1
|
Evdokimova M, Feng S, Caobi A, Moreira FR, Jones D, Alysandratos KD, Tully ES, Kotton DN, Boyd DF, Banach BS, Kirchdoerfer RN, Saeed M, Baker SC. Coronavirus endoribonuclease antagonizes ZBP1-mediated necroptosis and delays multiple cell death pathways. Proc Natl Acad Sci U S A 2025; 122:e2419620122. [PMID: 40035769 PMCID: PMC11912388 DOI: 10.1073/pnas.2419620122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/13/2025] [Indexed: 03/06/2025] Open
Abstract
Identifying conserved mechanisms used by viruses to delay host innate responses can reveal potential targets for antiviral therapeutics. Here, we investigated coronavirus nonstructural protein 15 (nsp15), which encodes a highly conserved endoribonuclease (EndoU). EndoU functions as an immune antagonist by limiting the accumulation of viral replication intermediates that would otherwise be sensed by the host. Despite being a promising antiviral target, it has been difficult to develop small-molecule inhibitors that target the EndoU active site. We generated nsp15 mutants of the coronaviruses severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and mouse hepatitis virus (MHV)-A59 and identified conserved residues within the amino-terminal domain that are required for EndoU activity. Loss of EndoU activity caused the activation of host sensors, which limited viral replication in interferon-responsive cells and attenuated disease in MHV-infected mice. Using transcriptional profiling, we found that MHV EndoU mutant viruses upregulate multiple host sensors, including Z-form nucleic acid-binding protein 1 (ZBP1). We found that nsp15 mutants induced early, robust ZBP1-mediated necroptosis. EndoU mutant viruses also induced ZBP1-independent apoptosis and pyroptosis pathways, causing early, robust cell death that limits virus replication and pathogenesis. Overall, we document the importance of the amino-terminal domain for EndoU function. We also highlight the importance of nsp15/EndoU activity for evading host sensors, delaying cell death, and promoting pathogenesis.
Collapse
Affiliation(s)
- Monika Evdokimova
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL60153
| | - Shuchen Feng
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL60153
| | - Allen Caobi
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston University, Boston, MA02118
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA02118
| | - Fernando R. Moreira
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL60153
| | - Dakota Jones
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA02118
- The Pulmonary Center and Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA02118
| | - Konstantinos-Dionysios Alysandratos
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA02118
- The Pulmonary Center and Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA02118
| | - Ena S. Tully
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, WI53706
| | - Darrell N. Kotton
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA02118
- The Pulmonary Center and Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA02118
| | - David F. Boyd
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA95064
| | - Bridget S. Banach
- Department of Pathology, Delnor Hospital-Northwestern Medicine, Geneva, IL60134
| | - Robert N. Kirchdoerfer
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, WI53706
| | - Mohsan Saeed
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston University, Boston, MA02118
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA02118
| | - Susan C. Baker
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL60153
| |
Collapse
|
2
|
Yang H, Guan L, Xue Y, Li X, Gao L, Zhang Z, Zhang H, Ma H, Liu F, Huang X, Tong Z, Li J. Longitudinal multi-omics analysis of convalescent individuals with respiratory sequelae 6-36 months after COVID-19. BMC Med 2025; 23:134. [PMID: 40038650 PMCID: PMC11881263 DOI: 10.1186/s12916-025-03971-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/26/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Approximately 10-30% of individuals continue to experience symptoms classified as post-acute sequelae of coronavirus disease 2019 (COVID-19 (PASC)). PASC is a multisystem condition primarily characterized by respiratory symptoms, such as reduced diffusing capacity for carbon monoxide (DLco). Although many studies have investigated the pathogenesis of acute COVID-19, the long-term molecular changes in COVID-19 convalescents with PASC remain poorly understood. METHODS We prospectively recruited 70 individuals who had been diagnosed with COVID-19 from 7 January 2020 to 29 May 2020 (i.e., COVID-19 convalescents); we performed follow-up visits at 6 months, 1 year, 2 years, and 3 years after hospital discharge. Thirty-five healthy controls (CONs), recruited from a physical examination center before the COVID-19 pandemic, served as a comparison group. We explored the proteomic and metabolomic profiles of 174 plasma samples from the 70 COVID-19 convalescents and 35 CONs. RESULTS We performed a comprehensive molecular analysis of COVID-19 convalescents to investigate host changes up to 3 years after hospital discharge. Our multi-omics analysis revealed activation of cytoskeletal organization and glycolysis/gluconeogenesis, as well as suppression of gas transport and adaptive immune responses, in COVID-19 convalescents. Additionally, metabolites involved in glutathione metabolism; alanine, aspartate, and glutamate metabolism; and ascorbate and aldarate metabolism were significantly upregulated in COVID-19 convalescents. Pulmonary and molecular abnormalities persisted for 3 years in COVID-19 convalescents; impaired diffusing capacity for carbon monoxide (DLco) was the most prominent feature. We used this multi-omics profile to develop a model involving one protein (heterogeneous nuclear ribonucleoprotein K (HNRNPK)) and two metabolites (arachidonoyl-EA and 1-O-(2r-hydroxy-pentadecyl)-sn-glycerol)) for identification of COVID-19 convalescents with abnormal DLco. CONCLUSIONS These data provide insights concerning molecular sequelae among COVID-19 convalescents up to 3 years after hospital discharge, clarify mechanisms driving respiratory sequelae, and support the development of a novel model to predict reduced DLco. This longitudinal multi-omics analysis may illuminate the trajectory of altered lung function in COVID-19 convalescents.
Collapse
Affiliation(s)
- Huqin Yang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Lujia Guan
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yi Xue
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xuyan Li
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Leyi Gao
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zhijin Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Haifan Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Haomiao Ma
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Fengjiao Liu
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xuan Huang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zhaohui Tong
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
- Beijing Research Center for Respiratory Infectious Diseases, Beijing, China.
| | - Jieqiong Li
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Qudus MS, Afaq U, Liu S, Wu K, Yu C, Tian M, Wu J. SARS-CoV-2-ORF-3a Mediates Apoptosis Through Mitochondrial Dysfunction Modulated by the K + Ion Channel. Int J Mol Sci 2025; 26:1575. [PMID: 40004042 PMCID: PMC11855091 DOI: 10.3390/ijms26041575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Coronavirus disease 2019 (COVID-19) causes pulmonary edema, which disrupts the lung alveoli-capillary barrier and leads to pulmonary cell apoptosis, the main cause of death. However, the molecular mechanism behind SARS-CoV-2's apoptotic activity remains unknown. Here, we revealed that SARS-CoV-2-ORF-3a mediates the pulmonary pathology associated with SARS-CoV-2, which is demonstrated by the fact that it causes lung tissue damage. The in vitro results showed that SARS-CoV-2-ORF-3a triggers cell death via the disruption of mitochondrial homeostasis, which is modulated through the regulation of Mitochondrial ATP-sensitive Potassium Channel (MitoKATP). The addition of exogenous Potassium (K+) in the form of potassium chloride (KCl) attenuated mitochondrial apoptosis along with the inflammatory interferon response (IFN-β) triggered by SARS-ORF-3a. The addition of exogenous K+ strongly suggests that dysregulation of K+ ion channel function is the central mechanism underlying the mitochondrial dysfunction and stress response induced by SARS-CoV-2-ORF-3a. Our results designate that targeting the potassium channel or its interactions with ORF-3a may represent a promising therapeutic strategy to mitigate the damaging effects of infection with SARS-CoV-2.
Collapse
Affiliation(s)
- Muhammad Suhaib Qudus
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China or (M.S.Q.); (U.A.); (S.L.); (K.W.); (J.W.)
| | - Uzair Afaq
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China or (M.S.Q.); (U.A.); (S.L.); (K.W.); (J.W.)
| | - Siyu Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China or (M.S.Q.); (U.A.); (S.L.); (K.W.); (J.W.)
| | - Kailang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China or (M.S.Q.); (U.A.); (S.L.); (K.W.); (J.W.)
| | - Chen Yu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China or (M.S.Q.); (U.A.); (S.L.); (K.W.); (J.W.)
| | - Mingfu Tian
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China or (M.S.Q.); (U.A.); (S.L.); (K.W.); (J.W.)
| | - Jianguo Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China or (M.S.Q.); (U.A.); (S.L.); (K.W.); (J.W.)
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
4
|
Tahir ul Qamar M, Noor F, Guo YX, Zhu XT, Chen LL. Deep-HPI-pred: An R-Shiny applet for network-based classification and prediction of Host-Pathogen protein-protein interactions. Comput Struct Biotechnol J 2024; 23:316-329. [PMID: 38192372 PMCID: PMC10772389 DOI: 10.1016/j.csbj.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/10/2024] Open
Abstract
Host-pathogen interactions (HPIs) are vital in numerous biological activities and are intrinsically linked to the onset and progression of infectious diseases. HPIs are pivotal in the entire lifecycle of diseases: from the onset of pathogen introduction, navigating through the mechanisms that bypass host cellular defenses, to its subsequent proliferation inside the host. At the heart of these stages lies the synergy of proteins from both the host and the pathogen. By understanding these interlinking protein dynamics, we can gain crucial insights into how diseases progress and pave the way for stronger plant defenses and the swift formulation of countermeasures. In the framework of current study, we developed a web-based R/Shiny app, Deep-HPI-pred, that uses network-driven feature learning method to predict the yet unmapped interactions between pathogen and host proteins. Leveraging citrus and CLas bacteria training datasets as case study, we spotlight the effectiveness of Deep-HPI-pred in discerning Protein-protein interaction (PPIs) between them. Deep-HPI-pred use Multilayer Perceptron (MLP) models for HPI prediction, which is based on a comprehensive evaluation of topological features and neural network architectures. When subjected to independent validation datasets, the predicted models consistently surpassed a Matthews correlation coefficient (MCC) of 0.80 in host-pathogen interactions. Remarkably, the use of Eigenvector Centrality as the leading topological feature further enhanced this performance. Further, Deep-HPI-pred also offers relevant gene ontology (GO) term information for each pathogen and host protein within the system. This protein annotation data contributes an additional layer to our understanding of the intricate dynamics within host-pathogen interactions. In the additional benchmarking studies, the Deep-HPI-pred model has proven its robustness by consistently delivering reliable results across different host-pathogen systems, including plant-pathogens (accuracy of 98.4% and 97.9%), human-virus (accuracy of 94.3%), and animal-bacteria (accuracy of 96.6%) interactomes. These results not only demonstrate the model's versatility but also pave the way for gaining comprehensive insights into the molecular underpinnings of complex host-pathogen interactions. Taken together, the Deep-HPI-pred applet offers a unified web service for both identifying and illustrating interaction networks. Deep-HPI-pred applet is freely accessible at its homepage: https://cbi.gxu.edu.cn/shiny-apps/Deep-HPI-pred/ and at github: https://github.com/tahirulqamar/Deep-HPI-pred.
Collapse
Affiliation(s)
- Muhammad Tahir ul Qamar
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Fatima Noor
- Integrative Omics and Molecular Modeling Laboratory, Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad 38000, Pakistan
| | - Yi-Xiong Guo
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Xi-Tong Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Ling-Ling Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| |
Collapse
|
5
|
Huang G, Xiao R, Chen W, Dai Q. GBMPhos: A Gating Mechanism and Bi-GRU-Based Method for Identifying Phosphorylation Sites of SARS-CoV-2 Infection. BIOLOGY 2024; 13:798. [PMID: 39452107 PMCID: PMC11505089 DOI: 10.3390/biology13100798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/03/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024]
Abstract
Phosphorylation, a reversible and widespread post-translational modification of proteins, is essential for numerous cellular processes. However, due to technical limitations, large-scale detection of phosphorylation sites, especially those infected by SARS-CoV-2, remains a challenging task. To address this gap, we propose a method called GBMPhos, a novel method that combines convolutional neural networks (CNNs) for extracting local features, gating mechanisms to selectively focus on relevant information, and a bi-directional gated recurrent unit (Bi-GRU) to capture long-range dependencies within protein sequences. GBMPhos leverages a comprehensive set of features, including sequence encoding, physicochemical properties, and structural information, to provide an in-depth analysis of phosphorylation sites. We conducted an extensive comparison of GBMPhos with traditional machine learning algorithms and state-of-the-art methods. Experimental results demonstrate the superiority of GBMPhos over existing methods. The visualization analysis further highlights its effectiveness and efficiency. Additionally, we have established a free web server platform to help researchers explore phosphorylation in SARS-CoV-2 infections. The source code of GBMPhos is publicly available on GitHub.
Collapse
Affiliation(s)
- Guohua Huang
- College of Information Science and Engineering, Shaoyang University, Shaoyang 422000, China; (G.H.); (R.X.)
- School of Information Technology and Administration, Hunan University of Finance and Economics, Changsha 410205, China
| | - Runjuan Xiao
- College of Information Science and Engineering, Shaoyang University, Shaoyang 422000, China; (G.H.); (R.X.)
| | - Weihong Chen
- School of Information Technology and Administration, Hunan University of Finance and Economics, Changsha 410205, China
| | - Qi Dai
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China;
| |
Collapse
|
6
|
Turner DL, Amoozadeh S, Baric H, Stanley E, Werder RB. Building a human lung from pluripotent stem cells to model respiratory viral infections. Respir Res 2024; 25:277. [PMID: 39010108 PMCID: PMC11251358 DOI: 10.1186/s12931-024-02912-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024] Open
Abstract
To protect against the constant threat of inhaled pathogens, the lung is equipped with cellular defenders. In coordination with resident and recruited immune cells, this defence is initiated by the airway and alveolar epithelium following their infection with respiratory viruses. Further support for viral clearance and infection resolution is provided by adjacent endothelial and stromal cells. However, even with these defence mechanisms, respiratory viral infections are a significant global health concern, causing substantial morbidity, socioeconomic losses, and mortality, underlining the need to develop effective vaccines and antiviral medications. In turn, the identification of new treatment options for respiratory infections is critically dependent on the availability of tractable in vitro experimental models that faithfully recapitulate key aspects of lung physiology. For such models to be informative, it is important these models incorporate human-derived, physiologically relevant versions of all cell types that normally form part of the lungs anti-viral response. This review proposes a guideline using human induced pluripotent stem cells (iPSCs) to create all the disease-relevant cell types. iPSCs can be differentiated into lung epithelium, innate immune cells, endothelial cells, and fibroblasts at a large scale, recapitulating in vivo functions and providing genetic tractability. We advocate for building comprehensive iPSC-derived in vitro models of both proximal and distal lung regions to better understand and model respiratory infections, including interactions with chronic lung diseases.
Collapse
Affiliation(s)
- Declan L Turner
- Murdoch Children's Research Institute, Melbourne, 3056, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia
| | - Sahel Amoozadeh
- Murdoch Children's Research Institute, Melbourne, 3056, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia
| | - Hannah Baric
- Murdoch Children's Research Institute, Melbourne, 3056, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia
| | - Ed Stanley
- Murdoch Children's Research Institute, Melbourne, 3056, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia
| | - Rhiannon B Werder
- Murdoch Children's Research Institute, Melbourne, 3056, Australia.
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia.
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia.
| |
Collapse
|
7
|
Xu Z, Zhong H, He B, Wang X, Lu T. PTransIPs: Identification of Phosphorylation Sites Enhanced by Protein PLM Embeddings. IEEE J Biomed Health Inform 2024; 28:3762-3771. [PMID: 38483806 DOI: 10.1109/jbhi.2024.3377362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Phosphorylation is pivotal in numerous fundamental cellular processes and plays a significant role in the onset and progression of various diseases. The accurate identification of these phosphorylation sites is crucial for unraveling the molecular mechanisms within cells and during viral infections, potentially leading to the discovery of novel therapeutic targets. In this study, we develop PTransIPs, a new deep learning framework for the identification of phosphorylation sites. Independent testing results demonstrate that PTransIPs outperforms existing state-of-the-art (SOTA) methods, achieving AUCs of 0.9232 and 0.9660 for the identification of phosphorylated S/T and Y sites, respectively. PTransIPs contributes from three aspects. 1) PTransIPs is the first to apply protein pre-trained language model (PLM) embeddings to this task. It utilizes ProtTrans and EMBER2 to extract sequence and structure embeddings, respectively, as additional inputs into the model, effectively addressing issues of dataset size and overfitting, thus enhancing model performance; 2) PTransIPs is based on Transformer architecture, optimized through the integration of convolutional neural networks and TIM loss function, providing practical insights for model design and training; 3) The encoding of amino acids in PTransIPs enables it to serve as a universal framework for other peptide bioactivity tasks, with its excellent performance shown in extended experiments of this paper.
Collapse
|
8
|
Pannu S, Exline MC, Bednash JS, Englert JA, Diaz P, Bartlett A, Brock G, Wu Q, Davis IC, Crouser ED. SCARLET (Supplemental Citicoline Administration to Reduce Lung injury Efficacy Trial): study protocol for a single-site, double-blinded, placebo-controlled, and randomized Phase 1/2 trial of i.v. citicoline (CDP-choline) in hospitalized SARS CoV-2-infected patients with hypoxemic acute respiratory failure. Trials 2024; 25:328. [PMID: 38760804 PMCID: PMC11102211 DOI: 10.1186/s13063-024-08155-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/07/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND The SARS CoV-2 pandemic has resulted in more than 1.1 million deaths in the USA alone. Therapeutic options for critically ill patients with COVID-19 are limited. Prior studies showed that post-infection treatment of influenza A virus-infected mice with the liponucleotide CDP-choline, which is an essential precursor for de novo phosphatidylcholine synthesis, improved gas exchange and reduced pulmonary inflammation without altering viral replication. In unpublished studies, we found that treatment of SARS CoV-2-infected K18-hACE2-transgenic mice with CDP-choline prevented development of hypoxemia. We hypothesize that administration of citicoline (the pharmaceutical form of CDP-choline) will be safe in hospitalized SARS CoV-2-infected patients with hypoxemic acute respiratory failure (HARF) and that we will obtain preliminary evidence of clinical benefit to support a larger Phase 3 trial using one or more citicoline doses. METHODS We will conduct a single-site, double-blinded, placebo-controlled, and randomized Phase 1/2 dose-ranging and safety study of Somazina® citicoline solution for injection in consented adults of any sex, gender, age, or ethnicity hospitalized for SARS CoV-2-associated HARF. The trial is named "SCARLET" (Supplemental Citicoline Administration to Reduce Lung injury Efficacy Trial). We hypothesize that SCARLET will show that i.v. citicoline is safe at one or more of three doses (0.5, 2.5, or 5 mg/kg, every 12 h for 5 days) in hospitalized SARS CoV-2-infected patients with HARF (20 per dose) and provide preliminary evidence that i.v. citicoline improves pulmonary outcomes in this population. The primary efficacy outcome will be the SpO2:FiO2 ratio on study day 3. Exploratory outcomes include Sequential Organ Failure Assessment (SOFA) scores, dead space ventilation index, and lung compliance. Citicoline effects on a panel of COVID-relevant lung and blood biomarkers will also be determined. DISCUSSION Citicoline has many characteristics that would be advantageous to any candidate COVID-19 therapeutic, including safety, low-cost, favorable chemical characteristics, and potentially pathogen-agnostic efficacy. Successful demonstration that citicoline is beneficial in severely ill patients with SARS CoV-2-induced HARF could transform management of severely ill COVID patients. TRIAL REGISTRATION The trial was registered at www. CLINICALTRIALS gov on 5/31/2023 (NCT05881135). TRIAL STATUS Currently enrolling.
Collapse
Affiliation(s)
- Sonal Pannu
- Division of Pulmonary, Critical Care and Sleep Medicine of the Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Matthew C Exline
- Division of Pulmonary, Critical Care and Sleep Medicine of the Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Joseph S Bednash
- Division of Pulmonary, Critical Care and Sleep Medicine of the Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Joshua A Englert
- Division of Pulmonary, Critical Care and Sleep Medicine of the Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Philip Diaz
- Division of Pulmonary, Critical Care and Sleep Medicine of the Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Amy Bartlett
- Center for Clinical and Translational Sciences, The Ohio State University, Columbus, OH, USA
| | - Guy Brock
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Qing Wu
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Ian C Davis
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA.
| | - Elliott D Crouser
- Division of Pulmonary, Critical Care and Sleep Medicine of the Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
9
|
Qamar F, Sharif Z, Idrees J, Wasim A, Haider S, Salman S. SARS-CoV-2-induced phosphorylation and its pharmacotherapy backed by artificial intelligence and machine learning. Future Sci OA 2024; 10:FSO917. [PMID: 38827795 PMCID: PMC11140666 DOI: 10.2144/fsoa-2023-0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/04/2023] [Indexed: 06/05/2024] Open
Abstract
Aims: To investigate the role of phosphorylation in SARS-CoV-2 infection, potential therapeutic targets and its harmful genetic sequences. Materials & Methods: Data mining techniques were employed to identify upregulated kinases responsible for proteomic changes induced by SARS-CoV-2. Spike and nucleocapsid proteins' sequences were analyzed using predictive tools, including SNAP2, MutPred2, PhD-SNP, SNPs&Go, MetaSNP, Predict-SNP and PolyPhen-2. Missense variants were identified using ensemble-based algorithms and homology/structure-based models like SIFT, PROVEAN, Predict-SNP and MutPred-2. Results: Eight missense variants were identified in viral sequences. Four damaging variants were found, with SNPs&Go and PolyPhen-2. Promising therapeutic candidates, including gilteritinib, pictilisib, sorafenib, RO5126766 and omipalisib, were identified. Conclusion: This research offers insights into SARS-CoV-2 pathogenicity, highlighting potential treatments and harmful variants in viral proteins.
Collapse
Affiliation(s)
- Fouzia Qamar
- Department of Biology, Lahore Garrison University, Lahore-54000, Punjab, Pakistan
| | - Zubair Sharif
- Faculty of Medical Laboratory Sciences, Superior University, Lahore-54000, Punjab, Pakistan
| | - Jawaria Idrees
- Khyber Pakhtunkhwa Education Monitoring Authority, Khyber-Pakhtunkhwa, Peshawar-25000, Pakistan
| | - Asif Wasim
- Department of Pharmacy, CECOS University of IT & Emerging Sciences, Peshawar-25000, Khyber Pakhtunkhwa, Peshawar, Pakistan
| | - Sana Haider
- Department of Pharmacy, CECOS University of IT & Emerging Sciences, Peshawar-25000, Khyber Pakhtunkhwa, Peshawar, Pakistan
| | - Saad Salman
- Department of Pharmacy, CECOS University of IT & Emerging Sciences, Peshawar-25000, Khyber Pakhtunkhwa, Peshawar, Pakistan
| |
Collapse
|
10
|
Ohnishi Y, Masui A, Suezawa T, Mikawa R, Hirai T, Hagiwara M, Gotoh S. Screening of factors inducing alveolar type 1 epithelial cells using human pluripotent stem cells. Stem Cell Reports 2024; 19:529-544. [PMID: 38552636 PMCID: PMC11096435 DOI: 10.1016/j.stemcr.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/12/2024] Open
Abstract
Alveolar type 2 (AT2) epithelial cells are tissue stem cells capable of differentiating into alveolar type 1 (AT1) cells for injury repair and maintenance of lung homeostasis. However, the factors involved in human AT2-to-AT1 cell differentiation are not fully understood. Here, we established SFTPCGFP and AGERmCherry-HiBiT dual-reporter induced pluripotent stem cells (iPSCs), which detected AT2-to-AT1 cell differentiation with high sensitivity and identified factors inducing AT1 cell differentiation from AT2 and their progenitor cells. We also established an "on-gel" alveolar epithelial spheroid culture suitable for medium-throughput screening. Among the 274 chemical compounds, several single compounds, including LATS-IN-1, converted AT1 cells from AT2 and their progenitor cells. Moreover, YAP/TAZ signaling activation and AKT signaling suppression synergistically recapitulated the induction of transcriptomic, morphological, and functionally mature AT1 cells. Our findings provide novel insights into human lung development and lung regenerative medicine.
Collapse
Affiliation(s)
- Yuko Ohnishi
- Department of Drug Discovery for Lung Diseases, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Atsushi Masui
- Department of Drug Discovery for Lung Diseases, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Takahiro Suezawa
- Department of Drug Discovery for Lung Diseases, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Ryuta Mikawa
- Department of Drug Discovery for Lung Diseases, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Masatoshi Hagiwara
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Shimpei Gotoh
- Department of Drug Discovery for Lung Diseases, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan.
| |
Collapse
|
11
|
Basil MC, Alysandratos KD, Kotton DN, Morrisey EE. Lung repair and regeneration: Advanced models and insights into human disease. Cell Stem Cell 2024; 31:439-454. [PMID: 38492572 PMCID: PMC11070171 DOI: 10.1016/j.stem.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/07/2024] [Accepted: 02/22/2024] [Indexed: 03/18/2024]
Abstract
The respiratory system acts as both the primary site of gas exchange and an important sensor and barrier to the external environment. The increase in incidences of respiratory disease over the past decades has highlighted the importance of developing improved therapeutic approaches. This review will summarize recent research on the cellular complexity of the mammalian respiratory system with a focus on gas exchange and immunological defense functions of the lung. Different models of repair and regeneration will be discussed to help interpret human and animal data and spur the investigation of models and assays for future drug development.
Collapse
Affiliation(s)
- Maria C Basil
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn, Children's Hospital of Philadelphia (CHOP) Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Konstantinos-Dionysios Alysandratos
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA.
| | - Darrell N Kotton
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA.
| | - Edward E Morrisey
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn, Children's Hospital of Philadelphia (CHOP) Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
12
|
Phan T, Zitzmann C, Chew KW, Smith DM, Daar ES, Wohl DA, Eron JJ, Currier JS, Hughes MD, Choudhary MC, Deo R, Li JZ, Ribeiro RM, Ke R, Perelson AS, for the ACTIV-2/A5401 Study Team. Modeling the emergence of viral resistance for SARS-CoV-2 during treatment with an anti-spike monoclonal antibody. PLoS Pathog 2024; 20:e1011680. [PMID: 38635853 PMCID: PMC11060554 DOI: 10.1371/journal.ppat.1011680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 04/30/2024] [Accepted: 03/18/2024] [Indexed: 04/20/2024] Open
Abstract
To mitigate the loss of lives during the COVID-19 pandemic, emergency use authorization was given to several anti-SARS-CoV-2 monoclonal antibody (mAb) therapies for the treatment of mild-to-moderate COVID-19 in patients with a high risk of progressing to severe disease. Monoclonal antibodies used to treat SARS-CoV-2 target the spike protein of the virus and block its ability to enter and infect target cells. Monoclonal antibody therapy can thus accelerate the decline in viral load and lower hospitalization rates among high-risk patients with variants susceptible to mAb therapy. However, viral resistance has been observed, in some cases leading to a transient viral rebound that can be as large as 3-4 orders of magnitude. As mAbs represent a proven treatment choice for SARS-CoV-2 and other viral infections, evaluation of treatment-emergent mAb resistance can help uncover underlying pathobiology of SARS-CoV-2 infection and may also help in the development of the next generation of mAb therapies. Although resistance can be expected, the large rebounds observed are much more difficult to explain. We hypothesize replenishment of target cells is necessary to generate the high transient viral rebound. Thus, we formulated two models with different mechanisms for target cell replenishment (homeostatic proliferation and return from an innate immune response antiviral state) and fit them to data from persons with SARS-CoV-2 treated with a mAb. We showed that both models can explain the emergence of resistant virus associated with high transient viral rebounds. We found that variations in the target cell supply rate and adaptive immunity parameters have a strong impact on the magnitude or observability of the viral rebound associated with the emergence of resistant virus. Both variations in target cell supply rate and adaptive immunity parameters may explain why only some individuals develop observable transient resistant viral rebound. Our study highlights the conditions that can lead to resistance and subsequent viral rebound in mAb treatments during acute infection.
Collapse
Affiliation(s)
- Tin Phan
- Theoretical Biology & Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Carolin Zitzmann
- Theoretical Biology & Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Kara W. Chew
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Davey M. Smith
- Department of Medicine, University of California, San Diego, California, United States of America
| | - Eric S. Daar
- Lundquist Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - David A. Wohl
- Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Joseph J. Eron
- Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Judith S. Currier
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Michael D. Hughes
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Manish C. Choudhary
- Department of Medicine, Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Rinki Deo
- Department of Medicine, Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jonathan Z. Li
- Department of Medicine, Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ruy M. Ribeiro
- Theoretical Biology & Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Ruian Ke
- Theoretical Biology & Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Alan S. Perelson
- Theoretical Biology & Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
| | | |
Collapse
|
13
|
Hume AJ, Olejnik J, White MR, Huang J, Turcinovic J, Heiden B, Bawa PS, Williams CJ, Gorham NG, Alekseyev YO, Connor JH, Kotton DN, Mühlberger E. Heat Inactivation of Nipah Virus for Downstream Single-Cell RNA Sequencing Does Not Interfere with Sample Quality. Pathogens 2024; 13:62. [PMID: 38251369 PMCID: PMC10818917 DOI: 10.3390/pathogens13010062] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) technologies are instrumental to improving our understanding of virus-host interactions in cell culture infection studies and complex biological systems because they allow separating the transcriptional signatures of infected versus non-infected bystander cells. A drawback of using biosafety level (BSL) 4 pathogens is that protocols are typically developed without consideration of virus inactivation during the procedure. To ensure complete inactivation of virus-containing samples for downstream analyses, an adaptation of the workflow is needed. Focusing on a commercially available microfluidic partitioning scRNA-seq platform to prepare samples for scRNA-seq, we tested various chemical and physical components of the platform for their ability to inactivate Nipah virus (NiV), a BSL-4 pathogen that belongs to the group of nonsegmented negative-sense RNA viruses. The only step of the standard protocol that led to NiV inactivation was a 5 min incubation at 85 °C. To comply with the more stringent biosafety requirements for BSL-4-derived samples, we included an additional heat step after cDNA synthesis. This step alone was sufficient to inactivate NiV-containing samples, adding to the necessary inactivation redundancy. Importantly, the additional heat step did not affect sample quality or downstream scRNA-seq results.
Collapse
Affiliation(s)
- Adam J. Hume
- Department of Virology, Immunology and Microbiology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA; (A.J.H.); (J.O.); (M.R.W.); (J.T.); (B.H.); (J.H.C.)
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02218, USA
| | - Judith Olejnik
- Department of Virology, Immunology and Microbiology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA; (A.J.H.); (J.O.); (M.R.W.); (J.T.); (B.H.); (J.H.C.)
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02218, USA
| | - Mitchell R. White
- Department of Virology, Immunology and Microbiology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA; (A.J.H.); (J.O.); (M.R.W.); (J.T.); (B.H.); (J.H.C.)
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02218, USA
| | - Jessie Huang
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; (J.H.); (P.S.B.); (D.N.K.)
- The Pulmonary Center and Department of Medicine, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Jacquelyn Turcinovic
- Department of Virology, Immunology and Microbiology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA; (A.J.H.); (J.O.); (M.R.W.); (J.T.); (B.H.); (J.H.C.)
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02218, USA
| | - Baylee Heiden
- Department of Virology, Immunology and Microbiology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA; (A.J.H.); (J.O.); (M.R.W.); (J.T.); (B.H.); (J.H.C.)
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02218, USA
| | - Pushpinder S. Bawa
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; (J.H.); (P.S.B.); (D.N.K.)
| | - Christopher J. Williams
- Department of Medicine, Single Cell Sequencing Core Facility, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA;
| | - Nickolas G. Gorham
- Microarray and Sequencing Resource Core Facility, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA;
| | - Yuriy O. Alekseyev
- Department of Pathology and Laboratory Medicine, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA;
| | - John H. Connor
- Department of Virology, Immunology and Microbiology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA; (A.J.H.); (J.O.); (M.R.W.); (J.T.); (B.H.); (J.H.C.)
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02218, USA
| | - Darrell N. Kotton
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; (J.H.); (P.S.B.); (D.N.K.)
- The Pulmonary Center and Department of Medicine, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Elke Mühlberger
- Department of Virology, Immunology and Microbiology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA; (A.J.H.); (J.O.); (M.R.W.); (J.T.); (B.H.); (J.H.C.)
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02218, USA
| |
Collapse
|
14
|
Chatterjee S, Zaia J. Proteomics-based mass spectrometry profiling of SARS-CoV-2 infection from human nasopharyngeal samples. MASS SPECTROMETRY REVIEWS 2024; 43:193-229. [PMID: 36177493 PMCID: PMC9538640 DOI: 10.1002/mas.21813] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 05/12/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the on-going global pandemic of coronavirus disease 2019 (COVID-19) that continues to pose a significant threat to public health worldwide. SARS-CoV-2 encodes four structural proteins namely membrane, nucleocapsid, spike, and envelope proteins that play essential roles in viral entry, fusion, and attachment to the host cell. Extensively glycosylated spike protein efficiently binds to the host angiotensin-converting enzyme 2 initiating viral entry and pathogenesis. Reverse transcriptase polymerase chain reaction on nasopharyngeal swab is the preferred method of sample collection and viral detection because it is a rapid, specific, and high-throughput technique. Alternate strategies such as proteomics and glycoproteomics-based mass spectrometry enable a more detailed and holistic view of the viral proteins and host-pathogen interactions and help in detection of potential disease markers. In this review, we highlight the use of mass spectrometry methods to profile the SARS-CoV-2 proteome from clinical nasopharyngeal swab samples. We also highlight the necessity for a comprehensive glycoproteomics mapping of SARS-CoV-2 from biological complex matrices to identify potential COVID-19 markers.
Collapse
Affiliation(s)
- Sayantani Chatterjee
- Department of Biochemistry, Center for Biomedical Mass SpectrometryBoston University School of MedicineBostonMassachusettsUSA
| | - Joseph Zaia
- Department of Biochemistry, Center for Biomedical Mass SpectrometryBoston University School of MedicineBostonMassachusettsUSA
- Bioinformatics ProgramBoston University School of MedicineBostonMassachusettsUSA
| |
Collapse
|
15
|
Vazquez-Armendariz AI, Tata PR. Recent advances in lung organoid development and applications in disease modeling. J Clin Invest 2023; 133:e170500. [PMID: 37966116 PMCID: PMC10645385 DOI: 10.1172/jci170500] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
Over the last decade, several organoid models have evolved to acquire increasing cellular, structural, and functional complexity. Advanced lung organoid platforms derived from various sources, including adult, fetal, and induced pluripotent stem cells, have now been generated, which more closely mimic the cellular architecture found within the airways and alveoli. In this regard, the establishment of novel protocols with optimized stem cell isolation and culture conditions has given rise to an array of models able to study key cellular and molecular players involved in lung injury and repair. In addition, introduction of other nonepithelial cellular components, such as immune, mesenchymal, and endothelial cells, and employment of novel precision gene editing tools have further broadened the range of applications for these systems by providing a microenvironment and/or phenotype closer to the desired in vivo scenario. Thus, these developments in organoid technology have enhanced our ability to model various aspects of lung biology, including pathogenesis of diseases such as chronic obstructive pulmonary disease, pulmonary fibrosis, cystic fibrosis, and infectious disease and host-microbe interactions, in ways that are often difficult to undertake using only in vivo models. In this Review, we summarize the latest developments in lung organoid technology and their applicability for disease modeling and outline their strengths, drawbacks, and potential avenues for future development.
Collapse
Affiliation(s)
- Ana I. Vazquez-Armendariz
- University of Bonn, Transdisciplinary Research Area Life and Health, Organoid Biology, Life & Medical Sciences Institute, Bonn, Germany
- Department of Medicine V, Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research and Institute for Lung Health, Giessen, Germany
| | - Purushothama Rao Tata
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Cancer Institute, Duke University, Durham, North Carolina, USA
- Duke Regeneration Center, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
16
|
Jiao S, Ye X, Ao C, Sakurai T, Zou Q, Xu L. Adaptive learning embedding features to improve the predictive performance of SARS-CoV-2 phosphorylation sites. Bioinformatics 2023; 39:btad627. [PMID: 37847658 PMCID: PMC10628388 DOI: 10.1093/bioinformatics/btad627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/11/2023] [Accepted: 10/16/2023] [Indexed: 10/19/2023] Open
Abstract
MOTIVATION The rapid and extensive transmission of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to an unprecedented global health emergency, affecting millions of people and causing an immense socioeconomic impact. The identification of SARS-CoV-2 phosphorylation sites plays an important role in unraveling the complex molecular mechanisms behind infection and the resulting alterations in host cell pathways. However, currently available prediction tools for identifying these sites lack accuracy and efficiency. RESULTS In this study, we presented a comprehensive biological function analysis of SARS-CoV-2 infection in a clonal human lung epithelial A549 cell, revealing dramatic changes in protein phosphorylation pathways in host cells. Moreover, a novel deep learning predictor called PSPred-ALE is specifically designed to identify phosphorylation sites in human host cells that are infected with SARS-CoV-2. The key idea of PSPred-ALE lies in the use of a self-adaptive learning embedding algorithm, which enables the automatic extraction of context sequential features from protein sequences. In addition, the tool uses multihead attention module that enables the capturing of global information, further improving the accuracy of predictions. Comparative analysis of features demonstrated that the self-adaptive learning embedding features are superior to hand-crafted statistical features in capturing discriminative sequence information. Benchmarking comparison shows that PSPred-ALE outperforms the state-of-the-art prediction tools and achieves robust performance. Therefore, the proposed model can effectively identify phosphorylation sites assistant the biomedical scientists in understanding the mechanism of phosphorylation in SARS-CoV-2 infection. AVAILABILITY AND IMPLEMENTATION PSPred-ALE is available at https://github.com/jiaoshihu/PSPred-ALE and Zenodo (https://doi.org/10.5281/zenodo.8330277).
Collapse
Affiliation(s)
- Shihu Jiao
- Department of Computer Science, University of Tsukuba, Tsukuba 3058577, Japan
| | - Xiucai Ye
- Department of Computer Science, University of Tsukuba, Tsukuba 3058577, Japan
| | - Chunyan Ao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Tetsuya Sakurai
- Department of Computer Science, University of Tsukuba, Tsukuba 3058577, Japan
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Lei Xu
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, No. 4089 Shahexi Road, Shenzhen 518000, China
| |
Collapse
|
17
|
Fritch EJ, Mordant AL, Gilbert TSK, Wells CI, Yang X, Barker NK, Madden EA, Dinnon KH, Hou YJ, Tse LV, Castillo IN, Sims AC, Moorman NJ, Lakshmanane P, Willson TM, Herring LE, Graves LM, Baric RS. Investigation of the Host Kinome Response to Coronavirus Infection Reveals PI3K/mTOR Inhibitors as Betacoronavirus Antivirals. J Proteome Res 2023; 22:3159-3177. [PMID: 37634194 DOI: 10.1021/acs.jproteome.3c00182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Host kinases play essential roles in the host cell cycle, innate immune signaling, the stress response to viral infection, and inflammation. Previous work has demonstrated that coronaviruses specifically target kinase cascades to subvert host cell responses to infection and rely upon host kinase activity to phosphorylate viral proteins to enhance replication. Given the number of kinase inhibitors that are already FDA approved to treat cancers, fibrosis, and other human disease, they represent an attractive class of compounds to repurpose for host-targeted therapies against emerging coronavirus infections. To further understand the host kinome response to betacoronavirus infection, we employed multiplex inhibitory bead mass spectrometry (MIB-MS) following MERS-CoV and SARS-CoV-2 infection of human lung epithelial cell lines. Our MIB-MS analyses revealed activation of mTOR and MAPK signaling following MERS-CoV and SARS-CoV-2 infection, respectively. SARS-CoV-2 host kinome responses were further characterized using paired phosphoproteomics, which identified activation of MAPK, PI3K, and mTOR signaling. Through chemogenomic screening, we found that clinically relevant PI3K/mTOR inhibitors were able to inhibit coronavirus replication at nanomolar concentrations similar to direct-acting antivirals. This study lays the groundwork for identifying broad-acting, host-targeted therapies to reduce betacoronavirus replication that can be rapidly repurposed during future outbreaks and epidemics. The proteomics, phosphoproteomics, and MIB-MS datasets generated in this study are available in the Proteomics Identification Database (PRIDE) repository under project identifiers PXD040897 and PXD040901.
Collapse
Affiliation(s)
- Ethan J Fritch
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7290, United States
| | - Angie L Mordant
- UNC Michael Hooker Proteomics Core, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Thomas S K Gilbert
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7365, United States
| | - Carrow I Wells
- Structural Genomics Consortium, Department of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7264, United States
| | - Xuan Yang
- Structural Genomics Consortium, Department of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7264, United States
| | - Natalie K Barker
- UNC Michael Hooker Proteomics Core, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Emily A Madden
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7290, United States
| | - Kenneth H Dinnon
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7290, United States
| | - Yixuan J Hou
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7400, United States
| | - Longping V Tse
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7400, United States
| | - Izabella N Castillo
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7290, United States
| | - Amy C Sims
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7400, United States
| | - Nathaniel J Moorman
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7290, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Premkumar Lakshmanane
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7290, United States
| | - Timothy M Willson
- Structural Genomics Consortium, Department of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7264, United States
| | - Laura E Herring
- UNC Michael Hooker Proteomics Core, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7365, United States
| | - Lee M Graves
- UNC Michael Hooker Proteomics Core, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7365, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Ralph S Baric
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7290, United States
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7400, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| |
Collapse
|
18
|
Haas KM, McGregor MJ, Bouhaddou M, Polacco BJ, Kim EY, Nguyen TT, Newton BW, Urbanowski M, Kim H, Williams MAP, Rezelj VV, Hardy A, Fossati A, Stevenson EJ, Sukerman E, Kim T, Penugonda S, Moreno E, Braberg H, Zhou Y, Metreveli G, Harjai B, Tummino TA, Melnyk JE, Soucheray M, Batra J, Pache L, Martin-Sancho L, Carlson-Stevermer J, Jureka AS, Basler CF, Shokat KM, Shoichet BK, Shriver LP, Johnson JR, Shaw ML, Chanda SK, Roden DM, Carter TC, Kottyan LC, Chisholm RL, Pacheco JA, Smith ME, Schrodi SJ, Albrecht RA, Vignuzzi M, Zuliani-Alvarez L, Swaney DL, Eckhardt M, Wolinsky SM, White KM, Hultquist JF, Kaake RM, García-Sastre A, Krogan NJ. Proteomic and genetic analyses of influenza A viruses identify pan-viral host targets. Nat Commun 2023; 14:6030. [PMID: 37758692 PMCID: PMC10533562 DOI: 10.1038/s41467-023-41442-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Influenza A Virus (IAV) is a recurring respiratory virus with limited availability of antiviral therapies. Understanding host proteins essential for IAV infection can identify targets for alternative host-directed therapies (HDTs). Using affinity purification-mass spectrometry and global phosphoproteomic and protein abundance analyses using three IAV strains (pH1N1, H3N2, H5N1) in three human cell types (A549, NHBE, THP-1), we map 332 IAV-human protein-protein interactions and identify 13 IAV-modulated kinases. Whole exome sequencing of patients who experienced severe influenza reveals several genes, including scaffold protein AHNAK, with predicted loss-of-function variants that are also identified in our proteomic analyses. Of our identified host factors, 54 significantly alter IAV infection upon siRNA knockdown, and two factors, AHNAK and coatomer subunit COPB1, are also essential for productive infection by SARS-CoV-2. Finally, 16 compounds targeting our identified host factors suppress IAV replication, with two targeting CDK2 and FLT3 showing pan-antiviral activity across influenza and coronavirus families. This study provides a comprehensive network model of IAV infection in human cells, identifying functional host targets for pan-viral HDT.
Collapse
Affiliation(s)
- Kelsey M Haas
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
| | - Michael J McGregor
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
| | - Mehdi Bouhaddou
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
| | - Benjamin J Polacco
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
| | - Eun-Young Kim
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Thong T Nguyen
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
| | - Billy W Newton
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
| | - Matthew Urbanowski
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Heejin Kim
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Michael A P Williams
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Veronica V Rezelj
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
- Institut Pasteur, Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Paris, France
| | - Alexandra Hardy
- Institut Pasteur, Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Paris, France
| | - Andrea Fossati
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
| | - Erica J Stevenson
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
| | - Ellie Sukerman
- Division of Infectious Diseases, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Tiffany Kim
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Sudhir Penugonda
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Elena Moreno
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal and IRYCIS, Madrid, Spain
- Centro de Investigación en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Hannes Braberg
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
| | - Yuan Zhou
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
| | - Giorgi Metreveli
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Bhavya Harjai
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
| | - Tia A Tummino
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, 94158, USA
- Graduate Program in Pharmaceutical Sciences and Pharmacogenomics, University of California San Francisco, San Francisco, CA, 94158, USA
| | - James E Melnyk
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
| | - Margaret Soucheray
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
| | - Jyoti Batra
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
| | - Lars Pache
- Infectious and Inflammatory Disease Center, Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Laura Martin-Sancho
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Infectious Disease, Imperial College London, London, SW7 2BX, UK
| | - Jared Carlson-Stevermer
- Synthego Corporation, Redwood City, CA, 94063, USA
- Serotiny Inc., South San Francisco, CA, 94080, USA
| | - Alexander S Jureka
- Molecular Virology and Vaccine Team, Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization & Respiratory Diseases, Centers for Disease Control & Prevention, Atlanta, GA, 30333, USA
- General Dynamics Information Technology, Federal Civilian Division, Atlanta, GA, 30329, USA
| | - Christopher F Basler
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Kevan M Shokat
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - Brian K Shoichet
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Leah P Shriver
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63105, USA
- Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO, 63105, USA
| | - Jeffrey R Johnson
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Megan L Shaw
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Medical Biosciences, University of the Western Cape, Bellville, 7535, Western Cape, South Africa
| | - Sumit K Chanda
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Dan M Roden
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Tonia C Carter
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI, 54449, USA
| | - Leah C Kottyan
- Center of Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Rex L Chisholm
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jennifer A Pacheco
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Maureen E Smith
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Steven J Schrodi
- Laboratory of Genetics, School of Medicine and Public Health, University of Wisconsin Madison, Madison, WI, 53706, USA
| | - Randy A Albrecht
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Marco Vignuzzi
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
- Institut Pasteur, Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Paris, France
| | - Lorena Zuliani-Alvarez
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
| | - Danielle L Swaney
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
| | - Manon Eckhardt
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
| | - Steven M Wolinsky
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Kris M White
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Judd F Hultquist
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA.
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL, 60611, USA.
| | - Robyn M Kaake
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA.
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA.
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA.
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA.
| | - Adolfo García-Sastre
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA.
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Nevan J Krogan
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA.
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA.
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA.
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA.
| |
Collapse
|
19
|
Phan T, Zitzmann C, Chew KW, Smith DM, Daar ES, Wohl DA, Eron JJ, Currier JS, Hughes MD, Choudhary MC, Deo R, Li JZ, Ribeiro RM, Ke R, Perelson AS, ACTIV-2/A5401 Study Team. Modeling the emergence of viral resistance for SARS-CoV-2 during treatment with an anti-spike monoclonal antibody. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.14.557679. [PMID: 37745410 PMCID: PMC10515893 DOI: 10.1101/2023.09.14.557679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The COVID-19 pandemic has led to over 760 million cases and 6.9 million deaths worldwide. To mitigate the loss of lives, emergency use authorization was given to several anti-SARS-CoV-2 monoclonal antibody (mAb) therapies for the treatment of mild-to-moderate COVID-19 in patients with a high risk of progressing to severe disease. Monoclonal antibodies used to treat SARS-CoV-2 target the spike protein of the virus and block its ability to enter and infect target cells. Monoclonal antibody therapy can thus accelerate the decline in viral load and lower hospitalization rates among high-risk patients with susceptible variants. However, viral resistance has been observed, in some cases leading to a transient viral rebound that can be as large as 3-4 orders of magnitude. As mAbs represent a proven treatment choice for SARS-CoV-2 and other viral infections, evaluation of treatment-emergent mAb resistance can help uncover underlying pathobiology of SARS-CoV-2 infection and may also help in the development of the next generation of mAb therapies. Although resistance can be expected, the large rebounds observed are much more difficult to explain. We hypothesize replenishment of target cells is necessary to generate the high transient viral rebound. Thus, we formulated two models with different mechanisms for target cell replenishment (homeostatic proliferation and return from an innate immune response anti-viral state) and fit them to data from persons with SARS-CoV-2 treated with a mAb. We showed that both models can explain the emergence of resistant virus associated with high transient viral rebounds. We found that variations in the target cell supply rate and adaptive immunity parameters have a strong impact on the magnitude or observability of the viral rebound associated with the emergence of resistant virus. Both variations in target cell supply rate and adaptive immunity parameters may explain why only some individuals develop observable transient resistant viral rebound. Our study highlights the conditions that can lead to resistance and subsequent viral rebound in mAb treatments during acute infection.
Collapse
Affiliation(s)
- Tin Phan
- Theoretical Biology & Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Carolin Zitzmann
- Theoretical Biology & Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Kara W. Chew
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Davey M. Smith
- Department of Medicine, University of California, San Diego, CA, USA
| | - Eric S. Daar
- Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - David A. Wohl
- Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Joseph J. Eron
- Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Judith S. Currier
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | | | - Manish C. Choudhary
- Department of Medicine, Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Rinki Deo
- Department of Medicine, Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Jonathan Z. Li
- Department of Medicine, Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Ruy M. Ribeiro
- Theoretical Biology & Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Ruian Ke
- Theoretical Biology & Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Alan S. Perelson
- Theoretical Biology & Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
- Santa Fe Institute, Santa Fe, NM, USA
| | | |
Collapse
|
20
|
Higgins CA, Nilsson-Payant BE, Bonaventure B, Kurland AP, Ye C, Yaron TM, Johnson JL, Adhikary P, Golynker I, Panis M, Danziger O, Rosenberg BR, Cantley LC, Martínez-Sobrido L, tenOever B, Johnson JR. SARS-CoV-2 hijacks p38β/MAPK11 to promote virus replication. mBio 2023; 14:e0100723. [PMID: 37345956 PMCID: PMC10470746 DOI: 10.1128/mbio.01007-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/08/2023] [Indexed: 06/23/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the coronavirus disease 2019 (COVID-19) pandemic, drastically modifies infected cells to optimize virus replication. One such modification is the activation of the host p38 mitogen-activated protein kinase (MAPK) pathway, which plays a major role in inflammatory cytokine production, a hallmark of severe COVID-19. We previously demonstrated that inhibition of p38/MAPK activity in SARS-CoV-2-infected cells reduced both cytokine production and viral replication. Here, we combined quantitative genetic screening, genomics, proteomics, and phosphoproteomics to better understand mechanisms underlying the dependence of SARS-CoV-2 on the p38 pathway. We found that p38β is a critical host factor for SARS-CoV-2 replication in multiple relevant cell lines and that it functions at a step after viral mRNA expression. We identified putative host and viral p38β substrates in the context of SARS-CoV-2 infection and found that most host substrates have intrinsic antiviral activities. Taken together, this study reveals a unique proviral function for p38β and supports exploring p38β inhibitor development as a strategy toward creating a new class of COVID-19 therapies. IMPORTANCE SARS-CoV-2 is the causative agent of the COVID-19 pandemic that has claimed millions of lives since its emergence in 2019. SARS-CoV-2 infection of human cells requires the activity of several cellular pathways for successful replication. One such pathway, the p38 MAPK pathway, is required for virus replication and disease pathogenesis. Here, we applied systems biology approaches to understand how MAPK pathways benefit SARS-CoV-2 replication to inform the development of novel COVID-19 drug therapies.
Collapse
Affiliation(s)
- Christina A. Higgins
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Microbiology, New York University Langone Health, New York, New York, USA
- Vilcek Graduate School for Biomedical Sciences, New York University Langone Health, New York, New York, USA
| | | | - Boris Bonaventure
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Andrew P. Kurland
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Chengjin Ye
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Tomer M. Yaron
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York, USA
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine Weill Cornell Medicine, New York, New York, USA
- Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Jared L. Johnson
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York, USA
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Prithy Adhikary
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ilona Golynker
- Department of Microbiology, New York University Langone Health, New York, New York, USA
| | - Maryline Panis
- Department of Microbiology, New York University Langone Health, New York, New York, USA
| | - Oded Danziger
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Brad R. Rosenberg
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Lewis C. Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York, USA
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Benjamin tenOever
- Department of Microbiology, New York University Langone Health, New York, New York, USA
| | - Jeffrey R. Johnson
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
21
|
Olejnik J, Hume AJ, Ross SJ, Scoon WA, Seitz S, White MR, Slutzky B, Yun NE, Mühlberger E. Art of the Kill: Designing and Testing Viral Inactivation Procedures for Highly Pathogenic Negative Sense RNA Viruses. Pathogens 2023; 12:952. [PMID: 37513799 PMCID: PMC10386221 DOI: 10.3390/pathogens12070952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
The study of highly pathogenic viruses handled under BSL-4 conditions and classified as Select Agents frequently involves the transfer of inactivated materials to lower containment levels for downstream analyses. Adhering to Select Agent and BSL-4 safety regulations requires validation or verification of the inactivation procedures, which comes with an array of challenges for each method. This includes the use of cytotoxic reagents for chemical inactivation and defining the precise inactivation parameters for physical inactivation. Here, we provide a workflow for various inactivation methods using Ebola, Nipah, and Lassa viruses as our examples. We choose three distinct inactivation methods (TRIzol/TRIzol LS, aldehyde fixation using different fixatives, and heat) to highlight the challenges of each method and provide possible solutions. We show that, whereas published chemical inactivation methods are highly reliable, the parameters for heat inactivation must be clearly defined to ensure complete inactivation. In addition to the inactivation data, we also provide examples and templates for the documentation required for approval and use of inactivation SOPs, including an inactivation report, the procedure sections of developed SOPs, and an electronic inactivation certificate that accompanies inactivated samples. The provided information can be used as a roadmap for similar studies at high and maximum containment laboratories.
Collapse
Affiliation(s)
- Judith Olejnik
- Department of Virology, Immunology and Microbiology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02218, USA
| | - Adam J Hume
- Department of Virology, Immunology and Microbiology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02218, USA
| | - Stephen J Ross
- Department of Virology, Immunology and Microbiology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02218, USA
- Department of Biochemistry and Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Whitney A Scoon
- Department of Virology, Immunology and Microbiology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02218, USA
| | - Scott Seitz
- Department of Virology, Immunology and Microbiology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02218, USA
| | - Mitchell R White
- Department of Virology, Immunology and Microbiology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02218, USA
| | - Ben Slutzky
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02218, USA
| | - Nadezhda E Yun
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02218, USA
| | - Elke Mühlberger
- Department of Virology, Immunology and Microbiology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02218, USA
| |
Collapse
|
22
|
Zhao Q, Lü J, Zhao B, Guo Y, Wang Q, Yu S, Hao L, Zhu X, Yu Z. Identification of a SARS-CoV-2 virus-derived vmiRNA in COVID-19 patients holding potential as a diagnostic biomarker. Front Cell Infect Microbiol 2023; 13:1190870. [PMID: 37333844 PMCID: PMC10272551 DOI: 10.3389/fcimb.2023.1190870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a lasting threat to public health. To minimize the viral spread, it is essential to develop more reliable approaches for early diagnosis of the infection and immediate suppression of the viral replication. Herein, through computational prediction of SARS-CoV-2 genome and screening analysis of specimens from covid-19 patients, we predicted 15 precursors for SARS-CoV-2-encoded miRNAs (CvmiRNAs) containing 20 mature CvmiRNAs, in which CvmiR-2 was successfully detected by quantitative analysis in both serum and nasal swab samples of patients. CvmiR-2 showed high specificity in distinguishing covid-19 patients from normal controls, and high conservation between SARS-CoV-2 and its mutants. A positive correlation was observed between the CvmiR-2 expression level and the severity of patients. The biogenesis and expression of CvmiR-2 were validated in the pre-CvmiR-2-transfected A549 cells, showing a dose-dependent pattern. The sequence of CvmiR-2 was validated by sequencing analysis of human cells infected by either SARS-CoV-2 or pre-CvmiR-2. Target gene prediction analysis suggested CvmiR-2 may be involved in the regulation of the immune response, muscle pain and/or neurological disorders in covid-19 patients. In conclusion, the current study identified a novel v-miRNA encoded by SARS-CoV-2 upon infection of human cells, which holds the potential to serve as a diagnostic biomarker or a therapeutic target in clinic.
Collapse
Affiliation(s)
- Qian Zhao
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jinhui Lü
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bing Zhao
- Microbiological Testing Lab, Shanghai Pudong Center for Disease Control & Prevention, Shanghai, China
| | - Yuefan Guo
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qiong Wang
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shanshan Yu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lipeng Hao
- Microbiological Testing Lab, Shanghai Pudong Center for Disease Control & Prevention, Shanghai, China
| | - Xiaoping Zhu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Respiration, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zuoren Yu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
23
|
Keramidas P, Papachristou E, Papi RM, Mantsou A, Choli-Papadopoulou T. Inhibition of PERK Kinase, an Orchestrator of the Unfolded Protein Response (UPR), Significantly Reduces Apoptosis and Inflammation of Lung Epithelial Cells Triggered by SARS-CoV-2 ORF3a Protein. Biomedicines 2023; 11:1585. [PMID: 37371681 DOI: 10.3390/biomedicines11061585] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
SARS-CoV-2 ORF3a accessory protein was found to be involved in virus release, immunomodulation and exhibited a pro-apoptotic character. In order to unravel a potential ORF3a-induced apoptotic and inflammatory death mechanism, lung epithelial cells (A549) were transfected with in vitro synthesized ORF3a mRNA. The protein's dynamic involvement as "stress factor" for the endoplasmic reticulum, causing the activation of PERK kinase and other UPR-involved proteins and therefore the upregulation of their signaling pathway executioners (ATF6, XBP-1s, PERK, phospho eIF2a, ATF4, CHOP, GADD34), has been clearly demonstrated. Furthermore, the overexpression of BAX and BH3-only pro-apoptotic protein PUMA, the upregulation of Bcl-2 family genes (BAX, BAK, BID, BAD), the reduced expression of Bcl-2 in mRNA and protein levels, and lastly, the cleavage of PARP-1 and caspase family members (caspase-3,-8 and -9) indicate that ORF3a displays its apoptotic character through the mitochondrial pathway of apoptosis. Moreover, the upregulation of NFκB, phosphorylation of p65 and IκΒα and the elevated expression of pro-inflammatory cytokines (IL-1b, IL-6, IL-8 and IL-18) in transfected cells with ORF3a mRNA indicate that this protein causes the inflammatory response through NFκB activation and therefore triggers lung injury. An intriguing finding of our study is that upon treatment of the ORF3a-transfected cells with GSK2606414, a selective PERK inhibitor, both complications (apoptosis and inflammatory response) were neutralized, and cell survival was favored, whereas treatment of transfected cells with z-VAD (a pan-caspase inhibitor) despite inhibiting cell death, could not ameliorate the inflammatory response of transfected A549 cells. Given the above, we point out that PERK kinase is a "master tactician" and its activation constitutes the main stimulus for the emergence of ORF3a apoptotic and inflammatory nature and therefore could serve as potential target for developing novel therapeutic approaches against COVID-19.
Collapse
Affiliation(s)
- Panagiotis Keramidas
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Eleni Papachristou
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Rigini M Papi
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Aglaia Mantsou
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Theodora Choli-Papadopoulou
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| |
Collapse
|
24
|
Yang P, Yuan Y, Sun Y, Lv B, Du H, Zhou Z, Yang Z, Liu X, Duan H, Shen C. The Host Protein CAD Regulates the Replication of FMDV through the Function of Pyrimidines' De Novo Synthesis. J Virol 2023; 97:e0036923. [PMID: 37162335 DOI: 10.1128/jvi.00369-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
Foot-and-mouth disease virus (FMDV) is a single-stranded picornavirus that causes economically devastating disease in even-hooved animals. There has been little research on the function of host cells during FMDV infection. We aimed to shed light on key host factors associated with FMDV replication during acute infection. We found that HDAC1 overexpression in host cells induced upregulation of FMDV RNA and protein levels. Activation of the AKT-mammalian target of rapamycin (mTOR) signaling pathway using bpV(HOpic) or SC79 also promoted FMDV replication. Furthermore, short hairpin RNA (shRNA)-induced suppression of carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (CAD), a transcription factor downstream of the AKT-mTOR signaling pathway, resulted in downregulation of FMDV RNA and protein levels. Coimmunoprecipitation assays showed that the ACTase domain of CAD could interact with the FMDV 2C protein, suggesting that the ACTase domain of CAD may be critical in FMDV replication. CAD proteins participate in de novo pyrimidine synthesis. Inhibition of FMDV replication by deletion of the ACTase domain of CAD in host cells could be reversed by supplementation with uracil. These results revealed that the contribution of the CAD ACTase domain to FMDV replication is dependent on de novo pyrimidine synthesis. Our research shows that HDAC1 promotes FMDV replication by regulating de novo pyrimidine synthesis from CAD via the AKT-mTOR signaling pathway. IMPORTANCE Foot-and-mouth disease virus is an animal virus of the Picornaviridae family that seriously harms the development of animal husbandry and foreign trade of related products, and there is still a lack of effective means to control its harm. Replication complexes would generate during FMDV replication to ensure efficient replication cycles. 2C is a common viral protein in the replication complex of Picornaviridae virus, which is thought to be an essential component of membrane rearrangement and viral replication complex formation. The host protein CAD is a key protein in the pyrimidines de novo synthesis. In our research, the interaction of CAD and FMDV 2C was demonstrated in FMDV-infected BHK-21 cells, and it colocalized with 2C in the replication complex. The inhibition of the expression of FMDV 3D protein through interference with CAD and supplementation with exogenous pyrimidines reversed this inhibition, suggesting that FMDV might recruit CAD through the 2C protein to ensure pyrimidine supply during replication. In addition, we also found that FMDV infection decreased the expression of the host protein HDAC1 and ultimately inhibited CAD activity through the AKT-mTOR signaling pathway. These results revealed a unique means of counteracting the virus in BHK-21 cells lacking the interferon (IFN) signaling pathway. In conclusion, our study provides some potential targets for the development of drugs against FMDV.
Collapse
Affiliation(s)
- Pu Yang
- College of Life Sciences, Wuhan University, Wuhan, China
- China Center for Type Culture Collection, Wuhan University, Wuhan, China
| | - Yuncong Yuan
- College of Life Sciences, Wuhan University, Wuhan, China
- China Center for Type Culture Collection, Wuhan University, Wuhan, China
| | - Yidan Sun
- College of Life Sciences, Wuhan University, Wuhan, China
- China Center for Type Culture Collection, Wuhan University, Wuhan, China
| | - Bonan Lv
- College of Life Sciences, Wuhan University, Wuhan, China
- China Center for Type Culture Collection, Wuhan University, Wuhan, China
| | - Hang Du
- College of Life Sciences, Wuhan University, Wuhan, China
- China Center for Type Culture Collection, Wuhan University, Wuhan, China
| | - Zhou Zhou
- College of Life Sciences, Wuhan University, Wuhan, China
- China Center for Type Culture Collection, Wuhan University, Wuhan, China
| | - Zhuang Yang
- College of Life Sciences, Wuhan University, Wuhan, China
- China Center for Type Culture Collection, Wuhan University, Wuhan, China
| | - Xuemei Liu
- College of Life Sciences, Wuhan University, Wuhan, China
- China Center for Type Culture Collection, Wuhan University, Wuhan, China
| | - Huimin Duan
- College of Life Sciences, Wuhan University, Wuhan, China
- China Center for Type Culture Collection, Wuhan University, Wuhan, China
| | - Chao Shen
- College of Life Sciences, Wuhan University, Wuhan, China
- China Center for Type Culture Collection, Wuhan University, Wuhan, China
| |
Collapse
|
25
|
Wang M, Yan L, Jia J, Lai J, Zhou H, Yu B. DE-MHAIPs: Identification of SARS-CoV-2 phosphorylation sites based on differential evolution multi-feature learning and multi-head attention mechanism. Comput Biol Med 2023; 160:106935. [PMID: 37120990 PMCID: PMC10140648 DOI: 10.1016/j.compbiomed.2023.106935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/12/2023] [Accepted: 04/13/2023] [Indexed: 05/02/2023]
Abstract
The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) around the world affects the normal lives of people all over the world. The computational methods can be used to accurately identify SARS-CoV-2 phosphorylation sites. In this paper, a new prediction model of SARS-CoV-2 phosphorylation sites, called DE-MHAIPs, is proposed. First, we use six feature extraction methods to extract protein sequence information from different perspectives. For the first time, we use a differential evolution (DE) algorithm to learn individual feature weights and fuse multi-information in a weighted combination. Next, Group LASSO is used to select a subset of good features. Then, the important protein information is given higher weight through multi-head attention. After that, the processed data is fed into long short-term memory network (LSTM) to further enhance model's ability to learn features. Finally, the data from LSTM are input into fully connected neural network (FCN) to predict SARS-CoV-2 phosphorylation sites. The AUC values of the S/T and Y datasets under 5-fold cross-validation reach 91.98% and 98.32%, respectively. The AUC values of the two datasets on the independent test set reach 91.72% and 97.78%, respectively. The experimental results show that the DE-MHAIPs method exhibits excellent predictive ability compared with other methods.
Collapse
Affiliation(s)
- Minghui Wang
- College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao, 266061, China
| | - Lu Yan
- College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao, 266061, China
| | - Jihua Jia
- College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao, 266061, China
| | - Jiali Lai
- College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao, 266061, China
| | - Hongyan Zhou
- College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao, 266061, China.
| | - Bin Yu
- College of Information Science and Technology, School of Data Science, Qingdao University of Science and Technology, Qingdao, 266061, China; School of Data Science, University of Science and Technology of China, Hefei, 230027, China.
| |
Collapse
|
26
|
Müller M, Fischer K, Woehnke E, Zaeck LM, Prönnecke C, Knittler MR, Karger A, Diederich S, Finke S. Analysis of Nipah Virus Replication and Host Proteome Response Patterns in Differentiated Porcine Airway Epithelial Cells Cultured at the Air-Liquid Interface. Viruses 2023; 15:v15040961. [PMID: 37112941 PMCID: PMC10143807 DOI: 10.3390/v15040961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Respiratory tract epithelium infection plays a primary role in Nipah virus (NiV) pathogenesis and transmission. Knowledge about infection dynamics and host responses to NiV infection in respiratory tract epithelia is scarce. Studies in non-differentiated primary respiratory tract cells or cell lines indicate insufficient interferon (IFN) responses. However, studies are lacking in the determination of complex host response patterns in differentiated respiratory tract epithelia for the understanding of NiV replication and spread in swine. Here we characterized infection and spread of NiV in differentiated primary porcine bronchial epithelial cells (PBEC) cultivated at the air-liquid interface (ALI). After the initial infection of only a few apical cells, lateral spread for 12 days with epithelium disruption was observed without releasing substantial amounts of infectious virus from the apical or basal sides. Deep time course proteomics revealed pronounced upregulation of genes related to type I/II IFN, immunoproteasomal subunits, transporter associated with antigen processing (TAP)-mediated peptide transport, and major histocompatibility complex (MHC) I antigen presentation. Spliceosomal factors were downregulated. We propose a model in which NiV replication in PBEC is slowed by a potent and broad type I/II IFN host response with conversion from 26S proteasomes to immunoproteasomal antigen processing and improved MHC I presentation for adaptive immunity priming. NiV induced cytopathic effects could reflect the focal release of cell-associated NiV, which may contribute to efficient airborne viral spread between pigs.
Collapse
Affiliation(s)
- Martin Müller
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, 17493 Greifswald-Insel Riems, Germany
| | - Kerstin Fischer
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, 17493 Greifswald-Insel Riems, Germany
| | - Elisabeth Woehnke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, 17493 Greifswald-Insel Riems, Germany
| | - Luca M Zaeck
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, 17493 Greifswald-Insel Riems, Germany
| | - Christoph Prönnecke
- Centre for Biotechnology and Biomedicine, Molecular Biological-Biochemical Processing Technology, Leipzig University, 04103 Leipzig, Germany
| | - Michael R Knittler
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, 17493 Greifswald-Greifswald-Insel Riems, Germany
| | - Axel Karger
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, 17493 Greifswald-Insel Riems, Germany
| | - Sandra Diederich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, 17493 Greifswald-Insel Riems, Germany
| | - Stefan Finke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
27
|
Xie L, Zhao YX, Zheng Y, Li XF. The pharmacology and mechanisms of platycodin D, an active triterpenoid saponin from Platycodon grandiflorus. Front Pharmacol 2023; 14:1148853. [PMID: 37089949 PMCID: PMC10117678 DOI: 10.3389/fphar.2023.1148853] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/28/2023] [Indexed: 04/09/2023] Open
Abstract
Chinese doctors widely prescribed Platycodon grandiflorus A. DC. (PG) to treat lung carbuncles in ancient China. Modern clinical experiences have demonstrated that PG plays a crucial role in treating chronic pharyngitis, plum pneumonia, pneumoconiosis, acute and chronic laryngitis, and so forth. Additionally, PG is a food with a long history in China, Japan, and Korea. Furthermore, Platycodin D (PLD), an oleanane-type triterpenoid saponin, is one of the active substances in PG. PLD has been revealed to have anti-inflammatory, anti-viral, anti-oxidation, anti-obesity, anticoagulant, spermicidal, anti-tumor etc., activities. And the mechanism of the effects draws lots of attention, with various signaling pathways involved in these processes. Additionally, research on PLD's pharmacokinetics and extraction processes is under study. The bioavailability of PLD could be improved by being prescribed with Glycyrrhiza uralensis Fisch. or by creating a new dosage form. PLD has been recently considered to have the potential to be a solubilizer or an immunologic adjuvant. Meanwhile, PLD was discovered to have hemolytic activity correlated. PLD has broad application prospects and reveals practical pharmacological activities in pre-clinical research. The authors believe that these activities of PLD contribute to the efficacy of PG. What is apparent is that the clinical translation of PLD still has a long way to go. With the help of modern technology, the scope of clinical applications of PLD is probable to be expanded from traditional applications to new fields.
Collapse
Affiliation(s)
| | | | | | - Xiao-Fang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
28
|
Pinto SM, Subbannayya Y, Kim H, Hagen L, Górna MW, Nieminen AI, Bjørås M, Espevik T, Kainov D, Kandasamy RK. Multi-OMICs landscape of SARS-CoV-2-induced host responses in human lung epithelial cells. iScience 2022; 26:105895. [PMID: 36590899 PMCID: PMC9794516 DOI: 10.1016/j.isci.2022.105895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/03/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
COVID-19 pandemic continues to remain a global health concern owing to the emergence of newer variants. Several multi-Omics studies have produced extensive evidence on host-pathogen interactions and potential therapeutic targets. Nonetheless, an increased understanding of host signaling networks regulated by post-translational modifications and their ensuing effect on the cellular dynamics is critical to expanding the current knowledge on SARS-CoV-2 infections. Through an unbiased transcriptomics, proteomics, acetylomics, phosphoproteomics, and exometabolome analysis of a lung-derived human cell line, we show that SARS-CoV-2 Norway/Trondheim-S15 strain induces time-dependent alterations in the induction of type I IFN response, activation of DNA damage response, dysregulated Hippo signaling, among others. We identified interplay of phosphorylation and acetylation dynamics on host proteins and its effect on the altered release of metabolites, especially organic acids and ketone bodies. Together, our findings serve as a resource of potential targets that can aid in designing novel host-directed therapeutic strategies.
Collapse
Affiliation(s)
- Sneha M. Pinto
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway,Corresponding author
| | - Yashwanth Subbannayya
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Hera Kim
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Lars Hagen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway,Proteomics and Modomics Experimental Core, PROMEC, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Maria W. Górna
- Structural Biology Group, Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Warsaw, Poland
| | - Anni I. Nieminen
- Institute for Molecular Medicine Finland, University of Helsinki, 00014Helsinki, Finland
| | - Magnar Bjørås
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Terje Espevik
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Denis Kainov
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Richard K. Kandasamy
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway,Department of Laboratory Medicine and Pathology, Centre for Individualized Medicine, Mayo Clinic, Rochester, MN, USA,Corresponding author
| |
Collapse
|
29
|
Ni K, Che B, Yang C, Qin Y, Gu R, Wang C, Luo M, Deng L. Emerging toolset of three-dimensional pulmonary cell culture models for simulating lung pathophysiology towards mechanistic elucidation and therapeutic treatment of SARS-COV-2 infection. Front Pharmacol 2022; 13:1033043. [PMID: 36578545 PMCID: PMC9790924 DOI: 10.3389/fphar.2022.1033043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
The ongoing COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) poses a never before seen challenge to human health and the world economy. However, it is difficult to widely use conventional animal and cell culture models in understanding the underlying pathological mechanisms of COVID-19, which in turn hinders the development of relevant therapeutic treatments, including drugs. To overcome this challenge, various three-dimensional (3D) pulmonary cell culture models such as organoids are emerging as an innovative toolset for simulating the pathophysiology occurring in the respiratory system, including bronchial airways, alveoli, capillary network, and pulmonary interstitium, which provide a robust and powerful platform for studying the process and underlying mechanisms of SARS-CoV-2 infection among the potential primary targets in the lung. This review introduces the key features of some of these recently developed tools, including organoid, lung-on-a-chip, and 3D bioprinting, which can recapitulate different structural compartments of the lung and lung function, in particular, accurately resembling the human-relevant pathophysiology of SARS-CoV-2 infection in vivo. In addition, the recent progress in developing organoids for alveolar and airway disease modeling and their applications for discovering drugs against SARS-CoV-2 infection are highlighted. These innovative 3D cell culture models together may hold the promise to fully understand the pathogenesis and eventually eradicate the pandemic of COVID-19.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mingzhi Luo
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou, Jiangsu, China
| | - Linhong Deng
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou, Jiangsu, China
| |
Collapse
|
30
|
Gao N, Rezaee F. Airway Epithelial Cell Junctions as Targets for Pathogens and Antimicrobial Therapy. Pharmaceutics 2022; 14:2619. [PMID: 36559113 PMCID: PMC9786141 DOI: 10.3390/pharmaceutics14122619] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Intercellular contacts between epithelial cells are established and maintained by the apical junctional complexes (AJCs). AJCs conserve cell polarity and build epithelial barriers to pathogens, inhaled allergens, and environmental particles in the respiratory tract. AJCs consist of tight junctions (TJs) and adherens junctions (AJs), which play a key role in maintaining the integrity of the airway barrier. Emerging evidence has shown that different microorganisms cause airway barrier dysfunction by targeting TJ and AJ proteins. This review discusses the pathophysiologic mechanisms by which several microorganisms (bacteria and viruses) lead to the disruption of AJCs in airway epithelial cells. We present recent progress in understanding signaling pathways involved in the formation and regulation of cell junctions. We also summarize the potential chemical inhibitors and pharmacological approaches to restore the integrity of the airway epithelial barrier. Understanding the AJCs-pathogen interactions and mechanisms by which microorganisms target the AJC and impair barrier function may further help design therapeutic innovations to treat these infections.
Collapse
Affiliation(s)
- Nannan Gao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Fariba Rezaee
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
- Center for Pediatric Pulmonary Medicine, Cleveland Clinic Children’s, Cleveland, OH 44195, USA
| |
Collapse
|
31
|
Garza-Domínguez R, Torres-Quiroz F. Evolutionary Signals in Coronaviral Structural Proteins Suggest Possible Complex Mechanisms of Post-Translational Regulation in SARS-CoV-2 Virus. Viruses 2022; 14:v14112469. [PMID: 36366566 PMCID: PMC9696223 DOI: 10.3390/v14112469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/18/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022] Open
Abstract
Post-translational regulation of proteins has emerged as a central topic of research in the field of functional proteomics. Post-translational modifications (PTMs) dynamically control the activities of proteins and are involved in a wide range of biological processes. Crosstalk between different types of PTMs represents a key mechanism of regulation and signaling. Due to the current pandemic of the novel and dangerous SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) virus, here we present an in silico analysis of different types of PTMs in structural proteins of coronaviruses. A dataset of PTM sites was studied at three levels: conservation analysis, mutational analysis and crosstalk analysis. We identified two sets of PTMs which could have important functional roles in the regulation of the structural proteins of coronaviruses. Additionally, we found seven interesting signals of potential crosstalk events. These results reveal a higher level of complexity in the mechanisms of post-translational regulation of coronaviral proteins and provide new insights into the adaptation process of the SARS-CoV-2 virus.
Collapse
|
32
|
Yaron TM, Heaton BE, Levy TM, Johnson JL, Jordan TX, Cohen BM, Kerelsky A, Lin TY, Liberatore KM, Bulaon DK, Van Nest SJ, Koundouros N, Kastenhuber ER, Mercadante MN, Shobana-Ganesh K, He L, Schwartz RE, Chen S, Weinstein H, Elemento O, Piskounova E, Nilsson-Payant BE, Lee G, Trimarco JD, Burke KN, Hamele CE, Chaparian RR, Harding AT, Tata A, Zhu X, Tata PR, Smith CM, Possemato AP, Tkachev SL, Hornbeck PV, Beausoleil SA, Anand SK, Aguet F, Getz G, Davidson AD, Heesom K, Kavanagh-Williamson M, Matthews DA, tenOever BR, Cantley LC, Blenis J, Heaton NS. Host protein kinases required for SARS-CoV-2 nucleocapsid phosphorylation and viral replication. Sci Signal 2022; 15:eabm0808. [PMID: 36282911 PMCID: PMC9830954 DOI: 10.1126/scisignal.abm0808] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Multiple coronaviruses have emerged independently in the past 20 years that cause lethal human diseases. Although vaccine development targeting these viruses has been accelerated substantially, there remain patients requiring treatment who cannot be vaccinated or who experience breakthrough infections. Understanding the common host factors necessary for the life cycles of coronaviruses may reveal conserved therapeutic targets. Here, we used the known substrate specificities of mammalian protein kinases to deconvolute the sequence of phosphorylation events mediated by three host protein kinase families (SRPK, GSK-3, and CK1) that coordinately phosphorylate a cluster of serine and threonine residues in the viral N protein, which is required for viral replication. We also showed that loss or inhibition of SRPK1/2, which we propose initiates the N protein phosphorylation cascade, compromised the viral replication cycle. Because these phosphorylation sites are highly conserved across coronaviruses, inhibitors of these protein kinases not only may have therapeutic potential against COVID-19 but also may be broadly useful against coronavirus-mediated diseases.
Collapse
Affiliation(s)
- Tomer M. Yaron
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
- Tri-Institutional PhD Program in Computational Biology & Medicine, Weill Cornell Medicine/Memorial Sloan Kettering Cancer Center/The Rockefeller University, New York, NY 10021, USA
| | - Brook E. Heaton
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - Jared L. Johnson
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Tristan X. Jordan
- New York University, Grossman School of Medicine, New York, NY 10016, USA
| | - Benjamin M. Cohen
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Alexander Kerelsky
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ting-Yu Lin
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- Weill Cornell Graduate School of Medical Sciences, Cell and Developmental Biology Program, New York, NY 10065, USA
| | - Katarina M. Liberatore
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Danielle K. Bulaon
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Samantha J. Van Nest
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Nikos Koundouros
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Edward R. Kastenhuber
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Marisa N. Mercadante
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Kripa Shobana-Ganesh
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- Weill Cornell Graduate School of Medical Sciences, Cell and Developmental Biology Program, New York, NY 10065, USA
| | - Long He
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Robert E. Schwartz
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Harel Weinstein
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Olivier Elemento
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Elena Piskounova
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Dermatology, Weill Cornell Medicine, New York, NY 10065, USA
| | | | - Gina Lee
- Department of Microbiology and Molecular Genetics, Chao Family Comprehensive Cancer Center, University of California Irvine School of Medicine, Irvine, CA 92868, USA
| | - Joseph D. Trimarco
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kaitlyn N. Burke
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Cait E. Hamele
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ryan R. Chaparian
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Alfred T. Harding
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Aleksandra Tata
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Xinyu Zhu
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Purushothama Rao Tata
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Clare M. Smith
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | | | | | | | | | | | - François Aguet
- Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA
| | - Gad Getz
- Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
- Cancer Center and Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Andrew D. Davidson
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Kate Heesom
- Proteomics Facility, University of Bristol, Bristol, BS8 1TD, UK
| | | | - David A. Matthews
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | | | - Lewis C. Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - John Blenis
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Nicholas S. Heaton
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Human Vaccine Institute, Duke University School of Medicine Durham, NC 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
33
|
Liu S, Cui C, Chen H, Liu T. Ensemble learning-based feature selection for phosphorylation site detection. Front Genet 2022; 13:984068. [PMID: 36338976 PMCID: PMC9634105 DOI: 10.3389/fgene.2022.984068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/05/2022] [Indexed: 11/18/2022] Open
Abstract
SARS-COV-2 is prevalent all over the world, causing more than six million deaths and seriously affecting human health. At present, there is no specific drug against SARS-COV-2. Protein phosphorylation is an important way to understand the mechanism of SARS -COV-2 infection. It is often expensive and time-consuming to identify phosphorylation sites with specific modified residues through experiments. A method that uses machine learning to make predictions about them is proposed. As all the methods of extracting protein sequence features are knowledge-driven, these features may not be effective for detecting phosphorylation sites without a complete understanding of the mechanism of protein. Moreover, redundant features also have a great impact on the fitting degree of the model. To solve these problems, we propose a feature selection method based on ensemble learning, which firstly extracts protein sequence features based on knowledge, then quantifies the importance score of each feature based on data, and finally uses the subset of important features as the final features to predict phosphorylation sites.
Collapse
Affiliation(s)
- Songbo Liu
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Chengmin Cui
- Beijing Institute of Control Engineering, China Academy of Space Technology, Beijing, China
| | - Huipeng Chen
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Tong Liu
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
34
|
Rashid MU, Glover KKM, Lao Y, Spicer V, Coombs KM. Temporal proteomic analyses of human lung cells distinguish high pathogenicity influenza viruses and coronaviruses from low pathogenicity viruses. Front Microbiol 2022; 13:994512. [PMID: 36299731 PMCID: PMC9589293 DOI: 10.3389/fmicb.2022.994512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/23/2022] [Indexed: 11/29/2022] Open
Abstract
Newly re-emerging viruses are of significant global concern. In late 2019, a new coronavirus, SARS-CoV-2, emerged in China and soon spread worldwide, causing the COVID-19 pandemic, which to date has caused >6 M deaths. There has been a wealth of studies on this new virus since its emergence. The coronaviruses consist of many animal and human pathogens, with some of the human coronavirus, such as strain OC43, normally causing only mild cold-like symptoms. Viruses usurp host cellular processes to successfully replicate. We used tandem mass tag mass spectrometry-based proteomic analyses of human lung MRC-5 cells infected with OC43 for various periods of time to delineate virus-induced host cell alterations. Numerous proteins involved in lipid metabolism, molecular transport, small molecule biochemistry, cell death and survival, humoral immune response, and inflammatory response were dysregulated. Comparison of our findings to previous studies that examined a range of differentially pathogenic influenza A viruses (IAV), and to SARS-CoV-2 data, revealed that proteins involved in the cell cycle, cytokine signaling, DNA replication, and anti-inflammatory responses were generally similarly affected by virtually all tested IAV and CoV. However, proteins involved in necrosis, protein metabolism, ECM regulation, and signal transduction were generally different. In addition, the more pathogenic CoV and IAV activated Rb-dependent repression of E2F-mediated transcription, whereas less pathogenic influenza and coronaviruses either inhibited or had no effect on this pathway.
Collapse
Affiliation(s)
- Mahamud-ur Rashid
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Manitoba Center for Proteomics and Systems Biology, Winnipeg, MB, Canada
| | - Kathleen K. M. Glover
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Manitoba Center for Proteomics and Systems Biology, Winnipeg, MB, Canada
| | - Ying Lao
- Manitoba Center for Proteomics and Systems Biology, Winnipeg, MB, Canada
| | - Victor Spicer
- Manitoba Center for Proteomics and Systems Biology, Winnipeg, MB, Canada
| | - Kevin M. Coombs
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Manitoba Center for Proteomics and Systems Biology, Winnipeg, MB, Canada
- Children’s Hospital Research Institute of Manitoba, John Buhler Research Center, Winnipeg, MB, Canada
- *Correspondence: Kevin M. Coombs,
| |
Collapse
|
35
|
Zhao Y, Li L, Wang X, He S, Shi W, Chen S. Temporal Proteomic and Phosphoproteomic Analysis of EV-A71-Infected Human Cells. J Proteome Res 2022; 21:2367-2384. [DOI: 10.1021/acs.jproteome.2c00237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yue Zhao
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Proteomics Center, National Institute of Biological Sciences, Beijing 102206, China
| | - Lin Li
- Proteomics Center, National Institute of Biological Sciences, Beijing 102206, China
| | - Xinhui Wang
- CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, Jiangsu, China
- Suzhou Institute of Systems Medicine, Suzhou 215123, Jiangsu, China
| | - Sudan He
- CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, Jiangsu, China
- Suzhou Institute of Systems Medicine, Suzhou 215123, Jiangsu, China
| | - Weifeng Shi
- Department of Laboratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou 213003, Jiangsu, China
| | - She Chen
- Proteomics Center, National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
| |
Collapse
|
36
|
Xu G, Wu Y, Xiao T, Qi F, Fan L, Zhang S, Zhou J, He Y, Gao X, Zeng H, Li Y, Zhang Z. Multiomics approach reveals the ubiquitination-specific processes hijacked by SARS-CoV-2. Signal Transduct Target Ther 2022; 7:312. [PMID: 36071039 PMCID: PMC9449932 DOI: 10.1038/s41392-022-01156-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 06/21/2022] [Accepted: 08/04/2022] [Indexed: 11/09/2022] Open
Abstract
The Coronavirus Disease 2019 (COVID-19) caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a global pandemic that seriously threatens health and socioeconomic development, but the existed antiviral drugs and vaccines still cannot yet halt the spread of the epidemic. Therefore, a comprehensive and profound understanding of the pathogenesis of SARS-CoV-2 is urgently needed to explore effective therapeutic targets. Here, we conducted a multiomics study of SARS-CoV-2-infected lung epithelial cells, including transcriptomic, proteomic, and ubiquitinomic. Multiomics analysis showed that SARS-CoV-2-infected lung epithelial cells activated strong innate immune response, including interferon and inflammatory responses. Ubiquitinomic further reveals the underlying mechanism of SARS-CoV-2 disrupting the host innate immune response. In addition, SARS-CoV-2 proteins were found to be ubiquitinated during infection despite the fact that SARS-CoV-2 itself didn't code any E3 ligase, and that ubiquitination at three sites on the Spike protein could significantly enhance viral infection. Further screening of the E3 ubiquitin ligases and deubiquitinating enzymes (DUBs) library revealed four E3 ligases influencing SARS-CoV-2 infection, thus providing several new antiviral targets. This multiomics combined with high-throughput screening study reveals that SARS-CoV-2 not only modulates innate immunity, but also promotes viral infection, by hijacking ubiquitination-specific processes, highlighting potential antiviral and anti-inflammation targets.
Collapse
Affiliation(s)
- Gang Xu
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, 518112, Shenzhen, Guangdong Province, China
| | - Yezi Wu
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, 518112, Shenzhen, Guangdong Province, China
| | - Tongyang Xiao
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, 518112, Shenzhen, Guangdong Province, China
| | - Furong Qi
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, 518112, Shenzhen, Guangdong Province, China
| | - Lujie Fan
- Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Shengyuan Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, 518112, Shenzhen, Guangdong Province, China
| | - Jian Zhou
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, 518112, Shenzhen, Guangdong Province, China
| | - Yanhua He
- Department of Microbiology, Second Military Medical University, Shanghai Key Laboratory of Medical Biodefense, 200433, Shanghai, China
| | - Xiang Gao
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, 518112, Shenzhen, Guangdong Province, China
| | - Hongxiang Zeng
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, 518112, Shenzhen, Guangdong Province, China
| | - Yunfei Li
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, 518112, Shenzhen, Guangdong Province, China
| | - Zheng Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, 518112, Shenzhen, Guangdong Province, China. .,Guangdong Key laboratory for anti-infection Drug Quality Evaluation, 518112, Shenzhen, Guangdong Province, China. .,Shenzhen Research Center for Communicable Disease Diagnosis and Treatment of Chinese Academy of Medical Science, Shenzhen, Guangdong Province, China.
| |
Collapse
|
37
|
Agarwal S, Kaur S, Asuru TR, Joshi G, Shrimali NM, Singh A, Singh ON, Srivastva P, Shrivastava T, Vrati S, Surjit M, Guchhait P. Dietary alpha-ketoglutarate inhibits SARS CoV-2 infection and rescues inflamed lungs to restore O 2 saturation by inhibiting pAkt. Clin Transl Med 2022; 12:e1041. [PMID: 36121179 PMCID: PMC9484267 DOI: 10.1002/ctm2.1041] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/13/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Sakshi Agarwal
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Simrandeep Kaur
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Tejeswara Rao Asuru
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Garima Joshi
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Nishith M Shrimali
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Anamika Singh
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Oinam Ningthemmani Singh
- Translational Health Science Technology Institute, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Puneet Srivastva
- Translational Health Science Technology Institute, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Tripti Shrivastava
- Translational Health Science Technology Institute, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Sudhanshu Vrati
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Milan Surjit
- Translational Health Science Technology Institute, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Prasenjit Guchhait
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| |
Collapse
|
38
|
Herminghaus A, Kozlov AV, Szabó A, Hantos Z, Gylstorff S, Kuebart A, Aghapour M, Wissuwa B, Walles T, Walles H, Coldewey SM, Relja B. A Barrier to Defend - Models of Pulmonary Barrier to Study Acute Inflammatory Diseases. Front Immunol 2022; 13:895100. [PMID: 35874776 PMCID: PMC9300899 DOI: 10.3389/fimmu.2022.895100] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 06/20/2022] [Indexed: 12/04/2022] Open
Abstract
Pulmonary diseases represent four out of ten most common causes for worldwide mortality. Thus, pulmonary infections with subsequent inflammatory responses represent a major public health concern. The pulmonary barrier is a vulnerable entry site for several stress factors, including pathogens such as viruses, and bacteria, but also environmental factors e.g. toxins, air pollutants, as well as allergens. These pathogens or pathogen-associated molecular pattern and inflammatory agents e.g. damage-associated molecular pattern cause significant disturbances in the pulmonary barrier. The physiological and biological functions, as well as the architecture and homeostatic maintenance of the pulmonary barrier are highly complex. The airway epithelium, denoting the first pulmonary barrier, encompasses cells releasing a plethora of chemokines and cytokines, and is further covered with a mucus layer containing antimicrobial peptides, which are responsible for the pathogen clearance. Submucosal antigen-presenting cells and neutrophilic granulocytes are also involved in the defense mechanisms and counterregulation of pulmonary infections, and thus may directly affect the pulmonary barrier function. The detailed understanding of the pulmonary barrier including its architecture and functions is crucial for the diagnosis, prognosis, and therapeutic treatment strategies of pulmonary diseases. Thus, considering multiple side effects and limited efficacy of current therapeutic treatment strategies in patients with inflammatory diseases make experimental in vitro and in vivo models necessary to improving clinical therapy options. This review describes existing models for studyying the pulmonary barrier function under acute inflammatory conditions, which are meant to improve the translational approaches for outcome predictions, patient monitoring, and treatment decision-making.
Collapse
Affiliation(s)
- Anna Herminghaus
- Department of Anaesthesiology, University of Duesseldorf, Duesseldorf, Germany
| | - Andrey V. Kozlov
- L Boltzmann Institute for Traumatology in Cooperation with AUVA and Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Department of Human Pathology , IM Sechenov Moscow State Medical University, Moscow, Russia
| | - Andrea Szabó
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Zoltán Hantos
- Department of Anaesthesiology and Intensive Therapy, Semmelweis University, Budapest, Hungary
| | - Severin Gylstorff
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto-von-Guericke University, Magdeburg, Germany
- Research Campus STIMULATE, Otto-von-Guericke University, Magdeburg, Germany
| | - Anne Kuebart
- Department of Anaesthesiology, University of Duesseldorf, Duesseldorf, Germany
| | - Mahyar Aghapour
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto-von-Guericke University, Magdeburg, Germany
| | - Bianka Wissuwa
- Department of Anaesthesiology and Intensive Care Medicine, Septomics Research Centre, Centre for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Thorsten Walles
- Department of Thoracic Surgery, Magdeburg University Medicine, Magdeburg, Germany
| | - Heike Walles
- Research Campus STIMULATE, Otto-von-Guericke University, Magdeburg, Germany
- Core Facility Tissue Engineering, Otto-von-Guericke-University, Magdeburg, Germany
| | - Sina M. Coldewey
- Department of Anaesthesiology and Intensive Care Medicine, Septomics Research Centre, Centre for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Borna Relja
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto-von-Guericke University, Magdeburg, Germany
- Research Campus STIMULATE, Otto-von-Guericke University, Magdeburg, Germany
- *Correspondence: Borna Relja,
| |
Collapse
|
39
|
Synergistic interactions of repurposed drugs that inhibit Nsp1, a major virulence factor for COVID-19. Sci Rep 2022; 12:10174. [PMID: 35715434 PMCID: PMC9204075 DOI: 10.1038/s41598-022-14194-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/02/2022] [Indexed: 11/25/2022] Open
Abstract
Nsp1 is one of the first proteins expressed from the SARS-CoV-2 genome and is a major virulence factor for COVID-19. A rapid multiplexed assay for detecting the action of Nsp1 was developed in cultured lung cells. The assay is based on the acute cytopathic effects induced by Nsp1. Virtual screening was used to stratify compounds that interact with two functional Nsp1 sites: the RNA-binding groove and C-terminal helix-loop-helix region. Experimental screening focused on compounds that could be readily repurposed to treat COVID-19. Multiple synergistic combinations of compounds that significantly inhibited Nsp1 action were identified. Among the most promising combinations are Ponatinib, Rilpivirine, and Montelukast, which together, reversed the toxic effects of Nsp1 to the same extent as null mutations in the Nsp1 gene.
Collapse
|
40
|
Kastenhuber ER, Johnson JL, Yaron TM, Mercadante M, Cantley LC. Evolution of host protease interactions among SARS-CoV-2 variants of concern and related coronaviruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.06.16.496428. [PMID: 35734085 PMCID: PMC9216717 DOI: 10.1101/2022.06.16.496428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Previously, we showed that coagulation factors directly cleave SARS-CoV-2 spike and promote viral entry (Kastenhuber et al., 2022). Here, we show that substitutions in the S1/S2 cleavage site observed in SARS-CoV-2 variants of concern (VOCs) exhibit divergent interactions with host proteases, including factor Xa and furin. Nafamostat remains effective to block coagulation factor-mediated cleavage of variant spike sequences. Furthermore, host protease usage has likely been a selection pressure throughout coronavirus evolution, and we observe convergence of distantly related coronaviruses to attain common host protease interactions, including coagulation factors. Interpretation of genomic surveillance of emerging SARS-CoV-2 variants and future zoonotic spillover is supported by functional characterization of recurrent emerging features.
Collapse
Affiliation(s)
- Edward R. Kastenhuber
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Jared L. Johnson
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Tomer M. Yaron
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Marisa Mercadante
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Lewis C. Cantley
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Dana Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
41
|
Abstract
SARS-CoV-2 virus has become a global health problem that has caused millions of deaths worldwide. The infection can present with multiple clinical features ranging from asymptomatic or mildly symptomatic patients to patients with severe or critical illness that can even lead to death. Although the immune system plays an important role in pathogen control, SARS-CoV-2 can drive dysregulation of this response and trigger severe immunopathology. Exploring the mechanisms of the immune response involved in host defense against SARS-CoV-2 allows us to understand its immunopathogenesis and possibly detect features that can be used as potential therapies to eliminate the virus. The main objective of this review on SARS-CoV-2 is to highlight the interaction between the virus and the immune response. We explore the function and action of the immune system, the expression of molecules at the site of infection that cause hyperinflammation and hypercoagulation disorders, the factors leading to the development of pneumonia and subsequent severe acute respiratory distress syndrome which is the leading cause of death in patients with COVID-19.
Collapse
Affiliation(s)
- Dennis Jiménez
- Departamento de Ciencias de la Vida y Agricultura, Carrera de Ingeniería en Biotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Pichincha, Ecuador
| | - Marbel Torres Arias
- Departamento de Ciencias de la Vida y Agricultura, Carrera de Ingeniería en Biotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Pichincha, Ecuador.,Laboratorio de Inmunología y Virología, CENCINAT, GISAH, Universidad de las Fuerzas Armadas, Sangolquí, Pichincha, Ecuador
| |
Collapse
|
42
|
Jiang W, Zhang P, Yang P, Kang N, Liu J, Aihemaiti Y, Tu H. Phosphoproteome Analysis Identifies a Synaptotagmin-1-Associated Complex Involved in Ischemic Neuron Injury. Mol Cell Proteomics 2022; 21:100222. [PMID: 35257887 PMCID: PMC9043414 DOI: 10.1016/j.mcpro.2022.100222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 12/24/2022] Open
Abstract
Cerebral stroke is one of the leading causes of death in adults worldwide. However, the molecular mechanisms of stroke-induced neuron injury are not fully understood. Here, we obtained phosphoproteomic and proteomic profiles of the acute ischemic hippocampus by LC–MS/MS analysis. Quantitative phosphoproteomic analyses revealed that the dysregulated phosphoproteins were involved in synaptic components and neurotransmission. We further demonstrated that phosphorylation of Synaptotagmin-1 (Syt1) at the Thr112 site in cultured hippocampal neurons aggravated oxygen-glucose deprivation–induced neuronal injury. Immature neurons with low expression of Syt1 exhibit slight neuronal injury in a cerebral ischemia model. Administration of the Tat-Syt1T112A peptide protects neurons against cerebral ischemia-induced injury in vitro and in vivo. Surprisingly, potassium voltage-gated channel subfamily KQT member 2 (Kcnq2) interacted with Syt1 and Annexin A6 (Anxa6) and alleviated Syt1-mediated neuronal injury upon oxygen-glucose deprivation treatment. These results reveal a mechanism underlying neuronal injury and may provide new targets for neuroprotection after acute cerebral ischemia onset. Established the phosphoproteome profiles of acute cerebral ischemic hippocampus. Phosphoproteomic profile reveals phosphorylation of Syt1 and Kcnq2, which are upregulated. Phosphorylation of Syt1 aggravates neuron injury, which is relieved by Tat-Syt1T112A. Kcnq2 interacts with Syt1 and Anxa6 and alleviates Syt1-mediated neuronal injury.
Collapse
Affiliation(s)
- Wei Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China; Shenzhen Research Institute, Hunan University, Shenzhen, Guangdong, China
| | - Pei Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China; Shenzhen Research Institute, Hunan University, Shenzhen, Guangdong, China
| | - Peng Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China; Shenzhen Research Institute, Hunan University, Shenzhen, Guangdong, China
| | - Na Kang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China; Shenzhen Research Institute, Hunan University, Shenzhen, Guangdong, China
| | - Junqiang Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China; Shenzhen Research Institute, Hunan University, Shenzhen, Guangdong, China
| | - Yilixiati Aihemaiti
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China; Shenzhen Research Institute, Hunan University, Shenzhen, Guangdong, China
| | - Haijun Tu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China; Shenzhen Research Institute, Hunan University, Shenzhen, Guangdong, China.
| |
Collapse
|
43
|
ACE2 overexpressing mesenchymal stem cells alleviates COVID-19 lung injury by inhibiting pyroptosis. iScience 2022; 25:104046. [PMID: 35287354 PMCID: PMC8907105 DOI: 10.1016/j.isci.2022.104046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/07/2022] [Accepted: 03/08/2022] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have shown some efficacy in the COVID-19 treatment. We proposed that exogenous supplementation of ACE2 via MSCs (ACE2-MSCs) might have better therapeutic effects. We constructed SARS-CoV-2 spike glycoprotein stably transfected AT-II and Beas-2B cells and used SARS-CoV-2 spike pseudovirus to infect hACE2 transgenic mice. The results showed that spike glycoprotein transfection triggers the release of apoptotic bodies and formation of membrane pores in pyroptosis. Inflammatory factors and pyroptosis factors were highly upregulated by spike glycoprotein transfection. SARS-CoV-2 spike pseudovirus worsened lung injury and increased the main factors of cytokine storm and pyroptosis. Compared to using MSCs or rh-ACE2 alone, the administration of ACE2-MSCs could significantly reduce these factors better and alleviate lung injury in vivo and in vitro, which might be because of the increased activities of secretory ACE2. Our proposal is a promising therapeutic solution for preclinical or clinical research.
Collapse
|
44
|
Abo KM, Sainz de Aja J, Lindstrom-Vautrin J, Alysandratos KD, Richards A, Garcia-de-Alba C, Huang J, Hix OT, Werder RB, Bullitt E, Hinds A, Falconer I, Villacorta-Martin C, Jaenisch R, Kim CF, Kotton DN, Wilson AA. Air-liquid interface culture promotes maturation and allows environmental exposure of pluripotent stem cell-derived alveolar epithelium. JCI Insight 2022; 7:155589. [PMID: 35315362 PMCID: PMC8986076 DOI: 10.1172/jci.insight.155589] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Type 2 alveolar epithelial cells (AT2s), facultative progenitor cells of the lung alveolus, play a vital role in the biology of the distal lung. In vitro model systems that incorporate human cells, recapitulate the biology of primary AT2s, and interface with the outside environment could serve as useful tools to elucidate functional characteristics of AT2s in homeostasis and disease. We and others recently adapted human induced pluripotent stem cell–derived AT2s (iAT2s) for air-liquid interface (ALI) culture. Here, we comprehensively characterize the effects of ALI culture on iAT2s and benchmark their transcriptional profile relative to both freshly sorted and cultured primary human fetal and adult AT2s. We find that iAT2s cultured at ALI maintain an AT2 phenotype while upregulating expression of transcripts associated with AT2 maturation. We then leverage this platform to assay the effects of exposure to clinically significant, inhaled toxicants including cigarette smoke and electronic cigarette vapor.
Collapse
Affiliation(s)
- Kristine M Abo
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, Massachusetts, USA.,The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Julio Sainz de Aja
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary & Respiratory Diseases, Boston Children's Hospital, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan Lindstrom-Vautrin
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, Massachusetts, USA
| | - Konstantinos-Dionysios Alysandratos
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, Massachusetts, USA.,The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Alexsia Richards
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | - Carolina Garcia-de-Alba
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary & Respiratory Diseases, Boston Children's Hospital, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Jessie Huang
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, Massachusetts, USA.,The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Olivia T Hix
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, Massachusetts, USA.,The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Rhiannon B Werder
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, Massachusetts, USA.,The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Esther Bullitt
- Department of Physiology & Biophysics, Boston University, Boston, Massachusetts, USA
| | - Anne Hinds
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Isaac Falconer
- Boston University School of Medicine, Boston, Massachusetts, USA
| | - Carlos Villacorta-Martin
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, Massachusetts, USA
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Carla F Kim
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary & Respiratory Diseases, Boston Children's Hospital, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Darrell N Kotton
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, Massachusetts, USA.,The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Andrew A Wilson
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, Massachusetts, USA.,The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
45
|
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection continues to have devastating consequences worldwide. Recently, great efforts have been made to identify SARS-CoV-2 host factors, but the regulatory mechanisms of these host molecules, as well as the virus per se, remain elusive. Here we report a role of RNA G-quadruplex (RG4) in SARS-CoV-2 infection. Combining bioinformatics, biochemical and biophysical assays, we demonstrate the presence of RG4s in both SARS-CoV-2 genome and host factors. The biological and pathological importance of these RG4s is then exemplified by a canonical 3-quartet RG4 within Tmprss2, which can inhibit Tmprss2 translation and prevent SARS-CoV-2 entry. Intriguingly, G-quadruplex (G4)-specific stabilizers attenuate SARS-CoV-2 infection in pseudovirus cell systems and mouse models. Consistently, the protein level of TMPRSS2 is increased in lungs of COVID-19 patients. Our findings reveal a previously unknown mechanism underlying SARS-CoV-2 infection and suggest RG4 as a potential target for COVID-19 prevention and treatment. Understanding the mechanisms of SARS-CoV-2 infection is important to control the pandemic. Here the authors show the biological and pathological role of RNA G-quadruplex structure in both SARS-CoV-2 genome and host factors, particularly TMPRSS2.
Collapse
|
46
|
Chatterjee B, Thakur SS. SARS-CoV-2 Infection Triggers Phosphorylation: Potential Target for Anti-COVID-19 Therapeutics. Front Immunol 2022; 13:829474. [PMID: 35251015 PMCID: PMC8891488 DOI: 10.3389/fimmu.2022.829474] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/24/2022] [Indexed: 12/19/2022] Open
Abstract
The SARS-CoV-2 infection triggers host kinases and is responsible for heavy phosphorylation in the host and also in the virus. Notably, phosphorylations in virus were achieved using the host enzyme for its better survival and further mutations. We have attempted to study and understand the changes that happened in phosphorylation during and post SARS-CoV-2 infection. There were about 70 phosphorylation sites detected in SARS-CoV-2 viral proteins including N, M, S, 3a, and 9b. Furthermore, more than 15,000 host phosphorylation sites were observed in SARS-CoV-2-infected cells. SARS-CoV-2 affects several kinases including CMGC, CK2, CDK, PKC, PIKFYVE, and EIF2AK2. Furthermore, SARS-CoV-2 regulates various signaling pathways including MAPK, GFR signaling, TGF-β, autophagy, and AKT. These elevated kinases and signaling pathways can be potential therapeutic targets for anti-COVID-19 drug discovery. Specific inhibitors of these kinases and interconnected signaling proteins have great potential to cure COVID-19 patients and slow down the ongoing COVID-19 pandemic.
Collapse
Affiliation(s)
- Bhaswati Chatterjee
- Chemical Science, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Suman S Thakur
- Proteomics and Cell Signaling, Centre for Cellular and Molecular Biology, Hyderabad, India
| |
Collapse
|
47
|
Xia J, Chen S, Li Y, Li H, Gan M, Wu J, Prohaska CC, Bai Y, Gao L, Gu L, Zhang D. Immune Response Is Key to Genetic Mechanisms of SARS-CoV-2 Infection With Psychiatric Disorders Based on Differential Gene Expression Pattern Analysis. Front Immunol 2022; 13:798538. [PMID: 35185890 PMCID: PMC8854505 DOI: 10.3389/fimmu.2022.798538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/13/2022] [Indexed: 12/11/2022] Open
Abstract
Existing evidence demonstrates that coronavirus disease 2019 (COVID-19) leads to psychiatric illness, despite its main clinical manifestations affecting the respiratory system. People with mental disorders are more susceptible to COVID-19 than individuals without coexisting mental health disorders, with significantly higher rates of severe illness and mortality in this population. The incidence of new psychiatric diagnoses after infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is also remarkably high. SARS-CoV-2 has been reported to use angiotensin-converting enzyme-2 (ACE2) as a receptor for infecting susceptible cells and is expressed in various tissues, including brain tissue. Thus, there is an urgent need to investigate the mechanism linking psychiatric disorders to COVID-19. Using a data set of peripheral blood cells from patients with COVID-19, we compared this to data sets of whole blood collected from patients with psychiatric disorders and used bioinformatics and systems biology approaches to identify genetic links. We found a large number of overlapping immune-related genes between patients infected with SARS-CoV-2 and differentially expressed genes of bipolar disorder (BD), schizophrenia (SZ), and late-onset major depressive disorder (LOD). Many pathways closely related to inflammatory responses, such as MAPK, PPAR, and TGF-β signaling pathways, were observed by enrichment analysis of common differentially expressed genes (DEGs). We also performed a comprehensive analysis of protein-protein interaction network and gene regulation networks. Chemical-protein interaction networks and drug prediction were used to screen potential pharmacologic therapies. We hope that by elucidating the relationship between the pathogenetic processes and genetic mechanisms of infection with SARS-CoV-2 with psychiatric disorders, it will lead to innovative strategies for future research and treatment of psychiatric disorders linked to COVID-19.
Collapse
Affiliation(s)
- Jing Xia
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang, China
| | - Shuhan Chen
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang, China
| | - Yaping Li
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang, China
| | - Hua Li
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang, China
| | - Minghong Gan
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang, China
| | - Jiashuo Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Clare Colette Prohaska
- Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Department of Medicine, Indiana University, Indianapolis, IN, United States
| | - Yang Bai
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Lu Gao
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang, China
| | - Li Gu
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang, China
| | - Dongfang Zhang
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
48
|
Maulding ND, Seiler S, Pearson A, Kreusser N, Stuart JM. Dual RNA-Seq analysis of SARS-CoV-2 correlates specific human transcriptional response pathways directly to viral expression. Sci Rep 2022; 12:1329. [PMID: 35079083 PMCID: PMC8789814 DOI: 10.1038/s41598-022-05342-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023] Open
Abstract
The SARS-CoV-2 pandemic has challenged humankind's ability to quickly determine the cascade of health effects caused by a novel infection. Even with the unprecedented speed at which vaccines were developed and introduced into society, identifying therapeutic interventions and drug targets for patients infected with the virus remains important as new strains of the virus evolve, or future coronaviruses may emerge that are resistant to current vaccines. The application of transcriptomic RNA sequencing of infected samples may shed new light on the pathways involved in viral mechanisms and host responses. We describe the application of the previously developed "dual RNA-seq" approach to investigate, for the first time, the co-regulation between the human and SARS-CoV-2 transcriptomes. Together with differential expression analysis, we describe the tissue specificity of SARS-CoV-2 expression, an inferred lipopolysaccharide response, and co-regulation of CXCL's, SPRR's, S100's with SARS-CoV-2 expression. Lipopolysaccharide response pathways in particular offer promise for future therapeutic research and the prospect of subgrouping patients based on chemokine expression that may help explain the vastly different reactions patients have to infection. Taken together these findings highlight unappreciated SARS-CoV-2 expression signatures and emphasize new considerations and mechanisms for SARS-CoV-2 therapeutic intervention.
Collapse
Affiliation(s)
- Nathan D Maulding
- Biomolecular Engineering and Bioinformatics, University of California at Santa Cruz, Santa Cruz, CA, USA
| | - Spencer Seiler
- Biomolecular Engineering and Bioinformatics, University of California at Santa Cruz, Santa Cruz, CA, USA
| | - Alexander Pearson
- Biomolecular Engineering and Bioinformatics, University of California at Santa Cruz, Santa Cruz, CA, USA
| | - Nicholas Kreusser
- Biomolecular Engineering and Bioinformatics, University of California at Santa Cruz, Santa Cruz, CA, USA
| | - Joshua M Stuart
- Biomolecular Engineering and Bioinformatics, University of California at Santa Cruz, Santa Cruz, CA, USA.
| |
Collapse
|
49
|
Nabeel-Shah S, Lee H, Ahmed N, Burke GL, Farhangmehr S, Ashraf K, Pu S, Braunschweig U, Zhong G, Wei H, Tang H, Yang J, Marcon E, Blencowe BJ, Zhang Z, Greenblatt JF. SARS-CoV-2 nucleocapsid protein binds host mRNAs and attenuates stress granules to impair host stress response. iScience 2022; 25:103562. [PMID: 34901782 PMCID: PMC8642831 DOI: 10.1016/j.isci.2021.103562] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/25/2021] [Accepted: 12/01/2021] [Indexed: 12/22/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid (N) protein is essential for viral replication, making it a promising target for antiviral drug and vaccine development. SARS-CoV-2 infected patients exhibit an uncoordinated immune response; however, the underlying mechanistic details of this imbalance remain obscure. Here, starting from a functional proteomics workflow, we cataloged the protein-protein interactions of SARS-CoV-2 proteins, including an evolutionarily conserved specific interaction of N with the stress granule resident proteins G3BP1 and G3BP2. N localizes to stress granules and sequesters G3BPs away from their typical interaction partners, thus attenuating stress granule formation. We found that N binds directly to host mRNAs in cells, with a preference for 3' UTRs, and modulates target mRNA stability. We show that the N protein rewires the G3BP1 mRNA-binding profile and suppresses the physiological stress response of host cells, which may explain the imbalanced immune response observed in SARS-CoV-2 infected patients.
Collapse
Affiliation(s)
- Syed Nabeel-Shah
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Hyunmin Lee
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Computer Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Nujhat Ahmed
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Giovanni L Burke
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Shaghayegh Farhangmehr
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Kanwal Ashraf
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Shuye Pu
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | | | - Guoqing Zhong
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Hong Wei
- School of Mathematical Sciences, Nankai University, Tianjin 300071, China
| | - Hua Tang
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Jianyi Yang
- School of Mathematical Sciences, Nankai University, Tianjin 300071, China
| | - Edyta Marcon
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Benjamin J Blencowe
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Zhaolei Zhang
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Computer Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jack F Greenblatt
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
50
|
Masui A, Hirai T, Gotoh S. Perspectives of future lung toxicology studies using human pluripotent stem cells. Arch Toxicol 2022; 96:389-402. [PMID: 34973109 PMCID: PMC8720162 DOI: 10.1007/s00204-021-03188-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/02/2021] [Indexed: 12/17/2022]
Abstract
The absence of in vitro platforms for human pulmonary toxicology studies is becoming an increasingly serious concern. The respiratory system has a dynamic mechanical structure that extends from the airways to the alveolar region. In addition, the epithelial, endothelial, stromal, and immune cells are highly organized in each region and interact with each other to function synergistically. These cells of varied lineage, particularly epithelial cells, have been difficult to use for long-term culture in vitro, thus limiting the development of useful experimental tools. This limitation has set a large distance between the bench and the bedside for analyzing the pathogenic mechanisms, the efficacy of candidate therapeutic agents, and the toxicity of compounds. Several researchers have proposed solutions to these problems by reporting on methods for generating human lung epithelial cells derived from pluripotent stem cells (PSCs). Moreover, the use of organoid culture, organ-on-a-chip, and material-based techniques have enabled the maintenance of functional PSC-derived lung epithelial cells as well as primary cells. The aforementioned technological advances have facilitated the in vitro recapitulation of genetic lung diseases and the detection of ameliorating or worsening effects of genetic and chemical interventions, thus indicating the future possibility of more sophisticated preclinical compound assessments in vitro. In this review, we will update the recent advances in lung cell culture methods, principally focusing on human PSC-derived lung epithelial organoid culture systems with the hope of their future application in toxicology studies.
Collapse
Affiliation(s)
- Atsushi Masui
- Department of Drug Discovery for Lung Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Watarase Research Center, Kyorin Pharmaceutical Co. Ltd., Shimotsuga-gun, Nogi, Tochigi, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shimpei Gotoh
- Department of Drug Discovery for Lung Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|