1
|
Lu G, Tang Y, Chen O, Guo Y, Xiao M, Wang J, Liu Q, Li J, Gao T, Zhang X, Zhang J, Cheng Q, Kuang R, Gu J. Aberrant activation of p53-TRIB3 axis contributes to diabetic myocardial insulin resistance and sulforaphane protection. J Adv Res 2025; 72:467-484. [PMID: 39069209 DOI: 10.1016/j.jare.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/02/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024] Open
Abstract
INTRODUCTION Insulin resistance (IR) is associated with multiple pathological features. Although p53- or TRIB3-orchestrated IR is extensively studied in adipose tissue and liver, the role of p53-TRIB3 axis in myocardial IR remains unknown, and more importantly target-directed therapies of myocardial IR are missing. OBJECTIVES Considering the beneficial effects of sulforaphane (SFN) on cardiovascular health, it is of particular interest to explore whether SFN protects against myocardial IR with a focus on the regulatory role of p53-TRIB3 axis. METHODS Mouse models including cardiac specific p53-overexpressing transgenic (p53-cTg) mice and Trib3 knockout (Trib3-KO) mice, combined with primary cardiomyocytes treated with p53 activator (nutlin-3a) and inhibitor (pifithrin-α, PFT-α), or transfected with p53-shRNA and Trib3-shRNA, followed by multiple molecular biological methodologies, were used to investigate the role of p53-TRIB3 axis in SFN actions on myocardial IR. RESULTS Here, we report that knockdown of p53 rescued cardiac insulin-stimulated AKT phosphorylation, while up-regulation of p53 by nutlin-3a or p53-cTg mice blunted insulin sensitivity in cardiomyocytes under diabetic conditions. Diabetic attenuation of AKT-mediated cardiac insulin signaling was markedly reversed by SFN in p53-Tgfl/fl mice, but not in p53-cTg mice. Importantly, we identified TRIB3 was elevated in p53-cTg diabetic mice, and confirmed the physical interaction between p53 and TRIB3. Trib3-KO diabetic mice displayed improved insulin sensitivity in the heart. More specifically, the AMPKα-triggered CHOP phosphorylation and degradation were essential for p53 on the transcriptional regulation of Trib3. CONCLUSION Overall, these results indicate that inhibiting the p53-TRIB3 pathway by SFN plays an unsuspected key role in the improvement of myocardial IR, which may be a promising strategy for attenuating diabetic cardiomyopathy (DCM) in diabetic patients.
Collapse
Affiliation(s)
- Guangping Lu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yufeng Tang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
| | - Ou Chen
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yuanfang Guo
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Mengjie Xiao
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jie Wang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Qingbo Liu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jiahao Li
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Ting Gao
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiaohui Zhang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jingjing Zhang
- Department of Cardiology at the First Hospital of China Medical University, and Department of Cardiology at the People's Hospital of Liaoning Province, Shenyang, Liaoning 110016, China
| | - Quanli Cheng
- Department of Cardiovascular Disease, First Hospital of Jilin University, Changchun, Jilin 130021, China.
| | - Rong Kuang
- NMPA Key Laboratory for Animal Alternative Testing Technology of Cosmetics, Zhejiang Institute for Food and Drug Control, Hangzhou, Zhejiang 310004, China.
| | - Junlian Gu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
2
|
Zhang X, Zhang P, Zhu Y, Lou J, Wu P, Wang Y, Wang Z, Liu Q, Lu B, Li Q, Mei J, Zhu C, Zhu W, Zhang X. Myogenic nano-adjuvant for orthopedic-related sarcopenia via mitochondrial homeostasis modulation in macrophage-myosatellite metabolic crosstalk. J Nanobiotechnology 2025; 23:390. [PMID: 40437492 PMCID: PMC12117855 DOI: 10.1186/s12951-025-03480-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 02/24/2025] [Indexed: 06/01/2025] Open
Abstract
The decline in skeletal muscle mass and muscle strength linked to aging, also known as sarcopenia, is strongly associated with disability, traumatic injury, and metabolic disease in patients. Meanwhile, sarcopenia increases the risk of adverse orthopedic perioperative complications including implant dislocation, infection, loosening, and poor wound healing. Mitochondrial dyshomeostasis in the immune-myosatellite metabolic crosstalk is one of the major pathological factors in sarcopenia. To reduce the incidence of orthopedic perioperative complications in patients, we designed and developed a nano-adjuvant based on two-dimensional layer double hydroxide (LDH) for sustained improvement of systemic and orthopedic-related sarcopenia. Construction of MgAlCo-LDH@UA (MACL@UA) nano-adjuvant was performed by introducing cobalt in magnesium-aluminum LDH and further loading urolithin A (UA). The release of magnesium ions and UA promoted myocyte proliferation, angiogenesis and improved mitochondrial homeostasis. Al acted as an immunomodulatory adjuvant to enhance the metabolic crosstalk between macrophages and myosatellite cells, and prompted macrophage-derived glutamine nourishment. Animal experiments confirmed that vaccination with MACL@UA in systemic sarcopenia and intensive orthopedic perioperative vaccination with MACL@UA significantly enhanced quadriceps muscle mass in rats. This nano-adjuvant offers a solution for long-term improvement of sarcopenia and short-term significant reduction of orthopedic perioperative complications in patients, with promising prospects for clinical application and commercial translation.
Collapse
Affiliation(s)
- Xudong Zhang
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Department of Orthopedics, The Affiliated Provincial Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, 230001, P. R. China
| | - Peng Zhang
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Department of Orthopedics, The Affiliated Provincial Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, 230001, P. R. China
| | - Yunliang Zhu
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Jiaqing Lou
- Yichun University School of Medicine, No. 576 Yuanzhou District, Yichun, Jiangxi Province, 336000, China
| | - Peng Wu
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yanchang Middle Road, Jing'an District, Shanghai, 200072, China
| | - Yingjie Wang
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Zhengxi Wang
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Quan Liu
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Baoliang Lu
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Qianming Li
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Jiawei Mei
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| | - Chen Zhu
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| | - Wanbo Zhu
- Department of Orthopedics, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200233, P. R. China.
| | - Xianzuo Zhang
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| |
Collapse
|
3
|
Cai Z, Sun F, Wang Q, Li S, Wang L, Li H, Su Y, Yang H, Dong B. Icariin alleviates cardiomyocyte pyroptosis through AMPK-NLRP3 pathway to ameliorates diabetic cardiomyopathy. Int Immunopharmacol 2025; 156:114690. [PMID: 40262250 DOI: 10.1016/j.intimp.2025.114690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/28/2025] [Accepted: 04/15/2025] [Indexed: 04/24/2025]
Abstract
Among the multitude of pressing global health concerns, diabetes mellitus stands out as a significant issue. An alarming consequence of this condition is diabetic cardiomyopathy (DCM), which represents a critical contributor to mortality in individuals with diabetes. Recently, research has unveiled the pivotal role that pyroptosis plays in the progression of myocardial fibrosis associated with DCM. An epimedial flavonoid monomer, Icariin (ICA), primarily sourced from Epimedium genus plants, has shown a safeguarding influence on cardiac health through various means, encompassing anti-inflammatory actions and its capacity against oxidative stress. Our research endeavor focuses on elucidating the beneficial impacts alongside the underlying physiological processes triggered by ICA within the context of DCM. An animal model representative of DCM was developed through intraperitoneal administration of streptozotocin (STZ). In parallel, in vitro experiments utilized H9C2 cardiomyocytes to mimic hyperglycemic environments relevant to disease states. In vivo experiments found that ICA improved cardiac function, alleviated myocardial fibrosis, and reduced NLRP3-mediated pyroptosis in heart tissue of DCM mice. Under in vitro settings characterized by elevated glucose concentrations, there was a notable elevation in both NLRP3 pyroptosis-associated proteins and oxidative stress markers within the heart muscle cells. ICA treatment attenuated pyroptosis and oxidative stress caused by high glucose in cardiomyocytes. Further studies revealed that when treated with an AMPK inhibitor, the shielding benefits conferred by ICA on cardiomyocytes were negated, suggesting that the regulatory effects of ICA on cardiomyocyte pyroptosis may be achieved through the AMPK-NLRP3 pathway. In conclusion, ICA exerts protective effects in DCM by inhibiting cardiomyocyte pyroptosis, alleviating myocardial fibrosis, and improving cardiac function via the AMPK-NLRP3 pathway.
Collapse
Affiliation(s)
- Zhenhao Cai
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China; Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fengxiao Sun
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qingyan Wang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shengnan Li
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lanlan Wang
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Huixin Li
- Binhai New Area Hospital of TCM, Tianjin, China
| | - Yudong Su
- Tongnan District Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Hongbo Yang
- Weifang Rehabilitation Hospital, Weifang, China
| | - Bo Dong
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China; Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| |
Collapse
|
4
|
Nie H, Wang X, Guo L, Wei J, Wei Y, Gao Y, Wang J, Yip KC, Huang X, Zhang Q, Gao F, Li R. Hyperlipidemia Triggers Trophoblast Cell Dysfunction and Preeclampsia via the AMPK/GATA3/FTL Pathway. Hypertension 2025. [PMID: 40421527 DOI: 10.1161/hypertensionaha.125.24839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 05/05/2025] [Indexed: 05/28/2025]
Abstract
BACKGROUND Preeclampsia, a severe pregnancy complication with an incompletely deciphered cause, is strongly associated with hyperlipidemia. Our previous studies demonstrated that FTL (ferritin light chain) expression was diminished in preeclampsia placentas and that FTL downregulation inhibited trophoblast invasiveness and migration while promoting apoptosis, contributing to preeclampsia development. However, the potential interplay between hyperlipidemia and FTL in the pathogenesis of preeclampsia, as well as the regulatory mechanism involved, remains to be elucidated. METHODS We conducted Spearman correlation analysis, used a high-fat diet-fed mice model, cell culture, and molecular biology assays, including immunohistochemistry, chromatin immunoprecipitation, and dual-luciferase reporter gene assays, to explore the impact of hyperlipidemia on the development of preeclampsia and to elucidate the molecular mechanisms involved. RESULTS Pregnant women with preeclampsia presented elevated serum total cholesterol, triglycerides, and low-density lipoprotein, with reduced high-density lipoprotein. Similarly, high-fat diet-fed mice exhibited dyslipidemia and preeclampsia-like characteristics. FTL expression was reduced in the placentas of patients with preeclampsia and high-fat diet-fed pregnant mice. In vitro, palmitic acid treatment reduced FTL expression, increased oxidative stress, and impaired trophoblast migration and invasion. GATA3 (GATA binding protein 3) was predicted to be an upstream transcription factor for FTL, with its knockdown reducing and its overexpression increasing FTL levels. Further analysis indicated that palmitic acid suppressed FTL expression by inhibiting GATA3 nuclear translocation and that AMPK (AMP-activated protein kinase) activation rescued FTL expression and restored trophoblast function. CONCLUSIONS This study revealed that high lipid levels contribute to preeclampsia by downregulating FTL through the AMPK-GATA3 pathway, highlighting potential therapeutic targets for preeclampsia management.
Collapse
Affiliation(s)
- Hanhui Nie
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China (H.N., X.W., J.W., Y.W., Y.G., J.W., K.C.Y., X.H., R.L.)
| | - Xiufang Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China (H.N., X.W., J.W., Y.W., Y.G., J.W., K.C.Y., X.H., R.L.)
| | - Lei Guo
- Institute of Molecular and Medical Virology, School of Medicine, Jinan University, Guangzhou, China. (L.G., Q.Z., F.G.)
| | - Jiachun Wei
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China (H.N., X.W., J.W., Y.W., Y.G., J.W., K.C.Y., X.H., R.L.)
| | - Yiling Wei
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China (H.N., X.W., J.W., Y.W., Y.G., J.W., K.C.Y., X.H., R.L.)
| | - Yudie Gao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China (H.N., X.W., J.W., Y.W., Y.G., J.W., K.C.Y., X.H., R.L.)
| | - Jian Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China (H.N., X.W., J.W., Y.W., Y.G., J.W., K.C.Y., X.H., R.L.)
| | - Ka Cheuk Yip
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China (H.N., X.W., J.W., Y.W., Y.G., J.W., K.C.Y., X.H., R.L.)
| | - Xiaman Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China (H.N., X.W., J.W., Y.W., Y.G., J.W., K.C.Y., X.H., R.L.)
| | - Qiao Zhang
- Institute of Molecular and Medical Virology, School of Medicine, Jinan University, Guangzhou, China. (L.G., Q.Z., F.G.)
| | - Feng Gao
- Institute of Molecular and Medical Virology, School of Medicine, Jinan University, Guangzhou, China. (L.G., Q.Z., F.G.)
- Key Laboratory of Viral Pathogenesis and Infection Prevention and Control, School of Medicine, Jinan University, Guangzhou, China. (F.G.)
| | - Ruiman Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China (H.N., X.W., J.W., Y.W., Y.G., J.W., K.C.Y., X.H., R.L.)
| |
Collapse
|
5
|
Cheng M, Wu W, Li Q, Tao X, Jiang F, Li J, Shen N, Wang F, Luo P, He Q, Huang P, Xu Z, Zhang Y. Sotorasib-impaired degradation of NEU1 contributes to cardiac injury by inhibiting AKT signaling. Cell Death Discov 2025; 11:169. [PMID: 40221400 PMCID: PMC11993734 DOI: 10.1038/s41420-025-02431-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 03/03/2025] [Accepted: 03/21/2025] [Indexed: 04/14/2025] Open
Abstract
Sotorasib, the inaugural targeted inhibitor sanctioned for the management of patients afflicted with locally advanced or metastatic non-small cell lung cancer presenting the KRAS G12C mutation, has encountered clinical application constraints due to its potential for cardiac injury as evidenced by safety trials. This investigation has elucidated that the heightened expression of neuraminidase-1 (NEU1) constitutes the principal etiology of cardiac damage induced by sotorasib. Mechanistically, sotorasib treatment inhibited the ubiquitinated degradation of NEU1, leading to its elevated expression, which induced downstream AKT signaling pathway inhibition and mitochondrial dysfunction leading to cardiomyocyte apoptosis. Meanwhile, in vivo and in vitro studies showed that D-pantothenic acid (D-PAC) alleviated sotorasib-induced cardiac damage by promoting NEU1 degradation. In conclusion, this study revealed that NEU1 is a key protein in sotorasib cardiotoxicity and that reducing the level of this protein is a critical strategy for the clinical treatment of sotorasib-induced cardiac injury. Schematic representation of a mechanism.
Collapse
Affiliation(s)
- Mengting Cheng
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Wentong Wu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qing Li
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xinyu Tao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Feng Jiang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jinjin Li
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Nonger Shen
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Fei Wang
- Outpatient Pharmacy, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Department of Pharmacology and Toxicology, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, China
| | - Ping Huang
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Malignant Tumor, Hangzhou, People's Republic of China
| | - Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| | - Yiwen Zhang
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China.
- Zhejiang Provincial Clinical Research Center for Malignant Tumor, Hangzhou, People's Republic of China.
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
6
|
Han X, Shi Q, Tu Y, Zhang J, Wang M, Li W, Liu Y, Zheng R, Wei J, Ye S, Zhang Y, Ye B, Wang Y, Ying H, Liang G. Cardiomyocyte PRL2 Promotes Cardiac Hypertrophy via Directly Dephosphorylating AMPKα2. Circ Res 2025; 136:645-663. [PMID: 39950300 DOI: 10.1161/circresaha.124.325262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 01/18/2025] [Accepted: 01/31/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND Pathological cardiac hypertrophy can result in heart failure. Protein dephosphorylation plays a primary role in the mediation of various cellular processes in cardiomyocytes. Here, we investigated the effects of a protein tyrosine phosphatase, PRL2 (phosphatase of regenerative liver 2), on pathological cardiac hypertrophy. METHODS The PRL2 knockout mice were subjected to angiotensin II infusion or transverse aortic constriction to induce myocardial hypertrophy and cardiac dysfunction. RNA-sequencing analysis was performed to explore the underlying mechanisms. Mass spectrometry and bio-layer interferometry assays were used to identify AMPKα2 (AMP-activated protein kinase α2) as an interacting protein of PRL2. Mutant plasmids of AMPKα2 were used to clarify how PRL2 interacts and dephosphorylates AMPKα2. RESULTS A significant upregulation of PRL2 was observed in hypertrophic myocardium tissues in mice and patients with heart failure. PRL2 deficiency alleviated cardiac hypertrophy, fibrosis, and dysfunction in mice challenged with angiotensin II infusion or transverse aortic constriction. Transcriptomic and biochemical analyses showed that PRL2 knockout or silence maintained AMPKT172 phosphorylation and subsequent mitochondrial integrity in angiotensin II-challenged heart tissues or cardiomyocytes. Mass spectrometry-based interactome assay indicated AMPKα2 subunit as the substrate of PRL2. Mechanistically, PRL2 binds to the C-terminal domain of AMPKα2 and then dephosphorylates AMPKα2T172 via its active site C46. Adeno-associated virus 9-mediated deficiency of cardiomyocyte PRL2 also protected cardiac mitochondrial function and showed cardioprotective effects in angiotensin II-challenged mice, but these benefits were not observed in AMPKα2-/- mice. CONCLUSIONS This study reveals that PRL2, as a novel AMPK-regulating phosphatase, promotes mitochondrial instability and hypertrophic injury in cardiomyocytes and provides PLR2 as a potential target for future drug development treating heart failure.
Collapse
Affiliation(s)
- Xue Han
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital (X.H., Y.Z., Y.W., G.L.), Hangzhou Medical College, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research (X.H., Q.S., Y.T., J.Z., W.L., Y.L., R.Z., J.W., H.Y.), Hangzhou Medical College, Zhejiang, China
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China (X.H., S.Y., B.Y., G.L.)
| | - Qiaojuan Shi
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research (X.H., Q.S., Y.T., J.Z., W.L., Y.L., R.Z., J.W., H.Y.), Hangzhou Medical College, Zhejiang, China
| | - Yu Tu
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research (X.H., Q.S., Y.T., J.Z., W.L., Y.L., R.Z., J.W., H.Y.), Hangzhou Medical College, Zhejiang, China
| | - Jiajia Zhang
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research (X.H., Q.S., Y.T., J.Z., W.L., Y.L., R.Z., J.W., H.Y.), Hangzhou Medical College, Zhejiang, China
| | - Mengyang Wang
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, China (M.W.)
| | - Weiqi Li
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research (X.H., Q.S., Y.T., J.Z., W.L., Y.L., R.Z., J.W., H.Y.), Hangzhou Medical College, Zhejiang, China
| | - Yanan Liu
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research (X.H., Q.S., Y.T., J.Z., W.L., Y.L., R.Z., J.W., H.Y.), Hangzhou Medical College, Zhejiang, China
| | - Ruyi Zheng
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research (X.H., Q.S., Y.T., J.Z., W.L., Y.L., R.Z., J.W., H.Y.), Hangzhou Medical College, Zhejiang, China
| | - Jiajia Wei
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research (X.H., Q.S., Y.T., J.Z., W.L., Y.L., R.Z., J.W., H.Y.), Hangzhou Medical College, Zhejiang, China
| | - Shiju Ye
- School of Pharmaceutical Sciences (S.Y., Y.Z., G.L.), Hangzhou Medical College, Zhejiang, China
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China (X.H., S.Y., B.Y., G.L.)
| | - Yanmei Zhang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital (X.H., Y.Z., Y.W., G.L.), Hangzhou Medical College, Zhejiang, China
- School of Pharmaceutical Sciences (S.Y., Y.Z., G.L.), Hangzhou Medical College, Zhejiang, China
| | - Bozhi Ye
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China (X.H., S.Y., B.Y., G.L.)
| | - Yi Wang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital (X.H., Y.Z., Y.W., G.L.), Hangzhou Medical College, Zhejiang, China
| | - Huazhong Ying
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research (X.H., Q.S., Y.T., J.Z., W.L., Y.L., R.Z., J.W., H.Y.), Hangzhou Medical College, Zhejiang, China
| | - Guang Liang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital (X.H., Y.Z., Y.W., G.L.), Hangzhou Medical College, Zhejiang, China
- School of Pharmaceutical Sciences (S.Y., Y.Z., G.L.), Hangzhou Medical College, Zhejiang, China
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China (X.H., S.Y., B.Y., G.L.)
| |
Collapse
|
7
|
Zhao Y, Yu H, Li J, Qian J, Li M, Zhang X, Wang M, Wang Y, Dong Y, You Y, Zhou Q, Gao D, Zhao Y, Liu B, Chen R, Ren Z, Wang Z, Zhang K, Cui J. A glucose-enriched lung pre-metastatic niche triggered by matrix stiffness-tuned exosomal miRNAs in hepatocellular carcinoma. Nat Commun 2025; 16:1736. [PMID: 39966385 PMCID: PMC11836368 DOI: 10.1038/s41467-025-56878-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 02/03/2025] [Indexed: 02/20/2025] Open
Abstract
Apart from the classic features, it is almost unknown whether there exist other new pathological features during pre-metastatic niche formation in hepatocellular carcinoma (HCC). Our previous works have highlighted the contribution of increased matrix stiffness to lung pre-metastatic niche formation and metastasis in HCC. However, whether increased matrix stiffness influences glucose metabolism and supply of lung pre-metastatic niche remains largely unclear. Here we uncover the underlying mechanism by which matrix stiffness-tuned exosomal miRNAs as the major contributor modulate glucose enrichment during lung pre-metastatic niche formation through decreasing the glucose uptake and consumption of lung fibroblasts and increasing angiogenesis and vascular permeability. Our findings suggest that glucose enrichment, a new characteristic of the lung pre-metastatic niche triggered by matrix stiffness-tuned exosomal miRNAs, is essential for the colonization and survival of metastatic tumor cells, as well as subsequent metastatic foci growth.
Collapse
Affiliation(s)
- Yingying Zhao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, PR China
| | - Hongmei Yu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, PR China
| | - Jiajun Li
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, PR China
| | - Jiali Qian
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Miao Li
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, PR China
| | - Xi Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, PR China
| | - Mimi Wang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, PR China
| | - Yaohui Wang
- Department of Interventional Radiology, Fudan University Shanghai Cancer Center, Shanghai, PR China
| | - Yinying Dong
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, PR China
| | - Yang You
- Department of Oncology, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Qiwen Zhou
- Department of Oncology, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Dongmei Gao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, PR China
| | - Yan Zhao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, PR China
| | - Binbin Liu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, PR China
| | - Rongxin Chen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, PR China
| | - Zhenggang Ren
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, PR China
| | - Zhiming Wang
- Department of Oncology, Zhongshan Hospital, Fudan University, Shanghai, PR China.
| | - Kezhi Zhang
- Department of Hepatobiliary Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu Province, PR China.
| | - Jiefeng Cui
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, PR China.
| |
Collapse
|
8
|
Zhang Y, Chen A, Lu S, Liu D, Xuan X, Lei X, Zhong M, Gao F. Noncoding RNA profiling in omentum adipose tissue from obese patients and the identification of novel metabolic biomarkers. Front Genet 2025; 16:1533637. [PMID: 39981261 PMCID: PMC11839770 DOI: 10.3389/fgene.2025.1533637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/15/2025] [Indexed: 02/22/2025] Open
Abstract
Background Obesity, a prevalent metabolic disorder, is linked to perturbations in the balance of gene expression regulation. Noncoding RNAs (ncRNAs), including long noncoding RNAs (lncRNAs), circular RNAs (circRNAs), and microRNAs (miRNAs), play pivotal roles in regulating gene expression. The aim of this study was to identify additional ncRNA candidates that are implicated in obesity, elucidating their potential as key regulators of the pathogenesis of obesity. Methods We identified distinct ncRNA expression profiles in omental adipose tissue in obese and healthy subjects through comprehensive whole-transcriptome sequencing. Subsequent analyses included functional annotation with GO and KEGG pathway mapping, validation via real-time quantitative polymerase chain reaction (qRT‒PCR), the exploration of protein‒protein interactions (PPIs), and the identification of key regulatory genes through network analysis. Results The results indicated that, compared with those in healthy individuals, various lncRNAs, circRNAs, and miRNAs were significantly differentially expressed in obese subjects. Further verifications of top changed gene expressions proved the most genes' consistence with RNA-sequencing including 11 lncRNAs and 4 circRNAs. Gene network analysis highlighted the most significant features associated with metabolic pathways, specifically ENST00000605862, ENST00000558885, and ENST00000686149. Collectively, our findings suggest potential ncRNA therapeutic targets for obesity, including ENST00000605862, ENST00000558885, and ENST00000686149.
Collapse
Affiliation(s)
- Yongjiao Zhang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, China
- School of Medical Laboratory, Shandong Second Medical University, Weifang, Shandong, China
| | - Ao Chen
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, China
- School of Medical Laboratory, Shandong Second Medical University, Weifang, Shandong, China
| | - Sumei Lu
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, China
| | - Dong Liu
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, China
| | - Xiaolei Xuan
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, China
| | - Xiaofei Lei
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Mingwei Zhong
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Fei Gao
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, China
| |
Collapse
|
9
|
Lin Z, Feng Y, Wang J, Men Z, Ma X. Microbiota governs host chenodeoxycholic acid glucuronidation to ameliorate bile acid disorder induced diarrhea. MICROBIOME 2025; 13:36. [PMID: 39905483 PMCID: PMC11792533 DOI: 10.1186/s40168-024-02011-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 12/17/2024] [Indexed: 02/06/2025]
Abstract
BACKGROUND Disorder in bile acid (BA) metabolism is known to be an important factor contributing to diarrhea. However, the pathogenesis of BA disorder-induced diarrhea remains unclear. METHODS The colonic BA pool and microbiota between health piglets and BA disorder-induced diarrheal piglets were compared. Fecal microbiota transplantation and various cell experiments further indicated that chenodeoxycholic acid (CDCA) metabolic disorder produced CDCA-3β-glucuronide, which is the main cause of BA disorder diarrhea. Non-targeted metabolomics uncovered the inhibition of the BA glucuronidation by Lactobacillus reuteri (L. reuteri) is through deriving indole-3-carbinol (I3C). In vitro, important gene involved in the reduction of BA disorder induced-diarrhea were screened by RNA transcriptomics sequencing, and activation pathway of FXR-SIRT1-LKB1 to alleviate BA disorder diarrhea and P53-mediated apoptosis were proposed in vitro by multifarious siRNA interference, CO-IP, immunofluorescence, and so on, which mechanism was also verified in a variety of mouse models. RESULTS Here, we reveal for the first time that core microbiota derived I3C represses gut epithelium glucuronidation, particularly 3β-glucuronic CDCA production, which reaction is mediated by host UDP glucuronosyltransferase family 1 member A4 (UGT1A4) and necessary of BA disorder induced diarrhea. Mechanistically, L. reuteri derived I3C activates aryl hydrocarbon receptor to decrease UGT1A4 transcription and CDCA-3β-glucuronide content, thereby upregulating FXR-SIRT1-LKB1 signal. LKB1 binds with P53 based on protein interaction, ultimately resists to apoptosis and diarrhea. Moreover, I3C assists CDCA to attain the ameliorative effects of FXR activation in BA disorder diarrhea, through reversion of abnormal metabolism pathway, improving the outcomes of CDCA supplement. CONCLUSION These findings uncover the crucial interplay between gut epithelial cells and microbes, highlighting UGT1A4-mediated conversion of CDCA-3β-glucuronide as a key target for ameliorating BA disorder-induced diarrhea. Video Abstract.
Collapse
Affiliation(s)
- Zishen Lin
- State Key Laboratory of Animal Nutrition and Feeding, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Yue Feng
- State Key Laboratory of Animal Nutrition and Feeding, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Jinping Wang
- State Key Laboratory of Animal Nutrition and Feeding, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Zhaoyue Men
- State Key Laboratory of Animal Nutrition and Feeding, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Xi Ma
- State Key Laboratory of Animal Nutrition and Feeding, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China.
| |
Collapse
|
10
|
Chang KS, Chen ST, Lin WY, Hsu SY, Sung HC, Lin YH, Feng TH, Hou CP, Juang HH. Growth differentiation factor 15 is a glucose-downregulated gene acting as the cross talk between stroma and cancer cells of the human bladder. Am J Physiol Cell Physiol 2025; 328:C557-C573. [PMID: 39804805 DOI: 10.1152/ajpcell.00230.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025]
Abstract
Hyperglycemia and hyperglycosuria, two primary characteristics of diabetes mellitus, may increase the risk of cancer initiation, particularly for bladder cancer. The effectiveness of metformin, a common antidiabetic agent, is determined by its ability to induce growth differentiation factor 15 (GDF15). However, the mechanism of the GDF15 in relation to glucose, which influences the tumor microenvironment in the human bladder, is not fully understood. This study explores the potential roles of GDF15 in response to glucose in the human bladder. High glucose treatment (30 mM) enhanced phosphorylation of AKT at S473 and AMP-activated protein kinase α1/2 (AMPKα1/2) at S485 to block the counteracting effect of metformin on the AMPK activity in bladder cancer and stroma [human bladder stromal fibroblast (HBdSF) and human bladder smooth muscle cell (HBdSMC)] cells compared with normal glucose treatment (5 mM). Metformin modulated the expressions of GDF15, NDRG1, Maspin, and epithelial-to-mesenchymal transition (EMT) markers to attenuate cell proliferation and invasion of bladder cancer cells. Caffeic acid phenethyl ester (CAPE), like metformin, behaves as an inducer of AMPK activity to stimulate GDF15 expression. Knockdown of GDF15 blocked the downregulation of CAPE on the contraction of HBdSMCs. Both CAPE-induced GDF15 expression and the supernatant from bladder cancer cells with overexpressing GDF15 impeded the HBdSF and HBdSMC migration, suggesting that CAPE-upregulated GDF15 blocked the cell migration. These findings reveal that high glucose treatment inhibits the counteracting effects of either metformin or CAPE on the AMPK activity and GDF15 is downregulated by glucose and induced by metformin and CAPE in both stroma and cancer cells. Furthermore, GDF15 is an antitumor gene facilitating communication between stroma and cancer cells in the human bladder.NEW & NOTEWORTHY This study investigates the counteraction of either CAPE or metformin with the AMPK activity increasing GDF15 expression in human bladder cells. The findings are the first study to indicate the secretion of GDF15 from cancer and stroma cells via autocrine or paracrine mechanisms. Our study suggests that GDF15, an antitumor gene in the human bladder induced by AMPK inducers, acts as a communication link between stroma and cancer cells in the human bladder.
Collapse
Affiliation(s)
- Kang-Shuo Chang
- Department of Anatomy, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Syue-Ting Chen
- Department of Anatomy, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| | - Wei-Yin Lin
- Department of Internal Medicine, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| | - Shu-Yuan Hsu
- Department of Anatomy, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsin-Ching Sung
- Department of Anatomy, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Hsiang Lin
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| | - Tsui-Hsia Feng
- School of Nursing, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chen-Pang Hou
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| | - Horng-Heng Juang
- Department of Anatomy, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| |
Collapse
|
11
|
Chen ST, Chang KS, Lin YH, Hou CP, Lin WY, Hsu SY, Sung HC, Feng TH, Tsui KH, Juang HH. Glucose Upregulates ChREBP via Phosphorylation of AKT and AMPK to Modulate MALT1 and WISP1 Expression. J Cell Physiol 2025; 240:e31478. [PMID: 39530300 DOI: 10.1002/jcp.31478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/14/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Glucose can activate the carbohydrate response element binding protein (ChREBP) transcription factor to control gene expressions in the metabolic pathways. The way of ChREBP involvement in human prostate cancer development remains undetermined. This study examined the interactions between prostate fibroblasts and cancer cells under the influences of ChREBP. Results showed that high glucose (30 mM) increased the phosphorylation of AKT at S473 and AMP-activated protein kinase (AMPK) at S485 in human prostate fibroblast (HPrF) cells and prostate cancer PC-3 cells. High glucose enhanced the expression of ChREBP, which increased the expressions of fibronectin, alpha-smooth muscle actin (α-SMA), and WNT1 inducible signaling pathway protein 1 (WISP1), magnifying the cell growth and contraction in HPrF cells in vitro. The cell proliferation, invasion, and tumor growth in prostate cancer PC-3 cells were enhanced by inducing the expressions of ChREBP, mucosa-associated lymphoid tissue 1 (MALT1), and epithelial-mesenchymal transition markers with high glucose treatment. Moreover, ectopic ChREBP overexpression induced NF-κB signaling activities via upregulating MALT1 expression in PC-3 cells. Our findings illustrated that ChREBP is an oncogene in the human prostate. High glucose condition induces a glucose/ChREBP/MALT1/NF-κB axis which links the glucose metabolism to the NF-κB activation in prostate cancer cells, and a glucose/ChREBP/WISP1 axis mediating autocrine and paracrine signaling between fibroblasts and cancer cells to promote cell migration, contraction, growth, and invasion of the human prostate.
Collapse
Affiliation(s)
- Syue-Ting Chen
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taiwan
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Taiwan
| | - Kang-Shuo Chang
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Taiwan
| | - Yu-Hsiang Lin
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Taiwan
| | - Chen-Pang Hou
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Taiwan
| | - Wei-Yin Lin
- Department of Internal Medicine, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Taiwan
| | - Shu-Yuan Hsu
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taiwan
| | - Hsin-Ching Sung
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taiwan
| | - Tsui-Hsia Feng
- School of Nursing, College of Medicine, Chang Gung University, Kwei-Shan, Taiwan
| | - Ke-Hung Tsui
- Department of Urology, Shuang Ho Hospital, New Taipei City, Taiwan
- Department of Medicine, College of Medicine, Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
| | - Horng-Heng Juang
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taiwan
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Taiwan
| |
Collapse
|
12
|
Peng L, Tian Y, Wu X, Liu F, Zhou M, Wu Z, Xia Y, Liu X, Cheng C. Suppression of TRIM72-mediated endoplasmic reticulum stress facilitates FOXM1 promotion of diabetic ulcer healing. Wound Repair Regen 2025; 33:e13247. [PMID: 39721954 PMCID: PMC11669624 DOI: 10.1111/wrr.13247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/09/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
Foot ulcers are amongst the most prevalent complications of diabetes, known for their delayed healing process. Recent research indicates that the transcription factor forkhead box M1 (FOXM1) plays a role in promoting diabetic ulcer repair. However, the precise mechanisms underlying FOXM1 functions in this context remain unclear. This study aimed to clarify the role of tripartite motif-containing protein 72 (TRIM72)-mediated endoplasmic reticulum stress in FOXM1 promotive effects. Immunohistochemistry revealed that FOXM1 expression was significantly reduced in the lesion tissues of diabetic foot ulcer patients. In vitro experiments revealed a decrease in FOXM1 expression in cultured dermal fibroblasts under high glucose conditions. Activating FOXM1 with a plasmid accelerated the proliferation, migration, and differentiation of dermal fibroblasts and mitigated endoplasmic reticulum stress under high glucose conditions. Additionally, ChIP and luciferase reporter gene assays confirmed that FOXM1 suppressed TRIM72 expression transcriptionally by binding to its promoter. Furthermore, high glucose induced ubiquitination of adenosine 5'-monophosphate-activated protein kinase alpha (AMPKα), whilst inactivation of AMPKα signalling reversed the aforementioned effects of FOXM1 on cells. Finally, the FOXM1-overexpressing plasmid was transfected in vivo, which promoted wound healing in a murine diabetic ulcer model. In conclusion, FOXM1 reduces endoplasmic reticulum stress by inhibiting TRIM72-mediated AMPKα ubiquitination, thereby accelerating the healing of diabetic ulcers.
Collapse
Affiliation(s)
- Lingling Peng
- Department of DermatologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Yaning Tian
- Department of DermatologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Xiangkai Wu
- Department of HorticultureXinjiang Agricultural UniversityUrumqiChina
| | - Fengqi Liu
- Department of DermatologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Mingzhu Zhou
- Department of DermatologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Zixi Wu
- Wuhan Britain‐China International SchoolWuhanChina
| | - Yumin Xia
- Department of DermatologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Xiaoming Liu
- Department of DermatologySouthern University of Science and Technology HospitalShenzhenChina
| | - Chuantao Cheng
- Department of DermatologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
13
|
Zhou Y, Lei T, Tang Z, Guo P, Huang D, Luo Z, Luo L. Increased phosphorylation of AMPKα1 S485 in colorectal cancer and identification of PKCα as a responsible kinase. Cancer Lett 2024; 611:217418. [PMID: 39725146 DOI: 10.1016/j.canlet.2024.217418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/11/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
The present study attempts to examine the biological effect of phosphorylation of AMPKα1 S485 and identify the responsible kinase in colon cancer cells. Thus, our results showed that S485 phosphorylation was increased in colorectal cancer specimens as compared with adjacent normal tissues, which was inversely correlated to phosphorylation of T172. Our study further revealed that phosphorylation of S485 on AMPKα1 plays a promoting role in cell proliferation, colony formation, migration and growth of Xenograft tumor. Furthermore, we identified PKCα as a kinase specific for phosphorylation of S485. First, under the basal condition, S485 phosphorylation was blunted by Gö6983, a pan PKC inhibitor, but not by Akt inhibitor, MK2206, although the latter countered off the insulin-stimulated phosphorylation. Second, the phosphorylation was enhanced by PMA and attenuated by sgRNA for PKCα, but not by PKCγ and PKCδ, neither by siRNA for Akt1. Third, the phosphorylation was suppressed by shRNA for PLCγ1. Fourth, the phosphorylation was enhanced by ectopically expressing a constitutively active mutant of PKCα, but not PKCγ. Finally, the increase of S485 phosphorylation by high glucose or palmitic acid was almost completely abolished by Gö6983. Altogether, our data reinforced the tumor suppressive function of AMPK and demonstrated that PKCα is a major kinase responsible for phosphorylation of S485, which contributes to one of the mechanisms underlying the regulation of AMPK in cancer cells in response to nutritional conditions.
Collapse
Affiliation(s)
- Yan Zhou
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Tingting Lei
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Zhimin Tang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Pei Guo
- Department of Pathology, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Deqiang Huang
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Zhijun Luo
- Queen Mary School, Jiangxi Medical College, Nanchang University, 1299 Qianhu Avenue, Nanchang, Jiangxi, China.
| | - Linyu Luo
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
14
|
Huang Y, Huang Y, Lv X, Yu Z, Qin Y, Yang X, An S, Wo C, Wang L. Pulsed radiofrequency alleviates neuropathic pain by upregulating MG53 to inhibit microglial activation. Eur J Med Res 2024; 29:578. [PMID: 39639377 PMCID: PMC11619262 DOI: 10.1186/s40001-024-02134-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Patients with neuropathic pain (NP) have significantly lower quality of life. Because the pathophysiology of NP is not fully understood, there is a lack of effective treatment for it in clinic. This study set out to investigate the precise mechanism by which pulsed radiofrequency (PRF) alleviated NP. METHOD The rat models of chronic constriction injury of the sciatic nerve (CCI) were established to simulate the occurrence of NP, following with measuring MWT and TWL to evaluate the pain of the rats. HE staining was utilized to observe the rat spinal cord tissue pathology. The expression of MG53, ATF4 and CHOP was evaluated by qRT-PCR and WB, while the expression of inflammatory factors was measured by ELISA. In addition, immunofluorescence assay was used to detect the expression of MG53 and Iba-1. RESULT PRF treatment alleviated NP in CCI rats, as well as upregulating the expression of MG53 and inhibiting microglial activation. After MG53 knockdown, the remission of NP by PRF was significantly weakened, but microglial activation and endoplasmic reticulum stress (ERS) exhibited enhancement. Therefore, PRF inhibited microglial activation by upregulating MG53. After injection of ERS inducer in CCI rats, the inhibition effect of overexpressed MG53 on microglial activation and its alleviation effect on NP were reversed. Consequently, MG53 played a role in suppressing microglial activation by mediating the inhibition of ERS. CONCLUSION PRF attenuated microglial activation by upregulating MG53 to inhibit ERS, resulting in the alleviation of NP in CCI rats.
Collapse
Affiliation(s)
- Yuanxin Huang
- Pain Department, Affiliated Hospital of Guizhou Medical University, No. 28, Guiyi Street, Liu Guang Men, Guiyang, 550004, Guizhou, China
| | - Yuanyue Huang
- Clinical Medicine School, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Xianglong Lv
- Clinical Medicine School, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Zilong Yu
- Pain Department, Affiliated Hospital of Guizhou Medical University, No. 28, Guiyi Street, Liu Guang Men, Guiyang, 550004, Guizhou, China
| | - Yue Qin
- Pain Department, Affiliated Hospital of Guizhou Medical University, No. 28, Guiyi Street, Liu Guang Men, Guiyang, 550004, Guizhou, China
| | - Xingyue Yang
- Clinical Medicine School, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Songsong An
- Clinical Medicine School, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Chunxin Wo
- Pain Department, Affiliated Hospital of Guizhou Medical University, No. 28, Guiyi Street, Liu Guang Men, Guiyang, 550004, Guizhou, China.
| | - Lin Wang
- Pain Department, Affiliated Hospital of Guizhou Medical University, No. 28, Guiyi Street, Liu Guang Men, Guiyang, 550004, Guizhou, China.
| |
Collapse
|
15
|
He L, Lin C, Zhuang L, Sun Y, Li Y, Ye Z. Targeting Hepatocellular Carcinoma: Schisandrin A Triggers Mitochondrial Disruption and Ferroptosis. Chem Biol Drug Des 2024; 104:e70010. [PMID: 39668608 PMCID: PMC11638659 DOI: 10.1111/cbdd.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/26/2024] [Accepted: 09/18/2024] [Indexed: 12/14/2024]
Abstract
The main focus of this research was to examine SchA's role in the hepatocellular carcinoma (HCC) development. LO2 and Huh7 cell viability were assessed using the MTT assay. The experiments included flow cytometry, colony formation, transwell, wound healing, and immunofluorescence assays to evaluate apoptosis levels, cells colony-forming ability, ROS levels, invasion and migration ability, and mitochondrial membrane potential. Biochemical kits was utilized for checking the ATP, mitochondrial DNA, MDA, GSH, and Fe2+ levels in the Huh7 cells, and western blot for measuring the ferroptosis and AMPK/mTOR related-protein expression levels. The MTT assay demonstrated that SchA significantly reduced the vitality of Huh7 cells ranging from 10 to 50 μM, whereas it exhibited no discernible impact on LO2 cells. Additionally, SchA significantly inhibited colony-forming ability, invasion ability, and migration ability within the concentration range of 10 to 50 μM, with a reduction of 68% in colony formation at 50 μM. SchA also induced apoptosis in a dose-dependent manner. Moreover, SchA was observed to significantly elevate ROS levels dose-dependently, down-regulate mitochondrial membrane potential (JC-1) at 20 and 50 μM, and reduce the levels of ATP and mtDNA dose-dependently. Various concentrations of SchA resulted in a notable elevation in MDA and Fe2+ levels as well as ACSL4 protein expression, accompanied by a reduction in GSH level and the protein expression of GPX4 and SLC7A11. Furthermore, SchA induced the activation of the AMPK/mTOR pathway in Huh7 cells, as evidenced by the increased phosphorylation level of AMPK and decreased phosphorylation level of mTOR. SchA might inhibit the progress of HCC through mitochondrial ferroptosis and dysfunction mediated by AMPK/mTOR pathway.
Collapse
Affiliation(s)
- Lin‐wei He
- Department of General SurgeryThe Second Affiliated Hospital of Soochow UniversitySouzhouJiangsuChina
| | - Chang‐jie Lin
- Department of General SurgeryThe Second Affiliated Hospital of Soochow UniversitySouzhouJiangsuChina
| | - Lin‐jun Zhuang
- Department of General SurgeryThe Second Affiliated Hospital of Soochow UniversitySouzhouJiangsuChina
| | - Yi‐hui Sun
- Department of General SurgeryThe Second Affiliated Hospital of Soochow UniversitySouzhouJiangsuChina
| | - Ye‐cheng Li
- Department of General SurgeryThe Second Affiliated Hospital of Soochow UniversitySouzhouJiangsuChina
| | - Zhen‐yu Ye
- Department of General SurgeryThe Second Affiliated Hospital of Soochow UniversitySouzhouJiangsuChina
| |
Collapse
|
16
|
Fan R, Kong J, Zhang J, Zhu L. Exercise as a therapeutic approach to alleviate diabetic kidney disease: mechanisms, clinical evidence and potential exercise prescriptions. Front Med (Lausanne) 2024; 11:1471642. [PMID: 39526249 PMCID: PMC11543430 DOI: 10.3389/fmed.2024.1471642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
Diabetic kidney disease (DKD) is a global and severe complication that imposes a significant burden on individual health, families, and society. Currently, the main treatment approaches for DKD include medication, blood glucose control, protein-restricted diet, and blood pressure management, all of which have certain limitations. Exercise, as a non-pharmacological intervention, has attracted increasing attention. This review introduces the mechanisms and clinical evidence of exercise on DKD, and proposes potential exercise prescriptions. Exercise can improve blood glucose stability related to DKD and the renin-angiotensin-aldosterone system (RAAS), reduce renal oxidative stress and inflammation, enhance the crosstalk between muscle and kidneys, and improve endothelial cell function. These mechanisms contribute to the comprehensive improvement of DKD. Compared to traditional treatment methods, exercise has several advantages, including safety, effectiveness, and no significant side effects. It can be used as an adjunct therapy to medication, blood glucose control, protein-restricted diet, and blood pressure management. Despite the evident benefits of exercise in DKD management, there is still a lack of large-scale, long-term randomized controlled trials to provide more evidence and develop exercise guidelines for DKD. Healthcare professionals should actively encourage exercise in DKD patients and develop personalized exercise plans based on individual circumstances.
Collapse
Affiliation(s)
| | | | | | - Lei Zhu
- College of Sports Science, Qufu Normal University, Qufu, China
| |
Collapse
|
17
|
Jiang W, Yu L, Mu N, Zhang Z, Ma H. MG53 inhibits ferroptosis by targeting the p53/SLC7A11/GPX4 pathway to alleviate doxorubicin-induced cardiotoxicity. Free Radic Biol Med 2024; 223:224-236. [PMID: 39111582 DOI: 10.1016/j.freeradbiomed.2024.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/17/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Doxorubicin (DOX) is an anthracycline medication that is commonly used to treat solid tumors. However, DOX has limited clinical efficacy due to known cardiotoxicity. Ferroptosis is involved in DOX-induced cardiotoxicity (DIC). Although mitsugumin-53 (MG53) has cardioprotective effects and is expected to attenuate myocardial ischemic injury, its ability to inhibit DOX-induced ferroptosis has not been extensively studied. This research aims to investigate the pathophysiological impact of MG53 on DOX induced ferroptosis. Here, MG53 levels were evaluated in relation to the extent of ferroptosis by establishing in vivo and in vitro DIC mouse models. Additionally, myocardial specific MG53 overexpressing mice were used to study the effect of MG53 on cardiac function in DIC mice. The study found that the MG53 expression decreased in DOX treated mouse hearts or cardiomyocytes. However, MG53-overexpressing improved cardiac function in the DIC model and effectively reduced myocardial ferroptosis by increasing solute carrier family 7 member 11 (SLC7A11) and Glutathione peroxidase 4 (GPX4) levels, which were decreased by DOX. Mechanistically, MG53 binds to tumor suppressor 53 (p53) to regulate its ubiquitination and degradation. Ferroptosis induced by DOX was prevented by either MG53 overexpression or p53 knockdown in cardiomyocytes. The modulation of the p53/SLC7A11/GPX4 pathway by overexpression of MG53 can alleviate DOX induced ferroptosis. The study indicates that MG53 can provide protection against DIC by increasing p53 ubiquitination. These results highlight the previously unidentified role of MG53 in inhibiting ferroptosis to prevent DIC.
Collapse
Affiliation(s)
- Wenhua Jiang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi, 710072, China
| | - Lu Yu
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Nan Mu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Zihui Zhang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi, 710072, China.
| | - Heng Ma
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi, 710072, China; Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
18
|
Yang Y, Wu J, Zhou W, Ji G, Dang Y. Protein posttranslational modifications in metabolic diseases: basic concepts and targeted therapies. MedComm (Beijing) 2024; 5:e752. [PMID: 39355507 PMCID: PMC11442990 DOI: 10.1002/mco2.752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 10/03/2024] Open
Abstract
Metabolism-related diseases, including diabetes mellitus, obesity, hyperlipidemia, and nonalcoholic fatty liver disease, are becoming increasingly prevalent, thereby posing significant threats to human health and longevity. Proteins, as the primary mediators of biological activities, undergo various posttranslational modifications (PTMs), including phosphorylation, ubiquitination, acetylation, methylation, and SUMOylation, among others, which substantially diversify their functions. These modifications are crucial in the physiological and pathological processes associated with metabolic disorders. Despite advancements in the field, there remains a deficiency in contemporary summaries addressing how these modifications influence processes of metabolic disease. This review aims to systematically elucidate the mechanisms through which PTM of proteins impact the progression of metabolic diseases, including diabetes, obesity, hyperlipidemia, and nonalcoholic fatty liver disease. Additionally, the limitations of the current body of research are critically assessed. Leveraging PTMs of proteins provides novel insights and therapeutic targets for the prevention and treatment of metabolic disorders. Numerous drugs designed to target these modifications are currently in preclinical or clinical trials. This review also provides a comprehensive summary. By elucidating the intricate interplay between PTMs and metabolic pathways, this study advances understanding of the molecular mechanisms underlying metabolic dysfunction, thereby facilitating the development of more precise and effective disease management strategies.
Collapse
Affiliation(s)
- Yunuo Yang
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Jiaxuan Wu
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Wenjun Zhou
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Guang Ji
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Yanqi Dang
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| |
Collapse
|
19
|
Bolado-Carrancio A, Tapia O, Rodríguez-Rey JC. Ubiquitination Insight from Spinal Muscular Atrophy-From Pathogenesis to Therapy: A Muscle Perspective. Int J Mol Sci 2024; 25:8800. [PMID: 39201486 PMCID: PMC11354275 DOI: 10.3390/ijms25168800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/03/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Spinal muscular atrophy (SMA) is one of the most frequent causes of death in childhood. The disease's molecular basis is deletion or mutations in the SMN1 gene, which produces reduced survival motor neuron protein (SMN) levels. As a result, there is spinal motor neuron degeneration and a large increase in muscle atrophy, in which the ubiquitin-proteasome system (UPS) plays a significant role. In humans, a paralogue of SMN1, SMN2 encodes the truncated protein SMNΔ7. Structural differences between SMN and SMNΔ7 affect the interaction of the proteins with UPS and decrease the stability of the truncated protein. SMN loss affects the general ubiquitination process by lowering the levels of UBA1, one of the main enzymes in the ubiquitination process. We discuss how SMN loss affects both SMN stability and the general ubiquitination process, and how the proteins involved in ubiquitination could be used as future targets for SMA treatment.
Collapse
Affiliation(s)
- Alfonso Bolado-Carrancio
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria-and Instituto de Investigación Marqués de Valdecilla (IDIVAL), 39011 Santander, Spain;
| | - Olga Tapia
- Departamento de Ciencias Médicas Básicas, Instituto de Tecnologías Biomédicas, Universidad de la Laguna, 38200 La Laguna, Spain
| | - José C. Rodríguez-Rey
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria-and Instituto de Investigación Marqués de Valdecilla (IDIVAL), 39011 Santander, Spain;
| |
Collapse
|
20
|
Li M, Zhang L, Guan T, Huang L, Zhu Y, Wen Y, Ma X, Yang X, Wan R, Chen J, Zhang C, Wang F, Tang H, Liu T. Energy stress-activated AMPK phosphorylates Snail1 and suppresses its stability and oncogenic function. Cancer Lett 2024; 595:216987. [PMID: 38815798 DOI: 10.1016/j.canlet.2024.216987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024]
Abstract
Triple-negative breast cancer (TNBC) is a highly lethal malignancy with limited therapy options. Aberrant metabolism, a key hallmark of human cancers, plays a crucial role in tumor progression, therapeutic responses and TNBC-related death. However, the underlying mechanisms are not fully understood. In this study, we delineate a previously unrecognized role of aberrant glucose metabolism in regulating the turnover of Snail1, which is a key transcriptional factor of epithelial-mesenchymal transition (EMT) and critically contributes to the acquisition of stemness, metastasis and chemo-resistance. Mechanistically, we demonstrate that AMP-activated protein kinase (AMPK), when activated in response to glucose deprivation, directly phosphorylates Snail1 at Ser11. Such a phosphorylation modification of Snail1 facilitates its recruitment of the E3 ligase FBXO11 and promotes its degradation, thereby suppressing stemness, metastasis and increasing cellular sensitivity to chemotherapies in vitro and in vivo. Clinically, histological analyses reveal a negative correlation between p-AMPKα and Snail1 in TNBC specimens. Taken together, our findings establish a novel mechanism and functional significance of AMPK in linking glucose status to Snail1-dependent malignancies and underscore the potential of AMPK agonists as a promising therapeutic strategy in the management of TNBC.
Collapse
Affiliation(s)
- Mei Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Litao Zhang
- Department of Breast Surgery, The First Affiliate Hospital of Jinan University, Guangzhou, 510632, China
| | - Tangming Guan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Lei Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Yingjie Zhu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Yalei Wen
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Xiuqing Ma
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Xiao Yang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Rui Wan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Jiayi Chen
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Caishi Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Feng Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| | - Hui Tang
- Department of Central Laboratory, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China; Department of Clinical Laboratory, The Fifth Affiliated Hospital of Jinan University Heyuan Shenhe People's Hospital, Heyuan, 517000, China.
| | - Tongzheng Liu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou, 510632, China; The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China.
| |
Collapse
|
21
|
Li S, Ren W, Zheng J, Li S, Zhi K, Gao L. Role of O-linked N-acetylglucosamine protein modification in oxidative stress-induced autophagy: a novel target for bone remodeling. Cell Commun Signal 2024; 22:358. [PMID: 38987770 PMCID: PMC11238385 DOI: 10.1186/s12964-024-01734-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024] Open
Abstract
O-linked N-acetylglucosamine protein modification (O-GlcNAcylation) is a dynamic post-translational modification (PTM) involving the covalent binding of serine and/or threonine residues, which regulates bone cell homeostasis. Reactive oxygen species (ROS) are increased due to oxidative stress in various pathological contexts related to bone remodeling, such as osteoporosis, arthritis, and bone fracture. Autophagy serves as a scavenger for ROS within bone marrow-derived mesenchymal stem cells, osteoclasts, and osteoblasts. However, oxidative stress-induced autophagy is affected by the metabolic status, leading to unfavorable clinical outcomes. O-GlcNAcylation can regulate the autophagy process both directly and indirectly through oxidative stress-related signaling pathways, ultimately improving bone remodeling. The present interventions for the bone remodeling process often focus on promoting osteogenesis or inhibiting osteoclast absorption, ignoring the effect of PTM on the overall process of bone remodeling. This review explores how O-GlcNAcylation synergizes with autophagy to exert multiple regulatory effects on bone remodeling under oxidative stress stimulation, indicating the application of O-GlcNAcylation as a new molecular target in the field of bone remodeling.
Collapse
Affiliation(s)
- Shengqian Li
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao, 266555, China
- School of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Wenhao Ren
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao, 266555, China
- School of Stomatology, Qingdao University, Qingdao, 266003, China
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao, 266555, China
| | - Jingjing Zheng
- Department of Endodontics, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Shaoming Li
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao, 266555, China
| | - Keqian Zhi
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao, 266555, China.
- School of Stomatology, Qingdao University, Qingdao, 266003, China.
- Key Laboratory of Oral Clinical Medicine, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao, 266555, China.
| | - Ling Gao
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao, 266555, China.
- Key Laboratory of Oral Clinical Medicine, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
22
|
Chen P, Ding WL, Xu BW, Rehman MU, Liu KL, He YF, Li SY, Jian FC, Huang 黄 SC淑. Aflatoxin B1 as a complicit in intestinal damage caused by Eimeria ovinoidalis in lambs: Novel insights to reveal parasite-gut battle. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174539. [PMID: 38977103 DOI: 10.1016/j.scitotenv.2024.174539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/25/2024] [Accepted: 07/04/2024] [Indexed: 07/10/2024]
Abstract
Mycotoxins, unavoidable contaminants in feed and feed ingredients, have the potential to influence the incidence and severity of various diseases upon ingestion. Sheep coccidiosis is an enteric disease caused by protozoa of Eimeria spp. However, the extent to which the presence of aflatoxin b1 (AFB1) synergistically exacerbates damage to intestinal health in lambs with Eimeria remains unclear. 50-day-old female lambs were randomly assigned to a 2 × 2 factorial arrangement of treatments for 15 days to assess the impact of AFB1 exposure on lambs with or without Eimeria (E.) ovinoidalis infection. Our findings reveal that AFB1 synergistically intensifies damage to intestinal health in lambs challenged by E. ovinoidalis. This is evidenced by disruptions to the intestinal microbiota and reductions in the production of short-chain fatty acids. AFB1 further aggravates damage to the cecal mechanical barrier. Additionally, AFB1 contributes to the entry of lipopolysaccharide into the bloodstream, activating the inflammatory response. Interestingly, AFB1 exposure history results in an early peak of oocyst excretion and a decreased number of oocyst excretion in E. ovinoidalis infected lambs. This may be closely linked to the destruction of the intestinal epithelial cell structure and its apoptosis, as indicated by a decreased ratio of Bcl-2 to Bax and increased caspase-3 levels. Mechanistically, proteomics analysis identified mitochondrial dysfunction (inhibition of the oxidative phosphorylation pathway) as the primary factor intensifying intestinal epithelial cell destruction caused by coccidia, exacerbated by AFB1 through the inhibiting the conversion of NADH to NAD+ in the cecum of lambs via down-regulation of the PGC-1α/NRF1/TFAM pathway. Overall, these results offer novel insights into the AFB1 complicity in accelerating intestinal damage caused by E. ovinoidalis in lambs. Targeting the mitochondrial oxidative phosphorylation pathway of the intestine may represent a new therapeutic strategy against the detrimental effects of mycotoxin and coccidia.
Collapse
Affiliation(s)
- Pan Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Wen-Li Ding
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Bo-Wen Xu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Mujeeb Ur Rehman
- Directorate Planning & Development, Livestock and Dairy Development Department, Balochistan, Pakistan
| | - Kai-Li Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Yan-Feng He
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Sen-Yang Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Fu-Chun Jian
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
| | - Shu-Cheng 淑成 Huang 黄
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
23
|
Fu TL, Li GR, Li DH, He RY, Liu BH, Xiong R, Xu CZ, Lu ZL, Song CK, Qiu HL, Wang WJ, Zou SS, Yi K, Li N, Geng Q. Mangiferin alleviates diabetic pulmonary fibrosis in mice via inhibiting endothelial-mesenchymal transition through AMPK/FoxO3/SIRT3 axis. Acta Pharmacol Sin 2024; 45:1002-1018. [PMID: 38225395 PMCID: PMC11053064 DOI: 10.1038/s41401-023-01202-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/17/2023] [Indexed: 01/17/2024]
Abstract
Diabetes mellitus results in numerous complications. Diabetic pulmonary fibrosis (DPF), a late pulmonary complication of diabetes, has not attracted as much attention as diabetic nephropathy and cardiomyopathy. Mangiferin (MF) is a natural small molecular compound that exhibits a variety of pharmacological effects including anti-inflammatory, anti-cancer, anti-diabetes, and anti-fibrosis effects. In this study, we investigated whether long-term diabetes shock induces DPF, and explored whether MF had a protective effect against DPF. We first examined the lung tissues and sections of 20 diabetic patients obtained from discarded lung surgical resection specimens and found that pulmonary fibrosis mainly accumulated around the pulmonary vessels, accompanied by significantly enhanced endothelial-mesenchymal transition (EndMT). We established a mouse model of DPF by STZ injections. Ten days after the final STZ injection, the mice were administered MF (20, 60 mg/kg, i.g.) every 3 days for 4 weeks, and kept feeding until 16 weeks and euthanized. We showed that pulmonary fibrotic lesions were developed in the diabetic mice, which began around the pulmonary vessels, while MF administration did not affect long-term blood glucose levels, but dose-dependently alleviated diabetes-induced pulmonary fibrosis. In human umbilical vein endothelial cells (HUVECs), exposure to high glucose (33.3 mM) induced EndMT, which was dose-dependently inhibited by treatment with MF (10, 50 μM). Furthermore, MF treatment promoted SIRT3 expression in high glucose-exposed HUVECs by directly binding to AMPK to enhance the activity of FoxO3, which finally reversed diabetes-induced EndMT. We conclude that MF attenuates DPF by inhibiting EndMT through the AMPK/FoxO3/SIRT3 axis. MF could be a potential candidate for the early prevention and treatment of DPF.
Collapse
Affiliation(s)
- Ting-Lv Fu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guo-Rui Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Dong-Hang Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ru-Yuan He
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Bo-Hao Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, 130061, China
| | - Rui Xiong
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Chen-Zhen Xu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zi-Long Lu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Cong-Kuan Song
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Hong-Liang Qiu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wen-Jie Wang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Shi-Shi Zou
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ke Yi
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
24
|
Huang Y, Zhang X, Li Q, Zheng W, Wu P, Wu R, Chen WH, Li C. N- p-coumaroyloctopamine ameliorates hepatic glucose metabolism and oxidative stress involved in a PI3K/AKT/GSK3β pathway. Front Pharmacol 2024; 15:1396641. [PMID: 38725660 PMCID: PMC11079176 DOI: 10.3389/fphar.2024.1396641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
Type 2 diabetes mellitus is regarded as a chronic metabolic disease characterized by hyperglycemia. Long-term hyperglycemia may result in oxidative stress, damage pancreatic β-cell function and induce insulin resistance. Herein we explored the anti-hypoglycemic effects and mechanisms of action of N-p-coumaroyloctopamine (N-p-CO) in vitro and in vivo. N-p-CO exhibited high antioxidant activity, as indicated by the increased activity of SOD, GSH and GSH-Px in HL-7702 cells induced by both high glucose (HG) and palmitic acid (PA). N-p-CO treatment significantly augmented glucose uptake and glycogen synthesis in HG/PA-treated HL-7702 cells. Moreover, administration of N-p-CO in diabetic mice induced by both high-fat diet (HFD) and streptozotocin (STZ) not only significantly increased the antioxidant levels of GSH-PX, SOD and GSH, but also dramatically alleviated hyperglycemia and hepatic glucose metabolism in a dose-dependent manner. More importantly, N-p-CO upregulated the expressions of PI3K, AKT and GSK3β proteins in both HG/PA-induced HL-7702 cells and HFD/STZ-induced mice. These findings clearly suggest that N-p-CO exerts anti-hypoglycemic and anti-oxidant effects, most probably via the regulation of a PI3K/AKT/GSK3β signaling pathway. Thus, N-p-CO may have high potentials as a new candidate for the prevention and treatment of diabetes.
Collapse
Affiliation(s)
- Yuechang Huang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, China
| | - Xingmin Zhang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, China
| | - Qian Li
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, China
| | - Wende Zheng
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, China
| | - Panpan Wu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, China
| | - Rihui Wu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, China
| | - Wen-Hua Chen
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, China
| | - Chen Li
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, China
| |
Collapse
|
25
|
Wang Y, Shi Y, Peng X, Li T, Liang C, Wang W, Zhou M, Yang J, Cheng J, Zhang Z, Hou L. Biochemotaxis-Oriented Engineering Bacteria Expressing GLP-1 Enhance Diabetes Therapy by Regulating the Balance of Immune. Adv Healthc Mater 2024; 13:e2303958. [PMID: 38253022 DOI: 10.1002/adhm.202303958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Indexed: 01/24/2024]
Abstract
Glucagon like peptide-1 (GLP-1) is an effective hypoglycemic drug that can repair the pancreas β cells and promote insulin secretion. However, GLP-1 has poor stability and lacks of target ability, which makes it difficult to reach the site of action to exert its efficacy. Here, GLP-1-expressing plasmids are introduced into the Escherichia coli Nissle 1917 (EcN) and a lipid membrane is formed through simple self-assembly on its surface, resulting in an oral delivery system (LEG) capable of resisting the harsh environment of the gastrointestinal tract. The system utilizes the chemotactic properties of probiotics to achieve efficient enrichment at the pancreatic site, and protects islet β cells from destruction by regulating the balance of immune cells. More interestingly, LEG not only continuously produces GLP-1 to restore pancreatic islet β cell function and secrete insulin to control blood sugar levels, but also regulates the intestinal flora and increases the richness and diversity of probiotics. In mice diabetes models, oral administration of LEG only once every other day has good biosafety and compliance, and achieves long-term control of blood glucose. Therefore, this strategy not only provides an oral delivery platform for pancreatic targeting, but also opens up new avenues for reversing diabetes.
Collapse
Affiliation(s)
- Yifei Wang
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yupeng Shi
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xueyuan Peng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Tongtong Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Chenglin Liang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Wenhao Wang
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Mengyang Zhou
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jiali Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jingliang Cheng
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, 450001, China
| | - Lin Hou
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
26
|
Wang TB, He Y, Li RC, Yu YX, Liu Y, Qi ZQ. Rosmarinic acid mitigates acrylamide induced neurotoxicity via suppressing endoplasmic reticulum stress and inflammation in mouse hippocampus. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155448. [PMID: 38394736 DOI: 10.1016/j.phymed.2024.155448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/30/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND Acrylamide (ACR) is a widely used compound that is known to be neurotoxic to both experimental animals and humans, causing nerve damage. The widespread presence of ACR in the environment and food means that the toxic risk to human health can no longer be ignored. Rosmarinic acid (RA), a natural polyphenolic compound extracted from the perilla plant, exhibits anti-inflammatory, antioxidant, and other properties. It has also been demon strated to possess promising potential in neuroprotection. However, its role and potential mechanism in treating ACR induced neurotoxicity are still elusive. PURPOSE This study explores whether RA can improve ACR induced neurotoxicity and its possible mechanism. METHODS The behavioral method was used to study RA effect on ACR exposed mice's neurological function. We studied its potential mechanism through metabolomics, Nissl staining, HE staining, immunohistochemical analysis, and Western blot. RESULTS RA pretreatment reversed the increase in mouse landing foot splay and decrease in spontaneous activity caused by 3 weeks of exposure to 50 mg/kg/d ACR. Further experiments demonstrated that RA could prevent ACR induced neuronal apoptosis, significantly downregulate nuclear factor-κB and tumor necrosis factor-α expression, and inhibit NOD-like receptor protein 3 inflammasome activation, thereby reducing inflammation as confirmed by metabolomics results. Additionally, RA treatment prevented endoplasmic reticulum stress (ERS) caused by ACR exposure, as evidenced by the reversal of significant P-IRE1α,TRAF2,CHOP expression increase. CONCLUSION RA alleviates ACR induced neurotoxicity by inhibiting ERS and inflammation. These results provide a deeper understanding of the mechanism of ACR induced neurotoxicity and propose a potential new treatment method.
Collapse
Affiliation(s)
- Tian-Bao Wang
- Guangxi University Medical College, Nanning, Guangxi 530004, China
| | - Ying He
- Guangxi University Medical College, Nanning, Guangxi 530004, China
| | - Rui-Cheng Li
- Guangxi University Medical College, Nanning, Guangxi 530004, China
| | - Yu-Xi Yu
- Guangxi University Medical College, Nanning, Guangxi 530004, China
| | - Yu Liu
- Guangxi University Medical College, Nanning, Guangxi 530004, China.
| | - Zhong-Quan Qi
- Guangxi University Medical College, Nanning, Guangxi 530004, China.
| |
Collapse
|
27
|
Zhao Z, Yan J, Huang L, Yang X. Phytochemicals targeting Alzheimer's disease via the AMP-activated protein kinase pathway, effects, and mechanisms of action. Biomed Pharmacother 2024; 173:116373. [PMID: 38442672 DOI: 10.1016/j.biopha.2024.116373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/07/2024] Open
Abstract
Alzheimer's disease (AD), characterized by cognitive dysfunction and other behavioral abnormalities, is a progressive neurodegenerative disease that occurs due to aging. Currently, effective drugs to mitigate or treat AD remain unavailable. AD is associated with several abnormalities in neuronal energy metabolism, such as decreased glucose uptake, mitochondrial dysfunction, and defects in cholesterol metabolism. Amp-activated protein kinase (AMPK) is an important serine/threonine protein kinase that regulates the energy status of cells. AMPK is widely present in eukaryotic cells and can sense and regulate energy metabolism to maintain energy supply and demand balance, making it a promising target for energy metabolism-based AD therapy. Therefore, this review aimed to discuss the molecular mechanism of AMPK in the pathogenesis of AD to provide a theoretical basis for the development of new anti-AD drugs. To review the mechanisms of phytochemicals in the treatment of AD via AMPK pathway regulation, we searched PubMed, Google Scholar, Web of Science, and Embase databases using specific keywords related to AD and phytochemicals in September 2023. Phytochemicals can activate AMPK or regulate the AMPK pathway to exert therapeutic effects in AD. The anti-AD mechanisms of these phytochemicals include inhibiting Aβ aggregation, preventing Tau hyperphosphorylation, inhibiting inflammatory response and glial activation, promoting autophagy, and suppressing anti-oxidative stress. Additionally, several AMPK-related pathways are involved in the anti-AD mechanism, including the AMPK/CaMKKβ/mTOR, AMPK/SIRT1/PGC-1α, AMPK/NF-κB/NLRP3, AMPK/mTOR, and PERK/eIF2α pathways. Notably, urolithin A, artemisinin, justicidin A, berberine, stigmasterol, arctigenin, and rutaecarpine are promising AMPK agonists with anti-AD effects. Several phytochemicals are effective AMPK agonists and may have potential applications in AD treatment. Overall, phytochemical-based drugs may overcome the barriers to the effective treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Zheng Zhao
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Jun Yan
- Department of Neurology, Fushun Central Hospital, Fushun, Liaoning, PR China
| | - Lei Huang
- Department of Cardiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, PR China.
| | - Xue Yang
- Department of Neurology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, PR China.
| |
Collapse
|
28
|
Liu B, Si J, Qi K, Li D, Li T, Tang Y, Ji E, Yang S. Chronic intermittent hypoxia aggravated diabetic cardiomyopathy through LKB1/AMPK/Nrf2 signaling pathway. PLoS One 2024; 19:e0296792. [PMID: 38452099 PMCID: PMC10919874 DOI: 10.1371/journal.pone.0296792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/19/2023] [Indexed: 03/09/2024] Open
Abstract
Chronic intermittent hypoxia (CIH) may play an important role in the development of diabetic cardiomyopathy (DCM). However, the exact mechanism of CIH-induced myocardial injury in DCM remains unclear. In vivo, the db/db mice exposed to CIH were established, and in vitro, the H9C2 cells were exposed to high glucose (HG) combined with intermittent hypoxia (IH). The body weight (BW), fasting blood glucose (FBG) and food intake were measured every two weeks. The glycolipid metabolism was assessed with the oral glucose tolerance test (OGTT) and insulin resistance (IR). Cardiac function was detected by echocardiography. Cardiac pathology was detected by HE staining, Masson staining, and transmission electron microscopy. The level of reactive oxygen species (ROS) in myocardial tissue was detected by dihydroethidium (DHE). The apoptosis was detected by TUNEL staining. The cell viability, ROS, and the mitochondrial membrane potential were detected by the cell counting kit-8 (CCK-8) assay and related kits. Western blotting was used to analyze the liver kinase B1/AMP-activated protein kinase/ nuclear factor-erythroid 2-related factor 2 (LKB1/AMPK/Nrf2) signaling pathway. CIH exposure accelerated glycolipid metabolism disorders and cardiac injury, and increased the level of cardiac oxidative stress and the number of positive apoptotic cells in db/db mice. IH and HG decreased the cell viability and the level of mitochondrial membrane potential, and increased ROS expression in H9C2 cells. These findings indicate that CIH exposure promotes glycolipid metabolism disorders and myocardial apoptosis, aggravating myocardial injury via the LKB1/AMPK/Nrf2 pathway in vitro and in vivo.
Collapse
Affiliation(s)
- Bingbing Liu
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China
| | - Jianchao Si
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China
| | - Kerong Qi
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China
| | - Dongli Li
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China
| | - Tingting Li
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China
| | - Yi Tang
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China
| | - Ensheng Ji
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Shijiazhuang, Hebei, People’s Republic of China
| | - Shengchang Yang
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Shijiazhuang, Hebei, People’s Republic of China
| |
Collapse
|
29
|
Wang Y, Engel T, Teng X. Post-translational regulation of the mTORC1 pathway: A switch that regulates metabolism-related gene expression. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195005. [PMID: 38242428 DOI: 10.1016/j.bbagrm.2024.195005] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/15/2023] [Accepted: 01/03/2024] [Indexed: 01/21/2024]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) is a kinase complex that plays a crucial role in coordinating cell growth in response to various signals, including amino acids, growth factors, oxygen, and ATP. Activation of mTORC1 promotes cell growth and anabolism, while its suppression leads to catabolism and inhibition of cell growth, enabling cells to withstand nutrient scarcity and stress. Dysregulation of mTORC1 activity is associated with numerous diseases, such as cancer, metabolic disorders, and neurodegenerative conditions. This review focuses on how post-translational modifications, particularly phosphorylation and ubiquitination, modulate mTORC1 signaling pathway and their consequential implications for pathogenesis. Understanding the impact of phosphorylation and ubiquitination on the mTORC1 signaling pathway provides valuable insights into the regulation of cellular growth and potential therapeutic targets for related diseases.
Collapse
Affiliation(s)
- Yitao Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China; Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Xinchen Teng
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
30
|
Pan Q, Ai W, Guo S. TGF-β1 Signaling Impairs Metformin Action on Glycemic Control. Int J Mol Sci 2024; 25:2424. [PMID: 38397103 PMCID: PMC10889280 DOI: 10.3390/ijms25042424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/02/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Hyperglycemia is a hallmark of type 2 diabetes (T2D). Metformin, the first-line drug used to treat T2D, maintains blood glucose within a normal range by suppressing hepatic glucose production (HGP). However, resistance to metformin treatment is developed in most T2D patients over time. Transforming growth factor beta 1 (TGF-β1) levels are elevated both in the liver and serum of T2D humans and mice. Here, we found that TGF-β1 treatment impairs metformin action on suppressing HGP via inhibiting AMPK phosphorylation at Threonine 172 (T172). Hepatic TGF-β1 deficiency improves metformin action on glycemic control in high fat diet (HFD)-induced obese mice. In our hepatic insulin resistant mouse model (hepatic insulin receptor substrate 1 (IRS1) and IRS2 double knockout (DKO)), metformin action on glycemic control was impaired, which is largely improved by further deletion of hepatic TGF-β1 (TKObeta1) or hepatic Foxo1 (TKOfoxo1). Moreover, blockade of TGF-β1 signaling by chemical inhibitor of TGF-β1 type I receptor LY2157299 improves to metformin sensitivity in mice. Taken together, our current study suggests that hepatic TGF-β1 signaling impairs metformin action on glycemic control, and suppression of TGF-β1 signaling could serve as part of combination therapy with metformin for T2D treatment.
Collapse
Affiliation(s)
| | | | - Shaodong Guo
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX 77843, USA; (Q.P.); (W.A.)
| |
Collapse
|
31
|
Xu Z, Pan Z, Jin Y, Gao Z, Jiang F, Fu H, Chen X, Zhang X, Yan H, Yang X, Yang B, He Q, Luo P. Inhibition of PRKAA/AMPK (Ser485/491) phosphorylation by crizotinib induces cardiotoxicity via perturbing autophagosome-lysosome fusion. Autophagy 2024; 20:416-436. [PMID: 37733896 PMCID: PMC10813574 DOI: 10.1080/15548627.2023.2259216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023] Open
Abstract
Crizotinib, a small-molecule tyrosine kinase inhibitor targeting ALK, MET and ROS1, is the first-line drug for ALK-positive metastatic non-small cell lung cancer and is associated with severe, sometimes fatal, cases of cardiac failure, which increases the risk of mortality. However, the underlying mechanism remains unclear, which causes the lack of therapeutic strategy. We established in vitro and in vivo models for crizotinib-induced cardiotoxicity and found that crizotinib caused left ventricular dysfunction, myocardial injury and pathological remodeling in mice and induced cardiomyocyte apoptosis and mitochondrial injury. In addition, we found that crizotinib prevented the degradation of MET protein by interrupting autophagosome-lysosome fusion and silence of MET or re-activating macroautophagy/autophagy flux rescued the cardiomyocytes death and mitochondrial injury caused by crizotinib, suggesting that impaired autophagy activity is the key reason for crizotinib-induced cardiotoxicity. We further confirmed that recovering the phosphorylation of PRKAA/AMPK (Ser485/491) by metformin re-activated autophagy flux in cardiomyocytes and metformin rescued crizotinib-induced cardiomyocyte injury and cardiac complications. In summary, we revealed a novel mechanism for crizotinib-induced cardiotoxicity, wherein the crizotinib-impaired autophagy process causes cardiomyocyte death and cardiac injury by inhibiting the degradation of MET protein, demonstrated a new function of impeded autophagosome-lysosome fusion in drugs-induced cardiotoxicity, pointed out the essential role of the phosphorylation of PRKAA (Ser485/491) in autophagosome-lysosome fusion and confirmed metformin as a potential therapeutic strategy for crizotinib-induced cardiotoxicity.Abbreviations and Acronyms: AAV: adeno-associated virus; ACAC/ACC: acetyl-Co A carboxylase; AMP: adenosine monophosphate; AMPK: AMP-activated protein kinase; ATG5: autophagy related 5; ATG7: autophagy related 7; CHX: cycloheximide; CKMB: creatine kinase myocardial band; CQ: chloroquine; c-PARP: cleaved poly (ADP-ribose) polymerase; DAPI: 4'6-diamidino-2-phenylindole; EF: ejection fraction; FOXO: forkhead box O; FS: fractional shortening; GSEA: gene set enrichment analysis; H&E: hematoxylin and eosin; HF: heart failure; HW: TL: ratio of heart weight to tibia length; IR: ischemia-reperfusion; KEGG: Kyoto encyclopedia of genes and genomes; LAMP2: lysosomal-associated membrane protein 2; LDH: lactate dehydrogenase; MCMs: mouse cardiomyocytes; MMP: mitochondrial membrane potential; mtDNA: mitochondrial DNA; MYH6: myosin, heavy peptide 6, cardiac muscle, alpha; MYH7: myosin, heavy peptide 7, cardiac muscle, beta; NPPA: natriuretic peptide type A; NPPB: natriuretic peptide type B; PI: propidium iodide; PI3K: phosphoinositide 3-kinase; PRKAA/AMPKα: protein kinase AMP-activated catalytic subunit alpha; qPCR: quantitative real-time PCR; SD: standard deviation; SRB: sulforhodamine B; TKI: tyrosine kinase inhibitor; WGA: wheat germ agglutinin.
Collapse
Affiliation(s)
- Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Zezheng Pan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Ying Jin
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Zizheng Gao
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Feng Jiang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Huangxi Fu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Xueqin Chen
- Department of Oncology, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R.China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Xiaochen Zhang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R.China
| | - Hao Yan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Xiaochun Yang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
- Department of Cardiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R.China
- Deparment of Pharmaceutical and Translational Toxicology, Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
- Department of Cardiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R.China
- Department of Pharmacology and Toxicology, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| |
Collapse
|
32
|
Jiang Y, Cai Y, Han R, Xu Y, Xia Z, Xia W. Salvianolic acids and its potential for cardio-protection against myocardial ischemic reperfusion injury in diabetes. Front Endocrinol (Lausanne) 2024; 14:1322474. [PMID: 38283744 PMCID: PMC10811029 DOI: 10.3389/fendo.2023.1322474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/21/2023] [Indexed: 01/30/2024] Open
Abstract
The incidence of diabetes and related mortality rate increase yearly in modern cities. Additionally, elevated glucose levels can result in an increase of reactive oxygen species (ROS), ferroptosis, and the disruption of protective pathways in the heart. These factors collectively heighten the vulnerability of diabetic individuals to myocardial ischemia. Reperfusion therapies have been effectively used in clinical practice. There are limitations to the current clinical methods used to treat myocardial ischemia-reperfusion injury. As a result, reducing post-treatment ischemia/reperfusion injury remains a challenge. Therefore, efforts are underway to provide more efficient therapy. Salvia miltiorrhiza Bunge (Danshen) has been used for centuries in ancient China to treat cardiovascular diseases (CVD) with rare side effects. Salvianolic acid is a water-soluble phenolic compound with potent antioxidant properties and has the greatest hydrophilic property in Danshen. It has recently been discovered that salvianolic acids A (SAA) and B (SAB) are capable of inhibiting apoptosis by targeting the JNK/Akt pathway and the NF-κB pathway, respectively. This review delves into the most recent discoveries regarding the therapeutic and cardioprotective benefits of salvianolic acid for individuals with diabetes. Salvianolic acid shows great potential in myocardial protection in diabetes mellitus. A thorough understanding of the protective mechanism of salvianolic acid could expand its potential uses in developing medicines for treating diabetes mellitus related myocardial ischemia-reperfusion.
Collapse
Affiliation(s)
- Yuxin Jiang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Yin Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Ronghui Han
- Faculty of Chinese Medicine State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao SAR, China
| | - Youhua Xu
- Faculty of Chinese Medicine State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao SAR, China
| | - Zhengyuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Doctoral Training Platform for Research and Translation, BoShiWan, GuanChong Village, Shuanghe Town, ZhongXiang City, Hubei, China
| | - Weiyi Xia
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- Doctoral Training Platform for Research and Translation, BoShiWan, GuanChong Village, Shuanghe Town, ZhongXiang City, Hubei, China
| |
Collapse
|
33
|
Lei X, Xu Z, Huang L, Huang Y, Tu S, Xu L, Liu D. The potential influence of melatonin on mitochondrial quality control: a review. Front Pharmacol 2024; 14:1332567. [PMID: 38273825 PMCID: PMC10808166 DOI: 10.3389/fphar.2023.1332567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/31/2023] [Indexed: 01/27/2024] Open
Abstract
Mitochondria are critical for cellular energetic metabolism, intracellular signaling orchestration and programmed death regulation. Therefore, mitochondrial dysfunction is associated with various pathogeneses. The maintenance of mitochondrial homeostasis and functional recovery after injury are coordinated by mitochondrial biogenesis, dynamics and autophagy, which are collectively referred to as mitochondrial quality control. There is increasing evidence that mitochondria are important targets for melatonin to exert protective effects under pathological conditions. Melatonin, an evolutionarily conserved tryptophan metabolite, can be synthesized, transported and metabolized in mitochondria. In this review, we summarize the important role of melatonin in the damaged mitochondria elimination and mitochondrial energy supply recovery by regulating mitochondrial quality control, which may provide new strategies for clinical treatment of mitochondria-related diseases.
Collapse
Affiliation(s)
- Xudan Lei
- Radiation Oncology Key Laboratory of Sichuan Province, Department of Experimental Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Zhenni Xu
- Radiation Oncology Key Laboratory of Sichuan Province, Department of Experimental Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Lingxiao Huang
- Radiation Oncology Key Laboratory of Sichuan Province, Department of Experimental Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yujun Huang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Siyu Tu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Xu
- Radiation Oncology Key Laboratory of Sichuan Province, Department of Experimental Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Dengqun Liu
- Radiation Oncology Key Laboratory of Sichuan Province, Department of Experimental Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
34
|
Talwadekar M, Khatri S, Balaji C, Chakraborty A, Basak NP, Kamat SS, Kolthur-Seetharam U. Metabolic transitions regulate global protein fatty acylation. J Biol Chem 2024; 300:105563. [PMID: 38101568 PMCID: PMC10808961 DOI: 10.1016/j.jbc.2023.105563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023] Open
Abstract
Intermediary metabolites and flux through various pathways have emerged as key determinants of post-translational modifications. Independently, dynamic fluctuations in their concentrations are known to drive cellular energetics in a bi-directional manner. Notably, intracellular fatty acid pools that drastically change during fed and fasted states act as precursors for both ATP production and fatty acylation of proteins. Protein fatty acylation is well regarded for its role in regulating structure and functions of diverse proteins; however, the effect of intracellular concentrations of fatty acids on protein modification is less understood. In this regard, we unequivocally demonstrate that metabolic contexts, viz. fed and fasted states, dictate the extent of global fatty acylation. Moreover, we show that presence or absence of glucose that influences cellular and mitochondrial uptake/utilization of fatty acids and affects palmitoylation and oleoylation, which is consistent with their intracellular abundance in fed and fasted states. Employing complementary approaches including click-chemistry, lipidomics, and imaging, we show the top-down control of cellular metabolic state. Importantly, our results establish the crucial role of mitochondria and retrograde signaling components like SIRT4, AMPK, and mTOR in orchestrating protein fatty acylation at a whole cell level. Specifically, pharmacogenetic perturbations that alter either mitochondrial functions and/or retrograde signaling affect protein fatty acylation. Besides illustrating the cross-talk between carbohydrate and lipid metabolism in mediating bulk post-translational modification, our findings also highlight the involvement of mitochondrial energetics.
Collapse
Affiliation(s)
- Manasi Talwadekar
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Subhash Khatri
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Chinthapalli Balaji
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Arnab Chakraborty
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Nandini-Pal Basak
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Siddhesh S Kamat
- Department of Biology, Indian Institute of Science Education and Research, Pune, India.
| | - Ullas Kolthur-Seetharam
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India; Tata Institute of Fundamental Research, Hyderabad, India.
| |
Collapse
|
35
|
Qiu L, Feng R, Wu QS, Wan JB, Zhang QW. Total saponins from Panax japonicus attenuate acute alcoholic liver oxidative stress and hepatosteatosis by p62-related Nrf2 pathway and AMPK-ACC/PPARα axis in vivo and in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116785. [PMID: 37321425 DOI: 10.1016/j.jep.2023.116785] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/31/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax japonicus (T. Nees) C.A. Mey. (PJ) has been used as a tonic traditional Chinese medicine (TCM) for years. Based on its meridian tropism in liver, spleen, and lung, PJ was popularly used to enhance the function of these organs. It is originally recorded with detoxicant effect on binge drink in Ben Cao Gang Mu Shi Yi, a persuasive Chinese materia medica. And binge dink has a close relationship with alcoholic liver disease (ALD). Hence, it's meaningful to investigate whether PJ exerts liver protection against binge drink toxicity. AIM OF THE STUDY This investigation was carried out not only to emphasize the right recognition of total saponins from PJ (SPJ), but also to study on its sober-up effectiveness and defensive mechanism against acute alcoholic liver injury in vivo and in vitro. MATERIALS AND METHODS SPJ constituents were verified by HPLC-UV analysis. In vivo, acute alcoholic liver oxidative stress and hepatosteatosis were established by continuous ethanol gavage to C57BL/6 mice for 3 days. SPJ was pre-administered for 7 days to investigate its protective efficacy. Loss of righting reflex (LORR) assay was employed to assess anti-inebriation effect of SPJ. Transaminases levels and hematoxylin and eosin (H&E) staining were measured to indicate the alcoholic liver injury. Antioxidant enzymes were measured to evaluate the oxidative stress degree in liver. Measurement of hepatic lipid accumulation was based on Oil Red O staining. Levels of inflammatory cytokines were evaluated by enzyme-linked immunosorbent assay (ELISA). In vitro, HepG2 cells were treated with ethanol for 24 h, and SPJ was pre-administered for 2 h. 2,7-dichlorofluorescein diacetate (DCFH-DA) was used as a probe to indicate reactive oxygen species (ROS) generation. Nrf2 activation was verified by the favor of specific inhibitor, ML385. The nuclear translocation of Nrf2 was indicated with immunofluorescence analysis. Proteins expressions of related pathways were determined by Western blotting. RESULTS Oleanane-type saponins are the most abundant constituents of SPJ. In this acute model, SPJ released inebriation of mice in a dose dependent manner. It decreased levels of serum ALT and AST, and hepatic TG. Besides, SPJ inhibited CYP2E1 expression and reduced MDA level in liver, with upregulations of antioxidant enzymes GSH, SOD and CAT. p62-related Nrf2 pathway was activated by SPJ with downstream upregulations of GCLC and NQO1 in liver. AMPK-ACC/PPARα axis was upregulated by SPJ to alleviate hepatic lipidosis. Hepatic IL-6 and TNF-α levels were downregulated by SPJ, which indicated a regressive lipid peroxidation in liver. In HepG2 cells, SPJ reduced ethanol-exposed ROS generation. Activated p62-related Nrf2 pathway was verified to contribute to the alleviation of alcohol-induced oxidative stress in hepatic cells. CONCLUSION This attenuation of hepatic oxidative stress and steatosis suggested the therapeutic value of SPJ for ALD.
Collapse
Affiliation(s)
- Ling Qiu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, Taipa, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Ruibing Feng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, Taipa, China
| | - Qiu-Shuang Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, Taipa, China; Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, Taipa, China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, Taipa, China.
| | - Qing-Wen Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, Taipa, China.
| |
Collapse
|
36
|
Du Y, Li T, Yi M. Is MG53 a potential therapeutic target for cancer? Front Endocrinol (Lausanne) 2023; 14:1295349. [PMID: 38033997 PMCID: PMC10684902 DOI: 10.3389/fendo.2023.1295349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
Cancer treatment still encounters challenges, such as side effects and drug resistance. The tripartite-motif (TRIM) protein family is widely involved in regulation of the occurrence, development, and drug resistance of tumors. MG53, a member of the TRIM protein family, shows strong potential in cancer therapy, primarily due to its E3 ubiquitin ligase properties. The classic membrane repair function and anti-inflammatory capacity of MG53 may also be beneficial for cancer prevention and treatment. However, MG53 appears to be a key regulatory factor in impaired glucose metabolism and a negative regulatory mechanism in muscle regeneration that may have a negative effect on cancer treatment. Developing MG53 mutants that balance the pros and cons may be the key to solving the problem. This article aims to summarize the role and mechanism of MG53 in the occurrence, progression, and invasion of cancer, focusing on the potential impact of the biological function of MG53 on cancer therapy.
Collapse
Affiliation(s)
- Yunyu Du
- School of Sports Science, Beijing Sport University, Beijing, China
- National Institute of Sports Medicine, Beijing, China
| | - Tieying Li
- National Institute of Sports Medicine, Beijing, China
| | - Muqing Yi
- National Institute of Sports Medicine, Beijing, China
| |
Collapse
|
37
|
Duo T, Liu X, Mo D, Bian Y, Cai S, Wang M, Li R, Zhu Q, Tong X, Liang Z, Jiang W, Chen S, Chen Y, He Z. Single-base editing in IGF2 improves meat production and intramuscular fat deposition in Liang Guang Small Spotted pigs. J Anim Sci Biotechnol 2023; 14:141. [PMID: 37919760 PMCID: PMC10621156 DOI: 10.1186/s40104-023-00930-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/06/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Chinese indigenous pigs are popular with consumers for their juiciness, flavour and meat quality, but they have lower meat production. Insulin-like growth factor 2 (IGF2) is a maternally imprinted growth factor that promotes skeletal muscle growth by regulating cell proliferation and differentiation. A single nucleotide polymorphism (SNP) within intron 3 of porcine IGF2 disrupts a binding site for the repressor, zinc finger BED-type containing 6 (ZBED6), leading to up-regulation of IGF2 and causing major effects on muscle growth, heart size, and backfat thickness. This favorable mutation is common in Western commercial pig populations, but absent in most Chinese indigenous pig breeds. To improve meat production of Chinese indigenous pigs, we used cytosine base editor 3 (CBE3) to introduce IGF2-intron3-C3071T mutation into porcine embryonic fibroblasts (PEFs) isolated from a male Liang Guang Small Spotted pig (LGSS), and single-cell clones harboring the desired mutation were selected for somatic cell nuclear transfer (SCNT) to generate the founder line of IGF2T/T pigs. RESULTS We found the heterozygous progeny IGF2C/T pigs exhibited enhanced expression of IGF2, increased lean meat by 18%-36%, enlarged loin muscle area by 3%-17%, improved intramuscular fat (IMF) content by 18%-39%, marbling score by 0.75-1, meat color score by 0.53-1.25, and reduced backfat thickness by 5%-16%. The enhanced accumulation of intramuscular fat in IGF2C/T pigs was identified to be regulated by the PI3K-AKT/AMPK pathway, which activated SREBP1 to promote adipogenesis. CONCLUSIONS We demonstrated the introduction of IGF2-intron3-C3071T in Chinese LGSS can improve both meat production and quality, and first identified the regulation of IMF deposition by IGF2 through SREBP1 via the PI3K-AKT/AMPK signaling pathways. Our study provides a further understanding of the biological functions of IGF2 and an example for improving porcine economic traits through precise base editing.
Collapse
Affiliation(s)
- Tianqi Duo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China
| | - Delin Mo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China
| | - Yu Bian
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Shufang Cai
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Min Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China
| | - Ruiqiang Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China
| | - Qi Zhu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China
| | - Xian Tong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China
| | - Ziyun Liang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China
| | - Weilun Jiang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China
| | - Shiyi Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China.
| | - Zuyong He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China.
| |
Collapse
|
38
|
Shen Y, Tang Q, Wang J, Zhou Z, Yin Y, Zhang Y, Zheng W, Wang X, Chen G, Sun J, Chen L. Targeting RORα in macrophages to boost diabetic bone regeneration. Cell Prolif 2023; 56:e13474. [PMID: 37051760 PMCID: PMC10542986 DOI: 10.1111/cpr.13474] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
Diabetes mellitus (DM) has become a serious threat to human health. Bone regeneration deficiency and nonunion caused by DM is perceived as a worldwide epidemic, with a very high socioeconomic impact on public health. Here, we find that targeted activation of retinoic acid-related orphan receptor α (RORα) by SR1078 in the early stage of bone defect repair can significantly promote in situ bone regeneration of DM rats. Bone regeneration relies on the activation of macrophage RORα in the early bone repair, but RORα of DM rats fails to upregulation as hyperglycemic inflammatory microenvironment induced IGF1-AMPK signalling deficiency. Mechanistic investigations suggest that RORα is vital for macrophage-induced migration and proliferation of bone mesenchymal stem cells (BMSCs) via a CCL3/IL-6 depending manner. In summary, our study identifies RORα expressed in macrophages during the early stage of bone defect repair is crucial for in situ bone regeneration, and offers a novel strategy for bone regeneration therapy and fracture repair in DM patients.
Collapse
Affiliation(s)
- Yufeng Shen
- Department of StomatologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022China
- School of StomatologyTongji Medical College, Huazhong University of Science and TechnologyWuhan 430030China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhan 430022China
- Department of Stomatology, The First Affiliated Hospital, School of MedicineShihezi UniversityShihezi 832000China
| | - Qingming Tang
- Department of StomatologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022China
- School of StomatologyTongji Medical College, Huazhong University of Science and TechnologyWuhan 430030China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhan 430022China
| | - Jiajia Wang
- Department of StomatologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022China
- School of StomatologyTongji Medical College, Huazhong University of Science and TechnologyWuhan 430030China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhan 430022China
| | - Zheng Zhou
- Department of Stomatology, The First Affiliated Hospital, School of MedicineShihezi UniversityShihezi 832000China
| | - Ying Yin
- Department of StomatologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022China
- School of StomatologyTongji Medical College, Huazhong University of Science and TechnologyWuhan 430030China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhan 430022China
| | - Yifan Zhang
- Department of StomatologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022China
- School of StomatologyTongji Medical College, Huazhong University of Science and TechnologyWuhan 430030China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhan 430022China
| | - Wenhao Zheng
- Department of StomatologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022China
- School of StomatologyTongji Medical College, Huazhong University of Science and TechnologyWuhan 430030China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhan 430022China
| | - Xinyuan Wang
- Department of StomatologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022China
- School of StomatologyTongji Medical College, Huazhong University of Science and TechnologyWuhan 430030China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhan 430022China
| | - Guangjin Chen
- Department of StomatologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022China
- School of StomatologyTongji Medical College, Huazhong University of Science and TechnologyWuhan 430030China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhan 430022China
| | - Jiwei Sun
- Department of StomatologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022China
- School of StomatologyTongji Medical College, Huazhong University of Science and TechnologyWuhan 430030China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhan 430022China
| | - Lili Chen
- Department of StomatologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022China
- School of StomatologyTongji Medical College, Huazhong University of Science and TechnologyWuhan 430030China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhan 430022China
| |
Collapse
|
39
|
Wang W, Xu X, Zhao L, Ye K, Wang S, Lin C. 3,5-diCQA suppresses colorectal cancer cell growth through ROS/AMPK/mTOR mediated mitochondrial dysfunction and ferroptosis. Cell Cycle 2023; 22:1951-1968. [PMID: 37902223 PMCID: PMC10761099 DOI: 10.1080/15384101.2023.2247248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/12/2023] [Accepted: 06/29/2023] [Indexed: 10/31/2023] Open
Abstract
3,5-diCQA has been shown to have anti-tumor effect by decreasing cancer cell growth. However, the molecular mechanism by which 3,5-diCQA impacts colorectal cancer (CRC) cells is unknown. This study discovered that 3,5-diCQA had a suppressive effect on CRC cells, mainly in the inhibition of proliferation, migration, and the enhancement of apoptosis in HCT116 and SW480 cells. Additionally, 3,5-diCQA was found to cause cell cycle arrest in CRC cells. Meanwhile, we found that 3,5-diCQA activates the AMPK pathway through the generation of ROS, mediates mitochondrial damage, and reduces mitochondrial aerobic glycolysis and oxidative phosphorylation levels. 3,5-diCQA promoted oxidative damage and ferroptosis in CRC cells. Hence, we added ROS inhibitor NAC and found that the NAC reversed the effects of 3,5-diCQA on proliferation, apoptosis, ROS generation, and ferroptosis in CRC cells. Moreover, 3,5-diCQA was also shown to suppress the development of CRC tumor in a tumor-forming model of nude mice. In conclusion, we found that 3,5-diCQA enhances the oxidative damage and ferroptosis while reducing proliferation and migration of CRC cells, depending on mitochondrial dysfunction caused by the ROS/AMPK/mTOR pathway.
Collapse
Affiliation(s)
- Weibing Wang
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xingwei Xu
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Long Zhao
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kailun Ye
- Department of Anorectal surgery, Tonglu County First People’s Hospital, Hangzhou, China
| | - Saisai Wang
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Caizhao Lin
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
40
|
Chakraborty S, Coleman C, Manoj P, Demircioglu D, Shah N, de Stanchina E, Rudin CM, Hasson D, Sen T. De Novo and Histologically Transformed Small-Cell Lung Cancer Is Sensitive to Lurbinectedin Treatment Through the Modulation of EMT and NOTCH Signaling Pathways. Clin Cancer Res 2023; 29:3526-3540. [PMID: 37382635 PMCID: PMC10901109 DOI: 10.1158/1078-0432.ccr-23-0471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/21/2023] [Accepted: 06/27/2023] [Indexed: 06/30/2023]
Abstract
PURPOSE Small-cell lung cancer (SCLC) is a high-grade neuroendocrine tumor with dismal prognosis and limited treatment options. Lurbinectedin, conditionally approved as a second-line treatment for metastatic SCLC, drives clinical responses in about 35% of patients, and the overall survival (OS) of those who benefit from it remains very low (∼9.3 months). This finding highlights the need to develop improved mechanistic insight and predictive biomarkers of response. EXPERIMENTAL DESIGN We used human and patient-derived xenograft (PDX)-derived SCLC cell lines to evaluate the effect of lurbinectedin in vitro. We also demonstrate the antitumor effect of lurbinectedin in multiple de novo and transformed SCLC PDX models. Changes in gene and protein expression pre- and post-lurbinectedin treatment was assessed by RNA sequencing and Western blot analysis. RESULTS Lurbinectedin markedly reduced cell viability in the majority of SCLC models with the best response on POU2F3-driven SCLC cells. We further demonstrate that lurbinectedin, either as a single agent or in combination with osimertinib, causes an appreciable antitumor response in multiple models of EGFR-mutant lung adenocarcinoma with histologic transformation to SCLC. Transcriptomic analysis identified induction of apoptosis, repression of epithelial-mesenchymal transition, modulation of PI3K/AKT, NOTCH signaling associated with lurbinectedin response in de novo, and transformed SCLC models. CONCLUSIONS Our study provides a mechanistic insight into lurbinectedin response in SCLC and the first demonstration that lurbinectedin is a potential therapeutic target after SCLC transformation.
Collapse
Affiliation(s)
- Subhamoy Chakraborty
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Charles Coleman
- Tisch Cancer Institute, Mount Sinai, New York, New York
- Bioinformatics for Next Generation Sequencing (BiNGS) Core, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Parvathy Manoj
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Deniz Demircioglu
- Tisch Cancer Institute, Mount Sinai, New York, New York
- Bioinformatics for Next Generation Sequencing (BiNGS) Core, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Nisargbhai Shah
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elisa de Stanchina
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Charles M Rudin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Dan Hasson
- Tisch Cancer Institute, Mount Sinai, New York, New York
- Bioinformatics for Next Generation Sequencing (BiNGS) Core, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Triparna Sen
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Tisch Cancer Institute, Mount Sinai, New York, New York
| |
Collapse
|
41
|
Gu T, Zhang Z, Liu J, Chen L, Tian Y, Xu W, Zeng T, Wu W, Lu L. Chlorogenic Acid Alleviates LPS-Induced Inflammation and Oxidative Stress by Modulating CD36/AMPK/PGC-1α in RAW264.7 Macrophages. Int J Mol Sci 2023; 24:13516. [PMID: 37686324 PMCID: PMC10487601 DOI: 10.3390/ijms241713516] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Chlorogenic acid (CGA) is a bioactive substance with anti-inflammatory activities. Clusters of CD36 have been suggested to be widely involved in inflammatory damage. However, the mechanism of CGA protecting against LPS-induced inflammation involving the CD36 regulation is unclear. Here, we demonstrated that CGA protected against LPS-induced cell death and decreased the production of ROS. Moreover, the SOD, CAT, and GSH-Px activities were also upregulated in CGA-treated cells during LPS stimulation. CGA reduced COX-2 and iNOS expression and IL-1β, IL-6, and TNF-α secretion in LPS-stimulated RAW264.7 macrophages. In addition, CGA treatment widely involved in immune-related signaling pathways, including NF-κB signaling, NOD-like receptor signaling, and IL-17 signaling using transcriptomic analysis and CD36 also markedly reduced during CGA pretreatment in LPS-induced RAW264.7 cells. Furthermore, the CD36 inhibitor SSO attenuated inflammation and oxidative stress by enabling activation of the AMPK/PGC-1α cascade. These results indicate that CGA might provide benefits for the regulation of inflammatory diseases by modulating CD36/AMPK/PGC-1α to alleviate oxidative stress.
Collapse
Affiliation(s)
- Tiantian Gu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China; (T.G.); (J.L.); (L.C.); (Y.T.); (W.X.); (T.Z.)
| | - Zhiguo Zhang
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| | - Jinyu Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China; (T.G.); (J.L.); (L.C.); (Y.T.); (W.X.); (T.Z.)
| | - Li Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China; (T.G.); (J.L.); (L.C.); (Y.T.); (W.X.); (T.Z.)
| | - Yong Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China; (T.G.); (J.L.); (L.C.); (Y.T.); (W.X.); (T.Z.)
| | - Wenwu Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China; (T.G.); (J.L.); (L.C.); (Y.T.); (W.X.); (T.Z.)
| | - Tao Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China; (T.G.); (J.L.); (L.C.); (Y.T.); (W.X.); (T.Z.)
| | - Weicheng Wu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| | - Lizhi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China; (T.G.); (J.L.); (L.C.); (Y.T.); (W.X.); (T.Z.)
| |
Collapse
|
42
|
Gao J, Cao B, Zhao R, Li H, Xu Q, Wei B. Critical Signaling Transduction Pathways and Intestinal Barrier: Implications for Pathophysiology and Therapeutics. Pharmaceuticals (Basel) 2023; 16:1216. [PMID: 37765024 PMCID: PMC10537644 DOI: 10.3390/ph16091216] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
The intestinal barrier is a sum of the functions and structures consisting of the intestinal mucosal epithelium, mucus, intestinal flora, secretory immunoglobulins, and digestive juices. It is the first-line defense mechanism that resists nonspecific infections with powerful functions that include physical, endocrine, and immune defenses. Health and physiological homeostasis are greatly dependent on the sturdiness of the intestinal barrier shield, whose dysfunction can contribute to the progression of numerous types of intestinal diseases. Disorders of internal homeostasis may also induce barrier impairment and form vicious cycles during the response to diseases. Therefore, the identification of the underlying mechanisms involved in intestinal barrier function and the development of effective drugs targeting its damage have become popular research topics. Evidence has shown that multiple signaling pathways and corresponding critical molecules are extensively involved in the regulation of the barrier pathophysiological state. Ectopic expression or activation of signaling pathways plays an essential role in the process of shield destruction. Although some drugs, such as molecular or signaling inhibitors, are currently used for the treatment of intestinal diseases, their efficacy cannot meet current medical requirements. In this review, we summarize the current achievements in research on the relationships between the intestinal barrier and signaling pathways. The limitations and future perspectives are also discussed to provide new horizons for targeted therapies for restoring intestinal barrier function that have translational potential.
Collapse
Affiliation(s)
- Jingwang Gao
- Department of General Surgery, Medical School of Chinese PLA, Beijing 100853, China; (J.G.); (R.Z.); (H.L.); (Q.X.)
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China;
| | - Bo Cao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China;
| | - Ruiyang Zhao
- Department of General Surgery, Medical School of Chinese PLA, Beijing 100853, China; (J.G.); (R.Z.); (H.L.); (Q.X.)
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China;
| | - Hanghang Li
- Department of General Surgery, Medical School of Chinese PLA, Beijing 100853, China; (J.G.); (R.Z.); (H.L.); (Q.X.)
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China;
| | - Qixuan Xu
- Department of General Surgery, Medical School of Chinese PLA, Beijing 100853, China; (J.G.); (R.Z.); (H.L.); (Q.X.)
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China;
| | - Bo Wei
- Department of General Surgery, Medical School of Chinese PLA, Beijing 100853, China; (J.G.); (R.Z.); (H.L.); (Q.X.)
| |
Collapse
|
43
|
Agostini F, Bisaglia M, Plotegher N. Linking ROS Levels to Autophagy: The Key Role of AMPK. Antioxidants (Basel) 2023; 12:1406. [PMID: 37507945 PMCID: PMC10376219 DOI: 10.3390/antiox12071406] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Oxygen reactive species (ROS) are a group of molecules generated from the incomplete reduction of oxygen. Due to their high reactivity, ROS can interact with and influence the function of multiple targets, which include DNA, lipids, and proteins. Among the proteins affected by ROS, AMP-activated protein kinase (AMPK) is considered a major sensor of the intracellular energetic status and a crucial hub involved in the regulation of key cellular processes, like autophagy and lysosomal function. Thanks to these features, AMPK has been recently demonstrated to be able to perceive signals related to the variation of mitochondrial dynamics and to transduce them to the lysosomes, influencing the autophagic flux. Since ROS production is largely dependent on mitochondrial activity, through the modulation of AMPK these molecules may represent important signaling agents which participate in the crosstalk between mitochondria and lysosomes, allowing the coordination of these organelles' functions. In this review, we will describe the mechanisms through which ROS activate AMPK and the signaling pathways that allow this protein to affect the autophagic process. The picture that emerges from the literature is that AMPK regulation is highly tissue-specific and that different pools of AMPK can be localized at specific intracellular compartments, thus differentially responding to altered ROS levels. For this reason, future studies will be highly advisable to discriminate the specific contribution of the activation of different AMPK subpopulations to the autophagic pathway.
Collapse
Affiliation(s)
- Francesco Agostini
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Marco Bisaglia
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
- Study Center for Neurodegeneration (CESNE), 35121 Padova, Italy
| | - Nicoletta Plotegher
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
- Study Center for Neurodegeneration (CESNE), 35121 Padova, Italy
| |
Collapse
|
44
|
Gao Y, Hua R, Peng K, Yin Y, Zeng C, Guo Y, Wang Y, Li L, Li X, Qiu Y, Wang Z. High-starchy carbohydrate diet aggravates NAFLD by increasing fatty acids influx mediated by NOX2. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
45
|
Li XY, Qian LL, Wu Y, Zhang YM, Dang SP, Liu XY, Tang X, Lu CY, Wang RX. Advanced glycation end products impair coronary artery BK channels via AMPK/Akt/FBXO32 signaling pathway. Diab Vasc Dis Res 2023; 20:14791641231197107. [PMID: 37592725 PMCID: PMC10439763 DOI: 10.1177/14791641231197107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/19/2023] Open
Abstract
Background: Advanced glycation end products (AGEs) impair vascular physiology in Diabetes mellitus (DM). However, the underlying mechanisms remain unclear. Vascular large conductance calcium-activated potassium (BK) channels play important roles in coronary arterial function.Purpose: Our study aimed to investigate the regulatory role of AGEs in BK channels.Research Design: Using gavage of vehicle (V, normal saline) or aminoguanidine (A) for 8 weeks, normal and diabetic rats were divided into four groups: C+V group, DM+V group, C+A group, and DM+A group.Study Sample: Coronary arteries from different groups of rats and human coronary smooth muscle cells were used in this study.Data Collection and Analysis: Data were presented as mean ± SEM (standard error of mean). Student's t-test was used to compare data between two groups. One-way ANOVA with post-hoc LSD analysis was used to compare data between multiple groups.Results: Compared to the C+V group, vascular contraction induced by iberiotoxin (IBTX), a BK channel inhibitor, was impaired, and BK channel densities decreased in the DM+V group. However, aminoguanidine administration reduced the impairment. Protein expression of BK-β1, phosphorylation of adenosine 5'-monophosphate-activated protein kinase (AMPK), and protein kinase B (PKB or Akt) were down-regulated, while F-box protein 32 (FBXO32) expression increased in the DM+V group and in high glucose (HG) cultured human coronary smooth muscle cells. Treatment with aminoguanidine in vitro and in vivo could reverse the above protein expression. The effect of aminoguanidine on the improvement of BK channel function by inhibiting the generation of AGEs was reversed by adding MK2206 (Akt inhibitor) or Compound C (AMPK inhibitor) in HG conditions in vitro.Conclusions: AGEs aggravate BK channel dysfunction via the AMPK/Akt/FBXO32 signaling pathway.
Collapse
Affiliation(s)
- Xiao-Yan Li
- Department of Cardiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Ling-Ling Qian
- Department of Cardiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Ying Wu
- Department of Cardiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Yu-Min Zhang
- Department of Cardiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Shi-Peng Dang
- Department of Cardiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Xiao-Yu Liu
- Department of Cardiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Xu Tang
- Department of Cardiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Cun-yu Lu
- Department of Cardiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Ru-Xing Wang
- Department of Cardiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| |
Collapse
|
46
|
Cao R, Tian H, Zhang Y, Liu G, Xu H, Rao G, Tian Y, Fu X. Signaling pathways and intervention for therapy of type 2 diabetes mellitus. MedComm (Beijing) 2023; 4:e283. [PMID: 37303813 PMCID: PMC10248034 DOI: 10.1002/mco2.283] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 06/13/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) represents one of the fastest growing epidemic metabolic disorders worldwide and is a strong contributor for a broad range of comorbidities, including vascular, visual, neurological, kidney, and liver diseases. Moreover, recent data suggest a mutual interplay between T2DM and Corona Virus Disease 2019 (COVID-19). T2DM is characterized by insulin resistance (IR) and pancreatic β cell dysfunction. Pioneering discoveries throughout the past few decades have established notable links between signaling pathways and T2DM pathogenesis and therapy. Importantly, a number of signaling pathways substantially control the advancement of core pathological changes in T2DM, including IR and β cell dysfunction, as well as additional pathogenic disturbances. Accordingly, an improved understanding of these signaling pathways sheds light on tractable targets and strategies for developing and repurposing critical therapies to treat T2DM and its complications. In this review, we provide a brief overview of the history of T2DM and signaling pathways, and offer a systematic update on the role and mechanism of key signaling pathways underlying the onset, development, and progression of T2DM. In this content, we also summarize current therapeutic drugs/agents associated with signaling pathways for the treatment of T2DM and its complications, and discuss some implications and directions to the future of this field.
Collapse
Affiliation(s)
- Rong Cao
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Huimin Tian
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yu Zhang
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Geng Liu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Haixia Xu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Guocheng Rao
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yan Tian
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Xianghui Fu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
47
|
Wang S, Wang J, Wang S, Tao R, Yi J, Chen M, Zhao Z. mTOR Signaling Pathway in Bone Diseases Associated with Hyperglycemia. Int J Mol Sci 2023; 24:ijms24119198. [PMID: 37298150 DOI: 10.3390/ijms24119198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 06/12/2023] Open
Abstract
The interplay between bone and glucose metabolism has highlighted hyperglycemia as a potential risk factor for bone diseases. With the increasing prevalence of diabetes mellitus worldwide and its subsequent socioeconomic burden, there is a pressing need to develop a better understanding of the molecular mechanisms involved in hyperglycemia-mediated bone metabolism. The mammalian target of rapamycin (mTOR) is a serine/threonine protein kinase that senses extracellular and intracellular signals to regulate numerous biological processes, including cell growth, proliferation, and differentiation. As mounting evidence suggests the involvement of mTOR in diabetic bone disease, we provide a comprehensive review of its effects on bone diseases associated with hyperglycemia. This review summarizes key findings from basic and clinical studies regarding mTOR's roles in regulating bone formation, bone resorption, inflammatory responses, and bone vascularity in hyperglycemia. It also provides valuable insights into future research directions aimed at developing mTOR-targeted therapies for combating diabetic bone diseases.
Collapse
Affiliation(s)
- Shuangcheng Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jiale Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shuangwen Wang
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Ran Tao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jianru Yi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Miao Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
48
|
Zhang JT, Xie LY, Shen Q, Liu W, Li MH, Hu RY, Hu JN, Wang Z, Chen C, Li W. Platycodin D stimulates AMPK activity to inhibit the neurodegeneration caused by reactive oxygen species-induced inflammation and apoptosis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116294. [PMID: 36804201 DOI: 10.1016/j.jep.2023.116294] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/06/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Alzheimer's disease (AD) was considered to be a neurodegenerative disease that caused cognitive impairment. Reactive Oxidative stress (ROS) was considered to be one of a major cause of the onset and progression of AD. Platycodin D (PD), a representative saponin from Platycodon grandiflorum, has conspicuous antioxidant activity. However, whether PD could protect nerve cell against oxidative injury remains unknown. AIM OF STUDY This study investigated the regulatory effects of PD on neurodegeneration caused by ROS. To determine whether PD could play its own antioxidant role in neuronal protection. MATERIALS AND METHODS First, PD(2.5, 5 mg/kg) ameliorated the memory impairment induced by AlCl3 (100 mg/kg) combined with D-galactose (D-Gal) (200 mg/kg) in mice, using the radial arm maze (RAM) test, and neuronal apoptosis in the hippocampus was evaluated by hematoxylin and eosin staining (HE). Next, the effects of PD (0.5, 1, and 2 μM) on okadaic-acid (OA) (40 nM) -induced apoptosis and inflammation of HT22 cells were investigated. Mitochondrial ROS production was measured by fluorescence staining. The potential signaling pathways were identified through Gene Ontology enrichment analysis. The role of PD in regulating AMP-activated protein kinase (AMPK) was assessed using siRNA silencing of genes and an ROS inhibitor. RESULTS In vivo, PD improved memory in mice, and recovered the morphological changes of brain tissue and nissl bodies. In vitro experiment, PD increased cell viability (p < 0.01; p < 0.05;p < 0.001), decreased apoptosis (p < 0.01), reduced excessive ROS and MDA, rised SOD and CAT content(p < 0.01; p < 0.05). Morover, it can block the inflammatory response caused by ROS. Be important, PD strengthen antioxidant ability by elevating AMPK activation both in vivo and in vitro. Furthermore, molecular docking suggested a good likelihood of PD-AMPK binding. CONCLUSION AMPK activity is vital for the neuroprotective effect of PD, suggesting that PD may be a potential pharmaceutical agent to treat ROS-induced neurodegeneration.
Collapse
Affiliation(s)
- Jing-Tian Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Li-Ya Xie
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Qiong Shen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China; National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, 130118, China
| | - Wei Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Ming-Han Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Rui-Yi Hu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Jun-Nan Hu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China; National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, 130118, China
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, Brisbane, 4072, Queensland, Australia
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China; National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, 130118, China.
| |
Collapse
|
49
|
Zhang JT, Xie LY, Shen Q, Liu W, Li MH, Hu RY, Hu JN, Wang Z, Chen C, Li W. Platycodin D stimulates AMPK activity to inhibit the neurodegeneration caused by reactive oxygen species-induced inflammation and apoptosis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116294. [DOI: https:/doi.org/10.1016/j.jep.2023.116294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2024]
|
50
|
Hsu CN, Hsuan CF, Liao D, Chang JKJ, Chang AJW, Hee SW, Lee HL, Teng SIF. Anti-Diabetic Therapy and Heart Failure: Recent Advances in Clinical Evidence and Molecular Mechanism. Life (Basel) 2023; 13:1024. [PMID: 37109553 PMCID: PMC10144651 DOI: 10.3390/life13041024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
Diabetic patients have a two- to four-fold increase in the risk of heart failure (HF), and the co-existence of diabetes and HF is associated with poor prognosis. In randomized clinical trials (RCTs), compelling evidence has demonstrated the beneficial effects of sodium-glucose co-transporter-2 inhibitors on HF. The mechanism includes increased glucosuria, restored tubular glomerular feedback with attenuated renin-angiotensin II-aldosterone activation, improved energy utilization, decreased sympathetic tone, improved mitochondria calcium homeostasis, enhanced autophagy, and reduced cardiac inflammation, oxidative stress, and fibrosis. The RCTs demonstrated a neutral effect of the glucagon-like peptide receptor agonist on HF despite its weight-reducing effect, probably due to it possibly increasing the heart rate via increasing cyclic adenosine monophosphate (cAMP). Observational studies supported the markedly beneficial effects of bariatric and metabolic surgery on HF despite no current supporting evidence from RCTs. Bromocriptine can be used to treat peripartum cardiomyopathy by reducing the harmful cleaved prolactin fragments during late pregnancy. Preclinical studies suggest the possible beneficial effect of imeglimin on HF through improving mitochondrial function, but further clinical evidence is needed. Although abundant preclinical and observational studies support the beneficial effects of metformin on HF, there is limited evidence from RCTs. Thiazolidinediones increase the risk of hospitalized HF through increasing renal tubular sodium reabsorption mediated via both the genomic and non-genomic action of PPARγ. RCTs suggest that dipeptidyl peptidase-4 inhibitors, including saxagliptin and possibly alogliptin, may increase the risk of hospitalized HF, probably owing to increased circulating vasoactive peptides, which impair endothelial function, activate sympathetic tones, and cause cardiac remodeling. Observational studies and RCTs have demonstrated the neutral effects of insulin, sulfonylureas, an alpha-glucosidase inhibitor, and lifestyle interventions on HF in diabetic patients.
Collapse
Affiliation(s)
- Chih-Neng Hsu
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital Yunlin Branch, Yunlin 640, Taiwan
| | - Chin-Feng Hsuan
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung 824, Taiwan
- Division of Cardiology, Department of Internal Medicine, E-Da Dachang Hospital, I-Shou University, Kaohsiung 824, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 840, Taiwan
| | - Daniel Liao
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Jack Keng-Jui Chang
- Biological Programs for Younger Scholar, Academia Sinica, Taipei 115, Taiwan
| | - Allen Jiun-Wei Chang
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Siow-Wey Hee
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Hsiao-Lin Lee
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Sean I. F. Teng
- Department of Cardiology, Ming-Sheng General Hospital, Taoyuan 330, Taiwan
| |
Collapse
|