancer) and leukemia, which have become first-line treatments, we highlight and discuss recent progress in combining mRNA delivery with ICIs, CAR-T, CAR-NK, and CAR-macrophage therapies. This combination enhances the targeting capabilities and efficacy of ICIs and CAR-cell-based therapies, while also mitigating the long-term off-target toxicities associated with conventional methods. Finally, we analyze the limitations of current mRNA delivery systems, such as nuclease-induced mRNA instability, immunogenicity risks, complex carrier production, and knowledge gaps concerning dosing and safety. Addressing these challenges is crucial for unlocking the potential of mRNA in cancer immunotherapy. Overall, exploring mRNA delivery enriches our comprehension of cancer immunotherapy and holds promise for developing personalized and effective treatment strategies, potentially enhancing the immune responses of cancer patients and extending their survival time.
Collapse
Affiliation(s)
- Xiaoyu Pan
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Yang-Wen-Qing Zhang
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Caixia Dai
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Junyu Zhang
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Minghe Zhang
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Xi Chen
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| |
Collapse
|
45
|
Medhi K, Mukherjee S, Dagar A, Tiwari AK, Daffara S, Bana S, Uttam V, Ansari MR, Yadav V, Tuli HS, Jain A. MYOSLID: A Critical Modulator of Cancer Hallmarks. Genes (Basel) 2025; 16:341. [PMID: 40149492 PMCID: PMC11942567 DOI: 10.3390/genes16030341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/09/2025] [Accepted: 03/12/2025] [Indexed: 03/29/2025] Open
Abstract
Despite being the leading cause of death worldwide, cancer still lacks precise biomarkers for effective targeting, limiting efforts to reduce mortality rates. This review explores the role and clinical significance of a newly identified long non-coding RNA, MYOSLID, in cancer progression. MYOSLID has emerged as a critical modulator in cancer progression by influencing key hallmarks such as proliferation, immune evasion, metastasis, and metabolic reprogramming. It promotes tumor cell growth by stabilizing hypoxia-inducible factor 1 and acting as a competing endogenous RNA (ceRNA) to sequester tumor-suppressive microRNAs like miR-29c-3p, thereby enhancing oncogene expression. It facilitates immune evasion by upregulating PD-L1, suppressing T cell activation, and modulating necroptosis pathways involving RIPK1 and RIPK3. Additionally, MYOSLID drives metastasis by regulating epithelial-mesenchymal transition markers such as LAMB3 and Slug while promoting RAB13-mediated cytoskeletal remodeling and enhancing cancer cell invasion. We have obtained the expression of MYOSLID from TCGA and the ENCORI database. The expression of colorectal adenocarcinoma (COAD) and head and neck squamous cell carcinoma (HNSCC) is associated with poor prognosis and lower survival rate. Given its significant potential as a diagnostic biomarker and therapeutic target, further research is required to elucidate its precise molecular mechanisms and therapeutic applications in cancer treatment.
Collapse
Affiliation(s)
- Kanupriya Medhi
- Non-Coding RNA and Cancer Biology Lab, Department of Zoology, Central University of Punjab, Ghudda, Bathinda 151401, Punjab, India; (K.M.); (S.M.); (A.D.); (A.K.T.); (S.D.); (S.B.); (V.U.)
| | - Sagarika Mukherjee
- Non-Coding RNA and Cancer Biology Lab, Department of Zoology, Central University of Punjab, Ghudda, Bathinda 151401, Punjab, India; (K.M.); (S.M.); (A.D.); (A.K.T.); (S.D.); (S.B.); (V.U.)
| | - Aastha Dagar
- Non-Coding RNA and Cancer Biology Lab, Department of Zoology, Central University of Punjab, Ghudda, Bathinda 151401, Punjab, India; (K.M.); (S.M.); (A.D.); (A.K.T.); (S.D.); (S.B.); (V.U.)
| | - Ashutosh Kumar Tiwari
- Non-Coding RNA and Cancer Biology Lab, Department of Zoology, Central University of Punjab, Ghudda, Bathinda 151401, Punjab, India; (K.M.); (S.M.); (A.D.); (A.K.T.); (S.D.); (S.B.); (V.U.)
| | - Sia Daffara
- Non-Coding RNA and Cancer Biology Lab, Department of Zoology, Central University of Punjab, Ghudda, Bathinda 151401, Punjab, India; (K.M.); (S.M.); (A.D.); (A.K.T.); (S.D.); (S.B.); (V.U.)
| | - Sanjana Bana
- Non-Coding RNA and Cancer Biology Lab, Department of Zoology, Central University of Punjab, Ghudda, Bathinda 151401, Punjab, India; (K.M.); (S.M.); (A.D.); (A.K.T.); (S.D.); (S.B.); (V.U.)
| | - Vivek Uttam
- Non-Coding RNA and Cancer Biology Lab, Department of Zoology, Central University of Punjab, Ghudda, Bathinda 151401, Punjab, India; (K.M.); (S.M.); (A.D.); (A.K.T.); (S.D.); (S.B.); (V.U.)
| | - Md Rizwan Ansari
- 3rd Floor, Jyoti Pinnacle Building, Survey No.11, Kondapur Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500081, Telangana, India;
| | - Vikas Yadav
- Department of Translational Medicine, Clinical Research Centre, Skåne University Hospital, Lund University, 20213 Malmö, Sweden;
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India
| | - Aklank Jain
- Non-Coding RNA and Cancer Biology Lab, Department of Zoology, Central University of Punjab, Ghudda, Bathinda 151401, Punjab, India; (K.M.); (S.M.); (A.D.); (A.K.T.); (S.D.); (S.B.); (V.U.)
| |
Collapse
|
46
|
Cristaldi V, Terzi di Bergamo L, Patruno L, Kallikourdis M, Cassanmagnago GA, Corrado F, Calabretta E, Condoluci A, di Trani M, Rahal D, Basso G, Peano C, Graudenzi A, Antoniotti M, Rossi D, Carlo-Stella C. The immune cell dynamics in the peripheral blood of cHL patients receiving anti-PD1 treatment. Front Oncol 2025; 15:1518107. [PMID: 40182035 PMCID: PMC11966435 DOI: 10.3389/fonc.2025.1518107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/21/2025] [Indexed: 04/05/2025] Open
Abstract
Checkpoint blockade therapy (CBT) involving anti-PD1 antibodies represents the standard approach for cHL patients who do not respond to second-line therapy. Nonetheless, only 20% of relapsed/refractory (R/R) cHL patients treated with CBT achieve complete remission. In this study, we extensively examined the immune dynamics in eight R/R cHL patients treated with CBT, consisting of four complete responders (CR) and four experiencing disease progression (PD), by single cell analysis of peripheral blood mononuclear cells (PBMCs). Our unique approach encompassed longitudinal analysis with three time points, providing a comprehensive understanding of the evolving immune responses during anti-PD1 therapy. Through gene expression profiling, we identified a stable and distinctive KLRG1+/FOS+/JUN+/GZMA+/CD8+ T cell phenotype in patients achieving complete responses. This specific CD8+ T cell subset exhibited sustained activation, underscoring its potential pivotal role in mounting an effective immune response against cHL. Furthermore, T cell receptor (TCR) analysis revealed that in responder patients there is clonal expansion between TCR clonotypes specifically in the KLRG1+/FOS+/JUN+/GZMA+/CD8+ T cell subset. Our longitudinal study offers unique insights into the complex immune dynamics of multiply relapsed/highly pre-treated cHL patients undergoing anti-PD1 therapy.
Collapse
Affiliation(s)
- Vanessa Cristaldi
- Department of Biomedical Sciences, Humanitas University, Milano, Italy
| | - Lodovico Terzi di Bergamo
- Laboratory of Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland
- Department of Health Science and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | - Lucrezia Patruno
- Department of Informatics, Systems and Communication of the University of Milan-Bicocca, Milan, Italy
| | - Marinos Kallikourdis
- Department of Biomedical Sciences, Humanitas University, Milano, Italy
- Adaptive Immunity Lab, IRCCS Humanitas Research Hospital, Milan, Italy
| | | | - Francesco Corrado
- Department of Oncology and Hematology, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Eleonora Calabretta
- Department of Oncology and Hematology, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Adalgisa Condoluci
- Laboratory of Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Martina di Trani
- Department of Biomedical Sciences, Humanitas University, Milano, Italy
| | - Daoud Rahal
- Department of Pathology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Gianluca Basso
- Department of Biomedical Sciences, Humanitas University, Milano, Italy
| | - Clelia Peano
- Institute of Genetics and Biomedical Research, UoS of Milan, National Research Council, Milan, Italy
| | - Alex Graudenzi
- Institute of Molecular Bioimaging and Physiology, Consiglio Nazionale delle Ricerche (IBFM-CNR), Milan, Italy
- Bicocca Bioinformatics, Biostatistic, Bioimaging Centre (B4), Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Marco Antoniotti
- Department of Informatics, Systems and Communication of the University of Milan-Bicocca, Milan, Italy
- Bicocca Bioinformatics, Biostatistic, Bioimaging Centre (B4), Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Davide Rossi
- Laboratory of Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Carmelo Carlo-Stella
- Department of Biomedical Sciences, Humanitas University, Milano, Italy
- Department of Oncology and Hematology, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
47
|
Song MY, Cho J, Park H, Song Y, Kim K, Ahn JH, Lee CM, Kim DH, Ko HJ. Discovery and functional characterization of canine PD-L1-targeted antibodies for evaluating antitumor efficacy in a canine osteosarcoma xenograft model. Sci Rep 2025; 15:7574. [PMID: 40038403 PMCID: PMC11880529 DOI: 10.1038/s41598-025-90770-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 02/17/2025] [Indexed: 03/06/2025] Open
Abstract
Targeting the programmed cell death protein 1 (PD-1)/programmed death ligand 1 (PD-L1) pathway is promising in treating cancer in humans and offers potential for veterinary applications. However, no PD-L1 antibodies have been approved specifically for treating canine cancer. We aimed to develop PD-L1-specific antibodies using phage display technology for treating canine cancer. A synthetic antibody library was screened, and 18 high-affinity single-chain variable fragment clones were subsequently converted to the IgG format for enhancing binding affinity and functional stability. The clone #15 exhibited the highest binding affinity and most pronounced antitumor effects. The PD-1/PD-L1 interaction was inhibited by antibody #15. The binding and thermal stabilities of the antibodies were validated by flow cytometry and thermal stability assays, respectively. In NOG mice xenografted with canine osteosarcoma cells and treated with canine peripheral blood mononuclear cells and antibody #15, the tumor size and weight were reduced. Antibody #15 significantly increased apoptosis of tumor cells and lymphocyte populations. Therefore, anti-PD-L1 antibodies, particularly antibody #15, have substantial potential as novel immunotherapeutic agents against canine osteosarcoma. This study represents a significant advancement in veterinary oncology, with the potential of improving treatment outcomes for canine cancers and providing insights into similar strategies in human cancer therapy.
Collapse
Affiliation(s)
- Min-Young Song
- Department of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Innovative Drug Development Research Team for Intractable Diseases (BK21 Plus), Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jaewon Cho
- Department of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hyosung Park
- Department of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Yujeong Song
- Department of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Keon Kim
- Department of Veterinary Internal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jae-Hee Ahn
- Department of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Chang-Min Lee
- Department of Veterinary Internal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Dae Hee Kim
- Department of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea.
- Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon, 24341, Republic of Korea.
- Global/Gangwon Innovative Biologics-Regional Leading Research Center (GIB-RLRC), Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Hyun-Jeong Ko
- Department of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea.
- Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon, 24341, Republic of Korea.
- Innovative Drug Development Research Team for Intractable Diseases (BK21 Plus), Kangwon National University, Chuncheon, 24341, Republic of Korea.
- Global/Gangwon Innovative Biologics-Regional Leading Research Center (GIB-RLRC), Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
48
|
Al-Nakhle H, Al-Shahrani R, Al-Ahmadi J, Al-Madani W, Al-Juhani R. Integrative In Silico Analysis to Identify Functional and Structural Impacts of nsSNPs on Programmed Cell Death Protein 1 (PD-1) Protein and UTRs: Potential Biomarkers for Cancer Susceptibility. Genes (Basel) 2025; 16:307. [PMID: 40149458 PMCID: PMC11942535 DOI: 10.3390/genes16030307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/20/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025] Open
Abstract
Background: Programmed cell death protein 1 (PD-1), encoded by the PDCD1 gene, is critical in immune checkpoint regulation and cancer immune evasion. Variants in PDCD1 may alter its function, impacting cancer susceptibility and disease progression. Objectives: This study evaluates the structural, functional, and regulatory impacts of non-synonymous single-nucleotide polymorphisms (nsSNPs) in the PDCD1 gene, focusing on their pathogenic and oncogenic roles. Methods: Computational tools, including PredictSNP1.0, I-Mutant2.0, MUpro, HOPE, MutPred2, Cscape, Cscape-Somatic, GEPIA2, cBioPortal, and STRING, were used to analyze 695 nsSNPs in the PD1 protein. The analysis covered structural impacts, stability changes, regulatory effects, and oncogenic potential, focusing on conserved domains and protein-ligand interactions. Results: The analysis identified 84 deleterious variants, with 45 mapped to conserved regions like the Ig V-set domain essential for ligand-binding interactions. Stability analyses identified 78 destabilizing variants with significant protein instability (ΔΔG values). Ten nsSNPs were identified as potential cancer drivers. Expression profiling showed differential PDCD1 expression in tumor versus normal tissues, correlating with improved survival in skin melanoma but limited value in ovarian cancer. Regulatory SNPs disrupted miRNA-binding sites and transcriptional regulation, affecting PDCD1 expression. STRING analysis revealed key PD-1 protein partners within immune pathways, including PD-L1 and PD-L2. Conclusions: This study highlights the significance of PDCD1 nsSNPs as potential biomarkers for cancer susceptibility, advancing the understanding of PD-1 regulation. Experimental validation and multi-omics integration are crucial to refine these findings and enhance theraputic strategies.
Collapse
Affiliation(s)
- Hakeemah Al-Nakhle
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Al-Madinah Al-Monawarah 42353, Saudi Arabia
| | | | | | | | | |
Collapse
|
49
|
Dai D, Wang S, Li J, Zhao Y. Exploring radiation resistance-related genes in pancreatic cancer and their impact on patient prognosis and treatment. Front Immunol 2025; 16:1524798. [PMID: 40103813 PMCID: PMC11914796 DOI: 10.3389/fimmu.2025.1524798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 02/10/2025] [Indexed: 03/20/2025] Open
Abstract
Background Pancreatic cancer is a highly lethal disease with increasing incidence worldwide. Despite surgical resection being the main curative option, only a small percentage of patients are eligible for surgery. Radiotherapy, often combined with chemotherapy, remains a critical treatment, especially for locally advanced cases. However, pancreatic cancer's aggressiveness and partial radio resistance lead to frequent local recurrence. Understanding the mechanisms of radiotherapy resistance is crucial to improving patient outcomes. Methods Pancreatic cancer related gene microarray data were downloaded from GEO database to analyze differentially expressed genes before and after radiotherapy using GEO2R online tool. The obtained differentially expressed genes were enriched by GO and KEGG to reveal their biological functions. Key genes were screened by univariate and multivariate Cox regression analysis, and a risk scoring model was constructed, and patients were divided into high-risk group and low-risk group. Subsequently, Kaplan-Meier survival analysis was used to compare the survival differences between the two groups of patients, further analyze the differential genes of the two groups of patients, and evaluate their sensitivity to different drugs. Results Our model identified 10 genes associated with overall survival (OS) in pancreatic cancer. Based on risk scores, patients were categorized into high- and low-risk groups, with significantly different survival outcomes and immune profile characteristics. High-risk patients showed increased expression of pro-inflammatory immune markers and increased sensitivity to specific chemotherapy agents, while low-risk patients had higher expression of immune checkpoints (CD274 and CTLA4), indicating potential sensitivity to targeted immunotherapies. Cross-dataset validation yielded consistent AUC values above 0.77, confirming model stability and predictive accuracy. Conclusion This study provides a scoring model to predict radiotherapy resistance and prognosis in pancreatic cancer, with potential clinical application for patient stratification. The identified immune profiles and drug sensitivity variations between risk groups highlight opportunities for personalized treatment strategies, contributing to improved management and survival outcomes in pancreatic cancer.
Collapse
Affiliation(s)
- Dong Dai
- Department of Nuclear Medicine, Tianjin Cancer Hospital Airport Hospital, National Clinical Research Center for Cancer, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for China, Tianjin, China
| | - Sen Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Jiaze Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yu Zhao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| |
Collapse
|
50
|
Liu D, Liu L, Zhang X, Zhao X, Li X, Che X, Wu G. Decoding driver and phenotypic genes in cancer: Unveiling the essence behind the phenomenon. Mol Aspects Med 2025; 103:101358. [PMID: 40037122 DOI: 10.1016/j.mam.2025.101358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/25/2025] [Accepted: 02/26/2025] [Indexed: 03/06/2025]
Abstract
Gray hair, widely regarded as a hallmark of aging. While gray hair is associated with aging, reversing this trait through gene targeting does not alter the fundamental biological processes of aging. Similarly, certain oncogenes (such as CXCR4, MMP-related genes, etc.) can serve as markers of tumor behavior, such as malignancy or prognosis, but targeting these genes alone may not lead to tumor regression. We pioneered the name of this class of genes as "phenotypic genes". Historically, cancer genetics research has focused on tumor driver genes, while genes influencing cancer phenotypes have been relatively overlooked. This review explores the critical distinction between driver genes and phenotypic genes in cancer, using the MAPK and PI3K/AKT/mTOR pathways as key examples. We also discuss current research techniques for identifying driver and phenotypic genes, such as whole-genome sequencing (WGS), RNA sequencing (RNA-seq), RNA interference (RNAi), CRISPR-Cas9, and other genomic screening methods, alongside the concept of synthetic lethality in driver genes. The development of these technologies will help develop personalized treatment strategies and precision medicine based on the characteristics of relevant genes. By addressing the gap in discussions on phenotypic genes, this review significantly contributes to clarifying the roles of driver and phenotypic genes, aiming at advancing the field of targeted cancer therapy.
Collapse
Affiliation(s)
- Dequan Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Lei Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Xiaoman Zhang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Xinming Zhao
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Xiaorui Li
- Department of Oncology, Cancer Hospital of Dalian University of Technology, Shenyang, 110042, China.
| | - Xiangyu Che
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| |
Collapse
|